WorldWideScience

Sample records for chemical waste landfill

  1. 40 CFR 761.75 - Chemical waste landfills.

    Science.gov (United States)

    2010-07-01

    ... above the waste disposal unit liner and above a secondary installed liner. This design is recommended... the sides and under the bottom of the waste disposal unit liner. This type of system works best when... PROHIBITIONS Storage and Disposal § 761.75 Chemical waste landfills. This section applies to facilities used...

  2. Landfill mining: Resource potential of Austrian landfills--Evaluation and quality assessment of recovered municipal solid waste by chemical analyses.

    Science.gov (United States)

    Wolfsberger, Tanja; Aldrian, Alexia; Sarc, Renato; Hermann, Robert; Höllen, Daniel; Budischowsky, Andreas; Zöscher, Andreas; Ragoßnig, Arne; Pomberger, Roland

    2015-11-01

    Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests. PMID:26347181

  3. Mixed Waste Landfill Integrated Demonstration

    International Nuclear Information System (INIS)

    The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID's success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories' Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque's and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ''dry'' soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater

  4. Sandia National Laboratories Chemical Waste Landfill: Innovative strategies towards characterization and remediation

    International Nuclear Information System (INIS)

    The Chemical Waste Landfill (CWL) was used by Sandia National Laboratories (SNL), Albuquerque for disposal of hazardous chemicals from the years 1962 to 1985. During routine sampling in the spring of 1990, low levels of trichloroethylene (TCE) were detected in groundwater samples from a water table aquifer approximately 146 meters below ground surface. Therefore, a RCRA Site Investigation (RSI) has been initiated and remediation of organic contaminants will be performed at the CWL prior to closure of this landfill. The RSI is focused on optimal characterization of the volatile organic contamination (VOC) and dense non-aqueous phase liquid (DNAPL) contamination at this site. This will be possible through application of innovative strategies for characterization and promising new technologies which are discussed in this paper. The first part of this paper provides a discussion of conceptual models of VOC and DNAPL transport at the CWL and an overview of our investigative strategy. Each stage of the RSI has been developed to gather information which will reduce the uncertainty in the design of each subsequent phase of the investigation. Three stages are described; a source characterization stage, unsaturated zone characterization stage, and a saturated zone characterization stage. An important focus of the unsaturated zone characterization phase is to provide all data necessary to make decisions concerning the necessity of additional saturated zone characterization. The second part of this paper presents a brief discussion of some innovative approaches to characterization and remediation that are being applied at the CWL. Through the. SNL Environmental Restoration Program's desire to find new and improved methods for site characterization and remediation, several innovative technologies have been identified. These technologies include: the surface towed arrays developed by the Naval Research Laboratory for use in locating buried ordinance, core drilling using sonic

  5. Adaptive sampling strategy support for the unlined chromic acid pit, chemical waste landfill, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.L.

    1993-11-01

    Adaptive sampling programs offer substantial savings in time and money when assessing hazardous waste sites. Key to some of these savings is the ability to adapt a sampling program to the real-time data generated by an adaptive sampling program. This paper presents a two-prong approach to supporting adaptive sampling programs: a specialized object-oriented database/geographical information system (SitePlanner{trademark} ) for data fusion, management, and display and combined Bayesian/geostatistical methods (PLUME) for contamination-extent estimation and sample location selection. This approach is applied in a retrospective study of a subsurface chromium plume at Sandia National Laboratories` chemical waste landfill. Retrospective analyses suggest the potential for characterization cost savings on the order of 60% through a reduction in the number of sampling programs, total number of soil boreholes, and number of samples analyzed from each borehole.

  6. Municipal Solid Waste Landfills Harbor Distinct Microbiomes

    Directory of Open Access Journals (Sweden)

    Blake Warren Stamps

    2016-04-01

    Full Text Available Landfills are the final repository for most of the discarded material from human society and its built environments. Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2 and a complex mixture of soluble chemical compounds in leachate. Characterization of landfill microbiomes and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  7. ENGINEERING ASPECTS OF LANDFILLING MUNICIPAL SOLID WASTE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sanitary landfilling is the most important method of municipalsolid waste disposal in China. Landfill sites are always set up in mountain valley, on plain or beside seashore. A complete landfill consists of base system, cover system, and leachate collection and gas extraction system. This paper reviews the state-of-the-art landfilling technology in China and collection discusses research projects for engineers.

  8. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi;

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...... of the ashes. Leaching test, however, must be selected carefully to provide information relevant for the actual disposal scenario and for evaluating the benefits of pre-treating the residues prior to landfilling. This paper describes research at the Technical University of Denmark addressing some...

  9. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Exner, Stephan; Jørgensen, Anne-Mette;

    1998-01-01

    in different countries, composition of the product and physical/chemical/biological properties of waste product components) and output data (e.g. estimated emissions to atmosphere and water) are given for a fictive waste product made of representative types of components (toluene, cellulose, polyvinylchloride...... is significantly reduced in the presence of landfill top-cover, landfill gas combustion units and leachate treatment units. Generally, the sensitivity analysis shows good agreement between the relative proportions of various types of emissions (based on properties of the waste and properties of landfills) and good......This paper presents and verifies the computer tool LCA-LAND for estimation of emissions from specific waste products disposed in municipal solid waste landfills in European countries for use in the inventory analysis of LCA. Examples of input data (e.g. distribution of the waste product...

  10. Request for interim approval to operate Trench 94 of the 218-E-12B Burial Ground as a chemical waste landfill for disposal of polychlorinated biphenyl waste in submarine reactor compartments. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, G.D.

    1994-06-01

    This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of this waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy`s (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS.

  11. Request for interim approval to operate Trench 94 of the 218-E-12B Burial Ground as a chemical waste landfill for disposal of polychlorinated biphenyl waste in submarine reactor compartments

    International Nuclear Information System (INIS)

    This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of this waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy's (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS

  12. Quantifying capital goods for waste landfilling

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Stentsøe, Steen; Willumsen, Hans Christian;

    2013-01-01

    Materials and energy used for construction of a hill-type landfill of 4 million m3 were quantified in detail. The landfill is engineered with a liner and leachate collections system, as well as a gas collection and control system. Gravel and clay were the most common materials used, amounting...... to approximately 260 kg per tonne of waste landfilled. The environmental burdens from the extraction and manufacturing of the materials used in the landfill, as well as from the construction of the landfill, were modelled as potential environmental impacts. For example, the potential impact on global warming was 2.......5 kg carbon dioxide (CO2) equivalents or 0.32 milli person equivalents per tonne of waste. The potential impacts from the use of materials and construction of the landfill are low-to-insignificant compared with data reported in the literature on impact potentials of landfills in operation...

  13. Closure Alternatives for Municipal Waste Landfills.Study Case: Municipal Waste Landfill Medias,Sibiu County

    Directory of Open Access Journals (Sweden)

    MIHĂIESCU R.

    2010-12-01

    Full Text Available In the recent decades, the environmental impact produced by municipal solid wastes has received specialattention. All new EU countries are involved in the process of implementation of the European Council Directive31/99/EC on the landfill of waste in the European Union. As consequence National legislation, adapted to fit the EUrequirements, focuses on integrated waste management and environmental control of municipal solid waste landfills,from start-up to closure and assimilation into the environment. In Romania, by Government decision, HG 349/2005,was established the obligatoriness of closing unconform waste landfills located in urban areas starting at July 2009. Asconsequence the owner of municipal waste landfill Medias started the proceedings of closure for the landfill. The aim ofthis study is to compare, from an environmental point of view, different alternatives for the closure of the municipalsolid waste landfill Somard-Medias (Romania.

  14. A simple model for the distribution and fate of organic chemicals in a landfill: MOCLA

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Christensen, Thomas Højlund

    2001-01-01

    -leachate interface. Degradation of the chemicals is expressed as a first order reaction. Annual specific leachate and gas generation data in combination with data on landfill area and volume allow for prediction of main emission routes. Model simulations involving two landfill scenarios for a number of chemicals......A simple mathematical model (MOCLA: Model for Organic Chemicals in Landfills) is presented, describing the distribution of organic chemicals between leachate, gas and solid waste. The model also predicts the fate of the chemicals in terms of emissions with leachate and landfill gas and in terms...... of degradation and transformation in the landfill. Local equilibrium is assumed for the distribution of the chemicals in the landfill as expressed by Henry’s Law for the leachate-gas interface, and by the linear partition coefficient based on the waste solid organic carbon content for the waste...

  15. Sandia National Laboratories Mixed Waste Landfill Integrated Demonstration

    International Nuclear Information System (INIS)

    The Mixed-Waste Landfill Integrated Demonstration (MWLID) has been assigned to Sandia National Laboratories (SNL) by the US Department of Energy (DOE) Office of Technology Development. The mission of the MWLID is to assess, implement and transfer technologies and systems that lead to quicker, safer, and more efficient remediation of buried chemical and mixed-waste sites. The MWLID focus is on two landfills at SNL in Albuquerque, New Mexico: The Chemical Waste Landfill (CWL) and the Mixed-Waste Landfill (MWL). These landfills received chemical, radioactive and mixed wastes from various SNL nuclear research programs. A characterization system has been designed for the definition of the extent and concentration of contamination. This system includes historical records, directional drilling, and emplacement membrane, sensors, geophysics, sampling strategy, and on site sample analysis. In the remediation task, in-situ remediation systems are being designed to remove volatile organic compounds (VOC's) and heavy metals from soils. The VOC remediation includes vacuum extraction with electrical and radio-frequency heating. For heavy metal contamination, electrokinetic processes are being considered. The MWLID utilizes a phased, parallel approach. Initial testing is performed at an uncontaminated site adjacent to the CWL. Once characterization is underway at the CWL, lessons learned can be directly transferred to the more challenging problem of radioactive waste in the MWL. The MWL characterization can proceed in parallel with the remediation work at CWL. The technologies and systems demonstrated in the MWLID are to be evaluated based on their performance and cost in the real remediation environment of the landfills

  16. Closure Alternatives for Municipal Waste Landfills.Study Case: Municipal Waste Landfill Medias,Sibiu County

    OpenAIRE

    R. MIHĂIESCU; L. MUNTEAN; C. BODEA; Cristina MODOI; C. MALOŞ; MIHĂIESCU Tania; V. Arghiuş; Gh. ROŞIAN; Baciu, N.

    2010-01-01

    In the recent decades, the environmental impact produced by municipal solid wastes has received specialattention. All new EU countries are involved in the process of implementation of the European Council Directive31/99/EC on the landfill of waste in the European Union. As consequence National legislation, adapted to fit the EUrequirements, focuses on integrated waste management and environmental control of municipal solid waste landfills,from start-up to closure and assimilation into the env...

  17. Surface emission of landfill gas from solid waste landfill

    Science.gov (United States)

    Park, Jin-Won; Shin, Ho-Chul

    The surface emission of landfill gas (LFG) was studied to estimate the amount of LFG efflux from solid waste landfills using an air flux chamber. LFG efflux increased as atmospheric temperature increased during the day, and the same pattern for the surface emission was observed for the change of seasons. LFG efflux rate decreased from summer through winter. The average LFG efflux rates of winter, spring and summer were 0.1584, 0.3013 and 0.8597 m 3 m -2 h -1 respectively. The total amount of surface emission was calculated based on the seasonal LFG efflux rate and the landfill surface area. From the estimates of LFG generation, it is expected that about 30% of the generated LFG may be released through the surface without extraction process. As forced extraction with a blower proceeded, the extraction well pressure decreased from 1100 to -100 mm H 2O, and the LFG surface efflux decreased markedly above 80%. Thus, the utilization of LFG by forced extraction would be the good solution for global warming and air pollution by LFG.

  18. Nitrogen removal in the bioreactor landfill system with intermittent aeration at the top of landfilled waste

    Energy Technology Data Exchange (ETDEWEB)

    He Ruo [College of Environment and Resource, Zhejiang University, Hangzhou 310029 (China)]. E-mail: heruo@zju.edu.cn; Shen Dongsheng [College of Environment and Resource, Zhejiang University, Hangzhou 310029 (China)

    2006-08-25

    High ammonia concentration of recycled landfill leachate makes it very difficult to treat. In this work, a vertical aerobic/anoxic/anaerobic lab-scale bioreactor landfill system, which was constructed by intermittent aeration at the top of landfilled waste, as a bioreactor for in situ nitrogen removal was investigated during waste stabilization. Intermittent aeration at the top of landfilled waste might stimulate the growth of nitrifying bacteria and denitrifying bacteria in the top and middle layers of waste. The nitrifying bacteria population for the landfill bioreactor with intermittent aeration system reached between10{sup 6} and 10{sup 8} cells/dry g waste, although it decreased 2 orders of magnitude on day 30, due to the inhibitory effect of the acid environment and high organic matter in the landfilled waste. The denitrifying bacteria population increased by between 4 and 13 orders of magnitude compared with conventional anaerobic landfilled waste layers. Leachate NO{sub 3} {sup -}-N concentration was very low in both two experimental landfill reactors. After 105 days operation, leachate NH{sub 4} {sup +}-N and TN concentrations for the landfill reactor with intermittent aeration system dropped to 186 and 289 mg/l, respectively, while they were still kept above 1000 mg/l for the landfill reactor without intermittent aerobic system. In addition, there is an increase in the rate of waste stabilization as well as an increase of 12% in the total waste settlement for the landfill reactor with intermittent aeration system.

  19. Industrial Waste Landfill IV upgrade package

    International Nuclear Information System (INIS)

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE's Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit

  20. Industrial Waste Landfill IV upgrade package

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-29

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  1. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    For the inventory analysis of environmental impacts associated with products in LCA there is a great need for estimates of emissions from waste products disposed at municipal solid waste landfills (product specific emissions). Since product specific emissions can not be calculated or measured...... directly at the landfills, they must be estimated by modelling of landfill processes. This paper presents a landfill model based on a large number of assumptions and approximations concerning landfill properties, waste product properties and characteristics of various kinds of environmental protection...... systems (e.g. landfill gas combustion units and leachate treatment units). The model is useful for estimation of emissions from waste products disposed in landfills and it has been made operational in the computer tool LCA-LAND presented in a following paper. In the model, waste products are subdivided...

  2. Removal of high concentrated ammonia nitrogen from landfill leachate by landfilled waste layer

    Institute of Scientific and Technical Information of China (English)

    GUO Hui-dong; HE Pin-jing; SHAO Li-ming; LI Guo-jian

    2004-01-01

    The landfill of municipal solid waste(MSW) could be regarded as denitrification reactor and used in ammonia nitrogen biological removal process. In this research, the process was applied to municipal solid waste(MSW) collected in Shanghai, China, which was characterized with high food waste content. The NH4+ removal efficiency in the system of SBR nitrifying reactor followed by fresh and matured landfilled waste layer in series was studied. In the nitrifying reactor, above 90% of NH4+ in leachate was oxidized to NO2- and NO3-. Then high concentrated NO2- and NO3- was removed in the way of denitrification process in fresh landfilled waste layer. At the same time, degradation of fresh landfilled waste was accelerated. Up to the day 120, 136.5 gC/(kg dry waste) and 17.9 gN/(kg dry waste) were produced from waste layer. It accounted for 50.15% and 86.89% of the total carbon and nitrogen content of preliminary fresh waste, which was 4.42 times and 5.17 times higher than that of reference column respectively. After filtering through matured landfilled waste, BOD5 concentration in leachate dropped to below 100 mg/L, which would not affect following nitrification adversely. Because the matured landfilled waste acted as a well methanogenic reactor, 23% of carbon produced accumulatively from fresh landfilled waste degradation was converted into CH4.

  3. THE EMISSION POTENTIAL FROM MUNICIPAL SOLID WASTE LANDFILL IN JORDAN

    OpenAIRE

    Mohammad Aljaradin; Kenneth M. Persson

    2016-01-01

    A comprehensive study was conducted to monitor the emission potential from solid waste landfilled in Jordan over a period of 292 days using an anaerobic lysimeter. A 30 kg waste sample reflecting the typical municipal solid waste (MSW) streams generated in Jordan was used to simulate the influence of climate on the emission potential of landfills located in semi-arid areas. The experimental results demonstrated that a significant amount of leachate and landfill gas was produced. The methane c...

  4. Application of a NAPL partitioning interwell tracer test (PITT) to support DNAPL remediation at the Sandia National Laboratories/New Mexico chemical waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Studer, J.E. [INTERA Inc., Albuquerque, NM (United States); Mariner, P.; Jin, M. [INTERA Inc., Austin, TX (United States)] [and others

    1996-05-01

    Chlorinated solvents as dense non-aqueous phase liquid (DNAPL) are present at a large number of hazardous waste sites across the U.S. and world. DNAPL is difficult to detect in the subsurface, much less characterize to any degree of accuracy. Without proper site characterization, remedial decisions are often difficult to make and technically effective, cost-efficient remediations are even more difficult to obtain. A new non-aqueous phase liquid (NAPL) characterization technology that is superior to conventional technologies has been developed and applied at full-scale. This technology, referred to as the Partitioning Interwell Tracer Test (PITT), has been adopted from oil-field practices and tailored to environmental application in the vadose and saturated zones. A PITT has been applied for the first time at full-scale to characterize DNAPL in the vadose zone. The PITT was applied in December 1995 beneath two side-by-side organic disposal pits at Sandia National Laboratories/New Mexico (SNL/NM) RCRA Interim Status Chemical Waste Landfill (CWL), located in Albuquerque, New Mexico. DNAPL, consisting of a mixture of chlorinated solvents, aromatic hydrocarbons, and PCE oils, is known to exist in at least one of the two buried pits. The vadose zone PITT was conducted by injecting a slug of non-partitioning and NAPL-partitioning tracers into and through a zone of interest under a controlled forced gradient. The forced gradient was created by a balanced extraction of soil gas at a location 55 feet from the injector. The extracted gas stream was sampled over time to define tracer break-through curves. Soil gas sampling ports from multilevel monitoring installations were sampled to define break-through curves at specific locations and depths. Analytical instrumentation such as gas chromatographs and a photoacoustical analyzers operated autonomously, were used for tracer detection.

  5. Space monitoring of municipal solid waste landfills in Kazakhstan

    Science.gov (United States)

    Skakova, Olga; Shagarova, Lyudmila

    Municipal solid waste (MSW) landfills are special facilities designed for waste isolation and disposal ensuring sanitary and epidemiological safety of population. A solid waste landfill is a complex object with its own specific features. Modern remote-sensing methods are an indispensable source of information for the analysis of space images of solid waste landfills in Kazakhstan. Space monitoring of solid waste landfills includes the following tasks: 1. Identification and mapping of landfill areas according to the data of remote earth sensing. 2. Studying of energy and structural characteristics of landfills based on remote sensing data. 3. Analysis of the state of landfills based on a comparison of current and archive remote sensing data. Space monitoring of territories of municipal solid waste landfills uses modern computer technologies. They include satellite imagery combined with sub-satellite research, as well as other sources of information used for identification and mapping of landfill territories. Investigation of municipal solid waste landfills requires targeted survey of landfill areas, remote sensing using operational and archival data including theoretical foundations of physical optics and statistical data. Processing of digital satellite information uses methods of pattern recognition, automated image processing and correlation analysis. Based on spectral energy and textural characteristics of municipal solid waste landfills obtained by remote sensing methods, the technology of space monitoring of landfill areas, including landfill recognition and characterization of solid waste landfills from remote observations was developed. Monitoring of MSW landfills uses satellite images of ultrahigh and medium spatial resolution. Medium-resolution images are used to determine temperature, vegetation cover and soil degradation. High-resolution images are used to detect landfills, to determine forms of soil degradation, to calculate geometrical parameters, and

  6. Microbiological indication of municipal solid waste landfill non-stabilization

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qi-xing; SYLVESTER Runyuzi; YU Ji-yu; ZHANG Qian-ru

    2004-01-01

    Accidental collapse resulted from unstable factors is an important technological problem to be solved in sanitary landfill. Microbiological degradation of organic matters in landfilled solid waste are an important unstable factor. A landfill reactor was thus manufactured and installed to examine quantitative and population dynamics of microorganisms during degradation of landfilled solid waste. It was showed that unstable landfill can be reflected and indicated by microbiological features such as rapidly decreased growth amount of microorganisms, no detection of fungi and actinomyces, and changing the dominant population into methanogenic bacteria and Acinotobacter.

  7. ASSESSMENT OF EARTHQUAKE HAZARDS ON WASTE LANDFILLS

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos

    Earthquake hazards may arise as a result of: (a) transient ground deformation, which is induced due to seismic wave propagation, and (b) permanent ground deformation, which is caused by abrupt fault dislocation. Since the adequate performance of waste landfills after an earthquake is of outmost...... importance, the current study examines the impact of both types of earthquake hazards by performing efficient finite-element analyses. These took also into account the potential slip displacement development along the geosynthetic interfaces of the composite base liner. At first, the development of permanent...

  8. Research on Health Risk-Based Radioactive Acceptance Criteria of Municipal Solid Waste Landfill

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The article focuses on the topics of Health Risk-Based Radioactive Acceptance Criteria of Municipal Solid Waste Landfill (MSWL, including municipal refuse landfills or industrial solid waste landfills, MSWL). At first, health risk assessment

  9. Gas treatment of Cr(VI)-contaminated sediment samples from the North 60`s pits of the chemical waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, E.C.; Amonette, J.E.

    1997-12-01

    Twenty sediment samples were collected at depths ranging from 5 to 100 ft (1.5 to 30 m) beneath a metal-contaminated plating-waste site and extensively characterized for Cr(VI) content and environmental availability. Three samples were selected for treatment with diluted gas mixtures with the objective of converting Cr(VI) to Cr(III), which is relatively nontoxic and immobile. These tests were designed to provide information needed to evaluate the potential application of gas injection as an in situ remediation technique. Gas treatment was performed in small columns (4.9-cm ID, 6.4- to 13.9-cm long) using 100 ppm ({mu}L L{sup -1}) H{sub 2}S or ethylene mixtures in N{sub 2}. Treatment progress during the tests involving H{sub 2}S was assessed by monitoring the breakthrough of H{sub 2}S. Evaluation of H{sub 2}S treatment efficacy included (1) water-leaching of treated and untreated columns for ten days, (2) repetitive extraction of treated and untreated subsamples by water, 0.01 M phosphate (pH 7) or 6 M HCl solutions, and (3) Cr K-edge X-ray absorption near-edge structure (XANES) spectroscopy of treated and untreated subsamples. Results of the water-leaching studies showed that the H{sub 2}S treatment decreased Cr(VI) levels in the column effluent by 90% to nearly 100%. Repetitive extractions by water and phosphate solutions echoed these results, and the extraction by HCl released only 35-40% as much Cr in the treated as in the untreated samples. Analysis by XANES spectroscopy showed that a substantial portion of the Cr in the samples remained as Cr(VI) after treatment, even though it was not available to the water and phosphate extracting solutions. These results suggest that this residual Cr(VI) is present in low solubility phases such as PbCrO{sub 4} or sequestered in unreacted grain interiors under impermeable coatings formed during H{sub 2}S treatment. However, this fraction is essentially immobile and thus unavailable to the environment.

  10. Conceptual Model for the Solid Waste Landfill

    International Nuclear Information System (INIS)

    The Solid Waste Landfill (SWL) at the Hanford Site was operated from 1973 to 1996 to receive nonhazardous, nonradioactive sanitary waste generated from Hanford Site operations. Several volatile organic compounds (VOC) have been detected in wells in the SWL groundwater monitoring network since 1986, when groundwater monitoring for VOC was initiated throughout the Hanford Site. Because of the groundwater contamination, the SWL ceased operation in March 1996 and entered a period of interim closure in April 1996. The purpose of this report is to develop a conceptual model of the SWL to assess the nature and extent of the VOC contamination, in support of closure activities. The conceptual model indicates that VOC contamination has been detected in liquid wastes, soil gas, leachate, and groundwater at the SWL; that various transport mechanisms and pathways are available for contaminant migration; and that VOC concentrations are generally decreasing in groundwater. The implications of this conceptual model for closure activities will be discussed separately in the Plan for Closure of the SWL

  11. THE EMISSION POTENTIAL FROM MUNICIPAL SOLID WASTE LANDFILL IN JORDAN

    Directory of Open Access Journals (Sweden)

    Mohammad Aljaradin

    2016-01-01

    Full Text Available A comprehensive study was conducted to monitor the emission potential from solid waste landfilled in Jordan over a period of 292 days using an anaerobic lysimeter. A 30 kg waste sample reflecting the typical municipal solid waste (MSW streams generated in Jordan was used to simulate the influence of climate on the emission potential of landfills located in semi-arid areas. The experimental results demonstrated that a significant amount of leachate and landfill gas was produced. The methane content was found to be more than 45% and the leachate produced reached 15.7 l after 200 days. However, after 260 days the gas and leachate production rate became negligible. A significant amount of heavy metal traces was found in the leachate due to mixed waste disposal. Changes in biogas and leachate quality parameters in the lysimeter revealed typical landfill behaviour trends, the only difference being that they developed much more quickly. In view of current landfill practices in Jordan and the effect of climate change, the results suggest that landfill design and operational modes need to be adjusted in order to achieve sustainability. For this reason, optimized design parameters and operational scenarios for sustainable landfill based on the country’s climatic conditions and financial as well as technical potential are recommended as a primary reference for future landfills in Jordan as well as in similar regions and climates.

  12. Environmental assessment of solid waste landfilling technologies by means of LCA-modeling

    DEFF Research Database (Denmark)

    Manfredi, Simone; Christensen, Thomas Højlund

    2009-01-01

    -aerobic landfill) and assesses the influence of the active operations practiced on these performances. The environmental assessments have been performed by means of the LCA-based tool EASEWASTE, whereby the functional unit utilized for the LCA is “landfilling of 1 ton of wet household waste in a 10 m deep landfill...... for 100 years”. The assessment criteria include standard categories (global warming, nutrient enrichment, ozone depletion, photo-chemical ozone formation and acidification), toxicity-related categories (human toxicity and ecotoxicity) and impact on spoiled groundwater resources. Results demonstrate...

  13. BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills

    Science.gov (United States)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2015-04-01

    One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.

  14. An integrated approach combining chemical analysis and an in vivo bioassay to assess the estrogenic potency of a municipal solid waste landfill leachate in Qingdao.

    Directory of Open Access Journals (Sweden)

    Yufeng Gong

    Full Text Available Various adverse effects related to landfill leachate have made leachates an important issue in past decades, and it has been demonstrated that landfill leachate is an important source of environmental estrogens. In this study, we employed chemical analysis of some already evaluated estrogenic substances, in combination with a bioassay using several specific biomarkers (e.g., plasma vitellogenin and sex steroids, enzyme activity of gonad gamma-glutamyl transpeptidase, and gonadosomatic index to evaluate the estrogenic activities in outlets from different stages of the leachate treatment process. The results indicated that 5 environmental estrogens (4-t-octylphenol, bisphenol A, di-ethyl phthalate, di-n-butyl phthalate, and diethylhexyl phthalate were detected by a gas chromatography-mass spectrometry, and the concentrations in leachate samples were 6153 ng/L, 3642 ng/L, 2139 ng/L, 5900 ng/L, and 9422 ng/L, respectively. Leachate (1∶200 diluted induced the synthesis of plasma vitellogenin and led to decreased enzyme activity of gonad gamma-glutamyl transpeptidase and gonadosomatic index in male goldfish (Carassius auratus after a 28-day exposure, while increased circulating 17β-estradiol level was also observed in males exposed to treated effluent. Although the target EEs were partially removed with removal rates varying from 87.2% to 99.77% by the "membrane bioreactor+reverse osmosis+aeration zeolite biofilter" treatment process, the treated effluent is still estrogenic to fish. The method combined chemical techniques with the responses of test organisms allowing us to identify the group of estrogen-like chemicals so that we were able to evaluate the overall estrogenic effects of a complex mixture, avoiding false negative assessments.

  15. Fate of chemical warfare agents and toxic indutrial chemicals in landfills

    DEFF Research Database (Denmark)

    Bartelt-Hunt, D.L.; Barlaz, M.A.; Knappe, D.R.U.;

    2006-01-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs......], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from...... CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis halflives. Monte Carlo simulations were performed to assess...

  16. Implications of variable waste placement conditions for MSW landfills.

    Science.gov (United States)

    Cox, Jason T; Yesiller, Nazli; Hanson, James L

    2015-12-01

    This investigation was conducted to evaluate the influence of waste placement practices on the engineering response of municipal solid waste (MSW) landfills. Waste placement conditions were varied by moisture addition to the wastes at the time of disposal. Tests were conducted at a California landfill in test plots (residential component of incoming wastes) and full-scale active face (all incoming wastes including residential, commercial, and self-delivered components). The short-term effects of moisture addition were assessed by investigating compaction characteristics and moisture distribution and the long-term effects by estimating settlement characteristics of the variably placed wastes. In addition, effects on engineering properties including hydraulic conductivity and shear strength, as well as economic aspects were investigated. The unit weight of the wastes increased with moisture addition to a maximum value and then decreased with further moisture addition. At the optimum moisture conditions, 68% more waste could be placed in the same landfill volume compared to the baseline conditions. Moisture addition raised the volumetric moisture content of the wastes to the range 33-42%, consistent with values at and above field capacity. Moisture transfer occurred between consecutive layers of compacted wastes and a moisture addition schedule of 2 days of as-received conditions and 1 day of moisture addition was recommended. Settlement of wastes was estimated to increase with moisture addition, with a 34% increase at optimum moisture compared to as-received conditions. Overall, moisture addition during compaction increased unit weight, the amount of incoming wastes disposed in a given landfill volume, biological activity potential, and predicted settlement. The combined effects have significant environmental and economic implications for landfill operations. PMID:26350400

  17. The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors.

    Science.gov (United States)

    Ishigaki, Tomonori; Sugano, Wataru; Nakanishi, Akane; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori

    2004-01-01

    Degradabilities of four kinds of commercial biodegradable plastics (BPs), polyhydroxybutyrate and hydroxyvalerate (PHBV) plastic, polycaprolactone plastic (PCL), blend of starch and polyvinyl alcohol (SPVA) plastic and cellulose acetate (CA) plastic were investigated in waste landfill model reactors that were operated as anaerobically and aerobically. The application of forced aeration to the landfill reactor for supplying aerobic condition could potentially stimulate polymer-degrading microorganisms. However, the individual degradation behavior of BPs under the aerobic condition was completely different. PCL, a chemically synthesized BP, showed film breakage under the both conditions, which may have contributed to a reduction in the waste volume regardless of aerobic or anaerobic conditions. Effective degradation of PHBV plastic was observed in the aerobic condition, though insufficient degradation was observed in the anaerobic condition. But the aeration did not contribute much to accelerate the volume reduction of SPVA plastic and CA plastic. It could be said that the recalcitrant portions of the plastics such as polyvinyl alcohol in SPVA plastic and the highly substituted CA in CA plastic prevented the BP from degradation. These results indicated existence of the great variations in the degradability of BPs in aerobic and anaerobic waste landfills, and suggest that suitable technologies for managing the waste landfill must be combined with utilization of BPs in order to enhance the reduction of waste volume in landfill sites. PMID:14575734

  18. Capping as an alternative for remediating radioactive and mixed waste landfills

    International Nuclear Information System (INIS)

    This report describes some of the regulatory and technical issues concerning the use of capping as a containment strategy for radioactive and hazardous waste. Capping alternatives for closure of landfills is not just an engineering problem, but rather involves complex physical, biological, and chemical processes requiring a multidisciplinary approach to develop designs that will work over the long haul and are cost-effective. Much of the information has been distilled from regulatory and guidance documents and a compilation of research activities on waste disposal, contaminant transport processes, and technology development for landfills that has been conducted over the last 21 years

  19. Groundwater Monitoring Plan for the Nonradioactive Dangerous Waste Landfill

    International Nuclear Information System (INIS)

    The Nonradioactive Dangerous Waste Landfill (NRDWL), which received nonradioactive hazardous waste between 1975 and 1985, is located in the central Hanford Site (Figure 1.1) in southeastern Washington State. The Solid Waste Landfill, which is regulated and monitored separately, is adjacent to the NRDWL. The NRDWL is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) and monitored by Pacific Northwest National Laboratory. Monitoring is done under interim-status, indicator-evaluation requirements (WAC 173-303 and by reference, 40 CFR 265.92). The well network includes three upgradient wells (one shared with the Solid Waste Landfill) and six downgradient wells. The wells are sampled semiannually for contaminant indicator parameters and site-specific parameters and annually for groundwater quality parameters

  20. Groundwater Monitoring Plan for the Nonradioactive Dangerous Waste Landfill

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Lindberg; M.J. Hartman

    1999-08-17

    The Nonradioactive Dangerous Waste Landfill (NRDWL), which received nonradioactive hazardous waste between 1975 and 1985, is located in the central Hanford Site (Figure 1.1) in southeastern Washington State. The Solid Waste Landfill, which is regulated and monitored separately, is adjacent to the NRDWL. The NRDWL is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) and monitored by Pacific Northwest National Laboratory. Monitoring is done under interim-status, indicator-evaluation requirements (WAC 173-303 and by reference, 40 CFR 265.92). The well network includes three upgradient wells (one shared with the Solid Waste Landfill) and six downgradient wells. The wells are sampled semiannually for contaminant indicator parameters and site-specific parameters and annually for groundwater quality parameters.

  1. Sensitivity analysis of the waste composition and water content parameters on the biogas production models on solid waste landfills

    Science.gov (United States)

    Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco; Rodrigo-Clavero, Maria-Elena

    2014-05-01

    Landfills are commonly used as the final deposit of urban solid waste. Despite the waste is previously processed on a treatment plant, the final amount of organic matter which reaches the landfill is large however. The biodegradation of this organic matter forms a mixture of greenhouse gases (essentially Methane and Carbon-Dioxide as well as Ammonia and Hydrogen Sulfide). From the environmental point of view, solid waste landfills are therefore considered to be one of the main greenhouse gas sources. Different mathematical models are usually applied to predict the amount of biogas produced on real landfills. The waste chemical composition and the availability of water in the solid waste appear to be the main parameters of these models. Results obtained when performing a sensitivity analysis over the biogas production model parameters under real conditions are shown. The importance of a proper characterizacion of the waste as well as the necessity of improving the understanding of the behaviour and development of the water on the unsaturated mass of waste are emphasized.

  2. A Decision Making Tool for Hazardous Waste Landfill Site Selection

    Directory of Open Access Journals (Sweden)

    P. Pandiyan

    2011-01-01

    Full Text Available Problem statement: Continuous global environmental crisis and degradation has been a challenge for the sustainability of living on earth. This threat was posed by industrialization, high products need, urbanization and population growth activities. As a result, the hazardous waste generation has tremendously increased. Approach: Landfill was one of the positive approaches to handle hazardous waste generated in great quantity. The appropriate selection of landfill site played a major role to remediate the hazardous waste materials. Attributes to be considered for decision-making were selected based on literature, observations with weightage assigned to each attribute following the pair wise comparison method and sensitivity index on a scale of 0 to 1 based on attribute measurement. The attributes were then grouped and ranked following Delphi approach. Results: In environmental assessment, field based study of three landfill sites such as Melakottaiyur, Pachaiyankuppam and Gummidipoondi in Tamil Nadu, India were selected and the sites scored a Risk Index (RI of 298.75, 369.05 and 408.25 respectively. In economical assessment, economic viability related attributes were analyzed and the three landfill site such as Pachaiyankuppam, Melakottaiyur and Gummidipoondi scored a RI of 86.1, 94.3 and 131.5 respectively. Conclusion/Recommendations: In environmental assessment the landfill sites were shortlisted. In order to achieve economic sustainability of the landfill, economic viability related attributes has to be analyzed with high priority and weightage in economical assessment.

  3. Risk mitigation methodology for solid waste landfills. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, W.B.

    1995-05-01

    Several recent models have attempted to simulate or assess the probability and consequences of the leakage of aqueous contaminant leakage from solid waste landfills. These models incorporate common factors, including climatological and geological characteristics. Each model, however, employs a unique approach to the problem, assigns different relative weights to factors, and relies upon extrapolated small-scale experimental data and/or subjective judgment in predicting the full-scale landfill failure mechanisms leading to contaminant migration. As a result, no two models are likely to equally assess a given landfill, and no one model has been validated as a predictor of long-term performance. The United States Air Force maintains a database for characterization of potential hazardous waste sites. Records include more than 500 landfills, providing such information as waste, soil, aquifer, monitoring location data, and the results of sample testing. Through analysis of this information, nearly 300 landfills were assessed to have sufficiently, partially, or inadequately contained hazardous constituents of the wastes placed within them.

  4. Parametric Analysis of Leachate and Water Resources around Municipal Solid Waste Landfill area in Solan

    Directory of Open Access Journals (Sweden)

    Sharma Deepika

    2016-01-01

    Full Text Available Leachate is defined as the liquid that drains from the landfill. The paper presents the physico-chemical, bacteriological and heavy metal testing results carried out for leachate, surface and sub-surface water samples collected from municipal solid waste landfill and different water sources in Solan to find out the effect of leachate percolation on groundwater quality. Physico-chemical parameters analysed were, pH, Total Dissolve Solid (TDS, sulphate, turbidity, Electrical Conductivity (EC while biological parameters tested were Biological Oxygen Demand (BOD, Chemical Oxygen Demand (COD, Most Probable Number (MPN test and ammonical nitrogen. Testing for heavy metals (Pb, Zn, Cr, Ni, Fe were carried out and have been reported. The results reveal that the leachate from the unlined landfill may have a significant impact on the groundwater resource (often used as drinking source particularly because of the toxic nature of the leachate coupled with the soil characteristics which is permeable in nature.

  5. Environmental Planning Strategies for Optimum Solid Waste Landfill Siting

    International Nuclear Information System (INIS)

    The use of environmental planning tools for optimum solid waste landfill siting taking into account all environmental implications was carried out by applying Life Cycle Analysis (LCA) to enhance the research information obtained from initial analysis using Geographical Information Systems (GIS). The objective of this study is to identify the most eco-friendly landfill site by conducting a LCA analysis upon 5 potential GIS generated sites which incorporated eleven important criteria related to the social, environmental, and economical factors. The LCA analysis utilized the daily distance covered by collection trucks among the 5 selected landfill sites to generate inventory data on total energy usage for each landfill sites. The planning and selection of the potential sites were facilitated after conducting environmental impact analysis upon the inventory data which showed the least environmental impact. (author)

  6. From dumping to sanitary landfills - solid waste management in Israel

    International Nuclear Information System (INIS)

    To address the problem of solid waste in Israel, the Ministry of the Environment has formulated a policy based on integrated waste management. The policy calls for reduction of waste at source, reuse, recycling (including composting), waste-to-energy technologies, and landfilling. Due to the implementation of this policy, all the large dumps were closed, state-of-the art landfills were built, and recovery rates have increased from 3% in the beginning of the 1990s to almost 20% in 2003. More than 95% of the municipal solid waste is disposed and treated in an environmentally sound manner - in comparison to a mere 10% just a decade ago. The policy was implemented utilizing both enforcement and financial support ('stick and carrot' approach)

  7. Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content.

    Science.gov (United States)

    Scaglia, Barbara; Salati, Silvia; Di Gregorio, Alessandra; Carrera, Alberto; Tambone, Fulvia; Adani, Fabrizio

    2013-09-01

    The aim of this work was to evaluate the effects of full scale MBT process (28 d) in removing inhibition condition for successive biogas (ABP) production in landfill and in reducing total waste impact. For this purpose the organic fraction of MSW was treated in a full-scale MBT plant and successively incubated vs. untreated waste, in simulated landfills for one year. Results showed that untreated landfilled-waste gave a total ABP reduction that was null. On the contrary MBT process reduced ABP of 44%, but successive incubation for one year in landfill gave a total ABP reduction of 86%. This ABP reduction corresponded to a MBT process of 22 weeks length, according to the predictive regression developed for ABP reduction vs. MBT-time. Therefore short MBT allowed reducing landfill impact, preserving energy content (ABP) to be produced successively by bioreactor technology since pre-treatment avoided process inhibition because of partial waste biostabilization. PMID:23792663

  8. Estimation method for national methane emission from solid waste landfills

    Science.gov (United States)

    Kumar, Sunil; Gaikwad, S. A.; Shekdar, A. V.; Kshirsagar, P. S.; Singh, R. N.

    In keeping with the global efforts on inventorisation of methane emission, municipal solid waste (MSW) landfills are recognised as one of the major sources of anthropogenic emissions generated from human activities. In India, most of the solid wastes are disposed of by landfilling in low-lying areas located in and around the urban centres resulting in generation of large quantities of biogas containing a sizeable proportion of methane. After a critical review of literature on the methodology for estimation of methane emissions, the default methodology has been used in estimation following the IPCC guidelines 1996. However, as the default methodology assumes that all potential methane is emitted in the year of waste deposition, a triangular model for biogas from landfill has been proposed and the results are compared. The methodology proposed for methane emissions from landfills based on a triangular model is more realistic and can very well be used in estimation on global basis. Methane emissions from MSW landfills for the year AD 1980-1999 have been estimated which could be used in computing national inventories of methane emission.

  9. The current state of municipal solid waste landfills in Suceava county and their impact on water and soil

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2013-08-01

    Full Text Available   The location of municipal solid waste (MSW landfills in inappropriate places is a serious risk to the quality of all environmental factors. These waste disposal sites can become major sources of chemical pollution and biological contamination of soil, groundwater and surface waters due to the high content of heavy metals and organic substances with low biodegradation rate.The paper discusses in detail the issues of the landfill sites territorial distribution in Suceava County (the Mirăuţi landfill, located in the adjacent area of Suceava city and the Gura Humorului, Radauti, Siret, Campulung Moldovenesc, Fălticeni and Vatra Dornei urban landfills, together with a review of the technical data of the landfills, as well as an evaluation of the qualitative and quantitative effects they produce on the landscape, soil and groundwater quality.

  10. Assessment of microbiological and chemical properties in a municipal landfill area.

    Science.gov (United States)

    Frączek, Krzysztof J; Ropek, Dariusz R; Lenart-Boroń, Anna M

    2014-01-01

    This study aimed at determining the environmental hazards for soils posed by a large municipal landfilll. The concentrations of heavy metals and Policyclic Aromatic Hydrocarbons, as well as microbial composition (i.e., mesophilic bacteria, actinomycetes, molds, Salmonella, Staphylococcus, Clostridium perfringens) in four soils within and in the vicinity of the landfill were evaluated and compared to waste samples. Both chemical and microbiological analyses revealed only limited contamination of surrounding areas. Although the increased alkalinity of soils was detected, the concentrations of heavy metals and Polycyclic Aromatic Hydrocarbons (PAHs) did not exceed the admissible values. All examined microbial groups were abundant in soil and waste. The highest microbial cell numbers were observed in warm summer and spring months. Although the site south of the landfill shows no trace of microbial contamination, pathogenic bacteria were found north of the landfill. This may suggest that there are other, more effective, transmission routes of bacteria than groundwater flow.

  11. Dining Services composting program aims to reduce landfill waste

    OpenAIRE

    Gehrt, Katie

    2009-01-01

    Thanks to a new partnership between Virginia Tech Dining Services and Poplar Manor Enterprises LLC (PME), the Southgate Food Processing Center on campus has reduced the amount of food waste it sends to the local landfill each week by as much as 2.5 tons.

  12. Methanogenesis acceleration of fresh landfilled waste by micro-aeration

    Institute of Scientific and Technical Information of China (English)

    SHAO Li-ming; HE Pin-jing; ZHANG Hua; YU Xiao-hua; LI Guo-jian

    2005-01-01

    When municipal solid waste(MSW) with high content of food waste is landfilled, the rapid hydrolysis of food waste results in the imbalance of anaerobic metabolism in the landfill layer, indicated by accumulation of volatile fatty acids(VFA) and decrease of pH value.This occurrence could lead to long lag time before the initiation of methanogenesis and to the production of strong leachate. Simulated landfill columns with forced aeration, with natural ventilation, and with no aeration, were monitored regarding their organics degradation rate with leachate recirculation. Hydrolysis reactions produced strong leachate in the column with no aeration. With forced aeration, the produced VFA could be effectively degraded, leading to the reduction in COD of the leachate effluent since the week 3. The CH4 in the frequency of twice/d, could amount to 40% (v/v) after only 20 weeks. This amount had increased up to 50% afterward even with no aeration. Most of COD in the recirculated leachate was removed. Using natural ventilation, CH4 could also be produced and the COD of the leachate effluent be reduced after 10 weeks of operation. However, the persistent existence of oxygen in the landfill layer yielded instability in methanogenesis process.

  13. Management of Conventional Wastes (Non Radioactive) in Spanish Landfills

    International Nuclear Information System (INIS)

    This report is the result of a collaboration agreement between CIEMAT and ENRESA. The goal of the report is to analyze the existing legislation on solid conventional waste, according to the European Community, the Spanish State and its Autonomous Communities, focusing on the latest regulation applicable to the final management in controlled landfills. In addition, information about the legal frame, production, composition and characteristics of conventional waste (i.e. urban, inert, dangerous industrial and non dangerous industrial) is given. Also, the final management that is carried out nowadays in Spain for each of the waste is analyzed and evaluated. Finally, the fulfilment of the in force regulation by the different types of Spanish controlled landfills is evaluated. (Author) 52 refs.

  14. Landfill gas from solid urban waste - an opportunity evaluation

    International Nuclear Information System (INIS)

    The problems (technical, economic, social etc.) which have to be solved by municipal waste treatment, especially in Central/East European towns, are discussed in this work. Percentages of products and calorific values of the main solid organic wastes are estimated. Different urban waste utilisation methods - Landfills Anaerobic digestion, Incineration, Refuse-derived fuels, Pyrolysis and Gasification are comment in this paper. These methods are compared using the town of Blagoevgrad (Bulgaria) as an example. It is round that a well established landfill gas production technology offers simplicity of collection (such as is practised in most of low and moderately developed countries like Bulgaria), relatively simple operation and maintenance, improvement of the environmental protection and of the energy production (based on the local disposal and renewable energy sources) and is more feasible for the East European urban concentrations. (Author)

  15. Impact assessment of intermediate soil cover on landfill stabilization by characterizing landfilled municipal solid waste.

    Science.gov (United States)

    Qi, Guangxia; Yue, Dongbei; Liu, Jianguo; Li, Rui; Shi, Xiaochong; He, Liang; Guo, Jingting; Miao, Haomei; Nie, Yongfeng

    2013-10-15

    Waste samples at different depths of a covered municipal solid waste (MSW) landfill in Beijing, China, were excavated and characterized to investigate the impact of intermediate soil cover on waste stabilization. A comparatively high amount of unstable organic matter with 83.3 g kg(-1) dry weight (dw) total organic carbon was detected in the 6-year-old MSW, where toxic inorganic elements containing As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn of 10.1, 0.98, 85.49, 259.7, 530.4, 30.5, 84.0, and 981.7 mg kg(-1) dw, respectively, largely accumulated because of the barrier effect of intermediate soil cover. This accumulation resulted in decreased microbial activities. The intermediate soil cover also caused significant reduction in moisture in MSW under the soil layer, which was as low as 25.9%, and led to inefficient biodegradation of 8- and 10-year-old MSW. Therefore, intermediate soil cover with low permeability seems to act as a barrier that divides a landfill into two landfill cells with different degradation processes by restraining water flow and hazardous matter.

  16. Contribution of individual waste fractions to the environmental impacts from landfilling of municipal solid waste

    DEFF Research Database (Denmark)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas Højlund

    2010-01-01

    fractions. Impact potentials are estimated for 1 tonne of mixed waste disposed off in a conventional landfill with bottom liner, leachate collection and treatment and gas collection and utilization for electricity generation. All the environmental aspects are accounted for 100 years after disposal......A number of LCA-based studies have reported on the environmental performance of landfilling of mixed waste, but little is known about the relative contributions of individual waste fractions to the overall impact potentials estimated for the mixed waste. In this paper, an empirical model has been...... used to estimate the emissions to the environment from landfilling of individual waste fractions. By means of the LCA-model EASEWASTE, the emissions estimated have been used to quantify how much of the overall impact potential for each impact category is to be attributed to the individual waste...

  17. The impact of municipal solid waste landfills in Suceava County on air quality

    OpenAIRE

    Dumitru MIHĂILĂ; Valeria DIȚOIU; Petruț-Ionel BISTRICEAN

    2014-01-01

    The location of municipal solid waste (MSW) landfills in inappropriate places is a serious risk to the quality of all environmental factors. These waste disposal sites can become major sources of air quality deterioration through emissions of toxic gas resulted from anaerobic decomposition of organic waste. The paper discusses in detail the qualitative and quantitative effects of municipal waste landfills of the main urban settlements in Suceava County (Suceava City municipal landfill and Gur...

  18. Landfill taxes and Enhanced Waste Management: Combining valuable practices with respect to future waste streams.

    Science.gov (United States)

    Hoogmartens, Rob; Eyckmans, Johan; Van Passel, Steven

    2016-09-01

    Both landfill taxes and Enhanced Waste Management (EWM) practices can mitigate the scarcity issue of landfill capacity by respectively reducing landfilled waste volumes and valorising future waste streams. However, high landfill taxes might erode incentives for EWM, even though EWM creates value by valorising waste. Concentrating on Flanders (Belgium), the paper applies dynamic optimisation modelling techniques to analyse how landfill taxation and EWM can reinforce each other and how taxation schemes can be adjusted in order to foster sustainable and welfare maximising ways of processing future waste streams. Based on the Flemish simulation results, insights are offered that are generally applicable in international waste and resource management policy. As shown, the optimal Flemish landfill tax that optimises welfare in the no EWM scenario is higher than the one in the EWM scenario (93 against €50/ton). This difference should create incentives for applying EWM and is driven by the positive external effects that are generated by EWM practices. In Flanders, as the current landfill tax is slightly lower than these optimal levels, the choice that can be made is to further increase taxation levels or show complete commitment to EWM. A first generally applicable insight that was found points to the fact that it is not necessarily the case that the higher the landfill tax, the more effective waste management improvements can be realised. Other insights are about providing sufficient incentives for applying EMW practices and formulating appropriate pleas in support of technological development. By these insights, this paper should provide relevant information that can assist in triggering the transition towards a resource-efficient, circular economy in Europe. PMID:27067099

  19. Chemical Waste and Allied Products.

    Science.gov (United States)

    Hung, Yung-Tse; Aziz, Hamidi Abdul; Ramli, Siti Fatihah; Yeh, Ruth Yu-Li; Liu, Lian-Huey; Huhnke, Christopher Robert

    2016-10-01

    This review of literature published in 2015 focuses on waste related to chemical and allied products. The topics cover the waste management, physicochemical treatment, aerobic granular, aerobic waste treatment, anaerobic granular, anaerobic waste treatment, chemical waste, chemical wastewater, fertilizer waste, fertilizer wastewater, pesticide wastewater, pharmaceutical wastewater, ozonation. cosmetics waste, groundwater remediation, nutrient removal, nitrification denitrification, membrane biological reactor, and pesticide waste. PMID:27620094

  20. Landfill gas generation and emission at danish waste disposal sites receiving waste with a low organic waste content

    DEFF Research Database (Denmark)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-01-01

    two models are multi-phase models, which defines waste fractions into traditional MSW and low-organic waste categories, respectively. Both the LandGEM and the IPCC model estimated significantly larger methane (CH4) generation in comparison to the Afvalzorg model. The Afvalzorg model could better show...... the influence of not only the total disposed waste amount, but also various waste categories, and was found more suitable to estimate LFG generation from landfills receiving low-organic waste. Four major waste categories currently being disposed at Danish landfills (mixed bulky, shredder, dewatered sludge......The landfill gas (LFG) generation from four Danish landfills was estimated using three first-order-decay (FOD) models; the LandGEM model (developed by the US EPA), the IPCC (developed by the Intergovernmental Panel on Climate Change) and the Afvalzorg model (developed by a Dutch company). The last...

  1. Physical, chemical and biological characterization of the sanitary landfill leachate in Limeira-SP city.

    Directory of Open Access Journals (Sweden)

    Ronaldo Teixeira Pelegrini

    2007-07-01

    Full Text Available This work presents an evaluation of the physical, chemical and biological characteristics of the waste leachate originated from solids waste mass and after permanence in average of 24 hours in the captation pond, which is located on the sanitary landfill in Limeira-SP. The points were denominated Point 0: entrance of leachate in natura in the pond and Point 1: exit of leachate from the pond. The study was accomplished through of the monitoring of physical (pH, color, turbidity, conductivity and temperature, chemical (alkalinity, acidity, phosphorus, amoniacal nitrogen, nitrite, nitrate and TOC and biological (heterotrophic bacterial parameters during a period of 50 days.

  2. Paper waste - Recycling, incineration or landfilling?

    DEFF Research Database (Denmark)

    Villanueva, Alejandro; Wenzel, Henrik

    2007-01-01

    A review of existing life cycle assessments (LCAs) on paper and cardboard waste has been undertaken. The objectives of the review were threefold. Firstly, to see whether a consistent message comes out of published LCA literature on optimum disposal or recycling solutions for this waste type....... Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made......, to discuss whether it is at all valid to use the LCA methodology in its current development state to guide policy decisions on paper waste. A total of nine LCA studies containing altogether 73 scenarios were selected from a thorough, international literature search. The selected studies are LCAs including...

  3. Chemical behavior of phthalates under abiotic conditions in landfills.

    Science.gov (United States)

    Huang, Jingyu; Nkrumah, Philip N; Li, Yi; Appiah-Sefah, Gloria

    2013-01-01

    The phthalates comprise a family of phthalic acid esters that are used primarily as plasticizers in polymeric materials to impart flexibility during the manufacturing process and to the end product. It is estimated that the annual worldwide production of phthalate esters exceeds five million tons. Plasticizers are one of the most prominent classes of chemicals, but unfortunately, they possess endocrine-disrupting chemical properties. As endocrine-disrupting chemicals, plasticizers have produced adverse developmental and reproductive effects in mammalian animal models.Phthalates are easily transported into the environment during manufacture, disposal,and leaching from plastic materials, because they are not covalently bound to the plastics of which they are a component. Because of their fugitive nature and widespread use, the phthalates are commonly detected in air, water, sediment/soil, and biota, including human tissue. Large amounts of phthalic acid esters are often leached from the plastics that are dumped at municipal landfills.Phthalate esters undergo chemical changes when released into the environment.The primary processes by which they are transformed include hydrolysis, photolysis,and biodegradation. It is noteworthy that all of these degradation processes are greatly influenced by the local physical and chemical conditions. Hence, in the present review, we have sought to ascertain from the literature how the phthalate esters undergo transformation when they are released into lower landfill layers.Within the upper landfill layers, biodegradation prevails as the major degradation mechanism by which the phthalates are dissipated. Generally, biodegradation pathways for the phthalates consist of primary biodegradation from phthalate diesters to phthalate monoesters, then to phthalic acid, and ultimately biodegradation of phthalic acid to form C02 and/or CH4• We have noted that the phthalate esters are also degraded through abiotic means,which proceeds via

  4. Characterization of municipal solid waste from the main landfills of Havana city

    International Nuclear Information System (INIS)

    The city of Havana, the political, administrative and cultural centre of Cuba, is also the centre of many of the economic activities of the nation: industries, services, scientific research and tourism. All of these activities contribute to the generation of municipal solid waste (MSW), which also impact other Cuban cities. Inadequate handling of waste and the lack of appropriate and efficient solutions for its final disposal and treatment increase the risk and possibility of contamination. The main difficulty in the development of a system of management of MSW lies in the lack of knowledge of the chemical composition of the waste that is generated in the country as a whole, and especially in Havana, where solid waste management decisions are made. The present study characterizes MSW in Havana city during 2004. The Calle 100, Guanabacoa and Ocho Vias landfills were selected for physical-chemical characterization of MSW, as they are the three biggest landfills in the city. A total of 16 indicators were measured, and weather conditions were recorded. As a result, the necessary information regarding the physical-chemical composition of the MSW became available for the first time in Cuba. The information is essential for making decisions regarding the management of waste and constitutes a valuable contribution to the Study on Integrated Management Plan of MSW in Havana

  5. From 'a farewell to landfill' to 'waste as resource'

    OpenAIRE

    Corvellec, Hervé; Hultman, Johan; Bramryd, Torleif

    2011-01-01

    The story of Swedish waste management in the last forty years is the story of A farewell to landfills. This farewell is paramount to a happy-end tale of sustainability. “Sweden is today recycling 97% of its household waste” (Avfall Sverige, 2010) proudly tells that Sweden has opened an era of sustainable waste management. But is sustainability really so simple? Can there be another side to the story of how Sweden has developed a successful combined policy of incineration, recycling and bio...

  6. Landfills: Engineering Design for Waste Control

    Science.gov (United States)

    Deck, Anita; Grubbs, Michael E.

    2016-01-01

    It is becoming increasingly important to consider the waste humans produce and options for reducing the impact it has on the environment. Allowing students the opportunities to research potential solutions and present their ideas results in an educated citizenry that considers consequences of technological advances. Throughout the course of a…

  7. Landfilling of waste: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas Højlund;

    2009-01-01

    Accounting of greenhouse gas (GHG) emissions from waste landfilling is summarized with the focus on processes and technical data for a number of different landfilling technologies: open dump (which was included as the worst-case-scenario), conventional landfills with flares and with energy recovery...

  8. The current state of municipal solid waste landfills in Suceava county and their impact on water and soil

    OpenAIRE

    Dumitru MIHĂILĂ; Valeria DIȚOIU; Petruț-Ionel BISTRICEAN

    2013-01-01

      The location of municipal solid waste (MSW) landfills in inappropriate places is a serious risk to the quality of all environmental factors. These waste disposal sites can become major sources of chemical pollution and biological contamination of soil, groundwater and surface waters due to the high content of heavy metals and organic substances with low biodegradation rate.The paper discusses in detail the issues of the landfill sites territorial distribution in Suceava County (the Mirăuţi ...

  9. The impact of municipal solid waste landfills in Suceava County on air quality

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2014-08-01

    Full Text Available The location of municipal solid waste (MSW landfills in inappropriate places is a serious risk to the quality of all environmental factors. These waste disposal sites can become major sources of air quality deterioration through emissions of toxic gas resulted from anaerobic decomposition of organic waste. The paper discusses in detail the qualitative and quantitative effects of municipal waste landfills of the main urban settlements in Suceava County (Suceava City municipal landfill and Gura Humorului, Rădăuţi, Siret, Câmpulung Moldovenesc, Fălticeni and Vatra Dornei urban waste landfills on air quality. The dispersion of methane emitted from the largest MSW landfill in the county, the Suceava municipal landfill respectively, is also presented, taking into account seasonal, daytime and nighttime meteorological parameters

  10. Physic-chemical evaluation of leach and water from the Borba Gato streamlet within the catchment area of the urban waste landfill of Maringá, Paraná State, Brazil - doi: 10.4025/actascitechnol.v34i1.6771

    Directory of Open Access Journals (Sweden)

    Marta Eliane Echeverria Borges

    2011-11-01

    Full Text Available The physic-chemical characteristics of leach deposited in the landfill waste pond and of water from the Borba Gato streamlet are evaluated. Twenty-six physic-chemical parameters were analyzed from three collection sites, or rather, two in the streamlet, one upstream (P-01 and one downstream (P-02 of the landfill waste pond, and one in the leach deposit pond (P-03. The streamlet area under analysis was impacted due to being in an agricultural area and for its urban waste deposits. Parameter concentrations of aluminum, iron and mercury were reported above the quality standard of freshwater, according to Conama 357/2005 resolution (class 2. Further, throughout the rainy period, the ammoniac nitrogen content was above the resolution quality standard for fresh water. Moreover, landfill leach was above standards of effluent discharge established by Conama 357/2005. An efficient treatment for the effluent generated in Maringá is required since there is evidence of leach pollution of the Borba Gato streamlet.

