WorldWideScience

Sample records for chemical tracer method

  1. Chemical Tracer Methods: Chapter 7

    Science.gov (United States)

    Healy, Richard W.

    2017-01-01

    Tracers have a wide variety of uses in hydrologic studies: providing quantitative or qualitative estimates of recharge, identifying sources of recharge, providing information on velocities and travel times of water movement, assessing the importance of preferential flow paths, providing information on hydrodynamic dispersion, and providing data for calibration of water flow and solute-transport models (Walker, 1998; Cook and Herczeg, 2000; Scanlon et al., 2002b). Tracers generally are ions, isotopes, or gases that move with water and that can be detected in the atmosphere, in surface waters, and in the subsurface. Heat also is transported by water; therefore, temperatures can be used to trace water movement. This chapter focuses on the use of chemical and isotopic tracers in the subsurface to estimate recharge. Tracer use in surface-water studies to determine groundwater discharge to streams is addressed in Chapter 4; the use of temperature as a tracer is described in Chapter 8.Following the nomenclature of Scanlon et al. (2002b), tracers are grouped into three categories: natural environmental tracers, historical tracers, and applied tracers. Natural environmental tracers are those that are transported to or created within the atmosphere under natural processes; these tracers are carried to the Earth’s surface as wet or dry atmospheric deposition. The most commonly used natural environmental tracer is chloride (Cl) (Allison and Hughes, 1978). Ocean water, through the process of evaporation, is the primary source of atmospheric Cl. Other tracers in this category include chlorine-36 (36Cl) and tritium (3H); these two isotopes are produced naturally in the Earth’s atmosphere; however, there are additional anthropogenic sources of them.

  2. Methods and systems using encapsulated tracers and chemicals for reservoir interrogation and manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jeffery; Aines, Roger D; Duoss, Eric B; Spadaccini, Christopher M

    2014-11-04

    An apparatus, method, and system of reservoir interrogation. A tracer is encapsulating in a receptacle. The receptacle containing the tracer is injected into the reservoir. The tracer is analyzed for reservoir interrogation.

  3. Dual-tracer method to estimate coral reef response to a plume of chemically modified seawater

    Science.gov (United States)

    Maclaren, J. K.; Caldeira, K.

    2013-12-01

    We present a new method, based on measurement of seawater samples, to estimate the response of a reef ecosystem to a plume of an additive (for example, a nutrient or other chemical). In the natural environment, where there may be natural variability in concentrations, it can be difficult to distinguish between changes in concentrations that would occur naturally and changes in concentrations that result from a chemical addition. Furthermore, in the unconfined natural environment, chemically modified water can mix with waters that have not been modified, making it difficult to distinguish between effects of dilution and effects of chemical fluxes or transformations. We present a dual-tracer method that extracts signals from observations that may be affected by both natural variability and dilution. In this dual-tracer method, a substance (in our example case, alkalinity) is added to the water in known proportion to a passive conservative tracer (in our example case, Rhodamine WT dye). The resulting plume of seawater is allowed to flow over the study site. Two transects are drawn across the plume at the front and back of the study site. If, in our example, alkalinity is plotted as a function of dye concentration for the front transect, the slope of the resulting mixing line is the ratio of alkalinity to dye in the added fluid. If a similar mixing line is measured and calculated for the back transect, the slope of this mixing line will indicate the amount of added alkalinity that remains in the water flowing out of the study site per unit of added dye. The ratio of the front and back slopes indicates the fraction of added alkalinity that was taken up by the reef. The method is demonstrated in an experiment performed on One Tree Reef (Queensland, Australia) aimed at showing that ocean acidification is already affecting coral reef growth. In an effort to chemically reverse some of the changes to seawater chemistry that have occurred over the past 200 years, we added

  4. Assessing preferential flow by simultaneously injecting nanoparticle and chemical tracers

    KAUST Repository

    Subramanian, S. K.

    2013-01-01

    The exact manner in which preferential (e.g., much faster than average) flow occurs in the subsurface through small fractures or permeable connected pathways of other kinds is important to many processes but is difficult to determine, because most chemical tracers diffuse quickly enough from small flow channels that they appear to move more uniformly through the rock than they actually do. We show how preferential flow can be assessed by injecting 2 to 5 nm carbon particles (C-Dots) and an inert KBr chemical tracer at different flow rates into a permeable core channel that is surrounded by a less permeable matrix in laboratory apparatus of three different designs. When the KBr tracer has a long enough transit through the system to diffuse into the matrix, but the C-Dot tracer does not, the C-Dot tracer arrives first and the KBr tracer later, and the separation measures the degree of preferential flow. Tracer sequestration in the matrix can be estimated with a Peclet number, and this is useful for experiment design. A model is used to determine the best fitting core and matrix dispersion parameters and refine estimates of the core and matrix porosities. Almost the same parameter values explain all experiments. The methods demonstrated in the laboratory can be applied to field tests. If nanoparticles can be designed that do not stick while flowing through the subsurface, the methods presented here could be used to determine the degree of fracture control in natural environments, and this capability would have very wide ranging value and applicability.

  5. Constraints on primary and secondary particulate carbon sources using chemical tracer and 14C methods during CalNex-Bakersfield

    Data.gov (United States)

    U.S. Environmental Protection Agency — The present study investigates primary and secondary sources of organic carbon for Bakersfield, CA, USA as part of the 2010 CalNex study. The method used here...

  6. Chlorine isotopes potential as geo-chemical tracers

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Pradhan, U.K.; Banerjee, R.

    The potential of chlorine isotopes as tracers of geo-chemical processes of earth and the oceans is highlighted based on systematic studies carried out in understanding the chlorine isotope fractionation mechanism, its constancy in seawater and its...

  7. Tracking thermal fronts with temperature-sensitive, chemically reactive tracers

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, B.A.; Birdsell, S.A.

    1987-01-01

    Los Alamos is developing tracer techniques using reactive chemicals to track thermal fronts in fractured geothermal reservoirs. If a nonadsorbing tracer flowing from the injection to production well chemically reacts, its reaction rate will be a strong function of temperature. Thus the extent of chemical reaction will be greatest early in the lifetime of the system, and less as the thermal front progresses from the injection to production well. Early laboratory experiments identified tracers with chemical kinetics suitable for reservoirs in the temperature range of 75 to 100/sup 0/C. Recent kinetics studies have focused on the kinetics of hydrolysis of derivatives of bromobenzene. This class of reactions can be used in reservoirs ranging in temperature from 150 to 275/sup 0/C, which is of greater interest to the geothermal industry. Future studies will include laboratory adsorption experiments to identify possibly unwanted adsorption on granite, development of sensitive analytical techniques, and a field demonstration of the reactive tracer concept.

  8. Chemical tracers of episodic accretion in low-mass protostars

    CERN Document Server

    Visser, Ruud; Jorgensen, Jes K

    2015-01-01

    Aims: Accretion rates in low-mass protostars can be highly variable in time. Each accretion burst is accompanied by a temporary increase in luminosity, heating up the circumstellar envelope and altering the chemical composition of the gas and dust. This paper aims to study such chemical effects and discusses the feasibility of using molecular spectroscopy as a tracer of episodic accretion rates and timescales. Methods: We simulate a strong accretion burst in a diverse sample of 25 spherical envelope models by increasing the luminosity to 100 times the observed value. Using a comprehensive gas-grain network, we follow the chemical evolution during the burst and for up to 10^5 yr after the system returns to quiescence. The resulting abundance profiles are fed into a line radiative transfer code to simulate rotational spectra of C18O, HCO+, H13CO+, and N2H+ at a series of time steps. We compare these spectra to observations taken from the literature and to previously unpublished data of HCO+ and N2H+ 6-5 from th...

  9. Testing fundamentals: The chemical state of geochemical tracers in biominerals.

    Science.gov (United States)

    Branson, O.; Redfern, S. A. T.; Read, E.; Elderfield, H.

    2015-12-01

    The use of many carbonate-derived geochemical proxies is underpinned by the assumption that tracer elements are incorporated 'ideally' as impurities the mineral lattice, following relatively straightforward kinetic and thermodynamic drives. This allows comparison to inorganic precipitation experiments, and provides a systematic starting point from which to translate geochemical tracers to environmental records. Biomineral carbonates are a prominent source of geochemical proxy material, and are far from an ideal inorganic system. They are structurally and compositionally heterogeneous mineral-organic composites, produced in tightly controlled biological environments, possibly via non-classical crystal growth mechanisms. Biominerals offer numerous opportunities for tracers to be incorporated in a 'non-ideal' state. For instance, tracers could be hosted within the organic component of the structure, in interstitial micro-domains of a separate mineral phase, or in localized high-impurity clusters. If a proxy element is hosted in a non-ideal state, our understanding of its incorporation and preservation is flawed, and the theoretical basis behind the proxies derived from it must be reevaluated. Thus far, the assumption of ideal tracer incorporation has remained largely untested, owing to the spatial resolution and sensitivity limits of available techniques. Developments in high-resolution, high-sensitivity X-ray spectroscopy at Scanning Transmission X-Ray Microscopes (STXMs) have allowed us to measure trace element coordination in foraminiferal calcite, at length-scales relevant to biomineralisation processes and tracer incorporation. This instrument has allowed us to test the fundamental assumptions behind several geochemical proxy elements. We present a summary of four STXM studies, assessing the chemical state and distribution of Mg (Branson et al, 2014), B (Branson et al, 2015), S and Na (unpub.), and highlight the implications of these data for the use of these

  10. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  11. Chemical tracers of high-metallicity environments

    CERN Document Server

    Bayet, E; Bell, T A; Viti, S

    2012-01-01

    We present for the first time a detailed study of the properties of molecular gas in metal-rich environments such as early-type galaxies (ETGs). We have explored Photon-Dominated Region (PDR) chemistry for a wide range of physical conditions likely to be appropriate for these sources. We derive fractional abundances of the 20 most chemically reactive species as a function of the metallicity, as a function of the optical depth and for various volume number gas densities, Far-Ultra Violet (FUV) radiation fields and cosmic ray ionisation rates. We also investigate the response of the chemistry to the changes in $\\alpha-$element enhancement as seen in ETGs. We find that the fractional abundances of CS, H$_{2}$S, H$_{2}$CS, H$_{2}$O, H$_{3}$O$^{+}$, HCO$^{+}$ and H$_{2}$CN seem invariant to an increase of metallicity whereas C$^{+}$, CO, C$_{2}$H, CN, HCN, HNC and OCS appear to be the species most sensitive to this change. The most sensitive species to the change in the fractional abundance of $\\alpha-$elements ar...

  12. Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model

    Science.gov (United States)

    Kinnison, D. E.; Brasseur, G. P.; Walters, S.; Garcia, R. R.; Marsh, D. R.; Sassi, F.; Harvey, V. L.; Randall, C. E.; Emmons, L.; Lamarque, J. F.; Hess, P.; Orlando, J. J.; Tie, X. X.; Randel, W.; Pan, L. L.; Gettelman, A.; Granier, C.; Diehl, T.; Niemeier, U.; Simmons, A. J.

    2007-10-01

    The Model for Ozone and Related Chemical Tracers, version 3 (MOZART-3), which represents the chemical and physical processes from the troposphere through the lower mesosphere, was used to evaluate the representation of long-lived tracers and ozone using three different meteorological fields. The meteorological fields are based on (1) the Whole Atmosphere Community Climate Model, version 1b (WACCM1b), (2) the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis, and (3) a new reanalysis for year 2000 from ECMWF called EXP471. Model-derived tracers (methane, water vapor, and total inorganic nitrogen) and ozone are compared to data climatologies from satellites. Model mean age of air was also derived and compared to in situ CO2 and SF6 data. A detailed analysis of the chemical fields simulated by MOZART-3 shows that even though the general features characterizing the three dynamical sets are rather similar, slight differences in winds and temperature can produce substantial differences in the calculated distributions of chemical tracers. The MOZART-3 simulations that use meteorological fields from WACCM1b and ECMWF EXP471 represented best the distribution of long-lived tracers and mean age of air in the stratosphere. There was a significant improvement using the ECMWF EXP471 reanalysis data product over the ECMWF operational data product. The effect of the quasi-biennial oscillation circulation on long-lived tracers and ozone is examined.

  13. Titan's post-equinox circulation revealed using chemical tracers

    Science.gov (United States)

    Teanby, N. A.; Irwin, P. G. J.; Nixon, C. A.; de Kok, R.; Vinatier, S.; Coustenis, A.; Calcutt, S. B.

    2012-04-01

    Titan’s atmosphere harbors a vast array of minor chemical compounds produced by its active photochemical cycle - including many hydrocarbon and nitrile species. These species have a wide range of lifetimes and can be used as chemical tracers of atmospheric motion on a variety of time scales (Teanby et al 2008). Therefore, by measuring how the abundances of these species vary during Cassini’s mission so far, it is possible to probe changes in Titan’s general circulation. Here we use eight years of Cassini Composite InfraRed Spectrometer (CIRS) data to study how the atmospheric circulation behaves during the equinox and post-equinox periods. As northern winter progressed to northern spring, significant changes in the distribution of trace gases were observed. These include an increase in trace gas abundance at the north pole and northward migration of the vortex boundary. The implications of the observed changed will be discussed - including a possible interpretation of the recent changes as a weakening of the north polar vortex accompanied by a reduction in cross-vortex mixing. References: Teanby, N. A., et al. (2008) "Titan's winter polar vortex structure revealed by chemical tracers". JGR-Planets, Vol. 113, E12003. Figure showing the observed variations in temperature and composition from the mission so far.

  14. A theoretical framework of tracer methods for marine sediment dynamics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new theoretical framework of tracer methods is proposed in the present contribution, on the basis of mass conservation. This model is applicable for both artificial and natural tracers. It can be used to calculate the spatial distribution patterns of sediment transport rate, thus providing independent information and verification for the results derived from empirical formulae. For the procedures of the calculation, first, the tracer concentration and topographic maps of two times are obtained. Then, the spatial and temporal changes in the concentration and seabed elevation are calculated, and the boundary conditions required are determined by field observations (such as flow and bedform migration measurements). Finally, based upon eqs. (1) and (13), the transport rate is calculated and expressed as a function of the position over the study area. Further, appropriate modifications to the model may allow the tracer to have different densities and grain size distributions from the bulk sediment.

  15. Technical Note: Coupling of chemical processes with the Modular Earth Submodel System (MESSy submodel TRACER

    Directory of Open Access Journals (Sweden)

    P. Jöckel

    2007-11-01

    Full Text Available The implementation of processes related to chemistry into Earth System Models and their coupling within such systems requires the consistent description of the chemical species involved. We provide a tool (written in Fortran95 to structure and manage information about constituents, herein after referred to as tracers, namely the Modular Earth Submodel System (MESSy generic (i.e., infrastructure submodel TRACER. With TRACER it is possible to define a multitude of tracer sets, depending on the spatio-temporal representation (i.e., the grid structure of the model. The required information about a specific chemical species is split into the static meta-information about the characteristics of the species, and its (generally in time and space variable abundance in the corresponding representation. TRACER moreover includes two submodels. One is TRACER_FAMILY, an implementation of the tracer family concept. It distinguishes between two types: type-1 families are usually applied to handle strongly related tracers (e.g., fast equilibrating species for a specific process (e.g., advection. In contrast to this, type-2 families are applied for tagging techniques, in which specific species are artificially decomposed and associated with additional information, in order to conserve the linear relationship between the family and its members. The second submodel is TRACER_PDEF, which corrects and budgets numerical negative overshoots that arise in many process implementations due to the numerical limitations (limited precision, rounding errors. The submodel therefore guarantees the positive definiteness of the tracers and stabilises the integration scheme. As a by-product, it further provides a global tracer mass diagnostic. Last but not least, we present the submodel PTRAC for the definition of prognostic tracers via a Fortran95 namelist. TRACER with its submodels and PTRAC can readily be applied to a variety of models without further requirements. The code and

  16. A Systematic Method For Tracer Test Analysis: An Example Using Beowawe Tracer Data

    Energy Technology Data Exchange (ETDEWEB)

    G. Michael Shook

    2005-01-01

    Quantitative analysis of tracer data using moment analysis requires a strict adherence to a set of rules which include data normalization, correction for thermal decay, deconvolution, extrapolation, and integration. If done correctly, the method yields specific information on swept pore volume, flow geometry and fluid velocity, and an understanding of the nature of reservoir boundaries. All calculations required for the interpretation can be done in a spreadsheet. The steps required for moment analysis are reviewed in this paper. Data taken from the literature is used in an example calculation.

  17. Technical Note: Coupling of chemical processes with the Modular Earth Submodel System (MESSy submodel TRACER

    Directory of Open Access Journals (Sweden)

    R. Sander

    2008-03-01

    Full Text Available The implementation of processes related to chemistry into Earth System Models and their coupling within such systems requires the consistent description of the chemical species involved. We provide a tool (written in Fortran95 to structure and manage information about constituents, hereinafter referred to as tracers, namely the Modular Earth Submodel System (MESSy generic (i.e., infrastructure submodel TRACER. With TRACER it is possible to define a multitude of tracer sets, depending on the spatio-temporal representation (i.e., the grid structure of the model. The required information about a specific chemical species is split into the static meta-information about the characteristics of the species, and its (generally in time and space variable abundance in the corresponding representation. TRACER moreover includes two submodels. One is TRACER_FAMILY, an implementation of the tracer family concept. It distinguishes between two types: type-1 families are usually applied to handle strongly related tracers (e.g., fast equilibrating species for a specific process (e.g., advection. In contrast to this, type-2 families are applied for tagging techniques. Tagging means the artificial decomposition of one or more species into parts, which are additionally labelled (e.g., by the region of their primary emission and then processed as the species itself. The type-2 family concept is designed to conserve the linear relationship between the family and its members. The second submodel is TRACER_PDEF, which corrects and budgets numerical negative overshoots that arise in many process implementations due to the numerical limitations (e.g., rounding errors. The submodel therefore guarantees the positive definiteness of the tracers and stabilises the integration scheme. As a by-product, it further provides a global tracer mass diagnostic. Last but not least, we present the submodel PTRAC, which allows the definition of tracers via a Fortran95 namelist, as a

  18. Tracer Methods for Characterizing Fracture Creation in Engineered Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Peter [Energy & Geoscience Institute at the University of Utah, Salt Lake City, UT (United States); Harris, Joel [Univ. of Utah, Salt Lake City, UT (United States)

    2014-05-08

    The aim of this proposal is to develop, through novel high-temperature-tracing approaches, three technologies for characterizing fracture creation within Engineered Geothermal Systems (EGS). The objective of a first task is to identify, develop and demonstrate adsorbing tracers for characterizing interwell reservoir-rock surface areas and fracture spacing. The objective of a second task is to develop and demonstrate a methodology for measuring fracture surface areas adjacent to single wells. The objective of a third task is to design, fabricate and test an instrument that makes use of tracers for measuring fluid flow between newly created fractures and wellbores. In one method of deployment, it will be used to identify qualitatively which fractures were activated during a hydraulic stimulation experiment. In a second method of deployment, it will serve to measure quantitatively the rate of fluid flowing from one or more activated fracture during a production test following a hydraulic stimulation.

  19. A tracer bolus method for investigating glutamine kinetics in humans.

    Directory of Open Access Journals (Sweden)

    Maiko Mori

    Full Text Available Glutamine transport between tissues is important for the outcome of critically ill patients. Investigation of glutamine kinetics is, therefore, necessary to understand glutamine metabolism in these patients in order to improve future intervention studies. Endogenous glutamine production can be measured by continuous infusion of a glutamine tracer, which necessitates a minimum measurement time period. In order to reduce this problem, we used and validated a tracer bolus injection method. Furthermore, this method was used to measure the glutamine production in healthy volunteers in the post-absorptive state, with extra alanine and with glutamine supplementation and parenteral nutrition. Healthy volunteers received a bolus injection of [1-13C] glutamine, and blood was collected from the radial artery to measure tracer enrichment over 90 minutes. Endogenous rate of appearance (endoRa of glutamine was calculated from the enrichment decay curve and corrected for the extra glutamine supplementation. The glutamine endoRa of healthy volunteers was 6.1±0.9 µmol/kg/min in the post-absorptive state, 6.9±1.0 µmol/kg/min with extra alanyl-glutamine (p = 0.29 versus control, 6.1±0.4 µmol/kg/min with extra alanine only (p = 0.32 versus control, and 7.5±0.9 µmol/kg/min with extra alanyl-glutamine and parenteral nutrition (p = 0.049 versus control. In conclusion, a tracer bolus injection method to measure glutamine endoRa showed good reproducibility and small variation at baseline as well as during parenteral nutrition. Additionally, we showed that parenteral nutrition including alanyl-glutamine increased glutamine endoRa in healthy volunteers, which was not attributable to the alanine part of the dipeptide.

  20. Recover Act. Verification of Geothermal Tracer Methods in Highly Constrained Field Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Matthew W. [California State University, Long Beach, CA (United States)

    2014-05-16

    pumping tests in identifying a poorly connected well. As a result, we were able to predict which well pairs would demonstrate channelized flow. The focus of the tracer investigation was multi-ionic tests. In multi-ionic tests several ionic tracers are injected simultaneously and the detected in a nearby pumping well. The time history of concentration, or breakthrough curve, will show a separation of the tracers. Anionic tracers travel with the water but cationic tracer undergo chemical exchange with cations on the surface of the rock. The degree of separation is indicative of the surface area exposed to the tracer. Consequently, flow channelization will tend to decrease the separation in the breakthrough. Estimation of specific surface area (the ration of fracture surface area to formation volume) is performed through matching the breakthrough curve with a transport model. We found that the tracer estimates of surface area were confirmed the prediction of channelized flow between well pairs produced by the periodic hydraulic tests. To confirm that the hydraulic and tracer tests were correctly predicting channelize flow, we imaged the flow field using surface GPR. Saline water was injected between the well pairs which produced a change in the amplitude and phase of the reflected radar signal. A map was produced of the migration of saline tracer from these tests which qualitatively confirmed the flow channelization predicted by the hydraulic and tracer tests. The resolution of the GPR was insufficient to quantitatively estimate swept surface area, however. Surface GPR is not applicable in typical geothermal fields because the penetration depths do not exceed 10’s of meters. Nevertheless, the method of using of phase to measure electrical conductivity and the assessment of antennae polarization represent a significant advancement in the field of surface GPR. The effect of flow character on fracture / rock thermal exchange was evaluated using heated water as a tracer. Water

  1. Recover Act. Verification of Geothermal Tracer Methods in Highly Constrained Field Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Matthew W. [California State University, Long Beach, CA (United States)

    2014-05-16

    pumping tests in identifying a poorly connected well. As a result, we were able to predict which well pairs would demonstrate channelized flow. The focus of the tracer investigation was multi-ionic tests. In multi-ionic tests several ionic tracers are injected simultaneously and the detected in a nearby pumping well. The time history of concentration, or breakthrough curve, will show a separation of the tracers. Anionic tracers travel with the water but cationic tracer undergo chemical exchange with cations on the surface of the rock. The degree of separation is indicative of the surface area exposed to the tracer. Consequently, flow channelization will tend to decrease the separation in the breakthrough. Estimation of specific surface area (the ration of fracture surface area to formation volume) is performed through matching the breakthrough curve with a transport model. We found that the tracer estimates of surface area were confirmed the prediction of channelized flow between well pairs produced by the periodic hydraulic tests. To confirm that the hydraulic and tracer tests were correctly predicting channelize flow, we imaged the flow field using surface GPR. Saline water was injected between the well pairs which produced a change in the amplitude and phase of the reflected radar signal. A map was produced of the migration of saline tracer from these tests which qualitatively confirmed the flow channelization predicted by the hydraulic and tracer tests. The resolution of the GPR was insufficient to quantitatively estimate swept surface area, however. Surface GPR is not applicable in typical geothermal fields because the penetration depths do not exceed 10’s of meters. Nevertheless, the method of using of phase to measure electrical conductivity and the assessment of antennae polarization represent a significant advancement in the field of surface GPR. The effect of flow character on fracture / rock thermal exchange was evaluated using heated water as a tracer. Water

  2. Intrinsic and Extrinsic Chemical and Isotopic Tracers for Characterization Of Groundwater Systems

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J E; Singleton, M J; Carle, S F; Esser, B K

    2007-09-13

    In many regions, three dimensional characterization of the groundwater regime is limited by coarse well spacing or borehole lithologic logs of low quality. However, regulatory requirements for drinking water or site remediation may require collection of extensive chemical and water quality data from existing wells. Similarly, for wells installed in the distant past, lithologic logs may not be available, but the wells can be sampled for chemical and isotopic constituents. In these situations, a thorough analysis of trends in chemical and isotopic constituents can be a key component in characterizing the regional groundwater system. On a basin or subbasin scale, especially in areas of intensive groundwater management where artificial recharge is important, introduction of an extrinsic tracer can provide a robust picture of groundwater flow. Dissolved gases are particularly good tracers since a large volume of water can be tagged, there are no real or perceived health risks associated with the tracer, and a very large dynamic range allows detection of a small amount of tagged water in well discharge. Recent applications of the application of extrinsic tracers, used in concert with intrinsic chemical and isotopic tracers, demonstrate the power of chemical analyses in interpreting regional subsurface flow regimes.

  3. Experiments to Evaluate and Implement Passive Tracer Gas Methods to Measure Ventilation Rates in Homes

    Energy Technology Data Exchange (ETDEWEB)

    Lunden, Melissa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Heredia, Elizabeth [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cohn, Sebastian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dickerhoff, Darryl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Noris, Federico [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Logue, Jennifer [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-10-01

    This report documents experiments performed in three homes to assess the methodology used to determine air exchange rates using passive tracer techniques. The experiments used four different tracer gases emitted simultaneously but implemented with different spatial coverage in the home. Two different tracer gas sampling methods were used. The results characterize the factors of the execution and analysis of the passive tracer technique that affect the uncertainty in the calculated air exchange rates. These factors include uncertainties in tracer gas emission rates, differences in measured concentrations for different tracer gases, temporal and spatial variability of the concentrations, the comparison between different gas sampling methods, and the effect of different ventilation conditions.

  4. Impact of fluid-rock chemical interactions on tracer transport in fractured rocks.

    Science.gov (United States)

    Mukhopadhyay, Sumit; Liu, H-H; Spycher, N; Kennedy, B M

    2013-11-01

    In this paper, we investigate the impact of chemical interactions, in the form of mineral precipitation and dissolution reactions, on tracer transport in fractured rocks. When a tracer is introduced in fractured rocks, it moves through the fracture primarily by advection and it also enters the stagnant water of the surrounding rock matrix through diffusion. Inside the porous rock matrix, the tracer chemically interacts with the solid materials of the rock, where it can precipitate depending on the local equilibrium conditions. Alternatively, it can be dissolved from the solid phase of the rock matrix into the matrix pore water, diffuse into the flowing fluids of the fracture and is advected out of it. We show that such chemical interactions between the fluid and solid phases have significant impact on tracer transport in fractured rocks. We invoke the dual-porosity conceptualization to represent the fractured rocks and develop a semi-analytical solution to describe the transient transport of tracers in interacting fluid-rock systems. To test the accuracy and stability of the semi-analytical solution, we compare it with simulation results obtained with the TOUGHREACT simulator. We observe that, in a chemically interacting system, the tracer breakthrough curve exhibits a pseudo-steady state, where the tracer concentration remains more or less constant over a finite period of time. Such a pseudo-steady condition is not observed in a non-reactive fluid-rock system. We show that the duration of the pseudo-state depends on the physical and chemical parameters of the system, and can be exploited to extract information about the fractured rock system, such as the fracture spacing and fracture-matrix interface area.

  5. Estimation of time-variable fast flow path chemical concentrations for application in tracer-based hydrograph separation analyses

    Science.gov (United States)

    Kronholm, Scott C.; Capel, Paul D.

    2016-09-01

    Mixing models are a commonly used method for hydrograph separation, but can be hindered by the subjective choice of the end-member tracer concentrations. This work tests a new variant of mixing model that uses high-frequency measures of two tracers and streamflow to separate total streamflow into water from slowflow and fastflow sources. The ratio between the concentrations of the two tracers is used to create a time-variable estimate of the concentration of each tracer in the fastflow end-member. Multiple synthetic data sets, and data from two hydrologically diverse streams, are used to test the performance and limitations of the new model (two-tracer ratio-based mixing model: TRaMM). When applied to the synthetic streams under many different scenarios, the TRaMM produces results that were reasonable approximations of the actual values of fastflow discharge (±0.1% of maximum fastflow) and fastflow tracer concentrations (±9.5% and ±16% of maximum fastflow nitrate concentration and specific conductance, respectively). With real stream data, the TRaMM produces high-frequency estimates of slowflow and fastflow discharge that align with expectations for each stream based on their respective hydrologic settings. The use of two tracers with the TRaMM provides an innovative and objective approach for estimating high-frequency fastflow concentrations and contributions of fastflow water to the stream. This provides useful information for tracking chemical movement to streams and allows for better selection and implementation of water quality management strategies.

  6. A review of methods for modelling environmental tracers in groundwater: Advantages of tracer concentration simulation

    Science.gov (United States)

    Turnadge, Chris; Smerdon, Brian D.

    2014-11-01

    Mathematical models of varying complexity have been developed since the 1960s to interpret environmental tracer concentrations in groundwater flow systems. This review examines published studies of model-based environmental tracer interpretation, the progress of different modelling approaches, and also considers the value of modelling tracer concentrations directly rather than estimations of groundwater age. Based on citation metrics generated using the Web of Science and Google Scholar reference databases, the most highly utilised interpretation approaches are lumped parameter models (421 citations), followed closely by direct age models (220 citations). A third approach is the use of mixing cell models (99 citations). Although lumped parameter models are conceptually simple and require limited data, they are unsuitable for characterising the internal dynamics of a hydrogeological system and/or under conditions where large scale anthropogenic stresses occur within a groundwater basin. Groundwater age modelling, and in particular, the simulation of environmental tracer transport that explicitly accounts for the accumulation and decay of tracer mass, has proven to be highly beneficial in constraining numerical models. Recent improvements in computing power have made numerical simulation of tracer transport feasible. We argue that, unlike directly simulated ages, the results of tracer mass transport simulation can be compared directly to observations, without needing to correct for apparent age bias or other confounding factors.

  7. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers.

    Science.gov (United States)

    Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A

    2014-11-15

    Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for

  8. Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

    2011-07-01

    The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel

  9. The Tracer Gas Method of Determining the Charging Efficiency of Two-stroke-cycle Diesel Engines

    Science.gov (United States)

    Schweitzer, P H; Deluca, Frank, Jr

    1942-01-01

    A convenient method has been developed for determining the scavenging efficiency or the charging efficiency of two-stroke-cycle engines. The method consists of introducing a suitable tracer gas into the inlet air of the running engine and measuring chemically its concentration both in the inlet and exhaust gas. Monomethylamine CH(sub 3)NH(sub 2) was found suitable for the purpose as it burns almost completely during combustion, whereas the "short-circuited" portion does not burn at all and can be determined quantitatively in the exhaust. The method was tested both on four-stroke and on two-stroke engines and is considered accurate within 1 percent.

  10. Single well tracer method to evaluate enhanced recovery

    Science.gov (United States)

    Sheely, Jr., Clyde Q.; Baldwin, Jr., David E.

    1978-01-01

    Data useful to evaluate the effectiveness of or to design an enhanced recovery process (the recovery process involving mobilizing and moving hydrocarbons through a hydrocarbon-bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well) are obtained by a process which comprises sequentially: determining hydrocarbon saturation in the formation in a volume in the formation near a well bore penetrating the formation, injecting sufficient of the mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore penetrating the formation, and determining by the single well tracer method a hydrocarbon saturation profile in a volume from which hydrocarbons are moved. The single well tracer method employed is disclosed by U.S. Pat. No. 3,623,842. The process is useful to evaluate surfactant floods, water floods, polymer floods, CO.sub.2 floods, caustic floods, micellar floods, and the like in the reservoir in much less time at greatly reduced costs, compared to conventional multi-well pilot test.

  11. A Lagrangian particle method with remeshing for tracer transport on the sphere

    Science.gov (United States)

    Bosler, Peter A.; Kent, James; Krasny, Robert; Jablonowski, Christiane

    2017-07-01

    A Lagrangian particle method (called LPM) based on the flow map is presented for tracer transport on the sphere. The particles carry tracer values and are located at the centers and vertices of triangular Lagrangian panels. Remeshing is applied to control particle disorder and two schemes are compared, one using direct tracer interpolation and another using inverse flow map interpolation with sampling of the initial tracer density. Test cases include a moving-vortices flow and reversing-deformational flow with both zero and nonzero divergence, as well as smooth and discontinuous tracers. We examine the accuracy of the computed tracer density and tracer integral, and preservation of nonlinear correlation in a pair of tracers. We compare results obtained using LPM and the Lin-Rood finite-volume scheme. An adaptive particle/panel refinement scheme is demonstrated.

  12. Evaluating Chemical Tracers as Indicators of Nitrate-Nitrogen Sources in Groundwater

    Science.gov (United States)

    Nitka, A.; DeVita, W.; McGinley, P.

    2014-12-01

    Groundwater nitrate-N concentrations greater than 3 mg/L usually indicate contamination from either agriculture or wastewater disposal. The objective of this study was to use chemical indicators to reliably determine sources of nitrate contamination in private wells. We developed an analytical method for a suite of human waste indicators. The selection of chemical tracers was based on their likely occurrence and mobility in groundwater. The suite included artificial sweeteners, pharmaceuticals and personal care products. Pesticide metabolites were used to identify contamination due to agricultural practices. A densely populated suburban area with adjacent agricultural land was selected. Eighteen private water supply wells and six monitoring wells were analyzed for nitrate-N and contaminant indicators. All of the wells with nitrate concentrations greater than 3 mg/L had at least one chemical indicator. Of these, 90% had two or more human waste contaminants, 40% had pesticide metabolites, and 30% had both. Of the wells with nitrate greater than 10 mg/L, 80% had two or more human waste indicators, 70% had pesticide metabolites, and 50% had both. The results of this research will help direct land management decisions and selection of appropriate water treatment options.

  13. Quantifying Methane Fluxes Simply and Accurately: The Tracer Dilution Method

    Science.gov (United States)

    Rella, Christopher; Crosson, Eric; Green, Roger; Hater, Gary; Dayton, Dave; Lafleur, Rick; Merrill, Ray; Tan, Sze; Thoma, Eben

    2010-05-01

    Methane is an important atmospheric constituent with a wide variety of sources, both natural and anthropogenic, including wetlands and other water bodies, permafrost, farms, landfills, and areas with significant petrochemical exploration, drilling, transport, or processing, or refining occurs. Despite its importance to the carbon cycle, its significant impact as a greenhouse gas, and its ubiquity in modern life as a source of energy, its sources and sinks in marine and terrestrial ecosystems are only poorly understood. This is largely because high quality, quantitative measurements of methane fluxes in these different environments have not been available, due both to the lack of robust field-deployable instrumentation as well as to the fact that most significant sources of methane extend over large areas (from 10's to 1,000,000's of square meters) and are heterogeneous emitters - i.e., the methane is not emitted evenly over the area in question. Quantifying the total methane emissions from such sources becomes a tremendous challenge, compounded by the fact that atmospheric transport from emission point to detection point can be highly variable. In this presentation we describe a robust, accurate, and easy-to-deploy technique called the tracer dilution method, in which a known gas (such as acetylene, nitrous oxide, or sulfur hexafluoride) is released in the same vicinity of the methane emissions. Measurements of methane and the tracer gas are then made downwind of the release point, in the so-called far-field, where the area of methane emissions cannot be distinguished from a point source (i.e., the two gas plumes are well-mixed). In this regime, the methane emissions are given by the ratio of the two measured concentrations, multiplied by the known tracer emission rate. The challenges associated with atmospheric variability and heterogeneous methane emissions are handled automatically by the transport and dispersion of the tracer. We present detailed methane flux

  14. Using conversions of chemically reacting tracers for numerical determination of temperature profiles in flowing systems and temperature histories in batch systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.F.; Chemburkar, R.M.; Robinson, B.A.; Travis, B.J.

    1996-04-01

    This report presents the mathematical bases for measuring internal temperatures within batch and flowing systems using chemically reacting tracers. This approach can obtain temperature profiles of plug-flow systems and temperature histories within batch systems. The differential equations for reactant conversion can be converted into Fredholm integral equations of the first kind. The experimental variable is the tracer-reaction activation energy. When more than one tracer is used, the reactions must have different activation energies to gain information. In systems with temperature extrema, multiple solutions for the temperature profiles or histories can exist, When a single parameter in the temperature distribution is needed, a single-tracer test may furnish this information. For multi-reaction tracer tests, three Fredholm equations are developed. Effects of tracer-reaction activation energy, number of tracers used, and error in the data are evaluated. The methods can determine temperature histories and profiles for many existing systems, and can be a basis for analysis of the more complicated dispersed-flow systems. An alternative to using the Fredholm-equation approach is the use of an assumed temperature- distribution function and incorporation of this function into the basic integral equation describing tracer behavior. The function contains adjustable parameters which are optimized to give the temperature distribution. The iterative Fredholm equation method is tested to see what is required to discriminate between two models of the temperature behavior of Hot Dry Rock (HDR) geothermal reservoirs. Experimentally, ester and amide hydrolyses are valid HDR tracer reactions for measuring temperatures in the range 75-100{degrees}C. Hydrolyses of bromobenzene derivatives are valid HDR tracer reactions for measuring temperatures in the range 150-275{degrees}C.

  15. A tracer-based inversion method for diagnosing eddy-induced diffusivity and advection

    Science.gov (United States)

    Bachman, S. D.; Fox-Kemper, B.; Bryan, F. O.

    2015-02-01

    A diagnosis method is presented which inverts a set of tracer flux statistics into an eddy-induced transport intended to apply for all tracers. The underlying assumption is that a linear flux-gradient relationship describes eddy-induced tracer transport, but a full tensor coefficient is assumed rather than a scalar coefficient which allows for down-gradient and skew transports. Thus, Lagrangian advection and anisotropic diffusion not necessarily aligned with the tracer gradient can be diagnosed. In this method, multiple passive tracers are initialized in an eddy-resolving flow simulation. Their spatially-averaged gradients form a matrix, where the gradient of each tracer is assumed to satisfy an identical flux-gradient relationship. The resulting linear system, which is overdetermined when using more than three tracers, is then solved to obtain an eddy transport tensor R which describes the eddy advection (antisymmetric part of R) and potentially anisotropic diffusion (symmetric part of R) in terms of coarse-grained variables. The mathematical basis for this inversion method is presented here, along with practical guidelines for its implementation. We present recommendations for initialization of the passive tracers, maintaining the required misalignment of the tracer gradients, correcting for nonconservative effects, and quantifying the error in the diagnosed transport tensor. A method is proposed to find unique, tracer-independent, distinct rotational and divergent Lagrangian transport operators, but the results indicate that these operators are not meaningfully relatable to tracer-independent eddy advection or diffusion. With the optimal method of diagnosis, the diagnosed transport tensor is capable of predicting the fluxes of other tracers that are withheld from the diagnosis, including even active tracers such as buoyancy, such that relative errors of 14% or less are found.

  16. 237 Np analytical method using 239 Np tracers and application to a contaminated nuclear disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Mathew S.; Morrison, Samuel S.; Clark, Sue B.; Olson, John E.; Watrous, Matthew G.

    2017-06-01

    Environmental 237Np analyses are challenged by low 237Np concentrations and lack of an available yield tracer; we report a rapid, inexpensive 237Np analytical approach employing the short lived 239Np (t1/2 = 2.3 days) as a chemical yield tracer followed by 237Np quantification using inductively coupled plasma-mass spectrometry. 239Np tracer is obtained via separation from a 243Am stock solution and standardized using gamma spectrometry immediately prior to sample processing. Rapid digestions using a commercial, 900 watt “Walmart” microwave and Parr microwave vessels result in 99.8 ± 0.1% digestion yields, while chromatographic separations enable Np/U separation factors on the order of 106 and total Np yields of 95 ± 4% (2σ). Application of this method to legacy soil samples surrounding a radioactive disposal facility (the Subsurface Disposal Area at Idaho National Laboratory) reveal the presence of low level 237Np contamination within 600 meters of this site, with maximum 237Np concentrations on the order of 103 times greater than nuclear weapons testing fallout levels.

  17. Developement of radioisotope tracer technique; development of verification method for hydraulic model using radioisotope tracer techniques in the municipal wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. W.; Kim, S. H.; Kim, J. W.; Yun, J. S.; Wo, S. B. [Pusan National University, Pusan (Korea)

    2001-04-01

    This study focuses on the development of the computational fluid dynamics that can be used in secondary clarifier in wastewater treatment plants. This model could describe the internal flow characteristics and predicted similar results as the isotopic tracer experiment. Therefore, it was demonstrated that the isotopic tracer method was a powerful tool as a hydrodynamic model to understand the internal hydraulics. Generally the secondary clarifier can be improved by special design, changing coagulation characteristics by addition of coagulation chemicals and well management by experienced operator. Because of expensive coagulation chemicals and limited availability of experienced operator, the improvement of the design is feasible way to upgrade the secondary clarifier. Though it is very complex and difficult to model the fluid dynamics, CFD model can describe correctly density flow, short circuiting, turbulent dispersion and settling characteristics. There are few trust worthy methods for verifying the hydrodynamic model. Also, it is very difficult to prove the flow by experiment in secondary sedimentation tank because of the disturbing the flow by the experimental equipment. However, the isotope tracer experiment is known as a useful tool for the study of the hydraulic characteristics and floc movement in the sedimentation tank because the isotope tracer does not disturb the internal flow and provide the data quickly through the on-line system. Therefore, the computed fluid dynamic model was developed to make the isotope tracer experiment available as a model verifying method. Predicted results in model simulation were made the same pattern as the experiment on-line data with the time. These results were compared each other. Also, the model explained the detail flow pattern of the area without the monitoring in the sedimentation tank and visualized the internal flow and concentration distribution with time using the graphic software. Because of the complicated

  18. Developement of radioisotope tracer technique; development of verification method for hydraulic model using radioisotope tracer techniques in the municipal wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. W.; Kim, S. H.; Kim, J. W.; Yun, J. S.; Wo, S. B. [Pusan National University, Pusan (Korea)

    2001-04-01

    This study focuses on the development of the computational fluid dynamics that can be used in secondary clarifier in wastewater treatment plants. This model could describe the internal flow characteristics and predicted similar results as the isotopic tracer experiment. Therefore, it was demonstrated that the isotopic tracer method was a powerful tool as a hydrodynamic model to understand the internal hydraulics. Generally the secondary clarifier can be improved by special design, changing coagulation characteristics by addition of coagulation chemicals and well management by experienced operator. Because of expensive coagulation chemicals and limited availability of experienced operator, the improvement of the design is feasible way to upgrade the secondary clarifier. Though it is very complex and difficult to model the fluid dynamics, CFD model can describe correctly density flow, short circuiting, turbulent dispersion and settling characteristics. There are few trust worthy methods for verifying the hydrodynamic model. Also, it is very difficult to prove the flow by experiment in secondary sedimentation tank because of the disturbing the flow by the experimental equipment. However, the isotope tracer experiment is known as a useful tool for the study of the hydraulic characteristics and floc movement in the sedimentation tank because the isotope tracer does not disturb the internal flow and provide the data quickly through the on-line system. Therefore, the computed fluid dynamic model was developed to make the isotope tracer experiment available as a model verifying method. Predicted results in model simulation were made the same pattern as the experiment on-line data with the time. These results were compared each other. Also, the model explained the detail flow pattern of the area without the monitoring in the sedimentation tank and visualized the internal flow and concentration distribution with time using the graphic software. Because of the complicated

  19. The characterization of petroleum contamination in heterogenous media using partitioning tracer method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E.; Rhee, S.; Park, J. [Seoul National Univ. (Korea, Republic of). Dept. of Civil and Environmental Engineering

    2009-07-01

    A partitioning tracer method for characterizing petroleum contamination in heterogenous media was discussed. The average saturation level of nonaqueous phase liquids (NAPLs) was calculated by comparing the transport of the partitioning tracers to a conservative tracer. The NAPL saturation level represented a continuous value throughout the contaminated site. Experiments were conducted in a 2-D sandbox divided into 4 parts using different-sized sands. Soils were contaminated with a mixture of kerosene and diesel. Partitioning tracer tests were conducted both before and after contamination. A partitioning batch test was conducted to determine the partition coefficient (K) of the tracer between the NAPL and water. Breakthrough curves were obtained, and a retardation factor (R) was calculated. Results of the study showed that the calculated NAPL saturation was in good agreement with determined values. It was concluded that the partitioning tracer test is an accurate method of locating and quantifying NAPLs.

  20. Chemical and biological tracers to determine groundwater flow in karstic aquifer, Yucatan Peninsula

    Science.gov (United States)

    Lenczewski, M.; Leal-Bautista, R. M.; McLain, J. E.

    2013-05-01

    Little is known about the extent of pollution in groundwater in the Yucatan Peninsula; however current population growth, both from international tourism and Mexican nationals increases the potential for wastewater release of a vast array of contaminants including personal care products, pharmaceuticals (Rx), and pathogenic microorganisms. Pathogens and Rx in groundwater can persist and can be particularly acute in this region where high permeability of the karst bedrock and the lack of top soil permit the rapid transport of contaminants into groundwater aquifers. The objective of this research is to develop and utilize novel biological and chemical source tracking methods to distinguish between different sources of anthropogenic pollution in degraded groundwater. Although several methods have been used successfully to track fecal contamination sources in small scale studies, little is known about their spatial limitations, as source tracking studies rarely include sample collection over a wide geographical area and with different sources of water. In addition, although source tracking methods to distinguish human from animal fecal contamination are widely available, this work has developed source tracking distinguish between separate human populations is highly unique. To achieve this objective, we collected water samples from a series of drinking wells, cenotes (sinkholes), wastewater treatment plants, and injection wells across the Yucatan Peninsula and examine potential source tracers within the collected water samples. The result suggests that groundwater sources impacted by tourist vs. local populations contain different chemical stressors. This work has developed a more detailed understanding of the presence and persistence of personal care products, pharmaceuticals, and fecal indicators in a karstic system; such understanding will be a vital component for the protection Mexican groundwater and human health. Quantification of different pollution sources

  1. Methane emissions measured at two California landfills by OTM-10 and an acetylene tracer method

    Science.gov (United States)

    Methane emissions were measured at two municipal solid waste landfills in California using static flux chambers, an optical remote sensing approach known as vertical radial plume mapping (VRPM) using a tunable diode laser (TDL) and a novel acetylene tracer method. The tracer meth...

  2. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4

    Directory of Open Access Journals (Sweden)

    L. K. Emmons

    2010-01-01

    Full Text Available The Model for Ozone and Related chemical Tracers, version 4 (MOZART-4 is an offline global chemical transport model particularly suited for studies of the troposphere. The updates of the model from its previous version MOZART-2 are described, including an expansion of the chemical mechanism to include more detailed hydrocarbon chemistry and bulk aerosols. Online calculations of a number of processes, such as dry deposition, emissions of isoprene and monoterpenes and photolysis frequencies, are now included. Results from an eight-year simulation (2000–2007 are presented and evaluated. The MOZART-4 source code and standard input files are available for download from the NCAR Community Data Portal (http://cdp.ucar.edu.

  3. Are single-well "push-pull" tests suitable tracer methods for aquifer characterization?

    Science.gov (United States)

    Hebig, Klaus; Zeilfelder, Sarah; Ito, Narimitsu; Machida, Isao; Scheytt, Traugott; Marui, Atsunao

    2013-04-01

    Recently, investigations were conducted for geological and hydrogeological characterisation of the sedimentary coastal basin of Horonobe (Hokkaido, Japan). Coastal areas are typical geological settings in Japan, which are less tectonically active than the mountain ranges. In Asia, and especially in Japan, these areas are often densely populated. Therefore, it is important to investigate the behaviour of solutes in such unconsolidated aquifers. In such settings sometimes only single boreholes or groundwater monitoring wells are available for aquifer testing for various reasons, e.g. depths of more than 100 m below ground level and slow groundwater velocities due to density driven flow. A standard tracer test with several involved groundwater monitoring wells is generally very difficult or even not possible at these depths. One of the most important questions in our project was how we can obtain information about chemical and hydraulic properties in such aquifers. Is it possible to characterize solute transport behaviour parameters with only one available groundwater monitoring well or borehole? A so-called "push-pull" test may be one suitable method for aquifer testing with only one available access point. In a push-pull test a known amount of several solutes including a conservative tracer is injected into the aquifer ("push") and afterwards extracted ("pull"). The measured breakthrough curve during the pumping back phase can then be analysed. This method has already been used previously with various aims, also in the recent project (e.g. Hebig et al. 2011, Zeilfelder et al. 2012). However, different test setups produced different tracer breakthrough curves. As no systematic evaluation of this aquifer tracer test method was done so far, nothing is known about its repeatability. Does the injection and extraction rate influence the shape of the breakthrough curve? Which role plays the often applied "chaser", which is used to push the test solution out from the

  4. Chemical Tracers of Pre-Brown Dwarf Cores Formed Through Turbulent Fragmentation

    CERN Document Server

    Holdship, Jonathan

    2015-01-01

    A gas-grain time dependent chemical code, UCL\\_CHEM, has been used to investigate the possibility of using chemical tracers to differentiate between the possible formation mechanisms of brown dwarfs. In this work, we model the formation of a pre-brown dwarf core through turbulent fragmentation by following the depth-dependent chemistry in a molecular cloud through the step change in density associated with an isothermal shock and the subsequent freefall collapse once a bound core is produced. Trends in the fractional abundance of molecules commonly observed in star forming cores are then explored to find a diagnostic for identifying brown dwarf mass cores formed through turbulence. We find that the cores produced by our models would be bright in CO and NH$_3$ but not in HCO$^+$. This differentiates them from models using purely freefall collapse as such models produce cores that would have detectable transitions from all three molecules.

  5. ELUCIDATION OF HYDRODESULFURIZATION AND HYDROGENATION MECHANISMS USING RADIOISOTOPE TRACER METHODS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To meet the specification of sulfur and aromatic contents in diesel fuel, it is necessary for refiners to develop a new catalyst with high activity of hydrodesulfurization and hydrogenation. In the present study, the properties of noble metal catalysts for hydrodesulfurization and hydrogenation in the presence of sulfur compounds have been investigated. The hydrogenation activity of phenanthrene (PHE) on single noble metal and double noble metal catalysts—Pt/Al2O3, Pd/Al2O3 and Pd-Pt/Al2O3 in the presence of dibenzothiophene (DBT) was perforrned in a fixed bed flow reactor. The Pt based catalysts revealed the similar HDS activities and higher HYD activity compared with convertional Mo based ca-talysts. The maximum activity was obtained around 320 ℃ for both catalyst types. The Pt based catalysts produced perhydrophenanthrene as a major product at the maximum activity in the hydrogenation of PHE while the Mo based catalysts produced octahydrophenanthrene.   A  35S radioisotope pulse tracer method (35S RPTM) was used to estimate the behavior of sulfur on the working catalysts and to clarity the differences between Pt and Mo based catalysts. Very little amount of labile sulfur was accumulated on the Pt and Pd catalysts in the HDS of [35S]DBT (PtS0.25 or PdS0.25). This indicates that the mechanism of DBT HDS on noble metal catalysts is significantly different from that on conventional Mo based catalysts where Mo is present as MoS2 less than 60% of which can be labile in the case of Co-Mo/Al2O3.   Another Ru-Cs/Al2O3 catalysts were also prepared and the behavior of sulfur on the working catalyst was compared with those of Mo based catalysts and Pt and Pd catalysts. The values of labile sulfur in the HDS reaction for Ru-Cs catalysts approximately correspond to RuS0.5-0.74. These amounts of labile sulfur are much higher than those for Pt and Pd catalysts. The result suggests that the oxidation state of Ru species is present between the oxidation states

  6. Acupuncture meridians demythified. A study using the radioactive tracer method

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J.; Esquerre, J.P.; Guiraud, R.; Guiraud, G.; Lazorthes, Y.

    1988-07-01

    Radioactive trajectories can be visualized by injecting a radioactive tracer, technetium 99 m, at the site of acupuncture points. To determine the exact nature of these trajectories we performed several experiments on healthy volunteers, and our results may be summarized as follows. The target organs of technetium 99 m, and notably the thyroid gland, were always visualized. The circulating radioactivity, visible on scintiscans and confirmed by venous blood counts, was not negligible. The radioactive trajectories we observed were often divided at their starting point and did not extend along the whole length of the acupuncture meridians they might have made visible. The radioactive trajectories disappeared after venous blockade to reappear when the blockade was lifted. Finally, the radioactive trajectories obtained were very similar after injection at the acupuncture point and at a control point. These findings indicate a lymphatic and venous drainage of the radioactive tracer at the site of injection followed by transportation through the veins, rather than visualization of acupuncture meridians as suggested by some authors.

  7. An unsteady state tracer method for characterizing fractures in bedrock wells.

    Science.gov (United States)

    Libby, Jill L; Robbins, Gary A

    2014-01-01

    Evaluating contaminants impacting wells in fractured crystalline rock requires knowledge of the individual fractures contributing water. This typically involves using a sequence of tools including downhole geophysics, flow meters, and straddle packers. In conjunction with each other these methods are expensive, time consuming, and can be logistically difficult to implement. This study demonstrates an unsteady state tracer method as a cost-effective alternative for gathering fracture information in wells. The method entails introducing tracer dye throughout the well, inducing fracture flow into the well by conducting a slug test and then profiling the tracer concentration in the well to locate water contributing fractures where the dye has been diluted. By monitoring the development of the dilution zones within the wellbore with time, the transmissivity and the hydraulic head of the water contributing fractures can be determined. Ambient flow conditions and the contaminant concentration within the fractures can also be determined from the tracer dilution. This method was tested on a large physical model well and a bedrock well. The model well was used to test the theory underlying the method and to refine method logistics. The approach located the fracture and generated transmissivity values that were in excellent agreement with those calculated by slug testing. For the bedrock well tested, two major active fractures were located. Fracture location and ambient well conditions matched results from conventional methods. Estimates of transmissivity values by the tracer method were within an order of magnitude of those calculated using heat-pulse flow meter data.