  11. Groundwater Monitoring Plan for the Solid Waste Landfill

    Energy Technology Data Exchange (ETDEWEB)

    JW Lindberg; CJ Chou

    2000-12-14

    The Solid Waste Landfill (SWL) is regulated by the Washington State Department of Ecology under WAC 173-304. Between 1973 and 1976, the landfill received primarily paper waste and construction debris, but it also received asbestos, sewage, and catch tank liquid waste. Groundwater monitoring results indicate the SWL has contaminated groundwater with volatile organic compounds and possibly metals at levels that exceed regulatory limits. DynCorp, Tri-Cities, Inc. operates the facility under an interim closure plan (final closure plan will be released shortly). Pacific Northwest National Laboratory (PNNL) monitors groundwater at the site. This monitoring plan includes well and constituent lists, and summarizes sampling, analytical, and quality control requirements. Changes from the previous monitoring plan include elimination of two radionuclides from the analyte list and some minor changes in the statistical analysis. Existing wells in the current monitoring network only monitor the uppermost portion of the upper-most aquifer. Therefore, two new downgradient wells and one existing upgradient well are proposed to determine whether groundwater waste constituents have reached the lower portion of the uppermost aquifer. The proposed well network includes three upgradient wells and ten downgradient wells. The wells will be sampled quarterly for 14 analytes required by WAC 173-304-490 plus volatile organic compounds and filtered arsenic as site-specific analytes.

  12. IJER@2014 Page 57 Disposal Criteria of Bhanpur Solid Waste Landfill Site: Investigation and Suggestions

    Directory of Open Access Journals (Sweden)

    Tapas Dasgpta

    2014-03-01

    Full Text Available The solid waste management and design assist waste management officials in developing and encouraging environmentally sound methods for the disposal of "nonhazardous" solid waste. Promulgated under the authority of municipal act, the Municipal Solid Waste Landfill (MSWLF regulation act establish a framework for planning and implementing municipal solid waste landfill programs at the state and local levels. This framework sets minimum standards for protecting human health and the environment, while allowing states to develop more flexible MSWLF criteria. Intension to mitigate or expeditiously remediate potential adverse environmental impacts resulting from municipal landfills. However, other regulations existed prior to the revised MSWLF standards discussed in this module. The promulgation Criteria for Classification of Solid Waste Disposal Facilities and Practices. The established regulatory standards to satisfy the minimum national performance criteria for sanitary landfills governs only those solid waste disposal facilities and practices that do not meet the definition of a MSWLF. Such facilities include waste piles, industrial nonhazardous waste landfills, surface impoundments, and land application units. Environmental Protect Authority (EPA modified address the fact that these non-municipal non-hazardous wastes landfills may receive Conditionally Exempt Small Quantity Generator (CESQG hazardous waste, further clarify that construction and demolition landfills may receive residential lead-based paint waste as Solid Waste Disposal Facilities without for MSWLFs as long as all conditions are met.

  13. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  14. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal

  15. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors

    Science.gov (United States)

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  16. Utilization of Agricultural Wastes in Stabilization of Landfill Soil

    Directory of Open Access Journals (Sweden)

    Nidzam Rahmat Mohamad

    2014-01-01

    Full Text Available Palm Oil Fuel Ash (POFA and Rice Husk Ash (RHA are local agricultural waste material from Palm Oil Industry and from Paddy Industry in Malaysia. Currently, the disposal of these ashes from a burning process is a problem to both industries, and hence leads to environmental pollution. The main aim of this research was to investigate the potential of utilizing POFA and RHA as sustainable stabilizer material as partial replacement of traditional one which is lime and Portland Cement (PC. Laboratory investigations were carried out to establish the potential utilization of Malaysian Agricultural wastes POFA and RHA in stabilizing Teluk Kapas Landfill soil. Landfill soil on its own and combination with laterite clay soil were stabilized using POFA or RHA either on its own or in combination with Lime or Portland Cement (PC. The traditional stabilizers of lime or Portland Cement (PC were used as controls. Compacted cylinder test specimens were made at typical stabilizer contents and moist cured for up to 60 days prior to testing for compressive and water absorption tests. The results obtained showed that landfill soil combined with laterite clay (50:50 stabilized with 20% RHA:PC (50:50and POFA: PC (50:50 recorded the highest values of compressive strength compared to the other compositions of stabilizers and soils. However, when the amount of POFA and RHA increased in the system the compressive strength values of the samples tends to increase. These results suggest technological, economic as well as environmental advantages of using POFA and RHA and similar industrial by-products to achieve sustainable infrastructure development with near zero industrial waste.

  17. Waste management in the Irkutsk Region, Siberia, Russia: Environmental assessment of current practice focusing on landfilling

    DEFF Research Database (Denmark)

    Starostina, Vlada; Damgaard, Anders; Rechberger, Helmut;

    2014-01-01

    waste (23%) and office & institutional waste (44%). Other waste of unknown composition constitutes 6%. Only 3% of the waste is recycled; 97% of the municipal waste is disposed of at the old Alexandrovsky landfill. The environmental impact from the current system is dominated by the landfill, which has......The municipal waste management system of the region of Irkutsk is described and a life cycle assessment (LCA) performed to assess the environmental performance of the system. Annually about 500 000 tons of waste are managed. The waste originates from three sources: household waste (27%), commercial...

  18. Heat Transport Modeling in an Aquifer Downgradient a Municipal Solid Waste Landfill in Italy

    OpenAIRE

    Rajandrea Sethi; Antonio Di Molfetta

    2007-01-01

    Heat generation inside municipal solid waste (MSW) landfills is due to aerobic and anaerobic exothermic reactions occurring inside the waste. The result of heat generation and transport inside sanitary landfill leads to a temperature field that varies from mesophylic range (optimum at 30 40 °C) to thermophylic range (optimum at 50-60 °C). Due to high temperatures at the bottom of the landfill, liner systems can be severely damaged. The increment in convective and conductive heat transport cou...

  19. New techniques for waste water treatment of waste treatment centers and landfills

    Energy Technology Data Exchange (ETDEWEB)

    Kaartinen, T.; Eskola, P.; Vestola, E.; Merta, E.; Mroueh, U.-M.

    2009-10-15

    In this research project new techno-economically feasible and eco-efficient techniques for waste water treatment of waste treatment centers and landfills have been developed. In this publication water quality on existing Finnish waste treatment centers and landfills has been reviewed. Examples of segregated water treatment solutions at waste treatment centers and landfills in Finland and abroad have been introduced. Experimental research concentrated on treatment of heavy metal contaminated waters. Studied techniques were biological sulphate reduction and reactive by-product materials as filter media. Both techniques yielded promising results in the treatment of heavy metal bearing waters. Next step of the research should be more precise study on the boundary conditions of the chosen techniques. Good basis for scaling up the treatment techniques from laboratory to pilot-scale plants exists after this research project. In addition an excel-based site-specifically applicable procedure for comparing water management alternatives of waste treatment centers and landfills has been developed. Applying the procedure comparisons on e.g. economy of viable water management options can be made. (orig.)

  20. Solid waste management in Croatia in response to the European Landfill Directive.

    Science.gov (United States)

    Stanic-Maruna, Ira; Fellner, Johann

    2012-08-01

    The European Landfill Directive 99/31/EC represents the most influential piece of waste legislation on the management of municipal solid waste. In addition to technical standards regarding the design and location of landfills, it calls for a decrease in the amount of biodegradable waste landfilled. In order to meet the reduction targets set in the Landfill Directive, national solid waste strategies need to be changed. This article outlines the impact of the Landfill Directive on the Croatian waste management strategy and discusses the key challenges of its implementation. In addition, three scenarios of future waste management (mechanical biological pre-treatment, waste-to-energy and landfilling) have been investigated and evaluated regarding environmental impacts and affordability. The results of the analysis show that Croatia has transposed the said Directive into its own legislation in an exemplary way. The developed national waste management strategy foresees the set up of a separate collection of recyclables, waste pre-treatment of MSW, as well as the upgrading of existing disposal sites to sanitary landfills. However, the practical progress of carrying out provisions implemented on paper is lagging behind. Concerning the investigated scenarios the results of the evaluation indicate that mechanical biological pre-treatment in conjunction with separate collection of recyclables appears to be the most feasible option (in terms of economic and ecologic parameters). This result is in line with the proposed national waste management strategy. PMID:22615201

  1. Evaluation of the Oedometer Tests of Municipal Landfill Waste Material

    Directory of Open Access Journals (Sweden)

    Imre Emőke

    2014-07-01

    Full Text Available The aim of the ongoing research is (i to develop a new biodegradation landfill technique so that the landfill gas production could be controlled and the utilisation of the landfill gas could economically be optimized, (ii to plan the energy utilisation of the landfill including individual and combined solutions (solar, wind, geothermal energy, energy storage using methanol etc.. [1, 2, 3

  2. Assessment of two thermally treated drill mud wastes for landfill containment applications.

    Science.gov (United States)

    Carignan, Marie-Pierre; Lake, Craig B; Menzies, Todd

    2007-10-01

    Offshore oil and gas drilling operations generate significant amounts of drill mud waste, some of which is transported onshore for subsequent thermal treatment (i.e. via thermal remediation). This treatment process results in a mineral waste by-product (referred to as thermally treated drill mud waste; TTDMW). Bentonites are originally present in many of the drill mud products and it is hypothesized that TTDMW can be utilized in landfill containment applications (i.e. cover or base liner). The objective of this paper is to examine the feasibility of this application by performing various physical and chemical tests on two TTDMW samples. It is shown that the two TTDMW samples contained relatively small amounts of clay-sized minerals although hydraulic conductivity values are found to be less than 10(-8) m/s. Organic carbon contents of the samples were approximately 2%. Mineralogy characterization of the samples confirmed varying amounts of smectite, however, peak friction angles for a TTDMW sample was greater than 36 degrees. Chemical characterization of the TTDMW samples show potential leaching of barium and small amounts of other heavy metals. Discussion is provided in the paper on suggestions to assist in overcoming regulatory issues associated with utilization of TTDMW in landfill containment applications. PMID:17985664

  3. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources

    Institute of Scientific and Technical Information of China (English)

    CAI Bo-Feng; LIU Jian-Guo; GAO Qing-Xian; NIE Xiao-Qin; CAO Dong; LIU Lan-Cui; ZHOU Ying; ZHANG Zhan-Sheng

    2014-01-01

    The methane (CH4) emissions from municipal solid waste (MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD (first-order decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition, degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2,107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 Mt in 2007. Compared with the CH4 emissions of 2.20 Mt in 2005, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t. Jiangsu province ranks the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general, the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.

  4. SEISMIC DISTRESS AND PROTECTION OF FLEXIBLE MEMBRANE LINERS OF SOLID WASTE LANDFILLS

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos

    2011-01-01

    Seismic distress of solid waste landfills may result from any of the two consequences of a seismic event: (a) the transient ground deformation related to seismic wave propagation, (b) the permanent ground deformation caused by abrupt fault dislocation. Design provisions for solid waste landfills...... prohibit the construction of landfills in the vicinity of an active fault aiming to prevent the latter. Nonetheless, the impact of applied permanent deformation on the system components of landfills and on the waste mass has not been fully demonstrated yet. For this purpose, efficient finite......-element analyses were performed, taking also into account the potential slip displacement development along the interfaces formulated on each side of the flexible membrane liner (FML). It is shown that base fault dislocation causes significant plastic strains at each one of the components of the waste landfill...

  5. Dynamic properties of municipal solid waste landfills from surface wave tests

    Energy Technology Data Exchange (ETDEWEB)

    Haker, C.D.; Rix, G.J.; Lai, C.G. [Georgia Institute of Technology, Atlanta, GA (United States)

    1997-10-01

    The seismic stability of municipal solid waste (MSW) landfills is often a significant consideration in landfill design. However, until recently, the dynamic properties of the waste material itself, which govern the seismic response of MSW landfills, have often been approximated or assumed. Tests to determine the dynamic properties of the material directly have been limited. Measurements of seismic surface waves were used to determine the dynamic properties of MSW, which are the initial tangent shear modulus and low-strain hysteretic damping ratio. Surface wave tests were performed at three MSW landfills to determine their shear modulus and damping ratio profiles. Surface wave tests are ideal for measuring the near-surface shear modulus and damping profiles of MSW landfills because the tests are non-invasive, an advantage for testing environmentally sensitive waste material. Factors which influence the dynamic properties of waste including density, confinement, age, and placement techniques are used to interpret the measured shear modulus and damping ratio profiles.

  6. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion

    International Nuclear Information System (INIS)

    Highlights: ► Residential waste diversion initiatives are more successful with organic waste. ► Using a incineration to manage part of the waste is better environmentally. ► Incineration leads to more power plant emission offsets. ► Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

  7. Analysis of a landfill gas to energy system at the municipal solid waste landfill in Gaziantep, Turkey.

    Science.gov (United States)

    Tercan, Safak Hengirmen; Cabalar, Ali Firat; Yaman, Gokhan

    2015-08-01

    This paper presents an analysis of the electricity generation from municipal solid waste (MSW), via landfill gas valorization technology, at the landfill of Gaziantep City, Turkey. Rapid increase in population, and industrial developments, throughout the world including Turkey results in larger amount of waste materials generated, increased need for energy, and adverse affects on the environment and human health. Turkey plans to produce 1/3 of its electricity demand using renewable energy sources by the year of 2023. It is recommended to use each year around 25 million tonnes of the MSW generated nationwide for a renewable energy supply. In this study, a concise summary of current status of electricity generation from a MSW landfill gas plant (via biogas harnessing) located in Gaziantep City was analyzed as a case study. PMID:26211632

  8. Analysis of a landfill gas to energy system at the municipal solid waste landfill in Gaziantep, Turkey.

    Science.gov (United States)

    Tercan, Safak Hengirmen; Cabalar, Ali Firat; Yaman, Gokhan

    2015-08-01

    This paper presents an analysis of the electricity generation from municipal solid waste (MSW), via landfill gas valorization technology, at the landfill of Gaziantep City, Turkey. Rapid increase in population, and industrial developments, throughout the world including Turkey results in larger amount of waste materials generated, increased need for energy, and adverse affects on the environment and human health. Turkey plans to produce 1/3 of its electricity demand using renewable energy sources by the year of 2023. It is recommended to use each year around 25 million tonnes of the MSW generated nationwide for a renewable energy supply. In this study, a concise summary of current status of electricity generation from a MSW landfill gas plant (via biogas harnessing) located in Gaziantep City was analyzed as a case study.

  9. Characterisation of wastes towards sustainable landfilling by some physical and mechanical properties with an emphasis on solid particles compressibility

    OpenAIRE

    Velkushanova, K.

    2011-01-01

    The EU landfill directive requires the amount of wastes going to landfills to be reduced signifi-cantly in compliance with the sustainable waste management principles. However, the disposal has been and will continue to play a significant role, and the overall aim is an improved design and operation of the landfill sites, and reduction of their negative environmental impact towards sustainable landfilling. Waste has been recognised by other researchers as the primary structural element in lan...

  10. Indirect measurements of field-scale hydraulic conductivity of waste from two landfill sites.

    Science.gov (United States)

    Fleming, I R

    2011-12-01

    Management and prediction of the movement and distribution of fluids in large landfills is important for various reasons. Bioreactor landfill technology shows promise, but in arid or semi-arid regions, the natural content of landfilled waste may be low, thus requiring addition of significant volumes of water. In more humid locations, landfills can become saturated, flooding gas collection systems and causing sideslope leachate seeps or other undesirable occurrences. This paper compares results from two different approaches to monitoring water in waste. At the Brock West Landfill in eastern Canada, positive pore pressures were measured at various depths in saturated waste. The downward seepage flux through the waste is known, thus the vertical saturated hydraulic conductivity of the waste at this landfill was determined to be 3 × 10(-7)cm/s. By comparison, the Spadina Landfill in western Canada is predominantly unsaturated. The infiltration of moisture into the waste was measured using moisture sensors installed in boreholes which determined arrival time for moisture fronts resulting from major precipitation events as well as longer-term change in moisture content resulting from unsaturated drainage during winter when frozen ground prevented infiltration. The unsaturated hydraulic conductivity calculated from these data ranged from approximately 10(-6)cm/s for the slow winter drainage in the absence of significant recharge to 10(-2)cm/s or higher for shallow waste subject to high infiltration through apparent preferential pathways. These two very different approaches to field-scale measurements of vertical hydraulic conductivity provide insight into the nature of fluid movement in saturated and unsaturated waste masses. It is suggested that the principles of unsaturated seepage apply reasonably well for landfilled waste and that the hydraulic behavior of waste is profoundly influenced by the nature and size of voids and by the degree of saturation prevailing in the

  11. Hazardous waste site assessment: Inactive landfill, Site 300, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    This report presents the results of an investigation of an inactive landfill (Pit 6) at Lawrence Livermore National Laboratory's (LLNL) Site 300. The primary objectives were to: collect and review background information pertaining to past waste disposal practices and previous environmental characterization studies; conduct a geophysical survey of the landfill area to locate the buried wastes; conduct a hydrogeologic investigation to provide additional data on the rate and direction of groundwater flow, the extent of any groundwater contamination, and to investigate the connection, if any, of the shallow groundwater beneath the landfill with the local drinking water supply; conduct a risk assessment to identify the degree of threat posed by the landfill to the public health and environment; compile a preliminary list of feasible long-term remedial action alternatives for the landfill; and develop a list of recommendations for any interim measures necessary at the landfill should the long-term remedial action plan be needed

  12. Site hydrogeologic/geotechnical characterization report for Site B new municipal solid waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, R.; Nowacki, P.

    1991-04-01

    This Site Hydrogeologic/Geotechnical Characterization Report (SHCR) presents the results of a comprehensive study conducted on a proposed solid waste landfill site, identified herein as Site B, at the Savannah River Site (SRS). This report is intended to satisfy all requirements of the South Carolina Department of Health and Environmental Control (SCDHEC) with regard to landfill siting requirements and ground water and environmental protection. In addition, this report provides substantial geotechnical data pertinent to the landfill design process.

  13. The sustainable landfill bioreactor: a waste management option for the twenty first century

    International Nuclear Information System (INIS)

    Full text: According to the EU hierarchy of waste management, disposal of solid waste to landfill is the method of last resort. However landfilling is still a widely used disposal route in Europe and it will continue to be an important waste management option for many years, even though rising environmental standards continue to cause landfill disposal costs to rise. The traditional model of a landfill as a permanent waste deposit in which decomposition processes are minimised has given way to the concept of a controlled decomposition process managed as a large-scale bioreactor. The fundamental aim of the sustainable landfill is to optimise the natural degradation processes in the waste, to contain the products of degradation to prevent pollution of the environment and finally to use the residual organic matter as a soil conditioner. This paper discusses the legal and technical imperatives driving the development of the sustainable large-scale bioreactor concept of landfilling. key words: sustainable development, landfill, bioreactor, waste management

  14. Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: a pilot scale study

    DEFF Research Database (Denmark)

    Bilgili, M Sinan; Demir, Ahmet; Varank, Gamze

    2009-01-01

    The main goal of this study was to present a comparison of landfill performance with respect to solids decomposition. Biochemical methane potential (BMP) test was used to determine the initial and the remaining CH(4) potentials of solid wastes during 27 months of landfilling operation in two pilot...

  15. Application of Grey Situation Decision-Making Theory in Site Selection of a Waste Sanitary Landfill

    Institute of Scientific and Technical Information of China (English)

    CAO Li-wen; CHENG Yun-huan; ZHANG Jing; ZHOU Xiao-zhi; LIAN Cui-xia

    2006-01-01

    An application of an unequal-weighted multi-objective decision making method in site selection of a waste sanitary landfill is discussed. The eight factors, which affected possible options, were: size and capacity of the landfill, permeability of the stratum, the average difference in elevation between the groundwater level and the bottom of the landfill pit, quality and source of clay, the quality grade of the landfill site, the effect of landfill engineering on nearby residents, distance to the water supply and the water source as well as the cost of construction and waste transport. These are determined, given the conditions of the geological environment, the need for environmental protection and landfill site construction and transportation related to the design and operation of a sanitary landfill. The weights of the eight factors were further investigated based on the difference in their relevance. Combined with practical experience from Xuzhou city (Jiangsu province, China), the objectives, effects and weights of grey decision-making were determined and the process and outcome of the landfill site selection are stated in detail. The decision-making results have been proven to be acceptable and correct. As we show, unequal-weighted multi-objective grey situation decision-mak- ing is characterized by easy calculations and good maneuverability when used in landfill site selection. The number of factors (objectives) affecting the outcome and the quantitative method of qualitative indices can be adjusted on the basis of concrete conditions in landfill site selection. Therefore, unequal-weighted multi-objective grey situation decision making is a feasible method in selecting landfill sites which offers a reference method for landfill site selection elsewhere. It is a useful, rational and scientific exploration in the choice of a landfill site.

  16. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  17. [Nitrous oxide emissions from municipal solid waste landfills and its measuring methodology: a review].

    Science.gov (United States)

    Jia, Ming-Sheng; Wang, Xiao-Jun; Chen, Shao-Hua

    2014-06-01

    Nitrous oxide (N2O) is one of three major greenhouse gases and the dominant ozone-depleting substance. Landfilling is the major approach for the treatment and disposal of municipal solid waste (MSW), while MSW landfills can be an important anthropogenic source for N2O emissions. Measurements at lab-scale and full-scale landfills have demonstrated that N2O can be emitted in substantial amounts in MSW landfills; however, a large variation in reported emission values exists. Currently, the mechanisms of N2O production and emission in landfills and its contribution to global warming are still lack of sufficient studies. Meanwhile, obtaining reliable N2O fluxes data in landfills remains a question with existing in-situ measurement techniques. This paper summarized relevant literature data on this issue and analyzed the potential production and emission mechanisms of N2O in traditional anaerobic sanitary landfill by dividing it into the MSW buried and the cover soil. The corresponding mechanisms in nitrogen removal bioreactor landfills were analyzed. Finally, the applicability of existing in-situ approaches measuring N2O fluxes in landfills, such as chamber and micrometeorological methods, was discussed and areas in which further research concerning N2O emissions in landfills was urgently required were proposed as well. PMID:25223043

  18. Landfill gas issues affecting the design and operation of waste to energy facilities

    International Nuclear Information System (INIS)

    A common location for waste to energy (WTE) facilities is adjacent to an existing landfill. This is an appropriate place to site WTE facilities, given that solid waste is already directed to the landfill site, and bypass refuse and ash generated by the WTE facility can readily be disposed at the existing landfill. Often, however, the existing landfill is unlined, and is generating landfill gas (LFG) in sufficient quantities and pressures to create lateral LFG migration. Such LFG migration must be addressed in the design of the WTE facility. LFG is composed of approximately equal parts of methane and carbon dioxide. Since methane is explosive under certain conditions, its accumulation within onsite structures must be controlled. Alternatives for LFG migration control include perimeter extraction systems, and active and passive subslab systems for individual facility buildings. In this paper advantages and disadvantages of the various control system types are discussed. LFG control and safety during plant construction also are addressed

  19. Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills

    DEFF Research Database (Denmark)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2014-01-01

    The biochemical methane potential (BMP) is an essential parameter when using first order decay (FOD) landfill gas (LFG) generation models to estimate methane (CH4) generation from landfills. Different categories of waste (mixed, shredder and sludge waste) with a low-organic content and temporaril...... for the first time, which is important and valuable for using current FOD LFG generation models to estimate realistic CH4 emissions from modern landfills receiving low-organic waste.......The biochemical methane potential (BMP) is an essential parameter when using first order decay (FOD) landfill gas (LFG) generation models to estimate methane (CH4) generation from landfills. Different categories of waste (mixed, shredder and sludge waste) with a low-organic content and temporarily...... content (DOCC) was in the range of 0.44–0.70% of total weight (wet waste). Numeric values of both parameters were much lower than values of traditional municipal solid waste (MSW), as well as default numeric values in current FOD models. The sludge waste and temporarily stored combustible waste showed BMP...

  20. Co-generation potentials of municipal solid waste landfills in Serbia

    Directory of Open Access Journals (Sweden)

    Bošković Goran B.

    2016-01-01

    Full Text Available Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55% and carbon dioxide (40-45% (both GHGs, has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine economic and environmental benefits from such energy production. For that purpose, the database of cogeneration potentials (CP of 51 landfills in the Republic of Serbia (RS was created. Amount of landfill gas generated at each municipal landfill was calculated by applying a first order decay equation which requires the data about solid waste production and composition and about some landfill characteristics. For all landfills, which have over 100,000 m3 each, a techno-economic analysis about building a CHP plant was conducted. The results have shown, that the total investment in 14 CHP plants with payback period of less than 7 years amounts € 11,721,288. The total nominal power of these plants is 7 MW of electrical power and 7.9 MW of thermal power, and an average payback period is about 61 months. In addition, using landfill biogas as energy source in proposed plants would reduce methane emission for 161,000 tons of CO2 equivalent per year. [Projekat Ministarstva nauke Republike Srbije, br. III 42013: Research of cogeneration potential of municipal and industrial energy power plant in Republic of Serbia and opportunities for rehabilitation of existing and construction of new cogeneration plants

  1. Application of landfill treatment approaches for stabilization of municipal solid waste.

    Science.gov (United States)

    Bolyard, Stephanie C; Reinhart, Debra R

    2016-09-01

    This research sought to compare the effectiveness of three landfill enhanced treatment approaches aimed at removing releasable carbon and nitrogen after anaerobic landfilling including flushing with clean water (FB 1), leachate recirculation with ex-situ treatment (FB 2), and leachate recirculation with ex-situ treatment and in-situ aeration (FB 3). After extensive treatment of the waste in the FB scenarios, the overall solids and biodegradable fraction were reduced relative to the mature anaerobically treated waste. In terms of the overall degradation, aeration did not provide any advantage over flushing and anaerobic treatment. Flushing was the most effective approach at removing biodegradable components (i.e. cellulose and hemicellulose). Leachate quality improved for all FBs but through different mechanisms. A significant reduction in ammonia-nitrogen occurred in FB 1 and 3 due to flushing and aeration, respectively. The reduction of chemical oxygen demand (COD) in FB 1 was primarily due to flushing. Conversely, the reduction in COD in FBs 2 and 3 was due to oxidation and precipitation during Fenton's Reagent treatment. A mass balance on carbon and nitrogen revealed that a significant fraction still remained in the waste despite the additional treatment provided. Carbon was primarily converted biologically to CH4 and CO2 in the FBs or removed during treatment using Fenton's Reagent. The nitrogen removal occurred through leaching or biological conversion. These results show that under extensive treatment the waste and leachate characteristics did meet published stability values. The minimum stability values achieved were through flushing although FB 2 and 3 were able to improve leachate quality and solid waste characteristics but not to the same extent as FB 1.

  2. Application of landfill treatment approaches for stabilization of municipal solid waste.

    Science.gov (United States)

    Bolyard, Stephanie C; Reinhart, Debra R

    2016-09-01

    This research sought to compare the effectiveness of three landfill enhanced treatment approaches aimed at removing releasable carbon and nitrogen after anaerobic landfilling including flushing with clean water (FB 1), leachate recirculation with ex-situ treatment (FB 2), and leachate recirculation with ex-situ treatment and in-situ aeration (FB 3). After extensive treatment of the waste in the FB scenarios, the overall solids and biodegradable fraction were reduced relative to the mature anaerobically treated waste. In terms of the overall degradation, aeration did not provide any advantage over flushing and anaerobic treatment. Flushing was the most effective approach at removing biodegradable components (i.e. cellulose and hemicellulose). Leachate quality improved for all FBs but through different mechanisms. A significant reduction in ammonia-nitrogen occurred in FB 1 and 3 due to flushing and aeration, respectively. The reduction of chemical oxygen demand (COD) in FB 1 was primarily due to flushing. Conversely, the reduction in COD in FBs 2 and 3 was due to oxidation and precipitation during Fenton's Reagent treatment. A mass balance on carbon and nitrogen revealed that a significant fraction still remained in the waste despite the additional treatment provided. Carbon was primarily converted biologically to CH4 and CO2 in the FBs or removed during treatment using Fenton's Reagent. The nitrogen removal occurred through leaching or biological conversion. These results show that under extensive treatment the waste and leachate characteristics did meet published stability values. The minimum stability values achieved were through flushing although FB 2 and 3 were able to improve leachate quality and solid waste characteristics but not to the same extent as FB 1. PMID:26838608

  3. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-01-04

    ... procedure, Intergovernmental relations, Waste treatment and disposal. 40 CFR Part 258 Reporting and recordkeeping requirements, Waste treatment disposal, Water pollution control. Authority: This action is issued... AGENCY 40 CFR Parts 239 and 258 Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit...

  4. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    International Nuclear Information System (INIS)

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method

  5. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Feo, Giovanni De, E-mail: g.defeo@unisa.it [Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA (Italy); Gisi, Sabino De [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Water Resource Management Lab., via Martiri di Monte Sole 4, 40129 Bologna, BO (Italy)

    2014-11-15

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  6. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    Science.gov (United States)

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual.

  7. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    Science.gov (United States)

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. PMID:26346020

  8. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills.

    Science.gov (United States)

    Mora, Juan C; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-06-01

    Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations. PMID:26921509

  9. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills.

    Science.gov (United States)

    Mora, Juan C; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-06-01

    Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  10. Comparison between controlled landfill reactor and conditioned landfill bioreactor

    Institute of Scientific and Technical Information of China (English)

    LUO Feng; CHEN Wan-zhi; SONG Fu-zhong; LI Xiao-peng; ZHANG Guo-qing

    2004-01-01

    Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. The results of laboratory-scale simulators of landfill reactors treating municipal solid wastes were studied, the effect of solid waste size, leachate recirculation, nutrient balance, pH value, moisture content and temperature on the rate of municipal solid waste(MSW) biodegradation were determined, and it indicated the optimum pH value, moisture content and temperature can used to decompose MSW. The results of waste biodegradation were compared with that of the simulators of the leachate-recirculated landfill and conservative sanitary landfill. In the control experiment the antitheses of a decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was shown, and heavy metals concentration was observed. An obvious enhancement of effective disposal from simulator of conservative sanitary landfill(CSL), to that of leachate-recirculated landfill(LRL) and to that of conditioned bioreactor landfill(CBL) would be noted, through displaying the compared results of solid waste settlement, heavy metal concentration in leachate, methane production rate, biogas composition, BOD and COD as well as their ratio.

  11. Comparison between controlled landfill reactor and conditioned landfill bioreactor.

    Science.gov (United States)

    Luo, Feng; Chen, Wan-Zhi; Song, Fu-Zhong; Li, Xiao-Peng; Zhang, Guo-Qing

    2004-01-01

    Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. The laboratory-scale simulators of landfill reactors treating municipal solid wastes were studied, the effect of solid waste size, leachate recirculation, nutrient balance, pH value, moisture content and temperature on the rate of municipal solid waste (MSW) biodegradation were determined, and it indicated the optimum pH value, moisture content and temperature decomposing MSW. The results of waste biodegradation were compared with that of the leachate-recirculated landfill simulator and conservative sanitary landfill simulator. In the control experiment the antitheses of a decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was shown. An obvious enhancement of effective disposal from conservative sanitary landfill (CSL) simulator, to the leachate-recirculated landfill (LRL) simulator and to the conditioned bioreactor landfill (CBL) simulator would be noted, through displaying the compared results of solid waste settlement, heavy metal concentration in leachate, methane production rate, biogas composition, BOD and COD as well as their ratio. PMID:15559832

  12. Heavy metal binding capacity (HMBC) of municipal solid waste landfill leachates.

    Science.gov (United States)

    Ward, Marnie L; Bitton, Gabriel; Townsend, Timothy

    2005-07-01

    This research describes the use of a toxicity assay for the identification of metal toxicity, bioavailability and heavy metal binding capacity (HMBC) of municipal solid waste (MSW) landfill leachates. MetPLATE, an assay specific for heavy metal toxicity, was used to determine the HMBC of MSW leachates collected from 14 sites in Florida, with a wide range of chemical and physical characteristics. The leachates displayed a low toxicity which was attributed to the site-specific parameters, including, high concentrations of both organic and inorganic ligands. The HMBC test was undertaken to measure the effect of these site-specific parameters on metal toxicity. The potential for MSW leachate to bind and, thus, detoxify heavy metals was investigated with copper, zinc, and mercury. The HMBC values obtained ranged from 3 to 115, 5 to 93 and 4 to 101 for HMBC-Cu+2, HMBC-Zn+2, and HMBC-Hg+2, respectively. Additionally, the high strength leachates displayed the highest binding capacities, although the landfills sampled represented a wide range of characteristics. For comparison, the HMBC values reported with local lake water, Lake Alice and Lake Beverly, and a wastewater treatment plant effluent were all below 3. A partial fractionation of MSW leachate samples from sites 1, 5 and 8, was conducted to further investigate the influence of selected site-specific physico-chemical parameters on metal binding. The fractionation revealed that the HMBC of the leachate samples was heavily influenced by the concentration of solids, organics and hardness.

  13. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  14. Innovative landfill bioreactor systems for municipal solid waste treatment in East Africa aimed at optimal energy recovery and minimal greenhouse gas emissions

    OpenAIRE

    Salukele, F.M.

    2013-01-01

    Landfilling is currently the dominant disposal method for municipal solid waste (MSW) in developing countries. Approximately 50% of the MSW generated in East Africa is disposed in landfills. Low costs and availability of land have made landfilling the most common waste management option in East Africa. Two main aspects associated with landfills are the landfill gas potential (LFG) and the greenhouse gas emission. A desk study into the development and application of landfill systems for treati...

  15. Metals and polybrominated diphenyl ethers leaching from electronic waste in simulated landfills

    International Nuclear Information System (INIS)

    Highlights: • Simulated landfill columns provided realistic results than lab based column study. • Column leachates showed significant seasonal effect on toxic substances. • Toxic substances in the landfill leachates pose environmental and health hazards. • A better management of e-waste is urgently needed. -- Abstract: Landfills established prior to the recognition of potential impacts from the leaching of heavy metals and toxic organic compounds often lack appropriate barriers and pose significant risks of contamination of groundwater. In this study, bioavailable metal(oids) and polybrominated diphenyl ethers (PBDEs) in leachates from landfill columns that contained intact or broken e-waste were studied under conditions that simulate landfills in terms of waste components and methods of disposal of e-wastes, and with realistic rainfall. Fourteen elements and PBDEs were analysed in leachates over a period of 21 months. The results demonstrate that the average concentrations of Al, Ba, Be, Cd, Co, Cr, Cu, Ni, Pb, Sb and V in leachates from the column that contained broken e-waste items were significantly higher than the column without e-waste. BDE-153 was the highest average PBDEs congener in all columns but the average of ∑PBDEs levels in columns that contained intact e-waste were (3.7 ng/l) and were not significantly higher than that in the leachates from the control column

  16. A review of groundwater contamination near municipal solid waste landfill sites in China.

    Science.gov (United States)

    Han, Zhiyong; Ma, Haining; Shi, Guozhong; He, Li; Wei, Luoyu; Shi, Qingqing

    2016-11-01

    Landfills are the most widely used method for municipal solid waste (MSW) disposal method in China. However, these facilities have caused serious groundwater contamination due to the leakage of leachate. This study, analyzed 32 scientific papers, a field survey and an environmental assessment report related to groundwater contamination caused by landfills in China. The groundwater quality in the vicinity of landfills was assessed as "very bad" by a comprehensive score (FI) of 7.85 by the Grading Method in China. Variety of pollutants consisting of 96 groundwater pollutants, 3 organic matter indicators, 2 visual pollutants and 6 aggregative pollutants had been detected in the various studies. Twenty-two kinds of pollutants were considered to be dominant. According to the Kruskal-Wallis test and the median test, groundwater contamination differed significantly between regions in China, but there were no significant differences between dry season and wet season measurements, except for some pollutants in a few landfill sites. Generally, the groundwater contamination appeared in the initial landfill stage after five years and peaked some years afterward. In this stage, the Nemerow Index (PI) of groundwater increased exponentially as landfill age increased at some sites, but afterwards decreased exponentially with increasing age at others. After 25years, the groundwater contamination was very low at selected landfills. The PI values of landfills decreased exponentially as the pollutant migration distance increased. Therefore, the groundwater contamination mainly appeared within 1000m of a landfill and most of serious groundwater contamination occurred within 200m. The results not only indicate that the groundwater contamination near MSW landfills should be a concern, but also are valuable to remediate the groundwater contamination near MSW landfills and to prevent the MSW landfill from secondary pollutions, especially for developing countries considering the similar

  17. A review of groundwater contamination near municipal solid waste landfill sites in China.

    Science.gov (United States)

    Han, Zhiyong; Ma, Haining; Shi, Guozhong; He, Li; Wei, Luoyu; Shi, Qingqing

    2016-11-01

    Landfills are the most widely used method for municipal solid waste (MSW) disposal method in China. However, these facilities have caused serious groundwater contamination due to the leakage of leachate. This study, analyzed 32 scientific papers, a field survey and an environmental assessment report related to groundwater contamination caused by landfills in China. The groundwater quality in the vicinity of landfills was assessed as "very bad" by a comprehensive score (FI) of 7.85 by the Grading Method in China. Variety of pollutants consisting of 96 groundwater pollutants, 3 organic matter indicators, 2 visual pollutants and 6 aggregative pollutants had been detected in the various studies. Twenty-two kinds of pollutants were considered to be dominant. According to the Kruskal-Wallis test and the median test, groundwater contamination differed significantly between regions in China, but there were no significant differences between dry season and wet season measurements, except for some pollutants in a few landfill sites. Generally, the groundwater contamination appeared in the initial landfill stage after five years and peaked some years afterward. In this stage, the Nemerow Index (PI) of groundwater increased exponentially as landfill age increased at some sites, but afterwards decreased exponentially with increasing age at others. After 25years, the groundwater contamination was very low at selected landfills. The PI values of landfills decreased exponentially as the pollutant migration distance increased. Therefore, the groundwater contamination mainly appeared within 1000m of a landfill and most of serious groundwater contamination occurred within 200m. The results not only indicate that the groundwater contamination near MSW landfills should be a concern, but also are valuable to remediate the groundwater contamination near MSW landfills and to prevent the MSW landfill from secondary pollutions, especially for developing countries considering the similar

  18. Impact Of Aerobic Biostabilisation And Biodrying Process Of Municipal Solid Waste On Minimisation Of Waste Deposited In Landfills

    Directory of Open Access Journals (Sweden)

    Dziedzic Krzysztof

    2015-12-01

    Full Text Available The article discusses an innovative system used for aerobic biostabilisation and biological drying of solid municipal waste. A mechanical–biological process (MBT of municipal solid waste (MSW treatment were carried out and monitored in 5 bioreactors. A two-stage biological treatment process has been used in the investigation. In the first step an undersize fraction was subjected to the biological stabilisation for a period of 14 days as a result of which there was a decrease of loss on ignition, but not sufficient to fulfill the requirements of MBT technology. In the second stage of a biological treatment has been applied 7-days intensive bio-drying of MSW using sustained high temperatures in bioreactor. The article presents the results of the chemical composition analysis of the undersize fraction and waste after biological drying, and also the results of temperature changes, pH ratio, loss on ignition, moisture content, combustible and volatile matter content, heat of combustion and calorific value of wastes. The mass balance of the MBT of MSW with using the innovative aeration system showed that only 14.5% of waste need to be landfilled, 61.5% could be used for thermal treatment, and nearly 19% being lost in the process as CO2 and H2O.

  19. Comparison of TOPSIS and AHP in site selection of Municipal Solid Wastes Landfill Case study: Karaj landfill site selection

    Directory of Open Access Journals (Sweden)

    Marzieh mahtabi oghani

    2014-03-01

    Full Text Available Background and objectives: Nowadays, landfilling is most common method in many countries owing to lower cost and adaptation to wide range of solid waste. Site selection of landfill requires evaluating several parameters such as municipal government requirements, environmental regulations and a large number of quantitative and qualitative criteria. The aim of current study was to compare AHP and TOPSIS in landfill site selection. For this purpose, two mentioned methods were applied to select suitable site in Karaj. Materials and methods: In present study, 4 candidate sites in south of Karaj were selected for landfill by overlaying data layers (digital maps and query functions in Arc GIS 9.2. Prioritizations between alternatives were conducted by AHP and TOPSIS technique according to the criteria mentioned. Eventually, we compared and evaluated the AHP results and TOPSIS results with each other. Result: According to AHP, site prioritization was 3,2,4,1 respectively whereas, in the case of TOPSIS, it was ranked 4,3,2,1, respectively. These results showed that both methods are suitable to determine site priority. Conclusion: As in AHP, alternatives are compared with respect to goal and criteria, consequently it has better precision and higher accuracy and confidence compared with TOPSIS.

  20. Mechanism of H2S removal during landfill stabilization in waste biocover soil, an alterative landfill cover.

    Science.gov (United States)

    He, Ruo; Xia, Fang-Fang; Bai, Yun; Wang, Jing; Shen, Dong-Sheng

    2012-05-30

    Hydrogen sulfide (H(2)S) is one of the primary contributors to odors at landfills. The mechanism of waste biocover soil (WBS) for H(2)S removal was investigated in simulated landfill systems with the contrast experiment of a landfill cover soil (LCS). The H(2)S removal efficiency was higher than 90% regardless of the WBS or LCS covers. The input of landfill gas (LFG) could stimulate the growth of aerobic heterotrophic bacteria, actinomycete, sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) in the WBS cover, while that caused a decrease of 1-2 orders of magnitude in the populations of actinomycete and fungi in the bottom layer of the LCS cover. As H(2)S inputted, the sulfide content in the WBS cover increased and reached the maximum on day 30. In the LCS cover, the highest soil sulfide content was exhibited in the bottom layer during the whole experiment. After exposure to LFG, the lower pH value and higher sulfate content were observed in the top layer of the WBS cover, while there was not a significant difference in different layers of the LCS cover. The results indicated a more rapid biotransformation between sulfide and sulfate occurred in the WBS cover compared to the LCS.

  1. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste.

    Science.gov (United States)

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G

    2013-10-01

    Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ(13)C, δ(2)H and δ(18)O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ(13)C-value of the dissolved inorganic carbon (δ(13)C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ(13)C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ(13)C-DIC of -20‰ to -25‰. The production of methane under anaerobic conditions caused an increase in δ(13)C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ(13)C-DIC of about -20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation-reduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and

  2. Specific model for the estimation of methane emission from municipal solid waste landfills in India.

    Science.gov (United States)

    Kumar, Sunil; Nimchuk, Nick; Kumar, Rakesh; Zietsman, Josias; Ramani, Tara; Spiegelman, Clifford; Kenney, Megan

    2016-09-01

    The landfill gas (LFG) model is a tool for measuring methane (CH4) generation rates and total CH4 emissions from a particular landfill. These models also have various applications including the sizing of the LFG collection system, evaluating the benefits of gas recovery projects, and measuring and controlling gaseous emissions. This research paper describes the development of a landfill model designed specifically for Indian climatic conditions and the landfill's waste characteristics. CH4, carbon dioxide (CO2), oxygen (O2) and temperature were considered as the prime factor for the development of this model. The developed model was validated for three landfill sites in India: Shillong, Kolkata, and Jaipur. The autocorrelation coefficient for the model was 0.915, while the R(2) value was 0.429. PMID:27343450

  3. Optimal locations of landfills and transfer stations in solid waste management

    OpenAIRE

    Beğen, Nilüfer Nur

    2002-01-01

    Cataloged from PDF version of article. In the recent years solid waste management has been given an increasing importance due to health factors and environmental concerns. Solid waste management refers to a complex task that covers the collection, transfer, treatment, recycling, resource recovery, and disposal of waste. In this thesis, we investigate the siting aspect of solid waste management for the siting of landfills and transfer stations. We first review the context of ...

  4. Landfill gas generation assessment procedure guidance report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-03-15

    Landfill gas (LFG) at municipal solid waste (MSW) landfills is generated as a result of physical, chemical, and microbial processes occurring within the waste. The purpose of this guidelines document was to provide a procedure for the assessment of LFG generation at MSW landfills in British Columbia and to provide guidelines for landfill owners and operators to comply with the 2008 British Columbia landfill gas management regulation. The study used a regulatory-based model. This paper outlined the requirement to complete a landfill gas generation assessment. It included previous landfill gas generation assessments as well as information on historical waste tonnage, projected waste tonnage, waste characteristics, meteorological data, and water addition. Landfill gas generation parameter selection was also discussed in terms of waste categorization; methane generation potential; landfill gas generation rate; and water addition factor. Other topics that were addressed included landfill gas and methane generation estimate; landfill gas generation assessment reporting; and a solid waste composition study. 13 refs., 6 tabs., 1 fig., 6 appendices.

  5. Bacterial community diversity in municipal waste landfill sites.

    Science.gov (United States)

    Song, Liyan; Wang, Yangqing; Tang, Wei; Lei, Yu

    2015-09-01

    Little is known about the bacterial diversity of landfills and how environmental factors impact the diversity. In this study, PCR-based 454 pyrosequencing was used to investigate the bacterial communities of ten landfill leachate samples from five landfill sites in China. A total of 137 K useable sequences from the V3-V6 regions of the 16S rRNA gene were retrieved from 205 K reads. These sequences revealed the presence of a large number of operational taxonomic units (OTUs) in the landfills (709-1599 OTUs per sample). The most predominant bacterial representatives in the landfills investigated, regardless of geographic area, included Gammaproteobacteria, Firmicutes, and Bacteroidetes. The phyla Fusobacteria and Tenericutes were also found for the first time to be predominant in the landfills. The phylum Fusobacteria predominated (51.5 and 48.8%) in two semi-arid landfills, and the phylum Tenericutes dominated (30.6%) at one humid, subtropical landfill. Further, a large number of Pseudomonas was detected in most samples, comprising the dominant group and accounting for 40.9 to 92.4% of the total abundance. Principal component analysis (PCA) and cluster analysis based on OTU abundance showed that the abundant taxa separated the bacterial community. Canonical correlation analysis (CCA) suggested that precipitation and landfilling age significantly impact on the bacterial community structure. The bacterial community function (e.g., cellulolytic bacteria, sulfate-reducing bacteria (SRB), sulfate-oxidizing bacteria, and xenobiotic organic compound (XOC)-degrading bacteria) was also diverse, but the pattern is unclear.

  6. Methylated mercury species in municipal waste landfill gas sampled in Florida, USA

    Science.gov (United States)

    Lindberg, S. E.; Wallschläger, D.; Prestbo, E. M.; Bloom, N. S.; Price, J.; Reinhart, D.

    Mercury-bearing material has been placed in municipal landfills from a wide array of sources including fluorescent lights, batteries, electrical switches, thermometers, and general waste. Despite its known volatility, persistence, and toxicity in the environment, the fate of mercury in landfills has not been widely studied. The nature of landfills designed to reduce waste through generation of methane by anaerobic bacteria suggests the possibility that these systems might also serve as bioreactors for the production of methylated mercury compounds. The toxicity of such species mandates the need to determine if they are emitted in municipal landfill gas (LFG). In a previous study, we had measured levels of total gaseous mercury (TGM) in LFG in the μg/m 3 range in two Florida landfills, and elevated levels of monomethyl mercury (MMM) were identified in LFG condensate, suggesting the possible existence of gaseous organic Hg compounds in LFG. In the current study, we measured TGM, Hg 0, and methylated mercury compounds directly in LFG from another Florida landfill. Again, TGM was in the μg/m 3 range, MMM was found in condensate, and this time we positively identified dimethyl mercury (DMM) in the LGF in the ng/m 3 range. These results identify landfills as a possible anthropogenic source of DMM emissions to air, and may help explain the reports of MMM in continental rainfall.

  7. Exergy analysis of biogas production from a municipal solid waste landfill

    DEFF Research Database (Denmark)

    Xydis, George; Nanaki, E.; Koroneos, C.

    2013-01-01

    In the energy area, intensive efforts are being made over the last years to bridge the supply area with renewable energy sources and the demand side with energy conservation. Energy recovery from municipal solid waste landfills can play a contributing role in the solution of problems of both waste...

  8. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal.

    Science.gov (United States)

    De Feo, Giovanni; De Gisi, Sabino

    2014-11-01

    The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a "land use map of potentially suitable areas" for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method. PMID:25002369

  9. A study of the structure in solid wastes and some implications for fluid flow in landfills

    OpenAIRE

    Caicedo, D.

    2013-01-01

    The search for alternative landfill operation and management strategies has triggered the development of the concept of a landfill as a bioreactor. The application of the concept requires the recirculation of liquids and hence a better understanding of fluid flow and transport processes that are strongly controlled by the physical structure of the media. It is generally accepted that as a result of the deposition in progressive layers, compaction and heterogeneity; solid waste develops a stro...

  10. Sustainability gaps in municipal solid waste management: The case of landfills

    OpenAIRE

    Bayer, Stefan; Méry, Jacques

    2006-01-01

    Our paper compares external effects of two municipal solid waste disposal technologies, bioreactor and dry tomb landfills, in a 600-year time-horizon using two different discounting techniques: Constant conventional discounting and Generation Adjusted Discounting (GAD). The paper starts with a short description of the basic characteristics of the two landfill-types. To demonstrate the sustainability deficiencies of constant discounting sustainability gaps are defined and calculated. Reference...

  11. Geologic and hydrologic data for the municipal solid waste landfill facility, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    Science.gov (United States)

    Abeyta, Cynthia G.; Frenzel, P.F.

    1999-01-01

    Geologic and hydrologic data for the Municipal Solid Waste Landfill Facility on the U.S. Army Air Defense Artillery Center and Fort Bliss in El Paso County, Texas, were collected by the U.S. Geological Survey in cooperation with the U.S. Department of the Army. The 106.03-acre landfill has been in operation since January 1974. The landfill contains household refuse, Post solid wastes, bulky items, grass and tree trimmings from family housing, refuse from litter cans, construction debris, classified waste (dry), dead animals, asbestos, and empty oil cans. The depth of the filled areas is about 30 feet and the cover, consisting of locally derived material, is 2 to 3 feet thick. Geologic and hydrologic data were collected at or adjacent to the landfill during (1) drilling of 10 30- to 31-foot boreholes that were completed with gas-monitoring probes, (2) drilling of a 59-foot borehole, (3) drilling of a 355-foot borehole that was completed as a ground-water monitoring well, and (4) in situ measurements made on the landfill cover. After completion, the gas- monitoring probes were monitored on a quarterly basis (1 year total) for gases generated by the landfill. Water samples were collected from the ground-water monitoring well for chemical analysis. Data collection is divided into two elements: geologic data and hydrologic data. Geologic data include lithologic descriptions of cores and cuttings, geophysical logs, soil- gas and ambient-air analyses, and chemical analyses of soil. Hydrologic data include physical properties, total organic carbon, and pH of soil and sediment samples; soil-water chloride and soil-moisture analyses; physical properties of the landfill cover; measurements of depth to ground water; and ground-water chemical analyses. Interpretation of data is not included in this report.

  12. Environmental assessment of low-organic waste landfill scenarios by means of life-cycle assessment modelling (EASEWASTE)

    DEFF Research Database (Denmark)

    Manfredi, Simone; Christensen, Thomas Højlund; Scharff, H.;

    2010-01-01

    The environmental performance of two low-organic waste landfill scenarios ('low-organic-energy' and 'low-organic-flare') was developed and compared with two household waste landfill scenarios ('household-energy' and 'household-flare') by means of LCA-modelling. The LCA-modelling was made for 1...... tonne of wet waste landfilled and the environmental aspects were evaluated for a 100-year period after disposal. The data utilized in the LCA-calculations to model the first 10-20 years of landfilling of the two low-organic waste scenarios make extensive use of site-specific data from the Nauerna...... assessments show that the low-organic waste scenarios achieved better environmental performance than the household waste scenarios with regard to both ordinary and toxicity-related environmental impact categories. This indicates that the reduction of organic matter accepted at landfills (as prescribed...

  13. Phytoremediation of Polychlorobiphenyls PCBs in Landfill E-Waste Leachate with Water Hyacinth E.Crassipes

    Directory of Open Access Journals (Sweden)

    E.A Omondi

    2015-05-01

    Full Text Available Abstract The presence of e-waste in a landfill can release persistent organic pollutants POPs including polychlorinated biphenyls PCBs into the environment. PCBs are a family of more than 200 chemical compounds congeners each of which consists of two benzene rings and one to ten chlorine atoms. This study investigated use of water hyacinth Eichhornia crassipes for phytoremediation of landfill leachate waste containing PCB. Landfill leachate was simulated in the laboratory by spiking water samples with PCB to obtain concentrations of 5 10 and 15 amp956gL which were in one to two orders of magnitude above the US Environmental Protection Agency EPA limit of 0.5 amp956gL or 0.5 ppb. Water hyacinth plants were grown in 2 L samples of the PCB spiked water for 15 days and evaluated for tolerance and bioaccumulation of PCB. Phytoremediation of PCB spiked water by the plants was evaluated by measuring the change in concentration of PCB. The plants tolerated PCB concentrations in the range of 5 to 15 amp956gL without depicting any serious adverse effect except for change in root color and an initial wilting of peripheral leaves. Water hyacinth reduced the concentration of PCBs in the leachate over 15 days from 15 to 0.42 amp956gL for the 15 amp956gL initial concentration sample and to below the GCMS detection limit of 0.142 amp956gL for the 10 and 5 ugL initial concentration samples. Bioaccumulation of PCB in the plant tissue was evaluated through solid phase extraction and testing of samples for PCB with GCMS. Bioaccumulation of PCBs at a concentration of 0.179 amp956gg was observed in the water hyacinth roots for the 15 amp956gL sample but none was detected for the lower initial PCB concentration and shoots. The study demonstrated potential of water hyacinth plants in phytoremediation of PCBs in e-waste leachate.

  14. Estimating Pollutant Removal Requirements for Landfills in the UK: I. Benchmark Study and Characteristics of Waste Treatment Technologies

    OpenAIRE

    Hall, D H; Drury, D.; Gronow, Jan R.; Rosevear, Alan; Pollard, Simon J. T.; Smith, Richard

    2006-01-01

    Introduction of the EU Landfill Directive is having a significant impact on waste management in the UK and in other member states that have relied on landfilling. This paper considers the length of the aftercare period required by the municipal solid waste streams that the UK will most probably generate following implementation of the Landfill Directive. Data were derived from literature to identify properties of residues from the most likely treatment processes and the prob...

  15. Data summary of municipal solid waste management alternatives. Volume 8, Appendix F, Landfills

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community`s solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a ``transition`` document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

  16. Data Summary of Municipal Solid Waste Management Alternatives. Volume VIII: Appendix F - Landfills

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community's solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a transition'' document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

  17. The outline scheme for management of the leather waste landfill Rakovnik

    OpenAIRE

    Majoranc, Nejc

    2015-01-01

    Every sector of industry creates not only final products but waste as a by-product as well. This is also true for leather industry, which is considered one of major environment polluters. The waste management situation has improved immensely in recent times as less and less waste gets disposed of to waste landfills. With the use of the best technology available it is possible to materially utilize waste and the disposal of waste becomes the last alternative. The subject of the thesis is organ...

  18. Quantitative analysis of volatile methylsiloxanes in waste-to-energy landfill biogases using direct APCI-MS/MS.

    Science.gov (United States)

    Badjagbo, Koffi; Héroux, Martin; Alaee, Mehran; Moore, Serge; Sauvé, Sébastien

    2010-01-15

    Landfill-biogas utilization is a win-win solution as it creates sources of renewable energy and revenue while diminishing greenhouse gas emissions. However, the combustion of a siloxane-containing biogas produces abrasive microcrystalline silica that causes severe and expensive damages to power generation equipment. Hence, the importance of siloxane analysis of the biogas has increased with the growth of the waste-to-energy market. We have investigated an improved method for the analysis of octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) in biogas using deuterated hexamethyldisiloxane (HMDS-d(18)) as an internal standard with direct atmospheric pressure chemical ionization/tandem mass spectrometry (APCI-MS/MS). The use of HMDS-d(18) as a single internal standard provided effective signal compensation for both D4 and D5 in biogas and improved the sensitivity and reliability for the direct APCI-MS/MS quantification of these compounds in biogas. Low detection limits ( approximately 2 microg/m(3)) were achieved. The method was successfully applied for the determination of D4 and D5 contents in various samples of biogas recovered for electrical power generation from a landfill site in Montreal. Concentrations measured for D4 and D5 were in the ranges of 131-1275 and 250-6226 microg/m(3), respectively. Among the various landfill zones sampled, a clear trend of decreasing D4 and D5 concentrations was observed for older landfill materials. PMID:20017505

  19. Geophysical characterization in solid waste landfill for evaluation of geotechnical instability conditioners

    Directory of Open Access Journals (Sweden)

    Carolina Del Roveri

    2013-03-01

    Full Text Available The disposal of solid waste can create environmental problems, in addition to the potential risk of instability even in planned geotechnical works, such as provisions in stacks or high ends of the landfill, because they represent mere adjustments in civil engineering works. The Leme city, SP, generates about 35 t/day of municipal waste, that are deposited in a landfill located in the Barro Preto neighborhood. This work conducted a geophysical survey, based on geotechnical instability evidence in area, for analysis of the conditioners that cause on the sides leachate resurgence landfill and its relationship to mass movements and ravines installation in cover soil, with consequent waste exposure. The results indicate horizons of low resistivity connected with resurgence points generated by the organic matter decomposition contained in the waste. Such horizons result in leachate concentration in some places, which, in turn, may lead to loss of cohesion of the materials constituting the residues mass. The results are areas with mass flow by rotational movements, which, together with the surface flow of rainwater, evolves into ravines and exposed residues, preferably at the resurgence point. The leachate flow on the surface affects areas beyond the limits at landfill with direct impact on local agriculture and risk to pedestrians using the highway bordered by the landfill beyond the soil and the local aquifer.