  8. Evaluating Chemical Tracers in Suburban Groundwater as Indicators of Nitrate-Nitrogen Sources

    Science.gov (United States)

    Nitka, A.; DeVita, W. M.; McGinley, P.

    2015-12-01

    The CDC reports that over 15 million US households use private wells. These wells are vulnerable to contamination. One of the most common contaminants in private wells is nitrate. Nitrate has a health standard of 10 mg/L. This standard is set to prevent methemaglobinemia, or "blue baby" syndrome, in infants. In extreme cases it can affect breathing and heart function, and even lead to death. Elevated nitrate concentrations have also been associated with increased risk of thyroid disease, diabetes, and certain types of cancer. Unlike municipal wells, there is no mandatory testing of private wells. It is the responsibility of users to have their well water tested. The objective of this research was to identify the most useful chemical tracers for determining sources of nitrate in private water supplies. Chemical characteristics, such as mobility in groundwater and water solubility, as well as frequency of use, were considered when choosing source indicators. Fourteen pharmaceuticals and personal care products unique to human use were chosen to identify wells impacted by septic waste. A bovine antibiotic and five pesticide metabolites were used to identify contamination from agricultural sources. Eighteen private wells were selected in a suburban area with septic systems and adjacent agricultural land. The wells were sampled five times and analyzed to provide a temporal profile of nitrate and the tracers. The artificial sweetener sucralose was found in >70% of private wells. Wells with sucralose detected had nitrate concentrations between 5-15 mg/L. The herbicide metabolite metolachlor ESA was detected in 50% of the wells. These wells typically had the highest nitrate concentrations, often >10 mg/L. The common use and frequent detection of these two compounds made them the most reliable indicators of nitrate sources evaluated in this study. This information will help well owners determine appropriate treatment and remediation options and could direct future

  9. Evaluation of multiple tracer methods to estimate low groundwater flow velocities.

    Science.gov (United States)

    Reimus, Paul W; Arnold, Bill W

    2017-04-01

    Four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or "shut-in" periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity data are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a "ground truth" velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. The advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them are discussed. Published by Elsevier B.V.

  10. Anthropogenic tracers, endocrine disrupting chemicals, and endocrine disruption in Minnesota lakes

    Science.gov (United States)

    Writer, J.H.; Barber, L.B.; Brown, G.K.; Taylor, H.E.; Kiesling, R.L.; Ferrey, M.L.; Jahns, N.D.; Bartell, S.E.; Schoenfuss, H.L.

    2010-01-01

    Concentrations of endocrine disrupting chemicals and endocrine disruption in fish were determined in 11 lakes across Minnesota that represent a range of trophic conditions and land uses (urban, agricultural, residential, and forested) and in which wastewater treatment plant discharges were absent. Water, sediment, and passive polar organic integrative samplers (POCIS) were analyzed for steroidal hormones, alkylphenols, bisphenol A, and other organic and inorganic molecular tracers to evaluate potential non-point source inputs into the lakes. Resident fish from the lakes were collected, and caged male fathead minnows were deployed to evaluate endocrine disruption, as indicated by the biological endpoints of plasma vitellogenin and gonadal histology. Endocrine disrupting chemicals, including bisphenol A, 17??-estradiol, estrone, and 4-nonylphenol were detected in 90% of the lakes at part per trillion concentrations. Endocrine disruption was observed in caged fathead minnows and resident fish in 90% of the lakes. The widespread but variable occurrence of anthropogenic chemicals in the lakes and endocrine disruption in fish indicates that potential sources are diverse, not limited to wastewater treatment plant discharges, and not entirely predictable based on trophic status and land use. ?? 2010.

  11. Evaluation of cloud convection and tracer transport in a three-dimensional chemical transport model

    Directory of Open Access Journals (Sweden)

    W. Feng

    2011-06-01

    Full Text Available We investigate the performance of cloud convection and tracer transport in a global off-line 3-D chemical transport model. Various model simulations are performed using different meteorological (reanalyses (ERA-40, ECMWF operational and ECMWF Interim to diagnose the updraft mass flux, convective precipitation and cloud top height.

    The diagnosed upward mass flux distribution from TOMCAT agrees quite well with the ECMWF reanalysis data (ERA-40 and ERA-Interim below 200 hPa. Inclusion of midlevel convection improves the agreement at mid-high latitudes. However, the reanalyses show strong convective transport up to 100 hPa, well into the tropical tropopause layer (TTL, which is not captured by TOMCAT. Similarly, the model captures the spatial and seasonal variation of convective cloud top height although the mean modelled value is about 2 km lower than observed.

    The ERA-Interim reanalyses have smaller archived upward convective mass fluxes than ERA-40, and smaller convective precipitation, which is in better agreement with satellite-based data. TOMCAT captures these relative differences when diagnosing convection from the large-scale fields. The model also shows differences in diagnosed convection with the version of the operational analyses used, which cautions against using results of the model from one specific time period as a general evaluation.

    We have tested the effect of resolution on the diagnosed modelled convection with simulations ranging from 5.6° × 5.6° to 1° × 1°. Overall, in the off-line model, the higher model resolution gives stronger vertical tracer transport, however, it does not make a large change to the diagnosed convective updraft mass flux (i.e., the model results using the convection scheme fail to capture the strong convection transport up to 100 hPa as seen in the archived convective mass fluxes. Similarly, the resolution of the forcing winds in the higher resolution CTM does not make a

  12. Single well surfactant test to evaluate surfactant floods using multi tracer method

    Science.gov (United States)

    Sheely, Clyde Q.

    1979-01-01

    Data useful for evaluating the effectiveness of or designing an enhanced recovery process said process involving mobilizing and moving hydrocarbons through a hydrocarbon bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well, comprising (a) determining hydrocarbon saturation in a volume in the formation near a well bore penetrating formation, (b) injecting sufficient mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore, and (c) determining the hydrocarbon saturation in a volume including at least a part of the volume of (b) by an improved single well surfactant method comprising injecting 2 or more slugs of water containing the primary tracer separated by water slugs containing no primary tracer. Alternatively, the plurality of ester tracers can be injected in a single slug said tracers penetrating varying distances into the formation wherein the esters have different partition coefficients and essentially equal reaction times. The single well tracer method employed is disclosed in U.S. Pat. No. 3,623,842. This method designated the single well surfactant test (SWST) is useful for evaluating the effect of surfactant floods, polymer floods, carbon dioxide floods, micellar floods, caustic floods and the like in subterranean formations in much less time and at much reduced cost compared to conventional multiwell pilot tests.

  13. Metamorphosis alters contaminants and chemical tracers in insects: implications for food webs.

    Science.gov (United States)

    Kraus, Johanna M; Walters, David M; Wesner, Jeff S; Stricker, Craig A; Schmidt, Travis S; Zuellig, Robert E

    2014-09-16

    Insects are integral to most freshwater and terrestrial food webs, but due to their accumulation of environmental pollutants they are also contaminant vectors that threaten reproduction, development, and survival of consumers. Metamorphosis from larvae to adult can cause large chemical changes in insects, altering contaminant concentrations and fractionation of chemical tracers used to establish contaminant biomagnification in food webs, but no framework exists for predicting and managing these effects. We analyzed data from 39 studies of 68 analytes (stable isotopes and contaminants), and found that metamorphosis effects varied greatly. δ(15)N, widely used to estimate relative trophic position in biomagnification studies, was enriched by ∼ 1‰ during metamorphosis, while δ(13)C used to estimate diet, was similar in larvae and adults. Metals and polycyclic aromatic hydrocarbons (PAHs) were predominantly lost during metamorphosis leading to ∼ 2 to 125-fold higher larval concentrations and higher exposure risks for predators of larvae compared to predators of adults. In contrast, manufactured organic contaminants (such as polychlorinated biphenyls) were retained and concentrated in adults, causing up to ∼ 3-fold higher adult concentrations and higher exposure risks to predators of adult insects. Both food web studies and contaminant management and mitigation strategies need to consider how metamorphosis affects the movement of materials between habitats and ecosystems, with special regard for aquatic-terrestrial linkages.

  14. Metamorphosis alters contaminants and chemical tracers in insects: implications for food webs

    Science.gov (United States)

    Kraus, Johanna M.; Walters, David M.; Wesner, Jeff S.; Stricker, Craig A.; Schmidt, Travis S.; Zuellig, Robert E.

    2014-01-01

    Insects are integral to most freshwater and terrestrial food webs, but due to their accumulation of environmental pollutants they are also contaminant vectors that threaten reproduction, development, and survival of consumers. Metamorphosis from larvae to adult can cause large chemical changes in insects, altering contaminant concentrations and fractionation of chemical tracers used to establish contaminant biomagnification in food webs, but no framework exists for predicting and managing these effects. We analyzed data from 39 studies of 68 analytes (stable isotopes and contaminants), and found that metamorphosis effects varied greatly. δ15N, widely used to estimate relative trophic position in biomagnification studies, was enriched by 1‰ during metamorphosis, while δ13C used to estimate diet, was similar in larvae and adults. Metals and polycyclic aromatic hydrocarbons (PAHs) were predominantly lost during metamorphosis leading to 2 to 125-fold higher larval concentrations and higher exposure risks for predators of larvae compared to predators of adults. In contrast, manufactured organic contaminants (such as polychlorinated biphenyls) were retained and concentrated in adults, causing up to 3-fold higher adult concentrations and higher exposure risks to predators of adult insects. Both food web studies and contaminant management and mitigation strategies need to consider how metamorphosis affects the movement of materials between habitats and ecosystems, with special regard for aquatic-terrestrial linkages.

  15. A new method for measuring concentration of a fluorescent tracer in bubbly gas-liquid flows

    Science.gov (United States)

    Moghaddas, J. S.; Trägårdh, C.; Kovacs, T.; Östergren, K.

    2002-06-01

    A new experimental model, the two-tracer method (TTM), based on the planar laser-induced fluorescence technique (PLIF), is presented for the measurement of the local concentration of a fluorescent tracer in the liquid phase of a bubbly two-phase system. Light scattering and shading effects due to the bubbles were compensated for using the new model. The TTM results were found to give more accurate predictions of the local concentration than the normal PLIF method in a bubbly two-phase system.

  16. Development of a Dual Tracer PET Method for Imaging Dopaminergic Neuromodulation

    Science.gov (United States)

    Converse, Alexander K.; Dejesus, Onofre T.; Flores, Leo G.; Holden, James E.; Kelley, Ann E.; Moirano, Jeffrey M.; Nickles, Robert J.; Oakes, Terrence R.; Roberts, Andrew D.; Ruth, Thomas J.; Vandehey, Nicholas T.; Davidson, Richard J.

    2006-04-01

    The modulatory neurotransmittor dopamine (DA) is involved in movement and reward behaviors, and malfunctions in the dopamine system are implicated in a variety of prevalent and debilitating pathologies including Parkinson's disease, attention deficit/hyperactivity disorder, schizophrenia, and addiction. Positron emission tomography (PET) has been used to separately measure changes in DA receptor occupancy and blood flow in response to various interventions. Here we describe a dual tracer PET method to simultaneously measure both responses with the aim of comparing DA release in particular areas of the brain and associated alterations in neural activity throughout the brain. Significant correlations between reductions in DA receptor occupancy and blood flow alterations would be potential signs of dopaminergic modulation, i.e. modifications in signal processing due to increased levels of extracellular DA. Methodological development has begun with rats undergoing an amphetamine challenge while being scanned with the blood flow tracer [17F]fluoromethane and the dopamine D2 receptor tracer [18F]desmethoxyfallypride.

  17. Implementation of a Parallel Kalman Filter for Stratospheric Chemical Tracer Assimilation

    Science.gov (United States)

    Chang, Lang-Ping; Lyster, Peter M.; Menard, R.; Cohn, S. E.

    1998-01-01

    A Kalman filter for the assimilation of long-lived atmospheric chemical constituents has been developed for two-dimensional transport models on isentropic surfaces over the globe. An important attribute of the Kalman filter is that it calculates error covariances of the constituent fields using the tracer dynamics. Consequently, the current Kalman-filter assimilation is a five-dimensional problem (coordinates of two points and time), and it can only be handled on computers with large memory and high floating point speed. In this paper, an implementation of the Kalman filter for distributed-memory, message-passing parallel computers is discussed. Two approaches were studied: an operator decomposition and a covariance decomposition. The latter was found to be more scalable than the former, and it possesses the property that the dynamical model does not need to be parallelized, which is of considerable practical advantage. This code is currently used to assimilate constituent data retrieved by limb sounders on the Upper Atmosphere Research Satellite. Tests of the code examined the variance transport and observability properties. Aspects of the parallel implementation, some timing results, and a brief discussion of the physical results will be presented.

  18. Metals as chemical tracers to discriminate ecological populations of threatened Franciscana dolphins (Pontoporia blainvillei) from Argentina.

    Science.gov (United States)

    Romero, M B; Polizzi, P; Chiodi, L; Robles, A; Das, K; Gerpe, M

    2017-02-01

    Franciscana dolphins are the most impacted small cetacean in the Southwestern Atlantic Ocean, classified as Vulnerable A3d by IUCN. Essential (Fe, Mo, Mn, Cr, Ni, Co) and non-essential (Ag, Pb, Sn) trace elements (TEs) were measured in liver, kidney, and brain samples of by-catch Franciscana dolphins that were living in estuarine (n = 21) and marine (n = 21) habitats (1) to assess whether TEs posed a threat and (2) to evaluate the suitability of TEs for discriminating ecological populations of this species in Argentinean waters. Essential TEs showed little variation in tissues from both groups in agreement with levels reported for other cetaceans and suggesting that these concentrations correspond to normal physiological levels. Non-essential TEs were higher in estuarine juveniles and adults dolphins than in marine specimens. These results suggest anthropogenic sources associated with estuarine area and that Franciscana dolphins are good sentinels of the impact of the environment. The difference in the concentrations of TEs beetwen ecological populations appeared to be related to distinct exposures in both geographical areas, and it is suggested that Ag and Sn concentrations in adults are good chemical tracers of anthropogenic input of TEs. These results provide additional information for improved management and regulatory policy.

  19. New chemical tracers for diesel source emission apportionment in ambient fine particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Charland, J.P.; Caravaggio, G.; MacDonald, P.; MacPhee, T. [Natural Resources Canada, Ottawa, ON (Canada); Graham, L.A. [Environment Canada, Ottawa, ON (Canada)

    2009-07-01

    Hopanes and steranes are petroleum biomarkers that are commonly used in chemical mass balance (CMB)studies to determine the source of organic carbon from motor vehicle exhaust. Hopanes and steranes are found in engine lubricating oil and trace amounts are released during engine combustion. Since lubricating oils are used in both gasoline and diesel engines, the distribution and abundance of these biomarkers relative to organic carbon (OC) in exhaust particulate matter (PM) cannot be used to distinguish between these sources. The purpose of this study was to find molecular markers specific to diesel fuel that can be used to assess the contribution of diesel vehicles exhaust to ambient PM. PM filter samples were collected from gasoline and diesel vehicles. At the same time, samples of fresh and used engine specific lubricating oils were also collected along with gasoline and diesel fuel for organic speciation. Thermal desorption (TD)-gas chromatography mass spectrometry (GC/MS) was used to analyze all samples. Ambient air PM samples were also collected and analyzed for the presence of these newly proposed tracers. It was concluded that the detection of bicycloparaffins in PM can provide new insight into diesel emissions and help determine pollution sources.

  20. Wireless Chemical Sensing Method

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Oglesby, Donald M. (Inventor); Taylor, Bryant D. (Inventor)

    2017-01-01

    A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.

  1. When Phase Contrast Fails: ChainTracer and NucTracer, Two ImageJ Methods for Semi-Automated Single Cell Analysis Using Membrane or DNA Staining.

    Science.gov (United States)

    Syvertsson, Simon; Vischer, Norbert O E; Gao, Yongqiang; Hamoen, Leendert W

    2016-01-01

    Within bacterial populations, genetically identical cells often behave differently. Single-cell measurement methods are required to observe this heterogeneity. Flow cytometry and fluorescence light microscopy are the primary methods to do this. However, flow cytometry requires reasonably strong fluorescence signals and is impractical when bacteria grow in cell chains. Therefore fluorescence light microscopy is often used to measure population heterogeneity in bacteria. Automatic microscopy image analysis programs typically use phase contrast images to identify cells. However, many bacteria divide by forming a cross-wall that is not detectable by phase contrast. We have developed 'ChainTracer', a method based on the ImageJ plugin ObjectJ. It can automatically identify individual cells stained by fluorescent membrane dyes, and measure fluorescence intensity, chain length, cell length, and cell diameter. As a complementary analysis method we developed 'NucTracer', which uses DAPI stained nucleoids as a proxy for single cells. The latter method is especially useful when dealing with crowded images. The methods were tested with Bacillus subtilis and Lactococcus lactis cells expressing a GFP-reporter. In conclusion, ChainTracer and NucTracer are useful single cell measurement methods when bacterial cells are difficult to distinguish with phase contrast.

  2. Using the tracer-dilution discharge method to develop streamflow records for ice-affected streams in Colorado

    Science.gov (United States)

    Capesius, Joseph P.; Sullivan, Joseph R.; O'Neill, Gregory B.; Williams, Cory A.

    2005-01-01

    Accurate ice-affected streamflow records are difficult to obtain for several reasons, which makes the management of instream-flow water rights in the wintertime a challenging endeavor. This report documents a method to improve ice-affected streamflow records for two gaging stations in Colorado. In January and February 2002, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, conducted an experiment using a sodium chloride tracer to measure streamflow under ice cover by the tracer-dilution discharge method. The purpose of this study was to determine the feasibility of obtaining accurate ice-affected streamflow records by using a sodium chloride tracer that was injected into the stream. The tracer was injected at two gaging stations once per day for approximately 20 minutes for 25 days. Multiple-parameter water-quality sensors at the two gaging stations monitored background and peak chloride concentrations. These data were used to determine discharge at each site. A comparison of the current-meter streamflow record to the tracer-dilution streamflow record shows different levels of accuracy and precision of the tracer-dilution streamflow record at the two sites. At the lower elevation and warmer site, Brandon Ditch near Whitewater, the tracer-dilution method overestimated flow by an average of 14 percent, but this average is strongly biased by outliers. At the higher elevation and colder site, Keystone Gulch near Dillon, the tracer-dilution method experienced problems with the tracer solution partially freezing in the injection line. The partial freezing of the tracer contributed to the tracer-dilution method underestimating flow by 52 percent at Keystone Gulch. In addition, a tracer-pump-reliability test was conducted to test how accurately the tracer pumps can discharge the tracer solution in conditions similar to those used at the gaging stations. Although the pumps were reliable and consistent throughout the 25-day study period

  3. Measuring serotonin synthesis: from conventional methods to PET tracers and their (pre)clinical implications

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Anniek K.D.; Waarde, Aren van; Willemsen, Antoon T.M. [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Bosker, Fokko J. [University of Groningen, University Medical Center Groningen, University Center of Psychiatry, Groningen (Netherlands); Luiten, Paul G.M. [University of Groningen, Center for Behavior and Neurosciences, Department of Molecular Neurobiology, Haren (Netherlands); Boer, Johan A. den [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Groningen, University Medical Center Groningen, University Center of Psychiatry, Groningen (Netherlands); Kema, Ido P. [University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen (Netherlands); Dierckx, Rudi A.J.O. [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Hospital Ghent, Department of Nuclear Medicine, Ghent (Belgium)

    2011-03-15

    The serotonergic system of the brain is complex, with an extensive innervation pattern covering all brain regions and endowed with at least 15 different receptors (each with their particular distribution patterns), specific reuptake mechanisms and synthetic processes. Many aspects of the functioning of the serotonergic system are still unclear, partially because of the difficulty of measuring physiological processes in the living brain. In this review we give an overview of the conventional methods of measuring serotonin synthesis and methods using positron emission tomography (PET) tracers, more specifically with respect to serotonergic function in affective disorders. Conventional methods are invasive and do not directly measure synthesis rates. Although they may give insight into turnover rates, a more direct measurement may be preferred. PET is a noninvasive technique which can trace metabolic processes, like serotonin synthesis. Tracers developed for this purpose are {alpha}-[{sup 11}C]methyltryptophan ([{sup 11}C]AMT) and 5-hydroxy-L-[{beta}-{sup 11}C]tryptophan ([{sup 11}C]5-HTP). Both tracers have advantages and disadvantages. [{sup 11}C]AMT can enter the kynurenine pathway under inflammatory conditions (and thus provide a false signal), but this tracer has been used in many studies leading to novel insights regarding antidepressant action. [{sup 11}C]5-HTP is difficult to produce, but trapping of this compound may better represent serotonin synthesis. AMT and 5-HTP kinetics are differently affected by tryptophan depletion and changes of mood. This may indicate that both tracers are associated with different enzymatic processes. In conclusion, PET with radiolabelled substrates for the serotonergic pathway is the only direct way to detect changes of serotonin synthesis in the living brain. (orig.)

  4. A feature point identification method for positron emission particle tracking with multiple tracers

    Science.gov (United States)

    Wiggins, Cody; Santos, Roque; Ruggles, Arthur

    2017-01-01

    A novel detection algorithm for Positron Emission Particle Tracking (PEPT) with multiple tracers based on optical feature point identification (FPI) methods is presented. This new method, the FPI method, is compared to a previous multiple PEPT method via analyses of experimental and simulated data. The FPI method outperforms the older method in cases of large particle numbers and fine time resolution. Simulated data show the FPI method to be capable of identifying 100 particles at 0.5 mm average spatial error. Detection error is seen to vary with the inverse square root of the number of lines of response (LORs) used for detection and increases as particle separation decreases.

  5. Measuring In-Cabin School Bus Tailpipe and Crankcase PM2.5: A New Dual Tracer Method.

    Science.gov (United States)

    Ireson, Robert G; Ondov, John M; Zielinska, Barbara; Weaver, Christopher S; Easter, Michael D; Lawson, Douglas R; Hesterberg, Thomas W; Davey, Mark E; Liu, L-J Sally

    2011-05-01

    Exposures of occupants in school buses to on-road vehicle emissions, including emissions from the bus itself, can be substantially greater than those in outdoor settings. A dual tracer method was developed and applied to two school buses in Seattle in 2005 to quantify in-cabin fine particulate matter (PM2.5) concentrations attributable to the buses' diesel engine tailpipe (DPMtp) and crankcase vent (PMck) emissions. The new method avoids the problem of differentiating bus emissions from chemically identical emissions of other vehicles by using a fuel-based organometallic iridium tracer for engine exhaust and by adding deuterated hexatriacontane to engine oil. Source testing results showed consistent PM:tracer ratios for the primary tracer for each type of emissions. Comparisons of the PM:tracer ratios indicated that there was a small amount of unburned lubricating oil emitted from the tailpipe; however, virtually no diesel fuel combustion products were found in the crankcase emissions. For the limited testing conducted here, although PMck emission rates (averages of 0.028 and 0.099 g/km for the two buses) were lower than those from the tailpipe (0.18 and 0.14 g/km), in-cabin PMck concentrations averaging 6.8 μg/m(3) were higher than DPMtp (0.91 μg/m(3) average). In-cabin DPMtp and PMck concentrations were significantly higher with bus windows closed (1.4 and 12 μg/m(3), respectively) as compared with open (0.44 and 1.3 μg/m(3), respectively). For comparison, average closed- and open-window in-cabin total PM2.5 concentrations were 26 and 12 μg/m(3), respectively. Despite the relatively short in-cabin sampling times, very high sensitivities were achieved, with detection limits of 0.002 μg/m(3) for DPMtp and 0.05 μg/m(3) for PMck. [Box: see text].

  6. Perfluorinated acids as novel chemical tracers of global circulation of ocean waters.

    Science.gov (United States)

    Yamashita, Nobuyoshi; Taniyasu, Sachi; Petrick, Gert; Wei, Si; Gamo, Toshitaka; Lam, Paul K S; Kannan, Kurunthachalam

    2008-01-01

    Perfluorinated acids (PFAs) such as perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are global environmental contaminants. The physicochemical properties of PFAs are unique in that they have high water solubilities despite the low reactivity of carbon-fluorine bond, which also imparts high stability in the environment. Because of the high water solubilities, the open-ocean water column is suggested to be the final sink for PFOS and PFOA. However, little is known on the distribution of PFAs in the oceans around the world. Here we describe the horizontal (spatial) and vertical distribution of PFAs in ocean waters worldwide. PFOS and PFOA concentrations in the North Atlantic Ocean ranged from 8.6 to 36pg l(-1) and from 52 to 338pg l(-1), respectively, whereas the corresponding concentrations in the Mid Atlantic Ocean were 13-73pg l(-1) and 67-439pg l(-1). These were completely different from the surface waters of the South Pacific Ocean and the Indian Ocean (overall range of ocean circulation theory. Vertical profiles of PFAs in water columns from the Labrador Sea reflected the influx of the North Atlantic Current in surface waters, the Labrador Current in subsurface waters, and the Denmark Strait Overflow Water in deep layers below 2000m. Striking differences in the vertical and spatial distribution of PFAs, depending on the oceans, suggest that these persistent acids can serve as useful chemical tracers to allow us to study oceanic transportation by major water currents. The results provide evidence that PFA concentrations and profiles in the oceans adhere to a pattern consistent with the global "Broecker's Conveyor Belt" theory of open ocean water circulation.

  7. Filamentary structure in chemical tracer distributions near the subtropical jet following a wave breaking event

    Directory of Open Access Journals (Sweden)

    J. Ungermann

    2013-10-01

    Full Text Available This paper presents a set of observations and analyses of trace gas cross sections in the extratropical upper troposphere/lower stratosphere (UTLS. The spatially highly resolved (≈0.5 km vertically and 12.5 km horizontally cross sections of ozone (O3, nitric acid (HNO3, and peroxyacetyl nitrate (PAN, retrieved from the measurements of the CRISTA-NF infrared limb sounder flown on the Russian M55-Geophysica, revealed intricate layer structures in the region of the subtropical tropopause break. The chemical structure in this region shows an intertwined stratosphere and troposphere. The observed filaments in all discussed trace gases are of a spatial scale of less than 0.8 km vertically and about 200 km horizontally across the jet stream. Backward trajectory calculations confirm that the observed filaments are the result of a breaking Rossby wave in the preceding days. An analysis of the trace gas relationships between PAN and O3 identifies four distinct groups of air mass: polluted subtropical tropospheric air, clean tropical upper-tropospheric air, the lowermost stratospheric air, and air from the deep stratosphere. The tracer relationships further allow the identification of tropospheric, stratospheric, and the transitional air mass made of a mixture of UT and LS air. Mapping of these air mass types onto the geo-spatial location in the cross sections reveals a highly structured extratropical transition layer (ExTL. Finally, the ratio between the measured reactive nitrogen species (HNO3 + PAN + ClONO2 and O3 is analysed to estimate the influence of tropospheric pollution on the extratropical UTLS. In combination, these diagnostics provide the first example of a multi-species two-dimensional picture of the inhomogeneous distribution of chemical species within the UTLS region. Since Rossby wave breaking occurs frequently in the region of the tropopause break, these observed fine-scale filaments are likely ubiquitous in the region. The

  8. Filamentary structure in chemical tracer distributions near the subtropical jet following a wave breaking event

    Directory of Open Access Journals (Sweden)

    J. Ungermann

    2013-02-01

    Full Text Available This paper presents a set of observations and analyses of trace gas cross-sections in the extratropical upper troposphere/lower stratosphere (UTLS. The spatially highly-resolved (≈0.5 km vertically and 12.5 km horizontally cross-sections of ozone (O3, nitric acid (HNO3, and peroxyacetyl nitrate (PAN, retrieved from the measurements of the CRISTA-NF infrared limb sounder flown on the Russian M55-Geophysica, revealed intricate layer structures in the region of the subtropical tropopause break. The chemical structure in this region shows an intertwined stratosphere and troposphere. The observed filaments in all discussed trace gases are of a spatial scale of less than 0.8 km vertically and about 200 km horizontally across the jet-stream. Backward trajectory calculations confirm that the observed filaments are the result of a breaking Rossby wave in the preceding days. An analysis of the trace gas relationships between PAN and O3 identifies four distinct groups of air mass: polluted subtropical tropospheric air, clean tropical upper-tropospheric air, the lowermost stratospheric air, and air from the deep stratosphere. The tracer relationships further allow the identification of tropospheric, stratospheric, and the transitional air mass made of a mixture of UT and LS air. Mapping of these air mass types onto the geo-spatial location in the cross-sections reveals a highly structured extratropical transition layer (ExTL. Finally, the ratio between the measured reactive nitrogen species (HNO3 + PAN + ClONO2 and O3 is analysed to estimate the influence of tropospheric pollution on the extratropical UTLS.

    In combination, these diagnostics provide the first example of a multi-species two-dimensional picture of a chemically inhomogeneous UTLS region. Since Rossby wave breaking occurs frequently in the region of the tropopause break, these observed fine scale filaments are

  9. Behaviors of sea water studied with chemical transient tracers. Lecture by the member awarded the Okada prize of the Oceanographic Society of Japan for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y.W. [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1997-02-01

    Chemical tracers are useful tools for clarifying the behaviors of sea water in the ocean. The present article reviews my works concerning chemical tracers. Based on my chemical tracers data, it was concluded that the turnover time of the Japan Sea deep water and the residence time of water within the Japan Sea were about 100 years and 1000 years, respectively, and that the exchange coefficient of CO{sub 2} in the Japan Sea was smaller than that in the North Pacific. Furthermore, chemical tracers and carbonate species data set in the North Pacific suggested that the production rate of intermediate water in the North Pacific was about 24 Sv and that the North Pacific subpolar region was an important sink of CO{sub 2} released from human activities after the industrial era. (author)

  10. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, through the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.

  11. The global distribution of tropospheric NO{sub x} estimated by a 3-D chemical tracer model

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, A.B.; Rohrer, F.; Ehhalt, D.H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Atmosphaerische Chemie

    1997-12-31

    The global distribution of NO{sub x} in the troposphere is calculated using a three-dimensional chemical tracer model with a simplified chemistry scheme for the tracers NO{sub x} {identical_to} NO + NO{sub 2} and HNO{sub 3}. At northern mid- and high latitudes, the calculated tropospheric NO{sub x} content is dominated by the surface source fossil fuel combustion. In the tropical free troposphere lightning discharges provide about 80% of the total NO{sub x} throughout the year. The zonally averaged fractional contribution of aircraft emissions strongly depends on season. The NO mixing ratios determined by the model show good overall agreement with corresponding zonal mean values observed during the STRATOZ III aircraft campaign in June. Over Canada, mixing ratios as high as 0.5-1.0 ppbv NO were measured during TROPOZ II, the origin of which is not yet understood. (author) 8 refs.

  12. Semiclassical Methods in Chemical Physics.

    Science.gov (United States)

    Miller, William H.

    1986-01-01

    Discusses the role of semiclassical theory in chemical physics both as a computational method and conceptual framework for interpreting quantum mechanical experiments and calculations. Topics covered include energy wells and eigenvalues, scattering, statistical mechanics and electronically nonadiabiatic processes. (JM)

  13. Direct inversion of circulation and mixing from tracer measurements - Part 1: Method

    Science.gov (United States)

    von Clarmann, Thomas; Grabowski, Udo

    2016-11-01

    From a series of zonal mean global stratospheric tracer measurements sampled in altitude vs. latitude, circulation and mixing patterns are inferred by the inverse solution of the continuity equation. As a first step, the continuity equation is written as a tendency equation, which is numerically integrated over time to predict a later atmospheric state, i.e., mixing ratio and air density. The integration is formally performed by the multiplication of the initially measured atmospheric state vector by a linear prediction operator. Further, the derivative of the predicted atmospheric state with respect to the wind vector components and mixing coefficients is used to find the most likely wind vector components and mixing coefficients which minimize the residual between the predicted atmospheric state and the later measurement of the atmospheric state. Unless multiple tracers are used, this inversion problem is under-determined, and dispersive behavior of the prediction further destabilizes the inversion. Both these problems are addressed by regularization. For this purpose, a first-order smoothness constraint has been chosen. The usefulness of this method is demonstrated by application to various tracer measurements recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). This method aims at a diagnosis of the Brewer-Dobson circulation without involving the concept of the mean age of stratospheric air, and related problems like the stratospheric tape recorder, or intrusions of mesospheric air into the stratosphere.

  14. Chemical control methods and tools

    Science.gov (United States)

    Steven Manning; James. Miller

    2011-01-01

    After determining the best course of action for control of an invasive plant population, it is important to understand the variety of methods available to the integrated pest management professional. A variety of methods are now widely used in managing invasive plants in natural areas, including chemical, mechanical, and cultural control methods. Once the preferred...

  15. Tracer tests in geothermal resource management

    Directory of Open Access Journals (Sweden)

    Axelsson G.

    2013-05-01

    Full Text Available Geothermal reinjection involves injecting energy-depleted fluid back into geothermal systems, providing an effective mode of waste-water disposal as well as supplementary fluid recharge. Cooling of production boreholes is one of the main disadvantages associated with reinjection, however. Tracer testing is an important tool for reinjection studies because tracer tests actually have a predictive power since tracer transport is orders of magnitude faster than cold-front advancement around reinjection boreholes. A simple and efficient method of tracer test interpretation, assuming specific flow channels connecting reinjection and production boreholes, is available. It simulates tracer return profiles and estimates properties of the flow channels, which are consequently used for predicting the production borehole cooling. Numerous examples are available worldwide on the successful application of tracer tests in geothermal management, many involving the application of this interpretation technique. Tracer tests are also used for general subsurface hydrological studies in geothermal systems and for flow rate measurements in two-phase geothermal pipelines. The tracers most commonly used in geothermal applications are fluorescent dyes, chemical substances and radioactive isotopes. New temperature-resistant tracers have also been introduced and high-tech tracers are being considered.

  16. Chemical microreactor and method thereof

    Science.gov (United States)

    Morse, Jeffrey D.; Jankowski, Alan

    2011-08-09

    A method for forming a chemical microreactor includes forming at least one capillary microchannel in a substrate having at least one inlet and at least one outlet, integrating at least one heater into the chemical microreactor, interfacing the capillary microchannel with a liquid chemical reservoir at the inlet of the capillary microchannel, and interfacing the capillary microchannel with a porous membrane near the outlet of the capillary microchannel, the porous membrane being positioned beyond the outlet of the capillary microchannel, wherein the porous membrane has at least one catalyst material imbedded therein.

  17. Snowmelt Infiltration Into Alpine Soils Visualised In Situ With A Dye Tracer Method

    Science.gov (United States)

    Stähli, M.; Bayard, D.; Wydler, H.; Flühler, H.

    The mechanisms governing snowmelt infiltration into frozen or unfrozen alpine soils are complex due to the fact that many factors influence the flow paths from the snow pack into the soil, such as soil type, slope inclination and aspect, ground vegetation and the occurrence and persistence of ice on the soil surface or in the frozen soil. Dye tracer experiments are a feasible method to provide a better insight into the real distribution of such water flow paths, which can be very preferential. The main objec- tive of this study was to test the potential of dye tracer methods for visualising in situ snowmelt infiltration at alpine sites and to gain quantitative information on snowmelt infiltration into frozen and unfrozen soils. Field experiments were carried out during winter 2000/01 in southern Switzerland at Hannigalp (2100 m a.s.l.), where a 60 to 80 cm deep Ferric Podzole facing north-west is covered by sparse Ericaceae, and at Gd-St-Bernard pass (2500 m a.s.l.), where a shallow stony Ranker facing south is cov- ered with grass. At the beginning of December a dye tracer (Brilliant Blue FCF) was applied on the soil surface covering an area 5 m downhill x 1.5 m horizontally. At dif- ferent stages during the snowmelt (March to June) we excavated vertical soil profiles on these plots (from below upwards) and took photographs of the stained soil profiles using a digital camera. From these digital images the areas of the soil profiles stained with the dye tracer were determined using a supervised classification method, and the depth distribution of areal coverage of dye tracer was calculated. The water flow pat- tern showed to be extremely heterogeneous in the Hannigalp soil, and more uniform in the Gd-St-Bernard soil. Already in an early stage of the snowmelt we observed infil- tration down to 40 to 60 cm, indicating a relatively high soil matrix infiltration rate at Gd-St-Bernard and efficient preferential flow channels (e.g. along roots) at Hannigalp. Soil frost

  18. Assessing the regional impact of Indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling

    Directory of Open Access Journals (Sweden)

    G. Engling

    2014-01-01

    Full Text Available Biomass burning activities commonly occur in Southeast Asia (SEA, and are particularly intense in Indonesia during dry seasons. The effect of biomass smoke emissions on air quality in the city state of Singapore was investigated during a haze episode in October 2006. Substantially increased levels of airborne particulate matter (PM and associated chemical species were observed during the haze period. Specifically, the enhancement in the concentration of molecular tracers for biomass combustion such as levoglucosan by as much as two orders of magnitude and diagnostic ratios of individual organic compounds indicated that biomass burning emissions caused a regional smoke haze episode due to their long-range transport by prevailing winds. With the aid of air mass back trajectories and chemical mass balance modeling, large-scale forest and peat fires in Sumatra and Kalimantan were identified as the sources of the smoke aerosol, exerting a significant impact on air quality in downwind areas, such as Singapore.

  19. Assessing the regional impact of indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling

    Science.gov (United States)

    Engling, G.; He, J.; Betha, R.; Balasubramanian, R.

    2014-08-01

    Biomass burning activities commonly occur in Southeast Asia (SEA), and are particularly intense in Indonesia during the dry seasons. The effect of biomass smoke emissions on air quality in the city state of Singapore was investigated during a haze episode in October 2006. Substantially increased levels of airborne particulate matter (PM) and associated chemical species were observed during the haze period. Specifically, the enhancement in the concentration of molecular tracers for biomass combustion such as levoglucosan by as much as two orders of magnitude and the diagnostic ratios of individual organic compounds indicated that biomass burning emissions caused a regional smoke haze episode due to their long-range transport by prevailing winds. With the aid of air mass backward trajectories and chemical mass balance modeling, large-scale forest and peat fires in Sumatra and Kalimantan were identified as the sources of the smoke aerosol, exerting a significant impact on air quality in downwind areas, such as Singapore.

  20. Continuous and immediate method for the detection of SF/sub 6/ and other tracer gases by electron capture in atmospheric diffusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, E.L. (Aerosol Lab., Risoe, Denmark); Lovelock, J.E.

    1976-01-01

    In many atmospheric diffusion experiments using tracer gases continuous tracer recording is of decisive importance. The main obstacle to continuous electron capture detection of tracer gases in the atmosphere is presented by the oxygen, which is an electron capturer. A method for removing this difficulty is described. Its practical use in an airborne atmospheric plume diffusion experiment is demonstrated.

  1. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method

    Energy Technology Data Exchange (ETDEWEB)

    Mønster, Jacob [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark); Samuelsson, Jerker, E-mail: jerker.samuelsson@fluxsense.se [Chalmers University of Technology/FluxSense AB, SE-41296 Göteborg (Sweden); Kjeldsen, Peter [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark); Scheutz, Charlotte, E-mail: chas@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark)

    2015-01-15

    Highlights: • Quantification of whole landfill site methane emission at 15 landfills. • Multiple on-site source identification and quantification. • Quantified methane emission from shredder waste and composting. • Large difference between measured and reported methane emissions. - Abstract: Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg h{sup −1}, corresponding to 0.7–13.2 g m{sup −2} d{sup −1}, with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41–81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons y{sup −1}. This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons y{sup −1}, which is significantly lower than the 33,300 tons y{sup −1} estimated for the national greenhouse gas inventory for

  2. Tracer monitoring of enhanced oil recovery projects

    Directory of Open Access Journals (Sweden)

    Kleven R.

    2013-05-01

    Full Text Available In enhanced oil recovery (EOR, chemicals are injected into the oil reservoir, either to increase macroscopic sweep efficiency, or to reduce remaining oil saturation in swept zones. Tracers can be used to identify reservoirs that are specifically suited for EOR operations. Injection of a selection of partitioning tracers, combined with frequent sample analysis of produced fluids, provides information suited for estimation of residual oil saturation. Tracers can also be used to evaluate and optimize the application of EOR chemicals in the reservoir. Suitable tracers will follow the EOR chemicals and assist in evaluation of retention, degradation or trapping. In addition to field applications, tracers also have a large potential as a tool to perform mechanistic studies of EOR chemicals in laboratory experiments. By labelling EOR chemicals with radioactive isotopes of elements such as H, C and S, detailed studies of transport mechanisms can be carried out. Co-injection of labelled compounds in dynamic flooding experiments in porous media will give information about retention or separation of the unique compounds constituting the chemical formulation. Separation of such compounds may be detrimental to obtaining the EOR effect expected. The paper gives new information of specific methods, and discusses current status for use of tracers in EOR operations.

  3. A joint velocity-concentration PDF method for tracer flow in heterogeneous porous media

    Science.gov (United States)

    Meyer, Daniel W.; Jenny, Patrick; Tchelepi, Hamdi A.

    2010-12-01

    The probability density function (PDF) of the local concentration of a contaminant, or tracer, is an important component of risk assessment in applications that involve flow in heterogeneous subsurface formations. In this paper, a novel joint velocity-concentration PDF method for tracer flow in highly heterogeneous porous media is introduced. The PDF formalism accounts for advective transport, pore-scale dispersion (PSD), and molecular diffusion. Low-order approximations (LOAs), which are usually obtained using a perturbation expansion, typically lead to Gaussian one-point velocity PDFs. Moreover, LOAs provide reasonable approximations for small log conductivity variances (i.e., σY2 Caroni and Fiorotto (2005) for saturated transport in velocity fields, which are stationary in space and time, for domains with σY2 = 0.05, 1, and 2 and Péclet numbers ranging from 100 to 10,000. PSD is modeled using constant anisotropic dispersion coefficients in both the reference MC computations and our PDF method.

  4. Research of Temperature Tracer Method to Detect Tubular Leakage Passage in Earth-Dam

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-jian; CHEN Jian-sheng

    2006-01-01

    The location, intensity and scope of concentrated leakage must be determined in order to repair earth-Dam scoured by the leakage. In this paper, firstly, heat tracer theory and distribution laws of temperature in soil body with leakage are discussed. Then temperature tracer model is established according to stable heat conduction theory. In such model, the concentrated seepage passage is simplified into a circular pipe as a boundary condition. The location, scope and flow-velocity of the concentrated leakage are estimated via ichnography of the lowest temperature based on temperature data from detecting wells by quantitative computation and qualitative analysis. In case study, the distribution characteristic of temperature (including temperature data of water in reservoir, drainage pipes and tail pond) can be interpreted by this model. A modified model is also set up, applied for detected data at different cross-sections of the leakage passage, in which the temperature data are rectified according to distances from data locations to calculating section. Finally, the model is solved by numerical iterative method, and the possible error of this theoretical model is discussed. The permeability coefficient in leakage area is identical with that of normal soil in magnitude after anti-seepage repairing accomplished, which indicates this model is effective.

  5. [The clinical value of sentinel lymph node detection in laryngeal and hypopharyngeal carcinoma patients with clinically negative neck by methylene blue method and radiolabeled tracer method].

    Science.gov (United States)

    Zhao, Xin; Xiao, Dajiang; Ni, Jianming; Zhu, Guochen; Yuan, Yuan; Xu, Ting; Zhang, Yongsheng

    2014-11-01

    To investigate the clinical value of sentinel lymph node (SLN) detection in laryngeal and hypopharyngeal carcinoma patients with clinically negative neck (cN0) by methylene blue method, radiolabeled tracer method and combination of these two methods. Thirty-three patients with cN0 laryngeal carcinoma and six patients with cN0 hypopharyngeal carcinoma underwent SLN detection using both of methylene blue and radiolabeled tracer method. All these patients were accepted received the injection of radioactive isotope 99 Tc(m)-sulfur colloid (SC) and methylene blue into the carcinoma before surgery, then all these patients underwent intraopertive lymphatic mapping with a handheld gamma-detecting probe and blue-dyed SLN. After the mapping of SLN, selected neck dissections and tumor resections were peformed. The results of SLN detection by radiolabeled tracer, dye and combination of both methods were compared. The detection rate of SLN by radiolabeled tracer, methylene blue and combined method were 89.7%, 79.5%, 92.3% respectively. The number of detected SLN was significantly different between radiolabeled tracer method and combined method, and also between methylene blue method and combined method. The detection rate of methylene blue and radiolabeled tracer method were significantly different from combined method (P methylene blue can improve the detection rate and accuracy of sentinel lymph node detection. Furthermore, sentinel lymph node detection can accurately represent the cervical lymph node status in cN0 laryngeal and hypopharyngeal carcinoma.

  6. A Study on sediment sources in a small watershed by using REE tracer method

    Institute of Scientific and Technical Information of China (English)

    石辉; 田均良; 刘普灵; 周佩华

    1997-01-01

    In simulation experiments, rare earth element (REE) tracer method was first used to sludy the sources of sediment yield in a small watershed. The experimental results have shown that the chief parts of sediment sources are constantly changing with the development of gullies. The cutting erosion plays a major role in the primary stage of watershed development. Slope erosion intensity increased gradually with gully development of the watershed, while gully erosion intensity decreased. Similar process was also observed in an individual rainfall. The simulation experiments have shown that the method can satisfactorily interpret the origins of sediment yield of a small watershed on an effective way. The simulation experiments have also provided basic information for field researches.

  7. Study of organic N transformation in red soils by 15N tracer method

    Institute of Scientific and Technical Information of China (English)

    YeQing-Fu; ZhangQin-Zheng; 等

    1997-01-01

    Uniformly 15N-labelled ryegrass was used to investigate NH4+-production,microbial transformation and humification of organic N in two types of red soils by incubating the soils amended with labelled material.The results showed that there was little significant difference in biomass N transformation in the tested solis between 15N tracer method and conventional method,but the amount of NH4++-N released form the ryegrass in the clayey soil than in the sandy soil at all sampling time .By 120d of incubation,humified N was less than 10% of the amount of the applied N in two types of red soils and the amount of residual N in the clayey red soil was obviously higher than that in the sandy red soil.

  8. Chemical parameters as natural tracers in hydrogeology: a case study of Louros karst system, Greece

    Science.gov (United States)

    Katsanou, K.; Lambrakis, N.; D'Alessandro, W.; Siavalas, G.

    2017-03-01

    The Louros Basin hosts one of the most important karst systems of Epirus Prefecture (Greece) and plays a key role in supplying three counties with drinking water. Aiming to investigate the origin of groundwater and its flow patterns, a multi-tracer approach was used to describe and evaluate the hydrogeology of the system. Therefore, 271 surface water and groundwater samples were collected and analyzed for physicochemical parameters, major ions, and trace and rare earth elements, as well as stable isotopes (δ18O and δ2H). These data provided meaningful tracing of the water origin, water-rock interaction processes, and relationships among the aquifers. In particular, the elaboration of the major ions supported by the distribution of rare earth elements indicated that there are three aquifers located at different levels hosted in the Senonian and Pantokrator limestone formations. These aquifers are hydraulically interconnected by a cascade and constitute the Louros karst system which is drained by the homonymous river. Hydrochemical and isotopic data revealed that the Louros karst system is isolated from the adjacent northern Ioannina Basin and it is being recharged by precipitation. Higher groundwater salinity, where present, is mainly associated with increased water-rock interaction due to longer and deeper hydrologic flow, favoring the dissolution of evaporitic, carbonate and phosphate minerals.

  9. A method to investigate inter-aquifer leakage using hydraulics and multiple environmental tracers

    Science.gov (United States)

    Priestley, Stacey; Love, Andrew; Wohling, Daniel; Post, Vincent; Shand, Paul; Kipfer, Rolf; Tyroller, Lina

    2016-04-01

    Informed aquifer management decisions regarding sustainable yields or potential exploitation require an understanding of the groundwater system (Alley et al. 2002, Cherry and Parker 2004). Recently, the increase in coal seam gas (CSG) or shale gas production has highlighted the need for a better understanding of inter-aquifer leakage and contaminant migration. In most groundwater systems, the quantity or location of inter-aquifer leakage is unknown. Not taking into account leakage rates in the analysis of large scale flow systems can also lead to significant errors in the estimates of groundwater flow rates in aquifers (Love et al. 1993, Toth 2009). There is an urgent need for robust methods to investigate inter-aquifer leakage at a regional scale. This study builds on previous groundwater flow and inter-aquifer leakage studies to provide a methodology to investigate inter-aquifer leakage in a regional sedimentary basin using hydraulics and a multi-tracer approach. The methodology incorporates geological, hydrogeological and hydrochemical information in the basin to determine the likelihood and location of inter-aquifer leakage. Of particular benefit is the analysis of hydraulic heads and environmental tracers at nested piezometers, or where these are unavailable bore couplets comprising bores above and below the aquitard of interest within a localised geographical area. The proposed methodology has been successful in investigating inter-aquifer leakage in the Arckaringa Basin, South Australia. The suite of environmental tracers and isotopes used to analyse inter-aquifer leakage included the stable isotopes of water, radiocarbon, chloride-36, 87Sr/86Sr and helium isotopes. There is evidence for inter-aquifer leakage in the centre of the basin ~40 km along the regional flow path. This inter-aquifer leakage has been identified by a slight draw-down in the upper aquifer during pumping in the lower aquifer, overlap in Sr isotopes, δ2H, δ18O and chloride

  10. Tracer methods for investigating biosynthetic pathways and the metabolism of bioactive substances in plants. [Herbicides; Plant growth regulators

    Energy Technology Data Exchange (ETDEWEB)

    Schuette, H.R. (Akademie der Wissenschaften der DDR, Halle/Saale. Inst. fuer Biochemie der Pflanzen)

    1984-03-01

    Proceeding from the general terms of investigating the courses of reactions in plants by means of tracer methods, problems and possibilities of the methods are discussed on the basis of examples referring in particular to double labelling techniques and to the determination of the distribution of radioactivity in the resulting products. Examples of herbicides and plant growth regulators are used for describing metabolism studies.

  11. Tracer Gas Technique Versus a Control Box Method for Estimating Direct Capture Efficiency of Exhaust Systems

    DEFF Research Database (Denmark)

    Madsen, U.; Aubertin, G.; Breum, N. O.;

    Numerical modelling of direct capture efficiency of a local exhaust is used to compare the tracer gas technique of a proposed CEN standard against a more consistent approach based on an imaginary control box. It is concluded that the tracer gas technique is useful for field applications....

  12. Method of forming a chemical composition

    Science.gov (United States)

    Bingham, Dennis N.; Wilding, Bruce M.; Klingler, Kerry M.; Zollinger, William T.; Wendt, Kraig M.

    2007-10-09

    A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.

  13. Method for Determination of Neptunium in Large-Sized Urine Samples Using Manganese Dioxide Coprecipitation and 242Pu as Yield Tracer

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin; Roos, Per

    2013-01-01

    A novel method for bioassay of large volumes of human urine samples using manganese dioxide coprecipitation for preconcentration was developed for rapid determination of 237Np. 242Pu was utilized as a nonisotopic tracer to monitor the chemical yield of 237Np. A sequential injection extraction...... to 100% and high separation capacity of processing up to 5 L of human urine samples. The MnO2 coprecipitation process is simple and straightforward in which a batch (8–12) of samples can be pretreated within 4 h (i.e.,

  14. Evaluation of the transport matrix method for simulation of ocean biogeochemical tracers

    Science.gov (United States)

    Kvale, Karin F.; Khatiwala, Samar; Dietze, Heiner; Kriest, Iris; Oschlies, Andreas

    2017-06-01

    Conventional integration of Earth system and ocean models can accrue considerable computational expenses, particularly for marine biogeochemical applications. Offline numerical schemes in which only the biogeochemical tracers are time stepped and transported using a pre-computed circulation field can substantially reduce the burden and are thus an attractive alternative. One such scheme is the transport matrix method (TMM), which represents tracer transport as a sequence of sparse matrix-vector products that can be performed efficiently on distributed-memory computers. While the TMM has been used for a variety of geochemical and biogeochemical studies, to date the resulting solutions have not been comprehensively assessed against their online counterparts. Here, we present a detailed comparison of the two. It is based on simulations of the state-of-the-art biogeochemical sub-model embedded within the widely used coarse-resolution University of Victoria Earth System Climate Model (UVic ESCM). The default, non-linear advection scheme was first replaced with a linear, third-order upwind-biased advection scheme to satisfy the linearity requirement of the TMM. Transport matrices were extracted from an equilibrium run of the physical model and subsequently used to integrate the biogeochemical model offline to equilibrium. The identical biogeochemical model was also run online. Our simulations show that offline integration introduces some bias to biogeochemical quantities through the omission of the polar filtering used in UVic ESCM and in the offline application of time-dependent forcing fields, with high latitudes showing the largest differences with respect to the online model. Differences in other regions and in the seasonality of nutrients and phytoplankton distributions are found to be relatively minor, giving confidence that the TMM is a reliable tool for offline integration of complex biogeochemical models. Moreover, while UVic ESCM is a serial code, the TMM can

  15. Ice-affected streamflow records using tracer-dilution discharge methods

    Science.gov (United States)

    Capesius, J.P.; Sullivan, J.R.; Williams, C.A.; O'Neill, G. B.; ,

    2002-01-01

    Accurate ice-affected streamflow records are difficult to obtain for several reasons. Problems measuring stage, variable backwater conditions, access limitations in wintertime, and problems measuring flowing water under ice cover all contribute to make ice-affected streamflow records less accurate than open-channel streamflow records. The inaccuracy of ice-affected streamflow records is particularly troublesome for small streams where Instream-Flow water rights exist. The Colorado Water Conservation Board uses these water rights to protect in-stream aquatic communities. In January and February 2002, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, conducted an experiment using a sodium chloride tracer to determine streamflow under ice cover. The purpose of this study is to determine the usefulness and accuracy of ice-affected streamflow records using a sodium chloride tracer that was automatically injected into the stream. The tracer was injected at two gaging stations once per day for up to 25 days. Multiple-parameter water-quality sensors at the two gaging stations monitored background and peak tracer concentrations and conductance. These data were used to determine discharge at each site. A comparison of current-meter measurements to tracer-dilution discharge measurements shows an underestimation of discharge due to inaccuracy of current-meter measurements with ice cover and inconsistent tracer-pump rates caused by partial freezing of the tracer solution in the injection lines.

  16. Tungsten chemical vapor deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Kiichi; Takeda, Nobuo.

    1993-07-13

    A tungsten chemical vapor deposition method is described, comprising: a first step of selectively growing a first thin tungsten film of a predetermined thickness in a desired region on the surface of a silicon substrate by reduction of a WF[sub 6] gas introduced into an atmosphere of a predetermined temperature containing said silicon substrate; and a second step of selectively growing a second tungsten film of a predetermined thickness on said first thin tungsten film by reduction of said WF[sub 6] with a silane gas further introduced into said atmosphere, wherein the surface state of said substrate is monitored by a pyrometer and the switching from said first step to said second step is performed when the emissivity of infrared light from the substrate surfaces reaches a predetermined value.

  17. Characterization of a cryogenic distillation column with a Kr-83m tracer method

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, Stephan; Fieguth, Alexander; Huhmann, Chrisian; Murra, Michael; Weinheimer, Christian [Institut fuer Kernphysik, Wilhelm-Klemm Strasse 9, 48149 Muenster (Germany); Cristescu, Ion [Karlsruher Institut fuer Technologie, Tritium Laboratory, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-07-01

    The XENON1T experiment aims for the direct detection of dark matter with unreached precision of 2 x 10{sup -47} cm{sup 2} for the spin-independent WIMP-nucleon cross section. The cryogenic distillation is an important tool to reduce the intrinsic contamination with radioactive {sup 85}Kr which undergoes a beta-decay with an endpoint energy of 687 keV, being one major source of background. Hence, a novel cryogenic distillation column has been designed and constructed in order to reduce the krypton concentration to {sup nat}Kr/Xe<0.2 ppt. For the investigation of the performance and the dynamics of the distillation process on the sub-ppt level, a new {sup 83m}Kr tracer method has been applied. For the {sup 83m}Kr detection custom made PMT based detectors are used. In this talk the method as well as the results of the studies of the krypton separation are presented.

  18. Apparatus and methods for detecting chemical permeation

    Science.gov (United States)

    Vo-Dinh, Tuan

    1994-01-01

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation.

  19. Evaluation of leakage from fume hoods using tracer gas, tracer nanoparticles and nanopowder handling test methodologies.

    Science.gov (United States)

    Dunn, Kevin H; Tsai, Candace Su-Jung; Woskie, Susan R; Bennett, James S; Garcia, Alberto; Ellenbecker, Michael J

    2014-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 ft/min) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust airflows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in

  20. Method of producing a chemical hydride

    Science.gov (United States)

    Klingler, Kerry M.; Zollinger, William T.; Wilding, Bruce M.; Bingham, Dennis N.; Wendt, Kraig M.

    2007-11-13

    A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.

  1. Pre-fire warning system and method using a perfluorocarbon tracer

    Science.gov (United States)

    Dietz, Russell N.; Senum, Gunnar I.

    1994-01-01

    A composition and method for detecting thermal overheating of an apparatus or system and for quickly and accurately locating the portions of the apparatus or system that experience a predetermined degree of such overheating. A composition made according to the invention includes perfluorocarbon tracers (PFTs) mixed with certain non-reactive carrier compounds that are effective to trap or block the PFTs within the composition at normal room temperature or at normal operating temperature of the coated apparatus or system. When a predetermined degree of overheating occurs in any of the coated components of the apparatus or system, PFTs are emitted from the compositions at a rate corresponding to the degree of overheating of the component. An associated PFT detector (or detectors) is provided and monitored to quickly identify the type of PFTs emitted so that the PFTs can be correlated with the respective PFT in the coating compositions applied on respective components in the system, thereby to quickly and accurately localize the source of the overheating of such components.

  2. Using Tracer Technology to Characterize Contaminated Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Maresca, Joseph, W., Jr., Ph.D.; Bratton, Wesley, L., Ph.D., P.E.; Dickerson, Wilhelmina; Hales, Rochelle

    2005-12-30

    The Pipeline Characterization Using Tracers (PCUT) technique uses conservative and partitioning, reactive or other interactive tracers to remotely determine the amount of contaminant within a run of piping or ductwork. The PCUT system was motivated by a method that has been successfully used to characterize subsurface soil contaminants and is similar in operation to that of a gas chromatography column. By injecting a ?slug? of both conservative and partitioning tracers at one end (or section) of the piping and measuring the time history of the concentration of the tracers at the other end (or another section) of the pipe, the presence, location, and amount of contaminant within the pipe or duct can be determined. The tracers are transported along the pipe or duct by a gas flow field, typically air or nitrogen, which has a velocity that is slow enough so that the partitioning tracer has time to interact with the contaminant before the tracer slug completely passes over the contaminate region. PCUT not only identifies the presence of contamination, it also can locate the contamination along the pipeline and quantify the amount of residual. PCUT can be used in support of deactivation and decommissioning (D&D) of piping and ducts that may have been contaminated with hazardous chemicals such as chlorinated solvents, petroleum products, radioactive materials, or heavy metals, such as mercury.

  3. Estimation of sediment sources using selected chemical tracers in the Perry lake basin,Kansas,USA

    Institute of Scientific and Technical Information of China (English)

    K.E.JURACEK; A.C.ZIEGLER

    2009-01-01

    The ability to achieve meaningful decreases in sediment loads to reservoirs requires a determination of the relative importance of sediment sources within the contributing basins.In an investigation of sources of fine-grained sediment (clay and silt) within the Perry Lake Basin in northeast Kansas,representative samples of channel-bank sources,surface-soil sources (cropland and grassland),and reservoir bottom sediment were collected,chemically analyzed,and compared.The samples were sieved to isolate the <63μ m fraction and analyzed for selected nutrients (total nitrogen and total phosphorus),organic and total carbon,25 trace elements,and the radionuclide cesium-137 (137Cs).On the basis of substantial and consistent compositional differences among the source types,total nitrogen (TN),total phosphorus (TP),total organic carbon (TOC),and 137Cs were selected for use in the estimation of sediment sources.To further account for differences in particle-size composition between the sources and the reservoir bottom sediment,constituent ratio and clay-normalization techniques were used.Computed ratios included TOC to TN,TOC to TP,and TN to TP.Constituent concentrations (TN,TP,TOC) and activities (137Cs) were normalized by dividing by the percentage of clay.Thus,the sediment-source estimations involved the use of seven sediment-source indicators.Within the Perry Lake Basin,the consensus of the seven indicators was that both channel-bank and surface-soil sources were important in the Atchison County Lake and Banner Creek Reservoir subbasins,whereas channel-bank sources were dominant in the Mission Lake subbasin.On the sole basis of 137Cs activity,surface-soil sources contributed the most fine-grained sediment to Atchison County Lake,and channel-bank sources contributed the most fine-grained sediment to Banner Creek Reservoir and Mission Lake.Both the seven-indicator consensus and 137Cs indicated that channelbank sources were dominant for Perry Lake and that channel

  4. Estimation of sediment sources using selected chemical tracers in the Perry lake basin, Kansas, USA

    Science.gov (United States)

    Juracek, K.E.; Ziegler, A.C.

    2009-01-01

    The ability to achieve meaningful decreases in sediment loads to reservoirs requires a determination of the relative importance of sediment sources within the contributing basins. In an investigation of sources of fine-grained sediment (clay and silt) within the Perry Lake Basin in northeast Kansas, representative samples of channel-bank sources, surface-soil sources (cropland and grassland), and reservoir bottom sediment were collected, chemically analyzed, and compared. The samples were sieved to isolate the nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclide cesium-137 (137Cs). On the basis of substantial and consistent compositional differences among the source types, total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), and 137Cs were selected for use in the estimation of sediment sources. To further account for differences in particle-size composition between the sources and the reservoir bottom sediment, constituent ratio and clay-normalization techniques were used. Computed ratios included TOC to TN, TOC to TP, and TN to TP. Constituent concentrations (TN, TP, TOC) and activities (137Cs) were normalized by dividing by the percentage of clay. Thus, the sediment-source estimations involved the use of seven sediment-source indicators. Within the Perry Lake Basin, the consensus of the seven indicators was that both channel-bank and surface-soil sources were important in the Atchison County Lake and Banner Creek Reservoir subbasins, whereas channel-bank sources were dominant in the Mission Lake subbasin. On the sole basis of 137Cs activity, surface-soil sources contributed the most fine-grained sediment to Atchison County Lake, and channel-bank sources contributed the most fine-grained sediment to Banner Creek Reservoir and Mission Lake. Both the seven-indicator consensus and 137Cs indicated that channel-bank sources were dominant for Perry Lake and that channel-bank sources

  5. Water ice deuteration: a tracer of the chemical history of protostars

    CERN Document Server

    Taquet, Vianney; Kahane, Claudine; Ceccarelli, Cecilia; Lòpez-Sepulcre, Ana; Toubin, Céline; Duflot, Denis; Wiesenfeld, Laurent

    2012-01-01

    Context. Millimetric observations have measured large degrees of molecular deuteration in several species seen around low-mass protostars. The Herschel Space Telescope, launched in 2009, is now providing new measures of the deuterium fractionation of water, the main constituent of interstellar ices. Aims. We aim at theoretically studying the formation and the deuteration of water which is believed to be formed on interstellar grain surfaces in molecular clouds. Methods. We used our gas-grain astrochemical model GRAINOBLE which considers the multilayer formation of interstellar ices. We varied several input parameters to study their impact on water deuteration. We included the treatment of ortho and para states of key species, including H2, that affects the deuterium fractionation of all molecules. The model also includes relevant laboratory and theoretical works on water formation and deuteration on grain surfaces. In particular, we computed the transmission probabilities of surface reactions using the Eckart...

  6. Greenhouse gas emission quantification from wastewater treatment plants, using a tracer gas dispersion method

    DEFF Research Database (Denmark)

    Delre, Antonio; Mønster, Jacob; Scheutz, Charlotte

    2017-01-01

    Plant-integrated methane (CH4) and nitrous oxide (N2O) emission quantifications were performed at five Scandinavian wastewater treatment plants, using a ground-based remote sensing approach that combines a controlled release of tracer gas from the plant with downwind concentration measurements. C...

  7. Chemical reaction and separation method

    NARCIS (Netherlands)

    Jansen, J.C.; Kapteijn, F.; Strous, S.A.

    2005-01-01

    The invention is directed to process for performing a chemical reaction in a reaction mixture, which reaction produces water as by-product, wherein the reaction mixture is in contact with a hydroxy sodalite membrane, through which water produced during the reaction is removed from the reaction mixtu

  8. Chemical Safety Alert: Identifying Chemical Reactivity Hazards Preliminary Screening Method

    Science.gov (United States)

    Introduces small-to-medium-sized facilities to a method developed by Center for Chemical Process Safety (CCPS), based on a series of twelve yes-or-no questions to help determine hazards in warehousing, repackaging, blending, mixing, and processing.

  9. Use of multiple chemical tracers to define habitat use of Indo-Pacific mangrove crab, Scylla serrata (Decapoda: Portunidae)

    Science.gov (United States)

    Demopoulos, A.W.J.; Cormier, N.; Ewel, K.C.; Fry, B.

    2008-01-01

    The mangrove or mud crab, Scylla serrata, is an important component of mangrove fisheries throughout the Indo-Pacific. Understanding crab diets and habitat use should assist in managing these fisheries and could provide additional justification for conservation of the mangrove ecosystem itself. We used multiple chemical tracers to test whether crab movements were restricted to local mangrove forests, or extended to include adjacent seagrass beds and reef flats. We sampled three mangrove forests on the island of Kosrae in the Federated States of Micronesia at Lelu Harbor, Okat River, and Utwe tidal channel. Samples of S. serrata and likely food sources were analyzed for stable carbon (??13C), nitrogen (??15N), and sulfur (??34S) isotopes. Scylla serrata tissues also were analyzed for phosphorus (P), cations (K, Ca, Mg, Na), and trace elements (Mn, Fe, Cu, Zn, and B). Discriminant analysis indicated that at least 87% of the crabs remain in each site as distinct populations. Crab stable isotope values indicated potential differences in habitat use within estuaries. Values for ??13C and ??34S in crabs from Okat and Utwe were low and similar to values expected from animals feeding within mangrove forests, e.g., feeding on infauna that had average ??13C values near -26.5???. In contrast, crabs from Lelu had higher ?? 13C and ??34S values, with average values of -21.8 and 7.8???, respectively. These higher isotope values are consistent with increased crab foraging on reef flats and seagrasses. Given that S. serrata have been observed feeding on adjacent reef and seagrass environments on Kosrae, it is likely that they move in and out of the mangroves for feeding. Isotope mixing model results support these conclusions, with the greatest mangrove ecosystem contribution to S. serrata diet occurring in the largest mangrove forests. Conserving larger island mangrove forests (> 1 km deep) appears to support crab foraging activities. ?? 2007 Coastal and Estuarine Research

  10. Use of chemical and isotopic tracers to assess nitrate contamination and ground-water age, Woodville Karst Plain, USA

    Science.gov (United States)

    Katz, B.G.; Chelette, A.R.; Pratt, T.R.

    2004-01-01

    Concerns regarding ground-water contamination in the Woodville Karst Plain have arisen due to a steady increase in nitrate-N concentrations (0.25-0.90 mg/l) during the past 30 years in Wakulla Springs, a large regional discharge point for water (9.6 m3/s) from the Upper Floridan aquifer (UFA). Multiple isotopic and chemical tracers were used with geochemical and lumped-parameter models (exponential mixing (EM), dispersion, and combined exponential piston flow) to assess: (1) the sources and extent of nitrate contamination of ground water and springs, and (2) mean transit times (ages) of ground water. Delta 15N-NO3 values (1.7-13.8???) indicated that nitrate in ground water originated from localized sources of inorganic fertilizer and human/animal wastes. Nitrate in spring waters (??15N-NO3=5.3-8.9???) originated from both inorganic and organic N sources. Nitrate-N concentrations (1.0 mg/l) were associated with shallow wells (open intervals less than 15 m below land surface), elevated nitrate concentrations in deeper wells are consistent with mixtures of water from shallow and deep zones in the UFA as indicated from geochemical mixing models and the distribution of mean transit times (5-90 years) estimated using lumped-parameter flow models. Ground water with mean transit times of 10 years or less tended to have higher dissolved organic carbon concentrations, lower dissolved solids, and lower calcite saturation indices than older waters, indicating mixing with nearby surface water that directly recharges the aquifer through sinkholes. Significantly higher values of pH, magnesium, dolomite saturation index, and phosphate in springs and deep water (>45 m) relative to a shallow zone (<45 m) were associated with longer ground-water transit times (50-90 years). Chemical differences with depth in the aquifer result from deep regional flow of water recharged through low permeability sediments (clays and clayey sands of the Hawthorn Formation) that overlie the UFA

  11. Use of chemical and isotopic tracers to assess nitrate contamination and ground-water age, Woodville Karst Plain, USA

    Science.gov (United States)

    Katz, Brian G.; Chelette, Angela R.; Pratt, Thomas R.

    2004-04-01

    Concerns regarding ground-water contamination in the Woodville Karst Plain have arisen due to a steady increase in nitrate-N concentrations (0.25-0.90 mg/l) during the past 30 years in Wakulla Springs, a large regional discharge point for water (9.6 m 3/s) from the Upper Floridan aquifer (UFA). Multiple isotopic and chemical tracers were used with geochemical and lumped-parameter models (exponential mixing (EM), dispersion, and combined exponential piston flow) to assess: (1) the sources and extent of nitrate contamination of ground water and springs, and (2) mean transit times (ages) of ground water. Delta 15N-NO 3 values (1.7-13.8‰) indicated that nitrate in ground water originated from localized sources of inorganic fertilizer and human/animal wastes. Nitrate in spring waters (δ 15N-NO 3=5.3-8.9‰) originated from both inorganic and organic N sources. Nitrate-N concentrations (1.0 mg/l) were associated with shallow wells (open intervals less than 15 m below land surface), elevated nitrate concentrations in deeper wells are consistent with mixtures of water from shallow and deep zones in the UFA as indicated from geochemical mixing models and the distribution of mean transit times (5-90 years) estimated using lumped-parameter flow models. Ground water with mean transit times of 10 years or less tended to have higher dissolved organic carbon concentrations, lower dissolved solids, and lower calcite saturation indices than older waters, indicating mixing with nearby surface water that directly recharges the aquifer through sinkholes. Significantly higher values of pH, magnesium, dolomite saturation index, and phosphate in springs and deep water (>45 m) relative to a shallow zone (<45 m) were associated with longer ground-water transit times (50-90 years). Chemical differences with depth in the aquifer result from deep regional flow of water recharged through low permeability sediments (clays and clayey sands of the Hawthorn Formation) that overlie the UFA

  12. Local study of pollutants dispersion by a real time tracer method; Etude locale de la dispersion de polluants par une methode de tracage en temps reel

    Energy Technology Data Exchange (ETDEWEB)

    Faivre-Pierret, R.X.; Sestier-Carlin, R.; Berne, P.

    1992-12-31

    It is possible to use a Gaussian mathematical model of atmospheric dispersion for calculating atmospheric transfer coefficient (ATC) in long range model, but for proximity models, an experimental model using a tracer technic has to take in account ground effects and natural or artificial obstacles. SF{sub 6} tracer method gives the true plume ground trace in real time. The measured ATC shows a larger ground trace, lower concentration in the axis, and a displacement of the maximum concentration with regard to wind axis in comparison with the calculated ATC. (A.B.). 14 refs., 4 figs., 1 tab.

  13. Uniform silica coated fluorescent nanoparticles: synthetic method, improved light stability and application to visualize lymph network tracer.

    Directory of Open Access Journals (Sweden)

    Liman Cong

    Full Text Available BACKGROUND: The sentinel lymph node biopsy (SLNB was developed as a new modality in the surgical diagnosis of lymph node metastases. Dye and radioisotope are major tracers for the detection of sentinel lymph nodes (SLN. Dye tends to excessively infiltrate into the interstitium due to their small size (less than several nanometers, resulting in difficulties in maintaining clear surgical fields. Radioisotopes are available in limited number of hospitals. Fluorescent nanoparticles are good candidates for SLN tracer to solve these problems, as we can choose suitable particle size and fluorescence wavelength of near-infrared. However, the use of nanoparticles faces safety issues, and many attempts have been performed by giving insulating coats on nanoparticles. In addition, the preparation of the uniform insulating layer is important to decrease variations in the quality as an SLN tracer. METHODOLOGY/PRINCIPAL FINDINGS: We herein succeeded in coating fluorescent polystyrene nanoparticles of 40 nm with uniform silica layer of 13 nm by the modified Stöber method. The light stability of silica coated nanoparticles was 1.3-fold greater than noncoated nanoparticles. The popliteal lymph node could be visualized by the silica coated nanoparticles with injection in the rat feet. CONCLUSIONS/SIGNIFICANCE: The silica coated nanoparticles in lymph nodes could be observed by transmission electron microscope, suggesting that our silica coating method is useful as a SLN tracer with highly precise distribution of nanoparticles in histological evaluation. We also demonstrated for the first time that a prolonged enhancement of SLN is caused by the phagocytosis of fluorescent nanoparticles by both macrophages and dendritic cells.

  14. Tracer Diffusion in a Soft Glassy Material

    Science.gov (United States)

    Petit, Laure; Barentin, Catherine; Colombani, Jean; Ybert, Christophe; Barrat, Jean-Louis; Bocquet, Lydéric

    2008-07-01

    We have carried out Fluorescence Recovery After Photobleaching measurements of the diffusion of tracers of various sizes in a colloidal glass (a Laponite suspension). We have shown that the diffusion is only dependent on the ratio of the tracer size and the distance between Laponite disks. This suggests that the tracer diffusion hindrance in the glass stems from the hydrodynamical interactions between the tracer and the Laponite network, the physico-chemical Laponite-tracer interaction playing a negligible role.

  15. Dual-tracer transport experiments in a physically and chemically heterogeneous porous aquifer: effective transport parameters and spatial variability

    Science.gov (United States)

    Ptak, T.; Schmid, G.

    1996-08-01

    In order to investigate the effects of reactive transport processes within a heterogeneous porous aquifer, two small-scale forced gradient tracer tests were conducted at the 'Horkheimer Insel' field site. During the experiments, two fluorescent tracers were injected simultaneously in the same fully penetrating groundwater monitoring well, located approximately 10 m from the pumping well. Fluoresceine and Rhodamine WT were used to represent the classes of practically non-sorbing and sorbing solutes, respectively. Multilevel breakthrough curves with a temporal resolution of 1 min were measured for both tracers at different depths within the pumping well using fibre-optic fluorimeters. This paper presents the tracer test design, the fibre-optic fluorimetry instrumentation, the experimental results and the interpretation of the measured multilevel breakthrough curves in terms of temporal moments and effective transport parameters. Significant sorption of Rhodamine WT is apparent from the effective retardation factors. Furthermore, an enhanced tailing of Rhodamine WT breakthrough curves is observed, which is possibly caused by a variability of aquifer sorption properties. The determined effective parameters are spatially variable, suggesting that a complex numerical flow and transport modelling approach within a stochastic framework will be needed to adequately describe the transport behaviour observed in the two experiments. Therefore, the tracer test results will serve in future work for the validation of numerical stochastic transport simulations taking into account the spatial variability of hydraulic conductivity and sorption-related aquifer properties.

  16. Method for assessment of stormwater treatment facilities – Synthetic road runoff addition including micro-pollutants and tracer

    DEFF Research Database (Denmark)

    Cederkvist, Karin; Jensen, Marina Bergen; Holm, Peter Engelund

    2017-01-01

    representative of runoff from roads is suggested, as well as relevant concentration ranges. The method was used for adding contaminants to three different STFs including a curbstone extension with filter soil, a dual porosity filter, and six different permeable pavements. Evaluation of the method showed......% in the dual porosity filter, stressing the importance of including a conservative tracer for correction of contaminant retention values. The method is considered useful in future treatment performance testing of STFs. The observed performance of the STFs is presented in coming papers....

  17. Modified Perfluorocarbon Tracer Method for Measuring Effective Multizone Air Exchange Rates

    Directory of Open Access Journals (Sweden)

    Masashi Gamo

    2010-08-01

    Full Text Available A modified procedure was developed for the measurement of the effective air exchange rate, which represents the relationship between the pollutants emitted from indoor sources and the residents’ level of exposure, by placing the dosers of tracer gas at locations that resemble indoor emission sources. To measure the 24-h-average effective air exchange rates in future surveys based on this procedure, a low-cost, easy-to-use perfluorocarbon tracer (PFT doser with a stable dosing rate was developed by using double glass vials, a needle, a polyethylene-sintered filter, and a diffusion tube. Carbon molecular sieve cartridges and carbon disulfide (CS2 were used for passive sampling and extraction of the tracer gas, respectively. Recovery efficiencies, sampling rates, and lower detection limits for 24-h sampling of hexafluorobenzene, octafluorotoluene, and perfluoroallylbenzene were 40% ± 3%, 72% ± 5%, and 84% ± 6%; 10.5 ± 1.1, 14.4 ± 1.4, and 12.2 ± 0.49 mL min−1; and 0.20, 0.17, and 0.26 μg m–3, respectively.

  18. Chemical Methods for the Production of Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Stephen B.H.

    2008-09-15

    The goal of this research program was to develop improved methods for chemical peptide and protein synthesis, and to apply these methods to the total synthesis of small proteins (<80 amino acids) & integral membrane proteins.

  19. Solid Matrix Transformation and Tracer Addition using Molten Ammonium Bifluoride Salt as a Sample Preparation Method for Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Gonzalez, Jhanis J.; O' Hara, Matthew J.; Kellogg, Cynthia M.; Morrison, Samuel S.; Koppenaal, David W.; Chan, George C.; Mao, Xianglei; Zorba, Vassilia; Russo, Richard

    2017-09-08

    Laser ablation (LA) is a means of sample introduction to inductively coupled plasma (ICP) mass spectrometry (MS) that avoids acid dissolution and chemical separation steps conventionally associated with solid sample analysis. At the same time, certain features of LA-ICP-MS are often mentioned in critical reviews including solid matrix variability and its influence on the ablation process, matrix dependent elemental fractionation, lack of matrix matched standards for external calibration, and limitations to internal calibration because it is challenging to add and distribute spikes into solid samples. In this paper we introduce the concept of a synergistic minimal sample preparation method that is used in combination with LA-ICP-MS as a means to overcome these limitations. The aim of this minimal sample preparation procedure is to reactively transform the original matrix to a more consistent matrix for LA-based analysis, thus reducing the effects of matrix variability, while enabling the addition of tracers. In conjunction with ICP-MS, we call this MTR-LA-ICP-MS, where MTR is derived from matrix transformation including the option to add tracers

  20. Integration of Tracer Test Data to Refine Geostatistical Hydraulic Conductivity Fields Using Sequential Self-Calibration Method

    Institute of Scientific and Technical Information of China (English)

    Bill X Hu; Jiang Xiaowei; Wan Li

    2007-01-01

    On the basis of local measurements of hydraulic conductivity, geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However, the methods are not suited to directly integrate dynamic production data, such as,hydraulic head and solute concentration, into the study of conductivity distribution. These data, which record the flow and transport processes in the medium, are closely related to the spatial distribution of hydraulic conductivity. In this study, a three-dimensional gradient-based inverse method-the sequential self-calibration (SSC) method-is developed to calibrate a hydraulic conductivity field,initially generated by a geostatistical simulation method, conditioned on tracer test results. The SSC method can honor both local hydraulic conductivity measurements and tracer test data. The mismatch between the simulated hydraulic conductivity field and the reference true one, measured by its mean square error (MSE), is reduced through the SSC conditional study. In comparison with the unconditional results, the SSC conditional study creates the mean breakthrough curve much closer to the reference true curve, and significantly reduces the prediction uncertainty of the solute transport in the observed locations. Further, the reduction of uncertainty is spatially dependent, which indicates that good locations, geological structure, and boundary conditions will affect the efficiency of the SSC study results.

  1. Chemical and isotopic provenance tracers in ancient copper and bronze artifacts: a geochemical database of copper mines

    Science.gov (United States)

    Giunti, I.; Artioli, G.; Giussani, B.; Marelli, M.; Recchia, S.; Angelini, I.; Baumgarten, B.; Omenetto, P.; Villa, I. M.

    2009-04-01

    archaeometallurgical copper specimens from the Agordo area (Veneto) and the recently found prehistoric slags from Millan (Alto Adige) indicate that the approach is successful in provenance and trade route investigations. Future efforts are directed towards (1) completion of the mine database, (2) investigation of archaeological copper slags, (3) deeper interpretation of the geochemical tracers and their behaviour during the smelting processes. References. [1] Renfrew, C., Bahn, P. (2000): Archaeology: Theories, methods and practice. Thames & Hudson, London; [2] Ciceri, E., Dossi, C., Recchia, S., Angelini, I., Artioli, G., Colpani, F. (2005): Problematiche connesse con la determinazione del rapporto isotopico 63Cu/65Cu mediante ICP-QMS. Atti del XIX Congresso di Chimica Analitica, 11-15 settembre 2005. Università degli Studi di Cagliari; [3] Wold, S., Esbensen, K., Geladi, P. (1987): Chemometrics Intell. Lab. Syst. 2, 37; [4] Esbensen K, 2002. Multivariate Data Analysis - In Practice. ISBN 82-993330-3-2, CAMO Process AS, Oslo, 5th Edition; [5] Geladi P, Kowalski BR (1986): Partial least-squares regression: a tutorial. Anal. Chim. Acta 185, 1-17

  2. Study on Transfer of Ni in Soil—Plant System Using 63Ni Tracer Method

    Institute of Scientific and Technical Information of China (English)

    TUCONG

    1996-01-01

    A study was carried out on the transfer of native and added Ni towards plant both in different soils and at different time by using 63 Ni tracer technique.The transfer of added Ni in soil was greater than native Ni and declined as time increased.The mobility was greater for soluble plus exchangeable fraction of soil Ni but very smaller for residual and Fe/Mn oxide bound fractions.These indicated that Ni was more mobile and more harmful in soils with a low pH and /or low content of Fe/Mn oxides.

  3. Environmental Tracers

    Directory of Open Access Journals (Sweden)

    Trevor Elliot

    2014-10-01

    Full Text Available Environmental tracers continue to provide an important tool for understanding the source, flow and mixing dynamics of water resource systems through their imprint on the system or their sensitivity to alteration within it. However, 60 years or so after the first isotopic tracer studies were applied to hydrology, the use of isotopes and other environmental tracers are still not routinely necessarily applied in hydrogeological and water resources investigations where appropriate. There is therefore a continuing need to promote their use for developing sustainable management policies for the protection of water resources and the aquatic environment. This Special Issue focuses on the robustness or fitness-for-purpose of the application and use of environmental tracers in addressing problems and opportunities scientifically, to promote their wider use and to address substantive issues of vulnerability, sustainability, and uncertainty in (groundwater resources systems and their management.

  4. Comparison of Chemical and Physical-chemical Wastewater Discoloring Methods

    Directory of Open Access Journals (Sweden)

    Durašević, V.

    2007-11-01

    Full Text Available Today's chemical and physical-chemical wastewater discoloration methods do not completely meet demands regarding degree of discoloration. In this paper discoloration was performed using Fenton (FeSO4 . 7 H2O + H2O2 + H2SO4 and Fenton-like (FeCl3 . 6 H2O + H2O2 + HCOOH chemical methods and physical-chemical method of coagulation/flocculation (using poly-electrolyte (POEL combining anion active coagulant (modified poly-acrylamides and cationic flocculant (product of nitrogen compounds in combination with adsorption on activated carbon. Suitability of aforementioned methods was investigated on reactive and acid dyes, regarding their most common use in the textile industry. Also, investigations on dyes of different chromogen (anthraquinone, phthalocyanine, azo and xanthene were carried out in order to determine the importance of molecular spatial structure. Oxidative effect of Fenton and Fenton-like reagents resulted in decomposition of colored chromogen and high degree of discoloration. However, the problem is the inability of adding POEL in stechiometrical ratio (also present in physical-chemical methods, when the phenomenon of overdosing coagulants occurs in order to obtain a higher degree of discoloration, creating a potential danger of burdening water with POEL. Input and output water quality was controlled through spectrophotometric measurements and standard biological parameters. In addition, part of the investigations concerned industrial wastewaters obtained from dyeing cotton materials using reactive dye (C. I. Reactive Blue 19, a process that demands the use of vast amounts of electrolytes. Also, investigations of industrial wastewaters was labeled as a crucial step carried out in order to avoid serious misassumptions and false conclusions, which may arise if dyeing processes are only simulated in the laboratory.

  5. Spectroscopic Chemical Analysis Methods and Apparatus

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2017-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  6. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site Characterization Study; Progress report, June 1--December 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Stetzenbach, K.J.

    1990-12-31

    Ground water tracers are solutes dissolved in or carried by ground water to delineate flow pathways. Tracers provide information on direction and speed of water movement and that of contaminants that might be conveyed by the water. Tracers can also be used to measure effective porosity, hydraulic conductivity, dispersivity and solute distribution coefficients. For most applications tracers should be conservative, that is, move at the same rate as the water and not sorb to aquifer materials. Tracers must have a number of properties to be functional. Regardless of the desired properties, the chemical and physical behavior of a tracer in ground water and the porous medium under study must be understood. Good estimates of tracer behavior can be obtained from laboratory studies. Studies in this proposal will address tracer properties with analytical method development, static sorption and degradation studies and column transport studies, Mutagenicity tests will be performed on promising candidates. The tracers that will be used for these experiments are fluorinated organic acids and other organic compounds that have the chemical and biological stability necessary to be effective in the Yucca Mountain environment. Special emphasis will be placed on compounds that fluoresce or have very large ultraviolet absorption coefficients for very high analytical sensitivity.

  7. Journal: Efficient Hydrologic Tracer-Test Design for Tracer ...

    Science.gov (United States)

    Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed to facilitate the design of tracer tests by root determination of the one-dimensional advection-dispersion equation (ADE) using a preset average tracer concentration which provides a theoretical basis for an estimate of necessary tracer mass. The method uses basic measured field parameters (e.g., discharge, distance, cross-sectional area) that are combined in functional relatipnships that descrive solute-transport processes related to flow velocity and time of travel. These initial estimates for time of travel and velocity are then applied to a hypothetical continuous stirred tank reactor (CSTR) as an analog for the hydrological-flow system to develop initial estimates for tracer concentration, tracer mass, and axial dispersion. Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be necessary for descri

  8. Method And Apparatus For Detecting Chemical Binding

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Benjamin P. (Los Alamos, NM); Havrilla, George J. (Los Alamos, NM); Miller, Thomasin C. (Los Alamos, NM); Wells, Cyndi A. (Los Alamos, NM)

    2005-02-22

    The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.

  9. Method and apparatus for detecting chemical binding

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Benjamin P. (Los Alamos, NM); Havrilla, George J. (Los Alamos, NM); Miller, Thomasin C. (Los Alamos, NM); Wells, Cyndi A. (Los Alamos, NM)

    2007-07-10

    The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.

  10. Tracer-tracer relations as a tool for research on polar ozone loss

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rolf

    2010-07-01

    The report includes the following chapters: (1) Introduction: ozone in the atmosphere, anthropogenic influence on the ozone layer, polar stratospheric ozone loss; (2) Tracer-tracer relations in the stratosphere: tracer-tracer relations as a tool in atmospheric research; impact of cosmic-ray-induced heterogeneous chemistry on polar ozone; (3) quantifying polar ozone loss from ozone-tracer relations: principles of tracer-tracer correlation techniques; reference ozone-tracer relations in the early polar vortex; impact of mixing on ozone-tracer relations in the polar vortex; impact of mesospheric intrusions on ozone-tracer relations in the stratospheric polar vortex calculation of chemical ozone loss in the arctic in March 2003 based on ILAS-II measurements; (4) epilogue.

  11. New methods for chemical protein synthesis.

    Science.gov (United States)

    Guan, Xiaoyang; Chaffey, Patrick K; Zeng, Chen; Tan, Zhongping

    2015-01-01

    Chemical protein synthesis is a useful tool to generate pure proteins which are otherwise difficult to obtain in sufficient amounts for structure and property analysis. Additionally, because of the precise and flexible nature of chemical synthesis, it allows for controllable variation of protein sequences, which is valuable for understanding the relationships between protein structure and function. Despite the usefulness of chemical protein synthesis, it has not been widely adopted as a tool for protein characterization, mainly because of the lack of general and efficient methods for the preparation and coupling of peptide fragments and for the folding of polypeptide chains. To address these issues, many new methods have recently been developed in the areas of solid-phase peptide synthesis, peptide fragment assembly, and protein folding. Here we review these recent technological advances and highlight the gaps needing to be addressed in future research.

  12. Groundwater discharge dynamics from point to catchment scale in a lowland stream: Combining hydraulic and tracer methods

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang; Sebok, Eva; Duque, Carlos

    2015-01-01

    nutrient or pollutant transport zones from nearby agricultural fields. VTP measurements confirmed high groundwater fluxes in discharge areas indicated by DTS and ADCP, and this coupling of ADCP, DTS and VTP proposes a novel field methodology to detect areas of concentrated groundwater discharge with higher......Detecting, quantifying and understanding groundwater discharge to streams are crucial for the assessment of water, nutrient and contaminant exchange at the groundwater–surface water interface. In lowland agricultural catchments with significant groundwater discharge this is of particular importance...... because of the risk of excess leaching of nutrients to streams. Here we aim to combine hydraulic and tracer methods from point-to-catchment scale to assess the temporal and spatial variability of groundwater discharge in a lowland, groundwater gaining stream in Denmark. At the point-scale, groundwater...

  13. Numerical evaluation of the PERTH (PERiodic Tracer Hierarchy) method for estimating time-variable travel time distribution in variably saturated soils

    Science.gov (United States)

    Kim, M.; Harman, C. J.

    2013-12-01

    The distribution of water travel times is one of the crucial hydrologic characteristics of the catchment. Recently, it has been argued that a rigorous treatment of travel time distributions should allow for their variability in time because of the variable fluxes and partitioning of water in the water balance, and the consequent variable storage of a catchment. We would like to be able to observe the structure of the temporal variations in travel time distributions under controlled conditions, such as in a soil column or under irrigation experiments. However, time-variable travel time distributions are difficult to observe using typical active and passive tracer approaches. Time-variability implies that tracers introduced at different times will have different travel time distributions. The distribution may also vary during injection periods. Moreover, repeat application of a single tracer in a system with significant memory leads to overprinting of break-through curves, which makes it difficult to extract the original break-through curves, and the number of ideal tracers that can be applied is usually limited. Recognizing these difficulties, the PERTH (PERiodic Tracer Hierarchy) method has been developed. The method provides a way to estimate time-variable travel time distributions by tracer experiments under controlled conditions by employing a multi-tracer hierarchy under periodical hydrologic forcing inputs. The key assumption of the PERTH method is that as time gets sufficiently large relative to injection time, the average travel time distribution of two distinct ideal tracers injected during overlapping periods become approximately equal. Thus one can be used as a proxy for the other, and the breakthrough curves of tracers applied at different times in a periodic forcing condition can be separated from one another. In this study, we tested the PERTH method numerically for the case of infiltration at the plot scale using HYDRUS-1D and a particle

  14. Numerical Methods For Chemically Reacting Flows

    Science.gov (United States)

    Leveque, R. J.; Yee, H. C.

    1990-01-01

    Issues related to numerical stability, accuracy, and resolution discussed. Technical memorandum presents issues in numerical solution of hyperbolic conservation laws containing "stiff" (relatively large and rapidly changing) source terms. Such equations often used to represent chemically reacting flows. Usually solved by finite-difference numerical methods. Source terms generally necessitate use of small time and/or space steps to obtain sufficient resolution, especially at discontinuities, where incorrect mathematical modeling results in unphysical solutions.

  15. Simultaneous Analyses and Applications of Multiple Fluorobenzoate and Halide Tracers in Hydrologic Studies

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q; Moran, J E

    2004-01-22

    An analytical method that employs ion chromatography has been developed to more fully exploit the use of fluorobenzoic acids (FBAs) and halides as hydrologic tracers. In a single run, this reliable, sensitive, and robust method can simultaneously separate and quantify halides (fluoride, chloride, bromide, and iodide) and up to seven FBAs from other common groundwater constituents (e.g., nitrate and sulfate). The usefulness of this ion chromatographic (IC) analytical method is demonstrated in both field and laboratory tracer experiments. Field experiments in unsaturated tuff featuring fractures or a fault show that this efficient and cost-effective method helps achieve the objectives of tracer studies that use multiple FBAs and/or diffusivity tracers (simultaneous use of one or more FBA and halide). The field study examines the hydrologic response of fractures and the matrix to different flow rates and the contribution of matrix diffusion in chemical transport. Laboratory tracer experiments with eight geologic media from across the United States--mostly from Department of Energy facilities where groundwater contamination is prevalent and where subsurface characterization employing tracers has been ongoing or is in need--reveal several insights about tracer transport behavior: (1) Bromide and FBAs are not always transported conservatively. (2) The delayed transport of these anionic tracers is likely related to geologic media characteristics, such as organic matter, pH, iron oxide content, and clay mineralogy. (3) Any use of iodine as a hydrologic tracer should take into account the different sorption behaviors of iodide and iodate and the possible conversion of iodine's initial chemical form. (4) The transport behavior of potential FBA and halide tracers under relevant geochemical conditions should be evaluated before beginning ambitious, large-scale field tracer experiments.

  16. Simultaneous Analyses and Applications of Multiple Fluorobenzoate and Halide Tracers in Hydrologic Studies

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q; Moran, J E

    2004-01-22

    An analytical method that employs ion chromatography has been developed to more fully exploit the use of fluorobenzoic acids (FBAs) and halides as hydrologic tracers. In a single run, this reliable, sensitive, and robust method can simultaneously separate and quantify halides (fluoride, chloride, bromide, and iodide) and up to seven FBAs from other common groundwater constituents (e.g., nitrate and sulfate). The usefulness of this ion chromatographic (IC) analytical method is demonstrated in both field and laboratory tracer experiments. Field experiments in unsaturated tuff featuring fractures or a fault show that this efficient and cost-effective method helps achieve the objectives of tracer studies that use multiple FBAs and/or diffusivity tracers (simultaneous use of one or more FBA and halide). The field study examines the hydrologic response of fractures and the matrix to different flow rates and the contribution of matrix diffusion in chemical transport. Laboratory tracer experiments with eight geologic media from across the United States--mostly from Department of Energy facilities where groundwater contamination is prevalent and where subsurface characterization employing tracers has been ongoing or is in need--reveal several insights about tracer transport behavior: (1) Bromide and FBAs are not always transported conservatively. (2) The delayed transport of these anionic tracers is likely related to geologic media characteristics, such as organic matter, pH, iron oxide content, and clay mineralogy. (3) Any use of iodine as a hydrologic tracer should take into account the different sorption behaviors of iodide and iodate and the possible conversion of iodine's initial chemical form. (4) The transport behavior of potential FBA and halide tracers under relevant geochemical conditions should be evaluated before beginning ambitious, large-scale field tracer experiments.

  17. Trends analysis of PM source contributions and chemical tracers in NE Spain during 2004-2014: a multi-exponential approach

    Science.gov (United States)

    Pandolfi, Marco; Alastuey, Andrés; Pérez, Noemi; Reche, Cristina; Castro, Iria; Shatalov, Victor; Querol, Xavier

    2016-09-01

    In this work for the first time data from two twin stations (Barcelona, urban background, and Montseny, regional background), located in the northeast (NE) of Spain, were used to study the trends of the concentrations of different chemical species in PM10 and PM2.5 along with the trends of the PM10 source contributions from the positive matrix factorization (PMF) model. Eleven years of chemical data (2004-2014) were used for this study. Trends of both species concentrations and source contributions were studied using the Mann-Kendall test for linear trends and a new approach based on multi-exponential fit of the data. Despite the fact that different PM fractions (PM2.5, PM10) showed linear decreasing trends at both stations, the contributions of specific sources of pollutants and of their chemical tracers showed exponential decreasing trends. The different types of trends observed reflected the different effectiveness and/or time of implementation of the measures taken to reduce the concentrations of atmospheric pollutants. Moreover, the trends of the contributions of specific sources such as those related with industrial activities and with primary energy consumption mirrored the effect of the financial crisis in Spain from 2008. The sources that showed statistically significant downward trends at both Barcelona (BCN) and Montseny (MSY) during 2004-2014 were secondary sulfate, secondary nitrate, and V-Ni-bearing source. The contributions from these sources decreased exponentially during the considered period, indicating that the observed reductions were not gradual and consistent over time. Conversely, the trends were less steep at the end of the period compared to the beginning, thus likely indicating the attainment of a lower limit. Moreover, statistically significant decreasing trends were observed for the contributions to PM from the industrial/traffic source at MSY (mixed metallurgy and road traffic) and from the industrial (metallurgy mainly) source at BCN

  18. Statistical data analysis method for multi-zonal airflow measurement using multiple kinds of perfluorocarbon tracer gas

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Hiroyasu; Onishi, Yoshinori [Institute of Technology, Shimizu Corporation, 4-17, Etchujima 3-chome, Koto-ku, Tokyo 135-8530 (Japan); Tanabe, Shin-ichi [School of Science and Engineering, Department of Architecture, Waseda University, 3-4-1 Okubo, Shinjyuku-ku, Tokyo 169-8555 (Japan); Kashihara, Seiichi [R and D Laboratories, Asahi Kasei Homes Corporation, 2-1, Samejima Fuji-shi, Shizuoka 416-8501 (Japan)

    2009-03-15

    Conventional multi-zonal ventilation measurement methods by multiple types of perfluorocarbon tracers use a number of different gases equal to the number of zones (n). The possible n x n+n airflows are estimated from the mass balance of the gases and the airflow balance. However, some airflows may not occur because of inter-zonal geometry, and the introduction of unnecessary, unknown parameters can impair the accuracy of the estimation. Also, various error factors often yield an irrational negative airflow rate. Conventional methods are insufficient for the evaluation of error. This study describes a way of using the least-squares technique to improve the precision of estimation and to evaluate reliability. From the equations' residual, the error variance-covariance matrix {lambda}{sub q} of the estimated airflow rate error is deduced. In addition, the coefficient of determinant using the residual sum of squares and total variation is introduced. Furthermore, the error matrix{sub m}{lambda}{sub q} from the measurement errors in the gas concentration and gas emission rate is deduced. The discrepancy ratio of the model premises is defined by dividing the diagonal elements of the former by those of the latter. Moreover, the index of irrationality of the estimated negative airflow rate is defined, based on the different results of the three estimation methods. Some numerical experiments are also carried out to verify the flow rate estimation and the reliability evaluation theory. (author)

  19. Analytical error analysis of Clifford gates by the fault-path tracer method

    Science.gov (United States)

    Janardan, Smitha; Tomita, Yu; Gutiérrez, Mauricio; Brown, Kenneth R.

    2016-08-01

    We estimate the success probability of quantum protocols composed of Clifford operations in the presence of Pauli errors. Our method is derived from the fault-point formalism previously used to determine the success rate of low-distance error correction codes. Here we apply it to a wider range of quantum protocols and identify circuit structures that allow for efficient calculation of the exact success probability and even the final distribution of output states. As examples, we apply our method to the Bernstein-Vazirani algorithm and the Steane [[7,1,3

  20. Regeneration of unmyelinated and myelinated sensory nerve fibres studied by a retrograde tracer method

    DEFF Research Database (Denmark)

    Lozeron, Pierre; Krarup, Christian; Schmalbruch, Henning

    2004-01-01

    Regeneration of myelinated and unmyelinated sensory nerve fibres after a crush lesion of the rat sciatic nerve was investigated by means of retrograde labelling. The advantage of this method is that the degree of regeneration is estimated on the basis of sensory somata rather than the number...

  1. Tracer technology modeling the flow of fluids

    CERN Document Server

    Levenspiel, Octave

    2012-01-01

    A vessel’s behavior as a heat exchanger, absorber, reactor, or other process unit is dependent upon how fluid flows through the vessel.  In early engineering, the designer would assume either plug flow or mixed flow of the fluid through the vessel.  However, these assumptions were oftentimes inaccurate, sometimes being off by a volume factor of 100 or more.  The result of this unreliable figure produced ineffective products in multiple reaction systems.   Written by a pioneering researcher in the field of chemical engineering, the tracer method was introduced to provide more accurate flow data.  First, the tracer method measured the actual flow of fluid through a vessel.  Second, it developed a suitable model to represent the flow in question.  Such models are used to follow the flow of fluid in chemical reactors and other process units, like in rivers and streams, or solid and porous structures.  In medicine, the tracer method is used to study the flow of chemicals—harmful  and harmless—in the...

  2. A new method for studying water mass origins on basin scales: using multiple passive tracers to study Atlantic Cold Tongue variability

    Science.gov (United States)

    White, Rachel

    2015-04-01

    Multiple passive tracers are used in a dynamical ocean model to demonstrate a new method to study water mass origins on a basin-wide scale. This method has previously only been used in estuary-scale studies. A case study is chosen to highlight when this multiple passive tracer method may provide benefits over the standard method of tracing water mass origins on basin-scales: using a single passive tracer in an adjoint model. 31 passive tracers are used to determine the origin regions of the Atlantic cold tongue (ACT). At the time of the ACT minimum in sea surface temperature, 38 ± 3% of the surface water in the central equatorial Atlantic is found to originate in the western side of the basin, with 11 ± 2% originating in the east. The multiple passive tracer method can show how origin regions change with time, allowing seasonal differences in origin regions to be discerned. The identification of origin regions of cold water that increase their supply to the equatorial Atlantic in phase with the ACT cooling identifies those regions that are important to the ACT variability. Sensitivity tests show that the temporal evolution of the concentrations of such tracers within the ACT region is not sensitive to the month in which the tracers are initialised. The region of the North Brazil undercurrent is found to be the most important origin region for the central Atlantic ACT region, for a 6-8 month lead time. Using the Met Office EN4 observational dataset of ocean temperatures, correlations are found between January temperatures in the North Brazil undercurrent region and both the ACT mean temperature and ACT spatial extent in July-August, significant at the 0.95 level. This suggests that the 6-month lead-time predictability of the ACT may be increased by improved knowledge of the North Brazil undercurrent temperature. Results from previous studies suggest that such increased predictability of the ACT could potentially help improve predictions of the West African monsoon.

  3. When Phase Contrast Fails: ChainTracer and NucTracer, Two ImageJ Methods for Semi-Automated Single Cell Analysis Using Membrane or DNA Staining

    NARCIS (Netherlands)

    Syvertsson, S.; Vischer, N.O.E.; Gao, Y.; Hamoen, L.W.

    2016-01-01

    Within bacterial populations, genetically identical cells often behave differently. Single-cell measurement methods are required to observe this heterogeneity. Flow cytometry and fluorescence light microscopy are the primary methods to do this. However, flow cytometry requires reasonably strong fluo

  4. Detecting groundwater discharge dynamics from point to catchment scale in a lowland stream: combining hydraulic and tracer methods

    Directory of Open Access Journals (Sweden)

    J. B. Poulsen

    2014-12-01

    Full Text Available Detecting, quantifying, and understanding groundwater discharge to streams are crucial for the assessment of water, nutrient and contaminant exchange at the surface water–groundwater interface. In lowland agricultural catchments with significant groundwater discharge this is of particular importance because of the risk of excess leaching of nutrients to streams. Here we aim to combine hydraulic and tracer methods from point to catchment scale to assess the temporal and spatial variability of groundwater discharge in a lowland, groundwater gaining stream in Denmark. At the point scale groundwater fluxes to the stream were quantified based on Vertical streambed Temperature Profiles (VTP. At the reach scale (0.15–2 km the spatial distribution of zones of focused groundwater discharge was investigated by the use of Distributed Temperature Sensing (DTS. Groundwater discharge to the stream was quantified using differential gauging with an Acoustic Doppler Current Profiler (ADCP. At the catchment scale (26–114 km2 runoff sources during main rain events were investigated by hydrograph separations based on Electrical Conductivity (EC and stable isotopes 2H / 1H. Clear differences in runoff sources between catchments were detected, ranging from approximately 65% event water for the most responsive sub-catchment and less than 10% event water for the least responsive sub-catchment. This shows a large variability in groundwater discharge to the stream, despite the similar lowland characteristics of sub-catchments, indicating the usefulness of environmental tracers for obtaining information about integrated catchment functioning during events. There were also clear spatial patterns of focused groundwater discharge detected by the DTS and ADCP measurements at the reach scale suggesting high spatial variability, where a significant part of groundwater discharge was concentrated in few zones indicating the possibility of concentrated nutrient or pollutant

  5. Measurement of Intestinal and Peripheral Cholesterol Fluxes by a Dual-Tracer Balance Method.

    Science.gov (United States)

    Ronda, Onne A H O; van Dijk, Theo H; Verkade, H J; Groen, Albert K

    2016-12-01

    Long-term elevated plasma cholesterol levels put individuals at risk for developing atherosclerosis. Plasma cholesterol levels are determined by the balance between cholesterol input and output fluxes. Here we describe in detail the methodology to determine the different cholesterol fluxes in mice. The percentage of absorbed cholesterol is calculated from a stable isotope-based double-label method. Cholesterol synthesis is calculated from MIDA after (13) C-acetate enrichment. Cholesterol is removed from the body via the feces. The fecal excretion route is either biliary or non-biliary. The non-biliary route is dominated by trans-intestinal cholesterol efflux, or TICE. Biliary excretion of cholesterol is measured by collecting bile. Non-biliary excretion is calculated by computational modeling. In this article, we describe methods and procedures to measure and calculate dietary intake of cholesterol, fractional cholesterol absorption, fecal neutral sterol output, biliary cholesterol excretion, TICE, cholesterol synthesis, peripheral fluxes, and whole-body cholesterol balance. © 2016 by John Wiley & Sons, Inc.

  6. A novel $^{83\\mathrm{m}}$Kr tracer method for characterizing xenon gas and cryogenic distillation systems

    CERN Document Server

    Rosendahl, S; Brown, E; Cristescu, I; Fieguth, A; Huhmann, C; Lebeda, O; Levy, C; Murra, M; Schneider, S; Vénos, D; Weinheimer, C

    2014-01-01

    The radioactive isomer $^{83\\mathrm{m}}$Kr has many properties that make it very useful for various applications. Its low energy decay products, like conversion, shake-off and Auger electrons as well as X- and $\\gamma$-rays are used for calibration purposes in neutrino mass experiments and direct dark matter detection experiments. Thanks to the short half-life of 1.83 h and the decay to the ground state $^{83}$Kr, one does not risk contamination of any low-background experiment with long- lived radionuclides. In this paper, we present two new applications of $^{83\\mathrm{m}}$Kr. It can be used as a radioactive tracer in noble gases to characterize the particle flow inside of gas routing systems. A method of doping $^{83\\mathrm{m}}$Kr into xenon gas and its detection, using special custom-made detectors, based on a photomultiplier tube, is described. This technique has been used to determine the circulation speed of gas particles inside of a gas purification system for xenon. Furthermore, 83m Kr can be used to...