  20. ENERGY POTENTIAL FROM MUNICIPAL SOLID WASTE IN TANJUNG LANGSAT LANDFILL, JOHOR, MALAYSIA

    OpenAIRE

    Amin Kalantarifard; Go Su Yang

    2011-01-01

    The objective of this study was to evaluate the composition and characteristics of the generated municipal solid waste (MSW) in order to estimate the high heating value (HHV) and feasibility of establish the incineration plan at Tanjung langsat landfill, Johor Malaysia. Solid waste sampling and laboratory analysis were carried out according to the random sampling method based on American Society of Testing and Materials (ASTM) standards to determine the waste compositions and proximate analys...

  1. Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars.

    Science.gov (United States)

    Sadasivam, Bala Yamini; Reddy, Krishna R

    2015-08-01

    The natural presence of methane oxidizing bacteria (MOB) in landfill soils can stimulate the bio-chemical oxidation of CH4 to CO2 and H2O under suitable environmental conditions. This mechanism can be enhanced by amending the landfill cover soil with organic materials such as biochars that are recalcitrant to biological degradation and are capable of adsorbing CH4 while facilitating the growth and activity of MOB within their porous structure. Several series of batch and small-scale column tests were conducted to quantify the CH4 sorption and transport properties of landfill cover soil amended with four types of waste hardwood biochars under different levels of amendment percentages (2, 5 and 10% by weight), exposed CH4 concentrations (0-1 kPa), moisture content (dry, 25% and 75% water holding capacity), and temperature (25, 35 and 45 °C). The linear forms of the pseudo second-order kinetic model and the Langmuir isotherm model were used to determine the kinetics and the maximum CH4 adsorption capacity of cover materials. The maximum CH4 sorption capacity of dry biochar-amended soils ranged from 1.03 × 10(-2) to 7.97 × 10(-2) mol kg(-1) and exhibited a ten-fold increase compared to that of soil with 1.9 × 10(-3) mol kg(-1). The isosteric heat of adsorption for soil was negative and ranged from -30 to -118 kJ/mol, while that of the biochar-amended soils was positive and ranged from 24 to 440 kJ/mol. The CH4 dispersion coefficients for biochar-amended soils obtained through predictive transport modeling indicated that amending the soil with biochar enhanced the methane transport rates by two orders of magnitude, thereby increasing their potential for enhanced exchange of gases within the cover system. Overall, the use of hardwood biochars as a cover soil amendment to reduce methane emissions from landfills appears to be a promising alternative to conventional soil covers. PMID:25935750

  2. Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars.

    Science.gov (United States)

    Sadasivam, Bala Yamini; Reddy, Krishna R

    2015-08-01

    The natural presence of methane oxidizing bacteria (MOB) in landfill soils can stimulate the bio-chemical oxidation of CH4 to CO2 and H2O under suitable environmental conditions. This mechanism can be enhanced by amending the landfill cover soil with organic materials such as biochars that are recalcitrant to biological degradation and are capable of adsorbing CH4 while facilitating the growth and activity of MOB within their porous structure. Several series of batch and small-scale column tests were conducted to quantify the CH4 sorption and transport properties of landfill cover soil amended with four types of waste hardwood biochars under different levels of amendment percentages (2, 5 and 10% by weight), exposed CH4 concentrations (0-1 kPa), moisture content (dry, 25% and 75% water holding capacity), and temperature (25, 35 and 45 °C). The linear forms of the pseudo second-order kinetic model and the Langmuir isotherm model were used to determine the kinetics and the maximum CH4 adsorption capacity of cover materials. The maximum CH4 sorption capacity of dry biochar-amended soils ranged from 1.03 × 10(-2) to 7.97 × 10(-2) mol kg(-1) and exhibited a ten-fold increase compared to that of soil with 1.9 × 10(-3) mol kg(-1). The isosteric heat of adsorption for soil was negative and ranged from -30 to -118 kJ/mol, while that of the biochar-amended soils was positive and ranged from 24 to 440 kJ/mol. The CH4 dispersion coefficients for biochar-amended soils obtained through predictive transport modeling indicated that amending the soil with biochar enhanced the methane transport rates by two orders of magnitude, thereby increasing their potential for enhanced exchange of gases within the cover system. Overall, the use of hardwood biochars as a cover soil amendment to reduce methane emissions from landfills appears to be a promising alternative to conventional soil covers.

  3. Performance analysis of energy recovery in an Italian municipal solid waste landfill

    International Nuclear Information System (INIS)

    The objective of this paper is to assess the techno-economic viability of the use of fuel cell as an alternative technology for landfill gas energy recovery. The case of an Italian municipal solid waste landfill is analyzed. The landfill was opened in 1998 and in 2001 the energy recovery facility started operation. The current landfill gas conversion system is based on internal combustion engine technology. However, the drawbacks of internal combustion engine in terms of conversion efficiency and air emissions are widely acknowledged. Some authors have proposed molten carbonate fuel cell as one of the most interesting solution for landfill gas energy recovery for the near future. Fuel cells have proven capable of providing superior energy efficiency and environmental performance, but their widespread use is constrained by the capital cost required. Using actual data from the landfill, a comparison between the current energy recovery system and a hypothetical alternative solution based on molten carbonate fuel cell is performed. The analysis assesses the cost-effectiveness of the two solutions, considering also some environmental externalities usually not included in traditional economic assessment. The main strengths and weaknesses of the two landfill gas energy recovery systems are highlighted and some new insights into molten carbonate fuel cell overall sustainability are provided.

  4. A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India.

    Science.gov (United States)

    Mishra, Harshit; Rathod, Merwan; Karmakar, Subhankar; Kumar, Rakesh

    2016-06-01

    Rapid industrialisation, growing population and changing lifestyles are the root causes for the generation of huge amounts of solid waste in developing countries. In India, disposal of municipal solid waste (MSW) through open dumping is the most common waste disposal method. Unfortunately, leachate generation from landfill is high due to the prolonged and prominent monsoon season in India. As leachate generation rate is high in most of the tropical countries, long-term and extensive monitoring efforts are expected to evaluate actual environmental pollution potential due to leachate contamination. However, the leachate characterisation involves a comprehensive process, which has numerous shortcomings and uncertainties possibly due to the complex nature of landfilling process, heterogeneous waste characteristics, widely varying hydrologic conditions and selection of analytes. In order to develop a sustainable MSW management strategy for protecting the surface and ground water resources, particularly from MSW landfill leachate contamination, assessment and characterisation of leachate are necessary. Numerous studies have been conducted in the past to characterise leachate quality from various municipal landfills; unfortunately, none of these propose a framework or protocol. The present study proposes a generic framework for municipal landfill leachate assessment and characterisation. The proposed framework can be applied to design any type of landfill leachate quality monitoring programme and also to facilitate improved leachate treatment activities. A landfill site located at Turbhe, Navi Mumbai, India, which had not been investigated earlier, has been selected as a case study. The proposed framework has been demonstrated on the Turbhe landfill site which is a comparatively new and the only sanitary landfill in Navi Mumbai.

  5. Heat Transport Modeling in an Aquifer Downgradient a Municipal Solid Waste Landfill in Italy

    Directory of Open Access Journals (Sweden)

    Rajandrea Sethi

    2007-01-01

    Full Text Available Heat generation inside municipal solid waste (MSW landfills is due to aerobic and anaerobic exothermic reactions occurring inside the waste. The result of heat generation and transport inside sanitary landfill leads to a temperature field that varies from mesophylic range (optimum at 30 40 °C to thermophylic range (optimum at 50-60 °C. Due to high temperatures at the bottom of the landfill, liner systems can be severely damaged. The increment in convective and conductive heat transport could lead to an increase of the temperature in the surrounding geological layers and in the underlying aquifer. Hydrodynamic thermodispersion and convection are the most important mechanisms of heat transport in saturated porous medium with a moving fluid such as aquifer systems. The aim of the study is to model and investigate the origin of a thermal anomaly in the aquifer underneath a municipal landfill in the North of Italy. In order to model the system a detailed experimental analysis was conducted inside the landfill, measuring the temperature of the biogas and leachate, and in the aquifer system measuring the temperature in monitoring wells and conducting a constant rate pumping test. Heat transport model has been exploited using the analogy between heat and mass transport in porous media. The model showed that the thermal anomaly is due to convective and conductive heat transport from the landfill to the aquifer.

  6. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, Bernhard, E-mail: bernhard.wimmer@ait.ac.at [AIT Austrian Institute of Technology GmbH, Health and Environment Department, Environmental Resources and Technologies, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Hrad, Marlies; Huber-Humer, Marion [Institute of Waste Management, Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Health and Environment Department, Environmental Resources and Technologies, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria)

    2013-10-15

    Highlights: ► The isotopic signature of δ{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ► Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ► In situ aeration of landfills can be monitored by isotope analysis in leachate. ► The isotopic analysis of leachates can be used for assessing the stability of MSW. ► δ{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ{sup 13}C, δ{sup 2}H and δ{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ{sup 13}C-value of the dissolved inorganic carbon (δ{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ{sup 13}C-DIC of −20‰ to −25‰. The production of methane under anaerobic conditions caused an increase in δ{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW

  7. ENERGY POTENTIAL FROM MUNICIPAL SOLID WASTE IN TANJUNG LANGSAT LANDFILL, JOHOR, MALAYSIA

    Directory of Open Access Journals (Sweden)

    Amin Kalantarifard

    2011-12-01

    Full Text Available The objective of this study was to evaluate the composition and characteristics of the generated municipal solid waste (MSW in order to estimate the high heating value (HHV and feasibility of establish the incineration plan at Tanjung langsat landfill, Johor Malaysia. Solid waste sampling and laboratory analysis were carried out according to the random sampling method based on American Society of Testing and Materials (ASTM standards to determine the waste compositions and proximate analysis (moisture content, volatile matter, ash content and fixed carbon. The total quantity of MSW generated at the site was 350 ton/day. The main compositions of the generated waste were food waste, plastic waste and fruit waste which accounted for about 58% by weight. The average moisture contentof the waste was between 56-59%. As a consequence of industrialization, urbanization and population growth, it isexpected that Tanjung langsat landfill will be reached its maximum capacity at the end of 2012. Incineration considered as option for waste reduction strategy due lacking of space for new landfills at big cities in Malaysia. In this present study, a simple numerous mathematical models based on proximate analysis result from MSW wereused to calculate the amount of HHV.

  8. Identification of Cellulose Breaking Bacteria in Landfill Samples for Organic Waste Management

    Science.gov (United States)

    Chan, P. M.; Leung, F. C.

    2015-12-01

    According to the Hong Kong Environmental Protection Department, the citizens of Hong Kong disposes 13,500 tonnes of waste to the landfill everyday. Out of the 13,500 tonnes, 3600 tonnes consist of organic waste. Furthermore, due to the limited supply of land for landfills in Hong Kong, it is estimated that landfills will be full by about 2020. Currently, organic wastes at landfills undergo anaerobic respiration, where methane gas, one of the most harmful green house gases, will be released. The management of such waste is a pressing issue, as possible solutions must be presented in this crucial period of time. The Independent Schools Foundation Academy introduced their very own method to manage the waste produced by the students. With an approximate of 1500 students on campus, the school produces 27 metric tonnes of food waste each academic year. The installation of the rocket food composter provides an alternate method of disposable of organic waste the school produces, for the aerobic environment allows for different by-products to be produced, namely compost that can be used for organic farming by the primary school students and subsequently carbon dioxide, a less harmful greenhouse gas. This research is an extension on the current work, as another natural factor is considered. It evaluates the microorganism community present in leachate samples collected from the North East New Territories Landfill, for the bacteria in the area exhibits special characteristics in the process of decomposition. Through the sequencing and analysis of the genome of the bacteria, the identification of the bacteria might lead to a break through on the current issue. Some bacteria demonstrate the ability to degrade lignin cellulose, or assist in the production of methane gas in aerobic respirations. These characteristics can hopefully be utilized in the future in waste managements across the globe.

  9. Epiphytic lichens as indicators of environmental quality around a municipal solid waste landfill (C Italy).

    Science.gov (United States)

    Paoli, Luca; Grassi, Alice; Vannini, Andrea; Maslaňáková, Ivana; Bil'ová, Ivana; Bačkor, Martin; Corsini, Adelmo; Loppi, Stefano

    2015-08-01

    Epiphytic lichens have been used as indicators of environmental quality around a municipal solid waste landfill in C Italy. An integrated approach, using the diversity of epiphytic lichens, as well as element bioaccumulation and physiological parameters in the lichen Flavoparmelia caperata (L.) Hale was applied along a transect from the facility. The results highlighted the biological effects of air pollution around the landfill. The Index of Lichen Diversity (ILD) increased and the content of heavy metals (Cr, Cd, Cu, Fe, Ni and Zn) decreased with distance from the landfill. Clear stress signals were observed in lichens growing in front of the facility, i.e. discoloration, necrosis, membrane lipid peroxidation, lower ergosterol content, higher dehydrogenase activity. Decreased photosynthetic efficiency, altered chlorophyll integrity and production of secondary metabolites were also found. The results suggested that lichens can be profitably used as bioindicators of environmental quality around landfills. PMID:25987289

  10. Life cycle analysis of sanitary landfill and incineration of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    倪晋仁; 韦洪莲; 刘阳生; 赵智杰

    2002-01-01

    Environmental consequences from sanitary landfill as well as incineration with power generation were compared in terms of life cycle analysis (LCA) for Laohukeng Waste-disposal Plant that is under consideration in Shenzhen. A variety of differences will be resulted from the two technologies, from which the primary issue that affects the conclusion is if the compensatory phase in power generation can be properly considered in the boundary definition of LCA. Upon the compensatory phase is taken into account in the landfill system, the negative environmental consequences from the landfill will be more significant than those from the incineration with power generation, although the reversed results can be obtained as the compensatory phase is neglected. In addition, mitigation of environmental impacts through the pollutant treatment in the incineration process will be more effective than in the landfill process.

  11. Quantification of regional leachate variance from municipal solid waste landfills in China.

    Science.gov (United States)

    Yang, Na; Damgaard, Anders; Kjeldsen, Peter; Shao, Li-Ming; He, Pin-Jing

    2015-12-01

    The quantity of leachate is crucial when assessing pollution emanating from municipal landfills. In most cases, existing leachate quantification measures only take into account one source - precipitation, which resulted in serious underestimation in China due to its waste properties: high moisture contents. To overcome this problem, a new estimation method was established considering two sources: (1) precipitation infiltrated throughout waste layers, which was simulated with the HELP model, (2) water squeezed out of the waste itself, which was theoretically calculated using actual data of Chinese waste. The two sources depended on climate conditions and waste characteristics, respectively, which both varied in different regions. In this study, 31 Chinese cities were investigated and classified into three geographic regions according to landfill leachate generation performance: northwestern China (China-NW) with semi-arid and temperate climate and waste moisture content of about 46.0%, northern China (China-N) with semi-humid and temperate climate and waste moisture content of about 58.2%, and southern China (China-S) with humid and sub-tropical/tropical climate and waste moisture content of about 58.2%. In China-NW, accumulated leachate amounts were very low and mainly the result of waste degradation, implying on-site spraying/irrigation or recirculation may be an economic approach to treatment. In China-N, water squeezed out of waste by compaction totaled 22-45% of overall leachate amounts in the first 40 years, so decreasing the initial moisture content of waste arriving at landfills could reduce leachate generation. In China-S, the leachate generated by infiltrated precipitation after HDPE geomembranes in top cover started failing, contributed more than 60% of the overall amounts over 100 years of landfilling. Therefore, the quality and placing of HDPE geomembranes in the top cover should be controlled strictly for the purpose of mitigation leachate generation.

  12. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...... and the geotechnical stability of the fill. Understanding landfill hydrology is thus important for many aspects of landfill, in particular siting, design and operation. The objective of this chapter is to give a basic understanding of the hydrology of landfills, and to present ways to estimate leachate quantities......-circuiting. In the final section different existing hydrological models for landfills are presented with a special focus on the HELP model. This model is the most widely used tool for the prediction of leachate quantities in landfills, and for the sizing of leachate control and management infrastructure....

  13. Treatment of mechanically sorted organic waste by bioreactor landfill: Experimental results and preliminary comparative impact assessment with biostabilization and conventional landfill.

    Science.gov (United States)

    Di Maria, Francesco; Micale, Caterina; Sisani, Luciano; Rotondi, Luca

    2016-09-01

    Treatment and disposal of the mechanically sorted organic fraction (MSOF) of municipal solid waste using a full-scale hybrid bioreactor landfill was experimentally analyzed. A preliminary life cycle assessment was used to compare the hybrid bioreactor landfill with the conventional scheme based on aerobic biostabilization plus landfill. The main findings showed that hybrid bioreactor landfill was able to achieve a dynamic respiration index (DRI)55% v/v started within 140days from MSOF disposal, allowing prompt energy recovery and higher collection efficiency. With the exception of fresh water eutrophication with the bioreactor scenario there was a reduction of the impact categories by about 30% compared to the conventional scheme. Such environmental improvement was mainly a consequence of the reduction of direct and indirect emissions from conventional aerobic biostabilization and of the lower amount of gaseous loses from the bioreactor landfill. PMID:27026496

  14. Mining the Midden: A Facility for Dynamic Waste Harvesting at the Cedar Hills Regional Landfill

    Science.gov (United States)

    Allan, Aaron

    Mining the Midden intends to re-frame the sanitary landfill as a new typology of public land containing an embodied energy of cultural and material value. By reconnecting the public with the landfill and seriously exposing its layers of history and then digesting both mined and new waste within an industrial facility of materials recovery and plasma gasification technology waste-to-energy plant. The sequence of experience for a public visitor begins where the waste is transformed to energy and flows in the opposite direction of the trash through the facility and then into the active landfill mining operation which is the large site component of the project. The mine is flanked by the visitor path, which is suspended from the soldier piles of the excavation system and allows the visitor to interpret along the 1/3 mile path their personal connection to the waste stream and the consumption patterns which drive our waste. Interpretation results from multi-sensory experience of the open mine and its connection to the processing structure as one hovers above, through moments of seeing through structural glass lagging directly into the sectional cut of the landfill, and through cultural artifacts harvested by landfill archaeologists which are displayed in rhythm with the structure and lagging. The culmination of the prescribed path is a narrow cut which frames the view of Mt. Rainier in the distance and opens up a visual connection with the remaining majority of the landfill which have up to this point been blocked by the small mountain of trash which they just walked up and through. This thesis intends that by confronting people with the juxtapositions of 2 potentially destructive mounds or mountains, and how we as a culture value and protect land while we simultaneously dump our rubbish on other lands, this experience will make the visitor more conscious of ones personal contribution to our culture of disposable commodities.

  15. Sustainable waste management research and development : a successful use of landfill tax credit funds?

    International Nuclear Information System (INIS)

    A landfill tax was introduced to the United Kingdom in October 1996 to ensure that landfill waste disposal reflects its environmental cost. The tax system makes allowances so that some of the taxes raised can be used to encourage projects which reflect sustainable development in waste management. According to regulations, some of the projects deemed acceptable for tax credits are: (1) reclamation, remediation or restoration projects, (2) any operation that reduces the potential for pollution, (3) research, development and education of information about waste management practices, (4) improvements of public amenities in the vicinity of a landfill site, and (5) maintenance or repair of a historic building that is in the vicinity of a landfill site. The statistical data relating to the projects indicate a good response from landfill operators in the first two years, but since then, the proportional distribution of approved projects has remained static. This paper argues that the system is inadequately funded and focused in the wrong direction. The projects and contributions made under this new tax scheme were analyzed to determine if the system is capable of following a sustainable approach. 9 refs., 6 tabs

  16. Mixed waste landfill corrective measures study final report Sandia National Laboratories, Albuquerque, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Peace, Gerald (Jerry) L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM)

    2004-03-01

    The Mixed Waste Landfill occupies 2.6 acres in the north-central portion of Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico. The landfill accepted low-level radioactive and mixed waste from March 1959 to December 1988. This report represents the Corrective Measures Study that has been conducted for the Mixed Waste Landfill. The purpose of the study was to identify, develop, and evaluate corrective measures alternatives and recommend the corrective measure(s) to be taken at the site. Based upon detailed evaluation and risk assessment using guidance provided by the U.S. Environmental Protection Agency and the New Mexico Environment Department, the U.S. Department of Energy and Sandia National Laboratories recommend that a vegetative soil cover be deployed as the preferred corrective measure for the Mixed Waste Landfill. The cover would be of sufficient thickness to store precipitation, minimize infiltration and deep percolation, support a healthy vegetative community, and perform with minimal maintenance by emulating the natural analogue ecosystem. There would be no intrusive remedial activities at the site and therefore no potential for exposure to the waste. This alternative poses minimal risk to site workers implementing institutional controls associated with long-term environmental monitoring as well as routine maintenance and surveillance of the site.

  17. Heavy metals, salts and organic residues in old solid urban waste landfills and surface waters in their discharge areas: determinants for restoring their impact.

    Science.gov (United States)

    Pastor, J; Hernández, A J

    2012-03-01

    This study was designed to determine the state of polluted soils in the main landfills of the Community of Madrid (central Spain), as part of a continuous assessment of the impacts of urban solid waste (USW) landfills that were capped with a layer of soil 20 years ago. Our analysis of this problem has been highly conditioned by the constant re-use of many of the USW landfills, since they have never been the target of any specific restoration plan. Our periodical analysis of cover soils and soils from discharge areas of the landfills indicates soil pollution has worsened over the years. Here, we examined heavy metal, salts, and organic compounds in soil and surface water samples taken from 15 landfills in the Madrid region. Impacts of the landfill soil covers on nematode and plant diversity were also evaluated. These analyses continue to reveal the presence of heavy metals (Zn, Cu, Cr, Ni, Pb, Cd) in soils, and salts (sulphates, chlorides and nitrates) in soils and surface waters. In addition, non-agricultural organic compounds, mainly aromatic and aliphatic hydrocarbons, often appeared in very high concentrations, and high levels of insecticides such as gamma-HCH (lindane) were also detected in soils. Around 50% of the water samples collected showed chemical demand of oxygen (CDO) values in excess of 150 mg/l. Traces of phenolic compounds were detected in some landfills, some of which exhibited high levels of 2-chlorophenol and pentachlorophenol. All these factors are conditioning both the revegetation of the landfill systems and the remediation of their slopes and terrestrial ecosystems arising in their discharge areas. This work updates the current situation and discusses risks for the health of the ecosystems, humans, domestic animals and wildlife living close to these landfills. PMID:21764209

  18. Seismic analysis of Industrial Waste Landfill 4 at Y-12 Plant

    International Nuclear Information System (INIS)

    This calculation was to seismically evaluate Landfill IV at Y-12 as required by Tennessee Rule 1200-1-7-04(2) for seismic impact zones. The calculation verifies that the landfill meets the seismic requirements of the Tennessee Division of Solid Waste, ''Earthquake Evaluation Guidance Document.'' The theoretical displacements of 0.17 in. and 0.13 in. for the design basis earthquake are well below the limiting seimsic slope stability design criteria. There is no potential for liquefaction due to absence of chohesionless soils, or for loss or reduction of shear strength for the clays at this site as result of earthquake vibration. The vegetative cover on slopes will most likely be displaced and move during a large seismic event, but this is not considered a serious deficiency because the cover is not involved in the structural stability of the landfill and there would be no release of waste to the environment

  19. Scenario analysis of the benefit of municipal organic-waste composting over landfill, Cambodia.

    Science.gov (United States)

    Seng, Bunrith; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Ochiai, Satoru; Kaneko, Hidehiro

    2013-01-15

    This paper presents insight into the benefits of organic waste recycling through composting over landfill, in terms of landfill life extension, compost product, and mitigation of greenhouse gases (GHGs). Future waste generation from 2003 to 2020 was forecast, and five scenarios of organic waste recycling in the municipality of Phnom Penh (MPP), Cambodia, were carried out. Organic waste-specifically food and garden waste-was used for composting, and the remaining waste was landfilled. The recycling scenarios were set based on organic waste generated from difference sources: households, restaurants, shops, markets, schools, hotels, offices, and street sweeping. Through the five scenarios, the minimum volume reductions of waste disposal were about 56, 123, and 219 m(3) d(-1) in 2003, 2012, and 2020, respectively, whereas the maximum volume reductions in these years were about 325, 643, and 1025 m(3) d(-1). These volume reductions reflect a landfill life extension of a minimum of half a year and a maximum of about four years. Compost product could be produced at a minimum of 14, 30, and 54 tons d(-1) in 2003, 2012, and 2020, respectively, and at a maximum in those years of about 80, 158, and 252 tons d(-1). At the same time benefit is gained in compost product, GHG emissions could be reduced by a minimum of 12.8% and a maximum of 65.0% from 2003 to 2020. This means about 3.23 (minimum) and 5.79 million tons CO(2)eq (maximum) contributed to GHG mitigation. In this regard, it is strongly recommended that MPP should try to initiate an organic-waste recycling strategy in a best fit scenario.

  20. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests.

    Science.gov (United States)

    Mavakala, Bienvenu K; Le Faucheur, Séverine; Mulaji, Crispin K; Laffite, Amandine; Devarajan, Naresh; Biey, Emmanuel M; Giuliani, Gregory; Otamonga, Jean-Paul; Kabatusuila, Prosper; Mpiana, Pius T; Poté, John

    2016-09-01

    Management of municipal solid wastes in many countries consists of waste disposal into landfill without treatment or selective collection of solid waste fractions including plastics, paper, glass, metals, electronic waste, and organic fraction leading to the unsolved problem of contamination of numerous ecosystems such as air, soil, surface, and ground water. Knowledge of leachate composition is critical in risk assessment of long-term impact of landfills on human health and the environment as well as for prevention of negative outcomes. The research presented in this paper investigates the seasonal variation of draining leachate composition and resulting toxicity as well as the contamination status of soil/sediment from lagoon basins receiving leachates from landfill in Mpasa, a suburb of Kinshasa in the Democratic Republic of the Congo. Samples were collected during the dry and rainy seasons and analyzed for pH, electrical conductivity, dissolved oxygen, soluble ions, toxic metals, and were then subjected to toxicity tests. Results highlight the significant seasonal difference in leachate physicochemical composition. Affected soil/sediment showed higher values for toxic metals than leachates, indicating the possibility of using lagoon system for the purification of landfill leachates, especially for organic matter and heavy metal sedimentation. However, the ecotoxicity tests demonstrated that leachates are still a significant source of toxicity for terrestrial and benthic organisms. Therefore, landfill leachates should not be discarded into the environment (soil or surface water) without prior treatment. Interest in the use of macrophytes in lagoon system is growing and toxic metal retention in lagoon basin receiving systems needs to be fully investigated in the future. This study presents useful tools for evaluating landfill leachate quality and risk in lagoon systems which can be applied to similar environmental compartments.

  1. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests.

    Science.gov (United States)

    Mavakala, Bienvenu K; Le Faucheur, Séverine; Mulaji, Crispin K; Laffite, Amandine; Devarajan, Naresh; Biey, Emmanuel M; Giuliani, Gregory; Otamonga, Jean-Paul; Kabatusuila, Prosper; Mpiana, Pius T; Poté, John

    2016-09-01

    Management of municipal solid wastes in many countries consists of waste disposal into landfill without treatment or selective collection of solid waste fractions including plastics, paper, glass, metals, electronic waste, and organic fraction leading to the unsolved problem of contamination of numerous ecosystems such as air, soil, surface, and ground water. Knowledge of leachate composition is critical in risk assessment of long-term impact of landfills on human health and the environment as well as for prevention of negative outcomes. The research presented in this paper investigates the seasonal variation of draining leachate composition and resulting toxicity as well as the contamination status of soil/sediment from lagoon basins receiving leachates from landfill in Mpasa, a suburb of Kinshasa in the Democratic Republic of the Congo. Samples were collected during the dry and rainy seasons and analyzed for pH, electrical conductivity, dissolved oxygen, soluble ions, toxic metals, and were then subjected to toxicity tests. Results highlight the significant seasonal difference in leachate physicochemical composition. Affected soil/sediment showed higher values for toxic metals than leachates, indicating the possibility of using lagoon system for the purification of landfill leachates, especially for organic matter and heavy metal sedimentation. However, the ecotoxicity tests demonstrated that leachates are still a significant source of toxicity for terrestrial and benthic organisms. Therefore, landfill leachates should not be discarded into the environment (soil or surface water) without prior treatment. Interest in the use of macrophytes in lagoon system is growing and toxic metal retention in lagoon basin receiving systems needs to be fully investigated in the future. This study presents useful tools for evaluating landfill leachate quality and risk in lagoon systems which can be applied to similar environmental compartments. PMID:27177465

  2. Analysis of Indirect Emissions Benefits of Wind, Landfill Gas, and Municipal Solid Waste Generation

    Science.gov (United States)

    Techniques are introduced to calculate the hourly indirect emissions benefits of three types of green power resources: wind energy, municipal solid waste (MSW) combustion, and landfill gas (LFG) combustion. These techniques are applied to each of the U.S. EPA's eGRID subregions i...

  3. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources

    Directory of Open Access Journals (Sweden)

    Cai Bo-Feng

    2014-01-01

    Citation: Cai, B.-F., Liu, J.-G., Gao, Q.-X., et al., 2014. Estimation of methane emissions from municipal solid waste landfills in China based on point emission sources. Adv. Clim. Change Res. 5(2, doi: 10.3724/SP.J.1248.2014.081.

  4. Study of aquatic macroinvertebrate communities exposed to buckeye reclamation landfill drainage wastes

    International Nuclear Information System (INIS)

    The Buckeye Reclamation Landfill (BRL), a Superfund site, incorporates approximately 50 acres of a 658 acre tract of land. The BRL consists of past underground mining voids, including some surface-mined lands, and mine refuse piles from processed bituminous coal. The area was subsequently used as a nonhazardous public and municipal solid waste landfill, and industrial sludge and liquid wastes were also deposited in an impoundment in the northern section of the landfill. The entire landfill area was completely covered with soil and revegetated in the late 1980's and early 1990's. The BRL produces acidic and highly mineralized drainage causing a widespread problem of serious mine drainage pollution in the watershed. A study was undertaken to assess the exposure of pollutants to the macroinvertebrate assemblages and to determine the extent of pollution of the BRL watershed. Samples were collected from ten sites in 1995. Nine systematic and spatial transect samples were taken at each collection site for macroinverbrates with a 595 microm mesh, modified kick net from riffle/run and glide/pool habitats of streams above and below the BRL watershed. All macroinverbrates were identified to the lowest taxonomic level possible. The levels for total Zn ranged from 22--604 microg/L; pH ranged from 4.4 to 8.1. The data distinguished the exposed sites receiving landfill leachates and sedimentation runoff from the less impacted sites

  5. Final Disposal of Solid Waste in Sanitary Landfills and Human Health

    Directory of Open Access Journals (Sweden)

    Gustavo Silveira Graudenz

    2012-06-01

    Full Text Available This article presents a critical review of scientific literature on waste sanitary landfills and its effects on human health, with an approach to the adverse effects that are most commonly associated to living near waste landfills. The health variables included were low birth weight, congenital abnormalities, some types of neoplasms, allergies, asthma and other respiratory diseases using the MEDLINE, LILACS and CAPES’ thesis post graduation database for systematic review. In spite of the fact that some studies indicate positive asssociation between health risks and living close to landfills, the majority of the studies, mainly the most recent ones, do not demonstrate a significant health risk in this condition. Some common limitations and bias of the work in the field are discussed. The lack of direct quantification of exposure, lack of prospective approach and no comparaison of the different types and quality of management of the residues are common limitations to most studies. So far, there is weak evidence to support significant epidemiological health risks associated to landfills. More interdisciplinary research should improve the knoledge of the health risks related to living in the proximity to sanitary landfills.

  6. Modelling of biogas extraction at an Italian landfill accepting mechanically and biologically treated municipal solid waste.

    Science.gov (United States)

    Calabrò, Paolo S; Orsi, Sirio; Gentili, Emiliano; Carlo, Meoni

    2011-12-01

    This paper presents the results of the modelling of the biogas extraction in a full-scale Italian landfill by the USEPA LandGEM model and the Andreottola-Cossu approach. The landfill chosen for this research ('Il Fossetto' plant, Monsummano Terme, Italy) had accepted mixed municipal raw waste for about 15 years. In the year 2003 a mechanical biological treatment (MBT) was implemented and starting from the end of the year 2006, the recirculation in the landfill of the concentrated leachate coming from the internal membrane leachate treatment plant was put into practice. The USEPA LandGEM model and the Andreottola-Cossu approach were chosen since they require only input data routinely acquired during landfill management (waste amount and composition) and allow a simplified calibration, therefore they are potentially useful for practical purposes such as landfill gas management. The results given by the models are compared with measured data and analysed in order to verify the impact of MBT on biogas production; moreover, the possible effects of the recirculation of the concentrated leachate are discussed. The results clearly show how both models can adequately fit measured data even after MBT implementation. Model performance was significantly reduced for the period after the beginning of recirculation of concentrated leachate when the probable inhibition of methane production, due to the competition between methanogens and sulfate-reducing bacteria, significantly influenced the biogas production and composition. PMID:21930528

  7. [Uncertainty analysis for evaluating methane emissions from municipal solid waste landfill in Beijing].

    Science.gov (United States)

    Chen, Cao-Cao; Liu, Chun-Lan; Li, Zheng; Wang, Hai-Hua; Zhang, Yan; Wang, Lu

    2012-01-01

    In order to improve the accurate evaluation of CH4 emissions from municipal solid waste landfill in Beijing, FOD-model and Monte Carlo method were conducted. Based on local data, national data and experts' experience, the uncertainty of FOD-model and parameters' sensitivity analysis were identified. And we quantified effect of various parameters on model output. The results showed that 95% probability distribution range of CH4 emission from landfill was (11.8-19.76) x 10(4) t x a(-1) in Beijing. The mean value was 15.58 x 10(4)t x a(-1) with uncertainty range of -24.26% - 26.83%. Among all the parameters MCF (after 2000) showed the greatest impact on landfill CH4 emission in 2008, and its contribution to the uncertainty of emission result was 41.4%. This research can improve the assessment accuracy and quality on CH4 emission from municipal solid waste landfill in Beijing, as providing scientific basis to improve the landfill greenhouse gas inventory and data collection.

  8. Landfill site selection for municipal solid wastes in mountainous areas with landslide susceptibility.

    Science.gov (United States)

    Eskandari, Mahnaz; Homaee, Mehdi; Falamaki, Amin

    2016-06-01

    Several cities across the world are located in mountainous and landslide prone areas. Any landfill siting without considering landslide susceptibility in such regions may impose additional environmental adversity. This study was aimed to propose a practical method for selecting waste disposal site that accounts for landslide exposure. The proposed method was applied to a city which is highly proneness to landslide due to its geology, morphology, and climatic conditions. First, information on the previously occurred landslides of the region was collected. Based on this information, proper landslide causative factors were selected and their thematic maps were prepared. Factors' classes were then standardized in 0-1 domain, and thematic layers were weighted by using analytical hierarchy process (AHP). The landslide susceptibility map was prepared afterwards. Unsuitable areas for landfill location were masked in GIS environment by Boolean method, retaining sufficient areas for further evaluation. Nine remaining alternatives were selected through comprehensive field visits and were ranked by using AHP. Consequently, 17 factors in three environmental, economical, and social perspectives were employed. Sensitivity analyses were performed to assess the stability of the alternatives ranking with respect to variations in criterion weights. Based on the obtained landslide susceptible map, nearly 36 % of the entire region is proneness to landslide. The prepared Boolean map indicates that potential areas for landfill construction cover 11 % of the whole region. The results further indicated that if landslide susceptible areas are not considered in landfill site selection, the potential landfill sites would become more than twice. It can be concluded that if any of these landslide prone sites are selected for landfilling, further environmental disaster would be terminated in the future. It can be further concluded that the proposed method could reasonably well be adjusted to

  9. A model of pH and redox buffer depletion in waste landfills

    OpenAIRE

    Crawford, James

    1999-01-01

    The geochemical processes governing the release of heavymetal contaminants from solid waste materials have been studiedexperimentally and modelled using a mass balance approach. Theaim of the modelling work was to develop calculation tools thatcan be used to predict the release rate of heavy metals fromwaste heaps or landfills. The leaching models are based uponthe observation that the pH and redox state of the water incontact with waste are the two master variables that controlheavy metal mo...

  10. Characterization of char derived from various types of solid wastes from the standpoint of fuel recovery and pretreatment before landfilling

    OpenAIRE

    Hwang, I. H.; Matsuto, T.; Tanaka, N; Sasaki, Y; Tanaami, K.

    2007-01-01

    Carbonization is a kind of pyrolysis process to produce char from organic materials under an inert atmosphere. In this work, chars derived from various solid wastes were characterized from the standpoint of fuel recovery and pretreatment of waste before landfilling. Sixteen kinds of municipal and industrial solid wastes such as residential combustible wastes, non-combustible wastes, bulky wastes, construction and demolition wastes, auto shredder residue, and sludges were carbonized at 500℃ fo...

  11. Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.W.; Wang, J.C.; Kocher, D.C.

    1995-06-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

  12. Size-resolved culturable airborne bacteria sampled in rice field, sanitary landfill, and waste incineration sites.

    Science.gov (United States)

    Heo, Yongju; Park, Jiyeon; Lim, Sung-Il; Hur, Hor-Gil; Kim, Daesung; Park, Kihong

    2010-08-01

    Size-resolved bacterial concentrations in atmospheric aerosols sampled by using a six stage viable impactor at rice field, sanitary landfill, and waste incinerator sites were determined. Culture-based and Polymerase Chain Reaction (PCR) methods were used to identify the airborne bacteria. The culturable bacteria concentration in total suspended particles (TSP) was found to be the highest (848 Colony Forming Unit (CFU)/m(3)) at the sanitary landfill sampling site, while the rice field sampling site has the lowest (125 CFU/m(3)). The closed landfill would be the main source of the observed bacteria concentration at the sanitary landfill. The rice field sampling site was fully covered by rice grain with wetted conditions before harvest and had no significant contribution to the airborne bacteria concentration. This might occur because the dry conditions favor suspension of soil particles and this area had limited personnel and vehicle flow. The respirable fraction calculated by particles less than 3.3 mum was highest (26%) at the sanitary landfill sampling site followed by waste incinerator (19%) and rice field (10%), which showed a lower level of respiratory fraction compared to previous literature values. We identified 58 species in 23 genera of culturable bacteria, and the Microbacterium, Staphylococcus, and Micrococcus were the most abundant genera at the sanitary landfill, waste incinerator, and rice field sites, respectively. An antibiotic resistant test for the above bacteria (Micrococcus sp., Microbacterium sp., and Staphylococcus sp.) showed that the Staphylococcus sp. had the strongest resistance to both antibiotics (25.0% resistance for 32 microg ml(-1) of Chloramphenicol and 62.5% resistance for 4 microg ml(-1) of Gentamicin).

  13. Quantification of parameters influencing methane generation due to biodegradation of municipal solid waste in landfills and laboratory experiments.

    Science.gov (United States)

    Fei, Xunchang; Zekkos, Dimitrios; Raskin, Lutgarde

    2016-09-01

    The energy conversion potential of municipal solid waste (MSW) disposed of in landfills remains largely untapped because of the slow and variable rate of biogas generation, delayed and inefficient biogas collection, leakage of biogas, and landfill practices and infrastructure that are not geared toward energy recovery. A database consisting of methane (CH4) generation data, the major constituent of biogas, from 49 laboratory experiments and field monitoring data from 57 landfills was developed. Three CH4 generation parameters, i.e., waste decay rate (k), CH4 generation potential (L0), and time until maximum CH4 generation rate (tmax), were calculated for each dataset using U.S. EPA's Landfill Gas Emission Model (LandGEM). Factors influencing the derived parameters in laboratory experiments and landfills were investigated using multi-linear regression analysis. Total weight of waste (W) was correlated with biodegradation conditions through a ranked classification scheme. k increased with increasing percentage of readily biodegradable waste (Br0 (%)) and waste temperature, and reduced with increasing W, an indicator of less favorable biodegradation conditions. The values of k obtained in the laboratory were commonly significantly higher than those in landfills and those recommended by LandGEM. The mean value of L0 was 98 and 88L CH4/kg waste for laboratory and field studies, respectively, but was significantly affected by waste composition with ranges from 10 to 300L CH4/kg. tmax increased with increasing percentage of biodegradable waste (B0) and W. The values of tmax in landfills were higher than those in laboratory experiments or those based on LandGEM's recommended parameters. Enhancing biodegradation conditions in landfill cells has a greater impact on improving k and tmax than increasing B0. Optimizing the B0 and Br0 values of landfilled waste increases L0 and reduces tmax. PMID:26525969

  14. The Characteristics of Leachate and Groundwater Pollution at Municipal Solid Waste Landfill of Ibb City, Yemen

    Directory of Open Access Journals (Sweden)

    Esmail A. Sabahi

    2009-01-01

    Full Text Available Problem statement: Yemen one of the developing country suffering from water pollution. Landfill is one of the source of water pollution. There are several boreholes located close to Ibb landfill used for drinking water. A study of composition of landfill leachate and groundwater pollution was conducted at Ibb landfill, which is located at Al-Sahool area, north of Ibb City, Yemen. Approach: The leachate was sampled at three different locations of the landfill, at the landfill itself and 15 and 20 m downstream of this landfill. Groundwater samples collected from 5 boreholes to study possible impact of leachate percolation into groundwater. Leachate and groundwater samples were collected during dry season only, due to the excessive generation of leachate during this season. Objective of this study was significant to assess degree of groundwater pollution due to Ibb landfill leachate at Al-Sahool area. The leachate and groundwater were physically and chemically characterized by using spectrophotometer HACH, BOD Trak HACH, flame photometer (PFP 7 and Inductively Coupled Plasma of Optical Emission Spectrometry (ICP-OES model Vista MPX. Parameters measured were pH, temperature, Electrical Conductivity (EC, Total Dissolved Solids (TDS, Dissolved Oxygen (DO, Fluoride (F, Chloride (Cl, Sulphate (SO4, Nitrites (NO2, Nitrates (NO3, ammonia-N (NH3-N, heavy metals (Pb, Zn, Ni, Cr, Cd, Cu, major cations (Na, Mg, Ca, K, Fe and biological parameters (COD, BOD5 and coliform group bacteria. Results: The results showed that, leachate at landfill most likely in methanogenic phase, based on the alkaline pH value recorded (pH = 8.46. The results also showed that 4 out of 5 boreholes were contaminated, where concentration of physico-chemical parameters are above the standard acceptable levels which required for drinking water adapted by Yemen's ministry of water and environment and by word standard. Conclusion: Therefore, landfill is dangerous for environment so

  15. Environmental state and buffering properties of underground hydrosphere in waste landfill site of the largest petrochemical companies in Europe

    Science.gov (United States)

    Musin, R. Kh; Kurlyanov, N. A.; Kalkamanova, Z. G.; Korotchenko, T. V.

    2016-03-01

    The article examines the waste landfill site of PJSC “Nizhnekamskneftekhim” built 1982. Particular attention is paid to the volume of disposed wastes and peculiarities of landfill operation. It has been revealed that the landfill negatively impacts groundwater. The increase in groundwater level and contamination degree is dependent on recharge from infiltration of precipitation that interacts with the waste in the landfill cells. Groundwater contamination follows the longitudinal distribution pattern, with maximum intensity reaching in the nearest area of the landfill. With increasing distance, concentration of all pollutants sharply reduces. Within three kilometers away from the landfill, groundwater turns to its background values indicating its quality. The landfill discharges oil, phenols, formaldehyde, benzol, toluene, xylene, ethylbenzene, and iron and, to a lesser extent, sulfates, chlorides and barium into the underground hydrosphere. The overlimiting concentrations of other components are caused by intensive leaching from the rocks by aggressive carbonic acid water. The concentrations of hydrocarbonates can reach 8 g/l in the groundwater within the landfill and its nearest area, however, under natural conditions, they do not exceed 0.4 g/l. This is only possible in a case of partial activity of carbon dioxide associated with destruction of organic matter disposed in the landfill. One of the processes that play an important role in groundwater quality recovery is mixing of contaminated groundwater with infiltrating precipitation.

  16. N 2O emissions at municipal solid waste landfill sites: Effects of CH 4 emissions and cover soil

    Science.gov (United States)

    Zhang, Houhu; He, Pinjing; Shao, Liming

    Municipal solid waste landfills are the significant anthropogenic sources of N 2O due to the cooxidation of ammonia by methane-oxidizing bacteria in cover soils. Such bacteria could be developed through CH 4 fumigation, as evidenced by both laboratory incubation and field measurement. During a 10-day incubation with leachate addition, the average N 2O fluxes in the soil samples, collected from the three selected landfill covers, were multiplied by 1.75 ( p landfill sites, N 2O fluxes in two landfill sites were significantly correlated with the variations of the CH 4 emissions without landfill gas recovery ( p landfill gas recovery in another landfill site ( p > 0.05). The annual average N 2O flux was 176 ± 566 μg N 2O-N m -2 h -1 ( p landfill site, which was 72% ( p landfill sites, respectively. The magnitude order of N 2O emissions in three landfill sites was also coincident by the results of laboratory incubation, suggesting the sandy soil cover could mitigate landfill N 2O emissions.

  17. Innovative landfill bioreactor systems for municipal solid waste treatment in East Africa aimed at optimal energy recovery and minimal greenhouse gas emissions

    NARCIS (Netherlands)

    Salukele, F.M.

    2013-01-01

    Landfilling is currently the dominant disposal method for municipal solid waste (MSW) in developing countries. Approximately 50% of the MSW generated in East Africa is disposed in landfills. Low costs and availability of land have made landfilling the most common waste management option in East Afri

  18. Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Baun, Anders; Jensen, S. D.; Bjerg, Poul Løgstrup;

    2000-01-01

    The aim of the present study was to describe the occurrence and distribution of toxicity related to organic chemical contaminants in the leachate plume downgradient of the Grindsted Landfill (Denmark). A total of 27 groundwater samples were preconcentrated by solidphase extraction (SPE) using XAD-2...... with luminescent bacteria (Vibrio fischeri), algae(Selenastrum capricornutum), and crustaceans (Daphnia magna). Additional genotoxicity tests were made using the umuC test (Salmonella typhimurium). Biotests with algae and luminescent bacteria were the most sensitive tests. On the basis of results with these two...... bioassays, it was concluded that SPE extracts of groundwater collected close to the landfill were toxic. The toxicity decreased with the distance from the landfill. At distances greater than 80 m from the border of the landfill, the groundwater toxicity was not significantly different from the background...

  19. Field air permeability and hydraulic conductivity of landfilled municipal solid waste in China.

    Science.gov (United States)

    Wu, Huayong; Chen, Tan; Wang, Hongtao; Lu, Wenjing

    2012-05-15

    The successful design and operation of in situ treatment systems using air and water additions for sustainable landfilling are constrained by a lack of knowledge of the key parameters, such as field air permeability and hydraulic conductivity of landfilled municipal solid waste (MSW). This work provides data on the field air permeability k(a) and hydraulic conductivity K(w) of MSW obtained by conducting short-term air and water injection tests at a landfill in Beijing, China. The k(a) and K(w) values are found to in the range of 1.2 × 10(-13)-1.9 × 10(-12) m(2) and 5.9 × 10(-7)-7.2 × 10(-6) m s(-1), respectively. Both k(a) and K(w) decreased significantly with landfill depth due to the increase in overburden pressure and the finer particles of the waste in deeper layers, leading to a lower porosity of waste. The higher moisture saturation in the deeper layers also contributed to the decrease in k(a). To compare the permeability with respect to air and water, the water permeability k(w) was calculated based on the estimated K(w) and was found to be approximately three orders of magnitude smaller than the corresponding k(a) for waste at the same layer. The differences in k(w) and k(a) may be due to the relative air permeability, the potential short-circuiting of air and active production of biogas, which undermine the relationship between k(w) and k(a). Therefore, to successfully design and operate air and water addition systems in a landfill, in situ measurements of the air permeability and hydraulic conductivity are essential. PMID:22325639

  20. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    Energy Technology Data Exchange (ETDEWEB)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  1. Chemical treatment of radioactive wastes

    International Nuclear Information System (INIS)

    This is the third manual of three commissioned by the IAEA on the three principal techniques used in concentrating radioactive liquid wastes, namely chemical precipitation, evaporation and ion exchange. The present manual deals with chemical precipitation by coagulation-flocculation and sedimentation, commonly called ''chemical treatment'' of low-activity wastes. Topics discussed in the manual are: (i) principles of coagulation on flocculation and sedimentation and associated processes; (ii) process and equipment; (iii) conditioning and disposal of flocculation sludge; (iv) sampling and the equipment required for experiments; and (v) factors governing the selection of processes. 99 refs, 17 figs, 4 tabs

  2. Mercury air-borne emissions from 5 municipal solid waste landfills in Guiyang and Wuhan, China

    Directory of Open Access Journals (Sweden)

    Z. G. Li

    2010-01-01

    Full Text Available A detailed study on atmospheric mercury emissions from municipal solid waste (MSW landfills in China is necessary to understand mercury behavior in this source category, simply because China disposes of bulk MSW by landfilling and a large quantity of mercury enters into landfills. Between 2003 and 2006, mercury airborne emissions through different pathways, as well as mercury speciation in landfill gas (LFG were measured at 5 MSW landfills in Guiyang and Wuhan, China. The results showed that mercury content in the substrate fundamentally affected the magnitude of mercury emissions, resulting in the highest emission rate (as high as 57 651 ng Hg m−2 h−1 at the working face and in un-covered waste areas, and the lowest measured at soil covers and vegetation areas (less than 20 ng Hg m−2 h−1. Meteorological parameters, especially solar radiation, influenced the diurnal pattern of mercury surface-air emissions. Total gaseous mercury (TGM in LFG varied from 2.0 to 1406.0 ng m−3, monomethyl mercury (MMHg and dimethyl mercury (DMHg in LFG averaged at 1.93 and 9.21 ng m−3, and accounted for 0.51% and 1.79% of the TGM in the LFG, respectively. Total mercury emitted from the five landfills ranged from 17 to 3285 g yr−1, with the highest from the working face, then soil covering, and finally the vent pipes.

  3. Estimation of product specific emissions from municipal solid waste landfills for the inventory phase in LCA

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    of materials and components and the manufacture, transportation and use of the product to thefinal disposal and possible recycling of the product. Although LCA has developed significantly during recent years, product specific emissions from disposed waste have only got minorattention in the literature leaving......), and inorganic non-metals (e.g. chlorine,) which are considered individually. The computer toolLCA-LAND is useful for estimation of emissions from specific waste products disposed in municipal solid waste landfills in Europeancountries (for the present Denmark, Germany and The Netherlands). Input data...

  4. Health assessment for Helena Chemical Company landfill, Fairfax, Allendale County, South Carolina, Region 4. CERCLIS No. SCD058753971. Preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-18

    Helena Chemical Company is a former pesticide formulation plant located in Fairfax, South Carolina. The site was proposed for inclusion on the National Priorities List (NPL) in June 1988 and has since been added to the NPL. Currently, the site is used as a wholesale pesticide distributor and warehouse facility for packaged pesticides. Plant wastes were buried in an unlined landfill on-site from about 1969 to 1971. A second landfill was reported to exist, but that landfill has not been confirmed. If groundwater contaminant data collected to date are accurate, the high levels of metals could have serious public health implications if the contaminants enter the municipal well located within 500 feet of the site and private wells used within 1 mile of the site. However, monitoring well construction is of poor quality and data generated thus far are questionable. Monitoring data from groundwater, air, surface soil, and subsurface soil which meet appropriate quality assurance and quality control procedures are needed to adequately assess this site. Based on site conditions and the lack of adequate monitoring data, this site is an indeterminate public health hazard.

  5. Minimizing N2O fluxes from full-scale municipal solid waste landfill with properly selected cover soil

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Municipal solid waste landfills emit nitrous oxide (N2O) gas. Assuming that the soil cover is the primary N2O source from landfills,this study tested, during a four-year project, the hypothesis that the proper use of chosen soils with fine texture minimizes N2O emissions. A full-scale sanitary landfill, a full-scale bioreactor landfill and a cell planted with Nerium indicum or Festuca arundinacea Schreb, at the Hangzhou Tianziling landfill in Hangzhou City were the test sites. The N2O emission rates from all test sites were considerably lower than those reported in the published reports. Specifically, the N2O emission rate was dependent on soil water content and nitrate concentrations in the cover soil. The effects of leachate recirculation and irrigation were minimal. Properly chosen cover soils applied to the landfills reduced N2O flux.

  6. GIS-based approach for optimized siting of municipal solid waste landfill.

    Science.gov (United States)

    Sumathi, V R; Natesan, Usha; Sarkar, Chinmoy

    2008-11-01

    The exponential rise in the urban population of the developing countries in the past few decades and the resulting accelerated urbanization phenomenon has brought to the fore the necessity to develop environmentally sustainable and efficient waste management systems. Sanitary landfill constitutes one of the primary methods of municipal solid waste disposal. Optimized siting decisions have gained considerable importance in order to ensure minimum damage to the various environmental sub-components as well as reduce the stigma associated with the residents living in its vicinity, thereby enhancing the overall sustainability associated with the life cycle of a landfill. This paper addresses the siting of a new landfill using a multi-criteria decision analysis (MCDA) and overlay analysis using a geographic information system (GIS). The proposed system can accommodate new information on the landfill site selection by updating its knowledge base. Several factors are considered in the siting process including geology, water supply resources, land use, sensitive sites, air quality and groundwater quality. Weightings were assigned to each criterion depending upon their relative importance and ratings in accordance with the relative magnitude of impact. The results from testing the system using different sites show the effectiveness of the system in the selection process. PMID:18060759

  7. A PRELIMINARY EXPERIMENT ON DENITRIFICATION OF WASTE LANDFILL LEACHATE

    Science.gov (United States)

    Wada, Nariaki; Nakamichi, Tamihiro; Yagi, Masahiro; Matsumoto, Toshihide; Kugimiya, Akikazu; Michioku, Kohji

    A laboratory experiment on denitrification was carried out in order to reduce nitrogen load from municipal landfill leachate. Nitrogen was efficiently removed by feeding sludge of the leachate pond into the tanks, which could activate denitrification bacteria. Although inorganic reducing agent such as iron powder was not able to make the whole water mass anoxic, denitrification took place by supplying organic matters such as methanol, hydrogen feeding agent, etc.. It is considered that small amount of anoxic water film produced on surfaces of container and carriers might contribute to denitrification, although the bulk water is kept aerobic. It is found that organic matters contained in the leachate is so insufficient that nitrification liquid circulation does not work well for denitrification.

  8. Cap and trade schemes on waste management: A case study of the Landfill Allowance Trading Scheme (LATS) in England

    International Nuclear Information System (INIS)

    Highlights: • LATS has been effective to achieve a reduction of the amount of landfilled waste. • LATS has been one of the few environmental instruments for waste management with a cap and trade methodology. • LATS has achieved to increase recycling of the biodegradable and other waste fractions. - Abstract: The Landfill Allowance Trading Scheme (LATS) is one of the main instruments used in England to enforce the landfill diversion targets established in the Directive 1999/31/EC of the European Parliament and of the Council of 26 April 1999 on the landfill of waste (Landfill Directive). Through the LATS, biodegradable municipal waste (BMW) allowances for landfilling are allocated to each local authority, otherwise known as waste disposal authorities (WDAs). The quantity of landfill allowances received is expected to decrease continuously from 2005/06 to 2019/20 so as to meet the objectives of the Landfill Directive. To achieve their commitments, WDAs can exchange, buy, sell or transfer allowances among each other, or may re-profile their own allocation through banking and/or borrowing. Despite the goals for the first seven years – which included two target years (2005/06 and 2009/10) – being widely achieved (the average allocation of allowances per WDA was 22.9% higher than those finally used), market activity among WDAs was high and prices were not very stable. Results in terms of waste reduction and recycling levels have been satisfactory. The reduction of BMW landfilled (in percentage) was higher during the first seven years of the LATS period (2005/06–2011/12) (around 7% annually) than during the previous period (2001/02–2004/05) (4.2% annually). Since 2008, the significance of the LATS diminished because of an increase in the rate of the UK Landfill Tax. The LATS was suppressed after the 2012/13 target year, before what it was initially scheduled. The purpose of this paper is to describe the particularities of the LATS, analyse its performance as

  9. Cap and trade schemes on waste management: A case study of the Landfill Allowance Trading Scheme (LATS) in England

    Energy Technology Data Exchange (ETDEWEB)

    Calaf-Forn, Maria, E-mail: mcalaf@ent.cat [Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona (Spain); ENT Environment and Management, Carrer Sant Joan 39, First Floor, E-08800 Vilanova i la Geltrú, Barcelona (Spain); Roca, Jordi [Departament de Teoria Econòmica, Universitat de Barcelona (UB), Diagonal, 696, E-08034 Barcelona (Spain); Puig-Ventosa, Ignasi [ENT Environment and Management, Carrer Sant Joan 39, First Floor, E-08800 Vilanova i la Geltrú, Barcelona (Spain)

    2014-05-01

    Highlights: • LATS has been effective to achieve a reduction of the amount of landfilled waste. • LATS has been one of the few environmental instruments for waste management with a cap and trade methodology. • LATS has achieved to increase recycling of the biodegradable and other waste fractions. - Abstract: The Landfill Allowance Trading Scheme (LATS) is one of the main instruments used in England to enforce the landfill diversion targets established in the Directive 1999/31/EC of the European Parliament and of the Council of 26 April 1999 on the landfill of waste (Landfill Directive). Through the LATS, biodegradable municipal waste (BMW) allowances for landfilling are allocated to each local authority, otherwise known as waste disposal authorities (WDAs). The quantity of landfill allowances received is expected to decrease continuously from 2005/06 to 2019/20 so as to meet the objectives of the Landfill Directive. To achieve their commitments, WDAs can exchange, buy, sell or transfer allowances among each other, or may re-profile their own allocation through banking and/or borrowing. Despite the goals for the first seven years – which included two target years (2005/06 and 2009/10) – being widely achieved (the average allocation of allowances per WDA was 22.9% higher than those finally used), market activity among WDAs was high and prices were not very stable. Results in terms of waste reduction and recycling levels have been satisfactory. The reduction of BMW landfilled (in percentage) was higher during the first seven years of the LATS period (2005/06–2011/12) (around 7% annually) than during the previous period (2001/02–2004/05) (4.2% annually). Since 2008, the significance of the LATS diminished because of an increase in the rate of the UK Landfill Tax. The LATS was suppressed after the 2012/13 target year, before what it was initially scheduled. The purpose of this paper is to describe the particularities of the LATS, analyse its performance as

  10. Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill.