  7. Chemical detection system and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Augustine J.; Chichester, David L.; Egger, Ann E.; Krebs, Kenneth M.; Seabury, Edward H.; Van Siclen, Clinton D.; Wharton, C. Jayson; Zabriskie, John M.

    2017-06-27

    A chemical detection system includes a frame, an emitter coupled to the frame, and a detector coupled to the frame proximate the emitter. The system also includes a shielding system coupled to the frame and positioned at least partially between the emitter and the detector, wherein the frame positions a sensing surface of the detector in a direction substantially parallel to a plane extending along a front portion of the frame. A method of analyzing composition of a suspect object includes directing neutrons at the object, detecting gamma rays emitted from the object, and communicating spectrometer information regarding the gamma rays. The method also includes presenting a GUI to a user with a dynamic status of an ongoing neutron spectroscopy process. The dynamic status includes a present confidence for a plurality of compounds being present in the suspect object responsive to changes in the spectrometer information during the ongoing process.

  8. Laplace transform in tracer kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, Eliete B., E-mail: eliete@pucrs.br [Instituto do Cerebro (InsCer/FAMAT/PUC-RS), Porto Alegre, RS, (Brazil). Faculdade de Matematica

    2013-07-01

    The main objective this paper is to quantify the pharmacokinetic processes: absorption, distribution and elimination of radiopharmaceutical(tracer), using Laplace transform method. When the drug is administered intravenously absorption is complete and is available in the bloodstream to be distributed throughout the whole body in all tissues and fluids, and to be eliminated. Mathematical modeling seeks to describe the processes of distribution and elimination through compartments, where distinct pools of tracer (spatial location or chemical state) are assigned to different compartments. A compartment model is described by a system of differential equations, where each equation represents the sum of all the transfer rates to and from a specific compartment. In this work a two-tissue irreversible compartment model is used for description of tracer, [{sup 18}F]2-fluor-2deoxy-D-glucose. In order to determine the parameters of the model, it is necessary to have information about the tracer delivery in the form of an input function representing the time-course of tracer concentration in arterial blood or plasma. We estimate the arterial input function in two stages and apply the Levenberg-Marquardt Method to solve nonlinear regressions. The transport of FDG across de arterial blood is very fast in the first ten minutes and then decreases slowly. We use de Heaviside function to represent this situation and this is the main contribution of this study. We apply the Laplace transform and the analytical solution for two-tissue irreversible compartment model is obtained. The only approach is to determinate de arterial input function. (author)

  9. Quantifying groundwater exchange rates in a beach barrier lagoon using a radioisotopic tracer and geophysical methods: Younger Lagoon, Santa Cruz, CA

    Science.gov (United States)

    Richardson, C. M.; Swarzenski, P. W.; Johnson, C.

    2013-12-01

    Coastal lagoons are highly productive systems with a strong dependence on the physico-chemical regime of their surrounding environment. Groundwater interactions with the nearshore environment can drive ecosystem stability and productivity. Lagoons with restricted surface connectivity interact with coastal waters via subsurface flow paths that follow natural hydraulic gradients, producing a dynamic freshwater-saltwater mixing zone with submarine groundwater discharge (SGD) regions that are tidally influenced. Recent studies demonstrate the importance of SGD in maintaining nearshore ecology through a number of processes, including enhanced chemical loadings, focused biogeochemical transformations, and complex water mixing scenarios (Slomp and Van Cappellen, 2004 and Taniguchi et al., 2002). Groundwater discharge to the coastal ocean is often slow, diffuse and site-specific. Traditional methods used to evaluate SGD fluxes operate at varying scales and typically result in over or underestimates of SGD. Novel monitoring and evaluation methods are required in order to better understand how coastal aquifer systems influence multi-scalar water and nutrient budgets. Recently developed methods to determine fluid exchange rates include the use of select U- and Th-series radionuclides, multi-channel resistivity imaging, as well as the integration of temperature data and 1-D analytical modeling. Groundwater fluxes were examined in a coastal lagoon system to characterize the physics of subsurface fluid transport evidenced by visible seepage faces at low tide. Fluid exchange rates were quantified to determine the spatial and temporal variability of groundwater movement using thermal time series, water level data, and a coupled radiotracer-geophysical method. Our investigation of subsurface characteristics and groundwater fluxes using both traditional and newly-developed methods indicated that seasonal water inputs and tidal controls on water table elevation significantly

  10. The Post-Shock Chemical Lifetimes of Outflow Tracers and a Possible New Mechanism to Produce Water Ice Mantles

    CERN Document Server

    Bergin, E A; Neufeld, D A; Bergin, Edwin A.; Melnick, Gary J.; Neufeld, David A.

    1998-01-01

    We have used a coupled time-dependent chemical and dynamical model to investigate the lifetime of the chemical legacy left in the wake of C-type shocks. We concentrate this study on the chemistry of H2O and O2, two molecules which are predicted to have abundances that are significantly affected in shock-heated gas. Two models are presented: (1) a three-stage model of pre-shock, shocked, and post-shock gas; and (2) a Monte-Carlo cloud simulation where we explore the effects of stochastic shock activity on molecular gas over a cloud lifetime. In agreement with previous studies, we find that shock velocities in excess of 10 km s^-1 are required to convert all of the oxygen not locked in CO into H2O before the gas has an opportunity to cool. For pure gas-phase models the lifetime of the high water abundances, or ``H2O legacy'', in the post-shock gas is 4 - 7 x 10^5 years. Through the Monte Carlo cloud simulation we demonstrate that the time-average abundance of H2O is a sensitive function of the frequency of shoc...

  11. Methods in industrial biotechnology for chemical engineers

    CERN Document Server

    Kandasamy, W B Vasantha

    2008-01-01

    In keeping with the definition that biotechnology is really no more than a name given to a set of techniques and processes, the authors apply some set of fuzzy techniques to chemical industry problems such as finding the proper proportion of raw mix to control pollution, to study flow rates, to find out the better quality of products. We use fuzzy control theory, fuzzy neural networks, fuzzy relational equations, genetic algorithms to these problems for solutions. When the solution to the problem can have certain concepts or attributes as indeterminate, the only model that can tackle such a situation is the neutrosophic model. The authors have also used these models in this book to study the use of biotechnology in chemical industries. This book has six chapters. First chapter gives a brief description of biotechnology. Second chapter deals will proper proportion of mix of raw materials in cement industries to minimize pollution using fuzzy control theory. Chapter three gives the method of determination of te...

  12. Boundary integral method application in the transportation modeling of radioactive tracers in porous ways; Aplicacao do metodo da integral de contorno na modelagem do transporte de tracadores radioativos em meios porosos

    Energy Technology Data Exchange (ETDEWEB)

    Ferroni, Jose Geraldo

    1996-03-01

    This work describes a method for estimating the effluent concentrations of radioactive tracers in production wells, considering well to well injection tests and piston-like displacements of fluids in the reservoir. The model for tracer transportation takes into account effects of convection and hydrodynamic dispersion. (author)

  13. Fast New Method for Temporary Chemical Passivation

    Directory of Open Access Journals (Sweden)

    Marek Solčanský

    2012-12-01

    Full Text Available The main material parameter of silicon, that influences the effectiveness of photovoltaic cells, is the minority carrier bulk lifetime.It may change in the technological process especially during high temperature operations. Monitoring of the carrier bulk-lifetimeis necessary for modifying the whole technological process of production. For the measurement of the minority carrier bulk-lifetimethe characterization method MW PCD (Microwave Photoconductance Decay is used, where the result of measurement is the effectivecarrier lifetime, which is very dependent on the surface recombination velocity and therefore on the quality of a silicon surfacepassivation.This work deals with an examination of a different solution types for the chemical passivation of a silicon surface. Varioussolutions are tested on silicon wafers for their consequent comparison. The main purpose of this work is to find optimal solution, whichsuits the requirements of a time stability and start-up velocity of passivation, reproducibility of the measurements and a possibilityof a perfect cleaning of a passivating solution remains from a silicon surface. Another purpose of this work is to identify the parametersof other quinhydrone solutions with different concentrations as compared with the quinhydrone solution in methanol witha concentration of 0.07 mol/dm³ marked QM007 (referential solution.The method of an effective chemical passivation with a quinhydrone in methanol solution was suggested. The solution witha concentration of 0.07 mol /dm3 fulfills all required criteria. The work also confirms the influence of increased concentrationquinhydrone on the temporal stability of the passivation layer and the effect for textured silicon wafers. In conclusion, the influenceof an illumination and the temperature on the properties of the passivating solution QM007 is discussed.

  14. Chemical Methods for Peptide and Protein Production

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-04-01

    Full Text Available Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported a-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  15. A nonequilibrium simulation method for calculating tracer diffusion coefficients of small solutes in n-alkane liquids and polymers

    NARCIS (Netherlands)

    van der Vegt, N.F.A.; Briels, Willem J.; Wessling, Matthias; Strathmann, H.

    1998-01-01

    The tracer diffusion coefficients of methane in n-alkane liquids of increasing chain length were calculated by measuring the friction from short time nonequilibrium molecular dynamics simulations. The frictional constant was calculated from the exponentially decaying distance between two methane tra

  16. Cardiac metabolism in mice: tracer method developments and in vivo application revealing profound metabolic inflexibility in diabetes

    National Research Council Canada - National Science Library

    Nicholas D. Oakes; Pia Thalén; Ellen Aasum; Amanda Edgley; Terje Larsen; Stuart M. Furler; Bengt Ljung; David Severson

    2006-01-01

    ...) mice, based on cardiac uptake of (R)-2-[9,10-3H]bromopalmitate ([3H]R-BrP) and 2-deoxy-d-[U-14C]glucose tracers. To obtain quantitative information about the evaluation of cardiac FFA utilization...

  17. Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst

    Science.gov (United States)

    Katz, B.G.; Coplen, T.B.; Bullen, T.D.; Hal, Davis J.

    1997-01-01

    In the mantled karst terrane of northern Florida, the water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface. Chemical and isotopic analyses [18O/16O (??18O), 2H/1H (??D), 13C/12C (??13C), tritium(3H), and strontium-87/strontium-86(87Sr/86Sr)]along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of ground water as it evolves downgradient in two systems. In one system, surface water enters the Upper Floridan aquifer through a sinkhole located in the Northern Highlands physiographic unit. In the other system, surface water enters the aquifer through a sinkhole lake (Lake Bradford) in the Woodville Karst Plain. Differences in the composition of water isotopes (??18O and ??D) in rainfall, ground water, and surface water were used to develop mixing models of surface water (leakage of water to the Upper Floridan aquifer from a sinkhole lake and a sinkhole) and ground water. Using mass-balance calculations, based on differences in ??18O and ??D, the proportion of lake water that mixed with meteoric water ranged from 7 to 86% in water from wells located in close proximity to Lake Bradford. In deeper parts of the Upper Floridan aquifer, water enriched in 18O and D from five of 12 sampled municipal wells indicated that recharge from a sinkhole (1 to 24%) and surface water with an evaporated isotopic signature (2 to 32%) was mixing with ground water. The solute isotopes, ??13C and 87Sr/86Sr, were used to test the sensitivity of binary and ternary mixing models, and to estimate the amount of mass transfer of carbon and other dissolved species in geochemical reactions. In ground water downgradient from Lake Bradford, the dominant processes controlling carbon cycling in ground water were dissolution of carbonate minerals, aerobic degradation of organic matter, and hydrolysis of silicate minerals. In the deeper parts of the Upper

  18. Proceedings of the atmospheric tracers and tracer application workshop

    Energy Technology Data Exchange (ETDEWEB)

    Barr, S.; Gedayloo, T. (comps.)

    1979-12-01

    In addition to presentations by participating members a general discussion was held in order to summarize and outline the goals and objectives of the workshop. A number of new low level background tracers such as heavy methanes, perfluorocarbons, multiply labeled isotopes such as /sup 13/C/sup 18/O/sub 2/, helium 3, in addition to sample collection techniques and analytical methods for various tracers were discussed. This report is a summary of discussions and papers presented at this workshop.

  19. Comparison of the ensemble Kalman filter and 4D-Var assimilation methods using a stratospheric tracer transport model

    Directory of Open Access Journals (Sweden)

    S. Skachko

    2014-01-01

    Full Text Available The Ensemble Kalman filter (EnKF assimilation method is applied to the tracer transport using the same stratospheric transport model as in the 4D-Var assimilation system BASCOE. This EnKF version of BASCOE was built primarily to avoid the large costs associated with the maintenance of an adjoint model. The EnKF developed in BASCOE accounts for two adjustable parameters: a parameter α controlling the model error term and a parameter r controlling the observational error. The EnKF system is shown to be markedly sensitive to these two parameters, which are adjusted based on the monitoring of a χ2-test measuring the misfit between the control variable and the observations. The performance of the EnKF and 4D-Var versions was estimated through the assimilation of Aura-MLS ozone observations during an 8 month period which includes the formation of the 2008 Antarctic ozone hole. To ensure a proper comparison, despite the fundamental differences between the two assimilation methods, both systems use identical and carefully calibrated input error statistics. We provide the detailed procedure for these calibrations, and compare the two sets of analyses with a focus on the lower and middle stratosphere where the ozone lifetime is much larger than the observational update frequency. Based on the Observation-minus-Forecast statistics, we show that the analyses provided by the two systems are markedly similar, with biases smaller than 5% and standard deviation errors smaller than 10% in most of the stratosphere. Since the biases are markedly similar, they have most probably the same causes: these can be deficiencies in the model and in the observation dataset, but not in the assimilation algorithm nor in the error calibration. The remarkably similar performance also shows that in the context of stratospheric transport, the choice of the assimilation method can be based on application-dependent factors, such as CPU cost or the ability to generate an ensemble

  20. Tracer techniques for urine volume determination and urine collection and sampling back-up system

    Science.gov (United States)

    Ramirez, R. V.

    1971-01-01

    The feasibility, functionality, and overall accuracy of the use of lithium were investigated as a chemical tracer in urine for providing a means of indirect determination of total urine volume by the atomic absorption spectrophotometry method. Experiments were conducted to investigate the parameters of instrumentation, tracer concentration, mixing times, and methods for incorporating the tracer material in the urine collection bag, and to refine and optimize the urine tracer technique to comply with the Skylab scheme and operational parameters of + or - 2% of volume error and + or - 1% accuracy of amount of tracer added to each container. In addition, a back-up method for urine collection and sampling system was developed and evaluated. This back-up method incorporates the tracer technique for volume determination in event of failure of the primary urine collection and preservation system. One chemical preservative was selected and evaluated as a contingency chemical preservative for the storage of urine in event of failure of the urine cooling system.

  1. GREENSCOPE: A Method for Modeling Chemical Process ...

    Science.gov (United States)

    Current work within the U.S. Environmental Protection Agency’s National Risk Management Research Laboratory is focused on the development of a method for modeling chemical process sustainability. The GREENSCOPE methodology, defined for the four bases of Environment, Economics, Efficiency, and Energy, can evaluate processes with over a hundred different indicators. These indicators provide a means for realizing the principles of green chemistry and green engineering in the context of sustainability. Development of the methodology has centered around three focal points. One is a taxonomy of impacts that describe the indicators and provide absolute scales for their evaluation. The setting of best and worst limits for the indicators allows the user to know the status of the process under study in relation to understood values. Thus, existing or imagined processes can be evaluated according to their relative indicator scores, and process modifications can strive towards realizable targets. A second area of focus is in advancing definitions of data needs for the many indicators of the taxonomy. Each of the indicators has specific data that is necessary for their calculation. Values needed and data sources have been identified. These needs can be mapped according to the information source (e.g., input stream, output stream, external data, etc.) for each of the bases. The user can visualize data-indicator relationships on the way to choosing selected ones for evalua

  2. Chemical Methods for Ugnu Viscous Oils

    Energy Technology Data Exchange (ETDEWEB)

    Kishore Mohanty

    2012-03-31

    The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation

  3. Chemical Methods for Ugnu Viscous Oils

    Energy Technology Data Exchange (ETDEWEB)

    Kishore Mohanty

    2012-03-31

    The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation

  4. Traçadores: o uso de agentes químicos para estudos hidrológicos, ambientais, petroquímicos e biológicos Tracers: the use of chemical agents for hydrological, environmental, petrochemical and biological studies

    Directory of Open Access Journals (Sweden)

    Láuris Lucia da Silva

    2009-01-01

    Full Text Available This paper presents a revision of the history, definitions, and classification of tracers (natural and artificial, internal and external. The fundamental ideas concerning tracers are described, followed by their application illustrated by typical examples. The advantages and disadvantages of five classes among the most frequently used external tracers (fluorescent, microbial, chemical, radioactive and activable isotopes are also described in detail. This review also presents some interesting and modern applications of tracers in the areas of diagnostics in medical practice, environmental pollution, hydrology and petroleum chemistry.

  5. Study of tropospheric CO and O3 enhancement episode over Indonesia during Autumn 2006 using the Model for Ozone and Related chemical Tracers (MOZART-4)

    Science.gov (United States)

    Srivastava, Shuchita; Sheel, Varun

    2013-03-01

    An intense biomass burning event occurred over Indonesia in Autumn of 2006. We study the impact of this event on the free tropospheric abundances of carbon monoxide (CO) and ozone (O3) using MOPITT (Measurements of Pollution In The Troposphere) observations, ozonesonde measurements and 3D chemistry transport model MOZART (Model for Ozone and Related chemical Tracers). MOPITT observations showed an episode of enhanced CO in the free troposphere over the Indonesian region during October-November 2006. This feature is reproduced well by MOZART. The model mass diagnostics identifies the source of enhanced CO mixing ratio in the free troposphere (100-250 ppbv) as due to convective processes. The implication of the fire plume on the vertical distribution of O3 over Kuala Lumpur has been studied. The tropospheric O3 increased over this location by 10-25 ppbv during Autumn 2006 as compared to Autumn 2005 and 2007. The MOZART model simulation significantly underestimated this tropospheric O3 enhancement. The model is run both with and without Indonesian biomass burning emissions to estimate the contribution of fire emission in CO and O3 enhancement. Biomass burning emission is found to be responsible for an average increase in CO by 104 ± 56 ppbv and O3 by 5 ± 1 ppbv from surface to 100 hPa range. The model results also showed that biomass burning and El Niño related dynamical changes both contributed (˜4 ppbv-12 ppbv) to the observed increase in tropospheric O3 over the Indonesian region during Autumn 2006.

  6. Quantification of emissions due to the natural gas storage well-casing blowout at Aliso Canyon/SS-25 using tracer flux ratio methods.

    Science.gov (United States)

    Herndon, S. C.; Daube, C.; Jervis, D.; Yacovitch, T. I.; Roscioli, J. R.; Curry, J.; Nelson, D. D.; Knighton, W. B.

    2016-12-01

    The methane emission rate from the well blowout at Aliso Canyon Natural Gas Storage Facility in Porter Ranch, California was quantified using the tracer flux ratio method (TFR). Over 400 tracer plume transects were collected, each lasting 15-300 seconds, using instrumentation aboard a mobile platform on 25 days between December 21, 2015 and March 9, 2016. The leak rate from October 23rd to February 11th has been estimated here using a combination of our leak rate measurements (TFR) and the flight mass balance (FMB) data [Conley et al., 2016]. The TFR approach employed here is assessing only the leaks due to the SS-25 well blowout and excludes other possible emissions at the facility. By "calibrating" the FMB dataset, the leak rate is integrated from Oct 23rd to December 21th. The sum of the inferred inferred and measured meissions suggests a total leak burden of 86,022 ± 8,393 metric tons of CH4. The primary uncertainty in this value is due to the uncertainty in the emission rate prior to the beginning of the TFR quantification. The ethane to methane enhancement ratio observed downwind of the leak site is consistent with the content of ethane in the natural gas at this site and provides definitive evidence that the methane emission rate quantified via tracer flux ratio is not due to a nearby landfill or other potential biogenic sources.

  7. Chemical Reactivity as Described by Quantum Chemical Methods

    Directory of Open Access Journals (Sweden)

    F. De Proft

    2002-04-01

    Full Text Available Abstract: Density Functional Theory is situated within the evolution of Quantum Chemistry as a facilitator of computations and a provider of new, chemical insights. The importance of the latter branch of DFT, conceptual DFT is highlighted following Parr's dictum "to calculate a molecule is not to understand it". An overview is given of the most important reactivity descriptors and the principles they are couched in. Examples are given on the evolution of the structure-property-wave function triangle which can be considered as the central paradigm of molecular quantum chemistry to (for many purposes a structure-property-density triangle. Both kinetic as well as thermodynamic aspects can be included when further linking reactivity to the property vertex. In the field of organic chemistry, the ab initio calculation of functional group properties and their use in studies on acidity and basicity is discussed together with the use of DFT descriptors to study the kinetics of SN2 reactions and the regioselectivity in Diels Alder reactions. Similarity in reactivity is illustrated via a study on peptide isosteres. In the field of inorganic chemistry non empirical studies of adsorption of small molecules in zeolite cages are discussed providing Henry constants and separation constants, the latter in remarkable good agreement with experiments. Possible refinements in a conceptual DFT context are presented. Finally an example from biochemistry is discussed : the influence of point mutations on the catalytic activity of subtilisin.

  8. An experimental application of the Periodic Tracer Hierarchy (PERTH) method to quantify time-variable water and solute transport in a sloping soil lysimeter

    Science.gov (United States)

    Pangle, L. A.; Cardoso, C.; Kim, M.; Lora, M.; Wang, Y.; Troch, P. A. A.; Harman, C. J.

    2014-12-01

    sequence of rainfall pulses and achieved periodic-steady-state conditions over 24 days. Using systematic introductions of deuterium- and chloride-enriched water, and the PERTH method, we resolve the time-conditional TTDs associated with tracer injections that occurred during specific intervals of the overall rainfall sequence.

  9. Tracer tomography (in) rocks!

    Science.gov (United States)

    Somogyvári, Márk; Jalali, Mohammadreza; Jimenez Parras, Santos; Bayer, Peter

    2016-04-01

    Physical behavior of fractured aquifers is rigorously controlled by the presence of interconnected conductive fractures, as they represent the main pathways for flow and transport. Ideally, they are simulated as a discrete fracture network (DFN) in a model to capture the role of fracture system geometry, i.e. fracture length, height, and width (aperture/transmissivity). Such network may be constrained by prior geological information or direct data resources such as field mapping, borehole logging and geophysics. With the many geometric features, however, calibration of a DFN to measured data is challenging. This is especially the case when spatial properties of a fracture network need to be calibrated to flow and transport data. One way to increase the insight in a fractured rock is by combining the information from multiple field tests. In this study, a tomographic configuration that combines multiple tracer tests is suggested. These tests are conducted from a borehole with different injection levels that act as sources. In a downgradient borehole, the tracer is recorded at different levels or receivers, in order to maximize insight in the spatial heterogeneity of the rock. As tracer here we chose heat, and temperature breakthrough curves are recorded. The recorded tracer data is inverted using a novel stochastic trans-dimensional Markov Chain Monte Carlo procedure. An initial DFN solution is generated and sequentially modified given available geological information, such as expected fracture density, orientation, length distribution, spacing and persistency. During this sequential modification, the DFN evolves in a trans-dimensional inversion space through adding and/or deleting fracture segments. This stochastic inversion algorithm requires a large number of thousands of model runs to converge, and thus using a fast and robust forward model is essential to keep the calculation efficient. To reach this goal, an upwind coupled finite difference method is employed

  10. Evaluation of the short-term fate and transport of chemicals of emerging concern during soil-aquifer treatment using select transformation products as intrinsic redox-sensitive tracers.

    Science.gov (United States)

    Muntau, Meriam; Schulz, Manoj; Jewell, Kevin S; Hermes, Nina; Hübner, Uwe; Ternes, Thomas; Drewes, Jörg E

    2017-04-01

    In this study, known products from oxic transformation of the X-ray contrast medium iopromide were introduced for the first time as intrinsic tracer for in situ characterization of the transition zone between oxic and suboxic conditions during the initial phase of soil-aquifer treatment (SAT). Two wet-dry cycles of a full-scale infiltration basin were monitored to characterize hydraulic retention times, redox conditions, removal of bulk organic parameters and the fate of chemicals of emerging concern (CECs). Tracer tests at the site showed an average hydraulic retention time of 80%). These results highlight that the analysis of iopromide along with its intermediates and persistent TPs can serve as a promising probing tool to determine overall efficiency of CEC biodegradation and to identify potential in situ oxygen limitations.

  11. Safety in the Chemical Laboratory: Tested Disposal Methods for Chemical Wastes from Academic Laboratories.

    Science.gov (United States)

    Armour, M. A.; And Others

    1985-01-01

    Describes procedures for disposing of dichromate cleaning solution, picric acid, organic azides, oxalic acid, chemical spills, and hydroperoxides in ethers and alkenes. These methods have been tested under laboratory conditions and are specific for individual chemicals rather than for groups of chemicals. (JN)

  12. Quality Control Guidelines for SAM Chemical Methods

    Science.gov (United States)

    Learn more about quality control guidelines and recommendations for the analysis of samples using the chemistry methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  13. Chemical Analysis Methods for Silicon Carbide

    Institute of Scientific and Technical Information of China (English)

    Shen Keyin

    2006-01-01

    @@ 1 General and Scope This Standard specifies the determination method of silicon dioxide, free silicon, free carbon, total carbon, silicon carbide, ferric sesquioxide in silicon carbide abrasive material.

  14. Chemical ligation methods for the tagging of DNA-encoded chemical libraries.

    Science.gov (United States)

    Keefe, Anthony D; Clark, Matthew A; Hupp, Christopher D; Litovchick, Alexander; Zhang, Ying

    2015-06-01

    The generation of DNA-encoded chemical libraries requires the unimolecular association of multiple encoding oligonucleotides with encoded chemical entities during combinatorial synthesis processes. This has traditionally been achieved using enzymatic ligation. We discuss a range of chemical ligation methods that provide alternatives to enzymatic ligation. These chemical ligation methods include the generation of modified internucleotide linkages that support polymerase translocation and other modified linkages that while not supporting the translocation of polymerases can also be used to generate individual cDNA molecules containing encoded chemical information specifying individual library members. We also describe which of these approaches have been successfully utilized for the preparation of DNA-encoded chemical libraries and those that were subsequently used for the discovery of inhibitors.

  15. Investigation of Chemical Equilibrium Kinetics by the Electromigration Method

    CERN Document Server

    Bozhikov, G A; Bontchev, G D; Maslov, O D; Milanov, M V; Dmitriev, S N

    2002-01-01

    Measurement of the chemical reaction rates for complex formation as well as hydrolysis type reactions by the method of horizontal zone electrophoresis is outlined. The correlation between chemical equilibrium kinetics and electrodiffusion processes in a constant d.c. electric field is described. In model electromigration experiments the reaction rate constant of the complex formation of Hf(IV) and DTPA is determined.

  16. Transient methods to characterize flows and mass transfer in a packed column by tracers; Methodes transitoires de caracterisation des ecoulements et du transfert de masse dans une colonne a garnissage a l'aide de traceurs

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, S.

    1998-06-11

    The aim of this study is to propose a packed column characterization method in the form of phases flows and mass transfer model, in which the parameters are estimated by transient technique. After a bibliographic study a model is performed and validated. It allows efficiency and precision in the parameters choice. Two tracer techniques have been implemented: they show interesting possibilities of flow diagnosis. (A.L.B.)

  17. Packet Tracer network simulator

    CERN Document Server

    Jesin, A

    2014-01-01

    A practical, fast-paced guide that gives you all the information you need to successfully create networks and simulate them using Packet Tracer.Packet Tracer Network Simulator is aimed at students, instructors, and network administrators who wish to use this simulator to learn how to perform networking instead of investing in expensive, specialized hardware. This book assumes that you have a good amount of Cisco networking knowledge, and it will focus more on Packet Tracer rather than networking.

  18. Odour Detection Methods: Olfactometry and Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Sara Lovascio

    2011-05-01

    Full Text Available The complexity of the odours issue arises from the sensory nature of smell. From the evolutionary point of view olfaction is one of the oldest senses, allowing for seeking food, recognizing danger or communication: human olfaction is a protective sense as it allows the detection of potential illnesses or infections by taking into account the odour pleasantness/unpleasantness. Odours are mixtures of light and small molecules that, coming in contact with various human sensory systems, also at very low concentrations in the inhaled air, are able to stimulate an anatomical response: the experienced perception is the odour. Odour assessment is a key point in some industrial production processes (i.e., food, beverages, etc. and it is acquiring steady importance in unusual technological fields (i.e., indoor air quality; this issue mainly concerns the environmental impact of various industrial activities (i.e., tanneries, refineries, slaughterhouses, distilleries, civil and industrial wastewater treatment plants, landfills and composting plants as sources of olfactory nuisances, the top air pollution complaint. Although the human olfactory system is still regarded as the most important and effective “analytical instrument” for odour evaluation, the demand for more objective analytical methods, along with the discovery of materials with chemo-electronic properties, has boosted the development of sensor-based machine olfaction potentially imitating the biological system. This review examines the state of the art of both human and instrumental sensing currently used for the detection of odours. The olfactometric techniques employing a panel of trained experts are discussed and the strong and weak points of odour assessment through human detection are highlighted. The main features and the working principles of modern electronic noses (E-Noses are then described, focusing on their better performances for environmental analysis. Odour emission monitoring

  19. Beach sediments drift study by means of radioactive tracers; L'etude du transport littoral par la methode des traceurs radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Hours, R. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Jaffry, P. [Electricite de France (EDF), 78 - Chatou (France). Lab. National d' Hydraulique

    1959-07-01

    The present state of the sediments drift studies by means of radioactive tracers is exposed. Various processes of labelling, immersion and detection, used in France and other countries, are reviewed. A more extended analysis of some aspects of the problem by the same authors can be found in 'La Houille Blanche', number 3, may-june 1959 (Rapport C.E.A. number 1269). (author) [French] L'etude du transport littoral des sediments et galets par la methode des traceurs radioactifs est en plein developpement. Le present rapport precise l'etat actuel de la question. Les techniques de marquage, d'immersion et de detection utilisees en France et a l'etranger sont decrites; une analyse plus detaillee de certains aspects de la question est presentee par les memes auteurs dans 'La Houille Blanche', numero 3, mai-juin 1959 (Rapport C.E.A. numero 1269). (auteur)

  20. Experimental quantification of solute transport through the vadose zone under dynamic boundary conditions with dye tracers and optical methods.

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa

    2017-04-01

    Knowledge of subsurface solute transport processes is vital to investigate e.g. groundwater contamination, nutrient uptake by plant roots and to implement remediation strategies. Beside field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. Atmospheric forcings, such as erratically varying infiltration and evaporation cycles, subject the shallow subsurface to local and temporal variations in water content and associated hydraulic conductivity of the prevailing porous media. Those variations in material properties can cause flow paths to differ between upward and downward flow periods. Thereby, the unsaturated subsurface presents a highly complicated, dynamic system. Following an extensive systematical numerical investigation of flow and transport through bimodal, unsaturated porous media under dynamic boundary conditions (Cremer et al., 2016), we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell where we introduce structural heterogeneity in the form sharp material interfaces between different porous media. In all experiments, a constant pressure head is implemented at the lower boundary, while cyclic infiltration-evaporation phases are applied at the soil surface. As a reference case a stationary infiltration with a rate corresponding to the cycle-averaged infiltration rate is applied. By initial application of dye tracers, solute transport within the domain is visualized such that transport paths and redistribution processes can be observed in a qualitative manner. Solute leaching is quantified at the bottom outlet, where breakthrough curves are obtained via spectroscopy. Liquid and vapor flow in and out of the domain is obtained from multiple balances. Thereby, the interplay of material structural heterogeneity and alternating flow (transport) directions and flow (transport) paths is investigated. Results show lateral

  1. Bacteriophages as surface and ground water tracers

    Directory of Open Access Journals (Sweden)

    P. Rossi

    1998-01-01

    Full Text Available Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra. In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  2. Bacteriophages as surface and ground water tracers

    Science.gov (United States)

    Rossi, P.; Dörfliger, N.; Kennedy, K.; Müller, I.; Aragno, M.

    Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra). In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  3. The effect of a woodstove changeout on ambient levels of PM 2.5 and chemical tracers for woodsmoke in Libby, Montana

    Science.gov (United States)

    Bergauff, Megan A.; Ward, Tony J.; Noonan, Curtis W.; Palmer, Christopher P.

    Residential woodstoves are the single largest source of PM 2.5 in Libby, MT, resulting in the community being designated as a nonattainment area for PM 2.5. Beginning in 2005, a community-wide woodstove changeout program was implemented that replaced nearly 1200 old stoves with EPA-certified units. In an effort to track the reduction of woodsmoke particles throughout the program, ambient PM 2.5 samples were collected before, during, and after the changeout. These samples were analyzed for seven selected woodsmoke tracers, including vanillin, acetovanillone, guaiacol, 4-ethylguaiacol (methoxyphenols), levoglucosan (sugar anhydride), abietic acid, and dehydroabietic acid (resin acids). Results of the changeout showed that PM 2.5 levels decreased by 20% during the changeout period, while levels of the seven chosen tracer compounds gave variable responses. Levoglucosan levels decreased by 50% while both resin acids increased after the changeout, suggesting a change in the chemistry of the particles. No trend was observed in the levels of methoxyphenols as a group over the changeout period. The results suggest that the concentrations of woodsmoke related PM 2.5 in the Libby airshed have decreased; however, the chemistry of the emitted particles also changed when old woodstoves were replaced with new EPA-certified stoves.

  4. METHODS FOR INVESTIGATION OF CHEMICAL CHARACTERISTICS IN POLYMER MATERIALS

    Directory of Open Access Journals (Sweden)

    V. V. Kuzmich

    2017-01-01

    Full Text Available A method for measuring polymer chemical resistance by dipping specimens in chemical reagents is a standard investigation procedure used in chemical industry (Standards ASTM D543, ISO 155. Such method has been used only for comparative evaluation of chemical resistance for various materials in a number of typical reagents. The results obtained with the help of the method do not provide the possibility directly to estimate application of the given material for this or that products which are used in contact with various chemical environments. It is necessary to take into account such limitations of theused testing results as duration of environmental exposure, temperature and reagent concentration in the medium. If it is as sumed that the method is applied under conditions when a product is continuously contacting with liquid then the results of short-term testings can be used only with the purpose to exclude the least adequate materials. Testing equipment has included a precision chemical balance, a micrometer, a container for immersion medium, a thermostat for setting and maintaining the required temperature and devices for measuring physical properties. Dimensions and type of a test specimen are specified by the shape of material which is used for testing. At least three specimens are needed for testing in every reagent. Changes in dimension and weight are measured for every specimen. The specimen is placed in container for 7 days in standard laboratory atmosphere where it should not touch a bottom or walls of the container.

  5. Development and initial evaluation of a novel method for assessing tissue-specific plasma free fatty acid utilization in vivo using (R)-2-bromopalmitate tracer.

    Science.gov (United States)

    Oakes, N D; Kjellstedt, A; Forsberg, G B; Clementz, T; Camejo, G; Furler, S M; Kraegen, E W; Olwegård-Halvarsson, M; Jenkins, A B; Ljung, B

    1999-06-01

    We describe a method for assessing tissue-specific plasma free fatty acid (FFA) utilization in vivo using a non-beta-oxidizable FFA analog, [9,10-3H]-(R)-2-bromopalmitate (3H-R-BrP). Ideally 3H-R-BrP would be transported in plasma, taken up by tissues and activated by the enzyme acyl-CoA synthetase (ACS) like native FFA, but then 3H-labeled metabolites would be trapped. In vitro we found that 2-bromopalmitate and palmitate compete equivalently for the same ligand binding sites on albumin and intestinal fatty acid binding protein, and activation by ACS was stereoselective for the R-isomer. In vivo, oxidative and non-oxidative FFA metabolism was assessed in anesthetized Wistar rats by infusing, over 4 min, a mixture of 3H-R-BrP and [U-14C] palmitate (14C-palmitate). Indices of total FFA utilization (R*f) and incorporation into storage products (Rfs') were defined, based on tissue concentrations of 3H and 14C, respectively, 16 min after the start of tracer infusion. R*f, but not Rfs', was substantially increased in contracting (sciatic nerve stimulated) hindlimb muscles compared with contralateral non-contracting muscles. The contraction-induced increases in R*f were completely prevented by blockade of beta-oxidation with etomoxir. These results verify that 3H-R-BrP traces local total FFA utilization, including oxidative and non-oxidative metabolism. Separate estimates of the rates of loss of 3H activity indicated effective 3H metabolite retention in most tissues over a 16-min period, but appeared less effective in liver and heart. In conclusion, simultaneous use of 3H-R-BrP and [14C]palmitate tracers provides a new useful tool for in vivo studies of tissue-specific FFA transport, utilization and metabolic fate, especially in skeletal muscle and adipose tissue.

  6. Chemical Methods to Knock Down the Amyloid Proteins

    Directory of Open Access Journals (Sweden)

    Na Gao

    2017-06-01

    Full Text Available Amyloid proteins are closely related with amyloid diseases and do tremendous harm to human health. However, there is still a lack of effective strategies to treat these amyloid diseases, so it is important to develop novel methods. Accelerating the clearance of amyloid proteins is a favorable method for amyloid disease treatment. Recently, chemical methods for protein reduction have been developed and have attracted much attention. In this review, we focus on the latest progress of chemical methods that knock down amyloid proteins, including the proteolysis-targeting chimera (PROTAC strategy, the “recognition-cleavage” strategy, the chaperone-mediated autophagy (CMA strategy, the selectively light-activatable organic and inorganic molecules strategy and other chemical strategies.

  7. Chemical Modification Methods of Nanoparticles of Silicon Carbide Surface

    OpenAIRE

    Anton S. Yegorov; Vitaly S. Ivanov; Alexey V. Antipov; Alyona I. Wozniak; Kseniia V. Tcarkova.

    2015-01-01

    silicon carbide exhibits exceptional properties: high durability, high thermal conductivity, good heat resistance, low thermal expansion factor and chemical inactivity. Reinforcement with silicon carbide nanoparticles increases polymer’s tensile strength and thermal stability.Chemical methods of modification of the silicon carbide surface by means of variety of reagents from ordinary molecules to macromolecular polymers are reviewed in the review.The structure of silicon carbide surface layer...

  8. Chemical reactor and method for chemically converting a first material into a second material

    Science.gov (United States)

    Kong, Peter C.

    2008-04-08

    A chemical reactor and method for converting a first material into a second material is disclosed and wherein the chemical reactor is provided with a feed stream of a first material which is to be converted into a second material; and wherein the first material is combusted in the chemical reactor to produce a combustion flame, and a resulting gas; and an electrical arc is provided which is passed through or superimposed upon the combustion flame and the resulting gas to facilitate the production of the second material.

  9. Chemical reactor and method for chemically converting a first material into a second material

    Science.gov (United States)

    Kong, Peter C.

    2008-04-08

    A chemical reactor and method for converting a first material into a second material is disclosed and wherein the chemical reactor is provided with a feed stream of a first material which is to be converted into a second material; and wherein the first material is combusted in the chemical reactor to produce a combustion flame, and a resulting gas; and an electrical arc is provided which is passed through or superimposed upon the combustion flame and the resulting gas to facilitate the production of the second material.

  10. Simple, inexpensive method of determining total body water using a tracer dose of D/sub 2/O and infrared absorption of biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lukaski, H.C.; Johnson, P.E.

    1985-02-01

    An improved infrared spectrophotometric method using tracer doses of D/sub 2/O for determination of total body water (TBW) is described. Evaluation of sample preparation procedures showed that only vacuum sublimation yielded acceptable recoveries of D/sub 2/O standards in the range of 0.01-0.30 mg/ml in urine and plasma (101 +/- 2.5 and 99.6 +/- 2.6%, mean +/- SD, respectively). Oral administration of a 10 g dose of D/sub 2/O was shown to equilibrate within 2 hr in the saliva and plasma of 10 healthy men and women, including obese (30% body fat) subjects. Calculated TBW was 39.1 +/- 6.4 L which represented 74 +/- 1.6% of the fat free mass determined by hydrodensitometry. The precision of the described infrared method was 2.5%. Based upon the observed sensitivity of this method, it would be possible to administer smaller oral D/sub 2/O doses, 5-6 g, and obtain reliable TBW values. The practical advantages of this method are low cost and a simple analysis that permits repeated TBW measurements over brief periods without an undue buildup of background deuterium levels in the body.

  11. A rapid method for the measurement of sulfur hexafluoride (SF6), trifluoromethyl sulfur pentafluoride (SF5CF3), and Halon 1211 (CF2ClBr) in hydrologic tracer studies

    Science.gov (United States)

    Busenberg, Eurybiades; Plummer, L. Niel

    2010-01-01

    A rapid headspace method for the simultaneous laboratory determination of intentionally introduced hydrologic tracers, sulfur hexafluoride (SF6), trifluoromethyl sulfur pentafluoride (SF5CF3), Halon 1211 (CF2ClBr), and other halocarbons in water and gases is described. The high sensitivity of the procedure allows for introduction of minimal tracer mass (a few grams) into hydrologic systems with a large dynamic range of analytical detection (dilutions to 1:108). Analysis times by gas chromatography with electron capture detector are less than 1 min for SF6; about 2 min for SF6 and SF5CF3; and 4 min for SF6, SF5CF3, and Halon 1211. Many samples can be rapidly collected, preserved in stoppered septum bottles, and analyzed at a later time in the laboratory. Examples are provided showing the effectiveness of the gas tracer test studies in varied hydrogeological settings.

  12. Chemical Decellularization Methods and Its Effects on Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Amir Hossein Akbari Zahmati

    2017-08-01

    Full Text Available Background:  Extracellular matrix (ECM produced by tissue decellularization processes as a biological scaffold due to its unique properties compared to other scaffolds for migration and implantation of stem cells have been used successfully in the field of tissue engineering and regenerative medicine in the last years. The objective of this manuscript was to provide an overview of the chemical decellularization methods, evaluation of decellularized ECM and the potential effect of the chemical decellularization agents on the biochemical composition. Methods: We searched in Google Scholar, PubMed, Scopus, and Science Direct. The literature search was done by using the following keywords: “ECM, biologic scaffold, decellularization, chemical methods, tissue engineering.” We selected articles have been published from 2000 to 2016, and 15 full texts and 97 abstracts were reviewed. Results:Employing an optimization method to minimize damage to the ECM ultrastructure as for a result of the lack of reduction in mechanical properties and also the preservation of essential proteins such as laminin, fibronectin, Glycosaminoglycans (GAGs, growth factor is required. Various methods include chemical, physical and enzymatic technics were studied. However, on each of these methods can have undesirable effects on ECM. Conclusion: It is suggested that instead of the Sodium dodecyl sulfate (SDS which have high strength degradation, we can use zwitterionic separately or in combination with SDS. Tributyl phosphate (TBP due to its unique properties can be used in decellularization process.

  13. EVALUATION OF LEAKAGE FROM FUME HOODS USING TRACER GAS, TRACER NANOPARTICLES AND NANOPOWDER HANDLING TEST METHODOLOGIES

    OpenAIRE

    Dunn, Kevin H.; Tsai, Candace Su-Jung; Woskie, Susan R.; Bennett, James S.; Garcia, Alberto; Ellenbecker, Michael J.

    2014-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tr...

  14. Tracer attenuation in groundwater

    Science.gov (United States)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  15. Quantification of Gas Emissions from Refinieries, Gas Stations, Oil Wells and Agriculture using Optical Solar Occultation Flux and Tracer Correlation Methods

    Science.gov (United States)

    Mellqvist, J.; Samuelsson, J.; Marianne, E.; Brohede, S.; Andersson, P.; Johansson, J.; Isoz, O.; Tisopulos, L.; Polidori, A.; Pikelnaya, O.

    2016-12-01

    Industrial volatile organic compound (VOC) emissions may contribute significantly to ozone formation. In order to investigate how much small sources contribute to the VOC concentrations in the Los Angeles metropolitan area a comprehensive emission study has been carried out on behalf of the South Coast Air Quality Management District (SCAQMD). VOC emissions from major sources such as refineries, oil wells, petrol stations oil depots and oil platforms were measured during September and October 2015 using several unique optical methods, including the Solar Occultation Flux method (SOF) and tracer correlation technique based on extractive FTIR and DOAS combined with an open path multi reflection cell. In addition, measurements of ammonia emissions from farming in Chino were demonstrated. The measurements in this study were quality assured by carrying out a controlled source gas release study and side by side measurements with several other techniques. The results from the field campaign show that the emissions from the above mentioned sources are largely underestimated in inventories with potential impact on the air quality in the Los Angeles metropolitan area. The results show that oil and gas production is a very significant VOC emission source. In this presentation the techniques will be discussed together with the main results from the campaign including the quality assurance work.

  16. Separation of run-off components of a glacierized catchment in Kyrgyzstan, Central Asia, by tracer methods (mainly δ2H, δ18O) and meteorological data

    Science.gov (United States)

    Weise, Stephan M.; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Kalashnikova, Olga; Ershova, Natalya

    2017-04-01

    Since 2014 the glacierized Ala Archa catchment (ca. 230 km2) in the Kyrgyz Alatau mountains south of Bishkek is investigated for run-off contributions of precipitation, groundwater, snow-melt, and glacier melt by tracer methods (δ2H, δ18O, electrical conductivity) and hydro-meteorological data (run-off, precipitation, air temperature, albedo). The investigation period is characterized by a high inter-annual variability in precipitation amount and summer run-off. The isotopic composition of run-off water is found to be governed more by the interplay of air temperature, precipitation history, and snow coverage than by its origin from direct precipitation, snow- or glacial melt. The isotopic composition of base flow in winter and early spring time is found to vary probably not due to a reservoir (mixing) but due to a phase exchange process (fractionation). In the light of these results a separation of all run-off components in such an environment simply with isotope methods appears to be unrealistic.

  17. Impact of traditional processing methods on some physico chemical ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-10-16

    Oct 16, 2006 ... was then compared with flour sample prepared in the laboratory ... 'Fufu' samples from the modified method was significantly ... need to educate traditional processors on good manufacturing ... to dust, animals (e.g., lizard, sheep and goats), birds ... before being used for physical and chemical analyses.

  18. Comparison of two tracer gas dilution methods for the determination of clothing ventilation and of vapour resistance

    NARCIS (Netherlands)

    Havenith, G.; Zhang, P.; Hatcher, K.; Daanen, H.A.M.

    2010-01-01

    Clothing microclimate ventilation is an important parameter in climatic stress and in contaminated environments. The two main methods for its determination (Crockford et al. (CR) 1972 and Lotens and Havenith (LH) 1988) were, after further development, compared in terms of reproducibility, validity

  19. Count rate balance method of measuring sediment transport of sand beds by radioactive tracers; Methode du bilan des taux de comptage d'indicateurs radioactifs pour la determination du debit de charriage des lits sableux

    Energy Technology Data Exchange (ETDEWEB)

    Sauzay, G. [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1967-11-01

    Radioactive tracers are applied to the direct measurement of the sediment transport rate of sand beds. The theoretical measurement formula is derived: the variation of the count rate balance is inverse of that of the transport thickness. Simultaneously the representativeness of the tracer is critically studied. The minimum quantity of tracer which has to be injected in order to obtain a correct statistical definition of count rate given by a low number of grains 'seen' by the detector is then studied. A field experiment was made and has let to study the technological conditions for applying this method: only the treatment of results is new, the experiment itself is carried out with conventional techniques applied with great care. (author) [French] Les indicateurs radioactifs sont appliques a la mesure directe du debit de charriage des lits sableux. On etablit la formule theorique de mesure: le bilan des taux de comptage varie en sens inverse de l'epaisseur de charriage. Parallelement on fait une etude critique de la representativite de l'indicateur, puis on determine la quantite minimale de traceur qu'il faut immerger pour que les taux de comptage fournis pour un faible nombre de grains 'vus' par le detecteur aient une definition statistique correcte. Une experience de terrain a permis d'etudier les conditions technologiques de cette methode: seul le depouillement des resultats est nouveau. L'experimentation in-situ se fait suivant les procedes classiques avec un tres grand soin. (auteur)

  20. Soil chemical sensor and precision agricultural chemical delivery system and method

    Energy Technology Data Exchange (ETDEWEB)

    Colburn, J.W. Jr.

    1991-07-23

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken. 5 figures.

  1. Studies of Trace Gas Chemical Cycles Using Observations, Inverse Methods and Global Chemical Transport Models

    Science.gov (United States)

    Prinn, Ronald G.

    2001-01-01

    For interpreting observational data, and in particular for use in inverse methods, accurate and realistic chemical transport models are essential. Toward this end we have, in recent years, helped develop and utilize a number of three-dimensional models including the Model for Atmospheric Transport and Chemistry (MATCH).

  2. Chemical Modification Methods of Nanoparticles of Silicon Carbide Surface

    Directory of Open Access Journals (Sweden)

    Anton S. Yegorov

    2015-09-01

    Full Text Available silicon carbide exhibits exceptional properties: high durability, high thermal conductivity, good heat resistance, low thermal expansion factor and chemical inactivity. Reinforcement with silicon carbide nanoparticles increases polymer’s tensile strength and thermal stability.Chemical methods of modification of the silicon carbide surface by means of variety of reagents from ordinary molecules to macromolecular polymers are reviewed in the review.The structure of silicon carbide surface layer and the nature of modificator bonding with the surface of SiC particles are reviewed. General examples of surface modification methodologies and composite materials with the addition of modified SiC are given.

  3. Methods and tools for sustainable chemical process design

    DEFF Research Database (Denmark)

    Loureiro da Costa Lira Gargalo, Carina; Chairakwongsa, Siwanat; Quaglia, Alberto;

    2015-01-01

    As the pressure on chemical and biochemical processes to achieve a more sustainable performance increases, the need to define a systematic and holistic way to accomplish this is becoming more urgent. In this chapter, a multilevel computer-aided framework for systematic design of more sustainable...... chemical processes is presented. The framework allows the use of appropriate computer-aided methods and tools in a hierarchical manner according to a developed work flow for a multilevel criteria analysis that helps generate competing and more sustainable process design options. The application...

  4. Optimizing the mercury mass measurement in industrial electrolytic cells by the radio-tracer method at ININ; Optimizacion de la medicion de masa de mercurio en celdas electroliticas industriales por el metodo de radiotrazado en el ININ

    Energy Technology Data Exchange (ETDEWEB)

    Valle R, J.; Angeles C, A., E-mail: Ing.valle.r@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    One method used in the production of chlorine and sodium is the use of electrolytic cells for the separation of chlorine and sodium from the brine; the industries apply very intense electromagnetic fields in this process. The electrolytic cells use mercury as electrode. In a chlorine production plant inventories are determined by total amount of mercury in the plant annually, since mercury losses are large and a very important parameter is to control the mass of mercury for it is necessary to measure with great precision the losses made. There are several methods to determine the mass of mercury ranging from take samples and weigh, but this involves continuous interruption of the process creating downtimes which in turn represent economic losses giving a result delimiting productivity for the industrial sector. An alternative and attractive method is to use a radioactive tracer whose principle has a similar behavior to study objective. The inert mercury has to be neutron activated in a nuclear reactor to having the characteristics of a tracer; the result makes one of the isotopes of mercury. The tracer is transported taking into account the recommendations of the Comision Nacional de Seguridad Nuclear y Salvaguardias (Mexico), then it is injected into the electrolytic cells mixing with the mercury in the system. By a relative radioactivity measurement and one sample by gamma spectrometry per interest cell, the mass of mercury without stopping the process is obtained. For optimal use of radio-tracer method must be taken into account as important features: irradiation time of mercury, counting conditions, vial geometry, sample volume, sample cells, mixing time and half-life of the tracer. (Author)

  5. Determination of the separation efficiencies of a single-stage cryogenic distillation setup to remove krypton out of xenon by using a (83m)Kr tracer method.

    Science.gov (United States)

    Rosendahl, S; Brown, E; Cristescu, I; Fieguth, A; Huhmann, C; Lebeda, O; Murra, M; Weinheimer, C

    2015-11-01

    The separation of krypton and xenon is of particular importance for the field of direct dark matter search with liquid xenon detectors. The intrinsic contamination of the xenon with radioactive (85)Kr makes a significant background for these kinds of low count-rate experiments and has to be removed beforehand. This can be achieved by cryogenic distillation, a technique widely used in industry, using the different vapor pressures of krypton and xenon. In this paper, we present an investigation on the separation performance of a single stage distillation system using a radioactive (83m)Kr-tracer method. The separation characteristics under different operation conditions are determined for very low concentrations of krypton in xenon at the level of (83m)Kr/Xe = 1.9 ⋅ 10(-15), demonstrating, that cryogenic distillation in this regime is working. The observed separation is in agreement with the expectation from the different volatilities of krypton and xenon. This cryogenic distillation station is the first step on the way to a multi-stage cryogenic distillation column for the next generation of direct dark matter experiment XENON1T.

  6. Use of tracers to investigate drilling-fluid invasion and oil flushing during coring

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.; Marriott, F.T. (Texaco, Inc., Houston, TX (US))

    1988-11-01

    This work develops a method in which chemical tracers in the drilling fluid help determine mud filtrate invasion and the degree of oil flushing during coring of steamed and unsteamed heavy-oil formations. Salts of iodide and bromide were added to the drilling fluid while Well TO3 was cored through the Lombardi and Aurignac zones at San Ardo field in California. Vertical core plugs, taken from the periphery to the center of the retrieved whole core, were analyzed for tracer concentration. Tracer analyses indicated minimal filtrate invasion in the not-yet-steamflooded Lombardi zone and complete filtrate invasion in the steamflooded Aurignac zone. Tracer and oil saturation analyses showed the Lombardi zone to be uniform from top to bottom with an average oil saturation of 42.5% and an average porosity of 31.1%. Interpretation of tracer and oil saturation data permitted the construction of a layered model for the Aurignac zone. The layers ranged from an average oil saturation of 8% in the steamflooded layer to 37% in the bottom layer. The data showed that significant oil flushing (6%) occurred only in cores taken from the hot-waterflooded layer just below the steam zone. Vertical core-plug porosities and saturations, as determined by a unique calculating scheme, were compared with conventional and Elkins-corrected values. The comparison indicated that misapplication of the Elkins method in high-temperature formations may result in significant errors.

  7. The use of FTIR technique for determination of gas phase emissions from wood pellet manufacturing. Evaluation of the Time Correlated Tracer (TCT) method for assessment of diffuse terpene emissions from wood pellet production; Anvaendning av FTIR teknik foer bestaemning av gasformiga emissioner vid traepelletstillverkning. Utvaerdering av Time Correlated Tracer (TCT)-metoden foer bestaemning av diffusa terpenemissioner fraan pelletstillverkning

    Energy Technology Data Exchange (ETDEWEB)

    Svedberg, Urban; Galle, Bo [Sundsvall Hospital (Sweden). Clinic of Occupational and Environmental Medicine

    2001-04-01

    In the original project proposal, quantification of the total emission of terpenes from wood pellet manufacturing with the novel TCT-method (Time Correlated Tracer) based on FTIR-technique (Fourier Transform Infrared) and tracer gas was suggested. The expected outcome was a general algorithm for the calculations of the emissions expressed as amount emitted per unit produced. This information would be useful when planning the location of new facilities in relation to domestic housing as well as to other industrial activities. Initial point sampling with an FTIR White cell was made in order to establish the locations of the sources of terpene emissions. The results showed that the dominating terpene emissions came from the smoke stacks gases and was not of such diffuse nature as originally believed. Neither in the pellet storage room, inside the main process facilities, outside the buildings, nor close to the wood chip storage piles, could terpene be detected with the FTIR point sampling cell. In the smoke stack gases terpenes, carbon monoxide, carbon dioxide, acetone, methanol, ethylene, acetylene, formaldehyde and methane was detected. The conclusions so far is that it is not economically or scientifically justifiable to continue the measurements with the proposed TCT method since, the terpene emissions are not of a diffuse nature. Instead it is concluded that terpene emission is best established by direct measurement in the smoke stack gases. In accordance with the intentions of the project, an algorithm for the terpene emission was established based on the measurements in the smoke stack gases. This algorithm shows an average emission of 255 grams of terpenes per produced ton of pellets. This gives an annual emission of 21,700 kg of gaseous terpenes from the investigated plant, based on an annual production of 85,000 tons pellets. When compared to other establishments processing wood, i.e. saw mills, this amount is not large. The results shed some light on other

  8. Novel selection methods for DNA-encoded chemical libraries.

    Science.gov (United States)

    Chan, Alix I; McGregor, Lynn M; Liu, David R

    2015-06-01

    Driven by the need for new compounds to serve as biological probes and leads for therapeutic development and the growing accessibility of DNA technologies including high-throughput sequencing, many academic and industrial groups have begun to use DNA-encoded chemical libraries as a source of bioactive small molecules. In this review, we describe the technologies that have enabled the selection of compounds with desired activities from these libraries. These methods exploit the sensitivity of in vitro selection coupled with DNA amplification to overcome some of the limitations and costs associated with conventional screening methods. In addition, we highlight newer techniques with the potential to be applied to the high-throughput evaluation of DNA-encoded chemical libraries.

  9. Molecules as tracers of galaxy evolution : an EMIR survey I. Presentation of the data and first results

    NARCIS (Netherlands)

    Costagliola, F.; Aalto, S.; Rodriguez, M. I.; Muller, S.; Spoon, H. W. W.; Martin, S.; Perez-Torres, M. A.; Alberdi, A.; Lindberg, J. E.; Batejat, F.; Juette, E.; Lahuis, F.; van der Werf, Paul P.

    2011-01-01

    Aims. We investigate the molecular gas properties of a sample of 23 galaxies in order to find and test chemical signatures of galaxy evolution and to compare them to IR evolutionary tracers. Methods. Observation at 3 mm wavelengths were obtained with the EMIR broadband receiver, mounted on the IRAM

  10. Method for innovative synthesis-design of chemical process flowsheets

    OpenAIRE

    Kumar Tula, Anjan; Gani, Rafiqul

    2015-01-01

    Chemical process synthesis-design involve the identification of the processing route to reach a desired product from a specified set of raw materials, design of the operations involved in the processing route, the calculations of utility requirements, the calculations of waste and emission to the surrounding and many more. Different methods (knowledge-based [1], mathematical programming [2], hybrid, etc.) have been proposed and are also currently employed to solve these synthesis-design probl...

  11. Fate of injected CO2 in the Wilcox Group, Louisiana, Gulf Coast Basin: Chemical and isotopic tracers of microbial-brine-rock-CO2 interactions

    Science.gov (United States)

    Shelton, Jenna L.; McIntosh, Jennifer C.; Warwick, Peter D.; Lee Zhi Yi, Amelia

    2016-01-01

    The “2800’ sandstone” of the Olla oil field is an oil and gas-producing reservoir in a coal-bearing interval of the Paleocene–Eocene Wilcox Group in north-central Louisiana, USA. In the 1980s, this producing unit was flooded with CO2 in an enhanced oil recovery (EOR) project, leaving ∼30% of the injected CO2 in the 2800’ sandstone post-injection. This study utilizes isotopic and geochemical tracers from co-produced natural gas, oil and brine to determine the fate of the injected CO2, including the possibility of enhanced microbial conversion of CO2 to CH4 via methanogenesis. Stable carbon isotopes of CO2, CH4 and DIC, together with mol% CO2 show that 4 out of 17 wells sampled in the 2800’ sandstone are still producing injected CO2. The dominant fate of the injected CO2appears to be dissolution in formation fluids and gas-phase trapping. There is some isotopic and geochemical evidence for enhanced microbial methanogenesis in 2 samples; however, the CO2 spread unevenly throughout the reservoir, and thus cannot explain the elevated indicators for methanogenesis observed across the entire field. Vertical migration out of the target 2800’ sandstone reservoir is also apparent in 3 samples located stratigraphically above the target sand. Reservoirs comparable to the 2800’ sandstone, located along a 90-km transect, were also sampled to investigate regional trends in gas composition, brine chemistry and microbial activity. Microbial methane, likely sourced from biodegradation of organic substrates within the formation, was found in all oil fields sampled, while indicators of methanogenesis (e.g. high alkalinity, δ13C-CO2 and δ13C-DIC values) and oxidation of propane were greatest in the Olla Field, likely due to its more ideal environmental conditions (i.e. suitable range of pH, temperature, salinity, sulfate and iron concentrations).

  12. Chemical composition of modern and fossil hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation - Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    Science.gov (United States)

    Brügmann, G.; Krause, J.; Brachert, T. C.; Stoll, B.; Weis, U.; Kullmer, O.; Ssemmanda, I.; Mertz, D. F.

    2012-11-01

    This study demonstrates that alkaline earth elements in enamel of hippopotamids, in particular Ba and Sr, are tracers for water provenance and hydrochemistry in terrestrial settings. The studied specimens are permanent premolar and molar teeth found in modern and fossil lacustrine sediments of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by two orders of magnitude for Ba (120-9336 μg g-1) as well as for Sr (9-2150 μg g-1). The variations are partially induced during post-mortem alteration and during amelogenesis, but the major contribution originates ultimately from the variable water chemistry in the habitats of the hippopotamids which is controlled by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of MgO, Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3-1.9. These elements are well correlated in single specimens, thus suggesting that their distribution is determined by a common, single process, which can be described by closed system Rayleigh crystallization of bioapatite in vivo. Enamel from most hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores. However, Ba/Sr ranges from 0.1 to 3 and varies on spatial and temporal scales. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic mantle rocks or Archean crustal rocks as the ultimate sources of Sr and Ba. This provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from 2 to 0.5. This trend can be correlated with changes in climate from humid to arid, in vegetation from C3 to C4 biomass as well as with increasing evaporation of the lake water

  13. Fermentation, fractionation and purification of streptokinase by chemical reduction method

    Directory of Open Access Journals (Sweden)

    M Niakan

    2011-05-01

    Full Text Available Background and Objectives: Streptokinase is used clinically as an intravenous thrombolytic agent for the treatment of acute myocardial infarction and is commonly prepared from cultures of Streptococcus equisimilis strain H46A. The objective of the present study was the production of streptokinase from strain H46A and purification by chemical reduction method."nMaterials and Methods: The rate of streptokinase production evaluated under the effect of changes on some fermentation factors. Moreover, due to the specific structure of streptokinase, a chemical reduction method employed for the purification of streptokinase from the fermentation broth. The H46A strain of group C streptococcus, was grown in a fermentor. The proper pH adjusted with NaOH under glucose feeding in an optimum temperature. The supernatant of the fermentation product was sterilized by filtration and concentrated by ultrafiltration. The pH of the concentrate was adjusted, cooled, and precipitated by methanol. Protein solution was reduced with dithiothreitol (DTT. Impurities settled down by aldrithiol-2 and the biological activity of supernatant containing streptokinase was determined."nResults: In the fed -batch culture, the rate of streptokinase production increased over two times as compared with the batch culture and the impurities were effectively separated from streptokinase by reduction method."nConclusion: Improvements in SK production are due to a decrease in lag phase period and increase in the growth rate of logarithmic phase. The methods of purification often result in unacceptable losses of streptokinase, but the chemical reduction method give high yield of streptokinase and is easy to perform it.

  14. Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations

    Science.gov (United States)

    Wu, Fuke; Tian, Tianhai; Rawlings, James B.; Yin, George

    2016-05-01

    The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766-1793 (1996); ibid. 56, 1794-1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.

  15. An investigation of radial tracer flow in naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Jetzabeth, Ramirez-Sabag; Fernando, Samaniego V.; Jesus, Rivera R.; Fernando Rodriguez

    1991-01-01

    This study presents a general solution for the radial flow of tracers in naturally fractured reservoirs. Continuous and finite step injection of chemical and radioactive tracers are considered. The reservoir is treated as being composed of two regions: a mobile region where longitudinal dispersion and convection take place and a stagnant region where only diffusion and adsorption are allowed. Radioactive decay is considered in both regions. The model of this study is thoroughly compared to those previously presented in literature by Moench and Ogata, Tang et al., Chen et al., and Hsieh et al. The solution is numerically inverted by means of the Crump algorithm. A detailed validation of the model with respect to solutions previously presented and/or simplified physical conditions solutions (i.e., homogeneous case) or limit solutions (i.e., for short times) was carried out. The influence of various dimensionless parameters that enter into the solution was investigated. A discussion of results obtained through the Crump and Stehfest algorithm is presented, concluding that the Crump method provides more reliable tracer concentrations.

  16. A Standardized Method for the Construction of Tracer Specific PET and SPECT Rat Brain Templates : Validation and Implementation of a Toolbox

    NARCIS (Netherlands)

    Vállez Garcia, David; Casteels, Cindy; Schwarz, Adam J.; Dierckx, Rudi A. J. O.; Koole, Michel; Doorduin, Janine

    2015-01-01

    High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present l

  17. A standardized method for the construction of tracer specific PET and SPECT rat brain templates: validation and implementation of a toolbox.

    Directory of Open Access Journals (Sweden)

    David Vállez Garcia

    Full Text Available High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion, and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70 ± 0.32 mm for [18F]FDG (n = 25, 0.23 ± 0.10mm for [11C]flumazenil (n = 13, 0.88 ± 0.20 mm for [11C]MeDAS (n = 15, 0.64 ± 0.28 mm for [11C]PK11195 (n = 19, 0.34 ± 0.15 mm for [11C]raclopride (n = 6, and 0.40 ± 0.13 mm for [99mTc]HMPAO (n = 15. These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (p<0.001. Additionally, registration errors were smallest with strain-specific templates (p<0.05, and when images and templates had the same size (p ≤ 0.001. Moreover, highest registration errors were found for the focal lesion group (p<0.005 and the diffuse lesion group (p = n.s.. In the voxel-based analysis, the reported coordinates of the focal lesion model are consistent with the stereotaxic injection procedure. The use of PET/SPECT strain- and tracer

  18. An experimental design method leading to chemical Turing patterns.

    Science.gov (United States)

    Horváth, Judit; Szalai, István; De Kepper, Patrick

    2009-05-08

    Chemical reaction-diffusion patterns often serve as prototypes for pattern formation in living systems, but only two isothermal single-phase reaction systems have produced sustained stationary reaction-diffusion patterns so far. We designed an experimental method to search for additional systems on the basis of three steps: (i) generate spatial bistability by operating autoactivated reactions in open spatial reactors; (ii) use an independent negative-feedback species to produce spatiotemporal oscillations; and (iii) induce a space-scale separation of the activatory and inhibitory processes with a low-mobility complexing agent. We successfully applied this method to a hydrogen-ion autoactivated reaction, the thiourea-iodate-sulfite (TuIS) reaction, and noticeably produced stationary hexagonal arrays of spots and parallel stripes of pH patterns attributed to a Turing bifurcation. This method could be extended to biochemical reactions.

  19. AN ANALYTICAL METHOD FOR CHEMICAL SPECIATION OF SELENIUM IN SOIL

    Directory of Open Access Journals (Sweden)

    Constantin Luca

    2010-10-01

    Full Text Available Selenium is an essential microelement, sometimes redoubtable, through its beneficial role - risk depending on its concentration in the food chain, at low dose is an important nutrient in the life of humans and animals, contrary at high doses, it becomes toxic. Selenium may be find itself in the environment (soil, sediment, water in many forms (oxidized, reduced, organometallic which determine their mobility and toxicity. Determination of chemical speciation (identification of different chemical forms provides much more complete information for a better understanding of the behavior and the potential impact on the environment. In this work we present the results of methodological research on the extraction of sequential forms of selenium in the soil and the coupling of analytical methods capable of identifying very small amounts of selenium in soils An efficient scheme of sequential extractions forms of selenium (SES consisting in atomic absorption spectrometry coupled with hydride generation (HGAAS has been developed into five experimental steps, detailed in the paper. This operational scheme has been applied to the analysis of chemical speciation in the following areas: the Bărăgan Plain and Central Dobrogea of Romania.

  20. Use of ab initio quantum chemical methods in battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Deiss, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.

  1. Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method

    Science.gov (United States)

    Chongad, L. S.; Sharma, A.; Banerjee, M.; Jain, A.

    2016-10-01

    Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H2S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD.

  2. Quantification of geopolymers production by chemical methods- A short review

    Science.gov (United States)

    Siyal, Ahmer Ali; Azizli, Khairun Azizi; Ismail, Lukman; Man, Zakaria; Khan, Muhammad Irfan

    2015-07-01

    Inorganic polymers are the aluminosilicate materials possessing properties superior than ordinary Portland cement. In this review paper the chemical techniques used for determining degree of reaction of fly ash or the quantity of geopolymer material produced have been discussed. These methods determine the amount of product formed in percentages. The methods include HCl method, salicylic acid method, and picric acid method. These methods are not only used for fly ash but they are being used for determining the degree of reactions of metakaolin and other pozzolanic materials. The picric acid is an explosive material and its transportation in high concentration is dangerous. During its use in laboratory there is also the risk of fire associated with it. According to the microscopic analysis results the picric acid attack dissolves small amount of fine unreacted fly ash particles also. The salicylic acid is easily available but the residue from its treatment contains unreacted fly ash particles, hydration phases, and certain parts of unreacted OPC. The residue from HCl and salicylic acid attack contains MgO particles which is the part of the hydration product. The HCl method is mostly used due to simple process and lower standard deviation.

  3. On Chemical Modeling an Alchemical Process: The Use of Combined Chemical Methods in a Historical Study

    Science.gov (United States)

    Rodygin, Mikhail Yu.; Rodygin, Irene V.

    1997-08-01

    Laboratory work is an important component of a course in the History of Chemistry and Alchemy, though it can only be illustrative and not comprehensive. The course should exercise both the cognitive and research abilities of an university student. Therefore methods of modeling are of prime importance at this stage of instruction. Modeling can be both a priori and experimental. The experiment can use the alchemist's materials, or it can reproduce the procedure with modern reagents. A good example for the use of this method is a recipe for the preparation of the Philosopher's Stone attributed to Lullius and cited by J. Ripley in Liber Duodecium Portarum. Thus, the Ripley's recipe is not only considered to be the first indication of the existence of acetone, but it may also indicate the formation of acetyl acetone and its derivatives. Thus, as far as the history of alchemy is concerned, the use of an experimental model not only allows us to solve a number of specific problems such as recipe interpretation and product identification, but it allows also to probe the essence of alchemical work. The combination of empirical and speculative modelings leads to the interaction of the exact methods of chemistry with the broad historico-chemical generalizations, thus introducing some additional dimensions to the definition of historico-chemical practice.

  4. Using Multi-Isotope Tracer Methods to Understand the Sources of Nitrate in Aerosols, Fog and River Water in Podocarpus National Forest, Ecuador

    Science.gov (United States)

    Brothers, L. A.; Dominguez, G.; Fabian, P.; Thiemens, M. H.

    2008-12-01

    sulfate and nitrate concentrations in rain and fog water by standard methods to investigate water and nutrient pathways along with data from satellite and ground based remote sensing, observations and numerical models. We hope to pair this with a multi-isotope tracer method and NOAA Hysplit Back trajectories, and satellite imagery for information about the number of fires burning in the region to help identify sources of the high nitrate deposition.

  5. An adaptive stepsize method for the chemical Langevin equation.

    Science.gov (United States)

    Ilie, Silvana; Teslya, Alexandra

    2012-05-14

    Mathematical and computational modeling are key tools in analyzing important biological processes in cells and living organisms. In particular, stochastic models are essential to accurately describe the cellular dynamics, when the assumption of the thermodynamic limit can no longer be applied. However, stochastic models are computationally much more challenging than the traditional deterministic models. Moreover, many biochemical systems arising in applications have multiple time-scales, which lead to mathematical stiffness. In this paper we investigate the numerical solution of a stochastic continuous model of well-stirred biochemical systems, the chemical Langevin equation. The chemical Langevin equation is a stochastic differential equation with multiplicative, non-commutative noise. We propose an adaptive stepsize algorithm for approximating the solution of models of biochemical systems in the Langevin regime, with small noise, based on estimates of the local error. The underlying numerical method is the Milstein scheme. The proposed adaptive method is tested on several examples arising in applications and it is shown to have improved efficiency and accuracy compared to the existing fixed stepsize schemes.

  6. Method for fractional solid-waste sampling and chemical analysis

    DEFF Research Database (Denmark)

    Riber, Christian; Rodushkin, I.; Spliid, Henrik

    2007-01-01

    to repeated particle-size reduction, mixing, and mass reduction until a sufficiently small but representative sample was obtained for digestion prior to chemical analysis. The waste-fraction samples were digested according to their properties for maximum recognition of all the studied substances. By combining...... four subsampling methods and five digestion methods, paying attention to the heterogeneity and the material characteristics of the waste fractions, it was possible to determine 61 substances with low detection limits, reasonable variance, and high accuracy. For most of the substances of environmental...... concern, the waste-sample concentrations were above the detection limit (e.g. Cd gt; 0.001 mg kg-1, Cr gt; 0.01 mg kg-1, Hg gt; 0.002 mg kg-1, Pb gt; 0.005 mg kg-1). The variance was in the range of 5-100%, depending on material fraction and substance as documented by repeated sampling of two highly...

  7. 跟踪界面活动网格法并行程序的性能分析%PERFORMANCE ANALYSIS OF THE TRACER INTERFACES MOVING GRID METHOD PROGRAM

    Institute of Scientific and Technical Information of China (English)

    陈军; 袁国兴; 李晓梅

    2002-01-01

    The scalability and resource requirements analysis can help users to better understand and optimize their parallel programs. Furthermore, the resource requirements of the typical applications can tell the machine designers which machines are suitable for these applications to run at full speed. This paper succeeds our previous work on scalability studies, such as the nearoptimal scaling model, time scalability and efficiency scalability metrics. We use them to analyze the scalability of a typical application, namely, the tracer interfaces moving grid method parallel program. We also provide a method to analyze its resource requirements.All these methods can be used to analyze more applications to understand their performance and requirements.

  8. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Arun; Maloney, Martin D.

    2010-06-29

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  9. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D.

    2010-06-29

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  10. 4D-SPECT/CT in orthopaedics: a new method of combined quantitative volumetric 3D analysis of SPECT/CT tracer uptake and component position measurements in patients after total knee arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Rasch, Helmut; Falkowski, Anna L.; Forrer, Flavio [Kantonsspital Baselland, Institute for Radiology and Nuclear Medicine, Bruderholz (Switzerland); Henckel, Johann [Imperial College London, London (United Kingdom); Hirschmann, Michael T. [Kantonsspital Baselland, Department of Orthopaedic Surgery and Traumatology, Bruderholz (Switzerland)

    2013-09-15

    The purpose was to evaluate the intra- and inter-observer reliability of combined quantitative 3D-volumetric single-photon emission computed tomography (SPECT)/CT analysis including size, intensity and localisation of tracer uptake regions and total knee arthroplasty (TKA) position. Tc-99m-HDP-SPECT/CT of 100 knees after TKA were prospectively analysed. The anatomical areas represented by a previously validated localisation scheme were 3D-volumetrically analysed. The maximum intensity was recorded for each anatomical area. Ratios between the respective value and the mid-shaft of the femur as the reference were calculated. Femoral and tibial TKA position (varus-valgus, flexion-extension, internal rotation- external rotation) were determined on 3D-CT. Two consultant radiologists/nuclear medicine physicians interpreted the SPECT/CTs twice with a 2-week interval. The inter- and intra-observer reliability was determined (ICCs). Kappa values were calculated for the area with the highest tracer uptake between the observers. The measurements of tracer uptake intensity showed excellent inter- and intra-observer reliabilities for all regions (tibia, femur and patella). Only the tibial shaft area showed ICCs <0.89. The kappa values were almost perfect (0.856, p < 0.001; 95 % CI 0.778, 0.922). For measurements of the TKA position, there was strong agreement within and between the readings of the two observers; the ICCs for the orientation of TKA components for inter- and intra-observer reliability were nearly perfect (ICCs >0.84). This combined 3D-volumetric standardised method of analysing the location, size and the intensity of SPECT/CT tracer uptake regions (''hotspots'') and the determination of the TKA position was highly reliable and represents a novel promising approach to biomechanics. (orig.)

  11. Molecules as tracers of galaxy evolution

    DEFF Research Database (Denmark)

    Costagliola, F.; Aalto, S.; I. Rodriguez, M.;

    2011-01-01

    We investigate the molecular gas properties of a sample of 23 galaxies in order to find and test chemical signatures of galaxy evolution and to compare them to IR evolutionary tracers. Observation at 3 mm wavelengths were obtained with the EMIR broadband receiver, mounted on the IRAM 30 m telesco...... detect the molecule in its vibrationally excited state.We find low HNC/HCN line ratios (...

  12. Chemoinformatics and chemical genomics: potential utility of in silico methods.

    Science.gov (United States)

    Valerio, Luis G; Choudhuri, Supratim

    2012-11-01

    Computational life sciences and informatics are inseparably intertwined and they lie at the heart of modern biology, predictive quantitative modeling and high-performance computing. Two of the applied biological disciplines that are poised to benefit from such progress are pharmacology and toxicology. This review will describe in silico chemoinformatics methods such as (quantitative) structure-activity relationship modeling and will overview how chemoinformatic technologies are considered in applied regulatory research. Given the post-genomics era and large-scale repositories of omics data that are available, this review will also address potential applications of in silico techniques in chemical genomics. Chemical genomics utilizes small molecules to explore the complex biological phenomena that may not be not amenable to straightforward genetic approach. The reader will gain the understanding that chemoinformatics stands at the interface of chemistry and biology with enabling systems for mapping, statistical modeling, pattern recognition, imaging and database tools. The great potential of these technologies to help address complex issues in the toxicological sciences is appreciated with the applied goal of the protection of public health.

  13. Quantum confinement of lead titanate nanocrystals by wet chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Kaviyarasu, K., E-mail: kaviyarasuloyolacollege@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa); Manikandan, E., E-mail: maniphysics@gmail.com [Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa); Central Research Laboratory, Sree Balaji Medical College & Hospital, Bharath University, Chrompet, Chennai, Tamil Nadu (India); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa); Maaza, M., E-mail: likmaaz@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa)

    2015-11-15

    Lead Titanate (PbTiO{sub 3)} is a category of the practical semiconductor metal oxides, which is widely applied in various scientific and industrial fields because of its catalytic, optical, and electrical properties. PbTiO{sub 3} nanocrystalline materials have attracted a wide attention due to their unique properties. PbTiO{sub 3} nanocrystals were investigated by X-ray diffraction (XRD) to identify the PbTiO{sub 3} nanocrystals were composed a tetragonal structure. The diameter of a single sphere was around 20 nm and the diameter reached up to 3 μm. The chemical composition of the samples and the valence states of elements were determined by X-ray photoelectron spectroscopy (XPS) in detail. - Highlights: • Single crystalline NSs of PbTiO{sub 3} fabricated by wet chemical method. • PbTiO{sub 3} NSs were uniform and continuous along the long axis. • Tetragonal perovskite structure with the diameter 20 nm and length 3 μm. • XPS spectrum was fitted with Lorentzian function respectively. • The size of the images is also 10 μm × 10 μm.

  14. Preparation of calcium stannate by modified wet chemical method

    Institute of Scientific and Technical Information of China (English)

    何则强; 李新海; 刘恩辉; 侯朝辉; 邓凌峰; 胡传跃

    2003-01-01

    A modified wet chemical route for low-temperature synthesis of the calcium stannate CaSnO3, a potentialmaterial for dielectric applications is reported. Firstly, a precursor CaSn(OH)6 was prepared using tin tetrachloride,calcium chloride and sodium hydroxide at room temperature. Then the precursor was annealed at relatively low tem-perature of 600 ℃ to obtain CaSnO3. The phase identification, thermal behavior and surface morphology of the sam-ples were characterized by element analysis, X-ray diffraction (XRD), thermo-gravimetric (TG) analysis and deriva-tive thermo-gravimetric (DTG) analysis, Fourier transform infrared spectroscopy (FTIR) and scanning electron mi-croscopy (SEM) in detail. The results show that CaSnO3 obtained by this method possesses a cubic perovskitestructure with average grain size of 5 μm.

  15. Modeling fluid flow and tracer transport in fractured rock by the effective continuum method%裂隙岩体渗流及污染物迁移模型的数值模拟研究∗

    Institute of Scientific and Technical Information of China (English)

    王笑雨; 张可霓; 李毅

    2015-01-01

    Flow transport in fracture media is different from that in porous media due to anisotropy of fracture rocks.Available methods for treatment of fracture media include discrete fracture and matrix model, dual-continua method,and effective continuum method.Advantages and disadvantages of these methods are presented,and modeling studies for fluid flow and tracer transport in a field site with fractured rock are performed.The site of study is a small island in eastern China.A steady-state flow field with current climate condition is simulated using a simplified conceptual model of the flow system, which submits to mass conservation and Darcy’s Law.Result of the steady-state flow field is then used in further tracer transport simulations.It is found that adsorption is the most significant factor of transport.With higher infiltration,the tracer tends to reach the boundary with lower concentration.Because higher the infiltration,broader the tracer spreads.Accidentally inj ecting tracer near the fracture area may cause serious pollution.Tracer will quickly spread along the fault with boarder plume and higher concentration.In addition,a portion of the tracer will reach the surface.Therefore,it is necessary to pay close attention to water near faults.%裂隙岩体的非均质性使得其渗流问题与传统多孔介质渗流存在本质差别。目前流行的裂隙渗流模型包括:离散裂隙网格模型;双重连续介质模型;等效连续介质模型。介绍上述方法优劣,并以中国东部某岛屿为基础,基于等效连续介质法,建立三维渗流模型以及污染物迁移模型。数值模拟结果显示,污染物被岩体的吸附程度对污染物运移影响巨大;降水入渗量增多会使得水流速度增快,却不会显著提升污染物运移至边界的时间,反而由于其增大了污染物向四周扩散的趋势,致使较少污染物迁移至边界;距断层较近的污染源不仅会导致污染物迅速迁

  16. Theoretical Chemical Thermometry on Geothermal Waters: Problems and Methods

    Science.gov (United States)

    Pang, Zhong-He; Reed, Mark

    1998-03-01

    Using a synthetic geothermal water, we examine the effect of errors in Al analyses on theoretical chemical geothermometry based on multicomponent chemical equilibrium calculations of mineral equilibria. A new approach named FixAl that entails the construction of a modified Q/K graph eliminates problems with water analyses lacking Al or with erroneous analyses of Al. This is made possible by forcing the water to be at equilibrium with a selected Al-bearing mineral, such as microcline. In a FixAl graph, a modified Q/K value is plotted against temperature for Al-bearing minerals. Saturation indices of nonaluminous minerals are plotted in the same way as in an ordinary Q/K graph. In addition to Al concentration errors, degassing of CO 2 and dilution of reservoir water interfere with computed equilibrium geothermometry. These effects can be distinguished in a Q/K graph by comparing curves for nonaluminous minerals to those of aluminous minerals then correcting for CO 2 loss and dilution by a trial and error method. Example geothermal waters from China, Iceland, and the USA that are used to demonstrate the methods show that errors in Al concentrations are common, and some are severe. The FixAl approach has proved useful for chemical geothermometry for geothermal waters lacking Al analysis and for waters with an incorrect Al analysis. The equilibrium temperatures estimated by the FixAl approach agree well with quartz, chalcedony, and isotopic geothermometers. The best choice of mineral for forced equilibrium depends on pH. For most neutral pH waters, microcline and albite work well; for more acidic waters, kaolinite or illite are good choices. Measured pH plays a critical role in computed equilibria, and we find that the best pH to use is the one to which the reported carbonate also applies. Commonly this is the laboratory pH instead of field pH, but the field pH is still necessary to constrain CO 2 degassing. Calculations on numerous waters in the 80-180°C reservoir

  17. Using neural networks to describe tracer correlations

    Directory of Open Access Journals (Sweden)

    D. J. Lary

    2004-01-01

    Full Text Available Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and methane volume mixing ratio (v.m.r.. In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE which has continuously observed CH4  (but not N2O from 1991 till the present. The neural network Fortran code used is available for download.

  18. Nanoparticle tracers in calcium carbonate porous media

    KAUST Repository

    Li, Yan Vivian

    2014-07-15

    Tracers are perhaps the most direct way of diagnosing subsurface fluid flow pathways for ground water decontamination and for natural gas and oil production. Nanoparticle tracers could be particularly effective because they do not diffuse away from the fractures or channels where flow occurs and thus take much less time to travel between two points. In combination with a chemical tracer they can measure the degree of flow concentration. A prerequisite for tracer applications is that the particles are not retained in the porous media as the result of aggregation or sticking to mineral surfaces. By screening eight nanoparticles (3-100 nm in diameter) for retention when passed through calcium carbonate packed laboratory columns in artificial oil field brine solutions of variable ionic strength we show that the nanoparticles with the least retention are 3 nm in diameter, nearly uncharged, and decorated with highly hydrophilic polymeric ligands. The details of these column experiments and the tri-modal distribution of zeta potential of the calcite sand particles in the brine used in our tests suggests that parts of the calcite surface have positive zeta potential and the retention of negatively charged nanoparticles occurs at these sites. Only neutral nanoparticles are immune to at least some retention. © 2014 Springer Science+Business Media.

  19. Using nuclear chemical method for synthesizing unknown organic onium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Nefedov, V.D.; Toropova, M.A.; Shchepina, N.Y.; Avrorin, V.V.; Zhuravlev, V.Ye.

    1982-05-01

    While considerable research has been done on organic onium derivatives, a number of compounds, including ones with halogens other than iodine, have not been produced. The authors applied the nuclear chemical method they previously proposed (Soviet patents) in synthesizing tetraphenyl-ammonium and diphenylfuoronium compounds. The method involves directed ion-molecular reactions of tritium-treated phenyl cations obtained in the beta-decomposition of tritium in the framework of tritium-treated benzene with phenyl derivatives of the elements being studied. Ion-molecular reactions were conducted in sealed ampules containing the reactive mass of treated benzene (the phenyl-cation source), phenyl derivatives of nitrogen and fluorine as substrates, and salts of inorganic KBF/sub 4/ or KI. Thin layer chromatography was used to identify the onium compounds obtained. Low yields in earlier tests of the derivative of tetraphenylammonium were apparently due to severe spatial difficulties; these difficulties were reduced in the present method by replacing phenyl groups with methyl groups, and much improved yields resulted. Evidence from chromatography confirms the identical molecular structures of the treated onium derivatives obtained and corresponding onium compounds of analogous phosphorus and bromine.

  20. TRACER - TRACING AND CONTROL OF ENGINEERING REQUIREMENTS

    Science.gov (United States)

    Turner, P. R.

    1994-01-01

    TRACER (Tracing and Control of Engineering Requirements) is a database/word processing system created to document and maintain the order of both requirements and descriptive material associated with an engineering project. A set of hierarchical documents are normally generated for a project whereby the requirements of the higher level documents levy requirements on the same level or lower level documents. Traditionally, the requirements are handled almost entirely by manual paper methods. The problem with a typical paper system, however, is that requirements written and changed continuously in different areas lead to misunderstandings and noncompliance. The purpose of TRACER is to automate the capture, tracing, reviewing, and managing of requirements for an engineering project. The engineering project still requires communications, negotiations, interactions, and iterations among people and organizations, but TRACER promotes succinct and precise identification and treatment of real requirements separate from the descriptive prose in a document. TRACER permits the documentation of an engineering project's requirements and progress in a logical, controllable, traceable manner. TRACER's attributes include the presentation of current requirements and status from any linked computer terminal and the ability to differentiate headers and descriptive material from the requirements. Related requirements can be linked and traced. The program also enables portions of documents to be printed, individual approval and release of requirements, and the tracing of requirements down into the equipment specification. Requirement "links" can be made "pending" and invisible to others until the pending link is made "binding". Individuals affected by linked requirements can be notified of significant changes with acknowledgement of the changes required. An unlimited number of documents can be created for a project and an ASCII import feature permits existing documents to be incorporated

  1. TRACER - TRACING AND CONTROL OF ENGINEERING REQUIREMENTS

    Science.gov (United States)

    Turner, P. R.

    1994-01-01

    TRACER (Tracing and Control of Engineering Requirements) is a database/word processing system created to document and maintain the order of both requirements and descriptive material associated with an engineering project. A set of hierarchical documents are normally generated for a project whereby the requirements of the higher level documents levy requirements on the same level or lower level documents. Traditionally, the requirements are handled almost entirely by manual paper methods. The problem with a typical paper system, however, is that requirements written and changed continuously in different areas lead to misunderstandings and noncompliance. The purpose of TRACER is to automate the capture, tracing, reviewing, and managing of requirements for an engineering project. The engineering project still requires communications, negotiations, interactions, and iterations among people and organizations, but TRACER promotes succinct and precise identification and treatment of real requirements separate from the descriptive prose in a document. TRACER permits the documentation of an engineering project's requirements and progress in a logical, controllable, traceable manner. TRACER's attributes include the presentation of current requirements and status from any linked computer terminal and the ability to differentiate headers and descriptive material from the requirements. Related requirements can be linked and traced. The program also enables portions of documents to be printed, individual approval and release of requirements, and the tracing of requirements down into the equipment specification. Requirement "links" can be made "pending" and invisible to others until the pending link is made "binding". Individuals affected by linked requirements can be notified of significant changes with acknowledgement of the changes required. An unlimited number of documents can be created for a project and an ASCII import feature permits existing documents to be incorporated

  2. Enhanced Oil Recovery: Aqueous Flow Tracer Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Rovani; John Schabron

    2009-02-01

    A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

  3. Development of radioisotope tracer technology

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Joon Ha; Lee, Myun Joo; Jung, Sung Hee; Park, Soon Chul; Lim, Dong Soon; Kim, Jae Ho; Lee, Jae Choon; Lee, Doo Sung; Cho, Yong Suk; Shin, Sung Kuan

    2000-04-01

    The purpose of this study is to develop the radioisotope tracer technology, which can be used in solving industrial and environmental problems and to build a strong tracer group to support the local industries. In relation to the tracer technology in 1999, experiments to estimate the efficiencies of a sludge digester of a waste water treatment plant and a submerged biological reactor of a dye industry were conducted. As a result, the tracer technology for optimization of facilities related to wastewater treatment has been developed and is believed to contribute to improve their operation efficiency. The quantification of the experimental result was attempted to improve the confidence of tracer technology by ECRIN program which basically uses the MCNP simulation principle. Using thin layer activation technique, wear of tappet shim was estimated. Thin layer surface of a tappet shim was irradiated by proton beam and the correlation between the measured activity loss and the amount of wear was established. The equipment was developed to adjust the energy of proton which collides with the surface of tappet. The tracer project team has participated into the tracer test for estimating the efficiency of RFCC system in SK cooperation. From the experiment the tracer team has obtained the primary elements to be considered for judging the efficiency of RFCC unit. By developing the tracer techniques to test huge industrial units like RFCC, the tracer team will be able to support the local industries that require technical services to solve any urgent trouble. (author)

  4. Articles of protective clothing adapted for deflecting chemical permeation and methods therefor

    Science.gov (United States)

    Vo-Dinh, Tuan

    1996-01-01

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation.

  5. Air quality simulation over South Asia using Hemispheric Transport of Air Pollution version-2 (HTAP-v2) emission inventory and Model for Ozone and Related chemical Tracers (MOZART-4)

    Science.gov (United States)

    Surendran, Divya E.; Ghude, Sachin D.; Beig, G.; Emmons, L. K.; Jena, Chinmay; Kumar, Rajesh; Pfister, G. G.; Chate, D. M.

    2015-12-01

    This study presents the distribution of tropospheric ozone and related species for South Asia using the Model for Ozone and Related chemical Tracers (MOZART-4) and Hemispheric Transport of Air Pollution version-2 (HTAP-v2) emission inventory. The model present-day simulated ozone (O3), carbon monoxide (CO) and nitrogen dioxide (NO2) are evaluated against surface-based, balloon-borne and satellite-based (MOPITT and OMI) observations. The model systematically overestimates surface O3 mixing ratios (range of mean bias about: 1-30 ppbv) at different ground-based measurement sites in India. Comparison between simulated and observed vertical profiles of ozone shows a positive bias from the surface up to 600 hPa and a negative bias above 600 hPa. The simulated seasonal variation in surface CO mixing ratio is consistent with the surface observations, but has a negative bias of about 50-200 ppb which can be attributed to a large part to the coarse model resolution. In contrast to the surface evaluation, the model shows a positive bias of about 15-20 × 1017 molecules/cm2 over South Asia when compared to satellite derived CO columns from the MOPITT instrument. The model also overestimates OMI retrieved tropospheric column NO2 abundance by about 100-250 × 1013 molecules/cm2. A response to 20% reduction in all anthropogenic emissions over South Asia shows a decrease in the anuual mean O3 mixing ratios by about 3-12 ppb, CO by about 10-80 ppb and NOX by about 3-6 ppb at the surface level. During summer monsoon, O3 mixing ratios at 200 hPa show a decrease of about 6-12 ppb over South Asia and about 1-4 ppb over the remote northern hemispheric western Pacific region.

  6. Chemical-potential-based Lattice Boltzmann Method for Nonideal Fluids

    CERN Document Server

    Wen, Binghai; He, Bing; Zhang, Chaoying; Fang, Haiping

    2016-01-01

    Chemical potential is an effective way to drive phase transition or express wettability. In this letter, we present a chemical-potential-based lattice Boltzmann model to simulate multiphase flows. The nonideal force is directly evaluated by a chemical potential. The model theoretically satisfies thermodynamics and Galilean invariance. The computational efficiency is improved owing to avoiding the calculation of pressure tensor. We have derived several chemical potentials of the popular equations of state from the free-energy density function. An effective chemical-potential boundary condition is implemented to investigate the wettability of a solid surface. Remarkably, the numerical results show that the contact angle can be linearly tuned by the surface chemical potential.

  7. IR band of O2 at 1.27 μm as the tracer of O3 in the mesosphere and lower thermosphere: Correction of the method

    Science.gov (United States)

    Martyshenko, K. V.; Yankovsky, V. A.

    2017-03-01

    The problem of systematic overestimation (20-50%) of the retrieved ozone concentrations in the altitude range of 60-80 km in the TIMED-SABER satellite experiment in the daytime has been solved. The reason for overestimation is the neglect of the electronic vibrational kinetics of photolysis products of ozone and molecular oxygen O2(b1Σg +, ν) and O2(a1Δg, ν). The IR emission band of O2(a1Δg, ν = 0) at 1.27 μm can be correctly used in remote sensing in order to obtain the ozone altitude profile in the altitude range of 50-88 km only with the use of a complete model of electronic vibrational kinetics of O2 and O3 photolysis products (YM2011) in the Earth's mesosphere and lower thermosphere. Alternative ozone tracers have been considered, and an optimum tracer in the altitude range of 50-100 km such as O2(b1Σg +, ν = 1) molecule emissions has been proposed.

  8. Chemical tracers in Northwest Atlantic dogfish

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Each year, a number of seafood samples are exported from the US to Europe, including edible tissues collected from high trophic level marine fish species such as...

  9. Flexible tools for interpreting tracer measurements and recent applications

    Science.gov (United States)

    Gusyev, M.; Stewart, M.

    2012-04-01

    Steady increase of groundwater abstraction and nitrate concentrations in groundwater due to agricultural and industrial practices is a major concern for groundwater availability and deterioration of groundwater quality in New Zealand. Studies on groundwater in the Waimea Plains (for example) have shown effects of nitrate input from both diffuse and point sources since 1940. Groundwaters in gravel aquifers under Christchurch have also been studied since 1970 to characterise their flowpaths and recharge sources. In these and other cases, the mixing of waters from different recharge sources following different flow paths can be determined with the use of various tracers and the future course of nitrate concentration in the groundwaters predicted. The input of radionuclides to hydrological systems from nuclear weapons testing in the 1950s and 60s revealed that outflows from such systems often comprise mixtures of water with very wide ranges of ages. Many authors have described methods of deconvolving such outputs with the use of lumped parameter models (LPMs). LPMs are evaluated using specialized software or Excel spreadsheets to compute simulations to measurements of system outputs and therefore estimate parameters of the age distribution. Excel allows easy modification of the code to enable application to individual hydrological features and for a variety of isotopes and chemicals. For the New Zealand studies, Excel spreadsheets with coded Visual Basic functions are used to deduce age distributions based on stable isotope, SF6, CFCs, 3H and 14C data (in order of ages). In particular, 3H is becoming increasingly useful as an age tracer due to the decrease of ambiguity from nuclear testing provided that the measurements can be made with high accuracy (Stewart et al., 2012).These age distributions allow us to derive the input histories of chemicals (e.g. nitrate) and the groundwater recharge sources. In addition, recent developments in modelling groundwater flow and

  10. Control and optimization system and method for chemical looping processes

    Science.gov (United States)

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2015-02-17

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  11. The Accurate Particle Tracer Code

    CERN Document Server

    Wang, Yulei; Qin, Hong; Yu, Zhi

    2016-01-01

    The Accurate Particle Tracer (APT) code is designed for large-scale particle simulations on dynamical systems. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and non-linear problems. Under the well-designed integrated and modularized framework, APT serves as a universal platform for researchers from different fields, such as plasma physics, accelerator physics, space science, fusion energy research, computational mathematics, software engineering, and high-performance computation. The APT code consists of seven main modules, including the I/O module, the initialization module, the particle pusher module, the parallelization module, the field configuration module, the external force-field module, and the extendible module. The I/O module, supported by Lua and Hdf5 projects, provides a user-friendly interface for both numerical simulation and data analysis. A series of new geometric numerical methods...

  12. Travel-time-based thermal tracer tomography

    Science.gov (United States)

    Somogyvári, Márk; Bayer, Peter; Brauchler, Ralf

    2016-05-01

    Active thermal tracer testing is a technique to get information about the flow and transport properties of an aquifer. In this paper we propose an innovative methodology using active thermal tracers in a tomographic setup to reconstruct cross-well hydraulic conductivity profiles. This is facilitated by assuming that the propagation of the injected thermal tracer is mainly controlled by advection. To reduce the effects of density and viscosity changes and thermal diffusion, early-time diagnostics are used and specific travel times of the tracer breakthrough curves are extracted. These travel times are inverted with an eikonal solver using the staggered grid method to reduce constraints from the pre-defined grid geometry and to improve the resolution. Finally, non-reliable pixels are removed from the derived hydraulic conductivity tomograms. The method is applied to successfully reconstruct cross-well profiles as well as a 3-D block of a high-resolution fluvio-aeolian aquifer analog data set. Sensitivity analysis reveals a negligible role of the injection temperature, but more attention has to be drawn to other technical parameters such as the injection rate. This is investigated in more detail through model-based testing using diverse hydraulic and thermal conditions in order to delineate the feasible range of applications for the new tomographic approach.

  13. Physical-chemical property based sequence motifs and methods regarding same

    Science.gov (United States)

    Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  14. Radioactive tracers in industry and in environment; Les traceurs radioactifs dans l`industrie et l`environnement

    Energy Technology Data Exchange (ETDEWEB)

    Burgun, G.; Laizier, J. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. des Applications et de la Metrologie des Rayonnements Ionisants

    1996-12-31

    Radioactive tracers are used to localize, identify and follow chemical species, particulates or living organisms. These tracers are easy to detect and can have the same physical, hydrodynamical or chemical behaviour as the mass of matter to follow. This digest paper gives an overview of the main radioactive tracer techniques used in the domains of chemical, processes and mechanical engineering, in hydrogeology, pollutants migration studies, dynamical sedimentology and agronomy. (J.S.).

  15. A new aquifer assessment tool using reactive tracers

    Science.gov (United States)

    McKnight, D.; Smalley, A. L.; Banwart, S. A.; Lerner, D. N.; Thomson, N. R.; Thornton, S. F.; Wilson, R. D.

    2003-04-01

    A major obstacle to making informed decisions about trigger levels for restoration and choosing remediation options is that current Site Investigation (SI) practice fails to make optimal use of available SI techniques resulting in poor value for money in conceptual site models. Often it is simply too expensive to obtain the type of site data required to build the case for natural attenuation, even though this restoration option may be relatively cheaper than a pump-and-treat system. In particular, aquifer property measurement techniques for groundwater transport and reactions are too costly and this results in over-reliance on literature values or model assumptions. This results in overly uncertain predictions of in situ performance and therefore unnecessarily cautious risk assessment and costly remediation strategies. Therefore, cost-effective SI tools that have the capability of producing high quality characterisation data are required. The dipole flow test which circulates groundwater between isolated injection (source) and extraction (sink) chambers within a single borehole has been used successfully by others to delineate heterogeneous hydraulic properties in both highly permeable and fractured rock aquifers. We propose to extend this approach by adding a suite of reactive tracers into a dipole flow field to assess the geochemical properties and biodegradation potential of aquifers. If successful this will provide a method to ascertain site-specific parameters for use in appropriate reactive transport models. The initial phase of this project involves the construction of a laboratory-scale physical model of a dipole probe to investigate the utility of the dipole flow and reactive tracer test (DFRTT) as an aquifer assessment tool. This phase will also serve as the developmental stage between mathematical theory and a host of planned field trials. The development of the laboratory-scale DFRTT including initial scoping calculations, numerical simulation results

  16. Effects of Biofertilizer Application Method with Integrated Chemical Fertilizers on Maize Production and Some Chemical Characteristics of Soil

    Directory of Open Access Journals (Sweden)

    F Ebrahimpour

    2012-07-01

    Full Text Available In order to study the effects of integrated application of bio-fertilizer and chemical fertilizers on yield and yield components of corn, an experiment was conducted in 2008 in Dezful city, (Khoozestan province in a factorial arrangement based on complete randomized block design with four replications. Treatments were integrated application of biological and chemical fertilizers in four levels (100% chemical fertilizer, 50% chemical fertilizer+ bio-fertilizer, 25% chemical fertilizer + bio-fertilizer and bio-fertilizer and bio-fertilizer application method in three levels (seed inoculation, fertigation, seed inoculation+fertigation. The results showed that highest and the lowest grain yield was obtained by application of 50% chemical fertilizer+ bio-fertilizer (10.7 t/ha and bio-fertilizer (5.2 t/ha, respectively. The greatest and the lowest harvest indices were recorded in chemical (0.59 and bio-fertilizer (0.45 treatments, respectively. Number of grain per row and row in ear had not significant differences in integrated and chemical treatments. Methods of bio-fertilizer application had not significant effect on maize yield and yield components. The results of soil analysis showed that bio-fertilizers increased P, K as well as other macro elements availability rather than N. The results revealed that although replacing chemical fertilizers by bio-fertilizers reduced maize growth, but integrated application of these sources produced highest grain yield, nitration elements availability and reduced substantially consumption of fertilizer. The results also indicated that non-chemical sources of crop nutrients can be considered as a reliable alternative for chemical fertilization in ecological production of crops in agro-ecosystems of Iran.

  17. A simple and general method for solving detailed chemical evolution with delayed production of iron and other chemical elements

    CERN Document Server

    Vincenzo, Fiorenzo; Spitoni, Emanuele

    2016-01-01

    In this Letter, we present a new theoretical method for solving the chemical evolution of galaxies, by assuming the instantaneous recycling approximation for chemical elements restored by massive stars and the Delay Time Distribution formalism for the delayed chemical enrichment by Type Ia Supernovae. The galaxy gas mass assembly history, together with the assumed stellar yields and initial mass function, represent the starting point of this method. We derive a very simple and general equation which closely relates the Laplace transforms of the galaxy gas accretion and star formation history, which can be used to simplify the problem of retrieving these quantities in most of current galaxy evolution models. We find that - once the galaxy star formation history has been reconstructed from our assumptions - the differential equation for the evolution of the chemical element $X$ can be suitably solved with classical methods. We apply our model to reproduce the $[\\text{O/Fe}]$ and $[\\text{Si/Fe}]$ vs. $[\\text{Fe/...

  18. Interpolation methods for thematic maps of soybean yield and soil chemical attributes

    National Research Council Canada - National Science Library

    Nelson Miguel Betzek; Eduardo Godoy de Souza; Claudio Leones Bazzi; Ricardo Sobjak; Vanderlei Artur Bier; Erivelto Mercante

    2017-01-01

    ...) in the construction of thematic maps of soybean yield and soil chemical attributes. A set of data referred to 55 sampling units for the construction maps of soybean yield and of eight soil chemical attributes, by different interpolation methods...

  19. Novel quantitative methods for characterization of chemical induced functional alteration in developing neuronal cultures

    Science.gov (United States)

    ABSTRACT BODY: Thousands of chemicals lack adequate testing for adverse effects on nervous system development, stimulating research into alternative methods to screen chemicals for potential developmental neurotoxicity. Microelectrode arrays (MEA) collect action potential spiking...

  20. Radon as geological tracer

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, T.; Anjos, R.M. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Valladares, D.L.; Rizzotto, M.; Velasco, H.; Ayub, J. Juri [Universidad Nacional de San Luis (Argentina). Inst. de Matematica Aplicada San Luis (IMASL); Silva, A.A.R. da; Yoshimura, E.M. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This work presents measurements of {sup 222}Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of {sup 40}K, {sup 232}Th and {sup 23}'8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using {sup 222}Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m{sup -3} recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  1. Nondestructive Method for Bulk Chemical Characterization of Barred Olivine Chondrules

    Science.gov (United States)

    Montoya-Perez, M. A.; Cervantes-de la Cruz, K. E.; Ruvalcaba-Sil, J. L.

    2017-02-01

    This work develops a bulk chemical characterization of barred olivine chondrules based on the XRF analysis using a portable equipment at the National Research and Conservation Science Laboratory of Cultural Heritage (LANCIC-IF) in Mexico City.

  2. Nondestructive Method for Bulk Chemical Characterization of Barred Olivine Chondrules

    Science.gov (United States)

    Montoya-Perez, M. A.; Cervantes-de la Cruz, K. E.; Ruvalcaba-Sil, J. L.

    2017-05-01

    This work develops a bulk chemical characterization of barred olivine chondrules based on the XRF analysis using a portable equipment at the National Research and Conservation Science Laboratory of Cultural Heritage (LANCIC-IF) in Mexico City.

  3. Exotic tracers for atmospheric studies

    Energy Technology Data Exchange (ETDEWEB)

    Lovelock, J.E. (Brazzos Ltd., Launceston (UK)); Ferber, G.J. (National Oceanic and Atmospheric Administration, Silver Spring, MD (USA). Air Resources Lab.)

    1982-01-01

    Tracer materials can be injected into the atmosphere to study transport and dispersion processes and to validate air pollution model calculations. Tracers should be inert, non-toxic and harmless to the environment. Tracers for long-range experiments, where dilution is very great, must be measurable at extremely low concentrations, well below the parts per trillion level. Compounds suitable for long-range tracer work are rare and efforts should be made to reserve them for meteorological studies, barring them from commercial uses which would increase atmospheric background concentrations. The use of these exotic tracers, including certain perfluorocarbons and isotopically labelled methanes, should be coordinated within the meteorological community to minimize interferences and maximise research benefits.

  4. Exotic tracers for atmospheric studies

    Science.gov (United States)

    Lovelock, James E.; Ferber, Gilbert J.