    Science.gov (United States)

    Dumont, Gaël; Pilawski, Tamara; Dzaomuho-Lenieregue, Phidias; Hiligsmann, Serge; Delvigne, Frank; Thonart, Philippe; Robert, Tanguy; Nguyen, Frédéric; Hermans, Thomas

    2016-09-01

    The gravimetric water content of the waste material is a key parameter in waste biodegradation. Previous studies suggest a correlation between changes in water content and modification of electrical resistivity. This study, based on field work in Mont-Saint-Guibert landfill (Belgium), aimed, on one hand, at characterizing the relationship between gravimetric water content and electrical resistivity and on the other hand, at assessing geoelectrical methods as tools to characterize the gravimetric water distribution in a landfill. Using excavated waste samples obtained after drilling, we investigated the influences of the temperature, the liquid phase conductivity, the compaction and the water content on the electrical resistivity. Our results demonstrate that Archie's law and Campbell's law accurately describe these relationships in municipal solid waste (MSW). Next, we conducted a geophysical survey in situ using two techniques: borehole electromagnetics (EM) and electrical resistivity tomography (ERT). First, in order to validate the use of EM, EM values obtained in situ were compared to electrical resistivity of excavated waste samples from corresponding depths. The petrophysical laws were used to account for the change of environmental parameters (temperature and compaction). A rather good correlation was obtained between direct measurement on waste samples and borehole electromagnetic data. Second, ERT and EM were used to acquire a spatial distribution of the electrical resistivity. Then, using the petrophysical laws, this information was used to estimate the water content distribution. In summary, our results demonstrate that geoelectrical methods represent a pertinent approach to characterize spatial distribution of water content in municipal landfills when properly interpreted using ground truth data. These methods might therefore prove to be valuable tools in waste biodegradation optimization projects. PMID:26926783

  11. Bioreactor landfill

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; XING Kai; Anthony Adzomani

    2004-01-01

    Following the population expansion, there is a growing threat brought by municipal solid waste (MSW) against environment and human health. Sanitary landfill is the most important method of MSW disposal in China. In contrast to the conventional landfill, this paper introduces a new technique named bioreactor landfill (BL). Mechanisms, operation conditions as well as the advantages and disadvantages of BL are also discussed in this paper.

  12. Behavior of antioxidants in HDPE geomembranes used in municipal solid waste landfills

    OpenAIRE

    Pons, Carlota; FARCAS, Fabienne; MKADEMI, Hela; Richaud, Emmanuel; Fayolle, Bruno

    2012-01-01

    The main objective of this work is to determine the behaviour of process stabilizers (such as phenolic and phosphite types) present in PE films (thin samples) and in HDPE geomembranes (thick samples) incubated in municipal solid waste (MSW) landfill leachate. In order to determine the parameters of a non-empirical kinetic model for polyethylene ageing, we have to take into account the stabilizers diffusion and extraction phenomena. Indeed antioxidants (AO) depletion can be governed by an extr...

  13. Numerical modeling of the long term behavior of Municipal Solid Waste in a bioreactor landfill

    OpenAIRE

    Hubert, Julien; Xianfeng, Liu; Collin, Frédéric

    2016-01-01

    This paper presents a thermo-hydro–biochemo-mechanical model for simulating the long term behavior of Municipal Solid Waste (MSW) in a bioreactor landfill, in which the multi-physics coupling mechanism plays a dominant role. In the model, a two-stage anaerobic biochemical model based on McDougall’s formulation is incorporated into a fully coupled thermo-hydro-mechanical models originally developed for unsaturated porous medium. The mechanical model is a modified Camclay model allowing for bio...

  14. Evaluating leachate recirculation with cellulase addition to enhance waste biostabilisation and landfill gas production

    OpenAIRE

    Frank, R. R.; S. Davies; Wagland, Stuart T.; Villa, Raffaella; Trois, C.; Coulon, Frederic

    2016-01-01

    The effect of leachate recirculation with cellulase augmentation on municipal solid waste (MSW) biostabilisation and landfill gas production was investigated using batch bioreactors to determine the optimal conditions of moisture content, temperature and nutrients. Experimentation was thereafter scaled-up in 7 L bioreactors. Three conditions were tested including (1) leachate recirculation only, (2) leachate recirculation with enzyme augmentation and (3) no leachate recirculation (control). C...

  15. Morbidity and mortality of people who live close to municipal waste landfills: a multisite cohort study

    Science.gov (United States)

    Mataloni, Francesca; Badaloni, Chiara; Golini, Martina Nicole; Bolignano, Andrea; Bucci, Simone; Sozzi, Roberto; Forastiere, Francesco; Davoli, Marina; Ancona, Carla

    2016-01-01

    Background: The evidence on the health effects related to residing close to landfills is controversial. Nine landfills for municipal waste have been operating in the Lazio region (Central Italy) for several decades. We evaluated the potential health effects associated with contamination from landfills using the estimated concentration of hydrogen sulphide (H2S) as exposure. Methods: A cohort of residents within 5 km of landfills was enrolled (subjects resident on 1 January 1996 and those who subsequently moved into the areas until 2008) and followed for mortality and hospitalizations until 31 December 2012. Assessment of exposure to the landfill (H2S as a tracer) was performed for each subject at enrolment, using a Lagrangian dispersion model. Information on several confounders was available (gender, age, socioeconomic position, outdoor PM10 concentration, and distance from busy roads and industries). Cox regression analysis was performed [Hazard Ratios (HRs), 95% confidence intervals (CIs)]. Results: The cohort included 242 409 individuals. H2S exposure was associated with mortality from lung cancer and respiratory diseases (e.g. HR for increment of 1 ng/m3 H2S: 1.10, 95% CI 1.02–1.19; HR 1.09, 95% CI 1.00–1.19, respectively). There were also associations between H2S and hospitalization for respiratory diseases (HR = 1.02, 95% CI 1.00–1.03), especially acute respiratory infections among children (0–14 years) (HR = 1.06, 95% CI 1.02–1.11). Conclusions: Exposure to H2S, a tracer of airborne contamination from landfills, was associated with lung cancer mortality as well as with mortality and morbidity for respiratory diseases. The link with respiratory disease is plausible and coherent with previous studies, whereas the association with lung cancer deserves confirmation. PMID:27222499

  16. A review of approaches for the long-term management of municipal solid waste landfills.

    Science.gov (United States)

    Laner, David; Crest, Marion; Scharff, Heijo; Morris, Jeremy W F; Barlaz, Morton A

    2012-03-01

    After closure, municipal solid waste (MSW) landfills must be managed and controlled to avoid adverse effects on human health and the environment (HHE). Aftercare (or post-closure care) can be brought to an end when the authorities consider the landfill to no longer pose a threat to HHE. Different approaches have been suggested for long-term landfill management and evaluation of aftercare completion. In this paper, research on aftercare and its completion is analyzed and regulatory approaches for the completion of landfill aftercare are reviewed. Approaches to aftercare could be categorized as (i) target values, (ii) impact/risk assessment, and (iii) performance based. Comparison of these approaches illustrates that each has limitations and strengths. While target values are typically used as screening indicators to be complemented with site-specific assessments, impact/risk assessment approaches address the core issue about aftercare completion, but face large uncertainties and require a high level of expertise. A performance-based approach allows for the combination of target values and impact/risk assessments in a consistent evaluation framework with the aim of sequentially reducing aftercare intensity and, ultimately, leading to the completion of aftercare. At a regulatory level, simple qualitative criteria are typically used as the primary basis for defining completion of aftercare, most likely due to the complexity of developing rigorous evaluation methodologies. This paper argues that development of transparent and consistent regulatory procedures represents the basis for defining the desired state of a landfill at the end of aftercare and for reducing uncertainty about the intensity and duration of aftercare. In this context, recently presented technical guidelines and the ongoing debate with respect to their regulatory acceptance are a valuable step towards developing strategies for the cost-effective protection of HHE at closed MSW landfills. To assess the

  17. Aromatic compound emissions from municipal solid waste landfill: Emission factors and their impact on air pollution

    Science.gov (United States)

    Liu, Yanjun; Lu, Wenjing; Guo, Hanwen; Ming, Zhongyuan; Wang, Chi; Xu, Sai; Liu, Yanting; Wang, Hongtao

    2016-08-01

    Aromatic compounds (ACs) are major components of volatile organic compounds emitted from municipal solid waste (MSW) landfills. The ACs emissions from the working face of a landfill in Beijing were studied from 2014 to 2015 using a modified wind tunnel system. Emission factors (EFs) of fugitive ACs emissions from the working face of the landfill were proposed according to statistical analyses to cope with their uncertainty. And their impacts on air quality were assessed for the first time. Toluene was the dominant AC with an average emission rate of 38.8 ± 43.0 μg m-2 s-1 (at a sweeping velocity of 0.26 m s-1). An increasing trend in AC emission rates was observed from 12:00 to 18:00 and then peaked at 21:00 (314.3 μg m-2 s-1). The probability density functions (PDFs) of AC emission rates could be classified into three distributions: Gaussian, log-normal, and logistic. EFs of ACs from the working face of the landfill were proposed according to the 95th percentile cumulative emission rates and the wind effects on ACs emissions. The annual ozone formation and secondary organic aerosol formation potential caused by AC emissions from landfills in Beijing were estimated to be 8.86 × 105 kg year-1 and 3.46 × 104 kg year-1, respectively. Toluene, m + p-xylene, and 1,3,5-trimethylbenzene were the most significant contributors to air pollution. Although ACs pollutions from landfills accounts for less percentage (∼0.1%) compared with other anthropogenic sources, their fugitive emissions which cannot be controlled efficiently deserve more attention and further investigation.

  18. Landfills - MO 2006 Solid Waste Management Districts (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This data set contains boundaries and contact information for Missouri Solid Waste Management districts and regions. The districts were created by statute to foster...

  19. A study of shear strength properties of municipal solid waste in Chongqing landfill, China.

    Science.gov (United States)

    Zhao, Yan Ru; Xie, Qiang; Wang, Gui Lin; Zhang, Yong Jian; Zhang, Yong Xing; Su, Wenjun

    2014-11-01

    The aim of this study is to analyze the effect of biodegradation on the shear strength of municipal solid waste (MSW), leachate, and biogas production. The direct shear (DS) test shows that the shear strength of waste in the initial stages is mainly depended on its composition and inter-structure. After the waste has been in a landfill for 30 days, the waste's increased biodegradation exhibited a great influence on the waste's shear strength. The increase of moisture content in the waste mass might cause a decrease of its shear strength. Tri-axial tests under consolidation-drained (CD) condition show that the shear strength of the cohesion and friction angle for degraded samples increased when the defined axial strain increased from 5 to 20 %. The cohesion varied from 35.90 to 66.42 kPa and the drained friction angle ranged between 29° and 38°. The measurements of shear strength properties are utilized to assess the slope stability of landfills. PMID:24954391

  20. Comparison between landfill gas and waste incineration for power generation in Astana, Kazakhstan.

    Science.gov (United States)

    Inglezakis, Vassilis J; Rojas-Solórzano, Luis; Kim, Jong; Aitbekova, Aisulu; Ismailova, Aizada

    2015-05-01

    The city of Astana, the capital of Kazakhstan, which has a population of 804,474, and has been experiencing rapid growth over the last 15 years, generates approximately 1.39 kg capita(-1) day(-1) of municipal solid waste (MSW). Nearly 700 tonnes of MSW are collected daily, of which 97% is disposed of at landfills. The newest landfill was built using modern technologies, including a landfill gas (LFG) collection system.The rapid growth of Astana demands more energy on its path to development, and the viability analysis of MSW to generate electricity is imperative. This paper presents a technical-economic pre-feasibility study comparing landfill including LFG utilization and waste incineration (WI) to produce electricity. The performance of LFG with a reciprocating engine and WI with steam turbine power technologies were compared through corresponding greenhouse gases (GHG) reduction, cost of energy production (CEP), benefit-cost ratio (BCR), net present value (NPV) and internal rate of return (IRR) from the analyses. Results demonstrate that in the city of Astana, WI has the potential to reduce more than 200,000 tonnes of GHG per year, while LFG could reduce slightly less than 40,000 tonnes. LFG offers a CEP 5.7% larger than WI, while the latter presents a BCR two times higher than LFG. WI technology analysis depicts a NPV exceeding 280% of the equity, while for LFG, the NPV is less than the equity, which indicates an expected remarkable financial return for the WI technology and a marginal and risky scenario for the LFG technology. Only existing landfill facilities with a LFG collection system in place may turn LFG into a viable project.

  1. Comparison between landfill gas and waste incineration for power generation in Astana, Kazakhstan.

    Science.gov (United States)

    Inglezakis, Vassilis J; Rojas-Solórzano, Luis; Kim, Jong; Aitbekova, Aisulu; Ismailova, Aizada

    2015-05-01

    The city of Astana, the capital of Kazakhstan, which has a population of 804,474, and has been experiencing rapid growth over the last 15 years, generates approximately 1.39 kg capita(-1) day(-1) of municipal solid waste (MSW). Nearly 700 tonnes of MSW are collected daily, of which 97% is disposed of at landfills. The newest landfill was built using modern technologies, including a landfill gas (LFG) collection system.The rapid growth of Astana demands more energy on its path to development, and the viability analysis of MSW to generate electricity is imperative. This paper presents a technical-economic pre-feasibility study comparing landfill including LFG utilization and waste incineration (WI) to produce electricity. The performance of LFG with a reciprocating engine and WI with steam turbine power technologies were compared through corresponding greenhouse gases (GHG) reduction, cost of energy production (CEP), benefit-cost ratio (BCR), net present value (NPV) and internal rate of return (IRR) from the analyses. Results demonstrate that in the city of Astana, WI has the potential to reduce more than 200,000 tonnes of GHG per year, while LFG could reduce slightly less than 40,000 tonnes. LFG offers a CEP 5.7% larger than WI, while the latter presents a BCR two times higher than LFG. WI technology analysis depicts a NPV exceeding 280% of the equity, while for LFG, the NPV is less than the equity, which indicates an expected remarkable financial return for the WI technology and a marginal and risky scenario for the LFG technology. Only existing landfill facilities with a LFG collection system in place may turn LFG into a viable project. PMID:25819927

  2. Comparative toxicological and ecotoxicological valuation of volatile emissions from sanitary landfills and waste combustion plants

    International Nuclear Information System (INIS)

    This work makes a comparative valuation of nuisance concentrations of selected pollutants in the vicinity of disposal sites for hazardous waste and near a municipal waste combustion plant, taking the background nuisance situation into account. The focus is, particularly, on gaseous contaminants with concerogenous potential. Contrary to older waste combustion plants, i.e., plants of the previous generation with obsolete flue gas cleaning systems, modern waste combustion plants release only minute amounts of pollutants into the environment. The resulting nuisances are not hazardous to health and mostly are lower than background nuisance levels in rural areas. Residents near sanitary landfills or disposal sites for hazardous work are exposed to higher emissions and bear a higher additional risk of developing cancer than those near a modern waste combustion plant. (orig.)

  3. Quantification of regional leachate variance from municipal solid waste landfills in China

    DEFF Research Database (Denmark)

    Yang, Na; Damgaard, Anders; Kjeldsen, Peter;

    2015-01-01

    about 58.2%. In China-NW, accumulated leachate amounts were very low and mainly the result of waste degradation, implying on-site spraying/irrigation or recirculation may be an economic approach to treatment. In China-N, water squeezed out of waste by compaction totaled 22-45% of overall leachate......The quantity of leachate is crucial when assessing pollution emanating from municipal landfills. In most cases, existing leachate quantification measures only take into account one source - precipitation, which resulted in serious underestimation in China due to its waste properties: high moisture...... contents. To overcome this problem, a new estimation method was established considering two sources: (1) precipitation infiltrated throughout waste layers, which was simulated with the HELP model, (2) water squeezed out of the waste itself, which was theoretically calculated using actual data of Chinese...

  4. Quantification of regional leachate variance from municipal solid waste landfills in China

    DEFF Research Database (Denmark)

    Yang, Na; Damgaard, Anders; Kjeldsen, Peter;

    2015-01-01

    of about 58.2%. In China-NW, accumulated leachate amounts were very low and mainly the result of waste degradation, implying on-site spraying/irrigation or recirculation may be an economic approach to treatment. In China-N, water squeezed out of waste by compaction totaled 22-45% of overall leachate...... contents. To overcome this problem, a new estimation method was established considering two sources: (1) precipitation infiltrated throughout waste layers, which was simulated with the HELP model, (2) water squeezed out of the waste itself, which was theoretically calculated using actual data of Chinese......The quantity of leachate is crucial when assessing pollution emanating from municipal landfills. In most cases, existing leachate quantification measures only take into account one source - precipitation, which resulted in serious underestimation in China due to its waste properties: high moisture...

  5. Paper waste - Recycling, incineration or landfilling? A review of existing life cycle assessments

    DEFF Research Database (Denmark)

    Villanueva, Alejandro; Wenzel, Henrik

    2007-01-01

    . Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made......A review of existing life cycle assessments (LCAs) on paper and cardboard waste has been undertaken. The objectives of the review were threefold. Firstly, to see whether a consistent message comes out of published LCA literature on optimum disposal or recycling solutions for this waste type...... comparisons of different management options for waste paper.\\ Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location...

  6. PERFORMANCE OF NORTH AMERICAN BIOREACTOR LANDFILLS: II. CHEMICAL AND BIOLOGICAL CHARACTERISTICS

    Science.gov (United States)

    The objective of this research was to examine the performance of five North American bioreactor landfills. This paper represents the second of a two part series and addresses biological and chemical aspects of bioreactor performance including gas production and management, and l...

  7. Assessment of landfill reclamation and the effects of age on the combustion of recovered municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Forster, G A [Lancaster Environmental Foundation, PA (United States)

    1995-01-01

    This report summarized the Lancaster county Solid Waste Management Authorities`s (LCSWMA)landfill reclamation activities, ongoing since 1991. All aspects have been analyzed from the manpower and equipment requirements at the landfill to the operational impacts felt at the LCSWMA Resource Recovery Facility (RRF) where the material is delivered for processing. Characteristics of the reclaimed refuse and soil recovered from trommeling operations are discussed as are results of air monitoring performed at the landfill excavation site and the RRF. The report also discusses the energy value of the reclaimed material and compares this value with those obtained for significantly older reclaimed waste streams. The effects of waste age on the air emissions and ash residue quality at the RRF are also provided. The report concludes by summarizing the project benefits and provides recommendations for other landfill reclamation operations and areas requiring further research.

  8. Design concept for the solid waste landfill site:a case study of Chuzhou City,China

    Institute of Scientific and Technical Information of China (English)

    Wu Wentao

    2006-01-01

    This paper introduces landfill site of Chuzhou domestic waste, to which the improved anaerobic hygienic burying technology is applied. Chuzhou City, situated between Yangtze River and Huai River, is a window city in the east of Anhui Province. A landfill site with a capacity of 400 ton per day is to be constructed according to the city development plan and the garbage amount. This paper summarizes the landfill location, landform, groundwater; surface water,landfill stratal configuration, dominant wind, and the major machinery equipment. The projects of anti-percolation,seepage collection, seepage disposal, rainwater discharge, biogas diversion are deeply studied. The advanced design principle of the landfills is summarized, which is environment-friendly, science-oriented and economy-based. Environ ment-friendly principle is implemented in the selection of landfill location, construction of all projects, sealing up project and perfecting environment monitoring system; science-oriented principle prescribes that the design, construction, and management should be science-oriented; the selection of landfill location, design, plan optimization, resource-saving measures and comprehensive utilization should be economy-based. Chuzhou domestic waste landfill site is qualified as a golden model in this paper.

  9. Spatial readjustment of a landfill of waste on the real case Vranoviči

    OpenAIRE

    Šeruga, Irena

    2008-01-01

    Thesis deals with methods to prepare spatial arrangements for placement of a certain activity or business into an area. The spatial arrangement is shown on the real example of a landfill Vranoviči and its readjustment and spreading with the purpose of disposing inert waste and building a subsidiary for managing municipal solid waste (PCRO). A special study of legislation and procedures has been made in the process of preparing a spatial arrangement, in our case it is the county location plan ...

  10. Spatial effect of new municipal solid waste landfill siting using different guidelines.

    Science.gov (United States)

    Ahmad, Siti Zubaidah; Ahamad, Mohd Sanusi S; Yusoff, Mohd Suffian

    2014-01-01

    Proper implementation of landfill siting with the right regulations and constraints can prevent undesirable long-term effects. Different countries have respective guidelines on criteria for new landfill sites. In this article, we perform a comparative study of municipal solid waste landfill siting criteria stated in the policies and guidelines of eight different constitutional bodies from Malaysia, Australia, India, U.S.A., Europe, China and the Middle East, and the World Bank. Subsequently, a geographic information system (GIS) multi-criteria evaluation model was applied to determine new suitable landfill sites using different criterion parameters using a constraint mapping technique and weighted linear combination. Application of Macro Modeler provided in the GIS-IDRISI Andes software helps in building and executing multi-step models. In addition, the analytic hierarchy process technique was included to determine the criterion weight of the decision maker's preferences as part of the weighted linear combination procedure. The differences in spatial results of suitable sites obtained signifies that dissimilarity in guideline specifications and requirements will have an effect on the decision-making process. PMID:24241167

  11. Characterization of trichloroethylene adsorption onto waste biocover soil in the presence of landfill gas.

    Science.gov (United States)

    He, Ruo; Su, Yao; Kong, Jiaoyan

    2015-09-15

    Waste biocover soils (WBS) have been demonstrated to have great potential in mitigating trichloroethylene (TCE) emission from landfills, due to the relatively high TCE-degrading capacity. In this study, the characteristics of TCE adsorption on WBS in the presence of the major landfill gas components (i.e., CH4 and CO2) were investigated in soil microcosms. The adsorption isotherm of TCE onto WBS was fitted well with linear model within the TCE concentrations of 7000 ppmv. The adsorption capacity of TCE onto WBS was affected by temperature, soil moisture content and particle size, of which, temperature was the dominant factor. The adsorption capacity of TCE onto the experimental materials increased with the increasing organic matter content. A significantly positive correlation was observed between the adsorption capacity of TCE and the organic matter content of experimental materials that had relatively higher organic content (r = 0.988, P = 0.044). To better understand WBS application in practice, response surface methodology was developed to predict TCE adsorption capacity and emissions through WBS in different landfills in China. These results indicated that WBS had high adsorption capacity of TCE in LFG and temperature should be paid more attention to manipulate WBS to reduce TCE emissions from landfills. PMID:25909498

  12. In-situ grouting of shallow landfill radioactive waste trenches

    International Nuclear Information System (INIS)

    This paper discusses how a backfilled trench containing low-level radioactive waste was grouted with a particulate grout. The accessible void volume of the waste zone was estimated to be 20% or 28 m3, but 30.6 m3 of grout was infected into the trench. Part of the grout forced a path outside the trench. The water permeation into the trench from monitoring wells was reduced by two orders of magnitude. The grout costs only $0.055/L; but most of the cost was in manpower, 1220 man-hours for this demonstration

  13. Small-scale simulation of waste degradation in landfills

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.J.; Potts, L.G.A.; Reeves, A. [Nottingham Univ., Chemical Engineering Dept., Nottingham (United Kingdom)

    1997-07-01

    Biogas production from a mixture of food and paper, with additions of inoculum, buffer and nutrient, began after 24 weeks and reached 0.8 vol/vol.day from Week 40 to 51, at 55-65% (v/v) methane. Methanogenesis from a simulated solid waste has not previously been reported. (Author)

  14. Solid waste landfills under the Resource Conservation and Recovery Act Subtitle D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This document provides guidance for meeting: (1) Guidelines for the Land Disposal of Solid Waste (40 CFR 241); (2) Criteria for Classification of Solid Waste Disposal Facilities and Practices (40 CFR 257); and (3) Criteria for Municipal Solid Waste Landfills (MSWLFs) (40 CFR Part 258). Revisions to 40 CFR 257 and a new Part 258 were published in the Federal Register (56 FR 50978, 10/9/91). The Guidelines for the Land Disposal of Solid Waste set requirements and recommended procedures to ensure that the design, construction, and operation of land disposal sites is done in a manner that will protect human health and the environment. These regulations are applicable to MSWLFs and non-MSWLFs (e.g., landfills used only for the disposal of demolition debris, commercial waste, and/or industrial waste). These guidelines are not applicable to the, land disposal of hazardous, agricultural, and/or mining wastes. These criteria are to be used under the Resource Conservation and Recovery Act (RCRA) in determining which solid waste disposal facilities pose a reasonable possibility of adversely affecting human health or the environment. Facilities failing to satisfy these criteria will be considered to be open dumps which are prohibited under Section 4005 of RCRA. The Criteria for MSWLFs are applicable only to MSWLFs, including those MSWLFs in which sewage sludge is co-disposed with household waste. Based on specific criteria, certain MSWLFs are exempt from some, or all, of the regulations of 40 CFR 258. MSWLFs that fail to satisfy the criteria specified in 40 CFR 258 are also considered open dumps for the purposes of Section 4005 of RCRA. Through the use of a series of interrelated flow diagrams, this guidance document directs the reader to each design, operation, maintenance, and closure activity that must be performed for MSWLFs and non-MSWLFs.

  15. Proposed water balance equation for municipal solid waste landfills in Jordan.

    Science.gov (United States)

    Aljaradin, Mohammad; Persson, Kenneth M

    2013-10-01

    This article presents a water balance equation for predicting leachate generation in municipal solid waste (MSW) landfills located in semi-arid areas, using the Akaider landfill in Jordan as an example. HYDRUS-2D/3D software was used to model the effect of co-disposal of wastewater into the landfill on the leachate production rates and for comparison with the results of the simulation of the proposed water balance equation parameters. A series of simulations was carried out for a 30-year period. The suggested water balance equation predicted that leachate will percolate to a depth of 50 m in the simulated period. The result indicates that the co-disposed wastewater plays a major role in controlling the rate and magnitude of the contaminants that percolate from the MSW leachate. As the initial water content of the waste increases, there is greater mobilisation of salts. The concentration of chloride at a given location increased and the time required for the chloride to reach this location decreased as a consequence. However, eliminating the co-disposed wastewater will significantly minimise leachate generation and decrease possible groundwater contamination. This equation is applicable to areas that have geological and hydrological properties similar to Jordan. PMID:23797298

  16. Utilization of Agricultural Wastes in Stabilization of Landfill Soil

    OpenAIRE

    Nidzam Rahmat Mohamad; Redzwan Raffe Muhammad; Ismail Norsalisma

    2014-01-01

    Palm Oil Fuel Ash (POFA) and Rice Husk Ash (RHA) are local agricultural waste material from Palm Oil Industry and from Paddy Industry in Malaysia. Currently, the disposal of these ashes from a burning process is a problem to both industries, and hence leads to environmental pollution. The main aim of this research was to investigate the potential of utilizing POFA and RHA as sustainable stabilizer material as partial replacement of traditional one which is lime and Portland Cement (PC). Labor...

  17. Evaluating leachate recirculation with cellulase addition to enhance waste biostabilisation and landfill gas production.

    Science.gov (United States)

    Frank, R R; Davies, S; Wagland, S T; Villa, R; Trois, C; Coulon, F

    2016-09-01

    The effect of leachate recirculation with cellulase augmentation on municipal solid waste (MSW) biostabilisation and landfill gas production was investigated using batch bioreactors to determine the optimal conditions of moisture content, temperature and nutrients. Experimentation was thereafter scaled-up in 7L bioreactors. Three conditions were tested including (1) leachate recirculation only, (2) leachate recirculation with enzyme augmentation and (3) no leachate recirculation (control). Cumulative biogas production of the batch tests indicated that there was little difference between the leachate and control test conditions, producing on average 0.043m(3)biogaskg(-1) waste. However the addition of cellulase at 15×10(6)Utonne(-1) waste doubled the biogas production (0.074m(3)biogaskg(-1) waste). Similar trend was observed with the bioreactors. Cellulase addition also resulted in the highest COD reduction in both the waste and the leachate samples (47% and 42% COD reduction, respectively). In both cases, the quantity of biogas produced was closer to the lower value of theoretical and data-based biogas prediction indicators (0.05-0.4m(3)biogaskg(-1) waste). This was likely due to a high concentration of heavy metals present in the leachate, in particular Cr and Mn, which are known to be toxic to methanogens. The cost-benefit analysis (CBA) based on the settings of the study (cellulase concentration of 15×10(6)Utonne(-1) waste) showed that leachate bioaugmentation using cellulase is economically viable, with a net benefit of approximately €12.1million on a 5Mt mixed waste landfill. PMID:27397800

  18. DOES COMPOSTING OF BIODEGRADABLE MUNICIPAL SOLID WASTE ON THE LANDFILL BODY MAKE SENSE?

    Directory of Open Access Journals (Sweden)

    Dana Adamcová

    2016-01-01

    Full Text Available In this study white mustard (Sinapis alba plants were allowed to grow in earthen pots, treated with municipal solid waste compost (MSWC to study the effect of MSWC on the plant biomass production. Twenty-one days from the establishment of the experiment sprouts and the number of growing plants occurring in the earthen pots were counted. Plants growing in the earthen pots with the compost samples exhibited an increasing plant biomass while no changes were observed in their appearance; retarded growth or necrotic changes were not recorded. The performed phytotoxicity tests show that the analyzed composts produced in the composting plant situated on the landfill surface achieved high percentages of the germinating capacity of white mustard (Sinapis alba seeds and can be therefore used in the subsequent reclamation of the concerned landfill.

  19. Determination of Characteristics of Urban Solid Waste in Landfill

    Directory of Open Access Journals (Sweden)

    Débora Astoni Moreira

    2010-04-01

    Full Text Available This study aimed to determine chemical and physical characteristics of the urban landed solid residue. The physical and chemical characterization of samples was obtained by analysis: specifies the mass and particle residue, pH in water (1:2.5, organic carbon, infrared spectroscopy, potentiometric titration, concentration of metals (Zn , Cd, Cu, Pb, Ni, Mg, Mn, Fe and Cr and quantification of humic substances. The results showed that the residues presented humics substances high concentration, with groups titratable compatible with values observed in literature for humics substances; RSU_Old presented hight humification degree and high capacity of the retention of metals regarding RSU_Mature.

  20. Sources of microbial pathogens in municipal solid waste landfills in the United States of America.

    Science.gov (United States)

    Gerba, Charles P; Tamimi, Akrum H; Pettigrew, Charles; Weisbrod, Anne V; Rajagopalan, Vijay

    2011-08-01

    Municipal solid waste (MSW) categories, as specified by United States Environmental Protection Agency (US EPA), were evaluated for their relative contribution of pathogenic viruses, bacteria, and protozoan parasites into MSW landfills from 1960 to 2007. The purpose of this study was to identify trends and quantify the potential contribution of pathogens in MSW as an aid to the assessment of potential public health risks. A review of the literature was conducted to estimate values for the concentrations of faecal indicator bacteria and pathogens in the major categories of MSW. The major sources of MSW contributing enteric pathogens were food waste, pet faeces, absorbent products, and biosolids. During the last 47 years, recycling of glass, metals, plastic, paper and some organic wastes in MSW has increased, resulting in a decreased proportion of these materials in the total landfilled MSW. The relative proportion of remaining waste materials has increased; several of these waste categories contain pathogens. For all potential sources, food waste contributes the greatest number of faecal coliforms (80.62%). The largest contribution of salmonellae (97.27%), human enteroviruses (94.88%) and protozoan parasites (97%) are expected to come from pet faeces. Biosolids from wastewater treatment sludge contribute the greatest number of human noroviruses (99.94%). By comparison, absorbent hygiene products do not appear to contribute significantly to overall pathogen loading for any group of pathogens. This is largely due to the relatively low volume of these pathogen sources in MSW, compared, for example, with food waste at almost 40% of total MSW. PMID:21382871

  1. Estimation of municipal solid waste generation and landfill area in Asian developing countries.

    Science.gov (United States)

    Khajuria, Anupam; Yamamoto, Yugo; Morioka, Tohru

    2010-09-01

    In developing Asian countries, the municipal cooperations are unable to handle the increasing amount of municipal solid waste, which into the uncollected waste being spread on roads and in other public areas leading to tremendous pollution and destruction of land and negative impact on human health. Generation of municipal solid waste increases with the rapid urbanization and accelerated economic development with in the rapidly growing advanced technological societies. The nature of municipal solid waste is a term usually applied to a heterogeneous collection group of waste produced in urban areas, the nature of which varies from region to region. The common problem faced by all developing Asian countries, is the disposal of municipal solid waste and availability of land fill site area. Present study explains the correlation analysis of among different factors of municipal solid waste and the objective is to assess the future municipal solid waste stream in Asian developing countries. The other goal of this study was to calculate the future land area that would be required for landfill site disposal in Asian developing countries. PMID:21387916

  2. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    International Nuclear Information System (INIS)

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the

  3. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., (EUROPEAN OFFICE), Am Seestern 8, 40547 Dusseldorf (Germany); Ishida, Yoshihiro [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., 46-59, Nakabaru, Tobata-ku, Kitakyushu, Fukuoka 804-8505 (Japan); Osada, Morihiro [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan)

    2015-03-15

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the

  4. Process Knowledge Characterization of Radioactive Waste at the Classified Waste Landfill Remediation Project Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    This paper discusses the development and application of process knowledge (PK) to the characterization of radioactive wastes generated during the excavation of buried materials at the Sandia National Laboratories/New Mexico (SNL/NM) Classified Waste Landfill (CWLF). The CWLF, located in SNL/NM Technical Area II, is a 1.5-acre site that received nuclear weapon components and related materials from about 1950 through 1987. These materials were used in the development and testing of nuclear weapon designs. The CWLF is being remediated by the SNL/NM Environmental Restoration (ER) Project pursuant to regulations of the New Mexico Environment Department. A goal of the CWLF project is to maximize the amount of excavated materials that can be demilitarized and recycled. However, some of these materials are radioactively contaminated and, if they cannot be decontaminated, are destined to require disposal as radioactive waste. Five major radioactive waste streams have been designated on the CWLF project, including: unclassified soft radioactive waste--consists of soft, compatible trash such as paper, plastic, and plywood; unclassified solid radioactive waste--includes scrap metal, other unclassified hardware items, and soil; unclassified mixed waste--contains the same materials as unclassified soft or solid radioactive waste, but also contains one or more Resource Conservation and Recovery Act (RCRA) constituents; classified radioactive waste--consists of classified artifacts, usually weapons components, that contain only radioactive contaminants; and classified mixed waste--comprises radioactive classified material that also contains RCRA constituents. These waste streams contain a variety of radionuclides that exist both as surface contamination and as sealed sources. To characterize these wastes, the CWLF project's waste management team is relying on data obtained from direct measurement of radionuclide activity content to the maximum extent possible and, in cases where

  5. Mass balance evaluation of polybrominated diphenyl ethers in landfill leachate and potential for transfer from e-waste.

    Science.gov (United States)

    Danon-Schaffer, Monica N; Mahecha-Botero, Andrés; Grace, John R; Ikonomou, Michael

    2013-09-01

    Previous research on brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) has largely focussed on their concentrations in the environment and their adverse effects on human health. This paper explores their transfer from waste streams to water and soil. A comprehensive mass balance model is developed to track polybrominated diphenyl ethers (PBDEs), originating from e-waste and non-e-waste solids leaching from a landfill. Stepwise debromination is assumed to occur in three sub-systems (e-waste, aqueous leachate phase, and non-e-waste solids). Analysis of landfill samples and laboratory results from a solid-liquid contacting chamber are used to estimate model parameters to simulate an urban landfill system, for past and future scenarios. Sensitivity tests to key model parameters were conducted. Lower BDEs require more time to disappear than high-molecular weight PBDEs, since debromination takes place in a stepwise manner, according to the simplified reaction scheme. Interphase mass transfer causes the decay pattern to be similar in all three sub-systems. The aqueous phase is predicted to be the first sub-system to eliminate PBDEs if their input to the landfill were to be stopped. The non-e-waste solids would be next, followed by the e-waste sub-system. The model shows that mass transfer is not rate-limiting, but the evolution over time depends on the kinetic degradation parameters. Experimental scatter makes model testing difficult. Nevertheless, the model provides qualitative understanding of the influence of key variables.

  6. Simulating the heat budget for waste as it is placed within a landfill operating in a northern climate.

    Science.gov (United States)

    Megalla, Dina; Van Geel, Paul J; Doyle, James T

    2016-09-01

    A landfill gas to energy (LFGTE) facility in Ste. Sophie, Quebec was instrumented with sensors which measure temperature, oxygen, moisture content, settlement, total earth pressure, electrical conductivity and mounding of leachate. These parameters were monitored during the operating phase of the landfill in order to better understand the biodegradation and waste stabilization processes occurring within a LFGTE facility. Conceptual and numerical models were created to describe the heat transfer processes which occur within five waste lifts placed over a two-year period. A finite element model was created to simulate the temperatures within the waste and estimate the heat budget over a four and a half year period. The calibrated model was able to simulate the temperatures measured to date within the instrumented waste profile at the site. The model was used to evaluate the overall heat budget for the waste profile. The model simulations and heat budget provide a better understanding of the heat transfer processes occurring within the landfill and the relative impact of the various heat source/sink and storage terms. Aerobic biodegradation appears to play an important role in the overall heat budget at this site generating 36% of the total heat generated within the waste profile during the waste placement stages of landfill operations. PMID:26690051

  7. Chemical modeling of waste sludges

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F.; Beahm, E.C.

    1996-10-01

    The processing of waste from underground storage tanks at the Oak Ridge National Laboratory (ORNL) and other facilities will require an understanding of the chemical interactions of the waste with process chemicals. Two aspects of sludge treatment should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids, and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns. It is likely that the treatment of waste tank sludge will begin with washing, followed by basic or acidic leaching. The dissolved materials will be in a solution that has a high ionic strength where activity coefficients are far from unity. Activity coefficients are needed in order to calculate solubilities. Several techniques are available for calculating these values, and each technique has its advantages and disadvantages. The techniques adopted and described here is the Pitzer method. Like any of the methods, prudent use of this approach requires that it be applied within concentration ranges where the experimental data were fit, and its use in large systems should be preceded by evaluating subsystems. While much attention must be given to the development of activity coefficients, other factors such as coprecipitation of species and Ostwald ripening must also be considered when one aims to interpret results of sludge tests or to predict results of treatment strategies. An understanding of sludge treatment processes begins with the sludge tests themselves and proceeds to a general interpretation with the aid of modeling. One could stop with only data from the sludge tests, in which case the table of data would become an implicit model. However, this would be a perilous approach in situations where processing difficulties could be costly or result in concerns for the environment or health and safety.

  8. Recycling potential of urban solid waste destined for sanitary landfills: the case of Indaiatuba, SP, Brazil.

    Science.gov (United States)

    Mancini, Sandro Donnini; Nogueira, Alex Rodrigues; Kagohara, Dennis Akira; Schwartzman, Jonas Age Saide; de Mattos, Tânia

    2007-12-01

    The urban solid waste of the city of Indaiatuba (pop. 175 000), located in the state of São Paulo, was characterized, focusing on the recycling potential. For this purpose, collected waste was subdivided into 27 items, classified by mass and volume. About 90% of this waste was found to be potentially recyclable and only 10% requiring landfilling. The compostable organic matter, in the form of food and garden waste, both with high moisture content (51 and 41%, respectively), represents 54% in mass and 21% in volume. The most common type of plastic in this waste is high density polyethylene, whose estimated disposal is about 5000kgday(-1). A socio-economic analysis of the waste generation indicates that low-income neighbourhoods discard relatively less packaging and more food waste, shoes and construction debris than middle and high income ones, which may be due to low purchasing power and schooling. Our findings indicate that more aluminium and uncoloured polyethylene terephthalate is discarded in the warmest months of the year, probably due to a greater consumption of canned and bottled drinks.

  9. Removal of contaminants in leachate from landfill by waste steel scrap and converter slag.

    Science.gov (United States)

    Oh, Byung-Taek; Lee, Jai-Young; Yoon, Jeyong

    2007-08-01

    This study may be the first investigation to be performed into the potential benefits of recycling industrial waste in controlling contaminants in leachate. Batch reactors were used to evaluate the efficacy of waste steel scrap and converter slag to treat mixed contaminants using mimic leachate solution. The waste steel scrap was prepared through pre-treatment by an acid-washed step, which retained both zero-valent iron site and iron oxide site. Extensive trichloroethene (TCE) removal (95%) occurred by acid-washed steel scrap within 48 h. In addition, dehalogenation (Cl(-) production) was observed to be above 7.5% of the added TCE on a molar basis for 48 h. The waste steel scrap also removed tetrachloroethylene (PCE) through the dehalogenation process although to a lesser extent than TCE. Heavy metals (Cr, Mn, Cu, Zn, As, Cd, and Pb) were extensively removed by both acid-washed steel scrap and converter slag through the adsorption process. Among salt ions (NH (4)(+) , NO (3)(-) , and PO (4)(3-) ), PO (4)(3-) was removed by both waste steel scrap (100% within 8 h) and converter slag (100% within 20 min), whereas NO (3)(-) and NH (4)(+ ) were removed by waste steel scrap (100% within 7 days) and converter slag (up to 50% within 4 days) respectively. This work suggests that permeable reactive barriers (PRBs) with waste steel scrap and converter slag might be an effective approach to intercepting mixed contaminants in leachate from landfill.

  10. Absorption of phosphorus from wastewater by aged refuse excavated from municipal solid waste landfill

    Institute of Scientific and Technical Information of China (English)

    ZHAO You-cai; SHAO Fang

    2005-01-01

    Municipal solid waste(refuse) landfill stabilizes as the refuse degrades. After years of biodegradation, the refuse in the landfill becomes stabilized and aged, which may vary with the local climate, humidity, and composition of refuse placed. In this work, it is found that the refuse with an age of over 8 years at Shanghai Refuse Landfill has been significantly stabilized and sufficiently aged and is thus suitable for excavation. The 8-year old aged refuse is mechanically screened, and the fine fractions of refuse(aged refuse) with a diameter less than 2 cm are then used as a biological absorbent for removal of both inorganic and organic phosphorus in livestock wastewater and prepared aqueous solution. It is proved that the aged refuse is very effective for the quantitative removal of both types of phosphorus. The absorption mechanism is proposed. It is considered that phosphorus is firstly absorbed onto the surface of the aged refuse and then used as a substrate for the growth of microorganisms which ultimately leave the aged refuse as sludge.

  11. Research of Methods, Technologies and Materials for Drainage Water Treatment at the Municipal Solid Waste Landfill in Salaryevo

    Directory of Open Access Journals (Sweden)

    Gogina Elena

    2016-01-01

    Full Text Available The article deals with innovative methods, technologies and materials intended to reduce the adverse ecological impact of human waste and various industrial waste situated in municipal solid waste landfills (MSW, on water bodies, soil, and atmosphere. The existence of these factors makes the region less attractive for urban development. A comparison has been made of the methods intended to reduce the damage caused to the environment, in order to provide for sustainable development of cities, using the example of an actual landfill situated in the territory of Moscow. A scheme of reconstruction is recommended for the drainage water treatment plant at this landfill, which will lead to improvement of the environmental situation and contribute to the development of territories in the adjacent districts, and to reduction of pollution load on the river and atmosphere.

  12. Assessment of the disposal of radioactive petroleum industry waste in nonhazardous landfills using risk-based modeling.

    Science.gov (United States)

    Smith, Karen P; Arnish, John J; Williams, Gustavious P; Blunt, Deborah L

    2003-05-15

    Certain petroleum production activities cause naturally occurring radioactive materials (NORM) to accumulate in concentrations above natural background levels, making safe and cost-effective management of such technologically enhanced NORM (TENORM) a key issue for the petroleum industry. As a result, both industry and regulators are interested in identifying cost-effective disposal alternatives that provide adequate protection of human health and the environment One such alternative, currently allowed in Michigan with restrictions, is the disposal of TENORM wastes in nonhazardous waste landfills. The disposal of petroleum industry wastes containing radium-226 (Ra-226) in nonhazardous landfills was modeled to evaluate the potential radiological doses and health risks to workers and the public. Multiple scenarios were considered in evaluating the potential risks associated with landfill operations and the future use of the property. The scenarios were defined, in part, to evaluate the Michigan policy; sensitivity analyses were conducted to evaluate the impact of key parameters on potential risks. The results indicate that the disposal of petroleum industry TENORM wastes in nonhazardous landfills in accordance with the Michigan policy and existing landfill regulations presents a negligible risk to most of the potential receptors considered in this study.

  13. Comparison of potential greenhouse gas emissions from disposal of MSW in sanitary landfills vs. waste-to-energy facilities

    International Nuclear Information System (INIS)

    The Environmental Protection Agency (EPA) estimates the US currently generates about 160 million tons of municipal solid waste (MSW) per year, and this figure will exceed 200 million tons annually by the year 2000. About 80 percent of the MSW will be disposed of in landfills and waste-to-energy (WTE) facilities, both of which generate greenhouse gases, namely methane and carbon dioxide. This paper provides an introductory level analysis of the potential long term greenhouse gas emissions from these two MSW disposal alternatives. Carbon dioxide credits are derived for fossil fuel offset by WTE and methane emissions are converted to equivalent CO2 emissions in order to derive a single emission figure for comparison of the greenhouse contribution of the two disposal strategies. A secondary analysis is presented to compare the net equivalent CO2 emissions from WTE facilities to those from landfills with methane gas recovery, combustion and energy generation. The conclusion is, that for a given amount of MSW, landfilling contributes to the greenhouse effect about 10 times more than a modern Waste-To-Energy facility. Even with 50% of all landfill methane emissions recovered and converted to electricity, the contribution to the greenhouse effect by the landfill alternative is about 6 times greater than the waste-to-energy alternative

  14. The SNL/NM Classified Waste Landfill Excavation: Lessons Learned Moving from Planning to Implementation

    International Nuclear Information System (INIS)

    The Sandia National Laboratories/New Mexico (SNL/NM) Environmental Restoration Project is halfway through excavating the Classified Waste Landfill in Technical Area II, a disposal area for weapon components for approximately 40 years. While the planning phase of any project is important, it is only a means of getting to the field implementation phase where reality quickly sinks in. Documents outlining the general processes are developed, heavy equipment, supply needs, requisite skills, and staffing levels are anticipated, and contingencies for waste management are put in place. However, the nature of landfill excavation dictates that even the most detailed plans will probably change. This project is proving that trying to account for undefined variables and predicting the total cost of landfill remediation is very difficult if the contents are not well known. In landfill excavation, contingency cannot be minimized. During development of the waste management plan, it was recognized that even the best forecasting could not formulate the perfect cradle-to-grave processes because waste streams are rarely definable before excavation begins. Typically, as excavation progresses and waste streams are generated, new characterization information allows further definition of disposal options which, in turn, modify the generation/management process. A general plan combined with close involvement of waste management personnel to resolve characterization and packaging questions during generation has worked very well. And, as expected, each new pit excavated creates new waste management challenges. The material excavated consists primarily of classified weapon assemblies and related components, so disposition must include demilitarization and sanitization. The demilitarization task at the start of the project was provided by an SNL/NM group that has since lost their funding and operational capability. This project is having to take on the task of disassembly, destruction, and

  15. Application of Deuterium and Oxygen-18 to Trace Leachate Movement in Bantar Gebang Sanitary Landfill

    OpenAIRE

    E.R. Pujiindiyati

    2011-01-01

    Bantar Gebang landfill was constructed in 1986 with total area of 108 ha and approximately 6000 ton/day solid waste is disposed to this landfill. Mostly, the people living surrounding landfill get afraid of impact of the hazardous chemicals produced by waste disposal to their health. The purpose of this investigation was to study the migration of leachate to Cibitung River water and shallow groundwaters near to the river. It is possible to be done because chemical contents and isotopic charac...

  16. GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities

    International Nuclear Information System (INIS)

    Highlights: ► An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ► A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ► These factors are compared internationally and their implications for South Africa and developing countries are discussed . ► Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm3 (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO2 equivalents (CO2 e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from −145 to 1016 kg CO2 e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO2 e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to

  17. Measuring organic carbon, nutrients and heavy metals in rivers receiving leachate from controlled and uncontrolled municipal solid waste (MSW) landfills.

    Science.gov (United States)

    Yusof, N; Haraguchi, A; Hassan, M A; Othman, M R; Wakisaka, M; Shirai, Y

    2009-10-01

    Since landfilling is the common method of waste disposal in Malaysia, river water is greatly exposed to the risk of contamination from leachate unless proper leachate management is carried out. In this study, leachates from three different types of landfills, namely active uncontrolled, active controlled and closed controlled, were characterized, and their relationships with river water chemistry were examined monthly for a year. The influence of leachate on river water chemistry from each type of landfill depended on many factors, including the presence of a leachate control mechanism, leachate characteristics, precipitation, surface runoff and the applied treatment. The impact of leachate from an active uncontrolled landfill was the highest, as the organic content, NH(4)(+)-N, Cd and Mn levels appeared high in the river. At the same time, influences of leachate were also observed from both types of controlled landfills in the form of inorganic nitrogen (NH(4)(+)-N, NO(3)(-)-N and NO(2)(-)-N) and heavy metals (Fe, Cr, Ni and Mn). Improper treatment practice led to high levels of some contaminants in the stream near the closed controlled landfill. Meanwhile, the active controlled landfill, which was located near the coastline, was exposed to the risk of contamination resulting from the pyrite oxidation of the surrounding area.

  18. Chemical waste management in Hong Kong

    International Nuclear Information System (INIS)

    This paper reports that in Hong Kong, the control of chemical wastes is provided for in the Waste Disposal Ordinance. The enabling regulations of the Ordinance are presently being drafted and will be enforced in the near future. Presently, because of the lack of legislative control together with a general lack of knowledge on chemical wastes (such as mineral oils and fuel oils) and the unavailability of suitable treatment facilities, the majority of the chemical wastes generated are being discharged into the sewers or drains. In order that the control regulations can function effectively, it is decided that a Chemical Waste Treatment Center (CWTC) has to be provided by Government to ensure that the proper treatment facilities are available to the industry in the first place. As the majority of the chemical waste producers in Hong Kong are small generators, it is envisaged that most of these waste generators will have to rely on the CWTC for the proper treatment of their chemical wastes. The CWTC will also provide a waste collection service to collect and transport the chemical wastes from the industrial establishments to the CWTC. The waste generators are required to provide sufficient interim storage for their waste prior to their collection

  19. Treatment of mature landfill leachate by chemical precipitation and Fenton advanced oxidation process

    Directory of Open Access Journals (Sweden)

    Nemat Alah Jaafarzadeh Haghighi Fard

    2016-03-01

    Full Text Available Background: Mature landfill leachate is a complicated mixture which is resistant to biological treatment processes. The treatment of mature landfill leachate by struvite precipitation and Fenton oxidation was the main objective of the current research. Methods: Struvite with the phosphate/ammonia/magnesium molar ratio of 1/1/1.05 was considered during all experiments. Five initial pHs of 3, 4, 5, 6, and 7, four different H2O2/Fe mass ratios of 50, 100, 200, and 400, and reaction times of 20, 40, 80, 120, and 160 minutes were examined for the Fenton oxidation process. Results: A leachate sample with average chemical oxygen demand (COD, BOD5, and NH4 concentrations of 7350, 2220, and 2280 mg L-1, respectively, and a BOD5/COD ratio of 0.3 was introduced to the chemical precipitation unit. An NH4 removal efficiency of 87% was obtained at pH 8.5 for struvite precipitation. Under optimum conditions of Fenton oxidation, including pH 3, an H2O2/Fe2+ mass ratio of 200, and a reaction time of 160 min, more than 95% COD and BOD5 removal was observed. Conclusion: Struvite precipitation and Fenton oxidation are reliable and efficient alternatives for mature landfill treatment.

  20. Evaluation of waste management options in view of long-term maintenance-free landfills

    International Nuclear Information System (INIS)

    The present case study compares and evaluates different waste management options with special consideration to their long-term implications. Multiple scenarios of these options were created and investigated as to which of term best fulfilled the goals of the Austrian waste management act (Abfallwirtschaftgesetz, AWG). Serving as a basis for this study, an elaborated model of the Austrian waste management, as described in GUA and IFIP (1998, 'Management of Household and Household-like Waste in Austria'), was used. Alterations to the GUA and IFIP study were done in order to best fulfill the needs of this assessment. Household and household-like waste, as well as municipal sewage sludge have been defined as the system input. The following list of scenarios were investigated against an up-dated status-quo (P0): M1 maximum landfilling of untreated waste; M2a maximum incineration without any after treatment; M2b maximum incineration with cement stabilization of the residual material; M2c maximum high temperature process; M3a maximum mechanical-biological treatment with the light fraction from sorting and splitting processed in a fluidized-bed furnace; M3b maximum mechanical-biological treatment with the light fraction from sorting and splitting processed in a rotary kiln for use in the cement industry; M3c maximum mechanical-biological treatment with the high caloric heavy fraction after decomposition processed in a fluidized-bed furnace; M3d maximum mechanical-biological treatment with the high caloric heavy fraction after decomposition processed in a rotary kiln for use in the cement industry. In order to oblige to the precautionary principle of the AWG, each of the scenarios were investigated, with regards to the short, middle, and long-term landfills behaviors of the deposited residual material. The macro-economical Cost-Benefit-Analysis (CBA) was used in the assessment. Additionally a so-called 'modified-Cost-Effect-Analysis' (MCEA) was developed. Unlike the

  1. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues.

    Science.gov (United States)

    Kollikkathara, Naushad; Feng, Huan; Yu, Danlin

    2010-11-01

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process. PMID:20547450

  2. Utilization of Waste Clay from Boron Production in Bituminous Geosynthetic Barrier (GBR-B Production as Landfill Liner

    Directory of Open Access Journals (Sweden)

    Müfide Banar

    2016-01-01

    Full Text Available Bituminous geomembranes, one type of geosynthetics, include a hot bituminous mixture with mineral filler and reinforcement. In this study, boron production waste clay (CW was used as filler to produce a geosynthetic barrier with bentonite, waste tire, and bitumen. Bentonite and waste tires were used as auxiliary fillers and bitumen as the binder. CW/bitumen, CW/bentonite/bitumen, and CW/waste tire/bitumen mixtures were prepared by using a laboratory mixer at 100°C. Hot mixtures were extruded into strips by using a lab-scale corotating twin screw extruder (L/D: 40 followed by die casting (2 mm × 100 mm. Glass fleece or nonwoven polyester was used as reinforcement material and while die casting, both sides of the reinforcement materials were covered with bituminous mixture. Thickness, mass per unit area, tensile strength, elongation at yield, and hydraulic conductivity were used to characterize the geomembranes. Among all geomembranes, nonwoven polyester covered with 30% bitumen-70% boron waste clay mixture (PK-BTM30CW70 was found to be the most promising in terms of structure and mechanical behaviour. After that, consequences of its exposure to distilled water (DW, municipal solid waste landfill leachate (L-MSW, and hazardous waste landfill leachate (L-HW were examined to use for an innovative impermeable liner on solid waste landfills.

  3. RCRA facility investigation activities at the Sandia National Laboratories Mixed Waste Landfill

    International Nuclear Information System (INIS)

    The Mixed Waste Landfill (MWL) is an inactive landfill located on 1.6 acres (0.65 ha) in the north-central portion of Technical Area 3 at Sandia National Laboratories (SNL) in Albuquerque, New Mexico. The landfill accepted mixed hazardous and radioactive wastes, including low-level radioactive wastes and fission products, liquid wastes, tritium-contaminated equipment, and contaminated oils and other liquids in drums with dirt, plaster of Paris, and concrete, from 1959 through 1962 and radioactive wastes from 1962 through 1988. No waste has been accepted for disposal since 1988. The MWL consists of two disposal areas: the classified area and the unclassified area. The unclassified area is the larger of the two areas, and is 432 feet by 200 feet (132 by 61 meters). Wastes were disposed into a series of seven unlined trenches, each approximately 180 feet (55 meters) long by up to 60 feet (18 meters) wide and about 25 feet (8 meters) deep. The classified area lies immediately adjacent to the unclassified area, measures 216 feet by 100 feet (66 by 31 meters). The classified area contains 40 known disposal pits and small trenches, most of which are located in the southern half of the area. The pits are unlined, circular or square in map view, and measure approximately 10 feet (3 meters) across by 25 feet (8 meters) deep. Starting in 1989, a network of four ground water monitor wells were installed, and 18 soil borings were drilled as part of a Phase I RCRA Facility Investigation (RFI). The results of this phase of the investigation indicate that there is no ground water contamination beneath the site, and that tritium is the only contaminant in the soil zone immediately beneath the landfill. Tritium was found at low levels in the soil to a maximum depth of about 80 to 110 feet (25 to 34 meters). Ground water occurs at about 450 feet (140 meters) below land surface. A Phase II RFI will be conducted during late 1992 and early 1993 to provide additional characterization

  4. Variation of Coenzyme F420 Activity and Methane Yield in Landfill Simulation of Organic Waste

    Institute of Scientific and Technical Information of China (English)

    CHENG Yun-huan; SANG Shu-xun; HUANG Hua-zhou; LIU Xiao-juan; OUYANG Jin-bao

    2007-01-01

    A simulated landfill anaerobic bioreactor was used to characterize the anaerobic biodegradation and biogas generation of organic waste which was mainly composed of residuals of vegetables and foods. We investigated the dynamics of the coenzyme F420 activity and determined correlations between biogas yields, methane yields, methane concentration and coenzyme F420 activity. The experiment was carried out under different conditions from control without any treatment, addition of Fe3+, microorganism inoculation to a combination of Fe3+ addition and inoculation at a temperature of 36±2 ℃. The experiment was lasted 120 d and coenzyme F420 activity was analyzed using ultraviolet spectrophotometry. Experimental results indicated that activity of the coenzyme F420 treated by Fe3+ and microorganism inoculation increased substantially. The waste treated by inoculation had the greatest increase. When the waste was treated by Fe3+, inoculation and the combination of Fe3+ and inoculation, biogas yields increased by 46.9%, 132.6% and 153.1%, respectively; while the methane yields increased 4, 97 and 98 times. Methane concentration varied between 0 and 6% in the control reactor, from 0 to 14% for waste treated by the addition of Fe3+, from 0 to 59% for waste treated by inoculation and from 0 to 63% for waste treated by Fe3+ addition and inoculation. Correlations between coenzyme F420 activity and biogas production, methane production and methane concentration proved to be positively significant (p<0.05), except for the control. Consequently, coenzyme F420 activity could be used as an index for monitoring the ac-tivity of methanogens during anaerobic biodegradation of the organic fraction of municipal solid waste.

  5. Locating Landfill for Solid Waste Municipal by Fuzzy Analytic Hierarchy Process & Data Envelopment Analysis(Case Study: Alborz Province

    Directory of Open Access Journals (Sweden)

    F Shakeri

    2012-03-01

    Full Text Available Background and Objectives: Solid waste municipal landfill can have injurious effect on society health, economic and environment. Therefore, spread evaluation in locating landfill is necessary to identifying the best places. The purpose of this paper is locating landfill for solid waste municipal for center of Alborz province.Materials and Method: In this paper, suitable areas are identified for land filling solid waste municipal by weighted linear combination and cluster analysis in 20 years period. Thus, suitable areas were weighted by FAHP method. Those weights were used for ranking areas by DEA technique.Result: Results showed among five landfill alternatives for solid waste municipal for center of Alborz province, alternative 1 is the best for land filling. This place is just 7 percent of total suitable places. Conclusion: The approach are used in this article (combination method of fuzzy analytic hierarchy process & Data envelopment analysis can be suitable for locating in other areas because when an option add or delete; option ranking is not different with previous.