    Tracer materials can be injected into the atmosphere to study transport and dispersion processes and to validate air pollution model calculations. Tracers should be inert, non-toxic and harmless to the environment. Tracers for long-range experiments, where dilution is very great, must be measurable at extremely low concentrations, well below the parts per trillion level. Compounds suitable for long-range tracer work are rare and efforts should be made to reserve them for meteorological studies, barring them from commercial uses which would increase atmospheric background concentrations. The use of these exotic tracers, including certain perfluorocarbons and isotopically labelled methanes, should be coordinated within the meteorological community to minimize interferences and maximize research benefits.

  5. Novel encoding methods for DNA-templated chemical libraries.

    Science.gov (United States)

    Li, Gang; Zheng, Wenlu; Liu, Ying; Li, Xiaoyu

    2015-06-01

    Among various types of DNA-encoded chemical libraries, DNA-templated library takes advantage of the sequence-specificity of DNA hybridization, enabling not only highly effective DNA-templated chemical reactions, but also high fidelity in library encoding. This brief review summarizes recent advances that have been made on the encoding strategies for DNA-templated libraries, and it also highlights their respective advantages and limitations for the preparation of DNA-encoded libraries.

  6. Monodispersive CoPt Nanoparticles Synthesized Using Chemical Reduction Method

    Institute of Scientific and Technical Information of China (English)

    SHEN Cheng-Min; HUI Chao; YANG Tian-Zhong; XIAO Cong-Wen; CHEN Shu-Tang; DING Hao; GAO Hong-Jun

    2008-01-01

    @@ Monodispersive CoPt nanoparticles in sizes of about 2.2 nm are synthesized by superhydride reduction of CoCl2 and PtCl2 in diphenyl ether. The as-prepared nanoparticles show a chemically disordered A1 structure and are superparamagnetic. Thermal annealing transforms the A1 structure into chemically ordered L1o structure and the particles are ferromagnetic at room temperature.

  7. Flow method and apparatus for screening chemicals using micro x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Benjamin P. (Los Alamos, NM); Havrilla, George J. (Los Alamos, NM); Miller, Thomasin C. (Bartlesville, OK); Lewis, Cris (Los Alamos, NM); Mahan, Cynthia A. (Los Alamos, NM); Wells, Cyndi A. (Los Alamos, NM)

    2011-04-26

    Method and apparatus for screening chemicals using micro x-ray fluorescence. A method for screening a mixture of potential pharmaceutical chemicals for binding to at least one target binder involves flow separating a solution of chemicals and target binders into separated components, exposing them to an x-ray excitation beam, detecting x-ray fluorescence signals from the components, and determining from the signals whether or not a binding event between a chemical and target binder has occurred.

  8. Flow method and apparatus for screening chemicals using micro x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Benjamin P. (Los Alamos, NM); Havrilla, George J. (Los Alamos, NM); Miller, Thomasin C. (Bartlesville, OK); Lewis, Cris (Los Alamos, NM); Mahan, Cynthia A. (Los Alamos, NM); Wells, Cyndi A. (Los Alamos, NM)

    2009-04-14

    Method and apparatus for screening chemicals using micro x-ray fluorescence. A method for screening a mixture of potential pharmaceutical chemicals for binding to at least one target binder involves flow-separating a solution of chemicals and target binders into separated components, exposing them to an x-ray excitation beam, detecting x-ray fluorescence signals from the components, and determining from the signals whether or not a binding event between a chemical and target binder has occurred.

  9. Evaluation of methods to test chemicals suitability for umbilical applications

    Energy Technology Data Exchange (ETDEWEB)

    Allenson, S. J.; Lindeman, O. E.; Cenegy, L. M.

    2006-03-15

    Offshore deep-water projects are increasingly deploying chemicals to sub-sea wellheads through umbilical lines. There is no margin for error in umbilical chemical treatment programs since any flow blockage in a sub-sea line would result in a multi-million dollar problem. Chemicals for umbilical delivery must also meet strict requirements in their performance and especially their handling properties. Umbilical delivery must be effective at low concentrations in preventing corrosion, scale, hydrates, asphaltenes, paraffin and a host of other problems. Chemical transiting an umbilical can experience pressures as high as 15,000 psi and temperatures ranging from near 0 deg C to greater than 120 deg C. Since some umbilicals are as long as 80 km, a week or more can elapse from the time the chemical is injected at the platform until it reaches the sub-sea well. Therefore, the chemical must not only be stable under all temperature and pressure conditions that it may experience in the umbilical line, it must also be stable under these conditions for a long period of time. Since many umbilical lines actually terminate into sub-sea valves and connectors that are only a few hundred microns in diameter, it is critical that the injected chemical have a low viscosity at sub-sea temperatures and pressures and that it be completely free of particles. These issues present substantial challenges in formulating and manufacturing chemicals for umbilical applications that must be addressed prior to approval of a product for use. Each of these challenges was taken into consideration and a series of tests were developed to assure reliable chemical pump ability through an umbilical line. The tests developed included enhanced formulation stability tests under umbilical temperature and pressure conditions, NAS Class rating, extensive material compatibility testing to include all metals and elastomers that may be used in umbilical injection systems and comprehensive physical property testing

  10. Suitability of tracers; Eignung von Tracern

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, D. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany). Inst. fuer Hydrologie

    1999-02-01

    Hydrological tracer techniques are a means of making statements on the direction and speed of underground water. One of the simpler tasks is to find out whether there is hydrological communication between two given points. This requires a determination of the direction of flow, which places less exacting demands on the properties of the tracer than does the task of determining the flow velocity of underground water. Tracer methods can serve to infer from flow velocity the distance (flow) velocity, which is defined as the ratio between the distance between two points located in flow direction and the actual time it takes water to flow from one to the other. [Deutsch] Mit Hilfe der hydrologischen Markierungstechniken koennen Aussagen ueber die Richtung und die Geschwindigkeit von Bewegungen des unterirdischen Wassers gemacht werden. Der einfachere Fall liegt vor, wenn festgestellt werden soll, ob zwischen zwei Punkten eine hydrologische Verbindung besteht. Bei dieser Fliessrichtungsbestimmung sind die Forderungen an die Eigenschaften der einzusetzenden Tracer geringer als bei der Bestimmung der Geschwindigkeit des unterirdischen Wassers. Von den Geschwindigkeiten des unterirdischen Wassers ist die Abstands-(Fliess)geschwindigkeit, die definiert ist durch das Verhaeltnis aus dem Abstand und der wahren Fliesszeit zwischen zwei in Bewegungsrichtung gelegenen Punkten, durch Tracermethoden zu bestimmen. (orig.)

  11. HYDROGEL TRACER BEADS: THE DEVELOPMENT, MODIFICATION, AND TESTING OF AN INNOVATIVE TRACER FOR BETTER UNDERSTANDING LNAPL TRANSPORT IN KARST AQUIFERS

    Energy Technology Data Exchange (ETDEWEB)

    Amanda Laskoskie, Harry M. Edenborn, and Dorothy J. Vesper

    2012-01-01

    The goal of this specific research task is to develop proxy tracers that mimic contaminant movement to better understand and predict contaminant fate and transport in karst aquifers. Hydrogel tracer beads are transported as a separate phase than water and can used as a proxy tracer to mimic the transport of non-aqueous phase liquids (NAPL). They can be constructed with different densities, sizes & chemical attributes. This poster describes the creation and optimization of the beads and the field testing of buoyant beads, including sampling, tracer analysis, and quantitative analysis. The buoyant beads are transported ahead of the dissolved solutes, suggesting that light NAPL (LNAPL) transport in karst may occur faster than predicted from traditional tracing techniques. The hydrogel beads were successful in illustrating this enhanced transport.

  12. Wireless Chemical Sensor and Sensing Method for Use Therewith

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Oglesby, Donald M. (Inventor); Taylor, Bryant D. (Inventor)

    2016-01-01

    A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.

  13. Tracer injection techniques in flowing surface water

    Science.gov (United States)

    Wörman, A.

    2009-04-01

    Residence time distributions for flowing water and reactive matter are commonly used integrated properties of the transport process for determining technical issues of water resource management and in eco-hydrological science. Two general issues for tracer techniques are that the concentration-vs-time relation following a tracer injection (the breakthrough curve) gives unique transport information in different parts of the curve and separation of hydromechanical and reactive mechanisms often require simultaneous tracer injections. This presentation discusses evaluation methods for simultaneous tracer injections based on examples of tracer experiments in small rivers, streams and wetlands. Tritiated water is used as a practically inert substance to reflect the actual hydrodynamics, but other involved tracers are Cr(III)-51, P-32 and N-15. Hydromechanical, in-stream dispersion is reflected as a symmetrical spreading of the spatial concentration distribution. This requires that the transport distance over water depth is larger than about five times the flow Peclet number. Transversal retention of both inert and reactive solutes is reflected in terms of the tail of the breakthrough curve. Especially, reactive solutes can have a substantial magnification of the tailing behaviour depending on reaction rates or partitioning coefficients. To accurately discriminate between the effects of reactions and hydromechanical mixing its is relevant to use simultaneous injections of inert and reactive tracers with a sequential or integrated evaluation procedure. As an example, the slope of the P-32 tailing is consistently smaller than that of a simultaneous tritium injection in Ekeby wetland, Eskilstuna. The same applies to N-15 injected in the same experiment, but nitrogen is affected also by a systematic loss due to denitrification. Uptake in stream-bed sediments can be caused by a pumping effect arising when a variable pressure field is created on the stream bottom due to bed

  14. Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling

    Energy Technology Data Exchange (ETDEWEB)

    Randall S. Seright

    2007-09-30

    This final technical progress report describes work performed from October 1, 2004, through May 16, 2007, for the project, 'Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling'. We explored the potential of pore-filling gels for reducing excess water production from both fractured and unfractured production wells. Several gel formulations were identified that met the requirements--i.e., providing water residual resistance factors greater than 2,000 and ultimate oil residual resistance factors (F{sub rro}) of 2 or less. Significant oil throughput was required to achieve low F{sub rro} values, suggesting that gelant penetration into porous rock must be small (a few feet or less) for existing pore-filling gels to provide effective disproportionate permeability reduction. Compared with adsorbed polymers and weak gels, strong pore-filling gels can provide greater reliability and behavior that is insensitive to the initial rock permeability. Guidance is provided on where relative-permeability-modification/disproportionate-permeability-reduction treatments can be successfully applied for use in either oil or gas production wells. When properly designed and executed, these treatments can be successfully applied to a limited range of oilfield excessive-water-production problems. We examined whether gel rheology can explain behavior during extrusion through fractures. The rheology behavior of the gels tested showed a strong parallel to the results obtained from previous gel extrusion experiments. However, for a given aperture (fracture width or plate-plate separation), the pressure gradients measured during the gel extrusion experiments were much higher than anticipated from rheology measurements. Extensive experiments established that wall slip and first normal stress difference were not responsible for the pressure gradient discrepancy. To explain the discrepancy, we noted that the aperture for gel flow (for mobile gel wormholing through concentrated

  15. New Method to Acquire Chemomechanical Parameters of Diverse Chemical Reactions

    Science.gov (United States)

    2011-01-30

    a model for reversible and pseudoreversible isothermal photoactuation based on the Carnot -type formalism and used it to estimate the maximum single...reactions offers unique attributes, e.g., potentially fast actuation cycles , high chemical and mechanical stability, flexible device design and

  16. Estimation methods for bioaccumulation in risk assessment of organic chemicals.

    NARCIS (Netherlands)

    Jager, D.T.; Hamers, T.

    1997-01-01

    The methodology for estimating bioaccumulation of organic chemicals is evaluated. This study is limited to three types of organisms: fish, earthworms and plants (leaf crops, root crops and grass). We propose a simple mechanistic model for estimating BCFs which performs well against measured data. To

  17. Estimation methods for bioaccumulation in risk assessment of organic chemicals

    NARCIS (Netherlands)

    Jager DT; Hamers T; ECO

    1997-01-01

    The methodology for estimating bioaccumulation of organic chemicals is evaluated. This study is limited to three types of organisms: fish, earthworms and plants (leaf crops, root crops and grass). We propose a simple mechanistic model for estimating BCFs which performs well against measured data. To

  18. Device and method for enhanced collection and assay of chemicals with high surface area ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Addleman, Raymond S.; Li, Xiaohong Shari; Chouyyok, Wilaiwan; Cinson, Anthony D.; Bays, John T.; Wallace, Krys

    2016-02-16

    A method and device for enhanced capture of target analytes is disclosed. This invention relates to collection of chemicals for separations and analysis. More specifically, this invention relates to a solid phase microextraction (SPME) device having better capability for chemical collection and analysis. This includes better physical stability, capacity for chemical collection, flexible surface chemistry and high affinity for target analyte.

  19. Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.

    Science.gov (United States)

    Heald, Emerson F.

    1978-01-01

    Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)

  20. Use of a time-domain electromagnetic method with geochemical tracers to explore the salinity anomalies in a small coastal aquifer in north-eastern Tunisia

    Science.gov (United States)

    Chekirbane, Anis; Tsujimura, Maki; Kawachi, Atsushi; Lachaal, Fethi; Isoda, Hiroko; Tarhouni, Jamila

    2014-12-01

    The study area is a small coastal plain in north-eastern Tunisia. It is drained by an ephemeral stream network and is subject to several pollutant discharges such as oilfield brine coming from a neighboring oil company and wastewater from Somâa city, located in the upstream of the plain. Furthermore, a hydraulic head near the coastal part of the aquifer is below sea level, suggesting that seawater intrusion may occur. A time-domain electromagnetic (TDEM) survey, based on 28 soundings, was conducted in Wadi Al Ayn and Daroufa plains to delineate the saline groundwater. Based on longitudinal and transversal resistivity two-dimensional pseudosections calibrated with boring data, the extent of saline water was identified. Geochemical tracers were combined with the resistivity dataset to differentiate the origin of groundwater salinization. In the upstream part of the plain, the infiltration of oilfield brine through the sandy bed of Wadi Al Ayn seems to have a considerable effect on groundwater salinization. However, in the coastal part of the aquifer, groundwater salinization is due to seawater intrusion and the saltwater is reaching an inland extent around 1.3 km from the shoreline. The contribution ratios of saline water bodies derived from the inverted chloride data vary for the oilfield brine from 1 to 13 % and for the seawater from 2 to 21 %.

  1. Halon-1301, a new Groundwater Age Tracer

    Science.gov (United States)

    Beyer, Monique; van der Raaij, Rob; Morgenstern, Uwe; Jackson, Bethanna

    2015-04-01

    Groundwater dating is an important tool to assess groundwater resources in regards to direction and time scale of groundwater flow and recharge and to assess contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However ambiguous age interpretations are often faced, due to a limited set of available tracers and limitations of each tracer method when applied alone. There is a need for additional, complementary groundwater age tracers. We recently discovered that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate [Beyer et al, 2014]. Halon-1301 can be determined along with SF6, SF5CF3 and CFC-12 in groundwater using a gas chromatography setup with attached electron capture detector developed by Busenberg and Plummer [2008]. Halon-1301 has not been assessed in groundwater. This study assesses the behaviour of Halon-1301 in water and its suitability as a groundwater age tracer. We determined Halon-1301 in 17 groundwater and various modern (river) waters sites located in 3 different groundwater systems in the Wellington Region, New Zealand. These waters have been previously dated with tritium, CFC-12, CFC-11 and SF6 with mean residence times ranging from 0.5 to over 100 years. The waters range from oxic to anoxic and some show evidence of CFC contamination or degradation. This allows us to assess the different properties affecting the suitability of Halon-1301 as groundwater age tracer, such as its conservativeness in water and local contamination potential. The samples are analysed for Halon-1301 and SF6simultaneously, which allows identification of issues commonly faced when using gaseous tracers such as contamination with modern air during sampling. Overall we found in the assessed groundwater samples Halon-1301 is a feasible new groundwater tracer. No sample indicated significantly elevated

  2. A novel fluorescent retrograde neural tracer: cholera toxin B conjugated carbon dots

    Science.gov (United States)

    Zhou, Nan; Hao, Zeyu; Zhao, Xiaohuan; Maharjan, Suraj; Zhu, Shoujun; Song, Yubin; Yang, Bai; Lu, Laijin

    2015-09-01

    The retrograde neuroanatomical tracing method is a key technique to study the complex interconnections of the nervous system. Traditional tracers have several drawbacks, including time-consuming immunohistochemical or immunofluorescent staining procedures, rapid fluorescence quenching and low fluorescence intensity. Carbon dots (CDs) have been widely used as a fluorescent bio-probe due to their ultrasmall size, excellent optical properties, chemical stability, biocompatibility and low toxicity. Herein, we develop a novel fluorescent neural tracer: cholera toxin B-carbon dot conjugates (CTB-CDs). It can be taken up and retrogradely transported by neurons in the peripheral nervous system of rats. Our results show that CTB-CDs possess high photoluminescence intensity, good optical stability, a long shelf-life and non-toxicity. Tracing with CTB-CDs is a direct and more economical way of performing retrograde labelling experiments. Therefore, CTB-CDs are reliable fluorescent retrograde tracers.The retrograde neuroanatomical tracing method is a key technique to study the complex interconnections of the nervous system. Traditional tracers have several drawbacks, including time-consuming immunohistochemical or immunofluorescent staining procedures, rapid fluorescence quenching and low fluorescence intensity. Carbon dots (CDs) have been widely used as a fluorescent bio-probe due to their ultrasmall size, excellent optical properties, chemical stability, biocompatibility and low toxicity. Herein, we develop a novel fluorescent neural tracer: cholera toxin B-carbon dot conjugates (CTB-CDs). It can be taken up and retrogradely transported by neurons in the peripheral nervous system of rats. Our results show that CTB-CDs possess high photoluminescence intensity, good optical stability, a long shelf-life and non-toxicity. Tracing with CTB-CDs is a direct and more economical way of performing retrograde labelling experiments. Therefore, CTB-CDs are reliable fluorescent retrograde

  3. Consolidation of the formation sand by chemical methods

    Directory of Open Access Journals (Sweden)

    Mariana Mihočová

    2006-10-01

    Full Text Available The sand control by consolidation involves the process of injecting chemicals into the naturally unconsolidated formation to provide an in situ grain-to-grain cementation. The sand consolidation chemicals are available for some 30 years. Several types of consolidating material were tried. Presently available systems utilize solidified plastics to provide the cementation. These systems include phenol resin, phenol-formaldehyde, epoxy, furan and phenolic-furfuryl.The sand consolidation with the steam injection is a novel technique. This process provides a highly alkaline liquid phase and temperatures to 300 °C to geochemically create cements by interacting with the dirty sand.While the formation consolidation has widely applied, our experience has proved a high level of success.

  4. Method for innovative synthesis-design of chemical process flowsheets

    DEFF Research Database (Denmark)

    Kumar Tula, Anjan; Gani, Rafiqul

    of chemical processes, where, chemical process flowsheets could be synthesized in the same way as atoms or groups of atoms are synthesized to form molecules in computer aided molecular design (CAMD) techniques [4]. That, from a library of building blocks (functional process-groups) and a set of rules to join......, the implementation of the computer-aided process-group based flowsheet synthesis-design framework is presented together with an extended library of flowsheet property models to predict the environmental impact, safety factors, product recovery and purity, which are employed to screen the generated alternatives. Also...... flowsheet (the well-known Hydrodealkylation of toluene process) and another for a biochemical process flowsheet (production of ethanol from lignocellulose). In both cases, not only the reported designs are found and matched, but also new innovative designs are found, which is possible because...

  5. Realizing NiO nanocrystals from a simple chemical method

    Indian Academy of Sciences (India)

    Neelabh Srivastava; P C Srivastava

    2010-12-01

    Nanocrystalline NiO has been prepared successfully by a simple chemical route using NiCl2.6H2O and NaOH aqueous solution at a temperature of 70°C. The prepared material has been characterized from XRD, SEM, and M–H characteristics. It has been found that NiO nanocrystals have been formed which shows a superparamagnetic/superantiferromagnetic behaviour.

  6. Chemical and ecological control methods for Epitrix spp.

    OpenAIRE

    A. G. S. Cuthbertson

    2015-01-01

    Very little information exists in regards to the control options available for potato flea beetles, Epitrix spp. This short review covers both chemical and ecological options currently available for control of Epitrix spp. Synthetic pyrethroids are the weapon of choice for the beetles. However, the impetus in integrated pest management is to do timely (early-season) applications with something harsh which will give long-term protection at a time when there are not a lot of beneficials in the ...

  7. Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Eyles, Jose L., E-mail: j.l.gomezeyles@reading.ac.uk [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom); Collins, Chris D.; Hodson, Mark E. [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom)

    2011-04-15

    Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability. - Research highlights: > Isotope ratios can be used to evaluate chemical methods to predict bioavailability. > Chemical methods predicted bioavailability better than exhaustive extractions. > Bioavailability to earthworms was still far from that predicted by chemical methods. - A novel method using isotope ratios to assess the ability of chemical methods to predict PAH bioavailability to soil biota.

  8. Laboratory Testing of Magnetic Tracers for Soil Erosion Measurement*1

    Institute of Scientific and Technical Information of China (English)

    HU Guo-Qing; DONG Yuan-Jie; WANG Hui; QIU Xian-Kui; WANG Yan-Hua

    2011-01-01

    Soil erosion, which includes soil detachment, transport, and deposition, is one of the important dynamic land surface processes. The magnetic tracer method is a useful method for studying soil erosion processes. In this study, five types of magnetic tracers were made with fine soil, fly ash, cement, bentonite, and magnetic powder (reduced iron powder) using the method of disk granulation. The tracers were uniformly mixed with soil and tested in the laboratory using simulated rainfall and inflow experiments to simulate the interrill and rill components of soil erosion, in order to select one or more tracers which could be used to study detachment and deposition by the erosive forces of raindrops and surface flow of water on a slope. The results showed that the five types of magnetic tracers with high magnetic susceptibility and a wide range of sizes had a range of 0.99-1.29 gcm-s in bulk density. In the interrill and rill experiments, the tracers FC1 and FC2 which consisted of fly ash and cement at ratios of 1:1 and 2:1, respectively, were transported in phase with soil particles since the magnetic susceptibility of sediment approximated that of the soil which was uneroded and the slopes of the regression equations between the detachment of sediment and magnetic tracers FC1 and FC2 were very close to the expected value of 20, which was the original soil/tracer ratio. The detachment and deposition on slopes could be accurately reflected by the magnetic susceptibility differences. The change in magnetic susceptibility depended on whether deposition or detachment occurred. However, the tracer FS which consisted of fine soil and the tracers FB1 and FB2 which consisted of fly ash and bentonite at ratios of 1:1 and 2:1, respectively, were all unsuitable for soil erosion study since there was no consistent relationship between sediment and tracer detachment for increasing amounts of runoff. Therefore, the tracers FC1 and FC2 could be used to study soil erosion by water.

  9. Stability of isooctane mixtures with 3-pentanone or biacetyl as fluorescence tracers in combustion experiments

    Science.gov (United States)

    Zhang, Rui; Bohac, Stanislav V.; Sick, Volker

    2006-01-01

    Evidence is presented in the literature that common fluorescence tracer/fuel mixtures used in engine experiments, 3-pentanone/isooctane and biacetyl/isooctane, may decompose during extended use and storage. Investigations presented here show that preferential evaporation of the tracer and not chemical decomposition is responsible for observed decreases in fluorescence signal strength in these experiments.

  10. Driven tracers in narrow channels

    Science.gov (United States)

    Cividini, J.; Mukamel, D.; Posch, H. A.

    2017-01-01

    Steady-state properties of a driven tracer moving in a narrow two-dimensional (2D) channel of quiescent medium are studied. The tracer drives the system out of equilibrium, perturbs the density and pressure fields, and gives the bath particles a nonzero average velocity, creating a current in the channel. Three models in which the confining effect of the channel is probed are analyzed and compared in this study: the first is the simple symmetric exclusion process (SSEP), for which the stationary density profile and the pressure on the walls in the frame of the tracer are computed. We show that the tracer acts like a dipolar source in an average velocity field. The spatial structure of this 2D strip is then simplified to a one-dimensional (1D) SSEP, in which exchanges of position between the tracer and the bath particles are allowed. Using a combination of mean-field theory and exact solution in the limit where no exchange is allowed gives good predictions of the velocity of the tracer and the density field. Finally, we show that results obtained for the 1D SSEP with exchanges also apply to a gas of overdamped hard disks in a narrow channel. The correspondence between the parameters of the SSEP and of the gas of hard disks is systematic and follows from simple intuitive arguments. Our analytical results are checked numerically.

  11. The use of synthetic colloids in tracer transport experiments in saturated rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul William [Univ. of California, Berkeley, CA (United States)

    1995-08-01

    Studies of groundwater flow and contaminant transport in saturated, fractured geologic media are of great interest to researchers studying the potential long-term storage of hazardous wastes in or near such media. A popular technique for conducting such studies is to introduce tracers having different chemical and physical properties into a system and then observe the tracers at one or more downstream locations, inferring flow and transport mechanisms from the breakthrough characteristics of the different tracers. Many tracer studies have been conducted in saturated, fractured media to help develop and/or refine models capable of predicting contaminant transport over large scales in such media.

  12. Chemical and ecological control methods for Epitrix spp.

    Directory of Open Access Journals (Sweden)

    A. G. S. Cuthbertson

    2015-01-01

    Full Text Available Very little information exists in regards to the control options available for potato flea beetles, Epitrix spp. This short review covers both chemical and ecological options currently available for control of Epitrix spp. Synthetic pyrethroids are the weapon of choice for the beetles. However, the impetus in integrated pest management is to do timely (early-season applications with something harsh which will give long-term protection at a time when there are not a lot of beneficials in the field. Finding the balance for control of Epitrix spp. is proving difficult.

  13. Determination of stream reaeration coefficients by use of tracers

    Science.gov (United States)

    Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.

    1989-01-01

    Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed whereby a radioactive tracer gas was injected into a stream-the principle being that the tracer gas would be desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. This manual describes the slug-injection and constant-rate-injection methods of measuring gas-tracer desorption. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, on methods of injection, sampling, and analysis, and on techniques for computing desorption and reaeration coefficients.

  14. Method of operating a thermal engine powered by a chemical reaction

    Science.gov (United States)

    Ross, John; Escher, Claus

    1988-01-01

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction.

  15. Method of operating a thermal engine powered by a chemical reaction

    Science.gov (United States)

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  16. Chemical methods and phytoremediation of soil contaminated with heavy metals.

    Science.gov (United States)

    Chen, H M; Zheng, C R; Tu, C; Shen, Z G

    2000-07-01

    The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field plot experiment. Results showed that treatments with CC, SS and FS decreased Cd uptake by wetland rice, Chinese cabbage and wheat by 23-95% compared with the unamended control. Among the three amendments, FS was the most efficient at suppressing Cd uptake by the plants, probably due to its higher content of available silicon (Si). The concentrations of zinc (Zn), lead (Pb) and Cd in the shoots of vetiver grass were 42-67%, 500-1200% and 120-260% higher in contaminated plots than in control, respectively. Cadmium accumulation by vetiver shoots was 218 g Cd/ha at a soil Cd concentration of 0.33 mg Cd/kg. It is suggested that heavy metal-contaminated soil could be remediated with a combination of chemical treatments and plants.

  17. Natural tracer profiles across argillaceous formations

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, Martin, E-mail: mazurek@geo.unibe.ch [Rock-Water Interaction, Institute of Geological Sciences, University of Bern (Switzerland); Alt-Epping, Peter [Rock-Water Interaction, Institute of Geological Sciences, University of Bern (Switzerland); Bath, Adrian [Intellisci, Willoughby on the Wolds, Loughborough LE12 6SZ (United Kingdom); Gimmi, Thomas [Rock-Water Interaction, Institute of Geological Sciences, University of Bern (Switzerland)] [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Niklaus Waber, H. [Rock-Water Interaction, Institute of Geological Sciences, University of Bern (Switzerland); Buschaert, Stephane [Andra, Parc de la Croix Blanche, 92298 Chatenay-Malabry Cedex (France); Canniere, Pierre De; Craen, Mieke De [SCK-CEN, 2400 Mol (Belgium); Gautschi, Andreas [Nagra, 5430 Wettingen (Switzerland); Savoye, Sebastien [IRSN, 92262 Fontenay-aux-Roses Cedex (France); Vinsot, Agnes [Andra, Parc de la Croix Blanche, 92298 Chatenay-Malabry Cedex (France); Wemaere, Isabelle [SCK-CEN, 2400 Mol (Belgium); Wouters, Laurent [Ondraf/Niras, 1210 Brussels (Belgium)

    2011-07-15

    Highlights: > Solute transport processes in clay and shale formations at nine sites are examined. > Conservative pore-water tracers (e.g. Cl{sup -}, {delta}{sup 18}O, {delta}{sup 2}H, He) show regular profiles. > These indicate the dominance of diffusive transport over times of 10{sup 5}-10{sup 6} years. > The contribution of vertical advection to transport is limited or negligible. > Modelled evolution times are in line with independent palaeo-hydrogeological data. - Abstract: Argillaceous formations generally act as aquitards because of their low hydraulic conductivities. This property, together with the large retention capacity of clays for cationic contaminants, has brought argillaceous formations into focus as potential host rocks for the geological disposal of radioactive and other waste. In several countries, programmes are under way to characterise the detailed transport properties of such formations at depth. In this context, the interpretation of profiles of natural tracers in pore waters across the formations can give valuable information about the large-scale and long-term transport behaviour of these formations. Here, tracer-profile data, obtained by various methods of pore-water extraction for nine sites in central Europe, are compiled. Data at each site comprise some or all of the conservative tracers: anions (Cl{sup -}, Br{sup -}), water isotopes ({delta}{sup 18}O, {delta}{sup 2}H) and noble gases (mainly He). Based on a careful evaluation of the palaeo-hydrogeological evolution at each site, model scenarios are derived for initial and boundary pore-water compositions and an attempt is made to numerically reproduce the observed tracer distributions in a consistent way for all tracers and sites, using transport parameters derived from laboratory or in situ tests. The comprehensive results from this project have been reported in . Here the results for three sites are presented in detail, but the conclusions are based on model interpretations of the

  18. FINITE ELEMENT METHOD AND ANALYSIS FOR CHEMICAL-FLOODING SIMULATION

    Institute of Scientific and Technical Information of China (English)

    YUAN Yirang

    2000-01-01

    This article discusses the enhanced oil recovery numerical simulation of the chemical-flooding (such as surfactants, alcohol, polymers) composed of three-dimensional multicomponent, multiphase and incompressible mixed fluids. The mathematical model can be described as a coupled system of nonlinear partial differential equations with initialboundary value problems. From the actual conditions such as the effect of cross interference and the three-dimensional characteristic of large-scale science-engineering computation, this article puts forward a kind of characteristic finite element fractional step schemes and obtain the optimal order error estimates in L2 norm. Thus we have thoroughly solved the well-known theoretical problem proposed by a famous scientist, R. E. Ewing.

  19. Elucidation of hydrogen mobility in tetralin under coal liquefaction conditions using a tritium tracer method. Effects of the addition of H2S and H2O; Tritium tracer ho wo mochiita sekitan ekika hanno jokenka deno tetralin no suiso idosei hyoka. Ryuka suiso oyobi mizu no tenka koka

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, M.; Saito, M.; Ishihara, A.; Kabe, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1996-10-28

    It was previously reported that the tritium tracer method is useful for the quantitative consideration of hydrogen behavior in coal during coal liquefaction reaction. Tetralin is excellent hydrogen donating solvent, and is considered as one of the model compounds of coal. In this study, effects of H2S and H2O on the hydrogen exchange reaction between tetralin and gaseous hydrogen labeled by tritium were investigated. It was suggested that the conversion of tetralin and the hydrogen exchange reaction between gaseous hydrogen and tetralin proceed through the radical reaction mechanism with a tetralyl radical as an intermediate product. When H2S existed in this reaction, the hydrogen exchange yield increased drastically without changing the conversion yield. This suggested that the hydrogen exchange reaction proceeds even in the reaction where radical does not give any effect. In the case of H2O addition, the conversion yield and hydrogen exchange rate decreased into a half or one-third. It was suggested that H2O inhibited the formation process of tetralyl radical. 6 refs., 4 figs.

  20. In-Situ Characterization of Dense Non-Aqueous Phase Liquids Using Partitioning Tracers

    Energy Technology Data Exchange (ETDEWEB)

    Gary A. Pope; Daene C. McKinney; Akhil Datta Gupta; Richard E. Jackson; Minquan Jin

    2000-03-20

    Majors advances have been made during the past three years in our research on interwell partitioning tracers tests (PITTs). These advances include (1) progress on the inverse problem of how to estimate the three-dimensional distribution of NAPL in aquifers from the tracer data, (2) the first ever partitioning tracer experiments in dual porosity media, (3) the first modeling of partitioning tracers in dual porosity media (4) experiments with complex NAPLs such as coal tar, (5) the development of an accurate and simple method to predict partition coefficients using the equivalent alkane carbon number approach, (6) partitioning tracer experiments in large model aquifers with permeability layers, (7) the first ever analysis of partitioning tracer data to estimate the change in composition of a NAPL before and after remediation (8) the first ever analysis of partitioning tracer data after a field demonstration of surfactant foam to remediate NAPL and (9) experiments at elevated temperatures .

  1. Stochastic linear multistep methods for the simulation of chemical kinetics

    Science.gov (United States)

    Barrio, Manuel; Burrage, Kevin; Burrage, Pamela

    2015-02-01

    In this paper, we introduce the Stochastic Adams-Bashforth (SAB) and Stochastic Adams-Moulton (SAM) methods as an extension of the τ-leaping framework to past information. Using the Θ-trapezoidal τ-leap method of weak order two as a starting procedure, we show that the k-step SAB method with k ≥ 3 is order three in the mean and correlation, while a predictor-corrector implementation of the SAM method is weak order three in the mean but only order one in the correlation. These convergence results have been derived analytically for linear problems and successfully tested numerically for both linear and non-linear systems. A series of additional examples have been implemented in order to demonstrate the efficacy of this approach.

  2. Perovskite type nanopowders and thin films obtained by chemical methods

    Directory of Open Access Journals (Sweden)

    Viktor Fruth

    2010-09-01

    Full Text Available The review presents the contribution of the authors, to the preparation of two types of perovskites, namely BiFeO3 and LaCoO3, by innovative methods. The studied perovskites were obtained as powders, films and sintered bodies. Their complex structural and morphological characterization is also presented. The obtained results have underlined the important influence of the method of preparation on the properties of the synthesized perovskites.

  3. Design Hybrid Methods for Encoding Prior Knowledge in Feedforward Network with Application in Chemical Engineering

    Institute of Scientific and Technical Information of China (English)

    CHENChongwei; CHENDezhao

    2002-01-01

    Three-layer feedforward networks have been widely used in modeling chemical engineering processes and prior-knowledge-based methods have been introduced to improve their performances.In this paper,we propose the methodology of designing better prior-knowledge-based hybrid methods by combining the existing ones. Then according to this methodology,two hybrid methods,interpolation-optimization (IO) method and interpolation penalty-function (IPF) method,are designed as examples.Finally,both methods are applied to modeling two cases in chemical engineering to investigate their effectiveness.Simulation results show that the performances of the hybrid methods are better than those of their parents.

  4. Predictive performance of the Vitrigel-eye irritancy test method using 118 chemicals.

    Science.gov (United States)

    Yamaguchi, Hiroyuki; Kojima, Hajime; Takezawa, Toshiaki

    2016-08-01

    We recently developed a novel Vitrigel-eye irritancy test (EIT) method. The Vitrigel-EIT method is composed of two parts, i.e., the construction of a human corneal epithelium (HCE) model in a collagen vitrigel membrane chamber and the prediction of eye irritancy by analyzing the time-dependent profile of transepithelial electrical resistance values for 3 min after exposing a chemical to the HCE model. In this study, we estimated the predictive performance of Vitrigel-EIT method by testing a total of 118 chemicals. The category determined by the Vitrigel-EIT method in comparison to the globally harmonized system classification revealed that the sensitivity, specificity and accuracy were 90.1%, 65.9% and 80.5%, respectively. Here, five of seven false-negative chemicals were acidic chemicals inducing the irregular rising of transepithelial electrical resistance values. In case of eliminating the test chemical solutions showing pH 5 or lower, the sensitivity, specificity and accuracy were improved to 96.8%, 67.4% and 84.4%, respectively. Meanwhile, nine of 16 false-positive chemicals were classified irritant by the US Environmental Protection Agency. In addition, the disappearance of ZO-1, a tight junction-associated protein and MUC1, a cell membrane-spanning mucin was immunohistologically confirmed in the HCE models after exposing not only eye irritant chemicals but also false-positive chemicals, suggesting that such false-positive chemicals have an eye irritant potential. These data demonstrated that the Vitrigel-EIT method could provide excellent predictive performance to judge the widespread eye irritancy, including very mild irritant chemicals. We hope that the Vitrigel-EIT method contributes to the development of safe commodity chemicals. Copyright © 2015 The Authors. Journal of Applied Toxicology published by John Wiley & Sons Ltd.

  5. A new ultrasonic method to detect chemical additives in branded milk

    Indian Academy of Sciences (India)

    S Mohanan; P G Thomas Panicker; Lilly Iype; M Laila; I Domini; R G Bindu

    2002-09-01

    A new ultrasonic method – thermoacoustic analysis – is reported for the detection of the added chemical preservatives in branded milk. The nature of variation and shift in the thermal response of the acoustic parameters specific acoustic impedance, adiabatic compressibility and Rao’s specific sound velocity for different samples of branded milk as compared to the chemical added pure milk are explained as due to the presence of chemicals in these branded samples.

  6. Estimation methods for bioaccumulation in risk assessment of organic chemicals

    NARCIS (Netherlands)

    Jager DT; Hamers T; ECO

    1997-01-01

    Methodes voor het inschatten van bioaccumulatie van organische stoffen worden ge-evalueerd. Deze studie is beperkt tot drie typen organismen: vis, wormen en planten (bladgewassen, wortelgewassen en gras). We stellen een simpel mechanistisch model voor dat goed presteert t.o.v. gemeten waarden. O

  7. Evaluating three methods that contribute to the learning of inorganic chemical nomenclature

    Science.gov (United States)

    Chimeno, Joseph Samuel

    The majority of students about to complete a first year chemistry course have a poor working knowledge of inorganic chemical nomenclature (average quiz scores are less than 60% correct). Usually, the chemical nomenclature topic is not emphasized in a first year chemistry class, and a minimum amount of time is devoted to it. The traditional assignment for chemical nomenclature involves having students work practice problems at the end of the chapter. Students are not very receptive to this approach. The minimal exposure to chemical nomenclature in class along with the ineffective approach of a traditional assignment results in students having a poor working knowledge of chemical nomenclature. Studies have claimed that students are more receptive to learning when game playing is combined with the learning activity. Therefore two educational games were created to help students develop a working knowledge of inorganic chemical nomenclature: the Rainbow Wheel and Rainbow Matrix. This study compared the learning of inorganic chemical nomenclature by three different methods; one was the traditional method where students worked problems at the end of a chapter, and the other two methods used a game format to learn chemical nomenclature. The statistical analysis of student performance was evaluated with analysis of variance (ANOVA) and t-tests. The analysis revealed that the game format methods were more effective in helping students develop a working knowledge of chemical nomenclature. The ANOVA test indicate that both the Rainbow Wheel and Rainbow Matrix post-assignment mean scores differ significantly from the traditional group's post-assignment mean scores (p game format groups' mean scores. The results of this study indicate that students will learn chemical nomenclature more effectively when the subject is presented in a game format. The game format methods used in this study encouraged students to visualize the process of writing chemical formulas correctly, while

  8. Multiple Tracer Tests in Porous Media During Clogging

    Science.gov (United States)

    Englert, A.; Banning, A.; Siegmund, J.; Freye, S.; Goekpinar, T.

    2015-12-01

    Transport processes are known to be governed by the physical and chemical heterogeneity of the subsurface. Clogging processes can alter this heterogeneity as function of time and thus can modify transport. To understand transport under clogging conditions and to unravel the potential of multiple tracer tests to characterize such transport process we perform column and sandbox experiments. Our recently developed column and sandbox experiments are used to perform multiple tracer tests during clogging. In a first set of experiments, a cubic cell of 0.1 m x 0.1 m x 0.1 m is used to experimentally estimate flow and transport characteristics of an unconsolidated sediment through Darcy and tracer experiments. The water streaming through the experiment is amended with ammonium sulfate permanently. Salt tracers are added to the streaming water repeatedly, to be detected at micro electrodes at the inflow and the outflow of the cubic cell. Through repeated syringe injections of a barium chloride solution into the center of the cubic cell clogging processes are forced to occur around the mixing zone of the injected and streaming water by precipitation of barium sulfate. In a second set of experiments, a sandbox model including a sediment body of 0.3 m x 0.3 m x 0.1 m is used. Tracer, streaming, and injection water chemistry is kept similar to the cubic cell experiments. However, tracer breakthrough is now detected at nine positions within the experiment and at the inflow and the outflow of the sandbox model. Injection of barium chloride solution is now at two locations around the center of the sandbox model. Flow and transport characteristics of the sediment body are estimated based on Darcy and tracer experiments, which are performed repeatedly. Combined analysis of local and ensemble breakthrough curves and integrated numerical modeling will be used to understand effective and local flow and transport in a in a porous medium during clogging.

  9. Investigation of helical flow by using tracer technique

    Directory of Open Access Journals (Sweden)

    Hacıyakupoğlu S.

    2013-05-01

    Full Text Available The flow through coiled tubes is, in practice, important for pipe systems, heat exchangers, chemical reactors, mixers of different gas components, etc., and is physically interesting because of the peculiar characteristics caused by the centrifugal force. Therefore, it is not so easy to observe flow parameters in the helical pipe experimentally. Tracer techniques are being increasingly used to determine characteristics such as volume flow rate, residence time, dispersion and mixing process in industry. In this study, the flow in the helical pipe was obtained in the laboratory and investigated by using the tracer technique. The experimental system including the helical pipe was set up in the laboratory. In the experiments methylene-blue (C16H17N3S has been used as the tracer. The experiments were successfully performed with different flow rates and their results were evaluated with the flow parameters.

  10. Methods for chemical analysis of water and wastes

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    This manual provides test procedures approved for the monitoring of water supplies, waste discharges, and ambient waters, under the Safe Drinking Water Act, the National Pollutant Discharge Elimination System, and Ambient Monitoring Requirements of Section 106 and 208 of Public Law 92-500. The test methods have been selected to meet the needs of federal legislation and to provide guidance to laboratories engaged in the protection of human health and the aquatic environment.

  11. Recycling of poly(ethylene terephthalate – A review focusing on chemical methods

    Directory of Open Access Journals (Sweden)

    B. Geyer

    2016-07-01

    Full Text Available Recycling of poly(ethylene terephthalate (PET is of crucial importance, since worldwide amounts of PETwaste increase rapidly due to its widespread applications. Hence, several methods have been developed, like energetic, material, thermo-mechanical and chemical recycling of PET. Most frequently, PET-waste is incinerated for energy recovery, used as additive in concrete composites or glycolysed to yield mixtures of monomers and undefined oligomers. While energetic and thermo-mechanical recycling entail downcycling of the material, chemical recycling requires considerable amounts of chemicals and demanding processing steps entailing toxic and ecological issues. This review provides a thorough survey of PET-recycling including energetic, material, thermo-mechanical and chemical methods. It focuses on chemical methods describing important reaction parameters and yields of obtained reaction products. While most methods yield monomers, only a few yield undefined low molecular weight oligomers for impaired applications (dispersants or plasticizers. Further, the present work presents an alternative chemical recycling method of PET in comparison to existing chemical methods.

  12. Research on Crude Oil Demulsification Using the Combined Method of Ultrasound and Chemical Demulsifier

    National Research Council Canada - National Science Library

    Mingxu Yi; Jun Huang; Lifeng Wang

    2017-01-01

    In this paper, experiments of crude oil demulsification using ultrasound, chemical demulsifier, and the combined method of ultrasound and chemical demulsifier, respectively, at different temperatures (40°C, 60°C, and 70°C) are carried out...

  13. Compilation and analyses of results from cross-hole tracer tests with conservative tracers

    Energy Technology Data Exchange (ETDEWEB)

    Hjerne, Calle; Nordqvist, Rune; Harrstroem, Johan (Geosigma AB (Sweden))

    2010-09-15

    Radionuclide transport in hydrogeological formations is one of the key factors for the safety analysis of a future repository of nuclear waste. Tracer tests have therefore been an important field method within the SKB investigation programmes at several sites since the late 1970's. This report presents a compilation and analyses of results from cross-hole tracer tests with conservative tracers performed within various SKB investigations. The objectives of the study are to facilitate, improve and reduce uncertainties in predictive tracer modelling and to provide supporting information for SKB's safety assessment of a final repository of nuclear waste. More specifically, the focus of the report is the relationship between the tracer mean residence time and fracture hydraulic parameters, i.e. the relationship between mass balance aperture and fracture transmissivity, hydraulic diffusivity and apparent storativity. For 74 different combinations of pumping and injection section at six different test sites (Studsvik, Stripa, Finnsjoen, Aespoe, Forsmark, Laxemar), estimates of mass balance aperture from cross-hole tracer tests as well as transmissivity were extracted from reports or in the SKB database Sicada. For 28 of these combinations of pumping and injection section, estimates of hydraulic diffusivity and apparent storativity from hydraulic interference tests were also found. An empirical relationship between mass balance aperture and transmissivity was estimated, although some uncertainties for individual data exist. The empirical relationship between mass balance aperture and transmissivity presented in this study deviates considerably from other previously suggested relationships, such as the cubic law and transport aperture as suggested by /Dershowitz and Klise 2002/, /Dershowitz et al. 2002/ and /Dershowitz et al. 2003/, which also is discussed in this report. No clear and direct empirical relationship between mass balance aperture and hydraulic

  14. Largest Common Chemical Feature Subtree as a Virtual Screening Method

    DEFF Research Database (Denmark)

    Kristensen, Thomas Greve; Pedersen, Christian Storm; Thomsen, Rene

    We investigate the effectiveness of using a tree comparison based method to screen for drug candidates. Molecules are represented as trees in which ring systems are reduced to single nodes. These trees are compared to the tree of a selected known binder and the molecules are ranked according...... to the normalized size of their largest common subtree. The nodes of the molecular trees contains information about the atoms or ring systems they represent (e.g. charge and hydrogen donor/acceptor properties). In this way we can restrict which nodes are matched when calculating the size of the largest common...

  15. Review of Physical and Chemical Methods for Characterization of Fuels

    Science.gov (United States)

    1981-12-01

    Naphtha Using Packed Columns," Instituto di Chimica Analitica dell’ Universita’ di Roma, Rome, Italy, Journal of Chromatography, Vol. 160, pp 147-54...Chromatography-New Evaluation Methods of Mathematical Dead Time," Instituto de Quimica Fisica "Rocasolano", Madrid, Spain, Journal of Chromatographic Science...Journal of Japan Petroleum Institute, Vol. 20, No. 7, July 1977. EQU DIS PET P-030. Harris , J.C., Hayes, M.L., Levins, P.L., Lindsay, D.B., "EPA/IERL-RTP

  16. CHEMICALS

    CERN Document Server

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  17. Study of improved methods for predicting chemical equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, T.G.; Vaughan, J.D.

    1992-06-01

    The objective of our research has been to develop computational methods that have the capability of accurately predicting equilibrium constants of typical organic reactions in gas and liquid solution phases. We have chosen Diels-Alder reactions as prototypic systems for the investigation, chiefly because there are an adequate number of reported equilibrium constants for the candidate reactions in both gas and solution phases, which data provides a suitable basis for tests of the developed computational methods. Our approach has been to calculate the standard enthalpies of formation ({Delta}H{sub f}{sup 0}) at 298.15K and the standard thermodynamic functions (S{sup 0}, Cp{sup 0}, and (H{sup 0}-H{sub 0}{sup 0})/T) for a range of temperatures for reactants and products, and from these properties to calculate standard enthalpies, entropies, Gibbs free energies, and equilibrium constants ({Delta}H{sub T}{sup 0}, {Delta}S{sub T}{sup 0}, and K{sub a}) at various temperatures for the chosen reaction.

  18. Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods

    Science.gov (United States)

    Choudhury, Rupasree; Majumder, Manna; Roy, Dijendra Nath; Basumallick, Srijita; Misra, Tarun Kumar

    2016-06-01

    Silver nanoparticles (Ag NPs) are now widely used as antibacterial and antifungal materials in different consumer products. We report here the preparation of Ag NPs by neem leaves extract ( Azadirachta) reduction and trisodium citrate-sodium borohydride reduction methods, and study of their phytotoxicity. The nanoparticles were characterized by UV-Vis spectroscopy, FTIR, and atomic force microscopy (AFM) techniques. Both neem-coated and citrate-coated Ag NPs exhibit surface plasmon around 400 nm, and their average sizes measured by AFM are about 100 and 20 nm, respectively. Antibacterial and antifungal activities of these nanomaterials have been studied by simple pea seed germination and disk diffusion methods. It has been observed from the growth of root and shoot, citrate-coated Ag NPs significantly affect seedling growth, but neem-coated Ag NPs exhibit somehow mild toxicity toward germination process due to the nutrient supplements from neem. On the other hand, antifungal activity of neem-coated Ag NPs has been found much higher than that of citrate-coated Ag NPs due to the combined effects of antifungal activity of neem and Ag NPs. Present research primarily indicates a possible application of neem-coated Ag NPs as a potential fungicide.

  19. Neuroreceptor quantitation in vivo by the steady-state principle using constant infusion or bolus injection of radioactive tracers

    DEFF Research Database (Denmark)

    Lassen, N A

    1992-01-01

    different modes of tracer administration can be used. If the tracer is also infused at a constant rate for a long time, then the occupancy of receptor sites by the cold ligand can be calculated by measuring the equilibrium tracer concentrations in brain and plasma. If the tracer is administered...... sites not occupied by the "cold" ligand is measured by using trace amounts of a radioactive ligand binding to the same receptor. A minimum of two studies at different occupanies must be performed. In this presentation it is proposed to make the second study at essentially zero receptor occupancy...... by administering the tracer alone. The pair of tracer studies, the one without and the other with infusion of cold ligand, allows calculation of the cold ligand's equilibrium dissociation constant Kd. In the special case when tracer and cold ligands are chemically identical, then Bmax can also be calculated. Two...

  20. A benchmarking method to measure dietary absorption efficiency of chemicals by fish.

    Science.gov (United States)

    Xiao, Ruiyang; Adolfsson-Erici, Margaretha; Åkerman, Gun; McLachlan, Michael S; MacLeod, Matthew

    2013-12-01

    Understanding the dietary absorption efficiency of chemicals in the gastrointestinal tract of fish is important from both a scientific and a regulatory point of view. However, reported fish absorption efficiencies for well-studied chemicals are highly variable. In the present study, the authors developed and exploited an internal chemical benchmarking method that has the potential to reduce uncertainty and variability and, thus, to improve the precision of measurements of fish absorption efficiency. The authors applied the benchmarking method to measure the gross absorption efficiency for 15 chemicals with a wide range of physicochemical properties and structures. They selected 2,2',5,6'-tetrachlorobiphenyl (PCB53) and decabromodiphenyl ethane as absorbable and nonabsorbable benchmarks, respectively. Quantities of chemicals determined in fish were benchmarked to the fraction of PCB53 recovered in fish, and quantities of chemicals determined in feces were benchmarked to the fraction of decabromodiphenyl ethane recovered in feces. The performance of the benchmarking procedure was evaluated based on the recovery of the test chemicals and precision of absorption efficiency from repeated tests. Benchmarking did not improve the precision of the measurements; after benchmarking, however, the median recovery for 15 chemicals was 106%, and variability of recoveries was reduced compared with before benchmarking, suggesting that benchmarking could account for incomplete extraction of chemical in fish and incomplete collection of feces from different tests. © 2013 SETAC.

  1. Method of effecting expanding chemical anchor/seals for rock cavities

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, D.; Schlump, M.

    1989-06-20

    This method discusses sealing a cavity formed in a rock against the passage of fluids without fracturing the rock; by placing wadding in the cavity and adding a supply of expanding chemical grout; a seal was been developed upon hardening.

  2. Dielectric Properties of Nanostructured PZTSynthesised by Chemical Methods

    Directory of Open Access Journals (Sweden)

    N.S. Gajbhiye

    2007-01-01

    Full Text Available In this study, the dielectric behaviour of smart material, lead zirconate tiatanate (PZT, whichis important for wide industrial applications, has been explored. Two samples of nanostructuredPb(Zr0.52Ti0.48O3 ceramic powders were prepared by hydroxide co-precipitation and aqueoussolution method (water bath technique. The XRD pattern of the  powder exhibited the presenceof major tetragonal and minor rhombohedral crystalline phases indicating the mixed-phasecomposition, which is close to the morphotropic phase boundary (MPB. SEM analysis revealedgood homogeneity of the materials. The plot of real part versus imaginary part of the compleximpedance was observed nearly a semicircle, indicating that the samples are good dielectricmaterials, whose resistance decreases considerably with the increase of temperature. Similar tothe normal ferroelectric materials, the dielectric constant ( of PZT has been found to be increasinggradually with temperature and attains a maxima (max. The detailed analysis for the shift in peaktemperature and dielectric constant were carried out.

  3. An introduction to quantum chemical methods applied to drug design.

    Science.gov (United States)

    Stenta, Marco; Dal Peraro, Matteo

    2011-06-01

    The advent of molecular medicine allowed identifying the malfunctioning of subcellular processes as the source of many diseases. Since then, drugs are not only discovered, but actually designed to fulfill a precise task. Modern computational techniques, based on molecular modeling, play a relevant role both in target identification and drug lead development. By flanking and integrating standard experimental techniques, modeling has proven itself as a powerful tool across the drug design process. The success of computational methods depends on a balance between cost (computation time) and accuracy. Thus, the integration of innovative theories and more powerful hardware architectures allows molecular modeling to be used as a reliable tool for rationalizing the results of experiments and accelerating the development of new drug design strategies. We present an overview of the most common quantum chemistry computational approaches, providing for each one a general theoretical introduction to highlight limitations and strong points. We then discuss recent developments in software and hardware resources, which have allowed state-of-the-art of computational quantum chemistry to be applied to drug development.

  4. Halogen bonded supramolecular capsules: a challenging test case for quantum chemical methods.

    Science.gov (United States)

    Sure, Rebecca; Grimme, Stefan

    2016-08-02

    Recently, Diederich et al. synthesized the first supramolecular capsule with a well-defined four-point halogen bonding interaction [Angew. Chem., Int. Ed., 2015, 54, 12339]. This interesting system comprising about 400 atoms represents a challenging test case for accurate quantum chemical methods. We investigate it with our new density functional based composite method for structures and noncovalent interactions (PBEh-3c) as well as our standard protocol for supramolecular thermochemistry and give predictions for chemical modifications to improve the binding strength.

  5. Determination of rare-earth elements in Luna 16 regolith sample by chemical spectral method

    Science.gov (United States)

    Stroganova, N. S.; Ryabukhin, V. A.; Laktinova, N. V.; Ageyeva, L. V.; Galkina, I. P.; Gatinskaya, N. G.; Yermakov, A. N.; Karyakin, A. V.

    1974-01-01

    An analysis was made of regolith from layer A of the Luna 16 sample for rare earth elements, by a chemical spectral method. Chemical and ion exchange concentrations were used to determine the content of 12 elements and Y at the level 0.001 to 0.0001 percent with 10 to 15 percent reproducibility of the emission determination. Results within the limits of reproducibility agree with data obtained by mass spectra, activation, and X-ray fluorescent methods.

  6. Biomechanical properties of acellular sciatic nerves treated with a modified chemical method

    Institute of Scientific and Technical Information of China (English)

    Xinlong Ma; Zhao Yang; Xiaolei Sun; Jianxiong Ma; Xiulan Li; Zhenzhen Yuan; Yang Zhang; Honggang Guo

    2011-01-01

    Nerve grafts are able to adapt to surrounding biomechanical environments if the nerve graft itself exhibits appropriate biomechanical properties (load, elastic modulus, etc.). The present study was designed to determine the differences in biomechanical properties between fresh and chemically acellularized sciatic nerve grafts. Two different chemical methods were used to establish acellular nerve grafts. The nerve was chemically extracted in the Sondell method with a combination of Triton X-100 (nonionic detergent) and sodium deoxycholate (anionic detergent), and in the modified method with a combination of Triton X-200 (anionic detergent), sulfobetaine-10 (SB-10, amphoteric detergents), and sulfobetaine-16 (SB-16, amphoteric detergents). Following acellularization, hematoxylin-eosin staining and scanning electron microscopy demonstrated that the effect of acellularization via the modified method was similar to the traditional Sondell method. However, effects of demyelination and nerve fiber tube integrity were superior to the traditional Sondell method. Biomechanical testing showed that peripheral nerve graft treated using the chemical method resulted in decreased biomechanical properties (ultimate load, ultimate stress, ultimate strain, and mechanical work to fracture) compared with fresh nerves, but the differences had no statistical significance (P > 0.05). These results demonstrated no significant effect on biomechanical properties of nerves treated using the chemical method. In conclusion, nerve grafts treated via the modified method removed Schwann cells, preserved neural structures, and ensured biomechanical properties of the nerve graft, which could be more appropriate for implantation studies.

  7. Bromide as a tracer for studying water movement and nitrate displacement in soils: comparison with stable isotope tracers; Bromid als Tracer zur Untersuchung der Wasserbewegung und der Nitratverlagerung in Boeden: Vergleich mit stabilisotopen Tracern

    Energy Technology Data Exchange (ETDEWEB)

    Russow, R.; Knappe, S. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Bad Lauchstaedt (Germany). Sektion Bodenforschung

    1999-02-01

    Tracers are an ideal means of studying water movement and associated nitrate displacement. Often bromide is preferred as a tracer because it is considered a representative tracer for water and because, being a conservative tracer (i.e. not involved in chemical and biological soil processes), it can be used for studying anion transport in soils. Moreover, it is less expensive and easier to measure than the stable isotopes deuterium and {sup 15}N. Its great advantage over radioactive tracers (e.g. tritium), which outweighs their extreme sensitivity and ease of measurement and which it has in common with stable isotopes, is that it does not require radiation protection measures. However, there are also constraints on the use of bromide as a tracer in soil/water/plant systems. Our own studies on different soils using D{sub 2}O, bromide and [{sup 15}N]-nitrate in lysimeters suggest that the above assumptions on bromide tracers need not always be valid under conditions as they prevail in biologically active soils. As the present paper shows, these studies permit a good assessment of the possibilities and limits to these tracers. [Deutsch] Fuer die Untersuchung der Wasserbewegung sowie der daran gekoppelten Nitrat-Verlagerung ist der Einsatz von Tracern das Mittel der Wahl. Dabei wird Bromid als Tracer haeufig bevorzugt, da es allgemein als ein repraesentativer Tracer fuer Wasser und als konservativer Tracer (nicht involviert in chemische und biologische Bodenprozesse) zur Untersuchung des Anionentransportes in Boeden angesehen wird und es gegenueber den stabilen Isotopen Deuterium und {sup 15}N billiger und einfacher zu bestimmen ist. Gegenueber den radioaktiven Tracern (z.B. Tritium), die zwar sehr empfindlich und einfach messbar sind, besteht der grosse Vorteil, dass, wie bei den stabilen Isotopen, keine Strahlenschutzmassnahmen ergriffen werden muessen. Es gibt jedoch auch einschraenkende Hinweise fuer die Verwendung von Bromid als Tracer im System Boden

  8. Plant management in natural areas: balancing chemical, mechanical, and cultural control methods

    Science.gov (United States)

    Steven Manning; James. Miller

    2011-01-01

    After determining the best course of action for control of an invasive plant population, it is important to understand the variety of methods available to the integrated pest management professional. A variety of methods are now widely used in managing invasive plants in natural areas, including chemical, mechanical, and cultural control methods. Once the preferred...

  9. Microfilter paper method for 17. cap alpha. -hydroxyprogesterone radioimmunoassay: its application for rapid screening for congenital adrenal hyperplasia. [Tritium tracer techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pang, S.; Hotchkiss, J.; Drash, A.L.; Levine, L.S.; New, M.I.

    1977-11-01

    A new micromethod for measuring a steroid in blood collected on filter paper has been developed. The method is easy and rapid and has the specificity, accuracy and precision of RIA in whole plasma. Less than 20 ..mu..l of blood is required, and, therefore, samples may be obtained with heel prick. This method has been applied to the determination of 17..cap alpha..-hydroxyprogesterone (17..cap alpha..-OH-P) for screening patients with congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency. There was excellent correlation (r = .94) between the values of 17..cap alpha..-OH-P obtained by microfilter paper method and those from plasma samples of cord (40 +- 13 ng/ml) and neonatal blood (<3.6 ng/ml) in normal infants. In six neonates at risk for CAH the diagnosis was made utilizing the microfilter paper method. 17..cap alpha..-OH-P concentrations were highly elevated in both filter paper eluates of whole blood (67 to 360 ng/ml of plasma) and simultaneously obtained plasma concentration (74 to 395 ng/ml) in affected infants. The concentrations of 17..cap alpha..-OH-P remained unchanged in dried filter paper blood when stored at room temperature for up to 21 days. Thus, filter paper with dried blood may be sent for steroid assay by mail. The ease with which samples may be transported and the minute amount of sample necessary make this method a promising screening test for CAH.

  10. Polyethyleneimine as tracer for electron microscopy

    NARCIS (Netherlands)

    Schurer, Jacob Willem

    1980-01-01

    In this thesis the development of a tracer particle for use in electron microscopy is described. Attempts were made to use this tracer particle in immuno-electron microscopy and to trace negatively charged tissue components. ... Zie: Summary

  11. Field induced gradient simulations: a high throughput method for computing chemical potentials in multicomponent systems.

    Science.gov (United States)

    Mehrotra, Anuja Seth; Puri, Sanjay; Khakhar, D V

    2012-04-07

    We present a simulation method for direct computation of chemical potentials in multicomponent systems. The method involves application of a field to generate spatial gradients in the species number densities at equilibrium, from which the chemical potential of each species is theoretically estimated. A single simulation yields results over a range of thermodynamic states, as in high throughput experiments, and the method remains computationally efficient even at high number densities since it does not involve particle insertion at high densities. We illustrate the method by Monte Carlo simulations of binary hard sphere mixtures of particles with different sizes in a gravitational field. The results of the gradient Monte Carlo method are found to be in good agreement with chemical potentials computed using the classical Widom particle insertion method for spatially uniform systems.

  12. A Study Plan for Determining Recharge Rates at the Hanford Site Using Environmental Tracers

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E. M.; Szecsody, J. E.; Phillips, S. J.

    1991-02-01

    This report presents a study plan tor estimating recharge at the Hanford Site using environmental tracers. Past operations at the Hanford Site have led to both soil and groundwater contamination, and recharge is one of the primary mechanisms for transporting contaminants through the vadose zone and into the groundwater. The prediction of contaminant movement or transport is one aspect of performance assessment and an important step in the remedial investigation/feasibility study (RI/FS) process. In the past, recharge has been characterized by collecting lysimeter data. Although lysimeters can generate important and reliable data, their limitations include 1) fixed location, 2) fixed sediment contents, 3) edge effects, 4) low rates, and 5) relatively short duration of measurement. These limitations impact the ability to characterize the spatial distribution of recharge at the Hanford Site, and thus the ability to predict contaminant movement in the vadose zone. An alternative to using fixed lysimeters for determining recharge rates in the vadose zone is to use environmental tracers. Tracers that have been used to study water movement in the vadose zone include total chloride, {sup 36}CI, {sup 3}H, and {sup 2}H/{sup 18}O. Atmospheric levels of {sup 36}CI and {sup 3}H increased during nuclear bomb testing in the Pacific, and the resulting "bomb pulse" or peak concentration can be measured in the soil profile. Locally, past operations at the Hanford Site have resu~ed in the atmospheric release of numerous chemical and isotopic tracers, including nitrate, {sup 129}I, and {sup 99}Tc. The radionuclides, in particular, reached a well-defined atmospheric peak in 1945. Atmospheric releases of {sup 129}I and {sup 99}Tc were greatly reduced by mid-1946, but nitrogen oxides continued to be released from the uranium separations facilities. As a result, the nitrate concentrations probably peaked in the mid-1950s, when the greatest number of separations facilities were operating

  13. Method to reduce chemical background interference in atmospheric pressure ionization liquid chromatography-mass spectrometry using exclusive reactions with the chemical reagent dimethyl disulfide

    NARCIS (Netherlands)

    Guo, Xinghua; Bruins, Andries P.; Covey, Thomas R.

    2007-01-01

    The interference of chemical background ions (chemical noise) has been a problem since the inception of mass spectrometry. We present here a novel method to reduce the chemical noise in LC-MS based on exclusive gas-phase reactions with a reactive collision gas in a triple-quadrupole mass spectromete

  14. Elemental tracers for Chinese source dust

    Institute of Scientific and Technical Information of China (English)

    张小曳; 张光宇; 朱光华; 张德二; 安芷生; 陈拓; 黄湘萍

    1996-01-01

    The mass-particle size distributions of 10 dust-carrying elements in aerosol particles were determined tor 12 sites in desert regions of northern China. The desert dust is proved to he of origin of eolian loess deposited on the Loess Plateau. Their transport to the loess was mainly attributable to the non-dust storm processes under the interglacial climate condition. The impact ot" dust storm on the accumulation of the loess increased in the glacial stage. On the basis of the signatures of 4 dust elements (Al. Fe, Mg and Sc). Chinese dust is believed to have 3 major desert sources (northwestern deserts, northern high dust deserts and northern low dust deserts). With a chemical element balance model, an elemental tracer system is established to proportion the export of China-source dust.

  15. Application of a new TLC chemical method for detection of cyclopeptides in plants

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cyclopeptides have been investigated phytochemically less often because until now there has not been a special chemical method to detect them. Since we found cyclopeptides in Pseudostellaria heterophylla (Caryophyllaceae) in 1991, we have gradually established a special chemical detection method for detecting cyclopeptides in plants, which induces a new thin layer chromatography (TLC) protosite reaction with ninhydrin reagent. With this method, our group isolated and determined 73 cyclopeptides from 17 plants which belong to 5 families and 14 genuses, they are from dicyclopeptides to undecacyclopeptides, including 68 new ones, and were determined based on spectral, chemical and enzymic methods, especially 2D NMR and FAB-MS. Meantime, with this method cyclopeptides can be distinguished from peptidic amides based on their behaviour in TLC.

  16. Rapid and simple determination of delivery after iontophoretic and pressure injections of radiolabeled tracer substances

    Energy Technology Data Exchange (ETDEWEB)

    Imai, H.; Steindler, D.A.; Kitai, S.T. (Michigan State Univ., East Lansing (USA))

    1983-04-01

    A fluorographic method is described using X-ray film analysis for the determination of delivery of radiolabeled tracer substances both in Agar plates and in tissue sections. This method is most useful in neuroanatomical autoradiographic studies for providing rapid identification of delivery, placement and extent of an injection site after iontophoresis or pressure injections of radiolabeled axonal tracer substances.

  17. Determination of the separation efficiencies of a single-stage cryogenic distillation setup to remove krypton out of xenon by using a {sup 83m}Kr tracer method

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, S., E-mail: rosendahl@wwu.de; Brown, E.; Fieguth, A.; Huhmann, C.; Murra, M.; Weinheimer, C. [Institut für Kernphysik, Wilhelm-Klemm Straße 09, 48149 Münster (Germany); Cristescu, I. [Karlsruher Institut für Technologie, Hermann Von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Lebeda, O. [Nuclear Physics Institute, Czech Academy of Sciences, CZ 250 68 Řež (Czech Republic)

    2015-11-15

    The separation of krypton and xenon is of particular importance for the field of direct dark matter search with liquid xenon detectors. The intrinsic contamination of the xenon with radioactive {sup 85}Kr makes a significant background for these kinds of low count-rate experiments and has to be removed beforehand. This can be achieved by cryogenic distillation, a technique widely used in industry, using the different vapor pressures of krypton and xenon. In this paper, we present an investigation on the separation performance of a single stage distillation system using a radioactive {sup 83m}Kr-tracer method. The separation characteristics under different operation conditions are determined for very low concentrations of krypton in xenon at the level of {sup 83m}Kr/Xe = 1.9 ⋅ 10{sup −15}, demonstrating, that cryogenic distillation in this regime is working. The observed separation is in agreement with the expectation from the different volatilities of krypton and xenon. This cryogenic distillation station is the first step on the way to a multi-stage cryogenic distillation column for the next generation of direct dark matter experiment XENON1T.

  18. A Tracer Method for Computing Type Ia Supernova Yields: Burning Model Calibration, Reconstruction of Thickened Flames, and Verification for Planar Detonations

    CERN Document Server

    Townsley, Dean M; Timmes, F X; Calder, Alan C; Brown, Edward F

    2016-01-01

    We refine our previously introduced parameterized model for explosive carbon-oxygen fusion during thermonuclear supernovae (SN Ia) by adding corrections to post-processing of recorded Lagrangian fluid element histories to obtain more accurate isotopic yields. Deflagration and detonation products are verified for propagation in a uniform density medium. A new method is introduced for reconstructing the temperature-density history within the artificially thick model deflagration front. We obtain better than 5\\% consistency between the electron capture computed by the burning model and yields from post-processing. For detonations, we compare to a benchmark calculation of the structure of driven steady-state planar detonations performed with a large nuclear reaction network and error-controlled integration. We verify that, for steady-state planar detonations down to a density of 5x10^6 g/cc, our post processing matches the major abundances in the benchmark solution typically to better than 10% for times greater t...

  19. Tracer diffusion inside fibrinogen layers

    Science.gov (United States)

    Cieśla, Michał; Gudowska-Nowak, Ewa; Sagués, Francesc; Sokolov, Igor M.

    2014-01-01

    We investigate the obstructed motion of tracer (test) particles in crowded environments by carrying simulations of two-dimensional Gaussian random walk in model fibrinogen monolayers of different orientational ordering. The fibrinogen molecules are significantly anisotropic and therefore they can form structures where orientational ordering, similar to the one observed in nematic liquid crystals, appears. The work focuses on the dependence between level of the orientational order (degree of environmental crowding) of fibrinogen molecules inside a layer and non-Fickian character of the diffusion process of spherical tracer particles moving within the domain. It is shown that in general particles motion is subdiffusive and strongly anisotropic, and its characteristic features significantly change with the orientational order parameter, concentration of fibrinogens, and radius of a diffusing probe.

  20. Tracer diffusion inside fibrinogen layers

    CERN Document Server

    Cieśla, Michał; Sagués, Francesc; Sokolov, Igor M

    2013-01-01

    We investigate the motion of tracer (test) particles in crowded environments by carrying simulations of two-dimensional Gaussian random walk in model fibrinogen monolayers of different orientational ordering. The fibrinogen molecules are significantly anisotropic and therefore they can form structures where orientational ordering, similar to the one observed in nematic liquid crystals, appears. The work focuses on the dependence between level of the orientational order (degree of environmental crowding) of fibrinogen molecules inside a layer and non-Fickian character of the diffusion process of spherical tracer particles moving within the domain. It is shown that in general particles motion is subdiffusive and strongly anisotropic, and its characteristic features significantly change with the orientational order parameter, concentration of fibrinogens and radius of a diffusing probe.

  1. X-ray photon-in/photon-out methods for chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Matthew A.

    2010-03-24

    Most interesting materials in nature are heterogeneous, so it is useful to have analytical techniques with spatial resolution sufficient to resolve these heterogeneities.This article presents the basics of X-ray photon-in/photon-out chemical imaging. This family of methods allows one to derive images reflectingthe chemical state of a given element in a complex sample, at micron or deep sub-micron scale. X-ray chemical imaging is relatively non-destructiveand element-selective, and requires minimal sample preparation. The article presents the basic concepts and some considerations of data takingand data analysis, along with some examples.

  2. Influence of particle size and preparation methods on the physical and chemical stability of amorphous simvastatin

    DEFF Research Database (Denmark)

    Zhang, Fang; Aaltonen, Jaakko; Tian, Fang

    2009-01-01

    molecular mobility and higher chemical degradation than CM. Therefore, the current study demonstrated that QC and CM have obvious differences in both physical and chemical properties. It was concluded that care should be taken when choosing preparation methods for making amorphous materials. Furthermore......, particle size, a factor that has often been overlooked when dealing with amorphous materials, was shown to have an influence on physical stability of amorphous simvastatin.......This study investigated the factors influencing the stability of amorphous simvastatin. Quench-cooled amorphous simvastatin in two particle size ranges, 150-180 microm (QC-big) and amorphous simvastatin (CM) were prepared, and their physical and chemical...

  3. Identity method to study chemical fluctuations in relativistic heavy-ion collisions

    CERN Document Server

    Gazdzicki, M; Mackowiak, M; Mrowczynski, St

    2011-01-01

    Event-by-event fluctuations of the chemical composition of the hadronic final state of relativistic heavy-ion collisions carry valuable information on the properties of strongly interacting matter produced in the collisions. However, in experiments incomplete particle identification distorts the observed fluctuation signals. The effect is quantitatively studied and a new technique for measuring chemical fluctuations, the identity method, is proposed. The method fully eliminates the effect of incomplete particle identification. The application of the identity method to experimental data is explained.

  4. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    Science.gov (United States)

    Todd, Paul W. (Inventor); Jones, Alan (Inventor); Thomas, Nathan A. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  5. Effect of room air recirculation delay on the decay rate of tracer gas concentration

    Energy Technology Data Exchange (ETDEWEB)

    Kristoffersen, A.R.; Gadgil, A.J.; Lorenzetti, D.M.

    2004-05-01

    Tracer gas measurements are commonly used to estimate the fresh air exchange rate in a room or building. Published tracer decay methods account for fresh air supply, infiltration, and leaks in ductwork. However, the time delay associated with a ventilation system recirculating tracer back to the room also affects the decay rate. We present an analytical study of tracer gas decay in a well-mixed, mechanically-ventilated room with recirculation. The analysis shows that failing to account for delays can lead to under- or over-estimates of the fresh air supply, depending on whether the decay rate calculation includes the duct volume.

  6. Methods for conversion of carbohydrates in ionic liquids to value-added chemicals

    Science.gov (United States)

    Zhao, Haibo; Holladay, Johnathan E.

    2011-05-10

    Methods are described for converting carbohydrates including, e.g., monosaccharides, disaccharides, and polysaccharides in ionic liquids to value-added chemicals including furans, useful as chemical intermediates and/or feedstocks. Fructose is converted to 5-hydroxylmethylfurfural (HMF) in the presence of metal halide and acid catalysts. Glucose is effectively converted to HMF in the presence of chromium chloride catalysts. Yields of up to about 70% are achieved with low levels of impurities such as levulinic acid.

  7. A NOVEL METHOD TO SYNTHESIZE N-DOPED CNTs ARRAYS VIA CHEMICAL MODIFYING POROUS ALUMINA MEMBRANE

    OpenAIRE

    CHENGYONG LI; LEI HE

    2014-01-01

    N-doped carbon nanotubes (CNTs) arrays were fabricated via simply chemical modifying porous alumina membrane (PAM) with dopamine. The diameter of N-doped CNTs is about 60–70 nm. The N/C atomic ratio is calculated to be 0.05 and the main functionality is pyridone/pyrrole N. This chemical modifying method can be used to fabricate mass of N-doped CNTs arrays in one step with single raw material.

  8. a Novel Method to Synthesize N-DOPED CNTs Arrays via Chemical Modifying Porous Alumina Membrane

    Science.gov (United States)

    Li, Chengyong; He, Lei

    2014-01-01

    N-doped carbon nanotubes (CNTs) arrays were fabricated via simply chemical modifying porous alumina membrane (PAM) with dopamine. The diameter of N-doped CNTs is about 60-70 nm. The N/C atomic ratio is calculated to be 0.05 and the main functionality is pyridone/pyrrole N. This chemical modifying method can be used to fabricate mass of N-doped CNTs arrays in one step with single raw material.

  9. A Method for Quantitative Analysis of Chemical Mixtures with THz Time Domain Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zeng-Yan; JI Te; YU Xiao-Han; XIAO Ti-Qiao; XU Hong-Jie

    2006-01-01

    @@ A method for analysing chemical mixtures quantitatively with terahertz time domain spectroscopy is proposed.The experimental results demonstrate the feasibility of this technique. Transmission coefficient of THz wave at the sample surface is taken into account to improve the analytic precision. Isomer mixtures are chosen as the experimental samples. Compared to similar techniques, the analytic precision could be improved evidently in this method.

  10. Carbamate Stabilities of Sterically Hindered Amines from Quantum Chemical Methods: Relevance ofr CO2 Capture

    NARCIS (Netherlands)

    Gangarapu, S.; Marcelis, A.T.M.; Zuilhof, H.

    2013-01-01

    The influence of electronic and steric effects on the stabilities of carbamates formed from the reaction of CO2 with a wide range of alkanolamines was investigated by quantum chemical methods. For the calculations, B3LYP, M11-L, MP2, and spin-component-scaled MP2 (SCS-MP2) methods were used, coupled

  11. Carbamate Stabilities of Sterically Hindered Amines from Quantum Chemical Methods: Relevance ofr CO2 Capture

    NARCIS (Netherlands)

    Gangarapu, S.; Marcelis, A.T.M.; Zuilhof, H.

    2013-01-01

    The influence of electronic and steric effects on the stabilities of carbamates formed from the reaction of CO2 with a wide range of alkanolamines was investigated by quantum chemical methods. For the calculations, B3LYP, M11-L, MP2, and spin-component-scaled MP2 (SCS-MP2) methods were used, coupled

  12. Assessment of Average Tracer Concentration Approach for Flow Rate Measurement and Field Calibration

    Directory of Open Access Journals (Sweden)

    P. Sidauruk

    2015-12-01

    Full Text Available Tracer method is one of the methods available for open channel flow rate measurements such as in irrigation canals. Average tracer concentration approach is an instantaneous injection method that based on the average tracer concentrations value at the sampling point. If the procedures are correct and scientific considerations are justified, tracer method will give relatively high accuracy of measurements. The accuracy of the average tracer concentration approach has been assessed both in laboratory and field. The results of accuracy tests of open channel flow that has been conducted at the Center for Application Isotopes and Radiation Laboratory-BATAN showed that the accuracy level of average concentrations approach method was higher than 90% compared to the true value (volumetric flow rate. The accuracy of average tracer concentration approach was also assessed during the application of the method to measure flow rate of Mrican irrigation canals as an effort to perform field calibration of existing weirs. Both average tracer concentration approach and weirs can predict the trend of the flow correctly. However, it was observed that flow discrepancies between weirs measurement and average tracer concentration approach predictions were as high as 27%. The discrepancies might be due to the downgrading performances of the weirs because of previous floods and high sediment contents of the flow

  13. Groundwater prospecting for sandstone-type uranium deposits: the merits of mineral-solution equilibria versus single element tracer methods. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Wanty, R.B.; Langmuir, D.; Chatham, J.R.

    1981-08-01

    This report presents the results of further research on the groundwater geochemistry of 96 well waters in two uraniferous aquifers in Texas and Wyoming, and is a continuation of the work presented by Chatham et al. (1981). In this study variations in concentrations of U, As, Mo, Se and V were compared with the saturation state of the groundwater with respect to mineral phases of these elements known or expected to occur in each area. The non-radiogenic trace elements exhibited strong redox dependence consistent with thermodynamic predictions, but their variations did not pinpoint existing uranium ore bodies, because of a shift in groundwater flow patterns since the time of ore emplacement. Saturation levels of trace element minerals such as realgar, native Se, and molybdenite showed broad anomalies around the ore-bearing areas, similar to patterns found for U minerals by Langmuir and Chatham (1980), and Chatham et al. (1981). The radiogenic elements Ra and Rn showed significant anomalies directly within the ore zones. Helium anomalies were displaced in the direction of groundwater flow, but by their magnitude and areal extent provided strong evidence for the existence of nearby uranium accumulations. Uranium isotope ratios showed no systematic variations within the two aquifers studied. Saturation maps for kaolinite, illite, montmorillonite and the zeolites analcime and clinoptilolite provided 1 to 2 km anomalies around the ore at the Texas site. Saturation values for the gangue minerals pyrite and calcite defined the redox interface and often suggested the position of probable uranium mineralization. When properly used, the groundwater geochemical concepts for exploration can accurately pinpoint uranium mineralization at a fraction of the cost of conventional methods that involve test drilling and geophysical and core logging.

  14. Photography - Determination of thiosulphate and other residual chemicals in processed photographic films, plates and papers - Methylene blue photometric method and silver sulphide densitometric method

    CERN Document Server

    International Organization for Standardization. Geneva

    1977-01-01

    Photography - Determination of thiosulphate and other residual chemicals in processed photographic films, plates and papers - Methylene blue photometric method and silver sulphide densitometric method

  15. Using different chemical methods for deposition of copper selenide thin films and comparison of their characterization.

    Science.gov (United States)

    Güzeldir, Betül; Sağlam, Mustafa

    2015-11-05

    Different chemical methods such as Successive Ionic Layer Adsorption and Reaction (SILAR), spin coating and spray pyrolysis methods were used to deposite of copper selenide thin films on the glass substrates. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDX) spectroscopy and UV-vis spectrophotometry. The XRD and SEM studies showed that all the films exhibit polycrystalline nature and crystallinity of copper selenide thin films prepared with spray pyrolysis greater than spin coating and SILAR methods. From SEM and AFM images, it was observed copper selenide films were uniform on the glass substrates without any visible cracks or pores. The EDX spectra showed that the expected elements exist in the thin films. Optical absorption studies showed that the band gaps of copper selenide thin films were in the range 2.84-2.93 eV depending on different chemical methods. The refractive index (n), optical static and high frequency dielectric constants (ε0, ε∞) values were calculated by using the energy bandgap values for each deposition method. The obtained results from different chemical methods revealed that the spray pyrolysis technique is the best chemical deposition method to fabricate copper selenide thin films. This absolute advantage was lead to play key roles on performance and efficiency electrochromic and photovoltaic devices.

  16. Analysis of 129I and its Application as Environmental Tracer

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Hou, Yingkun

    2012-01-01

    Iodine-129, the long-lived radioisotope of iodine, occurs naturally, but anthropogenic generated 129I has dominated the environment in the past 60 years. Due to active chemical and environmental properties of iodine and the enhanced analytical capacity for 129I measurement, the application of 129I...... as an environmental tracer has highly increased in the past 10 years. Neutron activation analysis and accelerator mass spectrometry are the only techniques for measurement of 129I at environmental level. This article mainly compares these two analytical techniques for the determination of 129I at environmental level......, and highlights the progress of these analytical methods for chemical separation and sensitive measurement of 129I. The naturally occurred 129I has been used for age dating of samples/events in a range of 2-80 Ma. For the purpose of this study, an initial value of 129I has to be measured. Some progress...

  17. Tracer Cycles and Water Ages in Heterogeneous Catchments and Aquifers

    Science.gov (United States)

    Kirchner, J. W.; Jasechko, S.

    2015-12-01

    Estimates of catchment mean transit times are often based on seasonal cycles of stable isotope tracers in precipitation and streamflow. In many cases these transit time estimates are derived directly from sine-wave fitting to the observed seasonal isotope cycles. Broadly similar results are also obtained from time-domain convolutions or explicit tracer modeling, because here too the dominant tracer signal that these techniques seek to match is the seasonal isotopic cycle. Here I use simple benchmark tests to show that estimates of mean transit times based on seasonal tracer cycles will typically be wrong by several hundred percent, when applied to catchments with realistic degrees of spatial heterogeneity. This aggregation bias arises from the strong nonlinearity in the relationship between tracer cycle amplitude and mean travel time. A similar bias arises in estimates of mean transit times in nonstationary catchments. Since typical real-world catchments are both spatially heterogeneous and nonstationary, this analysis poses a fundamental challenge to tracer-based estimates of mean transit times. I propose an alternative storage metric, the fraction of "young water" in streamflow, defined as the fraction of runoff with transit times of less than roughly 0.2 years. I show that young water fractions are virtually free of aggregation bias; that is, they can be accurately estimated from tracer cycles in highly heterogeneous mixtures of subcatchments with strongly contrasting transit time distributions. They can also be reliably estimated in strongly nonstationary catchments. Young water fractions can be estimated separately for individual flow regimes, allowing direct determination of how shifts in hydraulic regime alter the fraction of water reaching the stream by fast flowpaths. One can also estimate the chemical composition of idealized "young water" and "old water" end-members, using relationships between young water fractions and solute concentrations across

  18. Chemical Footprint Method for Improved Communication of Freshwater Ecotoxicity Impacts in the Context of Ecological Limits

    DEFF Research Database (Denmark)

    Bjørn, Anders; Diamond, Miriam; Birkved, Morten

    2014-01-01

    The ecological footprint method has been successful in communicating environmental impacts of anthropogenic activities in the context of ecological limits. We introduce a chemical footprint method that expresses ecotoxicity impacts from anthropogenic chemical emissions as the dilution needed...... to avoid freshwater ecosystem damage. The indicator is based on USEtox characterization factors with a modified toxicity reference point. Chemical footprint results can be compared to the actual dilution capacity within the geographic vicinity receiving the emissions to estimate whether its ecological...... limit has been exceeded and hence whether emissions can be expected to be environmentally sustainable. The footprint method was illustrated using two case studies. The first was all inventoried emissions from European countries and selected metropolitan areas in 2004, which indicated that the dilution...

  19. Chemical Pretreatment Methods for the Production of Cellulosic Ethanol: Technologies and Innovations

    Directory of Open Access Journals (Sweden)

    Edem Cudjoe Bensah

    2013-01-01

    Full Text Available Pretreatment of lignocellulose has received considerable research globally due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. Some of the most promising pretreatment methods require the application of chemicals such as acids, alkali, salts, oxidants, and solvents. Thus, advances in research have enabled the development and integration of chemical-based pretreatment into proprietary ethanol production technologies in several pilot and demonstration plants globally, with potential to scale-up to commercial levels. This paper reviews known and emerging chemical pretreatment methods, highlighting recent findings and process innovations developed to offset inherent challenges via a range of interventions, notably, the combination of chemical pretreatment with other methods to improve carbohydrate preservation, reduce formation of degradation products, achieve high sugar yields at mild reaction conditions, reduce solvent loads and enzyme dose, reduce waste generation, and improve recovery of biomass components in pure forms. The use of chemicals such as ionic liquids, NMMO, and sulphite are promising once challenges in solvent recovery are overcome. For developing countries, alkali-based methods are relatively easy to deploy in decentralized, low-tech systems owing to advantages such as the requirement of simple reactors and the ease of operation.

  20. TracerLPM (Version 1): An Excel® workbook for interpreting groundwater age distributions from environmental tracer data

    Science.gov (United States)

    Jurgens, Bryant C.; Böhlke, J.K.; Eberts, Sandra M.

    2012-01-01

    TracerLPM is an interactive Excel® (2007 or later) workbook program for evaluating groundwater age distributions from environmental tracer data by using lumped parameter models (LPMs). Lumped parameter models are mathematical models of transport based on simplified aquifer geometry and flow configurations that account for effects of hydrodynamic dispersion or mixing within the aquifer, well bore, or discharge area. Five primary LPMs are included in the workbook: piston-flow model (PFM), exponential mixing model (EMM), exponential piston-flow model (EPM), partial exponential model (PEM), and dispersion model (DM). Binary mixing models (BMM) can be created by combining primary LPMs in various combinations. Travel time through the unsaturated zone can be included as an additional parameter. TracerLPM also allows users to enter age distributions determined from other methods, such as particle tracking results from numerical groundwater-flow models or from other LPMs not included in this program. Tracers of both young groundwater (anthropogenic atmospheric gases and isotopic substances indicating post-1940s recharge) and much older groundwater (carbon-14 and helium-4) can be interpreted simultaneously so that estimates of the groundwater age distribution for samples with a wide range of ages can be constrained. TracerLPM is organized to permit a comprehensive interpretive approach consisting of hydrogeologic conceptualization, visual examination of data and models, and best-fit parameter estimation. Groundwater age distributions can be evaluated by comparing measured and modeled tracer concentrations in two ways: (1) multiple tracers analyzed simultaneously can be evaluated against each other for concordance with modeled concentrations (tracer-tracer application) or (2) tracer time-series data can be evaluated for concordance with modeled trends (tracer-time application). Groundwater-age estimates can also be obtained for samples with a single tracer measurement at one

  1. Development of radioisotope tracer technology and nucleonic control system

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Joon Ha; Lee, Myun Joo; Jung, Sung Hee and others

    1999-04-01

    The purpose of this study is to develop the radioisotope tracer technology, which can be used in solving industrial and environmental problems and basic technology of nuclear control systems that are widely used for automation of industrial plants, and to build a strong tracer group to support the local industries. In relation to the tracer technology, the data acquisition system, the column scanning equipment and the detection pig for a leakage test have been developed. In order to use in analyzing data of tracer experiments, a computer program for the analysis of residence time distribution has been created as well. These results were utilized in developing the tracer technologies, such as the column scanning, the flow measurement using the dilution method, the simultaneous monitoring rotational movement of piston rings and the optimization of a waste water treatment facility, and the technologies were successfully demonstrated in the local industrial. The stripper of RFCC reactor has been examined to find an unwanted structure in it by imminent request from the industry. Related to the development of nucleonic control system, the state of art report on the technology has been written and an equipment for the analysis of asphalt content has been developed. (author)

  2. Synthesis and characterization of environmentally friendly fluorescent particle tracers

    Science.gov (United States)

    Tauro, Flavia; Porfiri, Maurizio; Rapiti, Emiliano; Grimaldi, Salvatore

    2013-04-01

    Tracers are widely used in experimental fluid mechanics and hydrology to investigate complex flows and water cycle processes. Commonly used tracers include dyes, artificial tracers, naturally occurring isotopes and chemicals, microorganisms, and DNA-based systems. Tracers should be characterized by low detection limits and high accuracy in following water paths and flow structures. For natural studies, tracers are also expected to be nontoxic and with low sorption affinity to natural substrates to minimize losses in the environment. In this context, while isotopes are completely natural, their use in field studies is limited by their ubiquity and, therefore, by the high uncertainty in data processing methodologies. Further, the use of dyes and artificial tracers can be hampered by extremely low detection limits due to dilution in natural streams and microorganisms, while DNA-based system may require physical sampling and time-consuming functionalization and detection procedures. In this work, we present the synthesis and characterization of fluorescent beads incorporating an eco-compatible fluorophore for environmental and laboratory applications. The particles are synthesized from natural beeswax through an inexpensive thermal procedure and can be engineered to present variable densities and diameters. A thorough characterization of their surface morphology at the nanoscale, crystal structure and size, chemical composition, and dye incorporation into the beeswax matrix is described by using a wide array of microscopy techniques. In addition, the particle fluorescence response is studied by performing excitation and emission scans on melted beeswax bead samples. The feasibility of using the synthesized particles in environmental settings is assessed through the design of ad-hoc weathering agent experiments where the beads are exposed to high energy radiation and hot water. Further, a proof of concept test is described to understand the particles' potential as a

  3. Wet-chemical systems and methods for producing black silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yost, Vernon; Yuan, Hao-Chih; Page, Matthew

    2015-05-19

    A wet-chemical method of producing a black silicon substrate. The method comprising soaking single crystalline silicon wafers in a predetermined volume of a diluted inorganic compound solution. The substrate is combined with an etchant solution that forms a uniform noble metal nanoparticle induced Black Etch of the silicon wafer, resulting in a nanoparticle that is kinetically stabilized. The method comprising combining with an etchant solution having equal volumes acetonitrile/acetic acid:hydrofluoric acid:hydrogen peroxide.

  4. The phase-resolved photoacoustic method to indicate chemical assignments of paracetamol

    Science.gov (United States)

    Camilotti, J. G.; Somer, A.; Costa, G. F.; Ribeiro, M. A.; Bonardi, C.; Cruz, G. K.; Gómez, S. L.; Beltrame, F. L.; Medina, A. N.; Sato, F.; Astrath, N. G. C.; Novatski, A.

    2014-03-01

    In this work, the phase-resolved photoacoustic method was applied to provide specific information on the chemical assignments of paracetamol in the near-infrared region. Two broad bands, centered at 1370 and 1130 nm, were well-resolved using this method, making it possible to assign the peaks centered at 1398, 1355 and 1295 nm to a C-H combination from a CH3 structure and the peak at 1305 nm to a C-H combination from the aromatic ring. This information represents a new finding in chemical studies regarding this medicament.

  5. Preparation of intravenous cholesterol tracer using current good manufacturing practices.

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B; Swaney, William P; Ostlund, Richard E

    2015-12-01

    Studies of human reverse cholesterol transport require intravenous infusion of cholesterol tracers. Because insoluble lipids may pose risk and because it is desirable to have consistent doses of defined composition available over many months, we investigated the manufacture of cholesterol tracer under current good manufacturing practice (CGMP) conditions appropriate for phase 1 investigation. Cholesterol tracer was prepared by sterile admixture of unlabeled cholesterol or cholesterol-d7 in ethanol with 20% Intralipid(®). The resulting material was filtered through a 1.2 micron particulate filter, stored at 4°C, and tested at time 0, 1.5, 3, 6, and 9 months for sterility, pyrogenicity, autoxidation, and particle size and aggregation. The limiting factor for stability was a rise in thiobarbituric acid-reacting substances of 9.6-fold over 9 months (P postproduction. CGMP manufacturing methods can be achieved in the academic setting and need to be considered for critical components of future metabolic studies.

  6. Rebuilding sources of linear tracers after atmospheric concentration measurements

    Directory of Open Access Journals (Sweden)

    J.-P. Issartel

    2003-01-01

    Full Text Available The identification of widespread sources of passive tracers out of atmospheric concentration measurements has become an important challenge of modern meteorology. The paper proposes some mathematical tracks to address the reconstruction of the complex space-time geometry of the sources of linear tracers. The methods are based upon the use of retroplumes. The inverse problem is addressed in a deterministic non statistical frame. The information obtained by local measurements is spread by introducing the concept of illumination. The constraint that the source is non negative is also addressed. The experimental source ETEX1 is rebuilt in order to evaluate an impulse response of the algorithms.

  7. Measurements of Contaminant Dispersion in ventilated Rooms by a Passive Tracer Gas Technique

    DEFF Research Database (Denmark)

    Heiselberg, Per; Bergsøe, Niels Christian

    During recent years the interest in the passive tracer gas technique has grown rapidly. The method has mainly been used in the field for measurements of air infiltration rates in buildings. This paper describes measurements of the contaminant dispersion in a ventilated room using a passive tracer...... gas technique and the results are compared with the results from a conventional method. Vertical profiles of concentration in the middle of the room have been measured at different ventilation air flow rates and different locations of the tracer gas source. The results showed good correspondence...... between the methods within an accuracy of ± 10- 15% in large parts of the room. In regions close to the tracer gas sources the differences were larger. The results gave at the same time recommendations for the use of the passive tracer gas technique for measurements of the air infiltration rates...

  8. Comparison of the Winograd method and chemical cauterization with 10% sodium hydroxide for treating ingrown toenails

    Directory of Open Access Journals (Sweden)

    Nebahat Demet Akpolat

    2016-09-01

    Full Text Available Background and Design: This study was performed to assess the therapeutic outcomes of the surgical method, described by Winograd and chemical cauterization with sodium hydroxide in patients with Heifetz stage 2 and 3 ingrown toenail (recurrence, complication, improvement and time to regain activity. Materials and Methods: One-hundred patients who presented to the outpatient clinics of orthopedics, general surgery and dermatology with the complaints of pain, redness and discharge in the toenail between January 2010 and January 2012 and who failed to respond to conservative treatment and were diagnosed with Heifetz stage 2 and 3 ingrown toenail. Fifty patients underwent chemical cauterization with sodium hydroxide while 50 underwent Winograd surgery. Results: The patients were followed up for a year at 2-month intervals. While no recurrence was observed in patients who received chemical cauterization, five patients who underwent Winograd surgery had recurrence (p=0.022. Three patients receiving Winograd surgery were found to have superficial wound side infection on postoperative follow-up (p=0.08. Patients, who underwent chemical cauterization with sodium hydroxide, were detected to improve and return to normal activity in a shorter period. Conclusion: Chemical cauterization of the germinal matrix with 10% sodium hydroxide is a convenient method with a low rate of complication and recurrence compared to the Winograd surgery in the treatment of ingrown toenails.

  9. In silico toxicology: computational methods for the prediction of chemical toxicity

    KAUST Repository

    Raies, Arwa B.

    2016-01-06

    Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models.

  10. Comparison of Parameter Estimation Methods in Stochastic Chemical Kinetic Models: Examples in Systems Biology.

    Science.gov (United States)

    Gupta, Ankur; Rawlings, James B

    2014-04-01

    Stochastic chemical kinetics has become a staple for mechanistically modeling various phenomena in systems biology. These models, even more so than their deterministic counterparts, pose a challenging problem in the estimation of kinetic parameters from experimental data. As a result of the inherent randomness involved in stochastic chemical kinetic models, the estimation methods tend to be statistical in nature. Three classes of estimation methods are implemented and compared in this paper. The first is the exact method, which uses the continuous-time Markov chain representation of stochastic chemical kinetics and is tractable only for a very restricted class of problems. The next class of methods is based on Markov chain Monte Carlo (MCMC) techniques. The third method, termed conditional density importance sampling (CDIS), is a new method introduced in this paper. The use of these methods is demonstrated on two examples taken from systems biology, one of which is a new model of single-cell viral infection. The applicability, strengths and weaknesses of the three classes of estimation methods are discussed. Using simulated data for the two examples, some guidelines are provided on experimental design to obtain more information from a limited number of measurements.

  11. A finite difference method for estimating second order parameter sensitivities of discrete stochastic chemical reaction networks.

    Science.gov (United States)

    Wolf, Elizabeth Skubak; Anderson, David F

    2012-12-14

    We present an efficient finite difference method for the approximation of second derivatives, with respect to system parameters, of expectations for a class of discrete stochastic chemical reaction networks. The method uses a coupling of the perturbed processes that yields a much lower variance than existing methods, thereby drastically lowering the computational complexity required to solve a given problem. Further, the method is simple to implement and will also prove useful in any setting in which continuous time Markov chains are used to model dynamics, such as population processes. We expect the new method to be useful in the context of optimization algorithms that require knowledge of the Hessian.

  12. Magnetic resonance imaging of slow water flow during infiltration and evaporation by tracer motion

    Science.gov (United States)

    Pohlmeier, A.; Haber-Pohlmeier, S.; Bechtold, M.; Vanderborght, J.; Vereecken, H.

    2012-04-01

    Water fluxes in soils control many processes in the environment like plant nutrition, solute and pollutant transport. In the last two decades non-invasive visualization methods have been adapted to monitor flux processes on the small scale. Magnetic resonance imaging (MRI), also well known from medical diagnostics, is one of the most versatile ones. It mostly probes directly the substance of interest: water, and it offers many opportunities to manipulate the observed signals for creating different contrasts and thus probing different properties of the porous medium and the embedded fluids. For example, one can make the signal sensitive to the total proton density, i. e. water content, to spatial distributions of relaxation times which reflect pore sizes, to spatial distributions of transport coefficients, and to concentration of contrast agents by using strongly T1 weighted MRI pulse sequences. In this presentation we use GdDTPA2- for monitoring flux processes in soil columns in an ultra-wide bore MRI scanner. It offers the opportunity for monitoring slow water fluxes mainly occurring in soil systems which are not monitorable with direct MRI flow imaging. This contrast agent is most convenient since it behaves conservatively, i.e. it does not sorb at different soil materials and it is chemically stable. Firstly, we show that its mode of action in natural porous media is identical to that known from medical applications as proved by the identical relaxivity parameters [1]. Secondly, the tracer is applied for the visualization of flux processes during evaporation-driven flow. Theoretical considerations by forward simulation predicted a lateral redistribution of solutes during evaporative upward fluxes from highly conductive fine material to neighbouring domains with low water content and conductivity. Here we could prove that such near-surface redistribution really takes place [2]. Thirdly, this tracer is applied for the investigation of water uptake by root systems

  13. Characterization of positron emission tomography hypoxia tracer uptake and tissue oxygenation via electrochemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, Stephen R., E-mail: srbowen@wisc.edu [University of Wisconsin School of Medicine and Public Health, Department of Medical Physics, Madison, WI 53706 (United States); Kogel, Albert J. van der [University Medical Centre St. Radboud, Nijmegen (Netherlands); Nordsmark, Marianne [Aarhus University Hospital, Department of Experimental Clinical Oncology, Aarhus (Denmark); Bentzen, Soren M. [University of Wisconsin School of Medicine and Public Health, Department of Medical Physics, Madison, WI 53706 (United States); University of Wisconsin School of Medicine and Public Health, Department of Human Oncology, Clinical Sciences Center, Madison, WI 53792 (United States); Jeraj, Robert [University of Wisconsin School of Medicine and Public Health, Department of Medical Physics, Madison, WI 53706 (United States); University of Wisconsin School of Medicine and Public Health, Department of Human Oncology, Clinical Sciences Center, Madison, WI 53792 (United States); Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2011-08-15

    Purpose: Unique uptake and retention mechanisms of positron emission tomography (PET) hypoxia tracers make in vivo comparison between them challenging. Differences in imaged uptake of two common hypoxia radiotracers, [{sup 61}Cu]Cu-ATSM and [{sup 18}F]FMISO, were characterized via computational modeling to address these challenges. Materials and Methods: An electrochemical formalism describing bioreductive retention mechanisms of these tracers under steady-state conditions was adopted to relate time-averaged activity concentration to tissue partial oxygen tension (PO{sub 2}), a common metric of hypoxia. Chemical equilibrium constants of product concentration to reactant concentration ratios were determined from free energy changes and reduction potentials of pertinent reactions reported in the literature. Resulting transformation functions between tracer uptake and PO{sub 2} were compared against measured values in preclinical models. Additionally, calculated PO{sub 2} distributions from imaged Cu-ATSM tracer activity concentrations of 12 head and neck squamous cell carcinoma (HNSCC) patients were validated against microelectrode PO{sub 2} measurements in 69 HNSCC patients. Results: Both Cu-ASTM- and FMISO-modeled PO{sub 2} transformation functions were in agreement with preclinical measured values within single-deviation confidence intervals. High correlation (r{sup 2}=0.94, P<.05) was achieved between modeled PO{sub 2} distributions and measured distributions in the patient populations. On average, microelectrode hypoxia thresholds (2.5 and 5.0 mmHg) corresponded to higher Cu-ATSM uptake [2.5 and 2.0 standardized uptake value (SUV)] and lower FMISO uptake (2.0 and 1.4 SUV). Uncertainties in the models were dominated by variations in the estimated specific activity and intracellular acidity. Conclusions: Results indicated that the high dynamic range of Cu-ATSM uptake was representative of a narrow range of low oxygen tension whose values were dependent on

  14. Grid-based methods for biochemical ab initio quantum chemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, M.E.; Nelson, J.S.; Mori, E. [and others

    1997-01-01

    A initio quantum chemical methods are seeing increased application in a large variety of real-world problems including biomedical applications ranging from drug design to the understanding of environmental mutagens. The vast majority of these quantum chemical methods are {open_quotes}spectral{close_quotes}, that is they describe the charge distribution around the nuclear framework in terms of a fixed analytic basis set. Despite the additional complexity they bring, methods involving grid representations of the electron or solvent charge can provide more efficient schemes for evaluating spectral operators, inexpensive methods for calculating electron correlation, and methods for treating the electrostatic energy of salvation in polar solvents. The advantage of mixed or {open_quotes}pseudospectral{close_quotes} methods is that they allow individual non-linear operators in the partial differential equations, such as coulomb operators, to be calculated in the most appropriate regime. Moreover, these molecular grids can be used to integrate empirical functionals of the electron density. These so-called density functional methods (DFT) are an extremely promising alternative to conventional post-Hartree Fock quantum chemical methods. The introduction of a grid at the molecular solvent-accessible surface allows a very sophisticated treatment of a polarizable continuum solvent model (PCM). Where most PCM approaches use a truncated expansion of the solute`s electric multipole expansion, e.g. net charge (Born model) or dipole moment (Onsager model), such a grid-based boundary-element method (BEM) yields a nearly exact treatment of the solute`s electric field. This report describes the use of both DFT and BEM methods in several biomedical chemical applications.

  15. Novel Local Calibration Method for Chemical Oxygen Demand Measurements by Using UV-Vis Spectrometry

    Science.gov (United States)

    Yingtian, Hu; Chao, Liu; Xiaoping, Wang

    2017-05-01

    In recent years, ultraviolet-visible spectroscopy has been widely used for chemical oxygen demand (COD) measurements of water. However, chemical compositions of substance in different water samples can cause measurement deviations, so a local calibration is needed. In this study, a novel local calibration method is proposed. The absorption spectra of COD standard solutions and wastewater samples taken from four factories were collected. We analyzed the impact of chemical compositions of substance in different water samples and extracted the morphology features of their absorptive spectra for recognition models. Furthermore, we calculated the local calibration parameters of the four categories of real water samples by specific modification based on the ability of light absorption in various water environments. After the process of local calibration, the root mean square errors (RMSEs) of the predictions were very small, which highlights the potential of this method for improving the accuracy and adaptability of COD measurements based on ultraviolet-visible spectrum.

  16. Concentration of 'forgotten' substances using the XAD concentration method. Suitability of the method for hydrophilic chemicals

    NARCIS (Netherlands)

    Collombon MT; LER

    2007-01-01

    Concentration of forgotten substances using the XAD concentration method In the nineties, RIVM developed a method to concentrate toxic substances on XAD (a synthetic resin). Using bioassays, the toxicity can be determined in the concentrate. 'Modern' toxic substances tend to be more polar then 'clas

  17. Chemical stability of extemporaneously compounded omeprazole formulations: a comparison of two methods of compounding.

    Science.gov (United States)

    Garg, Sanjay; Svirskis, Darren; Al-Kabban, Majid; Farhan, Samer; Komeshi, Mohammed; Lee, Jacky; Liu, Quincy; Naidoo, Sacha; Kairuz, Therese

    2009-01-01

    Liquid preparations of omeprazole are compounded extemporaneously for patients who cannot tolerate or have difficulty with tablets or capsules, such as those with a nasogastric tube or jejunal or feeding tube, those with a swallowing disorder, and young children and the elderly. Recommendations for preparation of a liquid from the enteric-coated pellets of omeprazole capsules are available in the literature. The pellets are dissolved in a sodium bicarbonate solution; shaking is recommended to aid dissolution. Apparently some pharmacists crush the pellets to speed up the compounding process. The aim of this study was to investigate the chemical stability of omeprazole in extemporaneously compounded liquids prepared by the grinding and shaking methods. A high-performance liquid chromatographic method was developed for evaluation of chemical stability. Samples were stored at 2 deg C (refrigerated conditions) or 25 deg C/60% relative humidity and assayed for drug concentration at 0, 1, 2, 4, and 8 weeks. The method of preparation affected the chemical stability of omeprazole when stored at 25 deg C/60% relative humidity; it was stable for 4 weeks if prepared by the shaking method, but for only 1 week if prepared by the grinding method. For both methods, the suspension was stable for 8 weks if stored under refrigerated conditions. It is recommended that the shaking method be employed for extemporaneously compounded omeprazole suspensions, and that the prepared suspension be stored in the refrigerator.