  6. Validation of an in situ solidification/stabilization technique for hazardous barium and cyanide waste for safe disposal into a secured landfill.

    Science.gov (United States)

    Vaidya, Rucha; Kodam, Kisan; Ghole, Vikram; Surya Mohan Rao, K

    2010-09-01

    The aim of the present study was to devise and validate an appropriate treatment process for disposal of hazardous barium and cyanide waste into a landfill at a Common Hazardous Waste Treatment Storage Disposal Facility (CHWTSDF). The waste was generated during the process of hardening of steel components and contains cyanide (reactive) and barium (toxic) as major contaminants. In the present study chemical fixation of the contaminants was carried out. The cyanide was treated by alkali chlorination with calcium hypochlorite and barium by precipitation with sodium sulfate as barium sulfate. The pretreated mixture was then solidified and stabilized by binding with a combination of slag cement, ordinary Portland cement and fly ash, molded into blocks (5 x 5 x 5 cm) and cured for a period of 3, 7 and 28 days. The final experiments were conducted with 18 recipe mixtures of waste + additive:binder (W:B) ratios. The W:B ratios were taken as 80:20, 70:30 and 50:50. The optimum proportions of additives and binders were finalized on the basis of the criteria of unconfined compressive strength and leachability. The leachability studies were conducted using the Toxicity Characteristic Leaching Procedure. The blocks were analyzed for various physical and leachable chemical parameters at the end of each curing period. Based on the results of the analysis, two recipe mixtures, with compositions - 50% of [waste + (120 g Ca(OCl)(2) + 290 g Na(2)SO(4)) kg(-1) of waste] + 50% of binders, were validated for in situ stabilization into a secured landfill of CHWTSDF. PMID:20430516

  7. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions.

    Science.gov (United States)

    Slezak, Radoslaw; Krzystek, Liliana; Ledakowicz, Stanislaw

    2015-09-01

    In this study the municipal solid waste degradation processes in simulated landfill bioreactors under aerobic and anaerobic conditions is investigated. The effect of waste aeration on the dynamics of the aerobic degradation processes in lysimeters as well as during anaerobic processes after completion of aeration is presented. The results are compared with the anaerobic degradation process to determine the stabilization stage of waste in both experimental modes. The experiments in aerobic lysimeters were carried out at small aeration rate (4.41⋅10(-3)lmin(-1)kg(-1)) and for two recirculation rates (24.9 and 1.58lm(-3)d(-1)). The change of leachate and formed gases composition showed that the application of even a small aeration rate favored the degradation of organic matter. The amount of CO2 and CH4 released from anaerobic lysimeter was about 5 times lower than that from the aerobic lysimeters. Better stabilization of the waste was obtained in the aerobic lysimeter with small recirculation, from which the amount of CO2 produced was larger by about 19% in comparison with that from the aerobic lysimeter with large leachate recirculation.

  8. Coal combustion waste management at landfills and surface impoundments 1994-2004.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Ranek, N. L.; Environmental Science Division

    2006-09-08

    On May 22, 2000, as required by Congress in its 1980 Amendments to the Resource Conservation and Recovery Act (RCRA), the U.S. Environmental Protection Agency (EPA) issued a Regulatory Determination on Wastes from the Combustion of Fossil Fuels. On the basis of information contained in its 1999 Report to Congress: Wastes from the Combustion of Fossil Fuels, the EPA concluded that coal combustion wastes (CCWs), also known as coal combustion by-products (CCBs), did not warrant regulation under Subtitle C of RCRA, and it retained the existing hazardous waste exemption for these materials under RCRA Section 3001(b)(3)(C). However, the EPA also determined that national regulations under Subtitle D of RCRA were warranted for CCWs that are disposed of in landfills or surface impoundments. The EPA made this determination in part on the basis of its findings that 'present disposal practices are such that, in 1995, these wastes were being managed in 40 percent to 70 percent of landfills and surface impoundments without reasonable controls in place, particularly in the area of groundwater monitoring; and while there have been substantive improvements in state regulatory programs, we have also identified gaps in State oversight' (EPA 2000). The 1999 Report to Congress (RTC), however, may not have reflected the changes in CCW disposal practices that occurred since the cutoff date (1995) of its database and subsequent developments. The U.S. Department of Energy (DOE) and the EPA discussed this issue and decided to conduct a joint DOE/EPA study to collect new information on the recent CCW management practices by the power industry. It was agreed that such information would provide a perspective on the chronological adoption of control measures in CCW units based on State regulations. A team of experts from the EPA, industry, and DOE (with support from Argonne National Laboratory) was established to develop a mutually acceptable approach for collecting and analyzing data

  9. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill.

    Science.gov (United States)

    Yu, L; Batlle, F

    2011-12-01

    Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The "equivalent" three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also

  10. Paper waste - recycling, incineration or landfilling? A review of existing life cycle assessments.

    Science.gov (United States)

    Villanueva, A; Wenzel, H

    2007-01-01

    A review of existing life cycle assessments (LCAs) on paper and cardboard waste has been undertaken. The objectives of the review were threefold. Firstly, to see whether a consistent message comes out of published LCA literature on optimum disposal or recycling solutions for this waste type. Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made, to discuss whether it is at all valid to use the LCA methodology in its current development state to guide policy decisions on paper waste. A total of nine LCA studies containing altogether 73 scenarios were selected from a thorough, international literature search. The selected studies are LCAs including comparisons of different management options for waste paper. Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location and definitions of the paper recycling/disposal systems studied. A systematic exploration of the LCA studies showed, however, important methodological pitfalls and sources of error, mainly concerning differences in the definition of the system boundaries. Fifteen key assumptions were identified that cover the three paper cycle system areas: raw materials and forestry, paper production, and disposal/recovery. It was found that the outcome of the individual LCA studies largely depended on the choices made in some of these assumptions, most specifically the ones concerning energy use and generation, and forestry. PMID:17433657

  11. Probabilistic performance-assessment modeling of the mixed waste landfill at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Peace, Gerald (Jerry) L. (.); Goering, Timothy James (GRAM, Inc.); Miller, Mark Laverne; Ho, Clifford Kuofei

    2007-01-01

    A probabilistic performance assessment has been conducted to evaluate the fate and transport of radionuclides (americium-241, cesium-137, cobalt-60, plutonium-238, plutonium-239, radium-226, radon-222, strontium-90, thorium-232, tritium, uranium-238), heavy metals (lead and cadmium), and volatile organic compounds (VOCs) at the Mixed Waste Landfill (MWL). Probabilistic analyses were performed to quantify uncertainties inherent in the system and models for a 1,000-year period, and sensitivity analyses were performed to identify parameters and processes that were most important to the simulated performance metrics. Comparisons between simulated results and measured values at the MWL were made to gain confidence in the models and perform calibrations when data were available. In addition, long-term monitoring requirements and triggers were recommended based on the results of the quantified uncertainty and sensitivity analyses.

  12. Development of Probabilistic Fate and Transport Models for the Mixed Waste Landfill at Sandia National Laboratories

    International Nuclear Information System (INIS)

    A probabilistic performance assessment has been conducted to evaluate the fate and transport of radionuclides (Am-241, Cs-137, Co-60, Pu-238, Pu-239, Ra-226, Rn-222, Sr-90, Th-232, H-3, U-238), heavy metals (lead and cadmium), and volatile organic compounds at the Mixed Waste Landfill (MWL). Probabilistic analyses were performed to quantify uncertainties inherent in the system and models for a 1,000-year period, and sensitivity analyses were performed to identify parameters and processes that were most important to the simulated performance metrics. Comparisons between simulated results and measured values at the MWL were made to gain confidence in the models and perform calibrations when data were available. In addition, long-term monitoring requirements and triggers were recommended based on the results of the quantified uncertainty and sensitivity analyses. (authors)

  13. Carbon pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes

    Energy Technology Data Exchange (ETDEWEB)

    Brandstätter, Christian, E-mail: bran.chri@gmail.com; Laner, David, E-mail: david.laner@tuwien.ac.at; Fellner, Johann, E-mail: johann.fellner@tuwien.ac.at

    2015-06-15

    Graphical abstract: Display Omitted - Highlights: • 40 year old waste from an old MSW landfill was incubated in LSR experiments. • Carbon balances for anaerobic and aerobic waste degradation were established. • The transformation of carbon pools during waste degradation was investigated. • Waste aeration resulted in the formation of a new, stable organic carbon pool. • Water addition did not have a significant effect on aerobic waste degradation. - Abstract: Landfill aeration has been proven to accelerate the degradation of organic matter in landfills in comparison to anaerobic decomposition. The present study aims to evaluate pools of organic matter decomposing under aerobic and anaerobic conditions using landfill simulation reactors (LSR) filled with 40 year old waste from a former MSW landfill. The LSR were operated for 27 months, whereby the waste in one pair was kept under anaerobic conditions and the four other LSRs were aerated. Two of the aerated LSR were run with leachate recirculation and water addition and two without. The organic carbon in the solid waste was characterized at the beginning and at the end of the experiments and major carbon flows (e.g. TOC in leachate, gaseous CO{sub 2} and CH{sub 4}) were monitored during operation. After the termination of the experiments, the waste from the anaerobic LSRs exhibited a long-term gas production potential of more than 20 NL kg{sup −1} dry waste, which corresponded to the mineralization of around 12% of the initial TOC (67 g kg{sup −1} dry waste). Compared to that, aeration led to threefold decrease in TOC (32–36% of the initial TOC were mineralized), without apparent differences in carbon discharge between the aerobic set ups with and without water addition. Based on the investigation of the carbon pools it could be demonstrated that a bit more than 10% of the initially present organic carbon was transformed into more recalcitrant forms, presumably due to the formation of humic substances

  14. INPP Landfill

    International Nuclear Information System (INIS)

    The objective of this report is to propose the basic design for final disposal of Very Low Level Radioactive Waste (VLLW) produced at the Ignalina Nuclear Power Plant and at other small waste producers in Lithuania. Considering the safety for the environment, as well as the construction costs, it has been decided that the repository will be of a landfill type based on the same design principles as similar authorised facilities in other countries. It has also been decided that the location of the landfill shall be in the vicinity of the Ignalina Nuclear Power Plant (INPP)

  15. Utilisation of chemically stabilized arsenic-contaminated soil in a landfill cover.

    Science.gov (United States)

    Kumpiene, Jurate; Desogus, Paolo; Schulenburg, Sven; Arenella, Mariarita; Renella, Giancarlo; Brännvall, Evelina; Lagerkvist, Anders; Andreas, Lale; Sjöblom, Rolf

    2013-12-01

    The aim of the study was to determine if an As-contaminated soil, stabilized using zerovalent iron (Fe(0)) and its combination with gypsum waste, coal fly ash, peat, or sewage sludge, could be used as a construction material at the top layer of the landfill cover. A reproduction of 2 m thick protection/vegetation layer of a landfill cover using a column setup was used to determine the ability of the amendments to reduce As solubility and stimulate soil functionality along the soil profile. Soil amendment with Fe(0) was highly efficient in reducing As in soil porewater reaching 99 % reduction, but only at the soil surface. In the deeper soil layers (below 0.5 m), the Fe treatment had a reverse effect, As solubility increased dramatically exceeding that of the untreated soil or any other treatment by one to two orders of magnitude. A slight bioluminescence inhibition of Vibrio fischeri was detected in the Fe(0) treatment. Soil amendment with iron and peat showed no toxicity to bacteria and was the most efficient in reducing dissolved As in soil porewater throughout the 2 m soil profile followed by iron and gypsum treatment, most likely resulting from a low soil density and a good air diffusion to the soil. The least suitable combination of soil amendments for As immobilization was a mixture of iron with coal fly ash. An increase in all measured enzyme activities was observed in all treatments, particularly those receiving organic matter. For As to be stable in soil, a combination of amendments that can keep the soil porous and ensure the air diffusion through the entire soil layer of the landfill cover is required.

  16. Landfill leachate treatment in rotating biological contactors

    OpenAIRE

    Cortez, Susana

    2010-01-01

    Tese de doutoramento em Engenharia Química e Biológica Sanitary landfilling is the most used and accepted method to eliminate municipal solid waste worldwide due to its economic advantages. The generation of leachate is an inevitable consequence of this practice. Landfill leachate is a high-strength wastewater with great chemical complexity and diversity. In order to avoid discharges to the environment causing negative impacts to the biota or public health, it must be properly collected an...

  17. Use of disposed waste ash from landfills to replace Portland cement.

    Science.gov (United States)

    Rukzon, Sumrerng; Chindaprasirt, Prinya

    2009-09-01

    In this study, waste ash was utilized as a pozzolanic material in blended Portland cement in order to reduce negative environmental effects and landfill volume required to dispose of waste ash. The influence of waste ash, namely palm oil fuel ash, rice husk ash and fly ash on compressive strength and sulfate resistance in mortar were studied and evaluated by some accelerated short-term techniques in sodium sulfate solutions. Ordinary Portland cement (OPC) was partially replaced with ground palm oil fuel ash (POA), ground rice husk ash (RHA) and classified fly ash (FA). Single pozzolan and a blend of equal weight portions of POA, RHA and FA were also used. The resistance to sulfate attack of mortar improves substantially with partial replacement of OPC with POA, RHA and FA. The use of a blend of equal weight portions of FA and POA or RHA produced mixes with good strength and resistance to sulfate attack. POA, RHA and FA have a high potential to be used as a pozzolanic material.

  18. Model input and output files for the simulation of time of arrival of landfill leachate at the water table, Municipal Solid Waste Landfill Facility, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    Science.gov (United States)

    Abeyta, Cynthia G.; Frenzel, Peter F.

    1999-01-01

    This report contains listings of model input and output files for the simulation of the time of arrival of landfill leachate at the water table from the Municipal Solid Waste Landfill Facility (MSWLF), about 10 miles northeast of downtown El Paso, Texas. This simulation was done by the U.S. Geological Survey in cooperation with the U.S. Department of the Army, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas. The U.S. Environmental Protection Agency-developed Hydrologic Evaluation of Landfill Performance (HELP) and Multimedia Exposure Assessment (MULTIMED) computer models were used to simulate the production of leachate by a landfill and transport of landfill leachate to the water table. Model input data files used with and output files generated by the HELP and MULTIMED models are provided in ASCII format on a 3.5-inch 1.44-megabyte IBM-PC compatible floppy disk.

  19. Management of Conventional Wastes (Non Radioactive) in Spanish Landfills; Gestion de Residuos Convencionales (No Radiactivos) en Vertederos de Espana

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, N.; Pena, J. M.; Ramos, J. L.; Millan, R.

    2011-07-15

    This report is the result of a collaboration agreement between CIEMAT and ENRESA. The goal of the report is to analyze the existing legislation on solid conventional waste, according to the European Community, the Spanish State and its Autonomous Communities, focusing on the latest regulation applicable to the final management in controlled landfills. In addition, information about the legal frame, production, composition and characteristics of conventional waste (i.e. urban, inert, dangerous industrial and non dangerous industrial) is given. Also, the final management that is carried out nowadays in Spain for each of the waste is analyzed and evaluated. Finally, the fulfilment of the in force regulation by the different types of Spanish controlled landfills is evaluated. (Author) 52 refs.

  20. A meta-analysis of mortality data in Italian contaminated sites with industrial waste landfills or illegal dumps

    Directory of Open Access Journals (Sweden)

    Lucia Fazzo

    2014-09-01

    Full Text Available Objectives. Adverse effects of waste management represent a public health issue. Mortality meta-analysis in Italian National Priority Contaminated Sites (NPCSs with industrial waste landfills or illegal dumps is presented. Methods. 24 NPCSs include industrial waste landfills or illegal dumps. Class 1 (10 NPCSs with industrial waste landfills and Class 2 (14 NPCSs with illegal dumps were categorized. Random-effects model meta-analyses of Standardized Mortality Ratios non-adjusted (SMRs and adjusted for Deprivation (DI-SMRs computed for each CS (1995-2002 were performed for overall 24 NPCSs and the two classes. The North-Southern gradient was considered. Results. 24 CSs pooled-SMRs are significantly increased in both genders for cancer of liver (men: SMR = 1.13; women: SMR = 1.18, bladder (men: SMR = 1.06; women: SMR = 1.11, and for cirrhosis (men: SMR = 1.09; women: SMR = 1.13. In Class 2 the increase is confirmed in both genders for liver and bladder cancers and for cirrhosis and in men only for lung cancer. Congenital anomalies and adverse perinatal conditions are not increased. Conclusion. The results are consistent with the hypothesis of adverse health effects of non-adequately managed hazardous waste. Causal interpretation is not allowed, but the meta-analytic approach provides more confidence in the findings.

  1. Waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water near Elkhart, Indiana, 2000-2002

    Science.gov (United States)

    Buszka, P.M.; Yeskis, D.J.; Kolpin, D.W.; Furlong, E.T.; Zaugg, S.D.; Meyer, M.T.

    2009-01-01

    Four wells downgradient from a landfill near Elkhart, Indiana were sampled during 2000-2002 to evaluate the presence of waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water. Compounds detected in leachate-affected ground water included detergent metabolites (p-nonylphenol, nonylphenol monoethoxylate, nonylphenol diethoxylate, and octylphenol monoethoxylate), plasticizers (ethanol-2-butoxy-phosphate and diethylphthalate), a plastic monomer (bisphenol A), disinfectants (1,4-dichlorobenzene and triclosan), an antioxidant (5-methyl-1H-benzotriazole), three fire-retardant compounds (tributylphosphate and tri(2-chloroethyl)phosphate, and tri(dichlorisopropyl)phosphate), and several pharmaceuticals and metabolites (acetaminophen, caffeine, cotinine, 1,7-dimethylxanthine, fluoxetine, and ibuprofen). Acetaminophen, caffeine, and cotinine detections confirm prior indications of pharmaceutical and nicotinate disposal in the landfill. ?? 2009 Springer Science + Business Media, LLC.

  2. Analysis of Chemical Technology Division waste streams

    International Nuclear Information System (INIS)

    This document is a summary of the sources, quantities, and characteristics of the wastes generated by the Chemical Technology Division (CTD) of the Oak Ridge National Laboratory. The major contributors of hazardous, mixed, and radioactive wastes in the CTD as of the writing of this document were the Chemical Development Section, the Isotopes Section, and the Process Development Section. The objectives of this report are to identify the sources and the summarize the quantities and characteristics of hazardous, mixed, gaseous, and solid and liquid radioactive wastes that are generated by the Chemical Technology Division (CTD) of the Oak Ridge National Laboratory (ORNL). This study was performed in support of the CTD waste-reduction program -- the goals of which are to reduce both the volume and hazard level of the waste generated by the division. Prior to the initiation of any specific waste-reduction projects, an understanding of the overall waste-generation system of CTD must be developed. Therefore, the general approach taken in this study is that of an overall CTD waste-systems analysis, which is a detailed presentation of the generation points and general characteristics of each waste stream in CTD. The goal of this analysis is to identify the primary waste generators in the division and determine the most beneficial areas to initiate waste-reduction projects. 4 refs., 4 figs., 13 tabs

  3. Settlement analysis of fresh and partially stabilised municipal solid waste in simulated controlled dumps and bioreactor landfills.

    Science.gov (United States)

    Swati, M; Joseph, Kurian

    2008-01-01

    The patterns of settlement of fresh as well as partially stabilised municipal solid waste (MSW), undergoing degradation in five different landfill lysimeters, were studied elaborately. The first two lysimeters, R1 and R2, contained fresh MSW while the other three lysimeters, R3, R4 and R5, contained partially stabilised MSW. R1 and R3 simulated conventional controlled dumps with fortnightly disposal of drained leachate. R2 and R4 simulated bioreactor landfills with leachate recirculation. Fortnightly water flushing was done in R5. Settlement of MSW, monitored over a period of 58 weeks, was correlated with the organic carbon content of leachate and residual volatile matter in the MSW to establish the relationship between settlement and organic destruction. Compressibility parameters such as modulus of elasticity and compression indices were determined and empirical equations were applied for the settlement data. Overall settlements up to 49% were observed in the case of landfill lysimeters, filled with fresh MSW. Landfill lysimeters with liquid addition, in the form of leachate or water, experienced lower primary settlements and higher secondary settlements than conventional fills, where no liquid addition was practised. Modified secondary compression indices for MSW in lysimeters with leachate recirculation and flushing were 30%-44% higher than that for lysimeters where no liquid addition was done. Secondary settlements in bioreactor landfills were found to vary exponentially with time. PMID:17881211

  4. Landfilling: Concepts and Challenges

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Scharff, H.; Hjelmar, O.

    2011-01-01

    Landfilling of waste historically has been the main management route for waste, and in many parts of the world it still is. Landfills have developed from open polluting dumps to modern highly engineered facilities with sophisticated control measures and monitoring routines. However, in spite of all...... new approaches and technological advancement the landfill still is a long lasting accumulation of waste in the environment. Much of current landfill design and technology has been introduced as a reaction to problems encountered at actual landfills. The solution was in many cases sought in isolation...... to understand the concepts, the processes and the long-term aspects of landfilling. This chapter describes the main conceptual aspects of landfilling. The historical development is presented and key issues of time frames, mass balances and technical approaches are discussed. The environmental issues...

  5. Physic-chemical evaluation of leach and water from the Borba Gato streamlet within the catchment area of the urban waste landfill of Maringá, Paraná State, Brazil=Avaliação físico-química do lixiviado e da água do ribeirão Borba Gato na área de influência do aterro de resíduos de Maringá, Estado do Paraná, Brasil

    Directory of Open Access Journals (Sweden)

    Carlos de Barros Júnior

    2012-01-01

    Full Text Available The physic-chemical characteristics of leach deposited in the landfill waste pond and of water from the Borba Gato streamlet are evaluated. Twenty-six physic-chemical parameters were analyzed from three collection sites, or rather, two in the streamlet, one upstream (P-01 and one downstream (P-02 of the landfill waste pond, and one in the leach deposit pond (P-03. The streamlet area under analysis was impacted due to being in an agricultural area and for its urban waste deposits. Parameter concentrations of aluminum, iron and mercury were reported above the quality standard of freshwater, according to Conama 357/2005 resolution (class 2. Further, throughout the rainy period, the ammoniac nitrogen content was above the resolution quality standard for fresh water. Moreover, landfill leach was above standards of effluent discharge established by Conama 357/2005. An efficient treatment for the effluent generated in Maringá is required since there is evidence of leach pollution of the Borba Gato streamlet.Este estudo teve como objetivo avaliar as características físico-químicas do lixiviado depositado na lagoa do aterro e da água do ribeirão Borba Gato. Foram analisados 26 parâmetros físico-químicos de três pontos de coletas, dois no ribeirão, a montante (P-01 e a jusante (P-02 do aterro de resíduos, e um na lagoa de depósito de percolado do aterro (P-03. A área do ribeirão estudada se apresentou impactada, por ser uma região agrícola e pela deposição dos resíduos de Maringá. Dentre os parâmetros estudados, registrou-se que, na maioria dos meses, concentrações de alumínio, ferro e mercúrio estavam acima do padrão de qualidade de água doce da resolução do Conama 357/2005 (Classe 2. Além disso, verificou-se que no período chuvoso, P-02 registrou teores de nitrogênio amoniacal acima do padrão de qualidade de água doce da resolução, assim como o lixiviado do aterro apresentou-se acima do padrão do lançamento de

  6. Comparison Between Biological Treatment and Chemical Precipitation for Nitrogen Removal from Old Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Long Tengrui

    2007-01-01

    Full Text Available The study reports the results of a laboratory scale investigation aimed at evaluating the effectiveness of mature municipal landfill leachate treatment by a biological stage (used SBBR as a biological treatment and Chemical precipitation (Used MAP precipitation (magnesium ammonium phosphate to study the nitrogen removal capabilities for treatment of sanitary landfill leachate containing high ammonia concentration, and the comparison between them. The monitored sample taken from the Chang Sheng bridge landfill site in Chongqing city-China, has its concentrations of COD, BOD5, and NH3-N about 1650, 75 and 1100 mg/l respectively. The results from SBBR showed that after two months long period of domestication and one month period of stability, the ammonia nitrogen removal efficiency reached to 99% in the SBBR reactor, at nitrogen loading rate 0.51 kg TN/m3 per day and HRT was 9 hours, met to Chinese standards for discharge. The results of the MAP precipitation was technically effective to remove the high NH3-N strength of over 1100 mg/l from the raw leachate at molar ratio of Mg2+: NH4+: PO4-3 of 1:1:1, they demonstrated a very satisfactory removal of ammonia; an initial NH3+-N concentration of 1100 mg/l contained in the raw leachate was quickly reduced to 28 mg/l within 15 min, while the pH producing a maximum removal of ammonia was 9.0. The percent removal of ammonia after treatment by MAP was 97.5%.

  7. SITE SELECTION TO HAZARDOUS WASTE LANDFILL OF GILANEGHARB TOWNSHIP IN KERMANSHAH PROVINCE, WESTERN IRAN BY USING REMOTE SENSING AND GIS

    Directory of Open Access Journals (Sweden)

    MOSLEM HADIDI

    2013-03-01

    Full Text Available Each of them has different effects on site selection of hazardous waste landfill. Some factors cause limits to site selection such as; climatic, topographic, land use, edaphic, quakeable, regions under conservation of environment organization and so on. these factors may be cause unsustainable and move hazardous waste to surface and under ground water and also air pollution according to wind aspect, consequently different contaminations. This study was conducted in Gilanegharb town in Kermanshah province west of Iran in 2012 to find best area of landfill of hazardous wastes. Each of the factors valued and weighted based on experts opinions and then evaluated each of the preperated layers in RS and GIS softwares. In the first evaluation of 19 sites, 6 sites were investigated. The results show that asphalt factory site is the best region and then Shahrdary, Tan Kooshk sites are better to landfill of hazardous waste respectively. The reasons for selecting of this regions were far form surface and ground water resources and as a result avoiding to be defiled of ground water. On the other hand, there is no air pollution and malodorous of Ghilangharb town because of wind blow aspect in the region.

  8. Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants.

    Science.gov (United States)

    Gioannis, G De; Muntoni, A; Cappai, G; Milia, S

    2009-03-01

    Mechanical biological treatment (MBT) of residual municipal solid waste (RMSW) was investigated with respect to landfill gas generation. Mechanically treated RMSW was sampled at a full-scale plant and aerobically stabilized for 8 and 15 weeks. Anaerobic tests were performed on the aerobically treated waste (MBTW) in order to estimate the gas generation rate constants (k,y(-1)), the potential gas generation capacity (L(o), Nl/kg) and the amount of gasifiable organic carbon. Experimental results show how MBT allowed for a reduction of the non-methanogenic phase and of the landfill gas generation potential by, respectively, 67% and 83% (8 weeks treatment), 82% and 91% (15 weeks treatment), compared to the raw waste. The amount of gasified organic carbon after 8 weeks and 15 weeks of treatment was equal to 11.01+/-1.25kgC/t(MBTW) and 4.54+/-0.87kgC/t(MBTW), respectively, that is 81% and 93% less than the amount gasified from the raw waste. The values of gas generation rate constants obtained for MBTW anaerobic degradation (0.0347-0.0803y(-1)) resemble those usually reported for the slowly and moderately degradable fractions of raw MSW. Simulations performed using a prediction model support the hypothesis that due to the low production rate, gas production from MBTW landfills is well-suited to a passive management strategy. PMID:18954969

  9. Evaluation of the Soil-Gas Survey at the Nonradioactive Dangerous Waste Landfill

    International Nuclear Information System (INIS)

    Soil-gas samples were collected from six shallow probes (1.8 m deep) and 33 deep probes(8.8 to 29.7 m deep) at the Nonradioactive Dangerous Waste Landfill (NRDWL) to (1) assess the current distribution and potential movement of volatile organic compounds (VOC) in the vadose zone and (2) reaffirm the current priority for closure of NRDWL. The sampling locations focused on the eastern half of NRDWL, where VOCs were detected in a 1993 soil-gas survey. Six VOCs were detected during the 1997 survey: 1,1,1-trichloroethane (TCA);1,1-dichloroethane (DCA), tetrachloroethylene, trichloroethylene, carbon tetrachloride, andchloroform. Of these contaminants, TCA was the most widespread and detected in all but one of the samples from the deep probes at concentrations less than 1 part per million by volume (ppmv); however, TCA was not detected in the samples from the shallow probes. Carbontetrachloride and chloroform were the only contaminants detected at concentrations exceeding 1 ppmv; in samples from two adjacent locations (one shallow and two deep probes), concentrations ranged from 20 to 46 ppmv. All of the same contaminants, except DCA, were detected in the 1993 survey. Evaluation of the 1997 soil-gas results indicates that the potential risk at NRDWL is low compared to the potential risks associated with other 200 Area waste sites and does not merit changing the current priorities for closure

  10. Enhancement of methane production and bio-stabilisation of municipal solid waste in anaerobic bioreactor landfill.

    Science.gov (United States)

    Mali Sandip, T; Khare Kanchan, C; Biradar Ashok, H

    2012-04-01

    The aim of the experiment was to enhance biodegradation and methane production of municipal solid waste (MSW). Two groups of simulated anaerobic bioreactor landfill were used; one group of mixed MSW with three bioreactors (R1, R2 and R3) and second group was compostable MSW with two bioreactors (R4 and R5). The different combinations of operational parameters were aeration with addition of aerobic microbial culture, anaerobic sludge, coarse gravel mixing, intermediate soil cover and varied leachate recirculation rate. The results observed at the end of 270days prevail that the process combination of above operational parameters adopted in compostable MSW bioreactor was more efficient approach for stabilization of MSW. It has accelerated the methane production rate (141.28Lkg(-1)dry waste) by 25%. It was also observed that the degradation time of MSW was reduced by 25% compared to maximum values quoted in the literature. The nonlinear regression of the cumulative biogas production and digestion time shows that Gompertz growth equation fits the results well. PMID:22342079

  11. Characterization of char derived from various types of solid wastes from the standpoint of fuel recovery and pretreatment before landfilling

    International Nuclear Information System (INIS)

    Carbonization is a kind of pyrolysis process to produce char from organic materials under an inert atmosphere. In this work, chars derived from various solid wastes were characterized from the standpoint of fuel recovery and pretreatment of waste before landfilling. Sixteen kinds of municipal and industrial solid wastes such as residential combustible wastes, non-combustible wastes, bulky wastes, construction and demolition wastes, auto shredder residue, and sludges were carbonized at 500 deg. C for 1 h under nitrogen atmosphere. In order to evaluate the quality of char as fuel, proximate analysis and heating value were examined. The composition of raw waste had a significant influence on the quality of produced char. The higher the ratio of woody biomass in waste, the higher heating value of char produced. Moreover, an equation to estimate heating value of char was developed by using the weight fraction of fixed carbon and volatile matter in char. De-ashing and chlorine removal were performed to improve the quality of char. The pulverization and sieving method seems to be effective for separation of incombustibles such as metal rather than ash. Most char met a 0.5 wt% chlorine criterion for utilization as fuel in a shaft blast furnace after it was subjected to repeated water-washing. Carbonization could remove a considerable amount of organic matter from raw waste. In addition, the leaching of heavy metals such as chrome, cadmium, and lead appears to be significantly suppressed by carbonization regardless of the type of raw waste. From these results, carbonization could be considered as a pretreatment method for waste before landfilling, as well as for fuel recovery

  12. Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE).

    Science.gov (United States)

    Xing, Wei; Lu, Wenjing; Zhao, Yan; Zhang, Xu; Deng, Wenjing; Christensen, Thomas H

    2013-02-01

    In some arid regions where landfill produces minimal amount of leachate, leachate recirculation is suggested as a cost-effective option. However, its long-term impacts to environment remain disputed. For the purpose of revealing the environmental impacts of leachate recirculation in landfill, four scenarios were modeled using EASEWASTE, comparing the strategies of leachate recirculation (with or without gas management), evaporation and discharge. In the current situation (Scenario A), a total of 280 t of waste was generated and then transported to a conventional landfill for disposal. A number of contaminants derived from waste can be stored in the landfill for long periods, with 11.69 person equivalent (PE) for stored ecotoxicity in water and 29.62 PE for stored ecotoxicity in soil, considered as potential risks of releasing to the environment someday. Meanwhile, impacts to ecotoxicity and human toxicity in surface water, and those to groundwater, present relatively low levels. In Scenario B, leachate evaporation in a collecting pool has minimal impacts on surface water. However, this strategy significantly impacts groundwater (1055.16 PE) because of the potential infiltration of leachate, with major contaminants of As, ammonia, and Cd. A number of ions, such as Cl(-), Mg(2+), and Ca(2+), may also contaminate groundwater. In Scenario C, the direct discharge of leachate to surface water may result in acidification (2.71 PE) and nutrient enrichment (2.88 PE), primarily attributed to soluble ammonia in leachate and the depositional ammonia from biogas. Moreover, the direct discharge of leachate may also result in ecotoxicity and human toxicity via water contaminated by heavy metals in leachate, with 3.96 PE and 11.64 PE respectively. The results also show that landfill gas is the main contributor to global warming and photochemical ozone formation due to methane emission. In Scenario D, landfill gas flaring was thus be modeled and proven to be efficient for reducing

  13. Aerobic landfill bioreactor

    Science.gov (United States)

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  14. Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE)

    DEFF Research Database (Denmark)

    Xing, Wei; Lu, Wenjing; Zhao, Yan;

    2013-01-01

    of contaminants derived from waste can be stored in the landfill for long periods, with 11.69 person equivalent (PE) for stored ecotoxicity in water and 29.62 PE for stored ecotoxicity in soil, considered as potential risks of releasing to the environment someday. Meanwhile, impacts to ecotoxicity and human...... scenarios were modeled using EASEWASTE, comparing the strategies of leachate recirculation (with or without gas management), evaporation and discharge. In the current situation (Scenario A), a total of 280t of waste was generated and then transported to a conventional landfill for disposal. A number...... toxicity in surface water, and those to groundwater, present relatively low levels. In Scenario B, leachate evaporation in a collecting pool has minimal impacts on surface water. However, this strategy significantly impacts groundwater (1055.16 PE) because of the potential infiltration of leachate...

  15. Surface emission of volatile organic compounds(VOC) from a closed industrial waste landfill

    OpenAIRE

    Gallego Piñol, Eva; Perales Lorente, José Francisco; Roca Mussons, Francisco Javier; Guardino, X.

    2013-01-01

    Closed landfills can be a source of VOC and odorous nuisances to their atmospheric surroundings. A self-designed cylindrical air flux chamber was used to measure VOC surface emissions in a closed industrial landfill located in Cerdanyola del Vallès, Catalonia, Spain. The two main objectives of the study were the evaluation of the performance of the chamber setup in typical measurement conditions and the determination of the emission rates of 60 different VOC from that industrial landfill, gen...

  16. Hazard ranking systems for chemical wastes and chemical waste sites

    International Nuclear Information System (INIS)

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system

  17. Environmental assessment for the construction, operation, and closure of the solid waste landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    International Nuclear Information System (INIS)

    DOE has prepared an environmental assessment (EA) for the proposed construction, operation, and closure of a Solid Waste Landfill (SWL) that would be designed in accordance with Commonwealth of Kentucky landfill regulations (401 Kentucky Administrative Regulations Chapters 47 and 48 and Kentucky Revised Statutes 224.855). PGDP produces approximately 7,200 cubic yards per year of non-hazardous, non-radioactive solid waste currently being disposed of in a transitional contained (residential) landfill cell (Cell No. 3). New Kentucky landfill regulations mandate that all existing landfills be upgraded to meet the requirements of the new regulations or stop receiving wastes by June 30, 1995. Cell No. 3 must stop receiving wastes at that time and be closed and capped within 180 days after final receipt of wastes. The proposed SWL would occupy 25 acres of a 60-acre site immediately north of the existing PGDP landfill (Cell No. 3). The EA evaluated the potential environmental consequences of the proposed action and reasonable alternative actions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action which will significantly affect the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), 42 USC 4321 et seq. Therefore, it is determined that an environmental impact statement will not be prepared, and DOE is issuing this FONSI

  18. Situation and perspectives in the treatment of mining, municipal and hazardous waste and drainage water out of the landfills

    OpenAIRE

    Risteski, Igor

    2012-01-01

    This thesis was originally described to the increased amounts of waste in our country and the world with today's technological development where the chemical composition of waste is complex, so that more waste endangers human health and the environment. We described the classification of wastes according to the type of waste and place of creation. I give a brief review and votes of the current state of management of wastes in the Republic Macedonia. What I will emphasize the most shall be:...

  19. Landfills, Hazardous Waste - WASTE_INDUSTRIAL_IDEM_IN: Industrial Waste Sites in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_INDUSTRIAL_IDEM_IN is a point shapefile that contains industrial waste site locations in Indiana, provided by personnel of Indiana Department of Environmental...

  20. Working Group “Violet”. Refused-Derived Fuel from Municipal Solid Waste to reduce landfills (REFREsh DANUBE)

    OpenAIRE

    Kišjuhas, Aleksej; Kodnik, Danijela; Shkreli, Eltjana; Torboli, Valentina; Udrea, Ana-Maria; Žabar, Romina

    2014-01-01

    The REFREsh Danube project aims to reduce the landfilled amount of municipal solid waste, which is a source of water and soil pollution, by its use as refuse-derived fuel in the cement industry of Novi Sad (Serbia). The main actors involved are Lafarge Beočin Cement Factory, Municipality of Novi Sad, JPK Čistoća (waste-management company) and experts from interdisciplinary fields. The project addresses societal challenges on climate change, air, water and soil pollution as well as using the m...

  1. Affinity of titanium dioxide nanoparticles for sodium montmorillonite clay: Implications for disposal in municipal solid waste landfills

    Science.gov (United States)

    Harns, Carrie

    Manufactured nanomaterials are used in a diverse array of commercially available products. Like other consumer goods, a portion of manufactured nano-products will enter municipal solid waste (MSW) landfills. Currently there is little information on the behavior and fate of engineered nanomaterials in MSW landfills and thus we do not know if current landfill designs are suitable for engineered nanomaterials. Of great consequence is understanding how nanomaterials will interact with clays, as they are integral components of composite liner systems. The overall objectives were to determine the affinity of titanium dioxide (TiO2) nanomaterials for montmorillonite as a function of solution chemistry and evaluate the mobility of TiO2 nanomaterials across clay barriers. It was observed that under favorable electrostatic conditions, TiO2 will heteroaggregate with montmorillonite, and TiO2-montmorillonite suspensions will remain stable under unfavorable electrostatic conditions. Additionally, it was observed that under simplified landfill leachate conditions, the clay barrier retained TiO2.

  2. GIS-based multicriteria municipal solid waste landfill suitability analysis: a review of the methodologies performed and criteria implemented.

    Science.gov (United States)

    Demesouka, O E; Vavatsikos, A P; Anagnostopoulos, K P

    2014-04-01

    Multicriteria spatial decision support systems (MC-SDSS) have emerged as an integration of the geographical information systems (GIS) and multiple criteria decision analysis (MCDA) methods. GIS-based MCDA allows the incorporation of conflicting objectives and decision maker (DM) preferences into spatial decision models. During recent decades, a variety of research articles have been published regarding the implementation of methods and/or tools in a variety of real-world case studies. The article discusses, in detail, the criteria and methods that are implemented in GIS-based landfill siting suitability analysis and especially the exclusionary and non-exclusionary criteria that can be considered when selecting sites for municipal solid waste (MSW) landfills. This paper reviews 36 seminal articles in which the evaluation of candidate landfill sites is conducted using MCDA methods. After a brief description of the main components of a MC-SDSS and the applied decision rules, the review focuses on the criteria incorporated into the decision models. The review provides a comprehensive guide to the landfill siting analysis criteria, providing details regarding the utilization methods, their decision or exclusionary nature and their monotonicity.

  3. Hydrogeological characterization and qualitative aspects of underground water at the solid waste landfill in “Vale Do Aço”, State of Mina Gerais

    Directory of Open Access Journals (Sweden)

    José Augusto Costa Gonçalves

    2009-12-01

    Full Text Available Transformation of matter and production of solid waste are part of human life and activities. One of the most adequate waste disposal is the solid waste landfill. All decomposing processes of waste culminate in production of leachate with high potential of pollution. Hence, the aim of this study was to monitor the water quality of the water table in a solid waste landfill located in “Vale do Aço”, State of Minas Gerais, Brazil. The parameters observed were: pH, total nitrogen (mgL-1, total suspended solids (mgL-1, total phosphorus (mgL-1, total coliforms (CFU and fecal coliforms (CFU. Two sampling campaigns were performed in four observation wells present at the solid waste landfill. These samplings included the dry and rainy seasons. All the parameters analysed have presented small variation on their values. Neither fecal coliforms nor total coliforms were registered at any of the sampling sites. The results were compared to the already estabilished quality patterns and to previews results obtained before the activation of this new solid waste landfill. The results showed a good quality of groundwater in the area of the landfill in Vale do Aço, based on the parameters measured, which demonstrates the efficiency of the waterproofing system.

  4. Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

    Energy Technology Data Exchange (ETDEWEB)

    Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

    2011-02-02

    The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

  5. Greenhouse gas emissions from two-stage landfilling of municipal solid waste

    Science.gov (United States)

    Zhang, Yuanyuan; Yue, Dongbei; Nie, Yongfeng

    2012-08-01

    Simulations were conducted to investigate greenhouse gas emissions from aerobic pretreatment and subsequent landfilling. The flows in carbon balance, such as gas, leachate, and solid phases, were considered in the simulations. The total amount of CO2 eq. decreased as organic removal efficiency (ORE) increased. At ORE values of 0, 0.30, 0.41, and 0.54, the total amounts of CO2 eq. were 2614, 2326, 2075, and 1572 kg CO2 eq. per one ton dry matter, respectively; gas accounted for the main contribution to the total amount. The reduction in CO2 eq. from leachate was the primary positive contribution, accounting for 356%, 174%, and 100% of total reduction at ORE values of 0.30, 0.41, and 0.54, respectively. The CO2 eq. from energy consumption was the negative contribution to total reduction, but this contribution is considerably lower than that from gas. Aerobic pretreatment shortened the lag time of biogas production by 74.1-97.0%, and facilitated the transfer of organic carbon in solid waste from uncontrolled biogas and highly polluting leachate to aerobically generated CO2.

  6. Size charge fractionation of metals in municipal solid waste landfill leachate.

    Science.gov (United States)

    Oygard, Joar Karsten; Gjengedal, Elin; Røyset, Oddvar

    2007-01-01

    Municipal solid waste landfill leachates from 9 Norwegian sites were size charge fractionated in the field, to obtain three fractions: particulate and colloidal matter >0.45microm, free anions/non-labile complexes 0.45microm. Cr, Co and Ni were on the contrary present mostly as non-labile complexes (69-79%) 0.45microm. The particulate and colloidal matter >0.45microm was mainly inorganic; indicating that the metals present in this fraction were bound as inorganic compounds. The fractionation gives important information on the mobility and potential bioavailability of the metals investigated, in contrast to the total metal concentrations usually reported. To study possible changes in respective metal species in leachate in aerated sedimentation tanks, freshly sampled leachate was stored for 48h, and subsequently fractionated. This showed that the free heavy metals are partly immobilized during storage of leachate with oxygen available. The largest effects were found for Cd and Zn. The proportion of As and Cr present as particulate matter or colloids >0.45microm also increased.

  7. Landfilling: Environmental Issues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter

    2011-01-01

    Waste disposed of in a landfill is by its nature different from the material found in the surroundings of the landfill and thereby the landfill may potentially affect the surrounding environment. This may be in terms of attracting or repelling flora and fauna from the area and through the emission......, the extent and quality of the technical environmental protection measures introduced, the daily operation and the timescale. This chapter describes the main potential environmental impacts from landfills. The modern landfill is able to avoid most of these impacts. However, in the planning and design...

  8. Chemical aspects of nuclear waste treatment

    International Nuclear Information System (INIS)

    The chemical aspects of the treatment of gaseous, liquid, and solid wastes are discussed in overview. The role of chemistry and the chemical reactions in waste treatment are emphasized. Waste treatment methods encompass the chemistry of radioactive elements from every group of the periodic table. In most streams, the radioactive elements are present in relatively low concentrations and are often associated with moderately large amounts of process reagents, or materials. In general, it is desirable that waste treatment methods are based on chemistry that is selective for the concentration of radionuclides and does not require the addition of reagents that contribute significantly to the volume of the treated waste. Solvent extraction, ion exchange, and sorbent chemistry play a major role in waste treatment because of the high selectivity provided for many radionuclides. This paper deals with the chemistry of the onsite treatment methods that is typically used at nuclear installations and is not concerned with the chemistry of the various alternative materials proposed for long-term storage of nuclear wastes. The chemical aspects are discussed from a generic point of view in which the chemistry of important radionuclides is emphasized

  9. MICROBIAL POPULATIONS AND MOISTURE CONTENT IN A CONVENTIONALLY OPERATED MUNICIPAL SOLID WASTE LANDFILL

    Science.gov (United States)

    Landfills are not sterile environments. In fact it can be argued that they are the ultimate reactors for biodegradation as they contain nutrients, bacteria, and various redox conditions which, then, change over time. Enhancement of the landfill environment to optimize the rates o...

  10. EFFECT OF SEALED MUNICIPAL WASTE LANDFILL ON THE QUALITY OF UNDERGROUND WATER

    Directory of Open Access Journals (Sweden)

    Elżbieta Halina Grygorczuk-Petersons

    2016-01-01

    Full Text Available The aim of the study was to evaluate the impact of the landfill on the groundwater environment. The assessment of water status in the region of landfill sealed with a layer of clay with a thickness of 0.5 m, was based on the own research and monitoring received from the municipal office, and conducted in 2007–2010. Waters flowing out of the landfill revealed an increase in pollution indicators such as: total organic carbon (TOC, concentrations of PAHs and heavy metals including zinc, cadmium, and chromium. It was demonstrated that the landfill sealed with a clay layer does not reduce the outflow of leachate to groundwater, but also that the purity of these waters is influenced by increased agricultural activity in the areas adjacent to the landfill.

  11. Development of sustainable waste management toward zero landfill waste for the petrochemical industry in Thailand using a comprehensive 3R methodology: A case study.

    Science.gov (United States)

    Usapein, Parnuwat; Chavalparit, Orathai

    2014-06-01

    Sustainable waste management was introduced more than ten years ago, but it has not yet been applied to the Thai petrochemical industry. Therefore, under the philosophy of sustainable waste management, this research aims to apply the reduce, reuse, and recycle (3R) concept at the petrochemical factory level to achieve a more sustainable industrial solid waste management system. Three olefin plants in Thailand were surveyed for the case study. The sources and types of waste and existing waste management options were identified. The results indicate that there are four sources of waste generation: (1) production, (2) maintenance, (3) waste treatment, and (4) waste packaging, which correspond to 45.18%, 36.71%, 9.73%, and 8.37% of the waste generated, respectively. From the survey, 59 different types of industrial wastes were generated from the different factory activities. The proposed 3R options could reduce the amount of landfill waste to 79.01% of the amount produced during the survey period; this reduction would occur over a period of 2 years and would result in reduced disposal costs and reduced consumption of natural resources. This study could be used as an example of an improved waste management system in the petrochemical industry. PMID:24824168

  12. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production.

    Science.gov (United States)

    Yazdani, Ramin; Barlaz, Morton A; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2012-05-01

    The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3MWh, or 46kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  13. Comparison of different physico-chemical methods for the removal of toxicants from landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Cotman, Magda, E-mail: magda.cotman@ki.si [National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana (Slovenia); Zgajnar Gotvajn, Andreja [University of Ljubljana, Faculty of Chemistry and Chemical Technology (Slovenia)

    2010-06-15

    Our work was focused on investigation of different treatment procedures for the removal of toxic fractions from a landfill leachate, because sometimes the existing treatment in biological sequencing batch reactor (SBR) is not efficient enough, leading to a hazardous environmental impact of the present persistent and toxic compounds. The efficiency of the procedures used was monitored by chemical analyses and two toxicity tests (activated sludge and Vibrio fischeri). The existing SBR (HRT = 1.9 days) removed 46-78% of COD and 96-73% of NH{sub 4}{sup +}-N. Experiments were conducted with three landfill leachate samples expressing significant difference in concentrations of pollutants and with low BOD{sub 5}/COD ratio (0.06/0.01/0.03). The applied methods were air stripping, adsorption to activated carbon and zeolite clinoptilolite and Fenton oxidation. Air stripping at pH 11 was a viable treatment option for the removal of ammonia nitrogen (up to 94%) and reduction of toxicity to microorganisms. In the adsorption experiments in batch system with different concentration of PAC the most effective was the highest addition (50.0 g L{sup -1}) where 63-92% of COD was removed followed by significant reduction in toxicity to V. fischeri. In the column experiments with clinoptilolite 45/93/100% of NH{sub 4}{sup +}-N as well as 25/32/39% of COD removal was attained. The removal efficiency for metals followed the sequence Cr > Zn > Cd > Ni. The procedure with zeolite was the second most efficient one regarding reduction of toxicity to both organisms. Fenton oxidation at molar ratio Fe{sup 2+}:H{sub 2}O{sub 2} = 1.0:10.0 assured 70-85% removal of COD but it only slightly reduced the toxicity.

  14. Instructive of chemical residues waste administration

    International Nuclear Information System (INIS)

    An instructive is established for the waste management system of chemical residues generated at the Universidad de Costa Rica, ensuring the collection, separation, transportation, reuse, recycling and final disposal. The laboratory waste management system is conditioned to the volume and type of waste generated. The respective procedures are listed in data sheets according to the corresponding model: avoid, reduce, recycle, treat, delete. The materials are identified as: expired products, materials or damaged products, substances that have lost some of the required characteristics, waste from the regular activities of the lab, unused products that now no longer used because they are considered inadequate. The chemicals reagents or hazardous are transformed into small amounts of derivatives safe products, or less hazardous, to allow for removal or to pick up a spill of these without problem

  15. Chemical compatibility of DWPF canistered waste forms

    International Nuclear Information System (INIS)

    The Waste Acceptance Preliminary Specifications (WAPS) require that the contents of the canistered waste form are compatible with one another and the stainless steel canister. The canistered waste form is a closed system comprised of a stainless steel vessel containing waste glass, air, and condensate. This system will experience a radiation field and an elevated temperature due to radionuclide decay. This report discusses possible chemical reactions, radiation interactions, and corrosive reactions within this system both under normal storage conditions and after exposure to temperatures up to the normal glass transition temperature, which for DWPF waste glass will be between 440 and 460 degrees C. Specific conclusions regarding reactions and corrosion are provided. This document is based on the assumption that the period of interim storage prior to packaging at the federal repository may be as long as 50 years

  16. De minimis concepts in radioactive waste disposal. Considerations in defining de minimis quantities of solid radioactive waste for uncontrolled disposal by incineration and landfill

    International Nuclear Information System (INIS)

    This document deals with recommendations addressed to those national authorities wishing to dispose of low level radioactive waste into the terrestrial environment, on how de minimis levels or quantities can be derived. The only radioactive materials covered here are declared solid radioactive wastes of very low activity which are controlled up to the point where deliberate control is lost, or wastes below a level that requires regulatory control. As regards the disposal sites, these wastes are not intended to be disposed of in fully controlled disposal facilities, such as repositories located in shallow land, rock cavities, etc. On the other hand, it is considered that these materials should not be disposed of in any place, but should be handled like other municipal wastes. Among the different techniques available, only two are considered in this document, namely a sanitary landfill facility, and an urban incineration plant

  17. Emissions of organo-metal compounds via the leachate and gas pathway from two differently pre-treated municipal waste materials - A landfill reactor study

    International Nuclear Information System (INIS)

    Due to their broad industrial production and use as PVC-stabilisers, agro-chemicals and anti-fouling agents, organo-metal compounds are widely distributed throughout the terrestrial and marine biogeosphere. Here, we focused on the emission dynamics of various organo-metal compounds (e.g., di,- tri-, tetra-methyl tin, di-methyl mercury, tetra-methyl lead) from two different kinds of pre-treated mass waste, namely mechanically-biologically pre-treated municipal solid waste (MBP MSW) and municipal waste incineration ash (MWIA). In landfill simulation reactors, the emission of the organo-metal compounds via the leachate and gas pathway was observed over a period of 5 months simulating different environmental conditions (anaerobic with underlying soil layer/aerated/anaerobic). Both waste materials differ significantly in their initial amounts of organo-metal compounds and their environmental behaviour with regard to the accumulation and depletion rates within the solid material during incubation. For tri-methyl tin, the highest release rates in leachates were found in the incineration ash treatments, where anaerobic conditions in combination with underlying soil material significantly promoted its formation. Concerning the gas pathway, anaerobic conditions considerably favour the emission of organo-metal compounds (tetra-methyl tin, di-methyl mercury, tetra-methyl lead) in both the MBP material and especially in the incineration ash

  18. Landfill leachate treatment in assisted landfill bioreactor

    Institute of Scientific and Technical Information of China (English)

    HE Pin-jing; QU Xian; SHAO Li-ming; LEE Duu-jong

    2006-01-01

    Landfill is the major disposal route of municipal solid waste(MSW) in most Asian countries. Leachate from landfill presents a strong wastewater that needs intensive treatment before discharge. Direct recycling was proposed as an effective alternative for leachate treatment by taking the landfill as a bioreactor. This process was proved not only considerably reducing the pollution potential of leachate, but also enhancing organic degradation in the landfill. However, as this paper shows, although direct leachate recycling was effective in landfilled MSW with low food waste fraction (3.5%, w/w), it failed in MSW containing 54% food waste, as normally noted in Asian countries. The initial acid stuck would inhibit methanogenesis to build up, hence strong leachate was yielded from landfill to threaten the quality of receiving water body. We demonstrated the feasibility to use an assisted bioreactor landfill, with a well-decomposed refuse layer as ex-situ anaerobic digester to reducing COD loading in leachate. By doing so, the refuse in simulated landfill column (2.3 m high) could be stabilized in 30 weeks while the COD in leachate reduced by 95%(61000 mg/L to 3000 mg/L). Meanwhile, the biogas production was considerably enhanced, signaling by the much greater amount and much higher methane content in the biogas.

  19. Landfill leachate treatment in assisted landfill bioreactor.

    Science.gov (United States)

    He, Pin-Jing; Qu, Xian; Shao, Li-Ming; Lee, Duu-Jong

    2006-01-01

    Landfill is the major disposal route of municipal solid waste (MSW) in most Asian countries. Leachate from landfill presents a strong wastewater that needs intensive treatment before discharge. Direct recycling was proposed as an effective alternative for leachate treatment by taking the landfill as a bioreactor. This process was proved not only considerably reducing the pollution potential of leachate, but also enhancing organic degradation in the landfill. However, as this paper shows, although direct leachate recycling was effective in landfilled MSW with low food waste fraction (3.5%, w/w), it failed in MSW containing 54% food waste, as normally noted in Asian countries. The initial acid stuck would inhibit methanogenesis to build up, hence strong leachate was yielded from landfill to threaten the quality of receiving water body. We demonstrated the feasibility to use an assisted bioreactor landfill, with a well-decomposed refuse layer as ex-situ anaerobic digester to reducing COD loading in leachate. By doing so, the refuse in simulated landfill column (2.3 m high) could be stabilized in 30 weeks while the COD in leachate reduced by 95% (61000 mg/L to 3000 mg/L). Meanwhile, the biogas production was considerably enhanced, signaling by the much greater amount and much higher methane content in the biogas. PMID:20050569

  20. Effect of increasing salinity on biogas production in waste landfills with leachate recirculation: A lab-scale model study

    Directory of Open Access Journals (Sweden)

    Yuka Ogata

    2016-06-01

    Full Text Available The effects of salinity on anaerobic waste degradation and microbial communities were investigated, in order to propose an appropriate leachate recirculation process in a waste landfill in a tropical region. A salt concentration of 21 mS cm−1 of electrical conductivity (EC did not affect waste degradation, but a salt concentration of 35 mS cm−1 of EC inhibited CH4 generation. A higher salt concentration of 80 mS cm−1 of EC inhibited not only CH4 and CO2 generation, but also degradation of organic compounds. The bacterial and archaeal community compositions were affected by high salinity. High salinity can exert selective pressure on bacterial communities, resulting in a change in bacterial community structure. Ammonium caused strong, dominant inhibition of biogas production in the salt concentration range of this study. Quality control, especially of ammonium levels, will be essential for the promotion of waste biodegradation in landfills with leachate recirculation.

  1. Stabilization of organic matter and nitrogen immobilization during mechanical-biological treatment and landfilling of residual municipal solid waste

    International Nuclear Information System (INIS)

    Synthesis of humic substances and nitrogen immobilization during mechanical-biological treatment of waste and the behavior of biologically stabilized waste under anaerobic landfill conditions were investigated. Samples were taken from a large-scale treatment plant. Anaerobic conditions were simulated in lab scale test cells. Humic substances were analyzed photometrically and gravimetrically. The nitrogen immobilization was investigated by sequential leaching tests and by analyzing the non acid hydrolyzable nitrogen. Humic acids were mainly synthesized during the beginning of the intensive rotting phase. Later on in the process no significant changes occurred. The humic acid content rose up to 6,8 % DS org. It correlated well with the stability parameters respiration activity and accumulated gas production. In the coarse of the treatment the nitrogen load emitted during the consecutive leaching tests dropped from 50 % down to less than 20 % total nitrogen. The non acid hydrolyzable nitrogen rose from 17 up to 42 % Kjeldahl nitrogen content. Nevertheless the mechanical-biological treatment is not significantly shortening the aftercare period of a landfill concerning liquid nitrogen emissions. The reduced nitrogen emission potential is released more slowly. When reactive waste material was exposed to anaerobic conditions, humic and fulvic acids were synthesized up to the point when intensive gas production started and then were remineralized. Stabilized waste materials after treatment of various intensity behaved differently under anaerobic conditions. Steady and decreasing humic acid contents were observed. (author)

  2. Batch test assessment of waste-to-energy combustion residues impacts on precipitate formation in landfill leachate collection systems.

    Science.gov (United States)

    Cardoso, Antonio J; Levine, Audrey D; Rhea, Lisa R

    2008-01-01

    Disposal practices for bottom ash and fly ash from waste-to-energy (WTE) facilities include emplacement in ash monofills or co-disposal with municipal solid waste (MSW) and residues from water and wastewater treatment facilities. In some cases, WTE residues are used as daily cover in landfills that receive MSW. A recurring problem in many landfills is the development of calcium-based precipitates in leachate collection systems. Although MSW contains varying levels of calcium, WTE residues and treatment plant sludges have the potential to contribute concentrated sources of leachable minerals into landfill leachates. This study was conducted to evaluate the leachability of calcium and other minerals from residues generated by WTE combustion using residues obtained from three WTE facilities in Florida (two mass-burn and one refuse-derived fuel). Leaching potential was quantified as a function of contact time and liquid-to-solid ratios with batch tests and longer-term leaching tests using laboratory lysimeters to simulate an ash monofill containing fly ash and bottom ash. The leachate generated as a result of these tests had total dissolved solid (TDS) levels ranging from 5 to 320 mg TDS/g ash. Calcium was a major contributor to the TDS values, contributing from 20 to 105 g calcium/kg ash. Fly ash was a major contributor of leachable calcium. Precipitate formation in leachates from WTE combustion residues could be induced by adding mineral acids or through gas dissolution (carbon dioxide or air). Stabilization of residual calcium in fly ashes that are landfilled and/or the use of less leachable neutralization reagents during processing of acidic gases from WTE facilities could help to decrease the calcium levels in leachates and help to prevent precipitate formation in leachate collection systems. PMID:18236791

  3. UV—Catalytic Treatment of Municipal Solid—Waste Landfill Leachate with Hydrogen Peroxide and Ozone Oxidation

    Institute of Scientific and Technical Information of China (English)

    TahirImranQURESHI; Hong-TaeKIM; 等

    2002-01-01

    Theperformance of UV/H2O2,UV/O3,and UV/H2O2/O3 oxidation systems for the treatment of municipal solid-waste landfill leachate was investigated. Main objective of the experiment was to remove total organic carbon(TOC),non-biodegradable organic compounds (NBDOC) and color.In UV/H2O2 oxidation experiment, with the increase of H2O2 dosage,removal efficiencies of TOC and color along with the ratio of biochemical oxygen demand(BOD) to chemical oxygen demand (COD) of the effluent were increased and a better performance was obtained than the system H2O2 alone. In UV/H2O2 oxidation,under the optimum condition H2O2(0.2time),removal efficiencies of TOC and color were 78.9% and 95.5%, respectively,and BOD/COD ratio was significantly increased from 0.112 to 0.366.In UV/O3 oxidation,with the increase of O3 dosage,removal efficiencies of TOC and color along with BOD/COD ratio of the effluent were increased and a beter performance was obtained than the system O3 alone.Under the optimum condition UV/O3(50mg·min-1),removal efficiencies of TOC and color were 61.0% and 87.2%,respectively,and BOD/COD ratio was significantly increased from 0.112 to 0.323. In UV/H2O2/O3 system,color removal and BOD/COD ratio were improved further and TOC removal efficiency was found to be 30.4% higher than the system UV/O3 without H2O2.

  4. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong

    International Nuclear Information System (INIS)

    The burgeoning of municipal solid waste (MSW) disposal issue and climate change have drawn massive attention from people. On the one hand, Hong Kong is facing a controversial debate over the implementation of proposed landfill extension (LFE) and advanced incineration facility (AIF) to curb the MSW disposal issue. On the other hand, the Hong Kong Special Administrative Region Government is taking concerted efforts to reduce the carbon intensity in this region. This paper discusses the greenhouse gas (GHG) emissions from four proposed waste disposal scenarios, covering the proposed LFE and AIF within a defined system boundary. On the basis of the data collected, assumptions made, and system boundary defined in this study, the results indicate that AIF releases less GHG emissions than LFE. The GHG emissions from LFE are highly contributed by the landfill methane (CH4) emissions but offset by biogenic carbon storage, while the GHG emissions from AIF are mostly due to the stack discharge system but offset by the energy recovery system. Furthermore, parametric sensitivity analyses show that GHG emissions are strongly dependent on the landfill CH4 recovery rate, types of electricity displaced by energy recovery systems, and the heating value of MSW, altering the order of preferred waste disposal scenarios. This evaluation provides valuable insights into the applicability of a policy framework for MSW management practices in reducing GHG emissions. Highlights: • AIF is better than LFE with regard to GHG emissions in Hong Kong. • Major individual sub-processes of LFE and AIF for GHG emissions are investigated. • GHG emissions for LFE and AIF are strongly dependent on studied parametric sensitivity analyses. • Findings are valuable for sustainable MSW management and GHG reductions in waste sector

  5. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Woon, K.S.; Lo, Irene M.C., E-mail: cemclo@ust.hk

    2013-08-01

    The burgeoning of municipal solid waste (MSW) disposal issue and climate change have drawn massive attention from people. On the one hand, Hong Kong is facing a controversial debate over the implementation of proposed landfill extension (LFE) and advanced incineration facility (AIF) to curb the MSW disposal issue. On the other hand, the Hong Kong Special Administrative Region Government is taking concerted efforts to reduce the carbon intensity in this region. This paper discusses the greenhouse gas (GHG) emissions from four proposed waste disposal scenarios, covering the proposed LFE and AIF within a defined system boundary. On the basis of the data collected, assumptions made, and system boundary defined in this study, the results indicate that AIF releases less GHG emissions than LFE. The GHG emissions from LFE are highly contributed by the landfill methane (CH{sub 4}) emissions but offset by biogenic carbon storage, while the GHG emissions from AIF are mostly due to the stack discharge system but offset by the energy recovery system. Furthermore, parametric sensitivity analyses show that GHG emissions are strongly dependent on the landfill CH{sub 4} recovery rate, types of electricity displaced by energy recovery systems, and the heating value of MSW, altering the order of preferred waste disposal scenarios. This evaluation provides valuable insights into the applicability of a policy framework for MSW management practices in reducing GHG emissions. Highlights: • AIF is better than LFE with regard to GHG emissions in Hong Kong. • Major individual sub-processes of LFE and AIF for GHG emissions are investigated. • GHG emissions for LFE and AIF are strongly dependent on studied parametric sensitivity analyses. • Findings are valuable for sustainable MSW management and GHG reductions in waste sector.

  6. Leachate characterization and identification of dominant pollutants using leachate pollution index for an uncontrolled landfill site

    OpenAIRE

    De, S.; Maiti, S.; Hazra, T.; A. Debsarkar; A. Dutta

    2016-01-01

    Landfill leachates are potential threats for environmental degradation. This study was conducted to determine the leachate quality, to identify the dominant pollutants and to evaluate the leachate pollution potential of an active and closed dumping ground of an uncontrolled municipal solid waste landfill site in Kolkata, India using leachate pollution index. The results of the physico-chemical and biological analyses of leachate indicated that landfill site was in its methanogenic phase. Amon...

  7. 城市垃圾填埋场沉降的力学模型研究%STUDY ON MECHANICAL MODEL OF SETTLEMENT IN MUNICIPAL SOLID WASTE LANDFILL

    Institute of Scientific and Technical Information of China (English)

    孙洪军; 梁力; 赵丽红; 王学志

    2009-01-01

    从城市垃圾填埋场沉降的机理出发,以经典力学中应力-应变之间的关系为基础,建立起城市垃圾填埋场在载荷、蠕变和生物降解耦合作用下沉降的力学模型,并分别确定在载荷、蠕变和生物降解作用下屈服表面应力增量的表达式.通过填埋场沉降的实例计算,该模型得到了较为满意的预测结果.%Landfill is a cost-effective method for urban waste disposal.Prediction of landfill settlement is the most essential issue in order to increase the municipal solid waste landfill capacity and improve the utilization of landfill.In this paper,a mechanical model of the settlement under the combined action of load,creep and biodegradation is proposed based on the settlement mechanism of municipal solid waste landfill and the relationship between stress and strain in classical mechanics.The expression of yield surface stress increment is obtained under load,creep and biodegradation.The example computed of landfill settlement shows that the model is satisfactory in forecasting.

  8. Landfill Top Covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2011-01-01

    The purpose of the final cover of a landfill is to contain the waste and to provide for a physical separation between the waste and the environment for protection of public health. Most landfill covers are designed with the primary goal to reduce or prevent infiltration of precipitation into the ......The purpose of the final cover of a landfill is to contain the waste and to provide for a physical separation between the waste and the environment for protection of public health. Most landfill covers are designed with the primary goal to reduce or prevent infiltration of precipitation...... is landscaped in order to fit into the surrounding area/environment or meet specific plans for the final use of the landfill. To fulfill the above listed requirements landfill covers are often multicomponent systems which are placed directly on top of the waste. The top cover may be placed immediately after......) and the requirement for protection of the local environment/situation (climatology, morphology, etc.). At modern landfills the cover system is only one of the environmental protection measures which often also include leachate and gas collection and subsequently treatment or recovery. At old abandoned landfills...

  9. Solid waste disposal in the soil: effects on the physical, chemical, and organic properties of soil

    Directory of Open Access Journals (Sweden)

    Vanessa Regina Lasaro Mangieri

    2015-04-01

    Full Text Available Currently, there is growing concern over the final destination of the solid waste generated by society. Landfills should not be considered the endpoint for substances contained or generated in solid waste. The sustainable use of natural resources, especially soil and water, has become relevant, given the increase in anthropogenic activities. Agricultural use is an alternative to solid waste (leachate, biosolid disposal, considering the hypothesis that the agricultural use of waste is promising for reducing waste treatment costs, promoting nutrient reuse and improving the physical and chemical conditions of soil. Thus, this literature review, based on previously published data, seeks to confirm or disprove the hypothesis regarding the promising use of solid waste in agriculture to decrease the environmental liability that challenges public administrators in the development of efficient management. The text below addresses the following subtopics after the introduction: current solid waste disposal and environmental issues, the use of solid waste in agriculture, and the effect on the physical and chemical properties of soil and on organic matter, ending with final considerations.

  10. Significance analysis of the leachate level in a solid waste landfill in a coastal zone using total water balance and slope stability alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Ja-Kong; Do, Nam-Young [Korea Advanced Institute of Science & Technology, Taejon (Korea, Republic of)

    1996-12-31

    The K site near Seoul began landfilling in 1992. The landfilled wastes include municipal solid waste (66.4%), construction residues (20.4%), water and wastewater sludges (trace levels), and hazardous waste (trace levels). The water content of the municipal solid waste is very high (47.3%); as a result, the leachate level (average E.L.) of the landfill, the design value of which is 7.0 m, was measured at 10.3 m in January 1995 and is increasing. The increase of leachate level in the landfill site causes a problem with slope stability. The leachate level at each disposal stage divided by the intermediate cover layer was calculated with the HELP (Hydrologic Evaluation of Landfill Performance) model and calibrated with the data measured from February 1993 to June 1995. Also, the hydraulic conductivities of the waste layer and the intermediate cover layer in each stage were calibrated continuously with HELP model analysis. To verify these results, the total water balance in the landfill site was calculated using the infiltration rate calculated from HELP modeling. The leachate level was E.L. 10.0 m, which was close to the measured leachate level. To estimate the change of the leachate level in the future, the total water balances with different leachate discharge rates of 3,000, 3,500, and 5,000 m{sup 3}/day were analyzed. When the leachate discharge rate was 5,000 ton/day and the initial water content was decreased below 25%, the average leachate level was 10.8 m. This result satisfies the safety factor requirements (=1.3) for landfill slope stability. 4 refs., 8 figs., 1 tab.

  11. Chemicals and Allied Products Waste Treatment

    Directory of Open Access Journals (Sweden)

    Yung-Tse Hung

    2011-06-01

    Full Text Available A review of the literature published from 2008 to 2010 on topics related to chemicals and allied products is presented. The review considered several sections such as waste management, physicochemical treatment, aerobic treatment, anaerobic treatment, air emissions, soils and groundwater, and reuse.

  12. Association of trace elements with colloidal fractions in leachates from closed and active municipal solid waste landfills

    International Nuclear Information System (INIS)

    Leachates from two Czech municipal solid waste (MSW) landfills (closed site and active site) were size-fractionated using the cascade frontal filtration/ultrafiltration procedure with filter cut-offs of 3 μm, 0.8 μm, 0.45 μm, 0.1 μm, 10 kDa and 1 kDa. To evaluate the binding of trace elements to colloidal particles, the filtrates were analyzed for major compounds (FAAS, ICP-OES and HPLC) and trace elements (ICP-MS) and the obtained elemental patterns were statistically evaluated. Transmission electron microscopy (TEM) indicated that the colloids were mostly inorganic, mainly composed of carbonates and clays. Characteristic features of the behaviour of trace elements and the main compounds were more pronounced at the active landfill site. Amongst the main compounds, only Fe and Ca decrease significantly and have similar patterns to numerous trace elements, indicating their capture by colloidal particles (at least 25%). Arsenic, Se and Rb exhibit zero or negligible decrease in concentration in the leachate during the filtration procedure. This fact indicates their particularly high mobility, which should be considered in preventing the flux of harmful compounds from landfill systems.

  13. Leachate and Pollution Levels of Heavy Metals in the Groundwater near Municipal Solid Waste Landfill Site of Mashhad, Iran

    Directory of Open Access Journals (Sweden)

    Borhan Mansouri

    2014-06-01

    Full Text Available Background: The purpose of this study is to investigate the concentration of metals (lead, cadmium, chromium, copper, and nickel in the landfill leachate and heavy metals in wells downstream of municipal solid waste landfill site in the city of Mashhad. Methods: In both winter and summer seasons in 2009 samples were collected from five wells that were in landfill downstream in Mashhad. Results: Among heavy metals, nickel concentration in summer and lead concentration in winter had the highest levels. The results showed that the mean concentration of heavy metals in the studied wells was below the national standards of drinking water of Iran, WHO, and the United States. Pearson correlation coefficients also indicated that there was a significant correlation among the studied metals in the wells. Conclusion: Cd and Cu concentrations in all of the wells (except Pb in winter and Ni in summer did not pose any significant water quality problems since these concentrations were below the standards acceptable levels of drinking water.

  14. Alternative treatment for septic tank sludge: co-digestion with municipal solid waste in bioreactor landfill simulators.

    Science.gov (United States)

    Valencia, R; den Hamer, D; Komboi, J; Lubberding, H J; Gijzen, H J

    2009-02-01

    Co-disposal of septic tank sludge had a positive effect on the municipal solid waste (MSW) stabilisation process in Bioreactor Landfill simulators. Co-disposal experiments were carried out using the Bioreactor Landfill approach aiming to solve the environmental problems caused by indiscriminate and inadequate disposal of MSW and especially of septic tank sludge. The simulator receiving septic tank sludge exhibited a 200 days shorter lag-phase as compared to the 350 days required by the control simulator to start the exponential biogas production. Additionally, the simulator with septic sludge apparently retained more moisture (>60% w/w), which enhanced the overall conversion of organic matter hence increasing the biogas production (0.60 m3 biogas kg(-1)VS(converted)) and removal efficiency of 60% for VS from the simulator. Alkaline pH values (pH>8.5) did not inhibit the biogas production; moreover it contributed to reduce partially the negative effects of NH(4)(+) (>2 g L(-1)) due to NH(3) volatilisation thus reducing the nitrogen content of the residues. Associated risks and hazards with septage disposal were practically eliminated as total coliform and faecal coliform contents were reduced by 99% and 100%, respectively at the end of the experiment. These results indicate that co-disposal has two direct benefits, including the safe and environmentally sound disposal of septic tank sludge and an improvement of the overall performance of the Bioreactor Landfill by increasing moisture retention and supplying a more acclimatised bacterial population. PMID:18400366

  15. Association of trace elements with colloidal fractions in leachates from closed and active municipal solid waste landfills

    Energy Technology Data Exchange (ETDEWEB)

    Matura, Marek [Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Praha 2 (Czech Republic); Ettler, Vojtech, E-mail: ettler@natur.cuni.cz [Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Praha 2 (Czech Republic); Jezek, Josef [Institute of Applications of Mathematics and Information Technologies, Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Praha 2 (Czech Republic); Mihaljevic, Martin [Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Praha 2 (Czech Republic); Sebek, Ondrej [Laboratories of the Geological Institutes, Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Praha 2 (Czech Republic); Sykora, Vladimir [Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, Institute of Chemical Technology Prague, Technicka 5, 166 28 Praha 6 (Czech Republic); Klementova, Mariana [Institute of Inorganic Chemistry of the ASCR, v.v.i., 250 68 Husinec-Rez (Czech Republic)

    2010-11-15

    Leachates from two Czech municipal solid waste (MSW) landfills (closed site and active site) were size-fractionated using the cascade frontal filtration/ultrafiltration procedure with filter cut-offs of 3 {mu}m, 0.8 {mu}m, 0.45 {mu}m, 0.1 {mu}m, 10 kDa and 1 kDa. To evaluate the binding of trace elements to colloidal particles, the filtrates were analyzed for major compounds (FAAS, ICP-OES and HPLC) and trace elements (ICP-MS) and the obtained elemental patterns were statistically evaluated. Transmission electron microscopy (TEM) indicated that the colloids were mostly inorganic, mainly composed of carbonates and clays. Characteristic features of the behaviour of trace elements and the main compounds were more pronounced at the active landfill site. Amongst the main compounds, only Fe and Ca decrease significantly and have similar patterns to numerous trace elements, indicating their capture by colloidal particles (at least 25%). Arsenic, Se and Rb exhibit zero or negligible decrease in concentration in the leachate during the filtration procedure. This fact indicates their particularly high mobility, which should be considered in preventing the flux of harmful compounds from landfill systems.

  16. Mixed waste chemical compatibility with packaging components

    International Nuclear Information System (INIS)

    In this paper, a chemical compatibility testing program for packaging of mixed wastes at will be described. We will discuss the choice of four y-radiation doses, four time durations, four temperatures and four waste solutions to simulate the hazardous waste components of mixed wastes for testing materials compatibility of polymers. The selected simulant wastes are (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. A selection of 10 polymers with anticipated high resistance to one or more of these types of environments are proposed for testing as potential liner or seal materials. These polymers are butadiene acrylonitrile copolymer, cross-linked polyethylene, epichlorhyarin, ethylene-propylene rubber, fluorocarbon, glass-filled tetrafluoroethylene, high-density poly-ethylene, isobutylene-isoprene copolymer, polypropylene, and styrene-butadiene rubber. We will describe the elements of the testing plan along with a metric for establishing time resistance of the packaging materials to radiation and chemicals

  17. Fuzzy-logic modeling of Fenton's strong chemical oxidation process treating three types of landfill leachates.

    Science.gov (United States)

    Sari, Hanife; Yetilmezsoy, Kaan; Ilhan, Fatih; Yazici, Senem; Kurt, Ugur; Apaydin, Omer

    2013-06-01

    Three multiple input and multiple output-type fuzzy-logic-based models were developed as an artificial intelligence-based approach to model a novel integrated process (UF-IER-EDBM-FO) consisted of ultrafiltration (UF), ion exchange resins (IER), electrodialysis with bipolar membrane (EDBM), and Fenton's oxidation (FO) units treating young, middle-aged, and stabilized landfill leachates. The FO unit was considered as the key process for implementation of the proposed modeling scheme. Four input components such as H(2)O(2)/chemical oxygen demand ratio, H(2)O(2)/Fe(2+) ratio, reaction pH, and reaction time were fuzzified in a Mamdani-type fuzzy inference system to predict the removal efficiencies of chemical oxygen demand, total organic carbon, color, and ammonia nitrogen. A total of 200 rules in the IF-THEN format were established within the framework of a graphical user interface for each fuzzy-logic model. The product (prod) and the center of gravity (centroid) methods were performed as the inference operator and defuzzification methods, respectively, for the proposed prognostic models. Fuzzy-logic predicted results were compared to the outputs of multiple regression models by means of various descriptive statistical indicators, and the proposed methodology was tested against the experimental data. The testing results clearly revealed that the proposed prognostic models showed a superior predictive performance with very high determination coefficients (R (2)) between 0.930 and 0.991. This study indicated a simple means of modeling and potential of a knowledge-based approach for capturing complicated inter-relationships in a highly non-linear problem. Clearly, it was shown that the proposed prognostic models provided a well-suited and cost-effective method to predict removal efficiencies of wastewater parameters prior to discharge to receiving streams.

  18. Chemical hazards associated with treatment of waste electrical and electronic equipment

    International Nuclear Information System (INIS)

    This review paper summarizes the existing knowledge on the chemical hazards associated with recycling and other end-of-life treatment options of waste electrical and electronic equipment (e-waste). The hazards arise from the presence of heavy metals (e.g., mercury, cadmium, lead, etc.), flame retardants (e.g., pentabromophenol, polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol-A (TBBPA), etc.) and other potentially harmful substances in e-waste. If improperly managed, the substances may pose significant human and environmental health risks. The review describes the potentially hazardous content of e-waste, examines the existing e-waste management practices and presents scientific data on human exposure to chemicals, workplace and environmental pollution associated with the three major e-waste management options, i.e., recycling, incineration and landfilling. The existing e-waste management practices and associated hazards are reviewed separately for developed and developing countries. Finally, based on this review, the paper identifies gaps in the existing knowledge and makes some recommendations for future research.

  19. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms. PMID:25561057

  20. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms.

  1. Landfill Mining of Shredder Residues

    DEFF Research Database (Denmark)

    Hansen, Jette Bjerre; Hyks, Jiri; Shabeer Ahmed, Nassera;

    In Denmark, shredder residues (SR) are classified as hazardous waste and until January 2012 the all SR were landfilled. It is estimated that more than 1.8 million tons of SR have been landfilled in mono cells. This paper describes investigations conducted at two Danish landfills. SR were excavate...

  2. Occurrence and Distribution of Pharmaceutical Organic Compounds in the Groundwater Downgradient of a Landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Holm, John V.; Rügge, Kirsten; Bjerg, Poul Løgstrup;

    1995-01-01

    in the plume (4). In this paper, we describe the occurrence and distribution of organic compounds originating from waste from the pharmaceutical industry in the groundwater downgradient of the same landfill. According to our knowledge, this is the first report on pharmaceutical compounds in a leachate plume.......Usually landfill leachates contain specific organic compounds as BTEXs (benzene, toluene, ethylbenzene, and xylenes), chlorinated aliphatic hydrocarbons and chlorobenzenes originating from household chemicals and waste from small businesses (I). However, where industrial waste has been landfilled...

  3. THE "CHEMICAL OXYGEN DEMAND / TOTAL VOLATILE ACIDS" RATIO AS AN ANAEROBIC TREATABILITY INDICATOR FOR LANDFILL LEACHATES

    Directory of Open Access Journals (Sweden)

    R. C. Contrera

    2015-03-01

    Full Text Available Abstract In some operational circumstances a fast evaluation of landfill leachate anaerobic treatability is necessary, and neither Biochemical Methane Potential nor BOD/COD ratio are fast enough. Looking for a fast indicator, this work evaluated the anaerobic treatability of landfill leachate from São Carlos-SP (Brazil in a pilot scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR. The experiment was conducted at ambient temperature in the landfill area. After the acclimation, at a second stage of operation, the AnSBBR presented efficiency above 70%, in terms of COD removal, utilizing landfill leachate without water dilution, with an inlet COD of about 11,000 mg.L-1, a TVA/COD ratio of approximately 0.6 and reaction time equal to 7 days. To evaluate the landfill leachate biodegradability variation over time, temporal profiles of concentration were performed in the AnSBBR. The landfill leachate anaerobic biodegradability was verified to have a direct and strong relationship to the TVA/COD ratio. For a TVA/CODTotal ratio lower than 0.20, the biodegradability was considered low, for ratios between 0.20 and 0.40 it was considered medium, and above 0.40 it was considered high.

  4. Municipal Solid Waste Management: Recycling, Resource Recovery, and Landfills. LC Science Tracer Bullet.

    Science.gov (United States)

    Meikle, Teresa, Comp.

    Municipal solid waste refers to waste materials generated by residential, commercial, and institutional sources, and consists predominantly of paper, glass, metals, plastics, and food and yard waste. Within the definition of the Solid Waste Disposal Act, municipal solid waste does not include sewage sludge or hazardous waste. The three main…

  5. Subsurface imaging of an abandoned solid waste landfill site in Norman, Oklahoma

    Science.gov (United States)

    Zume, J.T.; Tarhule, A.; Christenson, S.

    2006-01-01

    Leachate plume emanating from an old unlined municipal landfill site near the city of Norman, Oklahoma, is discharging into the underlying alluvial aquifer. Subsurface imaging techniques, electrical resistivity tomography and electrical conductivity (EC) logging, were used on the site to detect and map the position of the leachate plume. Anomalous EC zones, delineated with the two methods, correlated with the occurrence of the plume detected by water chemistry analyses from multilevel monitoring wells. Specific conductance, a potential indicator of leachate contamination, ranged from 1861 to 7710 ??S/cm in contaminated zones and from 465 to 2180 ??S/cm in uncontaminated ground water. Results are in agreement with those from earlier studies that the leachate plume emerges from the landfill along preferential pathways. Additionally, there are indications that the leading edge of the plume has migrated, at least, 200 m away from the landfill in the direction of ground water flow. ?? 2006 National Ground Water Association.

  6. Emission model for landfills with mechanically-biologically pretreated waste, with the emphasis on modelling the gas balance; Emissionsprognosemodell fuer Deponien mit mechanisch-biologisch vorbehandelten Abfaellen - Schwerpunkt: Modellierung des Gashaushaltes

    Energy Technology Data Exchange (ETDEWEB)

    Danhamer, H.

    2001-07-01

    The objective of this work was to determine influence factors on processes going on in landfills with mechanically-biologically pretreated waste (MBP-landfills) in order to predict emissions. For this purpose a computer based model has been developed. The model allows to simulate the gas, water and heat balance as well as settlement processes and was called DESIM2005 (version MB). It is based on theoretical modeling approaches as well as data from lab and reactor experiments. The main focus of model application was to determine factors influencing the gas phase and the emissions of landfill gas and methane during operation and aftercare of MBP-landfills. By performing simulations the effects of changing parameters for the processes gas transport and biological degradation as well as the effects of different qualities in waste pretreatment and of varying landfill operation techniques were investigated. Possibilities for increasing the environmental sustainability of landfills containing mechanically-biologically pretreated waste were shown. (orig.)

  7. Modelling of the flow in the interface of a composite liner at the bottom of a municipal waste landfill

    International Nuclear Information System (INIS)

    Composite liner at the bottom of waste landfill is based, in France, on a geo-membrane overlapping a compacted clay liner. Defects exist in geo-membranes and leachates, provided by water percolation through the waste, then flow in the interface between the two components of the lining system. The present work consisted in analysis, quantification and modelling of the leakage process in the interface. The experimental study has been carried out on a one-meter scale device in laboratory and allowed to assess the role of normal stress on the flow rate in interface. The case where a geo-textile is present beneath the geo-membrane has been also studied. The modelling allows to take into account more accurately the geometry of the interface and ensures a better quantification of leachate flow rates than using existing methods. (author)

  8. Influence of temperature on carbon and nitrogen dynamics during in situ aeration of aged waste in simulated landfill bioreactors.

    Science.gov (United States)

    Tong, Huanhuan; Yin, Ke; Giannis, Apostolos; Ge, Liya; Wang, Jing-Yuan

    2015-09-01

    The effect of temperature on carbon and nitrogen compounds during in situ aeration of aged waste was investigated in lab-scale simulated landfill bioreactors at 35, 45 and 55 °C, respectively. The bioreactor operated at 55 °C presented the highest carbon mineralization rate in the initial stage, suggesting accelerated biodegradation rates under thermophilic conditions. The nitrogen speciation study indicated that organic nitrogen was the dominant species of total N in aerobic bioreactors due to ammonia removal. Leachate organic nitrogen was further fractionated to elucidate the fate of individual constituent. Detailed investigation revealed the higher bioconversion rates of N-humic and N-fulvic compounds compared to hydrophilic compounds in thermophilic conditions. At the end, waste material in 55 °C bioreactor was richer in highly matured humic substances (HS) verifying the high bioconversion rates.

  9. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment.

    Science.gov (United States)

    de Souza, Samuel Nm; Horttanainen, Mika; Antonelli, Jhonatas; Klaus, Otávia; Lindino, Cleber A; Nogueira, Carlos Ec

    2014-10-01

    This article presents an analysis of possibilities for electrical energy production by using municipal solid waste disposed in the biggest Brazilian cities. Currently, the municipal solid waste in Brazil is collected and disposed of at landfills, but there are also other technologies, which in addition to dealing with the garbage can also provide benefits in terms of energy provision. The following scenarios were studied in this work: electricity production from landfill gas (reference scenario); incineration of all municipal solid waste; anaerobic digestion of organic waste and incineration of refuse-derived fuel fractions after being separated in separation plants. According to this study, the biggest cities in Brazil generate about 18.9 million tonnes of municipal solid waste per year (2011), of which 51.5% is biogenic matter. The overall domestic consumption of electricity is 480,120 GWh y(-1) in Brazil and the municipal solid waste incineration in the 16 largest cities in the country could replace 1.8% of it using incinerators. The city of São Paulo could produce 637 GWh y(-1) with landfill gas, 2368 GWh y(-1) with incineration of municipal solid waste and 1177 GWh y(-1) with incineration of refuse-derived fuel. The latter two scenarios could replace 27% and 13.5% of the residential electrical energy consumption in the city. This shows that thermal treatment might be a viable option of waste-to-energy in Brazil.

  10. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment.

    Science.gov (United States)

    de Souza, Samuel Nm; Horttanainen, Mika; Antonelli, Jhonatas; Klaus, Otávia; Lindino, Cleber A; Nogueira, Carlos Ec

    2014-10-01

    This article presents an analysis of possibilities for electrical energy production by using municipal solid waste disposed in the biggest Brazilian cities. Currently, the municipal solid waste in Brazil is collected and disposed of at landfills, but there are also other technologies, which in addition to dealing with the garbage can also provide benefits in terms of energy provision. The following scenarios were studied in this work: electricity production from landfill gas (reference scenario); incineration of all municipal solid waste; anaerobic digestion of organic waste and incineration of refuse-derived fuel fractions after being separated in separation plants. According to this study, the biggest cities in Brazil generate about 18.9 million tonnes of municipal solid waste per year (2011), of which 51.5% is biogenic matter. The overall domestic consumption of electricity is 480,120 GWh y(-1) in Brazil and the municipal solid waste incineration in the 16 largest cities in the country could replace 1.8% of it using incinerators. The city of São Paulo could produce 637 GWh y(-1) with landfill gas, 2368 GWh y(-1) with incineration of municipal solid waste and 1177 GWh y(-1) with incineration of refuse-derived fuel. The latter two scenarios could replace 27% and 13.5% of the residential electrical energy consumption in the city. This shows that thermal treatment might be a viable option of waste-to-energy in Brazil. PMID:25323146

  11. Effect of aeration on stabilization of organic solid waste and microbial population dynamics in lab-scale landfill bioreactors.

    Science.gov (United States)

    Sang, Nguyen Nhu; Soda, Satoshi; Sei, Kazunari; Ike, Michihiko

    2008-11-01

    This study investigated microbial population dynamics and performance in lab-scale conventional, anaerobic, and aerobic landfill bioreactors specialized for high-organic wastes. Each reactor (2.35 l) was loaded with 1.5 kg of organic solid waste made of sludge cake, dry dog food, and wood chips. The conventional reactor was operated without leachate recirculation and aeration, but the other reactors used leachate recirculation at 200 ml/d and without aeration (anaerobic bioreactor) or with aeration at 2 l/min (aerobic bioreactor). The respective final waste volumes on day 138 of the conventional, anaerobic, and aerobic reactors were approximately 75%, 65%, and 60% of the initial volumes. Leachate recirculation in the anaerobic bioreactor accelerated biochemical reactions and promoted methane production. However, leachate from the anaerobic bioreactor showed TOC and NH(4)(+)-N concentrations that were as high as those of the conventional reactor. Aeration lowered leachate production and methane concentration and decreased organic matter in solid waste and leachate. Furthermore, the MPN value of amoA gene reached 10(5) MPN-copies/g-dry in the aerobic bioreactor, where nitrogen was removed from organic solid waste and leachate. During the first 72 d, the aerobic bioreactor's MPN value of fungal 18S rDNA was the highest among reactors, but it decreased gradually. All reactors showed similar MPN values of eubacterial 16S rDNA, nirS, and nirK. PMID:19111637

  12. Management of landfill leachate: The legacy of European Union Directives.

    Science.gov (United States)

    Brennan, R B; Healy, M G; Morrison, L; Hynes, S; Norton, D; Clifford, E

    2016-09-01

    Landfill leachate is the product of water that has percolated through waste deposits and contains various pollutants, which necessitate effective treatment before it can be released into the environment. In the last 30years, there have been significant changes in landfill management practices in response to European Union (EU) Directives, which have led to changes in leachate composition, volumes produced and treatability. In this study, historic landfill data, combined with leachate characterisation data, were used to determine the impacts of EU Directives on landfill leachate management, composition and treatability. Inhibitory compounds including ammonium (NH4-N), cyanide, chromium, nickel and zinc, were present in young leachate at levels that may inhibit ammonium oxidising bacteria, while arsenic, copper and silver were present in young and intermediate age leachate at concentrations above inhibitory thresholds. In addition, the results of this study show that while young landfills produce less than 50% of total leachate by volume in the Republic of Ireland, they account for 70% of total annual leachate chemical oxygen demand (COD) load and approximately 80% of total 5-day biochemical oxygen demand (BOD5) and NH4-N loads. These results show that there has been a decrease in the volume of leachate produced per tonne of waste landfilled since enactment of the Landfill Directive, with a trend towards increased leachate strength (particularly COD and BOD5) during the initial five years of landfill operation. These changes may be attributed to changes in landfill management practices following the implementation of the Landfill Directive. However, this study did not demonstrate the impact of decreasing inputs of biodegradable municipal waste on leachate composition. Increasingly stringent wastewater treatment plant (WWTP) emission limit values represent a significant threat to the sustainability of co-treatment of leachate with municipal wastewater. In addition

  13. PERFORMANCE OF NORTH AMERICAN BIOREACTOR LANDFILLS: I. LEACHATE HYDROLOGY AND WASTE SETTLEMENT

    Science.gov (United States)

    An assessment of state-of-the-practice at five full-scale North American landfills operating as bioreactors is presented in this two-paper set. This paper focuses on effectiveness of liners and leachate collection systems, leachate generation rates, leachate recirculation practi...

  14. COMPARISON OF MICROBIAL POPULATIONS IN A CONVENTIONAL AND BIOREACTING MUNICIPAL SOLID WASTE LANDFILLS

    Science.gov (United States)

    Landfills are the ultimate reactors for biodegradation as they contain nutrients, bacteria, and various redox conditions which, then, change over time. Enhancement of the landill environment to optimize the rates of biodegradation and to ensure more rapid stabilization of the was...

  15. 浅析生活垃圾卫生填埋场运行和防治%Analysis of Operation and Control of Domestic Waste Sanitary Landfill Site

    Institute of Scientific and Technical Information of China (English)

    朱红

    2014-01-01

    Along with the continuous growth of the popula- tion, in China, a lot of waste generated every day. Therefore, a lot of sanitary landfil field run continuously in China, but the sanitary landfil polution is a serious problem. This paper ma- inly described the operation and control of domestic waste sa- nitary landfill.%随着我国人口的不断增长,每天都有很多的生活垃圾产生。为此,我国有很多的卫生填埋场在不间断地运行,这些卫生填埋场造成了很严重的污染问题。本文主要阐述了生活垃圾卫生填埋场的运行和防治问题。

  16. Emission Control and Utilization of Landfill Gas in Ningbo Waste Landfill Site%宁波市垃圾填埋场填埋气体排放控制及利用研究

    Institute of Scientific and Technical Information of China (English)

    王斌

    2013-01-01

    Taking Ningbo city as an example,the treatment measures of unorganized emission of odor landfill gas from domestic waste sanitary landfill site were discussed,for instance,ordered collection and incineration-power generation.It could treat greenhouse gases such as CH4 effectively to make the pollutions control,and use waste heat to produce electricity.Thus it would achieve energy-saving and emission-reduction.%以宁波市为例,探讨了生活垃圾卫生填埋场产生的无组织排放的异味填埋气体有序收集及焚烧发电的处理措施,既有效处理了CH4等温室气体,使污染排放得到有效控制,又利用余热发电,实现节能减排.

  17. Treatment of mature landfill leachate by chemical precipitation and Fenton advanced oxidation process

    OpenAIRE

    Nemat Alah Jaafarzadeh Haghighi Fard; Sahand Jorfi; Mehdi Ahmadi; Samaneh Mirali; Raheleh Kujlu

    2016-01-01

    Background: Mature landfill leachate is a complicated mixture which is resistant to biological treatment processes. The treatment of mature landfill leachate by struvite precipitation and Fenton oxidation was the main objective of the current research. Methods: Struvite with the phosphate/ammonia/magnesium molar ratio of 1/1/1.05 was considered during all experiments. Five initial pHs of 3, 4, 5, 6, and 7, four different H2O2/Fe mass ratios of 50, 100, 200, and 400, and reaction times of ...

  18. Behaviour at landfills of waste having undergone mechanic-biological and thermal conditioning; Deponieverhalten mechanisch-biologisch und thermisch behandelten Restabfalls

    Energy Technology Data Exchange (ETDEWEB)

    Danhamer, H.; Dach, J.; Jager, J. [Institut WAR, Darmstadt (Germany). FG Abfalltechnik

    1998-12-31

    The work studies, in landfill test reactors, water, gas and heat transport as well as gas and leachate formation in waste having undergone mechanical-biological and thermal conditioning. (orig.) [Deutsch] Es wurde der Wasser-, Gas- und Waermetransport, sowie die Gasbildung- und Sickerwasserbelastung mechanisch-biologisch und thermisch vorbehandelter Abfaelle in Deponieversuchsreaktoren untersucht. (orig.)

  19. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    International Nuclear Information System (INIS)

    Highlights: ► Biochemical methane potential decreased by 83% during the two-stage operation. ► Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). ► The average removal efficiency of volatile organic compounds (VOCs) was 96–99%. ► The average removal efficiency of non-methane organic compounds (NMOCs) was 68–99%. ► The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96–99% and 68–99%, respectively.

  20. Probabilistic performance-assessment modeling of the mixed waste landfill at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Peace, Gerald L.; Goering, Timothy James (GRAM, Inc.); Miller, Mark Laverne; Ho, Clifford Kuofei

    2005-11-01

    A probabilistic performance assessment has been conducted to evaluate the fate and transport of radionuclides (americium-241, cesium-137, cobalt-60, plutonium-238, plutonium-239, radium-226, radon-222, strontium-90, thorium-232, tritium, uranium-238), heavy metals (lead and cadmium), and volatile organic compounds (VOCs) at the Mixed Waste Landfill (MWL). Probabilistic analyses were performed to quantify uncertainties inherent in the system and models for a 1,000-year period, and sensitivity analyses were performed to identify parameters and processes that were most important to the simulated performance metrics. Comparisons between simulated results and measured values at the MWL were made to gain confidence in the models and perform calibrations when data were available. In addition, long-term monitoring requirements and triggers were recommended based on the results of the quantified uncertainty and sensitivity analyses. At least one-hundred realizations were simulated for each scenario defined in the performance assessment. Conservative values and assumptions were used to define values and distributions of uncertain input parameters when site data were not available. Results showed that exposure to tritium via the air pathway exceeded the regulatory metric of 10 mrem/year in about 2% of the simulated realizations when the receptor was located at the MWL (continuously exposed to the air directly above the MWL). Simulations showed that peak radon gas fluxes exceeded the design standard of 20 pCi/m{sup 2}/s in about 3% of the realizations if up to 1% of the containers of sealed radium-226 sources were assumed to completely degrade in the future. If up to 100% of the containers of radium-226 sources were assumed to completely degrade, 30% of the realizations yielded radon surface fluxes that exceeded the design standard. For the groundwater pathway, simulations showed that none of the radionuclides or heavy metals (lead and cadmium) reached the groundwater during

  1. Critical evaluation of factors required to terminate the postclosure monitoring period at solid waste landfills

    DEFF Research Database (Denmark)

    Barlaz, M.A.; Rooker, A.P.; Kjeldsen, Peter;

    2002-01-01

    for an investigation of whether postclosure monitoring can be terminated at a landfill. Parameters evaluated include leachate composition and leachate and gas production. Estimates of leachate production from closed landfills are used to assess the potential environmental impacts of a hypothetical release to surface...... a specific time period, are preferable for evaluation of when it is acceptable to terminate postclosure monitoring. The objectives of this paper are to identify and evaluate parameters that can be used to define the end of the postclosure monitoring period and to present a conceptual framework...... water or groundwater. The acceptability of gaseous releases should be evaluated against criteria for odors, the potential for subsurface migration, and greenhouse gas and ozone precursor emissions. The approach presented here must be tested on a site-specific basis to identify additional data...

  2. Chemical Precipitation of Ammonia and Phosphatefrom Nam Son Landfill Leachate, Hanoi

    Directory of Open Access Journals (Sweden)

    Nguyen Manh Khai

    2012-01-01

    Full Text Available Leachate from municipal landfills of the city is often contaminated heavily, especially for parameters such as organic components, heavy metals, microorganisms. However, leachate also contains amounts of valuable nutrients (e.g. N, P, K which can be used for agriculture as fertilizers. Precipitated of N and P in the form of struvite (MgNH4PO4.6H2O might be applied as a technique for removal a huge amount of N as well as P in wastewater. This study investigated the recovery ability of N, P in leachate from Nam Son municipal landfill of Hanoi city. Different pH values, anaerobic time and stoichiometric Mg2+: NH4+: PO43- was tested to determine the optimal conditions for precipitating struvite. The effect of pH on the forming of struvite was between pH 9 to 11. The results showed that nutrients in landfill leachate could be recovered with the optimum pH around 9.5 and the optimum Mg2+: NH4+: PO43- molar ratio as 1.15: 1: 1. With the anaerobic interval of 21 days, COD value in landfill leachate was decreased to 60%, the retrieval reached 80.6% for nitrogen and 82.7% for phosphorus. According to estimates, with the application of struvite precipitation technique, the average annual retrieval amount of NH4+ and PO43- can reach 263 tons and 25 tons, respectively.

  3. Method for fractional solid-waste sampling and chemical analysis

    DEFF Research Database (Denmark)

    Riber, Christian; Rodushkin, I.; Spliid, Henrik;

    2007-01-01

    Chemical characterization of solid waste is a demanding task due to the heterogeneity of the waste. This article describes how 45 material fractions hand-sorted from Danish household waste were subsampled and prepared for chemical analysis of 61 substances. All material fractions were subject...

  4. Does Size Really Matter? Landfill Scale Impacts on Property Values

    OpenAIRE

    Lim, Jong Seok; Missios, Paul

    2005-01-01

    The economic advantage of constructing and operating large-scale landfills over small-scale landfills has been used to justify regional landfills as a solution to the municipal waste disposal problem. In addition to the dampening effects on social efforts to divert waste away from landfills, higher external costs of larger landfills may in fact offset the private cost advantages. In this study, the negative effects of a landfill that are capitalized in property values of houses located in the...

  5. Chemical speciation and mobility of heavy metals in municipal solid waste incinerator fly ash

    Institute of Scientific and Technical Information of China (English)

    LIU Feng; LIU Jian-guo; YU Qian-feng; NIE Yong-feng

    2004-01-01

    Chemical speciation is a significant factor that governs the toxicity and mobility of heavy metals in municipal solid waste incinerator fly ash. Sequential extraction procedure is applied to fractionate heavy metals(Pb, Zn, Cd, Cu, and Cr) into five defined groups: exchangeable, carbonate, Fe-Mn oxide, organic, and residual fractions. The mobility of heavy metals is also investigated with the aid of toxicity characteristic leaching procedure. In the fly ash sample, Pb is primarily presented in the carbonate(51%) and exchangeable(20%) fractions; Cd and Zn mainly exist as the exchangeable(83% and 49% respectively); Cu is mostly contained in the last three fractions(totally 87%); and Cr is mainly contained in the residual fraction(62%). Pb, Zn and Cd showed the high mobility in the investigation, thus might be of risk to the natural environment when municipal solid waste incinerator fly ash is landfilled or reutilized.

  6. Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics.

    Science.gov (United States)

    Zhang, Shaoqing; Zhang, Xinyan; Xiong, Ya; Wang, Guoping; Zheng, Na

    2015-02-01

    In this study, two kinds of zeolites materials (natural zeolite and thiol-functionalised zeolite) were added to the chemically bonded phosphate ceramic processes to treat mercury-contaminated wastes. Strong promotion effects of zeolites (natural zeolite and thiol-functionalised zeolite) on the stability of mercury in the wastes were obtained and these technologies showed promising advantages toward the traditional Portland cement process, i.e. using Portland cement as a solidification agent and natural or thiol-functionalised zeolite as a stabilisation agent. Not only is a high stabilisation efficiency (lowered the Toxicity Characteristic Leaching Procedure Hg by above 10%) obtained, but also a lower dosage of solidification (for thiol-functionalised zeolite as stabilisation agent, 0.5 g g(-1) and 0.7 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) and stabilisation agents (for natural zeolite as stabilisation agent, 0.35 g g(-1) and 0.4 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) were used compared with the Portland cement process. Treated by thiol-functionalised zeolite and chemically bonded phosphate ceramic under optimum parameters, the waste containing 1500 mg Hg kg(-1) passed the Toxicity Characteristic Leaching Procedure test. Moreover, stabilisation/solidification technology using natural zeolite and chemically bonded phosphate ceramic also passed the Toxicity Characteristic Leaching Procedure test (the mercury waste containing 625 mg Hg kg(-1)). Moreover, the presence of chloride and phosphate did not have a negative effect on the chemically bonded phosphate ceramic/thiol-functionalised zeolite treatment process; thus, showing potential for future application in treatment of 'difficult-to-manage' mercury-contaminated wastes or landfill disposal with high phosphate and chloride content. PMID:25568090

  7. Landfill gas from environment to energy

    International Nuclear Information System (INIS)

    Landfill gas is an alternative source of energy which can be commercially exploited wherever municipal solid wastes are disposed of in sanitary landfills. In this context, it was decided to launch a comprehensive study on the subject of energy valorization of landfill gas. The main topics dealt with in the study, which is supported by a comprehensive literature survey and six detailed case-studies, include; (i) the environmental impact of landfill gas, (ii) the process of landfill gas genesis and the technology of landfill gas control by its exploitation, (iii) the monitoring of landfill gas emissions, (iv) the policies and legal aspects of landfill gas in the European Community and in the world, (v) the estimation of landfill gas potentials and economics of landfill gas control and exploitation, (vi) the status of landfill gas exploitation in the European Community and in the world. (authors). refs., figs., tabs

  8. The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill.

    Science.gov (United States)

    Sanphoti, N; Towprayoon, S; Chaiprasert, P; Nopharatana, A

    2006-10-01

    In order to increase methane production efficiency, leachate recirculation is applied in landfills to increase moisture content and circulate organic matter back into the landfill cell. In the case of tropical landfills, where high temperature and evaporation occurs, leachate recirculation may not be enough to maintain the moisture content, therefore supplemental water addition into the cell is an option that could help stabilize moisture levels as well as stimulate biological activity. The objectives of this study were to determine the effects of leachate recirculation and supplemental water addition on municipal solid waste decomposition and methane production in three anaerobic digestion reactors. Anaerobic digestion with leachate recirculation and supplemental water addition showed the highest performance in terms of cumulative methane production and the stabilization period time required. It produced an accumulated methane production of 54.87 l/kg dry weight of MSW at an average rate of 0.58 l/kg dry weight/d and reached the stabilization phase on day 180. The leachate recirculation reactor provided 17.04 l/kg dry weight at a rate of 0.14l/kg dry weight/d and reached the stabilization phase on day 290. The control reactor provided 9.02 l/kg dry weight at a rate of 0.10 l/kg dry weight/d, and reached the stabilization phase on day 270. Increasing the organic loading rate (OLR) after the waste had reached the stabilization phase made it possible to increase the methane content of the gas, the methane production rate, and the COD removal. Comparison of the reactors' efficiencies at maximum OLR (5 kgCOD/m(3)/d) in terms of the methane production rate showed that the reactor using leachate recirculation with supplemental water addition still gave the highest performance (1.56 l/kg dry weight/d), whereas the leachate recirculation reactor and the control reactor provided 0.69 l/kg dry weight/d and 0.43 l/kg dry weight/d, respectively. However, when considering

  9. Vinča landfill leachate characteristics prediction by the leaching method

    Directory of Open Access Journals (Sweden)

    Ćalić Nataša D.

    2006-01-01

    Full Text Available Under the newly implemented waste management policy in European Union countries, sanitary landfilling constitutes the fourth and the least preferred of the alternative management options for the disposal of solid urban wastes. Landfills generate emissions over long periods, often longer than a lifetime. The longest lasting emission is leachate: leachate production and management is now recognized as one of the greatest problems associated with the environmentally sound operation of sanitary landfills. These liquid wastes can cause considerable pollution problems by contacting the surrounding soil, ground or surface waters and, are therefore considered major pollution hazards unless precautionary measures are implemented. Landfill leachate characterization is a critical factor in establishing a corresponding effective management strategy or treatment process. This paper summarizes leachate quality indicators, and investigates the temporal variation of leachate quality from municipal solid waste. The toxicity of leachates from the municipal solid waste landfill "Vinca" in Belgrade, the capital of Serbia, was characterized using toxicity characteristics leaching procedures (TCLP. The "Vinca" landfill was established in 1978 as one of several municipal landfills. Since the 1990-ies the "Vinca" landfill has been the only operating landfill servicing the Belgrade Metropolitan area, the biggest city in Serbia, with 1,576,124 inhabitants in the larger-city area, and 1,273,651 inhabitants in the inner-city area. The total average amount of solid wastes deposited in the landfill is estimated to be 1100 tons/day. The landfill site is not lined and the tributary flows through the centre of the site-in some places directly under the mass of refuse. No consideration has been given to the protection of ground waters, surface runoff or drainage. Local authorities plan to expand the landfill by 0.4 km2 to a total of 1.3 km Chemical analysis was performed on the

  10. Municipal solid waste landfill site selection with geographic information systems and analytical hierarchy process: a case study in Mahshahr County, Iran.

    Science.gov (United States)

    Alavi, Nadali; Goudarzi, Gholamreza; Babaei, Ali Akbar; Jaafarzadeh, Nemat; Hosseinzadeh, Mohsen

    2013-01-01

    Landfill siting is a complicated process because it must combine social, environmental and technical factors. In this study, in order to consider all factors and rating criteria, a combination of geographic information systems and analytical hierarchy process (AHP) was used to determine the best sites for disposal of municipal solid waste (MSW) in Mahshahr County, Iran. In order to the decision making for landfill siting a structural hierarchy formed and the most important criteria: surface water, sensitive ecosystems, land cover, urban and rural areas, land uses, distance to roads, slope and land type were chosen according to standards and regulations. Each criterion was evaluated by rating methods. In the next step the relative importance of criteria to each other was determined by AHP. Land suitability for landfill was evaluated by simple additive weighting method. According to the landfill suitability map, the study area classified to four categories: high, moderate, low and very low suitability areas, which represented 18.6%, 20.3%, 1.6 and 0.8% of the study area respectively. The other 58.7% of the study area was determined to be completely unsuitable for landfill. By considering the parameters, such as the required area for landfill, distance to MSW generation points, and political and management issues, and consulting with municipalities managers in the study area, six sites were chosen for site visiting. The result of field study showed that it is a supplementary, and necessary, step in finding the best candidate landfill site from land with high suitability. PMID:22878933

  11. Using S and Pb isotope ratios to trace leaching of toxic substances from an acid-impacted industrial-waste landfill (Pozdatky, Czech Republic)

    International Nuclear Information System (INIS)

    Highlights: ► S and Pb isotopes are useful tracers of polluted groundwater movement. ► Large ranges of found δ34S and 206Pb/207Pb ratios made source apportionment robust. ► δ34S values higher than 6.5 permil indicated contamination. ► Pb in stream sediment recorded landfill leaks, but was insensitive to air pollution. ► The front of polluted groundwater plume in fractured plutonic rocks spread unevenly. - Abstract: Slightly elevated concentrations of toxic species in waters sampled in the surroundings of a leaky landfill may be both a sign of an approaching contaminant plume, or a result of water–rock interaction. Isotopes can be instrumental in distinguishing between anthropogenic and geogenic species in groundwater. We studied sulfur and lead isotope ratios at an abandoned industrial-waste landfill, located in a densely populated part of Central Europe. Stable isotope variability in space and time was used to follow the movement of a groundwater plume, contaminated with toxic metals (Cd, Cr, Be), in fractured granitoids. Toxic metals had been mobilized from industrial waste by a strong pulse of sulfuric acid, also deposited in the landfill. Both tracers exhibited a wide range of values (δ34S between +2.6 and +18.9‰; 206Pb/207Pb between 1.16 and 1.39), which facilitated identification of mixing end-members, and made it possible to assess the sources of the studied species. In situ fractionations did not hinder source apportionment. Influx of contaminated groundwater was observed neither in irrigation wells in a nearby village, nor at distances greater than 300 m from the landfill. Combination of stable isotope tracers can be used as part of an early-warning system in landscapes affected by landfills.

  12. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model.

    Science.gov (United States)

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Younes, Mohammed Y

    2016-09-01

    Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R(2)). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R(2)=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%.

  13. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model.

    Science.gov (United States)

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Younes, Mohammed Y

    2016-09-01

    Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R(2)). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R(2)=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%. PMID:26522806

  14. Disposal of Savannah River Plant waste salt

    International Nuclear Information System (INIS)

    Proposed NRC guidelines for the disposal of waste with the radionuclide content of SRP salt would permit shallow land burial. Federal and state rules require that potentially hazardous chemical wastes (mainly nitrate-nitrite salts in the saltcrete) be contained to the degree necessary to meet drinking water standards in the ground water beneath the landfill boundary. This paper describes the proposed saltcrete landfill and tests under way to ensure that the landfill meet these criteria. The work includes laboratory and field tests of the saltcrete itself, a field test of a one-tenth linear scale model of the entire landfill system, and a numerical model of the system

  15. Sustainability Indicators for Municipal Solid Waste Treatment Case study : The City of Stockholm: landfill vs. incineration

    OpenAIRE

    Zabaleta, Amaia

    2008-01-01

    Sustainability Indicators (SIs) have been used with many different purposes, but never before inside a Waste Management Planning (WMP) process. In this report, a list of indicators has been designed so that the sustainability of a Waste Treatment Technique (WTT) for Municipal Solid Waste (MSW) in a specific situation is evaluated. The creation of this list is the consequence of a deep information seeking process on SIs, on MSW’s treatment techniques and of the use, as a base, of the indicator...

  16. Location of a landfill for hazardous waste in the Republic of Macedonia– planning and development

    OpenAIRE

    Karanakova Stefanovska, Radmila; Panov, Zoran

    2012-01-01

    One of the basic problems in Macedonian industry is disposal of the hazardous waste from the mining industrial complexes. Choice of locations for deposition of the dangerous waste is priority for future development of Macedonian economy and it is a subject of many public hearing. Today we are witness daily debates, discussions, opinions of professional and political public, directly related to the location of future sites for the disposal of solid waste. This paper is an attempt to analyze th...

  17. Location of a landfill for hazardous waste in the Republic of Macedonia - planning and development

    OpenAIRE

    Karanakova Stefanovska, Radmila; Panov, Zoran; Doneva, Blagica; Sijakova-Ivanova, Tena

    2012-01-01

    One of the basic problems in Macedonian industry is disposal of the hazardous waste from the mining industrial complexes. Choice of locations for deposition of the dangerous waste is priority for future development of Macedonian economy and it is a subject of many public hearing. Today we are witness daily debates, discussions, opinions of professional and political public, directly related to the location of future sites for the disposal of solid waste. This paper is an attempt to analyze th...

  18. Co-disposal of mixed waste materials

    International Nuclear Information System (INIS)

    Co-disposal of process waste streams with hazardous and radioactive materials in landfills results in large, use-efficiencies waste minimization and considerable cost savings. Wasterock, produced from nuclear and chemical process waste streams, is segregated, treated, tested to ensure regulatory compliance, and then is placed in mixed waste landfills, burial trenches, or existing environmental restoration sites. Large geotechnical unit operations are used to pretreat, stabilize, transport, and emplace wasterock into landfill or equivalent subsurface structures. Prototype system components currently are being developed for demonstration of co-disposal

  19. Influence of mechanical-biological waste pre-treatment methods on the gas formation in landfills

    International Nuclear Information System (INIS)

    In order to minimise emissions and environmental impacts, only pre-treated waste should be disposed of. For the last six years, a series of continuous experiments has been conducted at the Institute WAR, TU Darmstadt, in order to determine the emissions from pre-treated waste. Different kinds of pre-treated waste were incubated in several reactors and various data, including production and composition of the gas and the leachate, were collected. In this paper, the interim results of gas production and the gas composition from different types of waste after a running time of six years are presented and discussed

  20. CCA-TREATED WOOD DISPOSED IN LANDFILLS AND LIFE-CYCLE TRADE-OFFS WITH WASTE-TO-ENERGY AND MSW LANDFILL DISPOSAL

    Science.gov (United States)

    Chromated copper arsenate (CCA) treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. In the U.S. CCA-treated wood is disposed primarily within landfills, however some of the wood is combu...

  1. Citric waste saccharification under different chemical treatments

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Farias Silva

    2015-10-01

    Full Text Available Second generation ethanol from lignocellulose materials has been used in applications for food processing wastes. Since Brazil has a leading position in orange juice exports, the influence of acid and alkali pretreatments on liquor saccharification, solubilization of solid fraction and mass yield was evaluated. Time and Cacid or Calkaline at different concentrations of solids (low to moderate, 1 to 9% and high catalyst concentrations were analyzed. A hydrothermal pretreatment was conducted under the same conditions of acid and alkaline treatments to investigate the relative selectivity increase in using the catalysts. The chemical analyses of wastes indicated a 70% total carbohydrate level denoting a promising raw material for bioethanol production. Pretreatment caused acid saccharifications between 25 and 65% in total reducing sugars (TRS and mass yields (MY between 30 and 40%. In alkaline pretreatment, these rates ranged between 2 and 22.5% and between 30 and 80, respectively. In hydrothermal pretreatment, solubilized TRS varied between 3 and 37%, whereas MY remained between 45 and 60%, respectively. Cbiomass strongly influenced the three variables; in the same way, time affected MY.

  2. Ground waters quality assessment near solid municipal wastes and hazardous landfills; Valutazione della qualita' delle acque profonde in prossimita' di impianti di discarica per rifiuti solidi urbani e per rifiuti pericolosi

    Energy Technology Data Exchange (ETDEWEB)

    Bellino, M.; Falleni, F.; Forte, T.; Musmeci, L. [Istituto Superiore di Sanita' , Rome (Italy). Lab. di Igiene Ambientale

    1999-07-01

    The report discusses the impact on ground waters quality in relation to municipal and similar waste landfills and hazardous waste landfills, examined in three landfills of first category and one landfill of second category type C. Analytical results from sampling of ground and leaching waters are reported; from these results it can be deduced that environmental impact is minimum or non-existent, where law criteria for construction and management of landfills are respected. [Italian] Il rapporto esamina l'impatto sulla qualita' delle acque profonde dovuto agli impianti di discarica per rifiuti solidi urbani e assimilabili e per rifiuti pericolosi, rispettivamente di tre discariche controllate di prima categoria ed una di seconda di tipo C. Vengono riportate le risultanze analitiche relative ai campionamenti per la costruzione e gestione delle discariche. L'impatto ambientale e' minimo se non assente.

  3. Landfill gas management facilities design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    In British Columbia, municipal solid waste landfills generate over 1000 tonnes of methane per year; landfill gas management facilities are required to improve the environmental performance of solid waste landfills. The aim of this document, developed by the British Columbia Ministry of the Environment, is to provide guidance for the design, installation, and operation of landfill gas management facilities to address odor and pollutant emissions issues and also address health and safety issues. A review of technical experience and best practices in landfill gas management facilities was carried out, as was as a review of existing regulations related to landfill gas management all over the world. This paper provides useful information to landfill owners, operators, and other professionals for the design of landfill gas management facilities which meet the requirements of landfill gas management regulations.

  4. [Annual distribution of bacterial indicators generated by the domestic wastes from the landfill of Etueffont (France)].

    Science.gov (United States)

    Belle, E; Genevois, V; Mudry, J; Aleya, L

    2008-02-01

    We assessed over 15 months the distribution of total coliforms concentrations of Escherichia coli, Enterococci, Pseudomonas aeruginosa, Salmonella and Staphylococcus aureus in three monitoring points in the Etueffont landfill (Belfort, France). We selected the piezometer (PZ30) which is located downstream from the dump and two leachate collectors from the old dump and the new casing. The results showed that the leachate was free from both Salmonella and Staphylococcus aureus. The absence of Salmonella was most likely due to the small occupation of the landfill environment by vertebrates, especially rodents, birds and reptiles, which are known to be principal vectors of Salmonella. S. aureu, is generally hosted on skins and mucus of animals. The mean densities of E. coli and Enterococcus in the leachates were low. In contrast, P. aeruginosa abundance was high and closely related to precipitations. Coliform bacteria concentrations in the leachate averaged UFC.100 CFU x ml(-1). In the contaminated groundwaters, the coliforms, E. coli and Enterococci were always present at concentrations 10 to 100 fold higher than those reported from septic tank effluents. P. aeruginosa concentrations were low (mean: 11 CFU.100 ml(-1)) and inferior to those quoted in the leachate. This may be explained by the anoxic conditions which prevailed in the shistous aquifer. The absence of Salmonella in groundwaters may be due to its sensitivity to disinfectants and that of S. aureus linked to the fact that it is not a common host of the human intestine. Finally, our study clearly indicates the role played by E. coli and Enterococci as biomarkers of recent faecal contamination. PMID:18613619

  5. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    International Nuclear Information System (INIS)

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH4–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production

  6. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping, E-mail: jpzhuhust@163.com; Liao, Li, E-mail: liaoli2003@126.com

    2014-11-15

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.

  7. Comprehensive comparison of the chemical and structural characterization of landfill leachate and leonardite humic fractions.

    Science.gov (United States)

    Tahiri, Abdelghani; Richel, Aurore; Destain, Jacqueline; Druart, Philippe; Thonart, Philippe; Ongena, Marc

    2016-03-01

    Humic substances (HS) are complex and heterogeneous mixtures of organic compounds that occur everywhere in the environment. They represent most of the dissolved organic matter in soils, sediments (fossil), water, and landfills. The exact structure of HS macromolecules has not yet been determined because of their complexity and heterogeneity. Various descriptions of HS are used depending on specific environments of origin and research interests. In order to improve the understanding of the structure of HS extracted from landfill leachate (LHS) and commercial HS from leonardite (HHS), this study sought to compare the composition and characterization of the structure of LHS and HHS using elemental composition, chromatographic (high-performance liquid chromatography (HPLC)), and spectroscopic techniques (UV-vis, FTIR, NMR, and MALDI-TOF). The results showed that LHS molecules have a lower molecular weight and less aromatic structure than HHS molecules. The characteristics of functional groups of both LHS and HHS, however, were basically similar, but there was some differences in absorbance intensity. There were also less aliphatic and acidic functional groups and more aromatic and polyphenolic compounds in the humic acid (HA) fraction than in the fulvic acid (FA) and other molecules (OM) fractions of both origins. The differences between LHS and HHS might be due to the time course of humification. Combining the results obtained from these analytical techniques cold improve our understanding of the structure of HS of different origins and thus enhance their potential use. PMID:26781101

  8. Hong kong chemical waste treatment facilities: a technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Siuwang, Chu [Enviropace Ltd., Hong Kong (Hong Kong)

    1993-12-31

    The effective management of chemical and industrial wastes represents one of the most pressing environmental problems confronting the Hong Kong community. In 1990, the Hong Kong government contracted Enviropace Limited for the design, construction and operation of a Chemical Waste Treatment Facility. The treatment and disposal processes, their integration and management are the subject of discussion in this paper

  9. BASIS FOR DETERMINATION OF CHEMICAL STABILITY and COMPATIBILITY OF SOLID WASTE CHEMICAL COMPATIBILITY TECHNICAL BASIS

    International Nuclear Information System (INIS)

    Solid wastes must be managed to prevent inadvertent reactions, explosion and degradation of waste containers per the ''Washington State Department of Ecology Dangerous Waste Regulations'' (WAC 173-303). An understanding of chemical compatibility principles and a consistent approach for implementing compatibility requirements is essential for complying with the regulations. This document explains the technical basis for ensuring chemical compatibility for solid wastes that are stored on site at on-site TSD facilities and for solid waste that will go to off-site TSD facilities. The document applies directly to the following aspects of chemical compatibility: (1) Ensuring that hazardous waste is not chemically reactive or unstable such that it cannot be safely transported or stored; (2) Ensuring that lab packs (i.e., drums containing multiple inner containers of differing types of hazardous waste) are packaged such that incompatible chemicals are not placed into the same drum; (3) Selecting containers and liners that are compatible with the waste they contain. This document does not cover individual TSD requirements, or specific offsite TSD requirements. This document does not cover chemical compatibility and segregation requirements for shipping wastes on-site or off-site. This document does not cover radiological hazards associated with radioactive waste or mixed wastes. Evaluation of compatibility for comingling and treating solid waste is beyond the scope of this document. In addition, heat generation and gas generation as they apply to the Hanford waste acceptance criteria are not covered in this document

  10. Application of Remote Sensing and GIS in Landfill (waste Disposal) Site Selection and Environmental Impacts Assessment around Mysore City, Karnataka, India

    Science.gov (United States)

    Basavarajappa, T. H.

    2012-07-01

    Landfill site selection is a complex process involving geological, hydrological, environmental and technical parameters as well as government regulations. As such, it requires the processing of a good amount of geospatial data. Landfill site selection techniques have been analyzed for identifying their suitability. Application of Geographic Information System (GIS) is suitable to find best locations for such installations which use multiple criteria analysis. The use of Artificial intelligence methods, such as expert systems, can also be very helpful in solid waste planning and management. The waste disposal and its pollution around major cities in Karnataka are important problems affecting the environment. The Mysore is one of the major cities in Karnataka. The landfill site selection is the best way to control of pollution from any region. The main aim is to develop geographic information system to study the Landuse/ Landcover, natural drainage system, water bodies, and extents of villages around Mysore city, transportation, topography, geomorphology, lithology, structures, vegetation and forest information for landfill site selection. GIS combines spatial data (maps, aerial photographs, and satellite images) with quantitative, qualitative, and descriptive information database, which can support a wide range of spatial queries. For the Site Selection of an industrial waste and normal daily urban waste of a city town or a village, combining GIS with Analytical Hierarchy Process (AHP) will be more appropriate. This method is innovative because it establishes general indices to quantify overall environmental impact as well as individual indices for specific environmental components (i.e. surface water, groundwater, atmosphere, soil and human health). Since this method requires processing large quantities of spatial data. To automate the processes of establishing composite evaluation criteria, performing multiple criteria analysis and carrying out spatial clustering

  11. Performance of evaporators in high level radioactive chemical waste service

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C.F.

    1997-12-01

    Chemical processing of nuclear fuels and targets at Savannah River Site resulted in generation of millions of gallons of liquid wastes. The wastes were further processed to reduce volume and allow for extended temporary storage of a more concentrated material. Waste evaporators have been a central point for waste reduction for many years. Currently, the transfer and processing of the concentrated wastes for permanent storage requires dilution and results in generation of significant quantities of additional liquid wastes. A new round of volume reduction is required to fit existing storage capacity and to allow for removal of older vessels from service. Evaporator design, performance and repairs are discussed in this report.

  12. Public attitudes towards solid waste landfill infrastructure : changes in perception over space and time

    OpenAIRE

    Gallagher, Louise; Ferreira, S.; Convery, Frank J.

    2005-01-01

    One of the most controversial planning issues internationally is the siting of waste disposal infrastructure in local communities. Compensation is viewed as a possible solution to siting difficulties in many countries. However, existing empirical evidence is conflicting as to whether or not compensation-based siting has reduced opposition to such developments. Thus, before compensation policy can be considered as the solution for recognising social costs and introducing equity into the waste ...

  13. Experimental and life cycle assessment analysis of gas emission from mechanically–biologically pretreated waste in a landfill with energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Sordi, Alessio; Micale, Caterina

    2013-11-15

    Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup −1}) was evaluated. k ranged from 0.436 to 0.308 year{sup −1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation

  14. Experimental and life cycle assessment analysis of gas emission from mechanically–biologically pretreated waste in a landfill with energy recovery

    International Nuclear Information System (INIS)

    Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R2 ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R2), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year−1) was evaluated. k ranged from 0.436 to 0.308 year−1 and the bio-methane potential from 37 to 12 N m3/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system

  15. Impact Of Aerobic Biostabilisation And Biodrying Process Of Municipal Solid Waste On Minimisation Of Waste Deposited In Landfills

    OpenAIRE

    Dziedzic Krzysztof; Łapczyńska-Kordon Bogusława; Malinowski Mateusz; Niemiec Marcin; Sikora Jakub

    2015-01-01

    The article discusses an innovative system used for aerobic biostabilisation and biological drying of solid municipal waste. A mechanical–biological process (MBT) of municipal solid waste (MSW) treatment were carried out and monitored in 5 bioreactors. A two-stage biological treatment process has been used in the investigation. In the first step an undersize fraction was subjected to the biological stabilisation for a period of 14 days as a result of which there was a decrease of loss on igni...

  16. Solid waste disposal in the soil: effects on the physical, chemical, and organic properties of soil

    OpenAIRE

    Vanessa Regina Lasaro Mangieri; João Tavares Filho

    2015-01-01

    Currently, there is growing concern over the final destination of the solid waste generated by society. Landfills should not be considered the endpoint for substances contained or generated in solid waste. The sustainable use of natural resources, especially soil and water, has become relevant, given the increase in anthropogenic activities. Agricultural use is an alternative to solid waste (leachate, biosolid) disposal, considering the hypothesis that the agricultural use of waste is promisi...

  17. Effect on heavy metals concentration from vermiconversion of agro-waste mixed with landfill leachate.

    Science.gov (United States)

    Azizi, Abu Bakar; Choy, May Yee; Noor, Zalina Mahmood; Noorlidah, Abdullah

    2015-04-01

    Spent Pleurotus sajor-caju compost mixed with livestock excreta, i.e. cow dung or goat manure, was contaminated with landfill leachate and vermiremediated in 75 days. Results showed an extreme decrease of heavy metals, i.e. Cd, Cr and Pb up to 99.81% removal as effect of vermiconversion process employing epigeic earthworms i.e. Lumbricus rubellus. In addition, there were increments of Cu and Zn from 15.01% to 85.63%, which was expected as non-accumulative in L. rubellus and secreted out as contained in vermicompost. This phenomenon is due to dual effects of heavy metal excretion period and mineralisation. Nonetheless, the increments were 50-fold below the limit set by EU and USA compost limits and the Malaysian Recommended Site Screening Levels for Contaminated Land (SSLs). Moreover, the vermicompost C:N ratio range is 20.65-22.93 and it can be an advantageous tool to revitalise insalubrious soil by acting as soil stabiliser or conditioner. PMID:25670166

  18. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical waste to LBL's Hazardous Waste Handling Facility (HWHF). Hazardous chemical waste is a necessary byproduct of LBL's research and technical support activities. This waste must be handled properly if LBL is to operate safely and provide adequate protection to staff and the environment. These guidelines describe how you, as a generator of hazardous chemical waste, can meet LBL's acceptance criteria for hazardous chemical waste

  19. Targeted modification of organic components of municipal solid waste by short-term pre-aeration and its enhancement on anaerobic degradation in simulated landfill bioreactors.

    Science.gov (United States)

    Ni, Zhe; Liu, Jianguo; Girotto, Francesca; Cossu, Raffaello; Qi, Guangxia

    2016-09-01

    Pre-aeration is effective on regulating subsequent anaerobic degradation of municipal solid waste (MSW) with high organic fractions during landfilling. The strength of pre-aeration should be optimized to intentionally remove some easily biodegradable fractions while conserve bio-methane potential as much as possible. This study investigates the evolution of organic components in MSW during 2-14days pre-aeration process and its impacts on subsequent anaerobic degradation in simulated landfill bioreactors. Results showed that a 6-day pre-aeration enabled to develop a thermophilic stage, which significantly accelerated biodegradation of organics except lignocelluloses, with removal rates of 42.8%, 76.7% and 25.1% for proteins, carbohydrates and lipids, respectively. Particularly, ammonia from accelerated ammonification in the thermophilic stage neutralized VFAs generated from anaerobic landfilling. As a result, the MSW with 6-day pre-aeration obtained the highest methane yield 123.4NL/kg dry matter. Therefore, it is recommended to interrupt pre-aeration before its cooling stage to switch to anaerobic landfilling. PMID:27243602

  20. Targeted modification of organic components of municipal solid waste by short-term pre-aeration and its enhancement on anaerobic degradation in simulated landfill bioreactors.

    Science.gov (United States)

    Ni, Zhe; Liu, Jianguo; Girotto, Francesca; Cossu, Raffaello; Qi, Guangxia

    2016-09-01

    Pre-aeration is effective on regulating subsequent anaerobic degradation of municipal solid waste (MSW) with high organic fractions during landfilling. The strength of pre-aeration should be optimized to intentionally remove some easily biodegradable fractions while conserve bio-methane potential as much as possible. This study investigates the evolution of organic components in MSW during 2-14days pre-aeration process and its impacts on subsequent anaerobic degradation in simulated landfill bioreactors. Results showed that a 6-day pre-aeration enabled to develop a thermophilic stage, which significantly accelerated biodegradation of organics except lignocelluloses, with removal rates of 42.8%, 76.7% and 25.1% for proteins, carbohydrates and lipids, respectively. Particularly, ammonia from accelerated ammonification in the thermophilic stage neutralized VFAs generated from anaerobic landfilling. As a result, the MSW with 6-day pre-aeration obtained the highest methane yield 123.4NL/kg dry matter. Therefore, it is recommended to interrupt pre-aeration before its cooling stage to switch to anaerobic landfilling.

  1. Removal of Pb2+ and Cd2+ by adsorption on clay-solidified grouting curtain for waste landfills

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-gui; ZHANG Ke-neng; ZOU Yin-sheng; DENG Fei-yue

    2006-01-01

    Pb2+ and Cd2+ in leachate were adsorbed on clay-solidified grouting curtain for waste landfills with equilibrium experiment. The cation exchange capacity was determined with ammonium acetate. And the concentration of heavy metal cations in leachate was determined with atomic absorption spectrophotometer. Their equilibrium isotherms were measured, and the experimental isotherm data were analyzed by using Freundlich and Langmuir models. The results show that the adsorption capacities of the heavy metal cations are closely related to the compositions of clay-solidified grouting curtain, and the maximum adsorption appears at the ratio of cement to clay of 2: 4 in the experimental conditions. At their maximum adsorption and pH 5.0, the adsorption capacities of Pb2+ and Cd2+ are 16.19 mg/g and 1.21 mg/g. The competitive adsorption coefficients indicate that the adsorption of clay-solidified grouting curtain for Pb2+ is stronger than that for Cd2+. The adsorption process conforms to Freundlich's model with related coefficient higher than 0. 996.

  2. Deployment of an alternative cover and final closure of the Mixed Waste Landfill, Sandia National Laboratories, Albuquerque, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Peace, Gerald (Jerry) L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM); McVey, Michael David (GRAM, Inc., Albuquerque, NM); Borns, David James

    2003-06-01

    An alternative cover design consisting of a monolithic layer of native soil is proposed as the closure path for the Mixed Waste Landfill at Sandia National Laboratories, New Mexico. The proposed design would rely upon soil thickness and evapotranspiration to provide long-term performance and stability, and would be inexpensive to build and maintain. The proposed design is a 3-ft-thick, vegetated soil cover. The alternative cover meets the intent of RCRA Subtitle C regulations in that: (a) water migration through the cover is minimized; (b) maintenance is minimized by using a monolithic soil layer; (c) cover erosion is minimized by using erosion control measures; (d) subsidence is accommodated by using a ''soft'' design; and (e) the permeability of the cover is less than or equal to that of natural subsurface soil present. Performance of the proposed cover is integrated with natural site conditions, producing a ''system performance'' that will ensure that the cover is protective of human health and the environment. Natural site conditions that will produce a system performance include: (a) extremely low precipitation and high potential evapotranspiration; (b) negligible recharge to groundwater; (c) an extensive vadose zone; (d) groundwater approximately 500 ft below the surface; and (e) a versatile, native flora that will persist indefinitely as a climax ecological community with little or no maintenance.

  3. [Assessment of impacts of combined treatment of solid urban waste landfill leachate and sewage on aquatic biota].

    Science.gov (United States)

    Mannarino, Camille Ferreira; Moreira, Josino Costa; Ferreira, João Alberto; Arias, Ana Rosa Linde

    2013-11-01

    The impact on tilapia fish of combined treatment of landfill leachate and domestic sewage was monitored in a waste treatment plant that operated on a pilot scale using the activated sludge process. Biomarkers of sub-lethal toxicity were used to indicate the possibility of damage to organisms due to interaction with pollutants. The concentration of metallothioneins did not indicate the increased presence of metals in fish exposed than in control groups. Acetylcholinesterase enzyme activity was inhibited in only one of the exposed groups, indicating the possible presence of organophosphate and/or carbamate pesticides in treated effluent. The PAHs used as biomarkers (naphthalene, pyrene, benzo(a)pyrene and 1-hydroxypyrene) indicated that exposed fish had a greater absorption of PAHs than control groups of fish, indicating the likely presence of these compounds in at least one of the combined treatment effluents. The frequencies of micronuclei and other erythrocytic nuclear abnormalities also indicate greater genotoxic damage in cells of organisms exposed than in control groups. The use of biomarkers proved to be important to permit an evaluation of sub-lethal damage present in organisms exposed to the pollution source studied. PMID:24196889

  4. Modelling of landfill gas adsorption with bottom ash for utilization of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Chen

    2011-10-06

    Energy crisis, environment pollution and climate change are the serious challenges to people worldwide. In the 21st century, human being is trend to research new technology of renewable energy, so as to slow down global warming and develop society in an environmentally sustainable method. Landfill gas, produced by biodegradable municipal solid waste in landfill, is a renewable energy source. In this work, landfill gas utilization for energy generation is introduced. Landfill gas is able to produce hydrogen by steam reforming reactions. There is a steam reformer equipment in the fuel cells system. A sewage plant of Cologne in Germany has run the Phosphoric Acid Fuel Cells power station with biogas for more than 50,000 hours successfully. Landfill gas thus may be used as fuel for electricity generation via fuel cells system. For the purpose of explaining the possibility of landfill gas utilization via fuel cells, the thermodynamics of landfill gas steam reforming are discussed by simulations. In practice, the methane-riched gas can be obtained by landfill gas purification and upgrading. This work investigate a new method for upgrading-landfill gas adsorption with bottom ash experimentally. Bottom ash is a by-product of municipal solid waste incineration, some of its physical and chemical properties are analysed in this work. The landfill gas adsorption experimental data show bottom ash can be used as a potential adsorbent for landfill gas adsorption to remove CO{sub 2}. In addition, the alkalinity of bottom ash eluate can be reduced in these adsorption processes. Therefore, the interactions between landfill gas and bottom ash can be explained by series reactions accordingly. Furthermore, a conceptual model involving landfill gas adsorption with bottom ash is developed. In this thesis, the parameters of landfill gas adsorption equilibrium equations can be obtained by fitting experimental data. On the other hand, these functions can be deduced with theoretical approach

  5. Experimental and life cycle assessment analysis of gas emission from mechanically-biologically pretreated waste in a landfill with energy recovery.

    Science.gov (United States)

    Di Maria, Francesco; Sordi, Alessio; Micale, Caterina

    2013-11-01

    The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R(2)), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year(-1)) was evaluated. k ranged from 0.436 to 0.308year(-1) and the bio-methane potential from 37 to 12Nm(3)/tonne, respectively, for the MSOF with 0 and 16weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90kWh per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4weeks showed rather negligible variation in the global impact of system emissions. PMID:23910244

  6. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    Science.gov (United States)

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  7. GEOTECHNICAL ASPECTS OF BOTTOM SEALING EXISTING HAZARDOUS WASTE LANDFILLS BY INJECTION GROUTING

    Science.gov (United States)

    Preliminary results are given of compatibility testing for various grouts with selected hazardous wastes. The testing is a part of an ongoing project to determine the geotechnical feasibility of utilizing selected grouts and state-of-the-art techniques in the bottom sealing of ex...

  8. BIODEGRADATIVE ANALYSIS OF MUNICIPAL SOLID WASTE IN LABORATORY-SCALE LANDFILLS

    Science.gov (United States)

    The report gives results of research to characterize the anaerobic biodegradability of the major biodegradable components of municipal solid waste (MSW). Tests were conducted in quadruplicate in 2-L reactors operated to obtain maximum yields. Measured methane (CH4) yields for gra...

  9. Sustainable Practices for Landfill Design and Operation (Part of book series Waste Management Principles and Practice)

    Science.gov (United States)

    The management of municipal solid waste (MSW) in many countries throughout the world has changed significantly over the past fifty years, with a shift from uncontrolled dumping or burning to complex systems that integrate multiple processes to recover materials or energy and prov...

  10. Aerobic biological pretreatment of municipal solid waste with a high content of putrescibles: effect on landfill emissions.

    Science.gov (United States)

    Gerassimidou, Spyridoula; Evangelou, Alexandros; Komilis, Dimitrios

    2013-08-01

    The objective of this work was to study the effect of aerobic biological pretreatment on the emissions of municipal solid waste (MSW) with a high content of putrescibles after landfilling. For this purpose, the organic fraction of MSW was simulated by a mixture of food waste and office paper at a 2.4:1 wet weight ratio. MSW was first pretreated aerobically for three different time periods (8, 45 and 90 days) resulting in organic matter reductions equal to 15%, 45% and 81% respectively. MSW were then placed in 160-L air-tight anaerobic bioreactors. The control anaerobic bioreactors contained untreated MSW. Anaerobic experiments lasted from 300 to 550 days. Results showed that the biogas production from untreated MSW was 372 NL dry kg(-1) (average of two replications) after 530 days. The MSW that was pretreated aerobically for 45 days and 90 days yielded 130 and 62 NL dry kg(-1) of biogas after 310 days and 230 days respectively. However, the 8-day (very short-term) pretreatment period led to an increase of the biogas yield (550 NL dry kg(-1) after 340 days) compared with that of raw refuse. All three runs with aerobically pretreated MSW reached the steady methanogenic phase faster than raw MSW. Leachate emissions were significantly lower in the aerobically-pretreated MSWthan the untreated ones. The leachate ammonium concentrations had an increasing trend in all anaerobic reactors and reached a plateau of between 2 and 3.5 g L(-1) at the end of the process. PMID:23771878

  11. Chemical characterization of emissions from a municipal solid waste treatment plant

    OpenAIRE

    Moreno Caballero, Ana Isabel; Arnaiz Arnaiz, Noelia; Font Montesinos, Rafael; Carratalá, Adoración

    2014-01-01

    Gaseous emissions are an important problem in municipal solid waste (MSW) treatment plants. The sources points of emissions considered in the present work are: fresh compost, mature compost, landfill leaks and leachate ponds. Hydrogen sulphide, ammonia and volatile organic compounds (VOCs) were analysed in the emissions from these sources. Hydrogen sulphide and ammonia were important contributors to the total emission volume. Landfill leaks are significant source points of emissions of H2S; t...

  12. ELECTRIC POWER GENERATION USING A PHOSPHORIC ACID FUEL CELL ON A MUNICIPAL SOLID WASTE LANDFILL GAS STREAM

    Science.gov (United States)

    The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phorsphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Th...

  13. Distribution of Organic Compounds from Municipal Solid Waste in the Groundwater Downgradient of a Landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Rügge, Kirsten; Bjerg, Poul Løgstrup; Christensen, Thomas Højlund

    1995-01-01

    organic carbon, NVOC) were found. In a distance of 130 m downgradient of the landfill, the NVOC had decreased to background level, which is 1-3 mg of C L-l. More than 15 organic compounds were identified in the groundwater at the downgradient border of the landfill with benzene, toluene, ethylbenzene...

  14. Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study.

    Science.gov (United States)

    Yang, Na; Damgaard, Anders; Lü, Fan; Shao, Li-Ming; Brogaard, Line Kai-Sørensen; He, Pin-Jing

    2014-05-01

    An inventory of material and energy consumption during the construction and operation (C&O) of a typical sanitary landfill site in China was calculated based on Chinese industrial standards for landfill management and design reports. The environmental impacts of landfill C&O were evaluated through life cycle assessment (LCA). The amounts of materials and energy used during this type of undertaking in China are comparable to those in developed countries, except that the consumption of concrete and asphalt is significantly higher in China. A comparison of the normalized impact potential between landfill C&O and the total landfilling technology implies that the contribution of C&O to overall landfill emissions is not negligible. The non-toxic impacts induced by C&O can be attributed mainly to the consumption of diesel used for daily operation, while the toxic impacts are primarily due to the use of mineral materials. To test the influences of different landfill C&O approaches on environmental impacts, six baseline alternatives were assessed through sensitivity analysis. If geomembranes and geonets were utilized to replace daily and intermediate soil covers and gravel drainage systems, respectively, the environmental burdens of C&O could be mitigated by between 2% and 27%. During the LCA of landfill C&O, the research scope or system boundary has to be declared when referring to material consumption values taken from the literature; for example, the misapplication of data could lead to an underestimation of diesel consumption by 60-80%.

  15. Municipal solid waste landfill leachate treatment by fenton, photo-fenton and fenton-like processes: Effect of some variables

    Directory of Open Access Journals (Sweden)

    Zazouli Mohammad

    2012-08-01

    Full Text Available Abstract Advanced oxidation processes like Fenton and photo-Fenton have been effectively applied to oxidize the persistent organic compounds in solid waste leachate and convert them to unharmful materials and products. However, there are limited data about application of Fenton-like process in leachate treatment. Therefore, this study was designed with the objective of treating municipal landfill leachate by Fenton, Fenton-like and photo–Fenton processes to determine the effect of different variables, by setting up a pilot system. The used leachate was collected from a municipal unsanitary landfill in Qaem-Shahr in the north of Iran. Fenton and Fenton-like processes were conducted by Jar-test method. Photo-Fenton process was performed in a glass photo-reactor. In all processes, H2O2 was used as the oxidant. FeSO4.7H2O and FeCl3.6H2O were used as reagents. All parameters were measured based on standard methods. The results showed that the optimum concentration of H2O2 was equal to 5 g/L for the Fenton-like process and 3 g/L for the Fenton and photo-Fenton processes. The optimum ratio of H2O2: Fe+2/Fe+3 were equal to 8:1 in all processes. At optimum conditions, the amount of COD removal was 69.6%, 65.9% and 83.2% in Fenton, Fenton-like and photo–Fenton processes, respectively. In addition, optimum pH were 3, 5 and 3 and the optimum contact time were 150, 90 and 120 minutes, for Fenton, Fenton-like and photo–Fenton processes, respectively. After all processes, the biodegradability (BOD5/COD ratio of the treated leachate was increased compared to that of the raw leachate and the highest increase in BOD5/COD ratio was observed in the photo-Fenton process. The efficiency of the Fenton-like process was overally less than Fenton and photo-Fenton processes, meanwhile the Fenton-like process was at higher pH and did not show problems.

  16. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  17. Removal of ammonia nitrogen from leachate of Muribeca municipal solid waste landfill, Pernambuco, Brazil, using natural zeolite as part of a biochemical system.

    Science.gov (United States)

    Lins, Cecilia Maria M S; Alves, Maria Cristina M; Campos, Juacyara C; Silva, Fabrícia Maria S; Jucá, José Fernando T; Lins, Eduardo Antonio M

    2015-01-01

    The inadequate disposal of leachate is one of the key factors in the environmental impact of urban solid waste landfills in Brazil. Among the compounds present in the leachates from Brazilian landfills, ammonia nitrogen is notable for its high concentrations. The purpose of this study was to assess the efficiency of a permeable reactive barrier filled with a natural zeolite, which is part of a biochemical system for the tertiary treatment of the leachate from Muribeca Municipal Solid Waste Landfill in Pernambuco, Brazil, to reduce its ammonia nitrogen concentration. This investigation initially consisted of kinetic studies and batch equilibrium tests on the natural zeolite to construct the sorption isotherms, which showed a high sorption capacity, with an average of 12.4 mg NH4+.L(-1), a value close to the sorption rates found for the aqueous ammonium chloride solution. A permeable reactive barrier consisting of natural zeolite, as simulated by the column test, was efficient in removing the ammonia nitrogen present in the leachate pretreated with calcium hydroxide. Nevertheless, the regenerated zeolite did not satisfactorily maintain the sorption properties of the natural zeolite, and an analysis of their cation-exchange properties showed a reduced capacity of 54 meq per 100 g for the regenerated zeolite compared to 150 meq per 100 g for the natural zeolite. PMID:26061211

  18. Ecological modeling of pollutants in accidental fire at the landfill waste

    OpenAIRE

    Stefanov Sonja B.; Biočanin Rade R.; Vojinović-Miloradov Mirjana; Sokolovic Slobodan; Ivanković Darko

    2013-01-01

    Paper presents tyre as flammable material and some examples of tyre fires in the world. Uncontrolled tyre fires produce a lot of smoke and air pollutants, including benzene and polycyclic aromatic hydrocarbons (PAH). Great heat leads to the generation of pyrolytic oil which, when mixed with the fire extinguishing agent, contaminates the surrounding soil, surface water and underground water. Paper analyzes and presents in particular the emission factors of incomplete burning of waste car...

  19. DOES COMPOSTING OF BIODEGRADABLE MUNICIPAL SOLID WASTE ON THE LANDFILL BODY MAKE SENSE?

    OpenAIRE

    Dana Adamcová; Magdalena Vaverková

    2016-01-01

    In this study white mustard (Sinapis alba) plants were allowed to grow in earthen pots, treated with municipal solid waste compost (MSWC) to study the effect of MSWC on the plant biomass production. Twenty-one days from the establishment of the experiment sprouts and the number of growing plants occurring in the earthen pots were counted. Plants growing in the earthen pots with the compost samples exhibited an increasing plant biomass while no changes were observed in their appearance; retard...

  20. Estimating methane emission and oxidation from two temporary covers on landfilled MBT treated waste

    OpenAIRE

    Bour, Olivier; Zdanevitch, Isabelle; Briand, Mark; Llinas, Laurent

    2009-01-01

    Surface gaseous emissions and upper layer waste gas composition were measured on two French MBT plants with aerobic pre-treatment process. The goals were to characterize the gaseous emissions, and to assess the efficiency of the upper layer to oxidize the methane flux coming from the residual organic fraction. The first plant was operated without recovery of organic fraction and with concentration of the fine fraction in a cell. The methane fluxes were high and the oxidized methane fraction w...

  1. Life Cycle Assessment of Thermal Treatment Technologies. An environmental and financial systems analysis of gasification, incineration and landfilling of waste

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew; Eriksson, Ola [Royal Inst. of Tech., Stockholm (Sweden). Industrial Ecology; Jaeraas, Sven; Kusar, Henrik [Royal Inst. of Tech., Stockholm (Sweden). Chemical Technology

    2003-05-01

    A technology which is currently developed by researchers at KTH is catalytic combustion. which is one component of a gasification system. Instead of performing the combustion in the gas turbine by a flame, a catalyst is used. When the development of a new technology (as catalytic combustion) reaches a certain step where it is possible to quantify material-, energy- and capital flows, the prerequisites for performing a systems analysis is at hand. The systems analysis can be used to expand the know-how about the potential advantages of the catalytic combustion technology by highlighting its function as a component of a larger system. In this way it may be possible to point out weak points which have to be investigated more, but also strong points to emphasise the importance of further development. The aim of this project was to assess the energy turnover as well as the potential environmental impacts and economic costs of thermal treatment technologies in general and catalytic combustion in particular. By using a holistic assessment of the advantages and disadvantages of catalytic combustion of waste it was possible to identify the strengths and weaknesses of the technology under different conditions. Following different treatment scenarios have been studied: (1) Gasification with catalytic combustion, (2) Gasification with flame combustion, (3) Incineration with energy recovery and (4) Landfilling with gas collection. In the study compensatory district heating is produced by combustion. of biofuel. The power used for running the processes in the scenarios is supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced. from natural gas. The emissions from the system studied were classified and characterised using methodology from Life Cycle Assessment into the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical

  2. COMBINED GEOPHYSICAL INVESTIGATION TECHNIQUES TO IDENTIFY BURIED WASTE IN AN UNCONTROLLED LANDFILL AT THE PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY

    International Nuclear Information System (INIS)

    The primary objective of the investigation was to confirm the presence and determine the location of a cache of 30 to 60 buried 55-gallon drums that were allegedly dumped along the course of the pre-existing, northsouth diversion ditch (NSDD) adjacent to permitted landfills at the Paducah Gaseous Diffusion Plant, Kentucky. The ditch had been rerouted and was being filled and re-graded at the time of the alleged dumping. Historic information and interviews with individuals associated with alleged dumping activities indicated that the drums were dumped prior to the addition of other fill materials. In addition, materials alleged to have been dumped in the ditch, such as buried roofing materials, roof flashing, metal pins, tar substances, fly ash, and concrete rubble complicated data interpretation. Some clean fill materials have been placed over the site and graded. This is an environment that is extremely complicated in terms of past waste dumping activities, construction practices and miscellaneous landfill operations. The combination of site knowledge gained from interviews and research of existing site maps, variable frequency EM data, classical total magnetic field data and optimized GPR lead to success where a simpler less focused approach by other investigators using EM-31 and EM-61 electromagnetic methods and unfocused ground penetrating radar (GPR)did not produce results and defined no real anomalies. A variable frequency electromagnetic conductivity unit was used to collect the EM data at 3,030 Hz, 5,070 Hz, 8,430 Hz, and 14,010 Hz. Both in-phase and quadrature components were recorded at each station point. These results provided depth estimates for targets and some information on the subsurface conditions. A standard magnetometer was used to conduct the magnetic survey that showed the locations and extent of buried metal, the approximate volume of ferrous metal present within a particular area, and allowed estimation of approximate target depths. The GPR

  3. Chemical composition of material fractions in Danish household waste

    DEFF Research Database (Denmark)

    Riber, Christian; Petersen, Claus; Christensen, Thomas Højlund

    2009-01-01

    The chemical composition of Danish household waste was determined by two approaches: a direct method where the chemical composition (61 substances) of 48 material fractions was determined after hand sorting of about 20 tonnes of waste collected from 2200 households; and an indirect method where...... batches of 80-1200 tonnes of unsorted household waste was incinerated and the content of the waste determined from the content of the outputs from the incinerator. The indirect method is believed to better represent the small but highly contaminated material fractions (e,g., batteries) than the direct...... method, because of the larger quantities included and the more homogenous material to sample from. Differences between the direct and the direct methods led to corrections in the of heavy metal concentration of a few fractions. The majority of the energy content of the waste originates from organic waste...

  4. Landfill aeration for emission control before and during landfill mining.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area.

  5. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part II: Constraint methodology of hydrodynamic models.

    Science.gov (United States)

    Audebert, M; Oxarango, L; Duquennoi, C; Touze-Foltz, N; Forquet, N; Clément, R

    2016-09-01

    Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected. PMID:27095292

  6. Composição gravimétrica de resíduos sólidos aterrados Gravimetric composition of solid waste landfill

    Directory of Open Access Journals (Sweden)

    Greice Mattei

    2007-09-01

    Full Text Available A composição gravimétrica de um aterro de resíduos sólidos (RS é uma informação básica para o monitoramento e avaliação de projetos ambientais. A obtenção dessa informação é dificultada pela inexistência de procedimentos padrões de amostragem, pela heterogeneidade dos RS e pela forma de disposição desses resíduos ou tipo de aterro, entre outros fatores. Esse trabalho teve como objetivo determinar se há diferença entre a composição gravimétrica de materiais aterrados em um lixão e em um aterro controlado, além de avaliar se essa composição varia com a profundidade de amostragem. Constatou-se pouca diferença na composição gravimétrica dos RS entre os aterros. No aterro controlado predominou a massa pastosa (41,2 %, enquanto que no lixão houve maior teor de plástico filme (35,0 %. A composição dos resíduos aterrados não variou com a profundidade de amostragem.The gravimetric composition of solid waste (SW landfill is basic information for environmental monitoring and projects evaluation. The lack of standard procedures for sampling, the inherent heterogeneity of SW and the different disposal techniques of such wastes or type of landfill, among other factors, have imposed certain limitations to obtain data about landfill gravimetric composition. The objective of this work was to evaluate the difference between the gravimetric composition of SW collected from an open dump and from a controlled landfill and to evaluate if this composition changes with depth of sampling. There was little difference between the SW collected in the two types of landfills. In the controlled landfill pasted mass (41,2 % was the major component, while in the open dump the plastic film (35,0 % was the most common material. The SW composition did not change with the sampling depth.

  7. Evaluation of toxicity and estrogenicity of the landfill-concentrated leachate during advanced oxidation treatment: chemical analyses and bioanalytical tools.

    Science.gov (United States)

    Wang, Guifang; Lu, Gang; Zhao, Jiandi; Yin, Pinghe; Zhao, Ling

    2016-08-01

    Landfill-concentrated leachate from membrane separation processes is a potential pollution source for the surroundings. In this study, the toxicity and estrogenicity potentials of concentrated leachate prior to and during UV-Fenton and Fenton treatments were assessed by a combination of chemical (di (2-ethylhexyl) phthalate and dibutyl phthalate were chosen as targets) and biological (Daphnia magna, Chlorella vulgaris, and E-screen assay) analyses. Removal efficiencies of measured di (2-ethylhexyl) phthalate and dibutyl phthalate were more than 97 % after treatment with the two methods. Biological tests showed acute toxicity effects on D. magna tests in untreated concentrated leachate samples, whereas acute toxicity on C. vulgaris tests was not observed. Both treatment methods were found to be efficient in reducing acute toxicity effects on D. magna tests. The E-screen test showed concentrated leachate had significant estrogenicity, UV-Fenton and Fenton treatment, especially the former, were effective methods for reducing estrogenicity of concentrated leachate. The EEQchem (estradiol equivalent concentration) of all samples could only explain 0.218-5.31 % range of the EEQbio. These results showed that UV-Fenton reagent could be considered as a suitable method for treatment of concentrated leachate, and the importance of the application of an integrated (biological + chemical) analytical approach for a comprehensive evaluation of treatment suitability. PMID:27146535

  8. Stochastic approach to municipal solid waste landfill life based on the contaminant transit time modeling using the Monte Carlo (MC) simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bieda, Boguslaw, E-mail: bbieda@zarz.agh.edu.pl

    2013-01-01

    The paper is concerned with application and benefits of MC simulation proposed for estimating the life of a modern municipal solid waste (MSW) landfill. The software Crystal Ball Registered-Sign (CB), simulation program that helps analyze the uncertainties associated with Microsoft Registered-Sign Excel models by MC simulation, was proposed to calculate the transit time contaminants in porous media. The transport of contaminants in soil is represented by the one-dimensional (1D) form of the advection-dispersion equation (ADE). The computer program CONTRANS written in MATLAB language is foundation to simulate and estimate the thickness of landfill compacted clay liner. In order to simplify the task of determining the uncertainty of parameters by the MC simulation, the parameters corresponding to the expression Z2 taken from this program were used for the study. The tested parameters are: hydraulic gradient (HG), hydraulic conductivity (HC), porosity (POROS), linear thickness (TH) and diffusion coefficient (EDC). The principal output report provided by CB and presented in the study consists of the frequency chart, percentiles summary and statistics summary. Additional CB options provide a sensitivity analysis with tornado diagrams. The data that was used include available published figures as well as data concerning the Mittal Steel Poland (MSP) S.A. in Krakow, Poland. This paper discusses the results and show that the presented approach is applicable for any MSW landfill compacted clay liner thickness design. -- Highlights: Black-Right-Pointing-Pointer Numerical simulation of waste in porous media is proposed. Black-Right-Pointing-Pointer Statistic outputs based on correct assumptions about probability distribution are presented. Black-Right-Pointing-Pointer The benefits of a MC simulation are examined. Black-Right-Pointing-Pointer The uniform probability distribution is studied. Black-Right-Pointing-Pointer I report a useful tool applied to determine the life of a

  9. Stochastic approach to municipal solid waste landfill life based on the contaminant transit time modeling using the Monte Carlo (MC) simulation

    International Nuclear Information System (INIS)

    The paper is concerned with application and benefits of MC simulation proposed for estimating the life of a modern municipal solid waste (MSW) landfill. The software Crystal Ball® (CB), simulation program that helps analyze the uncertainties associated with Microsoft® Excel models by MC simulation, was proposed to calculate the transit time contaminants in porous media. The transport of contaminants in soil is represented by the one-dimensional (1D) form of the advection–dispersion equation (ADE). The computer program CONTRANS written in MATLAB language is foundation to simulate and estimate the thickness of landfill compacted clay liner. In order to simplify the task of determining the uncertainty of parameters by the MC simulation, the parameters corresponding to the expression Z2 taken from this program were used for the study. The tested parameters are: hydraulic gradient (HG), hydraulic conductivity (HC), porosity (POROS), linear thickness (TH) and diffusion coefficient (EDC). The principal output report provided by CB and presented in the study consists of the frequency chart, percentiles summary and statistics summary. Additional CB options provide a sensitivity analysis with tornado diagrams. The data that was used include available published figures as well as data concerning the Mittal Steel Poland (MSP) S.A. in Kraków, Poland. This paper discusses the results and show that the presented approach is applicable for any MSW landfill compacted clay liner thickness design. -- Highlights: ► Numerical simulation of waste in porous media is proposed. ► Statistic outputs based on correct assumptions about probability distribution are presented. ► The benefits of a MC simulation are examined. ► The uniform probability distribution is studied. ► I report a useful tool applied to determine the life of a modern MSW landfill.

  10. Chemical characterization of SRP waste tank sludges and supernates

    International Nuclear Information System (INIS)

    Most high-level liquid wastes at the Savannah River Plant (SRP) are byproducts from plutonium and enriched uranium recovery processes. The high-level liquid wastes generated by these separations processes are stored in large, underground, carbon-steel tanks. The liquid wastes consist of: supernate (an aqueous solution containing sodium, nitrate, nitrite, hydroxyl, and aluminate ions), sludge (a gelatinous material containing insoluble components of the waste, such as ferric and aluminum hydroxides, and mercuric and manganese oxides), and salt cake (crystals, such as sodium nitrate, formed by evaporation of water from supernate). Analyses of SRP wastes by laser-Raman spectrometry, atomic absorption spectrometry, spark-source mass spectrometry, neutron activation analysis, colorimetry, ion chromatography, and various other wet-chemical and radiochemical methods are discussed. These analyses are useful in studies of waste tank corrosion and of forms for long-term waste storage

  11. Chemical species of plutonium in Hanford radioactive tank waste

    International Nuclear Information System (INIS)

    Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other

  12. Chemical species of plutonium in Hanford radioactive tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Barney, G.S.

    1997-10-22

    Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other

  13. 上海市垃圾填埋场植被特征分析%A study on vegetation characteristics of solid waste landfills in Shanghai

    Institute of Scientific and Technical Information of China (English)

    郑思俊; 王肖刚; 张庆费; 徐敏

    2013-01-01

    通过调查上海市7个行政区11个典型垃圾填埋场的植物群落,分析其种类组成、区系特征、群落类型等指标,总结了垃圾填埋场的植被特征.结果表明:共记录有种子植物77科165属189种,含种数较多的科依次是菊科、禾本科、蔷薇科和豆科,其他含较多种的科为锦葵科、唇形科和藜科,且单种科比例较高;植物区系以北温带分布比例最高,其次为泛热带分布和东亚分布;植物种类以自然侵入的草本植物为主,木本植物多为人工栽植,偶见构树、朴树、桑树、苦楝等演替先锋种;群落类型可划分为常绿针叶林、针阔混交林、常绿阔叶林、落叶阔叶林和常绿落叶阔叶混交林等5种,群落结构一般缺少灌木层,乔木树种个体径级呈不连续分布.据此,应根据不同垃圾填埋场的植被现状以及周边环境,建设具有乡土特色的植物景观以及城市“森林岛”景观.%Based on the data from plant communities' investigation of 11 landfills at 7 districts of Shanghai city, the characteristic of vegetation in solid waste landfill was summarised, such as species composition, type of distribution are-a, community type and so on. The results showed that 189 seed plant species belonging to 165 genera and 77 families, which were mainly the herb plants, was recorded in 11 landfills. And the family with more than ten species was successively Compositae, Gramineae, Rosaceae and Leguminosae, and there were also many species from the family of Malvaceae , Labiatae and Chenopodiaceae, the family with one specie and native species had the highest ratio in landfills. The main components of the flora in landfills was successively the north temperate zone, pantropic and east asia. The main communities were herbaceous plant communities in early period of solid waste landfills. And the wood plants were mainly consist of artificial plantation species, and some pioneer species, such as Broussonetia

  14. Fluctuation of dissolved heavy metal concentrations in the leachate from anaerobic digestion of municipal solid waste in commercial scale landfill bioreactors: The effect of pH and associated mechanisms.

    Science.gov (United States)

    Xie, S; Ma, Y; Strong, P J; Clarke, W P

    2015-12-15

    Heavy metals present in landfill leachate have infrequently been related to complete anaerobic degradation municipal solid waste (MSW) due to discrete ages of deposited MSW layers and leachate channelling in landfills. In this study, anaerobic digestion of MSW was performed in two enclosed 1000 tonne bioreactors using a unique flood and drain process. Leachates were characterised in terms of pH, soluble chemical oxygen demand, volatile fatty acids (VFAs), ammonium nitrogen and heavy metals over the entire course of digestion. All parameters, including pH, fluctuated during acidogenesis, acetogenesis and methanogenesis, which strongly impacted on the dynamics of dissolved heavy metal concentrations. The simulation of dissolution and precipitation processes indicated that metal sulphide precipitation was not a factor as metal concentrations exceeded solubility limits. The correlation of pH and dissolved heavy metal concentrations indicated that other, mechanisms were involved in the homogenised conditions within the bioreactors. Beside dissolution and precipitation, the main processes most likely involved in metal distributions were adsorption (Zn, Cu, Ni, Pb and Cd), complexation (Cr) or combinations of both process (As and Co).

  15. Gas Production Potential in the Landfill of Tehran by Landfill Methane Outreach Program

    Directory of Open Access Journals (Sweden)

    Pazoki

    2015-10-01

    Full Text Available Background Landfilling is the most common way of municipal solid waste (MSW disposal in Iran. Many countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings as well as the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. Landfill gas (LFG consists of 50% - 60 vol% methane and 30% - 40 vol% carbon dioxide as well as trace amounts of numerous chemical compounds such as aromatics, chlorinated organic compounds and sulfur compounds. Landfill methane outreach program (LMOP is a voluntary assistance program which helps reduce methane emissions from landfills by encouraging the recovery and the beneficial use of LFG as an energy resource. Objectives In this study, the volume of LFG of Tehran by landfill methane outreach program (LMOP software was calculated. In addition, the relationship between the time of gas collection system operation and the volume of LFG production was evaluated. Materials and Methods The LMOP software was used. The available information and some presumptions were used to operate the software. The composition of the solid waste collected from the landfill of Tehran had specific details. A large amount of it was organic materials, which was about 67.8%. These materials have a good potential to produce gas. In addition, LMOP Colombia model uses the first-order equations in all the analytical equations. Furthermore, it is assumed that the landfill operation time is 30 years and the process is considered in two conditions; first, the gas was recovered in 2000, and second, the process started in 2015. Results The modeling results showed that for the gas recovery starting in 2000 and 2015, the power generation would be 2

  16. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste

    Energy Technology Data Exchange (ETDEWEB)

    Hamdi, Noureddine, E-mail: nouryhamdi@gmail.com [Centre National des Recherches en Science des Materiaux, Borj Cedria Techno-Park, B.P. 95-2050, Hammam Lif, Tunis (Tunisia); Srasra, Ezzeddine [Centre National des Recherches en Science des Materiaux, Borj Cedria Techno-Park, B.P. 95-2050, Hammam Lif, Tunis (Tunisia)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Examined the hydraulic conductivity evolution as function of dry density of Tunisian clay soil. Black-Right-Pointing-Pointer Follow the hydraulic conductivity evolution at long-term of three clay materials using the waste solution (pH=2.7). Black-Right-Pointing-Pointer Determined how compaction affects the hydraulic conductivity of clay soils. Black-Right-Pointing-Pointer Analyzed the concentration of F and P and examined the retention of each soil. - Abstract: Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 Multiplication-Sign 10{sup -10}, 2.08 Multiplication-Sign 10{sup -9} and 6.8 Multiplication-Sign 10{sup -10} m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m{sup 3}). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH = 2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m{sup 3}) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.

  17. Alternative Waste Forms for Electro-Chemical Salt Waste

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Sundaram, S. K.; Riley, Brian J.; Matyas, Josef; Arreguin, Shelly A.; Vienna, John D.

    2009-10-28

    This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form.

  18. Ecological modeling of pollutants in accidental fire at the landfill waste

    Directory of Open Access Journals (Sweden)

    Stefanov Sonja B.

    2013-01-01

    Full Text Available Paper presents tyre as flammable material and some examples of tyre fires in the world. Uncontrolled tyre fires produce a lot of smoke and air pollutants, including benzene and polycyclic aromatic hydrocarbons (PAH. Great heat leads to the generation of pyrolytic oil which, when mixed with the fire extinguishing agent, contaminates the surrounding soil, surface water and underground water. Paper analyzes and presents in particular the emission factors of incomplete burning of waste car tyres. Metal dust emissions have been presented, volatile organic compund (VOC emissions, slightly volatile organic compound (SVOC emissions and emissions of polycyclic aromatic hydrocarbons (PAH. Evaluation of the effect on the air quality has been graphically presented by modelling of uncotrolled tyre burning by using EPA "SCREEN 3 MODEL".

  19. 填埋场渗滤液水位的形成及增长规律分析%On the leachate level formation and growth of solid waste landfill

    Institute of Scientific and Technical Information of China (English)

    钱磊; 沈磊; 柯瀚

    2013-01-01

    The present paper is aimed at reporting an analysis method of the one and two dimensional leachate level formation and growth of the solid waste landfill based on the saturated and non-saturated seep-age theroy,while considering the seepage coefficient variable with the landfill depth.The present study comes from te need that landfilling serves as the main solid waste disposal method in most of the Chinese cities and thir surrounding rural areas in our country.Therefore,in our paper,we have proposed a pore water pressure distribution model of landfill and offered the interrelated terms for deep sliding analysis of the landfill.Since the leachate of such landfill is the mian byproduct,it would become a much more serious problem for the environmental protection.As we know, the leachate of such landfill comes mainly from the rainfall of the corresponding landfill area, it has naturally brought about the groundwater penetration and permeation. High leachate level of the solid waste landfill has thus not only become the main reason for solid waste landfill failure, but also contributes to the environmental pollution load, inevitably reducing the solid waste erosion capability per area unit of the solid waste landfill. It is just for this reason that we have carefully investigated the impact of the leachate level caused by the above-mentioned factors and concluded that the rainfall intensity and the waste saturated seepage coefficient tend to impact the formation and growth of leachate level strongly, which is likely to be distinctly varied with the different rainfall intensities. What is more, it can also be concluded that the greater the rainfall intensity, the higher leachate level will be. The leachate level tends to get stabilized when the outflowing rate equals to the rainfall intensity saturation. If the maximal waste saturated seepage coefficient by criterion is used, the leachate level would be very low. However, if the minimal waste saturated seepage

  20. Landfills, Hazardous Waste - CONSTRUCTION_DEMOLITION_WASTE_IDEM_IN: Construction and Demoliton Waste Facilities in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — CONSTRUCTION_DEMOLITION_WASTE_IDEM_IN is a point shapefile that contains construction and demolition waste facility locations in Indiana, provided by personnel of...

  1. Heat management strategies for MSW landfills.

    Science.gov (United States)

    Yeşiller, Nazli; Hanson, James L; Kopp, Kevin B; Yee, Emma H

    2016-10-01

    Heat is a primary byproduct of landfilling of municipal solid waste. Long-term elevated temperatures have been reported for MSW landfills under different operational conditions and climatic regions around the world. A conceptual framework is presented for management of the heat generated in MSW landfills. Three main strategies are outlined: extraction, regulation, and supplementation. Heat extraction allows for beneficial use of the excess landfill heat as an alternative energy source. Two approaches are provided for the extraction strategy: extracting all of the excess heat above baseline equilibrium conditions in a landfill and extracting only a part of the excess heat above equilibrium conditions to obtain target optimum waste temperatures for maximum gas generation. Heat regulation allows for controlling the waste temperatures to achieve uniform distribution at target levels at a landfill facility. Two approaches are provided for the regulation strategy: redistributing the excess heat across a landfill to obtain uniform target optimum waste temperatures for maximum gas generation and redistributing the excess heat across a landfill to obtain specific target temperatures. Heat supplementation allows for controlling heat generation using external thermal energy sources to achieve target waste temperatures. Two approaches are provided for the supplementation strategy: adding heat to the waste mass using an external energy source to increase waste temperatures and cooling the waste mass using an external energy source to decrease waste temperatures. For all strategies, available landfill heat energy is determined based on the difference between the waste temperatures and the target temperatures. Example analyses using data from landfill facilities with relatively low and high heat generation indicated thermal energy in the range of -48.4 to 72.4MJ/m(3) available for heat management. Further modeling and experimental analyses are needed to verify the effectiveness

  2. Properties of Simple Waste Landfill in Beijing Area%北京地区简易垃圾填埋场特性

    Institute of Scientific and Technical Information of China (English)

    张志红; 孙保卫; 纪华; 曲波

    2013-01-01

    The internal properties of waste body on typical simple waste landfill were researched in Beijing area.The variable regularity of internal temperature with filled depth of waste body was measured in site.The variable regularities of waste component,rate of water content and organic content with filled depth of waste body were found indoors.Results show that the inner temperature in the waste will decrease with increasing of dumping depth for superficial landfill,yet the inner temperature in the waste will increase with increasing of dumping depth for deep landfill until reaching peak value,then the adverse results can be obtained.The quantity of organic matter will decrease with increasing of dumping depth,and the water content values measured have indicated to increase with increasing mass of organic matter.%为了研究北京地区典型简易垃圾填埋场垃圾体的内部特征,在现场测定了垃圾体内部温度随深度的变化规律,并在室内测定了垃圾体的成分、含水率和有机质含量随深度的变化.结果表明:对于填埋深度较浅的垃圾场,垃圾体内部温度随填埋深度增加而降低,填埋深度较深的垃圾场,垃圾体内部温度则随填埋深度的增加而提高,但达到某一峰值后又呈逐渐下降的趋势;有机质随填埋深度增加而减小;含水量随着有机质质量分数的增加表现出逐渐增大的趋势.

  3. Health Aspects of the Disposal of Waste Chemicals.

    Science.gov (United States)

    Grisham, Joe W., Ed.

    Intended to be a source of information on the nature and significance of health effects related to chemical disposal, this document is the final report of the Executive Scientific Panel on Health Aspects of the Disposal of Waste Chemicals. The panel, which was organized by the Universities Associated for Research and Education in Pathology…

  4. Stochastic approach to municipal solid waste landfill life based on the contaminant transit time modeling using the Monte Carlo (MC) simulation.

    Science.gov (United States)

    Bieda, Bogusław

    2013-01-01

    The paper is concerned with application and benefits of MC simulation proposed for estimating the life of a modern municipal solid waste (MSW) landfill. The software Crystal Ball® (CB), simulation program that helps analyze the uncertainties associated with Microsoft® Excel models by MC simulation, was proposed to calculate the transit time contaminants in porous media. The transport of contaminants in soil is represented by the one-dimensional (1D) form of the advection-dispersion equation (ADE). The computer program CONTRANS written in MATLAB language is foundation to simulate and estimate the thickness of landfill compacted clay liner. In order to simplify the task of determining the uncertainty of parameters by the MC simulation, the parameters corresponding to the expression Z2 taken from this program were used for the study. The tested parameters are: hydraulic gradient (HG), hydraulic conductivity (HC), porosity (POROS), linear thickness (TH) and diffusion coefficient (EDC). The principal output report provided by CB and presented in the study consists of the frequency chart, percentiles summary and statistics summary. Additional CB options provide a sensitivity analysis with tornado diagrams. The data that was used include available published figures as well as data concerning the Mittal Steel Poland (MSP) S.A. in Kraków, Poland. This paper discusses the results and show that the presented approach is applicable for any MSW landfill compacted clay liner thickness design. PMID:23194922

  5. DESIGN OF LANDFILL LEACHATE TREATMENT PLANT IN CHANGSHA SOLID WASTE LANDFILL SITE%长沙市固体废弃物处理场渗沥液处理工程

    Institute of Scientific and Technical Information of China (English)

    吴惠鹏; 周昭阳; 陈娟娟

    2012-01-01

    长沙市固体废弃物处理场渗沥液处理工程是目前国内达到垃圾填埋场污染物排放限制(GB 16889-2008)要求的大型渗沥液处理厂,于2010年6月建成,最大处理规模达到1500 t/d,采用(A/O)2-MBR+RO/NF处理工艺设计.经运行验证,处理系统稳定高效,出水水质良好达标.文中对工程概况、污水特点、工艺流程、单元设计及运行效果进行了说明,并对本项目设计经验进行了总结.%The leachate treatment plant in Changsha Solid Waste Landfill Site was a large-scale plant which final effluent can meet the requirements of GB 16889-2008: standard for pollution control on the landfill site of municipal solid waste. The plant was completed on June 2010, whose maximum handling capacity was 1 500 m3/d, which was designed by (A/O)2-MBR+RO/NF process. The practical running showed that the treatment system was reliable and efficient, the effluent water quality can meet the standard. This article introduced the treatment plant, influent water quality, treatment process and treatment effect, and summarized as well the experiences of the plant designing.

  6. Applicability of federal and state hazardous waste regulatory programs to waste chemical weapons and chemical warfare agents.; TOPICAL

    International Nuclear Information System (INIS)

    This report reviews federal and state hazardous waste regulatory programs that govern the management of chemical weapons or chemical warfare agents. It addresses state programs in the eight states with chemical weapon storage facilities managed by the U.S. Army: Alabama, Arkansas, Colorado, Indiana, Kentucky, Maryland, Oregon, and Utah. It also includes discussions on 32 additional states or jurisdictions with known or suspected chemical weapons or chemical warfare agent presence (e.g., disposal sites containing chemical agent identification sets): Alaska, Arizona, California, Florida, Georgia, Hawaii, Idaho, Illinois, Iowa, Kansas, Louisiana, Massachusetts, Michigan, Mississippi, Missouri, Nebraska, Nevada, New Jersey, New Mexico, New York, North Carolina, Ohio, Pennsylvania, South Carolina, South Dakota, Tennessee, Texas, the U.S. Virgin Islands, Virginia, Washington, Washington, D.C., and Wyoming. Resource Conservation and Recovery Act (RCRA) hazardous waste programs are reviewed to determine whether chemical weapons or chemical warfare agents are listed hazardous wastes or otherwise defined or identified as hazardous wastes. Because the U.S. Environmental Protection Agency (EPA) military munitions rule specifically addresses the management of chemical munitions, this report also indicates whether a state has adopted the rule and whether the resulting state regulations have been authorized by EPA. Many states have adopted parts or all of the EPA munitions rule but have not yet received authorization from EPA to implement the rule. In these cases, the states may enforce the adopted munitions rule provisions under state law, but these provisions are not federally enforceable

  7. Pre-treatment of tannery sludge for sustainable landfilling.

    Science.gov (United States)

    Alibardi, Luca; Cossu, Raffaello

    2016-06-01

    The wastewater produced during tanning activities are commonly conveyed to centralised industrial wastewater treatment plants. Sludge from physical-chemical treatments (i.e. primary sedimentation) and waste activated sludge from biological treatment units are called tannery sludge. Tannery sludge is a solid waste that needs to be carefully managed and its disposal represents one of the major problems in tannery industry. Conventional treatment and disposal of tannery sludge are based mainly on incineration and landfilling. The aim of this study was to evaluate the effects of a pre-treatment process composed of aerobic stabilisation, compaction and drying, for a sustainable landfilling of tannery sludge. The process produced a reduction of volume, mass and biodegradability of treated sludge. Results also demonstrated a reduced leachability of organic and inorganic compounds from treated sludge. The pre-treatment process could allow to extend landfill life time due to lower amounts of tannery sludge to be disposed off, minimise long terms landfill emissions and obtain a state of carbon sink for tannery sludge landfilling. PMID:27103400

  8. Methane production in anaerobic digestion of organic waste from Recife (Brazil landfill: evaluation in refuse of diferent ages

    Directory of Open Access Journals (Sweden)

    W. N. Schirmer

    2014-06-01

    Full Text Available This work focuses on monitoring the generation of biogas by biochemical methane potential (BMP assays, commonly used to assess anaerobic biodegradability of solid and liquid wastes under controlled conditions. The experiment employed 5 g of substrate of both refuses (fresh and one-year-old wastes, digested with 250 mL of inoculum in 1 L flasks as bioreactors (all of them in triplicate, operating under batch conditions at ± 35 ºC. Despite the difference of age of both refuses evaluated, there was no significant differences in volume (near 1800 mL and composition (55% methane of biogas generated in 80 days of incubation under mesophilic conditions. The important parameters of both refuses (such as moisture content, volatile solids and chemical oxygen demand also showed very similar initial values.

  9. Landfill reduction experience in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Scharff, Heijo, E-mail: h.scharff@afvalzorg.nl

    2014-11-15

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the

  10. Landfill reduction experience in The Netherlands

    International Nuclear Information System (INIS)

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the

  11. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

    2013-04-01

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

  12. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs.

  13. Methane emissions from MBT landfills

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  14. Landfill gas cleanup for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    EPRI is to test the feasibility of using a carbonate fuel cell to generate electricity from landfill gas. Landfills produce a substantial quantity of methane gas, a natural by-product of decaying organic wastes. Landfill gas, however, contains sulfur and halogen compounds, which are known contaminants to fuel cells and their fuel processing equipment. The objective of this project is to clean the landfill gas well enough to be used by the fuel cell without making the process prohibitively expensive. The cleanup system tested in this effort could also be adapted for use with other fuel cells (e.g., solid oxide, phosphoric acid) running on landfill gas.

  15. 山谷型生活垃圾填埋场填埋方案及防洪措施设计实例%EXAMPLE OF DESIGN OF DIFFERENT LANDFILL SCHEMES AND FLOOD CONTROL MEASURES FOR A VALLEY-TYPE SOLID WASTE LANDFILL SITE

    Institute of Scientific and Technical Information of China (English)

    苟剑锋; 徐燕; 曾正中; 李勃

    2011-01-01

    Different landfill schemes and flood control measures are analyzed and compared to determine the layout of the valley-type solid waste landfill site in Wushan County,Gansu Province.Some specific schemes were proposed for the design of valley-type solid waste landfill sites.%以甘肃省武山县生活垃圾填埋场为例,对山谷型生活垃圾填埋场的不同填埋方案及防洪措施进行了分析比较,确定了填埋场工程总体方案布局,为山谷型生活垃圾填埋场工程设计提供了参考解决方案。

  16. Features of soil microbial groups in the area Kilmezsky landfill dumping of toxic chemicals ( Kirov Region

    Directory of Open Access Journals (Sweden)

    Berezin Grigory Ivanovich

    2016-06-01

    Full Text Available Under the influence of pesticides a transformation of soil microbial complexes occurs. In the area of Kilmezsky dumping of toxic chemicals (Kirov Region the species composition of soil phototrophes and quantitative characteristics of soil algo-cyano-mycological complexes change as a result of chronic exposure to pesticides . The content of cyanobacteria in the structure of phototrophic systems and the degree of mikromycets populations melanization can be used as bioindicators of soil contamination complementing the set of indicators based on certified laboratory methods of biotesting.

  17. Off-air treatment in waste treatment systems and landfills - consequences for practical operation. 62. information meeting of ANS e.V.; Abluftbehandlung bei MBA und Deponiebetrieb - Konsequenzen fuer die Praxis. 62. Informationsgespraech des ANS e.V.

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, K.; Burth, M.; Dichtl, N.; Wallmann, R. (eds.)

    2001-07-01

    The new German Landfill Ordinance of 1 March 2001 specifies the requirements on construction and operation of mechanical-biological waste treatment plants and landfills as well as the continued operation of existing landfills. The conference provided current information of R + D projects as well as practical experience in Austria and Germany, with particular regard to the issues of off-air emissions and landfilling. [German] Seit dem 1. Maerz 2001 ist die Artikelverordnung rechtswirksam. Sie enthaelt Anforderungen an den Bau und Betrieb von mechanisch-biologischen Restabfallbehandlungsanlagen und Deponien. Die Abfallablagerungsverordnung hat darueber hinaus weitreichende Konsequenzen fuer die Betriebsdauer bestehender Deponien. Ziel der Tagung ist es, aktuelle Informationen aus laufenden Forschungs- und Entwicklungsvorhaben sowie Erfahrungen bei der praktischen Umsetzung zu praesentieren, die insbesondere zu den Themenkomplexen Abluftemissionen und Deponierung zur Zeit in Oesterreich und Deutschland vorliegen. (orig.)

  18. Leachate from Municipal Waste Landfill and Its Natural Degradation—A Case Study of Zubří, Zlín Region

    Directory of Open Access Journals (Sweden)

    Vojtěch Václavík

    2016-09-01

    Full Text Available This work deals with the natural degradation of leachate from an old reclaimed landfill by means of a biological pond. Hamra is a municipal waste landfill with a limited formation of leachate, which has already been reclaimed. Leachate in this location is disposed of using natural biogeochemical method, and it is subsequently discharged into a surface stream. The main issue dealt with here is the long-term effectiveness of natural degradation of leachate and the limits of its use. The solutions of these fundamental questions took advantage of a database of analytical assessments collected during a long-term monitoring of the landfill site. The primary degradation trends and the long-term development have been revealed and described on the basis of these assessments. The main benefit of the biological pond is the dilution of the dominant contaminants, especially of inorganic character. In the case of ammonium ions, they show nitrification caused by their transition from the reduction into oxidizing environment. From a long term point of view, the disadvantage of natural degradation of leachate can be seen in the gradual reduction in efficiency due to the concentration of the substances or an undesired growth of water plants, which can be successfully eliminated, for example, by means of targeted aeration and by maintaining vegetation in the pond and its surroundings. The biological potential of the locality is very favorable and, despite its anthropogenic load, it creates a location with suitable living conditions for many water animals and plants. That is why it can be concluded that the efficiency of the natural biochemical cleaning elements can be considered as sufficient, taking into account the nature of the deposited waste, the quantity and quality of leachate, as well as the climate character of the locality.

  19. Leachate from Municipal Waste Landfill and Its Natural Degradation-A Case Study of Zubří, Zlín Region.

    Science.gov (United States)

    Václavík, Vojtěch; Ondrašiková, Ivana; Dvorský, Tomáš; Černochová, Kateřina

    2016-01-01

    This work deals with the natural degradation of leachate from an old reclaimed landfill by means of a biological pond. Hamra is a municipal waste landfill with a limited formation of leachate, which has already been reclaimed. Leachate in this location is disposed of using natural biogeochemical method, and it is subsequently discharged into a surface stream. The main issue dealt with here is the long-term effectiveness of natural degradation of leachate and the limits of its use. The solutions of these fundamental questions took advantage of a database of analytical assessments collected during a long-term monitoring of the landfill site. The primary degradation trends and the long-term development have been revealed and described on the basis of these assessments. The main benefit of the biological pond is the dilution of the dominant contaminants, especially of inorganic character. In the case of ammonium ions, they show nitrification caused by their transition from the reduction into oxidizing environment. From a long term point of view, the disadvantage of natural degradation of leachate can be seen in the gradual reduction in efficiency due to the concentration of the substances or an undesired growth of water plants, which can be successfully eliminated, for example, by means of targeted aeration and by maintaining vegetation in the pond and its surroundings. The biological potential of the locality is very favorable and, despite its anthropogenic load, it creates a location with suitable living conditions for many water animals and plants. That is why it can be concluded that the efficiency of the natural biochemical cleaning elements can be considered as sufficient, taking into account the nature of the deposited waste, the quantity and quality of leachate, as well as the climate character of the locality. PMID:27598181

  20. Leachate from Municipal Waste Landfill and Its Natural Degradation-A Case Study of Zubří, Zlín Region.

    Science.gov (United States)

    Václavík, Vojtěch; Ondrašiková, Ivana; Dvorský, Tomáš; Černochová, Kateřina

    2016-09-01

    This work deals with the natural degradation of leachate from an old reclaimed landfill by means of a biological pond. Hamra is a municipal waste landfill with a limited formation of leachate, which has already been reclaimed. Leachate in this location is disposed of using natural biogeochemical method, and it is subsequently discharged into a surface stream. The main issue dealt with here is the long-term effectiveness of natural degradation of leachate and the limits of its use. The solutions of these fundamental questions took advantage of a database of analytical assessments collected during a long-term monitoring of the landfill site. The primary degradation trends and the long-term development have been revealed and described on the basis of these assessments. The main benefit of the biological pond is the dilution of the dominant contaminants, especially of inorganic character. In the case of ammonium ions, they show nitrification caused by their transition from the reduction into oxidizing environment. From a long term point of view, the disadvantage of natural degradation of leachate can be seen in the gradual reduction in efficiency due to the concentration of the substances or an undesired growth of water plants, which can be successfully eliminated, for example, by means of targeted aeration and by maintaining vegetation in the pond and its surroundings. The biological potential of the locality is very favorable and, despite its anthropogenic load, it creates a location with suitable living conditions for many water animals and plants. That is why it can be concluded that the efficiency of the natural biochemical cleaning elements can be considered as sufficient, taking into account the nature of the deposited waste, the quantity and quality of leachate, as well as the climate character of the locality.

  1. Leachate from Municipal Waste Landfill and Its Natural Degradation—A Case Study of Zubří, Zlín Region

    Science.gov (United States)

    Václavík, Vojtěch; Ondrašiková, Ivana; Dvorský, Tomáš; Černochová, Kateřina

    2016-01-01

    This work deals with the natural degradation of leachate from an old reclaimed landfill by means of a biological pond. Hamra is a municipal waste landfill with a limited formation of leachate, which has already been reclaimed. Leachate in this location is disposed of using natural biogeochemical method, and it is subsequently discharged into a surface stream. The main issue dealt with here is the long-term effectiveness of natural degradation of leachate and the limits of its use. The solutions of these fundamental questions took advantage of a database of analytical assessments collected during a long-term monitoring of the landfill site. The primary degradation trends and the long-term development have been revealed and described on the basis of these assessments. The main benefit of the biological pond is the dilution of the dominant contaminants, especially of inorganic character. In the case of ammonium ions, they show nitrification caused by their transition from the reduction into oxidizing environment. From a long term point of view, the disadvantage of natural degradation of leachate can be seen in the gradual reduction in efficiency due to the concentration of the substances or an undesired growth of water plants, which can be successfully eliminated, for example, by means of targeted aeration and by maintaining vegetation in the pond and its surroundings. The biological potential of the locality is very favorable and, despite its anthropogenic load, it creates a location with suitable living conditions for many water animals and plants. That is why it can be concluded that the efficiency of the natural biochemical cleaning elements can be considered as sufficient, taking into account the nature of the deposited waste, the quantity and quality of leachate, as well as the climate character of the locality. PMID:27598181

  2. EMISSION ASSESSMENT AT THE ŠTĚPÁNOVICE MUNICIPAL SOLID WASTE LANDFILL FOCUSING ON CH4 EMISSIONS

    Directory of Open Access Journals (Sweden)

    Dana Adamcová

    2016-07-01

    Full Text Available The study was conducted to measure the emission from landfill in the years 2005–2011. The results are used to diagnose the emissions of CH4. The mean value of CH4 in vol. % in the collection wells ranged from 0 to 2.14 vol. % the mean concentration of CH4 in mg/m3 ranged from 0 to 25 251 mg/m3 the average concentration of CH4 in mg/Nm3 at the measuring and control points ranged from 2.2 to 24.1 mg/Nm3. CH4 emissions from the landfill do not exceed the reporting thresholds the landfill does not meet conditions for being included in the Integrated Register of Pollutants.

  3. Chemical Dewatering Technique of waste Polymer Drilling Fluid

    Institute of Scientific and Technical Information of China (English)

    Li Gang; Zhu Muo

    1997-01-01

    @@ On the basis of the compositional analysis of waste polymer drilling fluid, we adopt chemical dewatering technique and thoroughly break down the colloid system of the drilling fluid. Having changed the surface properties of the clay particles and made the waste mud flocculate, the floc lost mud making ability and the phemeonenon of the floc returning mud is completely dispelled when it is buried. The recovered water can be reused in the mud system.

  4. MOLECULAR AND CULTURAL METHODOLOGIES FOR ENUMERATING BACTERIA IN LANDFILL LEACHATES

    Science.gov (United States)

    Landfill bioreactor technology has been under investigation in the field for its potential economic and waste treatment benefits over conventional landfill systems. A better understanding of biological influences on the stabilization process is needed for incorporation into the e...

  5. CORROSION AND CHEMICAL WASTE IN SAWBLADES STEEL USED IN WOOD

    Directory of Open Access Journals (Sweden)

    Paulo Fernando Trugilho

    2002-01-01

    Full Text Available The objective this work was to evaluate the chemical waste provoked by the wood on the sheets of steel used in the making of the mountains and cut tools. It was certain the correlationbetween the chemical waste and the extractive soluble in cold water, hot water and in the sequencetoluene and ethanol content. Two types of steel and twenty-seven species different from wood wereused. The corrosive agent, constituted of 50 g of fresh sawdust (moist mixed to 50 ml of distilledwater, it was prepared and placed inside of the plastic box, hermetically closed, on the samples ofsteel, which were totally immersed. The box was placed in a water bath pre-heated to 75°C, that themedium temperature of reaction is considered, that affects the sheet of the sawblade in operation. Thisgroup was operated to 80 rotations per minute (rpm. The time of reaction was of four hours. Afterthat time the corrosive agent was discarded and the samples were washed, dried and weighed. At theend, each sample was processed by a total period of forty hours. The chemical waste was evaluated by the weight difference suffered from beginning at the end of the experiment. For theresults it was observed that the Eucalyptus tradryphloia and the Eucalyptus phaeotricha the speciesthat provoked were, respectively, the largest and smaller chemical waste for the two types of steelappraised. Great variation exists in the chemical waste due to the effect of the species. The corrosionand chemical waste are especially related with the quality of the material solved in ethanol. The 1070steel were more attached than the 6170 steel.

  6. The role of chemical reaction in waste-form performance

    International Nuclear Information System (INIS)

    The dissolution rate of waste solids in a geologic repository is a complex function of waste form geometry, chemical raction rate, exterior flow field, and chemical environment. We present here an analysis to determine the stady-state mass transfer rate, over the entire range of flow conditions relevant to geologic disposal of nuclear waste. The equations for steady-state mass transfer with a chemical-reaction-rate boundary condition are solved by three different mathematical techniques which supplement each other. This theory is illustrated with laboratory leach data for borosilicate-glass and a spherical spent-fuel waste form under typical repository conditions. For borosilicate glass waste in the temperature range of 57/degree/C to 250/degree/C, dissolution rate in a repository is determined for a wide range of chemical reaction rates and for Peclet numbers from zero to well over 100, far beyond any Peclet values expected in a repository. Spent-fuel dissolution in a repository is also investigated, based on the limited leach data now available. 10 refs., 4 figs., 1 tab

  7. Waste dissolution with chemical reaction, diffusion and advection

    International Nuclear Information System (INIS)

    This paper extends the mass-transfer analysis to include the effect of advective transport in predicting the steady-state dissolution rate, with a chemical-reaction-rate boundary condition at the surface of a waste form of arbitrary shape. This new theory provides an analytic means of predicting the ground-water velocities at which dissolution rate in a geologic environment will be governed entirely to the chemical reaction rate. As an illustration, we consider the steady-state potential flow of ground water in porous rock surrounding a spherical waste solid. 3 refs., 2 figs

  8. Landfill gas management in Canada

    International Nuclear Information System (INIS)

    Landfill gas produced from solid waste landfills is one of the most significant sources of anthropogenic methane in Canada. Methane, a potent greenhouse gas, is 24.5 times more powerful than carbon dioxide by weight in terms of global climate change. Landfill gas recovery plays an important role in Canada's commitment to stabilize greenhouse gas emissions at 1990 levels by the year 2000 under the United Nations Framework Convention on Climate Change. Landfill gas is a potentially harmful emission that can be converted into a reliable environmentally-sustainable energy source used to generate electricity, fuel industries and heat buildings. The recovery and utilization of landfill gas is a win-win situation which makes good sense from local, regional and global perspectives. It provides the benefits of (1) reducing the release of greenhouse gases that contribute to global warming; (2) limiting odors; (3) controlling damage to vegetation; (4) reducing risks from explosions, fires and asphyxiation; (5) converting a harmful emission into a reliable energy source; and (6) creating a potential source of revenue and profit. Canadian landfills generate about 1 million tons of methane every year; the equivalent energy of 9 million barrels of oil (eight oil super tankers), or enough energy to meet the annual heating needs of more than half a million Canadian homes. Currently, twenty-seven facilities recover and combust roughly 25% of the methane generated by Canadian landfills producing about 3.2 PJ (1015 Joules) of energy including 80 MW of electricity and direct fuel for nearby facilities (e.g., cement plants, gypsum board manufacturers, recycling facilities, greenhouses). This paper reviews landfill gas characteristics; environmental, health and safety impacts; landfill gas management in Canada; the costs of landfill gas recovery and utilization systems; and on-going projects on landfill gas utilization and flaring

  9. Evaluation of coagulation/flocculation process in the landfill leachate treatment at the Municipal Wastewater Treatment Plant

    OpenAIRE

    Juacyara Carbonelli Campos; Bruno da Silva Machado; Maria Emília Drummond Blonski; Daniele Maia Bila; João Alberto Ferreira

    2013-01-01

    The combined treatment of leachate from urban solid waste landfills in a Municipal Wastewater Treatment Plant (MWTP) minimizes the implementation and operation costs of a landfill. This work investigated the combined treatment of the leachate from Morro do Céu Landfill in Niterói, RJ and sewage samples from Icaraí MWTP with different proportions (0, 0.5, 2.0 and 5.0 %). This MWTP features a physical chemical treatment followed by expulsion through a submarine emissary, and so the physical che...

  10. Landfill Site Selection by using GIS and Multicriteria Decision Analysis:

    OpenAIRE

    ŞENER, Şehnaz; Erhan ŞENER; Nas, Bilgehan

    2011-01-01

    Many developing countries are struggling to provide a proper waste management system due to increasing population and urbanization. Also, waste management system is not regulated sufficiently in Turkey. At present, there are various techniques used for solid waste management such as landfill, thermal treatment, biological treatment, recycling etc. The landfill is the most common mode for the disposal of solid waste. But, landfill site selection is quite complex process and it depends on sever...

  11. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part I: Analysis of infiltration shape on two different waste deposit cells.

    Science.gov (United States)

    Audebert, M; Clément, R; Moreau, S; Duquennoi, C; Loisel, S; Touze-Foltz, N

    2016-09-01

    Landfill bioreactors are based on an acceleration of in-situ waste biodegradation by performing leachate recirculation. To quantify the water content and to evaluate the leachate injection system, in-situ methods are required to obtain spatially distributed information, usually electrical resistivity tomography (ERT). In a previous study, the MICS (multiple inversions and clustering strategy) methodology was proposed to improve the hydrodynamic interpretation of ERT results by a precise delimitation of the infiltration area. In this study, MICS was applied on two ERT time-lapse data sets recorded on different waste deposit cells in order to compare the hydrodynamic behaviour of leachate flow between the two cells. This comparison is based on an analysis of: (i) the volume of wetted waste assessed by MICS and the wetting rate, (ii) the infiltration shapes and (iii) the pore volume used by the leachate flow. This paper shows that leachate hydrodynamic behaviour is comparable from one waste deposit cell to another with: (i) a high leachate infiltration speed at the beginning of the infiltration, which decreases with time, (ii) a horizontal anisotropy of the leachate infiltration shape and (iii) a very small fraction of the pore volume used by the leachate flow. This hydrodynamic information derived from MICS results can be useful for subsurface flow modelling used to predict leachate flow at the landfill scale. PMID:27103399

  12. Complete genome of Pandoraea pnomenusa RB-38, an oxalotrophic bacterium isolated from municipal solid waste landfill site.

    Science.gov (United States)

    Lim, Yan-Lue; Ee, Robson; Yong, Delicia; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2015-11-20

    Pandoraea pnomenusa RB-38 is a bacterium isolated from a former sanitary landfill site. Here, we present the complete genome of P. pnomenusa RB38 in which an oxalate utilization pathway was identified. The genome analysis suggested the potential of this strain as an effective biocontrol agent against oxalate-producing phytopathogens. PMID:26393955

  13. Selection and Evaluation of Chemical Indicators for Waste Stream Identification

    Science.gov (United States)

    DeVita, W. M.; Hall, J.

    2015-12-01

    Human and animal wastes pose a threat to the quality of groundwater, surface water and drinking water. This is especially of concern for private and public water supplies in agricultural areas of Wisconsin where land spreading of livestock waste occurs on thin soils overlaying fractured bedrock. Current microbial source tracking (MST) methods for source identification requires the use of polymerase chain reaction (PCR) techniques. Due to cost, these tests are often not an option for homeowners, municipalities or state agencies with limited resources. The Water and Environmental Analysis Laboratory sought to develop chemical methods to provide lower cost processes to determine sources of fecal waste using fecal sterols, pharmaceuticals (human and veterinary) and human care/use products in ground and surface waters using solid phase extraction combined with triple quadrupole mass spectrometry. The two separate techniques allow for the detection of fecal sterol and other chemical markers in the sub part per billion-range. Fecal sterol ratios from published sources were used to evaluate drinking water samples and wastewater from onsite waste treatment systems and municipal wastewater treatment plants. Pharmaceuticals and personal care products indicative of human waste included: acetaminophen, caffeine, carbamazepine, cotinine, paraxanthine, sulfamethoxazole, and the artificial sweeteners; acesulfame, saccharin, and sucralose. The bovine antibiotic sulfamethazine was also targeted. Well water samples with suspected fecal contamination were analyzed for fecal sterols and PPCPs. Results were compared to traditional MST results from the Wisconsin State Laboratory of Hygiene. Chemical indicators were found in 6 of 11 drinking water samples, and 5 of 11 were in support of MST results. Lack of detection of chemical indicators in samples contaminated with fecal waste supports the need for confirmatory methods and advancement of chemical indicator detection technologies.

  14. Biocomposites from waste derived biochars: Mechanical, thermal, chemical, and morphological properties.

    Science.gov (United States)

    Das, Oisik; Sarmah, Ajit K; Bhattacharyya, Debes

    2016-03-01

    To identify a route for organic wastes utilisation, biochar made from various feedstocks (landfill pine saw dust, sewage sludge, and poultry litter) and at diverse pyrolysis conditions, were collected. These biochars were used to fabricate wood and polypropylene biocomposites with a loading level of 24 mass%. The composites were tested for their mechanical, chemical, thermal, morphological, and fire properties. The poultry litter biochar biocomposite, with highest ash content, was found to have high values of tensile/flexural strength, tensile/flexural modulus, and impact strength, compared to other composites. In general, addition of all the biochars enhanced the tensile/flexural moduli of the composites. The crystal structure of polypropylene in the composite was intact after the incorporation of all the biochars. The final chemical and crystal structure of the composite were an additive function of the individual components. The biochar particles along with wood acted as nucleating agents for the recrystallization of polypropylene in composite. Each component in the composites was found to decompose individually under thermal regime. The electron microscopy revealed the infiltration of polypropylene into the biochar pores and a general good dispersion in most composites. The poultry litter composite was found to have lower heat release rate under combustion regime. PMID:26724232

  15. Chemical recycling of mixed waste plastics by selective pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tatsumoto, K.; Meglen, R.; Evans, R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-05-01

    The goal of this work is to use selective pyrolysis to produce high-value chemicals from waste plastics mixtures. Selectivity is achieved by exploiting differences in reaction rates, catalysis, and coreactants. Target wastes are molecular mixtures such as; blends or composites, or mixtures from manufactured products such as; carpets and post-consumer mixed-plastic wastes. The experimental approach has been to use small-scale experiments using molecular beam mass spectrometry (MBMS), which provides rapid analysis of reaction products and permits rapid screening of process parameters. Rapid screening experiments permit exploration of many potential waste stream applications for the selective pyrolysis process. After initial screening, small-scale, fixed-bed and fluidized-bed reactors are used to provide products for conventional chemical analysis, to determine material balances, and to test the concept under conditions that will be used at a larger scale. Computer assisted data interpretation and intelligent chemical processing are used to extract process-relevant information from these experiments. An important element of this project employs technoeconomic assessments and market analyses of durables, the availability of other wastes, and end-product uses to identify target applications that have the potential for economic success.

  16. Natural radiation, nuclear wastes and chemical pollutants

    International Nuclear Information System (INIS)

    Doses from natural radiation to the population in the Nordic Countries are summarized and man made modifications of the natural radiation environment are discussed. An account is given of the radiological consequences of energy conservation by reduced ventilation. Risks from possible future releases of radioactivity from final repositories of spent nuclear fuel are compared to the risks from present natural radioactivity in the environment. The possibilities for comparison between chemical and radiological risks are discussed. (author) 13 refs

  17. Study on the Natural Soil Properties Endau Rompin National Park (PETA as Compacted Soil Liner for Sanitary Landfill

    Directory of Open Access Journals (Sweden)

    Zulkifli Ahmad

    2013-11-01

    Full Text Available Abstract: This paper reviews and extends an understanding of a study on potential suitability of the natural soil in Endau Rompin National Park (PETA as a compacted soil liner for sanitary landfill. Since the demand for landfill system becomes obvious so that concerning construction and operation of landfills are increasing. A number of studies have been conducted for the liner system of landfill. Hence, study is required to choose the suitable type of material as liner barrier for the landfill system in term to achieve optimum long term performance. The sanitary landfill plays an important role in the framework of solid waste disposal. The compacted soil liner is a part of a liner structure for landfill to restrict leachate migration from facility into the environment. So that, if the landfill system is not well manage it will contaminate the soil and ground water, thus presenting a risk to human and environmental health. This study, natural soil will be taken from Endau Rompin National Park (PETA, Johor as soil sample for testing. Natural soil is an economy material as a liner system, and it does not decay easily from time to time. So it is an ideal material as a sanitary landfill liner system. In short, the purpose of this study is to compile and organize available information on the use of laboratory testing, as well as providing some guidance on the use of natural soil as barrier layer of landfill and also it suitability of physical and chemical properties natural soil as barrier layer of landfill. Based on the laboratory testing were conducted, found that soil sample taken form Endau Rompin National Park (PETA is suitable as compacted soil liner for sanitary landfill.

  18. What to do with your chemical waste ?

    CERN Multimedia

    Roland Magnier/SC

    2004-01-01

    For any type and quantity of chemical waste, please contact phone number 16 0879 or 16 3315 for the collection and safe elimination. The quality and the safety of our environment is our own responsibility. Let's do it. Roland Magnier/SC-GS

  19. Canonical correlations between chemical and energetic characteristics of lignocellulosic wastes

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2012-09-01

    Full Text Available Canonical correlation analysis is a statistical multivariate procedure that allows analyzing linear correlation that may exist between two groups or sets of variables (X and Y. This paper aimed to provide canonical correlation analysis between a group comprised of lignin and total extractives contents and higher heating value (HHV with a group of elemental components (carbon, hydrogen, nitrogen and sulfur for lignocellulosic wastes. The following wastes were used: eucalyptus shavings; pine shavings; red cedar shavings; sugar cane bagasse; residual bamboo cellulose pulp; coffee husk and parchment; maize harvesting wastes; and rice husk. Only the first canonical function was significant, but it presented a low canonical R². High carbon, hydrogen and sulfur contents and low nitrogen contents seem to be related to high total extractives contents of the lignocellulosic wastes. The preliminary results found in this paper indicate that the canonical correlations were not efficient to explain the correlations between the chemical elemental components and lignin contents and higher heating values.

  20. Heavy metals, salts and organic residues in solid urban waste landfills and surface waters in their discharge areas: determinants for restoring their discharge areas: determinants for restoring their impact

    International Nuclear Information System (INIS)

    This report describes a continuous assessment of the impact of solid urban waste (SUW) landfills in the central Iberian Peninsula that were sealed with a layer of soil 20 years ago. cover soils and soils from discharge areas have been periodically analysed. Soil concentrations of salts and heavy metals affect the biotic components of these ecosystems. (Author)

  1. 非金属矿物及废渣在垃圾卫生填埋中的应用现状%Utilization of Nonˉmetallic Minerals and Solid Waste in Sanitary Landfill

    Institute of Scientific and Technical Information of China (English)

    亢宇; 李博文

    2001-01-01

    In this paper some important nonˉmetal minerals and solid waste used in sanitary landfill are sumarized%本文综述了一些重要的非金属矿物及废渣在垃圾卫生填埋中的应用现状。

  2. Earth Construction and Landfill Disposal Options for Slaker Grits

    Directory of Open Access Journals (Sweden)

    Risto Pöykiö

    2010-12-01

    Full Text Available Slaker grits, an industrial residue originating from the chemical recovery process at sulfate (kraft pulp mills, are typically disposed of to landfill in Finland. However, due to the relatively low total heavy metal and low leachable heavy metal, chloride, fluoride, sulfate, Dissolved O rganic Carbon (DOC and Total Dissolved Solids (TDS concentrations, the residue is a potential earth construction material. This paper gives an overview of the relevant Finnish legislation on the use of industrial waste as an earth construction agent, the classification of waste into one of three classes: hazardous waste, non-hazardous waste and inert waste, as well as the broad waste policy goals under EU law that affects their management.

  3. Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues

    International Nuclear Information System (INIS)

    In this study, heavy metal leaching from aerobic and anaerobic landfill bioreactor test cells for co-disposed municipal solid waste incineration (MSWI) bottom ash and shredded low-organic residues has been investigated. Test cells were operated for 1 year. Heavy metals which were comparatively higher in leachate of aerobic cell were copper (Cu), lead (Pb), boron (B), zinc (Zn), manganese (Mn) and iron (Fe), and those apparently lower were aluminum (Al), arsenic (As), molybdenum (Mo), and vanadium (V). However, no significant release of heavy metals under aerobic conditions was observed compared to anaerobic and control cells. Furthermore, there was no meaningful correlation between oxidation-reduction potential (ORP) and heavy metal concentrations in the leachates although some researchers speculate that aeration may result in excessive heavy metal leaching. No meaningful correlation between dissolved organic carbon (DOC) and leaching of Cu and Pb was another interesting observation. The only heavy metal that exceeded the state discharge limits (10 mg/l, to be enforced after April 2005) in the aerobic cell leachate samples was boron and there was no correlation between boron leaching and ORP. Higher B levels in aerobic cell should be due to comparatively lower pH values in this cell. However, it is anticipated that this slightly increased concentrations of B (maximum 25 mg/l) will not create a risk for bioreactor operation; rather it should be beneficial for long-term stability of the landfill through faster washout. It was concluded that aerobization of landfills of heavy metal rich MSWI bottom ash and shredded residues is possible with no dramatic increase in heavy metals in the leachate

  4. Application of iron nanaoparticles in landfill leachate treatment - case study: Hamadan landfill leachate.

    Science.gov (United States)

    Kashitarash, Zahra Esfahani; Taghi, Samadi Mohammad; Kazem, Naddafi; Abbass, Afkhami; Alireza, Rahmani

    2012-01-01

    This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P solid waste landfill leachate treatment plants. PMID:23369361

  5. Anaerobic co-digestion of wine/fruit-juice production waste with landfill leachate diluted municipal sludge cake under semi-continuous flow operation.

    Science.gov (United States)

    Leiva, M Barrantes; Koupaie, E Hosseini; Eskicioglu, C

    2014-10-01

    Anaerobic co-digestion of four organic waste streams; a thickened waste activated sludge (TWAS) and screen cake (SC) from a fruit-juice/winery wastewater treatment plant along with municipal sludge cake (MC) and landfill leachate (LL) was evaluated. A total of eight semi-continuously-fed single and co-digesters were operated side-by-side at sludge retention times (SRT) of 20 and 10 days. Co-digestion of industrial waste streams (TWAS and SC) with MC and LL resulted in increased operational stability compared to the single digestion of industrial TWAS at the higher organic loading (10 d SRT). Although digester operational temperature had no statistically significant effect on organics removal and biogas production, mesophilic digesters had consistently higher total coliform densities (8838-37,959 most probable number or MPN/g-dry weight) compared to the thermophilic digesters (41-6723 MPN/g-dry weight) at both SRTs. Coliform analysis results also proved that most of the thermophilic digestates could be classified as Class A biosolids according to regulations. Furthermore, addition of industrial TWAS to co-digesters enhanced the dewaterability of the digested streams. A cost-benefit analysis confirmed the benefits and indicated that a full-scale co-digester utilizing all four waste streams can decrease the total capital and operational cost by 22% ($10.52 million). PMID:25081853

  6. Aerobic Biostabilization of Old MSW Landfills

    OpenAIRE

    M. C. Zanetti

    2008-01-01

    Many years after the end of the cultivation phase, landfills may generate intense odours, toxic and explosive gases and heavily-polluted leachate. A wide-spreading trend in the management of MSW landfills is represented by the forced aeration of wastes in order to achieve the stabilization, reducing the negative environmental impact of uncontrolled sites (old landfills which can be definitely considered as contaminated sites) and the management costs of controlled and working facilities. One ...

  7. Landfill aeration for emission control before and during landfill mining.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area. PMID:26445364

  8. System dynamics of the competition of municipal solid waste to landfill, electricity, and liquid fuel in California

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, Jessica; Malczynski, Leonard A.; Manley, Dawn Kataoka

    2014-03-01

    A quantitative system dynamics model was created to evaluate the economic and environmental tradeoffs between biomass to electricity and to liquid fuel using MSW biomass in the state of California as a case study. From an environmental perspective, landfilling represents the worst use of MSW over time, generating more greenhouse gas (GHG) emissions compared to converting MSW to liquid fuel or to electricity. MSW to ethanol results in the greatest displacement of GHG emissions per dollar spent compared to MSW to electricity. MSW to ethanol could save the state of California approximately $60 billion in energy costs by 2050 compared to landfilling, while also reducing GHG emissions state-wide by approximately 140 million metric tons during that timeframe. MSW conversion to electricity creates a significant cost within the state's electricity sector, although some conversion technologies are cost competitive with existing renewable generation.

  9. Study of some characteristic Mediterranean vegetation species best suited for renaturalization of terminal-phase municipal solid waste (MSW) landfills in Puglia (Southern Italy)

    Science.gov (United States)

    De Mei, Massimiliano; Di Mauro, Mariaida

    2006-07-01

    Natural recovery of worked-out or closed municipal solid waste (MSW) landfills is a current topic, but knowledge about the adaptability of Mediterranean vegetation species to such stressful conditions is still quite poor. Autochthonous plants were selected to withstand the stresses such as hot climate and drought typical of Mediterranean areas; this characteristic potentially allows the plants an easier, efficient adaptation. Our aim was to provide information in order to obtain an adequate quality of environmental renewal of a landfill and a reduced management cost while ensuring rehabilitation to an acceptable naturalistic state. The investigation lasted 3 years; some Mediterranean scrub native plant species were selected and monitored in their morphological (total and relative height, basal diameter, number of inter-nodes) and physiological (photosynthetic rate and water potential) activity. In order to test dependence on CO 2 concentration, different meteorological parameters were also monitored. Ceratonia siliqua, Phillyrea latifolia, Olea europaea and Quercus ilex showed considerable adaptability, reacting positively to every improvement in environmental conditions, particularly those of a meteorological nature. Survival and growth was satisfactory in Hedysarum coronarium, Medicago sativa, Lotus corniculatus, Rosmarinus officinalis, Myrtus communis and Viburnum tinus. Fraxinus ornus and Acer campestre suffered stress during the summer dry period and recovered quickly when atmospheric conditions improved. A drop irrigation system to ensure a satisfactory soil moisture during summer dry periods was the fundamental element for survival.

  10. Non-invasive methods applied to the case of Municipal Solid Waste landfills (MSW): analysis of long-term data

    OpenAIRE

    A. Scozzari

    2008-01-01

    This work presents and discusses a methodology for modeling the behavior of a landfill system in terms of biogas release to the atmosphere, relating this quantity to local meteorological parameters. One of the most important goals in the study of MSW sites lies in the optimization of biogas collection, thus minimizing its release to the atmosphere.

    After an introductory part, that presents the context of non-invasive measurements for the assessment of biogas release, the ...

  11. Application of Deuterium and Oxygen-18 to Trace Leachate Movement in Bantar Gebang Sanitary Landfill

    Directory of Open Access Journals (Sweden)

    E.R. Pujiindiyati

    2011-08-01

    Full Text Available Bantar Gebang landfill was constructed in 1986 with total area of 108 ha and approximately 6000 ton/day solid waste is disposed to this landfill. Mostly, the people living surrounding landfill get afraid of impact of the hazardous chemicals produced by waste disposal to their health. The purpose of this investigation was to study the migration of leachate to Cibitung River water and shallow groundwaters near to the river. It is possible to be done because chemical contents and isotopic characteristics of municipal landfill leachate are unique, relative to aqueous media in the most natural environments. Laser absorption method developed by the LGR (Los Gatos Research was used to measure absolute abundances of 2HHO, HH18O and HHO in a number of water samples. In-situ measurements were also conducted as an additional parameter besides their isotopes. The δ2H of the H2O in landfill leachate was significantly enriched, with values of - 22.6 ‰ to + 4.3 ‰. This deuterium enrichment was undoubtedly due to the extensive production of microbial methane within the limited reservoir of the landfill. However, the enriched deuterium value in leachate was not detected in the river which still had depleted values. It was probably caused by the amount of natural water in the river was comparatively large, with respect to limited leachate discarded to the river.The electrical conductivity of the leachate was higher (3200 to 7600 S and the decreasing values were still monitored in the river to approximately 12 km after streaming the landfills. The effect of the high electrical conductivity and enriched deuterium of leachate was not clearly indicated in the groundwater samples which still represented the local precipitation recharge, except a monitoring well located in Bantar Gebang landfill area which has an indication of leachate contamination.

  12. 淮安市垃圾填埋场地质特征及其防渗评价%Geological Characteristics and Anti-seepage Evaluation of Municipal Waste Landfill in Huaian

    Institute of Scientific and Technical Information of China (English)

    汪名鹏

    2011-01-01

    Correct analysis and evaluation of municipal waste landfill geological characteristics and seepage program play a very important role in municipal waste landfill siting and design and construction operations. The geo/ogical characteristics of municipal waste landfill in Huaian city, such as natural environment, Stratigraphic structure and lithology are described , hydrogeological conditions of municipal waste landfill, as well as aquifer distribution, aquifer thickness and permeable are analysed in detail in the paper. On the basis of laboratory test and in-situ tests, comprehensive determined of the strato permeability coefficient greater than 1 × 10-7 cm/s in municipal waste Landfill siting , indicated that does not have natural anti-seepage conditions, must use the artificial anti-seepage system to be able effective to prevent pollution of environment form the leachate of refus.%正确分析评价垃圾填埋场的地质特征和防渗方案,对垃圾填埋场的选址、设计以及施工运营极为重要.从自然环境、地层结构及岩性特征等方面阐述了淮安市某垃圾填埋场的地质特征,分析了填埋区含水层分布、厚度、赋水性等水文地质条件;结合室内试验和野外试验,综合确定了填埋区岩土层渗透系数大于1×10-7cm/s,表明填埋区不具备天然防渗的条件,需采用人工防渗系统才能有效的阻滞垃圾渗滤液对周边环境的影响.

  13. Chemical characterization of emissions from a municipal solid waste treatment plant.

    Science.gov (United States)

    Moreno, A I; Arnáiz, N; Font, R; Carratalá, A

    2014-11-01

    Gaseous emissions are an important problem in municipal solid waste (MSW) treatment plants. The sources points of emissions considered in the present work are: fresh compost, mature compost, landfill leaks and leachate ponds. Hydrogen sulphide, ammonia and volatile organic compounds (VOCs) were analysed in the emissions from these sources. Hydrogen sulphide and ammonia were important contributors to the total emission volume. Landfill leaks are significant source points of emissions of H2S; the average concentration of H2S in biogas from the landfill leaks is around 1700 ppmv. The fresh composting site was also an important contributor of H2S to the total emission volume; its concentration varied between 3.2 and 1.7 ppmv and a decrease with time was observed. The mature composting site showed a reduction of H2S concentration (<0.1 ppmv). Leachate pond showed a low concentration of H2S (in order of ppbv). Regarding NH3, composting sites and landfill leaks are notable source points of emissions (composting sites varied around 30-600 ppmv; biogas from landfill leaks varied from 160 to 640 ppmv). Regarding VOCs, the main compounds were: limonene, p-cymene, pinene, cyclohexane, reaching concentrations around 0.2-4.3 ppmv. H2S/NH3, limonene/p-cymene, limonene/cyclohexane ratios can be useful for analysing and identifying the emission sources.

  14. Chemical treatment of chelated metal finishing wastes.

    Science.gov (United States)

    McFarland, Michael J; Glarborg, Christen; Ross, Mark A

    2012-12-01

    This study evaluated two chemical approaches for treatment of commingled cadmium-cyanide (Cd-CN) and zinc-nickel (Zn-Ni) wastewaters. The first approach, which involved application of sodium hypochlorite (NaOCl), focused on elimination of chelating substances. The second approach evaluated the use of sodium dimethyldithiocarbamate (DMDTC) to specifically target and precipitate regulated heavy metals. Results demonstrated that by maintaining a pH of 10.0 and an oxidation-reduction potential (ORP) value of +600 mV, NaOCl treatment was effective in eliminating all chelating substances. Cadmium, chromium, nickel, and zinc solution concentrations were reduced from 0.27, 4.44, 0.06, and 0.10 ppm to 0.16, 0.17, 0.03, and 0.06 ppm, respectively. Similarly, a 1% DMDTC solution reduced these same metal concentrations in commingled wastewater to 0.009, 1.142, 0.036, and 0.320 ppm. Increasing the DMDTC concentration to 2% improved the removal of all regulated heavy metals except zinc, the removal of which at high pH values is limited by its amphotericity. PMID:23342939

  15. Views on access road design of waste landfill%垃圾填埋场进场道路设计的几点体会

    Institute of Scientific and Technical Information of China (English)

    邓飞

    2014-01-01

    对垃圾填埋场进场道路的特点进行了分析,并对进场道路平、纵、横断面,路基设计要点进行了介绍,给出了环境保护措施,指出在路线设计过程中要综合考虑纵、横断面设计,借助辅助设计工具反复试线,以确定出满意的线位。%The oaoer analyzes characteristics of access road of waste landfill,introduces horizontal and vertical access road subgrade design ooints,shows environmental orotection measures,and ooints out that:it is necessary to comorehensively design vertical and horizontal section and reoeats it again and again with auxiliary design tools,so as to determine satisfied location.

  16. Optimization of thermo-chemical hydrolysis of kitchen wastes.

    Science.gov (United States)

    Vavouraki, Aikaterini Ioannis; Angelis, Evangelos Michael; Kornaros, Michael

    2013-03-01

    Municipal Solid Wastes (MSWs) in Greece consist mainly of fermentable organic material such as food scraps (∼50%) and paper residuals (∼20%). The aim of this work was to study the thermo-chemical pretreatment of the kitchen waste (KW) fraction of MSW focusing on biotechnological exploitation of pretreated wastes for biofuel production. A representative sample of municipal food residues was derived by combining weighted amounts of each individual type of residue recognized in daily samples obtained from the University of Patras' students restaurant located at the Students Residence Hall (Greece). Chemical pretreatment experiments of the representative KW sample were performed using several types of chemical solutions (i.e. H2SO4, HCl, NaOH, H2SO3) of different solute concentration (0.7%, 1.5%, 3%) at three temperatures (50, 75, 120°C) and a range of residence times (30-120min). Optimized results proved that chemical pretreatment of KW, using either 1.12% HCl for 94min or 1.17% HCl for 86min (at 100°C), increased soluble sugars concentration by 120% compared to untreated KW. The increase of soluble sugars was mainly attributed to the mono-sugars glucose and fructose. PMID:22883686

  17. Chemical durability of Savannah River Plant waste glass as a function of waste loading

    International Nuclear Information System (INIS)

    The leachability of Savannah River Plant (SRP) waste forms was assessed for glass containing up to 50 wt % simulated waste oxides. Leach tests included standard MCC-1 static tests and pH-buffered solution experiments. An integrated approach combining leachate solution analysis with both bulk and surface analyses was used to study waste glass corrosion as a function of waste loading. Leachate solutions were analyzed by inductively coupled plasma spectroscopy and atomic absorption. Bulk and surface analyses were performed using optical microscopy, wide angle x-ray diffraction, scanning electron microscopy, x-ray energy spectroscopy, and electron microprobe analysis. Scouting tests on key processing and product parameters, such as viscosity, electrical resistivity, and density were also performed. Results of this study show that the durability of SRP waste glass improves due to the presence of the waste, for waste loadings up to 50 wt % because of the formation of protective surface layers. In addition, the data indicate that the practical limit of waste loading will be determined not by chemical durability of the product, but by processing considerations

  18. Hydrogeology and ground-water-quality conditions at the Emporia- Lyon County Landfill, eastern Kansas, 1988

    Science.gov (United States)

    Myers, N.C.; Bigsby, P.R.

    1990-01-01

    Hydrogeology and water-quality conditions at the Emporia-Lyon County Landfill, eastern Kansas, were investigated from April 1988 through April 1989. Potentiometric-surface maps indicated groundwater movement from the northeast and northwest towards the landfill and then south through the landfill to the Cottonwood River. The maps indicate that during periods of low groundwater levels, groundwater flows northward in the north-west part of the landfill, which may have been induced by water withdrawal from wells north of the landfill or by water ponded in waste lagoons south and west of the landfill. Chemical analysis of water samples from monitoring wells upgradient and downgradient of the landfill indicate calcium bicarbonate to be the dominant water type. No inorganic or organic chemical concentrations exceeded Kansas or Federal primary drinking-water standards. Kansas secondary drinking-water standards were equaled or exceeded, however, in water from some or all wells for total hardness, dissolved solids, iron, and manganese. Water from one upgradient well contained larger concentrations of dissolved oxygen and nitrate, and smaller concentrations of bicarbonate, alkalinity, ammonia, arsenic, iron, and manganese as compared to all other monitoring wells. Results of this investigation indicate that groundwater quality downgradient of well MW-2 has increased concentrations of some inorganic and organic compounds. Due to the industrial nature of the area and the changing directions of groundwater flow, it is not clear what the source of these compounds might be. Long-term monitoring, additional wells, and access to nearby waste lagoons and waste-lagoon monitoring wells would help define the sources of increased inorganic and organic compounds. (USGS)

  19. Potential for leaching of heavy metals in open-burning bottom ash and soil from a non-engineered solid waste landfill.

    Science.gov (United States)

    Gwenzi, Willis; Gora, Dorcas; Chaukura, Nhamo; Tauro, Tonny

    2016-03-01

    Bottom ash from open-burning of municipal waste practised in developing countries poses a risk of heavy metal leaching into groundwater. Compared to incineration ash, there is limited information on heavy metal leaching from open-burning ash and soil from non-engineered landfills. Batch and column experiments were conducted to address three specific objectives; (1) to determine aqua regia extractable concentrations of heavy metals in fresh ash, old ash and soil from beneath the landfill, (2) to determine the relationship between heavy metal leaching, initial and final pH of leaching solution, and aqua regia extractable concentrations, and (3) to determine the breakthrough curves of heavy metals in ashes and soil. Aqua regia extractable concentrations of Cd, Zn, Mn, Cu, Ni and Pb were significantly higher (p heavy metals were not correlated with aqua regia extractable concentrations. Final pH of leachate rebounded to close to original pH of the material, suggesting a putative high buffering capacity for all materials. Both batch and column leaching showed that concentrations of leached heavy metals were disproportionately lower (heavy metals was further evidenced by sigmoidal breakthrough curves. Heavy metal retention was attributed to precipitation, pH-dependent adsorption and formation of insoluble organo-metallic complexes at near-neutral to alkaline pH. Overall, the risk of heavy metal leaching from ash and soil from the waste dump into groundwater was low. The high pH and the presence of Zn, Fe, Mn and Cu make ash an ideal low-cost liming material and source of micronutrients particularly on acidic soils prevalent in sub-Saharan Africa.

  20. Combined Chemical Activation and Fenton Degradation to Convert Waste Polyethylene into High-Value Fine Chemicals.

    Science.gov (United States)

    Chow, Cheuk-Fai; Wong, Wing-Leung; Ho, Keith Yat-Fung; Chan, Chung-Sum; Gong, Cheng-Bin

    2016-07-01

    Plastic waste is a valuable organic resource. However, proper technologies to recover usable materials from plastic are still very rare. Although the conversion/cracking/degradation of certain plastics into chemicals has drawn much attention, effective and selective cracking of the major waste plastic polyethylene is extremely difficult, with degradation of C-C/C-H bonds identified as the bottleneck. Pyrolysis, for example, is a nonselective degradation method used to crack plastics, but it requires a very high energy input. To solve the current plastic pollution crisis, more effective technologies are needed for converting plastic waste into useful substances that can be fed into the energy cycle or used to produce fine chemicals for industry. In this study, we demonstrate a new and effective chemical approach by using the Fenton reaction to convert polyethylene plastic waste into carboxylic acids under ambient conditions. Understanding the fundamentals of this new chemical process provides a possible protocol to solve global plastic-waste problems. PMID:27168079

  1. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS - Report

    Science.gov (United States)

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  2. 40 CFR 258.41 - Project XL Bioreactor Landfill Projects.

    Science.gov (United States)

    2010-07-01

    ... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Design Criteria § 258.41 Project XL Bioreactor... reference with 5 U.S.C. 552(a) and 1 CFR part 51. These methods are available from The American Society for... landfills operated by the Waste Management, Inc. or its successors: The Maplewood Recycling and...

  3. COMMERCIAL-SCALE AEROBIC-ANAEROBIC BIOREACTOR LANDFILL OPERATIONS

    Science.gov (United States)

    A sequential aerobic-anaerobic treatment system has been applied at a commercial scale (3,000 ton per day) municipal solid waste landfill in Kentucky, USA since 2001. In this system, the uppermost layer of landfilled waste is aerated and liquid waste including leachate, surface w...

  4. Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States

    Science.gov (United States)

    Masoner, Jason R.; Kolpin, Dana W.; Furlong, Edward T.; Cozzarelli, Isabelle M.; Gray, James L.; Schwab, Eric A.

    2014-01-01

    To better understand the composition of contaminants of emerging concern (CECs) in landfill leachate, fresh leachate from 19 landfills was sampled across the United States during 2011. The sampled network included 12 municipal and 7 private landfills with varying landfill waste compositions, geographic and climatic settings, ages of waste, waste loads, and leachate production. A total of 129 out of 202 CECs were detected during this study, including 62 prescription pharmaceuticals, 23 industrial chemicals, 18 nonprescription pharmaceuticals, 16 household chemicals, 6 steroid hormones, and 4 plant/animal sterols. CECs were detected in every leachate sample, with the total number of detected CECs in samples ranging from 6 to 82 (median = 31). Bisphenol A (BPA), cotinine, and N,N-diethyltoluamide (DEET) were the most frequently detected CECs, being found in 95% of the leachate samples, followed by lidocaine (89%) and camphor (84%). Other frequently detected CECs included benzophenone, naphthalene, and amphetamine, each detected in 79% of the leachate samples. CEC concentrations spanned six orders of magnitude, ranging from ng L−1 to mg L−1. Industrial and household chemicals were measured in the greatest concentrations, composing more than 82% of the total measured CEC concentrations. Maximum concentrations for three household and industrial chemicals, para-cresol (7020000 ng L−1), BPA (6380000 ng L−1), and phenol (1550000 ng L−1), were the largest measured, with these CECs composing 70% of the total measured CEC concentrations. Nonprescription pharmaceuticals represented 12%, plant/animal sterols 4%, prescription pharmaceuticals 1%, and steroid hormones Leachate from landfills in areas receiving greater amounts of precipitation had greater frequencies of CEC detections and concentrations in leachate than landfills receiving less precipitation.

  5. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used to recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers

  6. Estimating the post-closure management time for landfills containing treated MSW residues.

    OpenAIRE

    Hall, D H; Gronow, Jan R.; Smith, Richard; Rosevear, Alan

    2005-01-01

    The Landfill Directive will require the pre-treatment of MSW prior to landfilling. The removal of progressively increasing proportions of the biodegradable fractions from landfilled waste, and the UK Government’s commitment to increase recycling of key waste fractions, will lead to an inevitable change, from the disposal of raw MSW, to the disposal of MSW treatment residues, to landfill. This will undoubtedly change the type and rate of emissions from landfills. The question th...

  7. PBTS, MERCURY AND OTHER POLLUTANTS FROM MSW LANDFILLS

    Science.gov (United States)

    Approximately 60% of municipal solid waste (MSW) is currently sent to a landfill for disposal. In addition, there are over 35,000 closed landfills as well as industrial and Superfund landfills. Concerns have been raised for more than 2 decades about the potential for dioxin/fur...

  8. Hydrophobic organic chemicals (HOCs) removal from biologically treated landfill leachate by powder-activated carbon (PAC), granular-activated carbon (GAC) and biomimetic fat cell (BFC).

    Science.gov (United States)

    Liyan, Song; Youcai, Zhao; Weimin, Sun; Ziyang, Lou

    2009-04-30

    Biological pretreatment efficiently remove organic matter from landfill leachate, but further removal of refractory hydrophobic organic chemicals (HOCs) is hard even with advanced treatment. In this work, three-stage-aged refuse bioreactor (ARB) efficiently removed chemical oxygen demand (COD) and biochemical oxygen demand (BOD) of fresh leachate produced in Shanghai laogang landfill, from 8603 to 451 mg L(-1) and 1368 to 30 mg L(-1), respectively. In downstream treatment, 3 g L(-1) powder-activated carbon (PAC), granular-activated carbon (GAC) and biomimetic fat cell (BFC) removed 89.2, 73.4 and 81.1% HOCs, but only 24.6, 19.1 and 8.9% COD, respectively. Through the specific HOCs accumulation characteristics of BFC, about 11.2% HOCs with low molecular weight (BFC. It was also found that the biologically treated leachate effluent exhibited a wide molecular weight distribution (34-514,646 Da). These constitutes are derived from both autochthonous and allochthonous matters as well as biological activities.

  9. 75 FR 8986 - Draft Supplemental Environmental Impact Statement for the Proposed Campo Regional Landfill...

    Science.gov (United States)

    2010-02-26

    ... constructing and operating a solid waste landfill, recycling facility, and composting facility. In 1989, the... be required to comply with 40 CFR part 258 (Criteria for Municipal Solid Waste Landfills). Because... 258. For municipal solid waste landfills in Indian Country, the EPA must makes...

  10. Waste Issues Associated with the Safe Movement of Hazardous Chemicals

    International Nuclear Information System (INIS)

    Moving hazardous chemicals presents the risk of exposure for workers engaged in the activity and others that might be in the immediate area. Adverse affects are specific to the chemicals and can range from minor skin, eye, or mucous membrane irritation, to burns, respiratory distress, nervous system dysfunction, or even death. A case study is presented where in the interest of waste minimization; original shipping packaging was removed from a glass bottle of nitric acid, while moving corrosive liquid through a security protocol into a Radiological Control Area (RCA). During the transfer, the glass bottle broke. The resulting release of nitric acid possibly exposed 12 employees with one employee being admitted overnight at a hospital for observation. This is a clear example of administrative controls to reduce the generation of suspect radioactive waste being implemented at the expense of employee health. As a result of this event, material handling procedures that assure the safe movement of hazardous chemicals through a security protocol into a radiological control area were developed. Specifically, hazardous material must be transferred using original shipping containers and packaging. While this represents the potential to increase the generation of suspect radioactive waste in a radiological controlled area, arguments are presented that justify this change. Security protocols for accidental releases are also discussed. In summary, the 12th rule of ''Green Chemistry'' (Inherently Safer Chemistry for Accident Prevention) should be followed: the form of a substance used in a chemical process (Movement of Hazardous Chemicals) should be chosen to minimize the potential for chemical accidents, including releases

  11. State waste discharge permit application, 200-E chemical drain field

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect ground would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of E