  18. Rodent-repellent studies. I. Method for the evaluation of chemical repellents

    Science.gov (United States)

    Bellack, E.; DeWitt, J.B.

    1949-01-01

    A biological assay procedure and a method for the numerical expression of results have been devised for the determination of the repellency to rodents of different chemical compounds. The procedure is based upon the degree of acceptability of foods containing the candidate repellents,. and has been shown. to offer a rapid, reliable measure of repellent activIty.

  19. Structural properties of produced CuO/NiO/glass thin layers Produced by chemical method

    Directory of Open Access Journals (Sweden)

    A. Ramezani

    2016-12-01

    Full Text Available Nickel Oxide and Copper oxide on Nickel Oxide thin layers were produced by chemical bath deposition method. There nano structures were investigated by SEM and EDAX analysis. By producing CuO/NiO/glass sandwich layers nano structure of NiO/glass layer changed and fraction of voids decreases. In sandwich layer physical property of outer layer was dominant

  20. Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition

    Science.gov (United States)

    This NERL-Cincinnati publication, “Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition” was prepared as the continuation of an initiative to gather together under a single cover a compendium of standardized laborato...

  1. Comparison of chemical, electrophoretic and in vitro digestion methods for predicting fish meal nutritive quality

    DEFF Research Database (Denmark)

    Bassompierre, M.; Larsen, K.L.; Zimmermann, W.

    1998-01-01

    Chemical, electrophoretic and in vitro digestion methods were compared with respect to predictions given regarding fish meal (FM) quality. FMs were manufactured by mixing a press-cake, with spray dried stickwater concentrate from the identical raw material, thereby providing samples containing...

  2. Measurement of interfacial areas with the chemical method for a system with alternating dispersed phases

    NARCIS (Netherlands)

    Woezik, van B.A.A.; Westerterp, K.R.

    2000-01-01

    The interfacial area for a liquid–liquid system has been determined by the chemical reaction method. The saponification of butyl formate ester with 8 M sodium hydroxide has been used to this end. A correlation has been derived to describe the mole flux of ester through the interface and the kinetic

  3. Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition

    Science.gov (United States)

    This NERL-Cincinnati publication, “Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition” was prepared as the continuation of an initiative to gather together under a single cover a compendium of standardized laborato...

  4. Heat Recovery from High Temperature Slags: A Review of Chemical Methods

    Directory of Open Access Journals (Sweden)

    Yongqi Sun

    2015-03-01

    Full Text Available Waste heat recovery from high temperature slags represents the latest potential way to remarkably reduce the energy consumption and CO2 emissions of the steel industry. The molten slags, in the temperature range of 1723–1923 K, carry large amounts of high quality energy. However, the heat recovery from slags faces several fundamental challenges, including their low thermal conductivity, inside crystallization, and discontinuous availability. During past decades, various chemical methods have been exploited and performed including methane reforming, coal and biomass gasification, and direct compositional modification and utilization of slags. These methods effectively meet the challenges mentioned before and help integrate the steel industry with other industrial sectors. During the heat recovery using chemical methods, slags can act as not only heat carriers but also as catalysts and reactants, which expands the field of utilization of slags. Fuel gas production using the waste heat accounts for the main R&D trend, through which the thermal heat in the slag could be transformed into high quality chemical energy in the fuel gas. Moreover, these chemical methods should be extended to an industrial scale to realize their commercial application, which is the only way by which the substantial energy in the slags could be extracted, i.e., amounting to 16 million tons of standard coal in China.

  5. Investigation of the chemical composition-antibacterial activity relationship of essential oils by chemometric methods.

    Science.gov (United States)

    Miladinović, Dragoljub L; Ilić, Budimir S; Mihajilov-Krstev, Tatjana M; Nikolić, Nikola D; Miladinović, Ljiljana C; Cvetković, Olga G

    2012-05-01

    The antibacterial effects of Thymus vulgaris (Lamiaceae), Lavandula angustifolia (Lamiaceae), and Calamintha nepeta (Lamiaceae) Savi subsp. nepeta var. subisodonda (Borb.) Hayek essential oils on five different bacteria were estimated. Laboratory control strain and clinical isolates from different pathogenic media were researched by broth microdilution method, with an emphasis on a chemical composition-antibacterial activity relationship. The main constituents of thyme oil were thymol (59.95%) and p-cymene (18.34%). Linalool acetate (38.23%) and β-linalool (35.01%) were main compounds in lavender oil. C. nepeta essential oil was characterized by a high percentage of piperitone oxide (59.07%) and limonene (9.05%). Essential oils have been found to have antimicrobial activity against all tested microorganisms. Classification and comparison of essential oils on the basis of their chemical composition and antibacterial activity were made by utilization of appropriate chemometric methods. The chemical principal component analysis (PCA) and hierachical cluster analysis (HCA) separated essential oils into two groups and two sub-groups. Thyme essential oil forms separate chemical HCA group and exhibits highest antibacterial activity, similar to tetracycline. Essential oils of lavender and C. nepeta in the same chemical HCA group were classified in different groups, within antibacterial PCA and HCA analyses. Lavender oil exhibits higher antibacterial ability in comparison with C. nepeta essential oil, probably based on the concept of synergistic activity of essential oil components.

  6. Tracer tests in geothermal resource management

    OpenAIRE

    Axelsson G.

    2013-01-01

    Geothermal reinjection involves injecting energy-depleted fluid back into geothermal systems, providing an effective mode of waste-water disposal as well as supplementary fluid recharge. Cooling of production boreholes is one of the main disadvantages associated with reinjection, however. Tracer testing is an important tool for reinjection studies because tracer tests actually have a predictive power since tracer transport is orders of magnitude faster than cold-front advancement around reinj...

  7. Streamwise decrease of the 'unsteady' virtual velocity of gravel tracers

    Science.gov (United States)

    Klösch, Mario; Gmeiner, Philipp; Habersack, Helmut

    2017-04-01

    Gravel tracers are usually inserted and transported on top of the riverbed, before they disperse vertically and laterally due to periods of intense bedload, the passage of bed forms, lateral channel migration and storage on bars. Buried grains have a lower probability of entrainment, resulting in a reduction of overall mobility, and, on average, in a deceleration of the particles with distance downstream. As a consequence, the results derived from tracer experiments and their significance for gravel transport may depend on the time scale of the investigation period, complicating the comparison of results from different experiments. We developed a regression method, which establishes a direct link between the transport velocity and the unsteady flow variables to yield an 'unsteady' virtual velocity, while considering the tracer slowdown with distance downstream in the regression. For that purpose, the two parameters of a linear excess shear velocity formula (the critical shear velocity u*c and coefficient a) were defined as functions of the travelled distance since the tracer's insertion. Application to published RFID tracer data from the Mameyes River, Puerto Rico, showed that during the investigation period the critical shear velocity u*c of tracers representing the median bed particle diameter (0.11 m) increased from 0.36 m s-1 to 0.44 m s-1, while the coefficient a decreased from the dimensionless value of 4.22 to 3.53, suggesting a reduction of the unsteady virtual velocity at the highest shear velocity in the investigation period from 0.40 m s-1 to 0.08 m s-1. Consideration of the tracer slowdown improved the root mean square error of the calculated mean displacements of the median bed particle diameter from 8.82 m to 0.34 m. As in previous work these results suggest the need of considering the history of transport when deriving travel distances and travel velocities, depending on the aim of the tracer study. The introduced method now allows estimating the

  8. Comparison of the Winograd method and chemical cauterization with 10% sodium hydroxide for treating ingrown toenails

    OpenAIRE

    Nebahat Demet Akpolat; Ahmet Onur Akpolat; Ozan Namdaroğlu; Ayşe Akkuş

    2016-01-01

    Background and Design: This study was performed to assess the therapeutic outcomes of the surgical method, described by Winograd and chemical cauterization with sodium hydroxide in patients with Heifetz stage 2 and 3 ingrown toenail (recurrence, complication, improvement and time to regain activity). Materials and Methods: One-hundred patients who presented to the outpatient clinics of orthopedics, general surgery and dermatology with the complaints of pain, redness and discharge in the to...

  9. A new method to study lattice QCD at finite temperature and chemical potential

    CERN Document Server

    Fodor, Z

    2002-01-01

    Due to the sign problem, it is exponentially difficult to study QCD on the lattice at finite chemical potential. In this letter we propose a method --an overlap ensuring multi-parameter reweighting technique-- to solve the problem. We apply this method and give the phase diagram of four-flavor QCD obtained on lattices 4^4 and 4\\cdot6^3. Our results are based on {\\cal{O}}(10^3-10^4) configurations.

  10. Production of Nanopowders of Platinum Metals Using the Chemical Reduction Method

    Institute of Scientific and Technical Information of China (English)

    PYATAKHINA E. S.; BUSLAYEVA T. M.; VOLCHKOVA E. V.; KHRISTICH E. A.; SERGEYEVA T. Yu.

    2012-01-01

    The literary data on the application of various methods for the production of nanopowders of platinum metals and alloys have been summarized,and the selection of the method of chemical reduction from salt solutions has been substantiated as the simplest and most affordable.The optimum conditions for the production of nanoparticles of metal palladium and platinum/cobalt alloy,using the effect of boranes with various structures,have been selected.

  11. Carbon-14 as a tracer of groundwater discharge to streams

    Science.gov (United States)

    Bourke, Sarah; Harrington, Glenn; Cook, Peter; Post, Vincent; Dogramaci, Shawan

    2014-05-01

    The provenance of groundwater discharge to a stream can be determined by measuring the response of multiple groundwater age tracers within the stream across the discharge zone. The sampling interval required to detect groundwater discharge is limited by the rate of equilibration with the atmosphere downstream of the discharge zone, which is determined by the gas transfer velocity. Carbon-14 (14C) equilibration is driven by CO2 exchange, which is a small component of the dissolved inorganic carbon in most stream systems, and therefore the rate of equilibration is slower than for other gaseous age tracers. In this paper we use a step-wise approach to develop and demonstrate the use of 14C as a tracer in streams receiving groundwater discharge. Excess carbon dioxide (CO2) in the emerging groundwater degasses until equilibrium with atmospheric CO2 is reached; increasing pH and enriching the residual 14C by fractionation. In addition, the 14C gradient between groundwater and the atmosphere drives a slower process of isotopic equilibration. We have measured the rates of this chemical and isotopic equilibration experimentally by exposing 250 L of old groundwater to the atmosphere in an evaporation pan. Chemical equilibrium was achieved within 2 days, during which the 14C increased from 6 to 16 pMC. The influence of fractionation during the initial CO2 degassing on isotopic equilibrium rates was negligible. Isotopic equilibrium took over 2 months, with 14C in the evaporation pan increasing to 108 pMC over 71 days. This increase in 14C was simulated using a mass balance model with an effective 14C gas transfer velocity of 0.013 m d-1. Field testing of the method was conducted at two sites. Firstly, we measured the evolution of 14C in dewatering discharge as it flows along an ephemeral creek channel in the Pilbara, Western Australia. Measured 14C increased from 11 to 31 pMC along the 10km reach, which corresponds to a travel time of about 2 days. The measured increase was

  12. How well do different tracers constrain the firn diffusivity profile?

    Directory of Open Access Journals (Sweden)

    C. M. Trudinger

    2013-02-01

    Full Text Available Firn air transport models are used to interpret measurements of the composition of air in firn and bubbles trapped in ice in order to reconstruct past atmospheric composition. The diffusivity profile in the firn is usually calibrated by comparing modelled and measured concentrations for tracers with known atmospheric history. However, in most cases this is an under-determined inverse problem, often with multiple solutions giving an adequate fit to the data (this is known as equifinality. Here we describe a method to estimate the firn diffusivity profile that allows multiple solutions to be identified, in order to quantify the uncertainty in diffusivity due to equifinality. We then look at how well different combinations of tracers constrain the firn diffusivity profile. Tracers with rapid atmospheric variations like CH3CCl3, HFCs and 14CO2 are most useful for constraining molecular diffusivity, while &delta:15N2 is useful for constraining parameters related to convective mixing near the surface. When errors in the observations are small and Gaussian, three carefully selected tracers are able to constrain the molecular diffusivity profile well with minimal equifinality. However, with realistic data errors or additional processes to constrain, there is benefit to including as many tracers as possible to reduce the uncertainties. We calculate CO2 age distributions and their spectral widths with uncertainties for five firn sites (NEEM, DE08-2, DSSW20K, South Pole 1995 and South Pole 2001 with quite different characteristics and tracers available for calibration. We recommend moving away from the use of a firn model with one calibrated parameter set to infer atmospheric histories, and instead suggest using multiple parameter sets, preferably with multiple representations of uncertain processes, to assist in quantification of the uncertainties.

  13. How well do different tracers constrain the firn diffusivity profile?

    Directory of Open Access Journals (Sweden)

    C. M. Trudinger

    2012-07-01

    Full Text Available Firn air transport models are used to interpret measurements of the composition of air in firn and bubbles trapped in ice in order to reconstruct past atmospheric composition. The diffusivity profile in the firn is usually calibrated by comparing modelled and measured concentrations for tracers with known atmospheric history. However, in some cases this is an under-determined inverse problem, often with multiple solutions giving an adequate fit to the data (this is known as equifinality. Here we describe a method to estimate the firn diffusivity profile that allows multiple solutions to be identified, in order to quantify the uncertainty in diffusivity due to equifinality. We then look at how well different combinations of tracers constrain the firn diffusivity profile. Tracers with rapid atmospheric variations like CH3CCl3, HFCs and 14CO2 are most useful for constraining molecular diffusivity, while δ15N2 is useful for constraining parameters related to convective mixing near the surface. When errors in the observations are small and Gaussian, three carefully selected tracers are able to constrain the molecular diffusivity profile well with minimal equifinality. However, with realistic data errors or additional processes to constrain, there is benefit to including as many tracers as possible to reduce the uncertainties. We calculate CO2 age distributions and their spectral widths with uncertainties for five firn sites (NEEM, DE08-2, DSSW20K, South Pole 1995 and South Pole 2001 with quite different characteristics and tracers available for calibration. We recommend moving away from the use of a single firn model with one calibrated parameter set to infer atmospheric histories, and instead suggest using multiple parameter sets, preferably with multiple representations of uncertain processes, to allow quantification of the uncertainties.

  14. Modified Augmented Lagrange Multiplier Methods for Large-Scale Chemical Process Optimization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studied in this paper. The Lagrange function contains the penalty terms on equality and inequality constraints and the methods can be applied to solve a series of bound constrained sub-problems instead of a series of unconstrained sub-problems. The steps of the methods are examined in full detail. Numerical experiments are made for a variety of problems, from small to very large-scale, which show the stability and effectiveness of the methods in large-scale problems.

  15. In vitro methods for hazard assessment of industrial chemicals – opportunities and challenges

    Directory of Open Access Journals (Sweden)

    Chin Lin eWong

    2015-05-01

    Full Text Available Allergic contact dermatitis (ACD is a delayed-type hypersensitivity immune reaction mediated by T-lymphocytes as a result of repeated exposure of an allergen primarily on skin. ACD accounts for up to 95% of occupational skin diseases (OSDs, with epoxy resins implicated as one of the most common causes of ACD. Efficient high-throughput in vitro screening for accurate identification of compounds and materials that may pose hazardous risks in the workplace is crucial. At present, the murine local lymph node assay (LLNA is the ‘method of choice’ for predicting the sensitizing potency of contact allergens. As the 3Rs principles of reduction, refinement and replacement in animal testing has gained political and economic momentum, several in vitro screening methods have been developed for identifying potential contact allergens. To date, these latter methods have been utilized primarily to assess the skin sensitizing potential of the chemical components of cosmetic products with scant research attention as to the applicability of these methods to industrial chemicals, particularly epoxy resins. Herein we review the currently utilized in vitro methods and identify the knowledge gaps with regard to assessing the generalizability of in vitro screening methods for assessing the skin sensitizing potential of industrial chemicals.

  16. Tracer-Test Planning Using the Efficient Hydrologic Tracer-Test Design (Ehtd) Program (2003)

    Science.gov (United States)

    Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test ...

  17. Chemical Oxygen Demand of Seawater Determined with a Microwave Heating Method

    Institute of Scientific and Technical Information of China (English)

    LIU Li; JI Hongwei; LIU Ying; XIN Huizhen

    2005-01-01

    This paper investigates a microwave heating method for the determination of chemical oxygen demand (COD) in seawater. The influences of microwave-power, heating time and standard substances on the results are studied. Using the proposed method, we analyzed the glucose standard solution, the coefficient of variation being less than 2%. Compared with the traditional electric stove heating method, the results of F-test and T-test showed that there was no significant difference between the two methods, but the microwave method had slightly higher precision and reproducibility than the electric stove method. With the microwave heating method, several seawater samples from Jiaozhou Bay and the South Yellow Sea were also analyzed. The recovery was between 97.5% and 104.3%. This new method has the advantages of shortening the heating time, improving the working efficiency and having simple operation and therefore can be used to analyze the COD in seawater.

  18. Chemical composition of modern and fossil hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation – Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    Directory of Open Access Journals (Sweden)

    I. Ssemmanda

    2012-11-01

    Full Text Available This study demonstrates that alkaline earth elements in enamel of hippopotamids, in particular Ba and Sr, are tracers for water provenance and hydrochemistry in terrestrial settings. The studied specimens are permanent premolar and molar teeth found in modern and fossil lacustrine sediments of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi and from modern fluvial environments of the Nile River. Concentrations in enamel vary by two orders of magnitude for Ba (120–9336 μg g−1 as well as for Sr (9–2150 μg g−1. The variations are partially induced during post-mortem alteration and during amelogenesis, but the major contribution originates ultimately from the variable water chemistry in the habitats of the hippopotamids which is controlled by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of MgO, Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel–dentin junction by a factor of 1.3–1.9. These elements are well correlated in single specimens, thus suggesting that their distribution is determined by a common, single process, which can be described by closed system Rayleigh crystallization of bioapatite in vivo. Enamel from most hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores. However, Ba/Sr ranges from 0.1 to 3 and varies on spatial and temporal scales. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic mantle rocks or Archean crustal rocks as the ultimate sources of Sr and Ba. This provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from 2 to 0.5. This trend can be correlated with changes in climate from humid to arid, in vegetation from C3 to C4 biomass as well as with increasing

  19. Analysis and classification of physical and chemical methods of fuel activation

    Directory of Open Access Journals (Sweden)

    Fedorchak Viktoriya

    2015-12-01

    Full Text Available The offered article explores various research studies, developed patents in terms of physical and chemical approaches to the activation of fuel. In this regard, national and foreign researches in the field of fuels activators with different principles of action were analysed, evaluating their pros and cons. The article also intends to classify these methods and compare them regarding diverse desired results and types of fuels used. In terms of physical and chemical influences on fuels and the necessity of making constructive changes in the fuel system of internal combustion engines, an optimal approach was outlined.

  20. Development of an Improved Simulator for Chemical and Microbial EOR Methods

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Gary A.; Sepehrnoori, Kamy; Delshad, Mojdeh

    2000-09-11

    The objective of this research was to extend the capability of an existing simulator (UTCHEM) to improved oil recovery methods that use surfactants, polymers, gels, alkaline chemicals, microorganisms and foam as well as various combinations of these in both conventional and naturally fractured oil reservoirs. Task 1 is the addition of a dual-porosity model for chemical improved of recovery processes in naturally fractured oil reservoirs. Task 2 is the addition of a foam model. Task 3 addresses several numerical and coding enhancements that will greatly improve the versatility and performance of UTCHEM. Task 4 is the enhancements of physical property models.

  1. Increased Surface Roughness in Polydimethylsiloxane Films by Physical and Chemical Methods

    Directory of Open Access Journals (Sweden)

    Jorge Nicolás Cabrera

    2017-08-01

    Full Text Available Two methods, the first physical and the other chemical, were investigated to modify the surface roughness of polydimethylsiloxane (PDMS films. The physical method consisted of dispersing multi-walled carbon nanotubes (MWCNTs and magnetic cobalt ferrites (CoFe2O4 prior to thermal cross-linking, and curing the composite system in the presence of a uniform magnetic field H. The chemical method was based on exposing the films to bromine vapours and then UV-irradiating. The characterizing techniques included scanning electron microscopy (SEM, energy-dispersive spectroscopy (EDS, Fourier transform infrared (FTIR spectroscopy, optical microscopy, atomic force microscopy (AFM and magnetic force microscopy (MFM. The surface roughness was quantitatively analyzed by AFM. In the physical method, the random dispersion of MWCNTs (1% w/w and magnetic nanoparticles (2% w/w generated a roughness increase of about 200% (with respect to PDMS films without any treatment, but that change was 400% for films cured in the presence of H perpendicular to the surface. SEM, AFM and MFM showed that the magnetic particles always remained attached to the carbon nanotubes, and the effect on the roughness was interpreted as being due to a rupture of dispersion randomness and a possible induction of structuring in the direction of H. In the chemical method, the increase in roughness was even greater (1000%. Wells were generated with surface areas that were close to 100 μm2 and depths of up to 500 nm. The observations of AFM images and FTIR spectra were in agreement with the hypothesis of etching by Br radicals generated by UV on the polymer chains. Both methods induced important changes in the surface roughness (the chemical method generated the greatest changes due to the formation of surface wells, which are of great importance in superficial technological processes.

  2. Discrete formulation of mixed finite element methods for vapor deposition chemical reaction equations

    Institute of Scientific and Technical Information of China (English)

    LUO Zhen-dong; ZHOU Yan-jie; ZHU Jiang

    2007-01-01

    The vapor deposition chemical reaction processes, which are of extremely extensive applications, can be classified as a mathematical modes by the following governing nonlinear partial differential equations containing velocity vector,temperature field,pressure field,and gas mass field.The mixed finite element(MFE)method is employed to study the system of equations for the vapor deposition chemical reaction processes.The semidiscrete and fully discrete MFE formulations are derived.And the existence and convergence(error estimate)of the semidiscrete and fully discrete MFE solutions are deposition chemical reaction processes,the numerical solutions of the velocity vector,the temperature field,the pressure field,and the gas mass field can be found out simultaneonsly.Thus,these researches are not only of important theoretical means,but also of extremely extensive applied vistas.

  3. Chemical burns revisited: What is the most appropriate method of decontamination?

    Science.gov (United States)

    Tan, Teresa; Wong, David S Y

    2015-06-01

    The purpose of this study is to investigate the efficacy of decontamination by immediate surgical debridement in the acute management of chemical burns as compared to conventional dilutional approaches by irrigation or wetting. A retrospective review of the medical records of patients admitted to the Burns Centre of the Prince of Wales Hospital, Hong Kong, between 2001 and 2012, was performed. The time to recovery as reflected by the hospital stay for patients who had received immediate debridement, continuous irrigation, and wet packs was calculated and compared. A total of 99 patients were admitted for chemical burns (3.3% of total admissions). There were three mortalities. Immediate surgical debridement failed to achieve a faster recovery than irrigation or wet packs. Continuous water irrigation was better than wet packs in achieving earlier recovery. Continuous water irrigation remains the most preferred method of decontamination in acute chemical burn management.

  4. Fast Method for Computing Chemical Potentials and Liquid-Liquid Phase Equilibria of Macromolecular Solutions.

    Science.gov (United States)

    Qin, Sanbo; Zhou, Huan-Xiang

    2016-08-25

    Chemical potential is a fundamental property for determining thermodynamic equilibria involving exchange of molecules, such as between two phases of molecular systems. Previously, we developed the fast Fourier transform (FFT)-based method for Modeling Atomistic Protein-crowder interactions (FMAP) to calculate excess chemical potentials according to the Widom insertion. Intermolecular interaction energies were expressed as correlation functions and evaluated via FFT. Here, we extend this method to calculate liquid-liquid phase equilibria of macromolecular solutions. Chemical potentials are calculated by FMAP over a wide range of molecular densities, and the condition for coexistence of low- and high-density phases is determined by the Maxwell equal-area rule. When benchmarked on Lennard-Jones fluids, our method produces an accurate phase diagram at 18% of the computational cost of the current best method. Importantly, the gain in computational speed increases dramatically as the molecules become more complex, leading to many orders of magnitude in speed up for atomistically represented proteins. We demonstrate the power of FMAP by reporting the first results for the liquid-liquid coexistence curve of γII-crystallin represented at the all-atom level. Our method may thus open the door to accurate determination of phase equilibria for macromolecular mixtures such as protein-protein mixtures and protein-RNA mixtures, that are known to undergo liquid-liquid phase separation, both in vitro and in vivo.

  5. Reprint of "In silico methods in the discovery of endocrine disrupting chemicals".

    Science.gov (United States)

    Vuorinen, Anna; Odermatt, Alex; Schuster, Daniela

    2015-09-01

    The prevalence of sex hormone-dependent cancers, reproductive problems, obesity, and cardiovascular complications has risen especially in the Western world. It has been suggested, that the exposure to various endocrine disrupting chemicals (EDCs) contributes to the development and progression of these diseases. EDCs can interfere with various proteins: nuclear steroid hormone receptors, such as estrogen-, androgen-, glucocorticoid- and mineralocorticoid receptors (ER, AR, GR, MR), and enzymes that are involved in steroid hormone synthesis and metabolism, for example hydroxysteroid dehydrogenases (HSDs). Numerous chemicals are known as endocrine disruptors. However, the mechanism of action for most of these EDCs is still unknown. It is exhaustive and time consuming to test in vitro all chemicals - potential EDCs - used in industry, agriculture or as food preservatives against their effects on the endocrine system. Computational methods, such as virtual screening, quantitative structure activity relationships and docking, are already well recognized and used in drug development. The same methods could also aid the research on EDCs. So far, the computational methods in the search of EDCs have been retrospective. There are, however, some prospective studies reporting the use of in silico methods: five studies reporting the identification of previously unknown 17β-HSD3 inhibitors, MR agonists, and ER antagonists/agonists. This review provides an overview of case studies and in silico methods that are used in the search of EDCs. This article is part of a Special Issue entitled 'CSR 2013'.

  6. DOSE MEASURMENT IN ULTRAVIOLET DISINFECTION OF WATER AND WASTE WATER BY CHEMICAL METHOD

    Directory of Open Access Journals (Sweden)

    F.Vaezi

    1995-06-01

    Full Text Available Chemical methods ( actinometry depend on the measurement of the extent to which a chemical reaction occurs under the influence of UV light. Two chemical actinometers have been used in this research. In one method, the mixtures of potassium peroxidisuiphate butanol solutions were irradiated for various time intervals, and pH-changes were determined. A linear relationship was observed between these changes and UV-dose applied. In another method, the acidic solutions of ammonium molybdate and ethyl alcohol were irradiated and the intensity of blue color developed was determined by titration with potassium permanganate solutions. The volumes of titrant used were then plotted versus the UV-doses. This showed a linear relationship which could be used for dosimeiry. Both of these actometers proved to be reliable. The first is the method of choice with a view to have much accuracy and the second method is preferred because of its feasibility and having advantages of no need to any equipment and non-accessible raw materials.

  7. Calculation of chemical potentials of chain molecules by the incremental gauge cell method

    Science.gov (United States)

    Rasmussen, Christopher J.; Vishnyakov, Aleksey; Neimark, Alexander V.

    2011-12-01

    The gauge cell Monte Carlo method is extended to calculations of the incremental chemical potentials and free energies of linear chain molecules. The method was applied to chains of Lennard-Jones beads with stiff harmonic bonds up to 500 monomers in length. We show that the suggested method quantitatively reproduces the modified Widom particle insertion method of Kumar et al. [S. K. Kumar, I. Szleifer, and A. Z. Panagiotopoulos, Phys. Rev. Lett. 66(22), 2935 (1991)], 10.1103/PhysRevLett.66.2935, and is by an order of magnitude more efficient for long chains in terms of the computational time required for the same accuracy of chemical potential calculations. The chain increment ansatz, which suggests that the incremental chemical potential is independent of the chain length, was tested at different temperatures. We confirmed that the ansatz holds only for coils above the θ temperature. Special attention is paid to the effects of the magnitude of adsorption potential and temperature on the behavior of single chains in confinements that are comparable in size with the free chain radius of gyration. At sufficiently low temperatures, the dependence of the incremental chemical potential on the chain length in wetting pores is superficially similar to a capillary condensation isotherm, reflecting monolayer formation following by pore volume filling, as the chain length increases. We find that the incremental gauge cell method is an accurate and efficient technique for calculations of the free energies of chain molecules in bulk systems and nanoconfinements alike. The suggested method may find practical applications, such as modeling polymer partitioning on porous substrates and dynamics of chain translocation into nanopores.

  8. Tracers for Characterizing Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Karen Wright; George Redden; Carl D. Palmer; Harry Rollins; Mark Stone; Mason Harrup; Laurence C. Hull

    2010-02-01

    Information about the times of thermal breakthrough and subsequent rates of thermal drawdown in enhanced geothermal systems (EGS) is necessary for reservoir management, designing fracture stimulation and well drilling programs, and forecasting economic return. Thermal breakthrough in heterogeneous porous media can be estimated using conservative tracers and assumptions about heat transfer rates; however, tracers that undergo temperature-dependent changes can provide more detailed information about the thermal profile along the flow path through the reservoir. To be effectively applied, the thermal reaction rates of such temperature sensitive traces must be well characterized for the range of conditions that exist in geothermal systems. Reactive tracers proposed in the literature include benzoic and carboxylic acids (Adams) and organic esters and amides (Robinson et al.); however, the practical temperature range over which these tracers can be applied (100-275°C) is somewhat limited. Further, for organic esters and amides, little is known about their sorption to the reservoir matrix and how such reactions impact data interpretation. Another approach involves tracers where the reference condition is internal to the tracer itself. Two examples are: 1) racemization of polymeric amino acids, and 2) mineral thermoluminescence. In these cases internal ratios of states are measured rather than extents of degradation and mass loss. Racemization of poly-L-lactic acid (for example) is temperature sensitive and therefore can be used as a temperature-recording tracer depending on the rates of racemization and stability of the amino acids. Heat-induced quenching of thermoluminescence of pre-irradiated LiF can also be used. To protect the tracers from alterations (extraneous reactions, dissolution) in geothermal environments we are encapsulating the tracers in core-shell colloidal structures that will subsequently be tested for their ability to be transported and to protect the

  9. Tracers for Characterizing Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Karen Wright; George Redden; Carl D. Palmer; Harry Rollins; Mark Stone; Mason Harrup; Laurence C. Hull

    2010-02-01

    Information about the times of thermal breakthrough and subsequent rates of thermal drawdown in enhanced geothermal systems (EGS) is necessary for reservoir management, designing fracture stimulation and well drilling programs, and forecasting economic return. Thermal breakthrough in heterogeneous porous media can be estimated using conservative tracers and assumptions about heat transfer rates; however, tracers that undergo temperature-dependent changes can provide more detailed information about the thermal profile along the flow path through the reservoir. To be effectively applied, the thermal reaction rates of such temperature sensitive traces must be well characterized for the range of conditions that exist in geothermal systems. Reactive tracers proposed in the literature include benzoic and carboxylic acids (Adams) and organic esters and amides (Robinson et al.); however, the practical temperature range over which these tracers can be applied (100-275°C) is somewhat limited. Further, for organic esters and amides, little is known about their sorption to the reservoir matrix and how such reactions impact data interpretation. Another approach involves tracers where the reference condition is internal to the tracer itself. Two examples are: 1) racemization of polymeric amino acids, and 2) mineral thermoluminescence. In these cases internal ratios of states are measured rather than extents of degradation and mass loss. Racemization of poly-L-lactic acid (for example) is temperature sensitive and therefore can be used as a temperature-recording tracer depending on the rates of racemization and stability of the amino acids. Heat-induced quenching of thermoluminescence of pre-irradiated LiF can also be used. To protect the tracers from alterations (extraneous reactions, dissolution) in geothermal environments we are encapsulating the tracers in core-shell colloidal structures that will subsequently be tested for their ability to be transported and to protect the

  10. Sulfadimethoxine transport in soil columns in relation to sorbable and non-sorbable tracers.

    Science.gov (United States)

    Park, Jong Yol; Huwe, Bernd

    2016-06-01

    In this study, miscible displacement experiment and batch sorption experiments were performed with sulfadimethoxine, dye tracer, Brilliant Blue FCF (BB) and a conservative tracer (bromide) to depict, analyse and interpret transport paths of sulfadimethoxine in undisturbed and disturbed soil columns. Batch sorption experiment revealed that sorption potential increased in the order: Brilliant Blue FCF > sulfadimethoxine > bromide. The horizontal spatial patterns of sulfadimethoxine and the tracers were analysed in each depth, and selective samples were taken in horizontal cross-section. Non-adsorbable and conservative tracer, bromide spread more widely into longitudinal and horizontal direction than sulfadimethoxine and Brilliant Blue FCF, since adsorption reduced transversal dispersion of the sulfadimethoxine and dye. In non-stained area, residual concentrations of sulfadimethoxine were relatively lower than in stained areas. Therefore, Brilliant Blue FCF distribution can be used to approximate sulfadimethoxine movement in soil. However, presence of preferential flow networks found in undisturbed soil cores can enhance mobility of sulfadimethoxine and the tracers, due to faster flow velocities and non-equilibrium adsorption. Our findings showed that other dye tracers may also be applicable to identify transport pathways of various organic contaminants, of which physico-chemical properties are similar to those of the dye tracers. Preferential flow should be considered for drinking water managements and transport modelling, since this allows faster pollutants transport from their sources, and create critical consequences for groundwater quality and solute transport modelling.

  11. Characterization of eco-friendly fluorescent nanoparticle-doped tracers for environmental sensing

    Energy Technology Data Exchange (ETDEWEB)

    Tauro, Flavia; Rapiti, Emiliano; Al-Sharab, Jafar F. [Polytechnic Institute of New York University, Department of Mechanical and Aerospace Engineering (United States); Ubertini, Lucio [Sapienza University of Rome, Dipartimento di Ingegneria Civile, Edile e Ambientale (Italy); Grimaldi, Salvatore; Porfiri, Maurizio, E-mail: mporfiri@poly.edu [Polytechnic Institute of New York University, Department of Mechanical and Aerospace Engineering (United States)

    2013-09-15

    Particle tracers are extensively used in quantitative flow visualization and environmental sensing. In this paper, we provide a thorough characterization of the novel eco-friendly fluorescent particle tracers formulated in Tauro et al. (AIP Adv 3(3): 032108, 2013). The tracers are synthesized from natural beeswax and are functionalized by encapsulating nontoxic fluorophore nanoparticles in the beads' matrix through an inexpensive thermal procedure. Visibility and durability studies are conducted through a wide array of techniques to investigate the tracers' surface morphological microfeatures, crystal nature and size, chemical composition, fluorophore incorporation into the beeswax matrix, and fluorescence response under severe settings resembling exposure to natural environments. Our findings demonstrate that fluorescent nanoparticles ranging from 1.51 to 3.73 nm are homogeneously distributed in the superficial layer (12 nm) of the tracers. In addition, fluorescence emissions are observed up to 26 days of continuous exposure of the tracers to high energy radiation. To demonstrate the particles' use in environmental flow sensing, a set of proof of concept outdoor tests are conducted, in which image analysis tools are utilized for detecting the fluorescent tracers. Experimental results suggest that fluorescent microparticles deployed in high flow-rate flows (2 m/s) and under direct sunlight can be sensed through commercially available cameras (frame rate set to 30 Hz)

  12. Characterization of eco-friendly fluorescent nanoparticle-doped tracers for environmental sensing

    Science.gov (United States)

    Tauro, Flavia; Rapiti, Emiliano; Al-Sharab, Jafar F.; Ubertini, Lucio; Grimaldi, Salvatore; Porfiri, Maurizio

    2013-09-01

    Particle tracers are extensively used in quantitative flow visualization and environmental sensing. In this paper, we provide a thorough characterization of the novel eco-friendly fluorescent particle tracers formulated in Tauro et al. (AIP Adv 3(3): 032108, 2013). The tracers are synthesized from natural beeswax and are functionalized by encapsulating nontoxic fluorophore nanoparticles in the beads' matrix through an inexpensive thermal procedure. Visibility and durability studies are conducted through a wide array of techniques to investigate the tracers' surface morphological microfeatures, crystal nature and size, chemical composition, fluorophore incorporation into the beeswax matrix, and fluorescence response under severe settings resembling exposure to natural environments. Our findings demonstrate that fluorescent nanoparticles ranging from 1.51 to 3.73 nm are homogeneously distributed in the superficial layer (12 nm) of the tracers. In addition, fluorescence emissions are observed up to 26 days of continuous exposure of the tracers to high energy radiation. To demonstrate the particles' use in environmental flow sensing, a set of proof of concept outdoor tests are conducted, in which image analysis tools are utilized for detecting the fluorescent tracers. Experimental results suggest that fluorescent microparticles deployed in high flow-rate flows (2 m/s) and under direct sunlight can be sensed through commercially available cameras (frame rate set to 30 Hz).

  13. Unit vent airflow measurements using a tracer gas technique

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.G. [Union Electric Company, Fulton, MO (United States); Lagus, P.L. [Lagus Applied Technology, Inc., San Diego, CA (United States); Fleming, K.M. [NCS Corp., Columbus, OH (United States)

    1997-08-01

    An alternative method for assessing flowrates that does not depend on point measurements of air flow velocity is the constant tracer injection technique. In this method one injects a tracer gas at a constant rate into a duct and measures the resulting concentration downstream of the injection point. A simple equation derived from the conservation of mass allows calculation of the flowrate at the point of injection. Flowrate data obtained using both a pitot tube and a flow measuring station were compared with tracer gas flowrate measurements in the unit vent duct at the Callaway Nuclear Station during late 1995 and early 1996. These data are presented and discussed with an eye toward obtaining precise flowrate data for release rate calculations. The advantages and disadvantages of the technique are also described. In those test situations for which many flowrate combinations are required, or in large area ducts, a tracer flowrate determination requires fewer man-hours than does a conventional traverse-based technique and does not require knowledge of the duct area. 6 refs., 10 figs., 6 tabs.

  14. A method for examining the chemical basis for bone disease: synchrotron infrared microspectroscopy.

    Science.gov (United States)

    Miller, L M; Carlson, C S; Carr, G L; Chance, M R

    1998-02-01

    Infrared microspectroscopy combines microscopy and spectroscopy for the purpose of chemical microanalysis. Light microscopy provides a way to generate and record magnified images and visibly resolve microstructural detail. Infrared spectroscopy provides a means for analyzing the chemical makeup of materials. Combining light microscopy and infrared spectroscopy permits the correlation of microstructure with chemical composition. Inherently, the long wavelengths of infrared radiation limit the spatial resolution of the technique. However, synchrotron infrared radiation significantly improves both the spectral and spatial resolution of an infrared microspectrometer, such that data can be obtained with high signal-to-noise at the diffraction limit, which is 3-5 microm in the mid-infrared region. In this study, we use infrared microspectroscopy to study the chemical composition of bone using two mapping methods. In the osteon method, linear maps are collected from the center of an osteon (newer bone) to the periphery (older bone) and their chemical compositions are compared. In the transverse method, applied specifically to subchondral bone, line maps are collected from the edge of the articular cartilage (older bone) to the marrow space (newer bone). A significant advantage of infrared microspectroscopy over other chemical methods is that the bone does not need to be homogenized for testing; we are able to study cross-sectional samples of bone in situ at a resolution better than 5 microm and compare the results with morphological findings on stained serial sections immediately adjacent to those examined by infrared microspectroscopy. The infrared absorption bands of bone proteins and mineral are sensitive to mineral content (i.e. carbonate, phosphate, acid phosphate), mineral crystallinity and the content/nature of the organic matrix. In this study, they are analyzed as a function of (1) age, i.e. distance with respect to the center of an osteon, and (2) morphology, i

  15. Questa baseline and pre-mining ground-water quality investigation. 2. Low-flow (2001) and snowmelt (2002) synoptic/tracer water chemistry for the Red River, New Mexico

    Science.gov (United States)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Steiger, Judy I.; Kimball, Briant A.; Verplanck, Philip L.

    2003-01-01

    Water analyses are reported for 259 samples collected from the Red River, New Mexico, and its tributaries during low-flow(2001) and spring snowmelt (2002) tracer studies. Water samples were collected along a 20-kilometer reach of the Red River beginning just east of the town of Red River and ending at the U.S. Geological Survey streamflow-gaging station located east of Questa, New Mexico. The study area was divided into three sections where separate injections and synoptic sampling events were performed during the low-flow tracer study. During the spring snowmelt tracer study, three tracer injections and synoptic sampling events were performed bracketing the areas with the greatest metal loading into the Red River as determined from the low-flow tracer study. The lowflow tracer synoptic sampling events were August 17, 20, and 24, 2001. The synoptic sampling events for the spring snowmelt tracer were March 30, 31, and April 1, 2002. Stream and large inflow water samples were sampled using equal-width and depth-integrated sampling methods and composited into half-gallon bottles. Grab water samples were collected from smaller inflows. Stream temperatures were measured at the time of sample collection. Samples were transported to a nearby central processing location where pH and specific conductance were measured and the samples processed for chemical analyses. Cations, trace metals, iron redox species, and fluoride were analyzed at the U.S. Geological Survey laboratory in Boulder, Colorado. Cations and trace metal concentrations were determined using inductively coupled plasma-optical emission spectrometry and graphite furnace atomic absorption spectrometry. Arsenic concentrations were determined using hydride generation atomic absorption spectrometry, iron redox species were measured using ultraviolet-visible spectrometry, and fluoride concentrations were determined using an ion-selective electrode. Alkalinity was measured by automated titration, and sulfate

  16. Predictive performance of the Vitrigel‐eye irritancy test method using 118 chemicals

    OpenAIRE

    Yamaguchi, Hiroyuki; KOJIMA Hajime; Takezawa, Toshiaki

    2015-01-01

    Abstract We recently developed a novel Vitrigel‐eye irritancy test (EIT) method. The Vitrigel‐EIT method is composed of two parts, i.e., the construction of a human corneal epithelium (HCE) model in a collagen vitrigel membrane chamber and the prediction of eye irritancy by analyzing the time‐dependent profile of transepithelial electrical resistance values for 3 min after exposing a chemical to the HCE model. In this study, we estimated the predictive performance of Vitrigel‐EIT method by te...

  17. Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation – Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    Directory of Open Access Journals (Sweden)

    I. Ssemmanda

    2012-03-01

    Full Text Available For reconstructing environmental change in terrestrial realms the geochemistry of fossil bioapatite in bones and teeth is among the most promising applications. This study demonstrates that alkaline earth elements in enamel of Hippopotamids, in particular Ba and Sr are tracers for water provenance and hydrochemistry. The studied specimens are molar teeth from Hippopotamids found in modern and fossil lacustrine settings of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi and from modern fluvial environments of the Nile River. Concentrations in enamel vary by ca. two orders of magnitude for Ba (120–9336 μg g−1 as well as for Sr (9–2150 μg g−1. Concentration variations in enamel are partly induced during post-mortem alteration and during amelogenesis, but the major contribution originates from the variable water chemistry in the habitats of the Hippopotamids which is dominated by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3–1.5. These elements are well correlated with MgO and Na2O in single specimens, thus suggesting that their distribution is determined by a common, single process. Presuming that the shape of the tooth is established at the end of the secretion process and apatite composition is in equilibrium with the enamel fluid, the maturation process can be modeled by closed system Rayleigh crystallization. Enamel from many Hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores, but the compositions extend well into the levels of plants and carnivores. Within enamel from single specimens these element ratios covary and provide a specific fingerprint of the Hippopotamid habitat. All specimens together, however, define subparallel

  18. Estimation of Recharge from Long-Term Monitoring of Saline Tracer Transport Using Electrical Resistivity Tomography

    DEFF Research Database (Denmark)

    Haarder, Eline Bojsen; Jensen, Karsten Høgh; Binley, Andrew;

    2015-01-01

    The movement of a saline tracer added to the soil surface was monitored in the unsaturated zone using cross-borehole electrical resistivity tomography (ERT) and subjected to natural rainfall conditions. The ERT data were inverted and corrected for subsurface temperature changes, and spatial moment...... methods. In September 2011, a saline tracer was added across a 142-m2 area at the surface at an application rate mimicking natural infiltration. The movement of the saline tracer front was monitored using cross-borehole electrical resistivity tomography (ERT); data were collected on a daily to weekly...... basis and continued for 1 yr after tracer application. The ERT data were inverted and corrected for temperature changes in the subsurface, and spatial moment analysis was used to calculate the tracer mass, position of the center of mass, and thereby the downwardly recharging flux. The recovered mass...

  19. Morphological and chemical changes of dentin after applying different sterilization methods

    Directory of Open Access Journals (Sweden)

    Cláudio Antonio Talge Carvalho

    Full Text Available Aim The present study evaluated the morphological and chemical changes of dentin produced by different sterilization methods, using scanning electron microscopy (SEM and energy-dispersive X-ray spectrometry (EDS analysis. Material and method Five human teeth were sectioned into 4 samples, each divided into 3 specimens. The specimens were separated into sterilization groups, as follows: wet heat under pressure; cobalt 60 gamma radiation; and control (without sterilization. After sterilization, the 60 specimens were analyzed by SEM under 3 magnifications: 1500X, 5000X, and 10000X. The images were analyzed by 3 calibrated examiners, who assigned scores according to the changes observed in the dentinal tubules: 0 = no morphological change; 1, 2 and 3 = slight, medium and complete obliteration of the dentinal tubules. The chemical composition of dentin was assessed by EDS, with 15 kV incidence and 1 μm penetration. Result The data obtained were submitted to the statistical tests of Kruskall-Wallis and ANOVA. It was observed that both sterilization methods – with autoclave and with cobalt 60 gamma radiation – produced no significant changes to the morphology of the dentinal tubules or to the chemical composition of dentin. Conclusion Both methods may thus be used to sterilize teeth for research conducted in vitro.

  20. Discussions of Chemical Extraction Methods for Iodine-129 Determinations Using AMS System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    As the longest-lived radioisotope of iodine with a half life of 15.7 Ma, Iodine-129 is widely used as a tracer in various environmental practices such as monitoring of nuclear environmental safety, seawater transport, and dating of

  1. The fluorescent tracer experiment on Holiday Beach near Mugu Canyon, Southern California

    Science.gov (United States)

    Kinsman, Nicole; Xu, J. P.

    2012-01-01

    After revisiting sand tracer techniques originally developed in the 1960s, a range of fluorescent coating formulations were tested in the laboratory. Explicit steps are presented for the preparation of the formulation evaluated to have superior attributes, a thermoplastic pigment/dye in a colloidal mixture with a vinyl chloride/vinyl acetate copolymer. In September 2010, 0.59 cubic meters of fluorescent tracer material was injected into the littoral zone about 4 kilometers upcoast of Mugu submarine canyon in California. The movement of tracer was monitored in three dimensions over the course of 4 days using manual and automated techniques. Detailed observations of the tracer's behavior in the coastal zone indicate that this tracer successfully mimicked the native beach sand and similar methods could be used to validate models of tracer movement in this type of environment. Recommendations including how to time successful tracer studies and how to scale the field of view of automated camera systems are presented along with the advantages and disadvantages of the described tracer methodology.

  2. The Copenhagen tracer experiments: Reporting of measurements

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Lyck, E.

    2002-01-01

    buoyancy from a tower at a height of 115 meters and then collected 2-3 meters above ground-level at positions in up to three crosswind arcs of tracer sampling units, positioned 2-6 km from the point of release. Three consecutive 20 min averaged tracer concentrations were measured, allowing for a total...

  3. Short-recurrence Krylov subspace methods for the overlap Dirac operator at nonzero chemical potential

    CERN Document Server

    Bloch, Jacques C R; Frommer, Andreas; Heybrock, Simon; Schaefer, Katrin; Wettig, Tilo

    2009-01-01

    The overlap operator in lattice QCD requires the computation of the sign function of a matrix, which is non-Hermitian in the presence of a quark chemical potential. In previous work we introduced an Arnoldi-based Krylov subspace approximation, which uses long recurrences. Even after the deflation of critical eigenvalues, the low efficiency of the method restricts its application to small lattices. Here we propose new short-recurrence methods which strongly enhance the efficiency of the computational method. Using rational approximations to the sign function we introduce two variants, based on the restarted Arnoldi process and on the two-sided Lanczos method, respectively, which become very efficient when combined with multishift solvers. Alternatively, in the variant based on the two-sided Lanczos method the sign function can be evaluated directly. We present numerical results which compare the efficiencies of a restarted Arnoldi-based method and the direct two-sided Lanczos approximation for various lattice ...

  4. A modified method for estimation of chemical oxygen demand for samples having high suspended solids.

    Science.gov (United States)

    Yadvika; Yadav, Asheesh Kumar; Sreekrishnan, T R; Satya, Santosh; Kohli, Sangeeta

    2006-03-01

    Determination of chemical oxygen demand (COD) of samples having high suspended solids concentration such as cattle dung slurry with open reflux method of APHA-AWWA-WPCF did not give consistent results. This study presents a modification of the open reflux method (APHA-AWWA-WPCF) to make it suitable for samples with high percentage of suspended solids. The new method is based on a different technique of sample preparation, modified quantities of reagents and higher reflux time as compared to the existing open reflux method. For samples having solids contents of 14.0 g/l or higher, the modified method was found to give higher value of COD with much higher consistency and accuracy as compared to the existing open reflux method.

  5. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 These test methods cover procedures for subsampling and for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride UF6. Most of these test methods are in routine use to determine conformance to UF6 specifications in the Enrichment and Conversion Facilities. 1.2 The analytical procedures in this document appear in the following order: Note 1—Subcommittee C26.05 will confer with C26.02 concerning the renumbered section in Test Methods C761 to determine how concerns with renumbering these sections, as analytical methods are replaced with stand-alone analytical methods, are best addressed in subsequent publications. Sections Subsampling of Uranium Hexafluoride 7 - 10 Gravimetric Determination of Uranium 11 - 19 Titrimetric Determination of Uranium 20 Preparation of High-Purity U3O 8 21 Isotopic Analysis 22 Isotopic Analysis by Double-Standard Mass-Spectrometer Method 23 - 29 Determination of Hydrocarbons, Chlorocarbons, and Partially Substitut...

  6. Effect of tracer buoyancy on tracer experiments conducted in fractured crystalline bedrock

    Science.gov (United States)

    Becker, Matthew W.

    2003-02-01

    Tracer buoyancy has been shown to influence breakthrough from two-well tracer experiments conducted in porous media. Two-well tracer experiments are presented from fractured crystalline bedrock, in which the specific gravity of the tracer injectate varied from 1.0002 to 1.0133. Under the forced hydraulic conditions imposed, no difference in breakthrough was noted for the three experiments. These results show that even relatively dense tracer injectate solutions may have an insignificant effect on breakthrough when imposed gradients are sufficiently large.

  7. Tracing wastewater effluents in surface and groundwaters: a couple approach with organic/inorganic tracers and isotopes

    Science.gov (United States)

    Petelet-Giraud, Emmanuelle; Baran, Nicole; Soulier, Coralie

    2017-04-01

    In the context of land use change, the origins of contamination of water resources are often multiple, including for a single chemical element or molecule. For instance, excess of nitrates in both surface and groundwater can originate from agricultural practices and wastewater effluents. The discrimination of the origins and vectors of contamination in the environment is both an environmental and societal issue in order to define an integrated water resources management at the catchment or water body scale by implementing appropriate measures to effectively struggle against pollution. The objective of this study is to define a methodology for the identification of a "domestic wastewater" contamination within surface waters and groundwater. An ideal tracer should be conservative, persistent in the different water compartments, present in quantity above the detection limit and originate from a single type of pollution source. There is, however, no ideal tracer in the strict sense. Indeed, even chloride which is present in quantity in wastewater, and which behaves conservatively in the environment, is not an univocal tracer of wastewater, as it may come from atmospheric inputs, from the dissolution of evaporitic rocks, from the salting of roads or from fertilizers. To overcome this limitation, in this study, we propose a multi-tracer approach (chemical and isotopic) to identify and validate the relevance of foreseen tracers. Among the relevant tracers of wastewater, the following may be used for their intrinsic or combined discriminant power: 1) organic effluent tracers: nitrogen contents and isotopic ratios of nitrogen and oxygen of nitrates; 2) tracer of detergents: boron contents and boron isotopes; 3) pharmaceuticals tracers: e.g. carbamazepine, ibuprofen, paracetamol, gadolinium anomaly; 4) life-style tracers: e.g. caffeine. The originality of the study relies on small capacities wastewater treatment plants without tertiary treatment process. Results on a

  8. The Art of Tomographic Tracer Tests

    Science.gov (United States)

    Cirpka, O. A.; Leven, C.; Doro, K. O.; Sanchez-Leon, E. E.

    2015-12-01

    In tracer tomography several tracer tests are performed within an aquifer and breakthrough curves are observed at multiple observation points. In the analysis, hydraulic conductivity is estimated as spatially variable, 3-D field subject to some smoothness constraint. Coupled flow and transport models using this conductivity fields are requested to meet observed tracer data. The approach can be combined with hydraulic tomography.We have performed hydraulic-tomography and tracer-tomography tests using heat and fluorescein as tracers at a field site close to Tübingen, Germany. The aquifer consists of 8-9m alluvials sands and gravels overlain by 1-2m alluvial fines. The hydraulic setup consists of a forced flow field between an injection/extraction well couple, embedded in the forced flow field of another well couple. By turning injection to extraction wells, and vice versa, two different flow fields were considered. Injection wells were separated into several sections by packers, and water was injected into each section proportional to its transmissivity. The water injected into one of the sections contained the tracer. Multi-level observation wells were equiped with thermometers (for heat-tracer tests), on-line fluoremeters (for teh dye tracers), and pressure transducers. Processing of the breakthrough curves included data cleaning, non-parametric deconvolution, and calculation of temperal moments of the estimated transfer functions.The joint inversion of hydraulic-head measurements and temporal moments of heat-tracer transfer functions was done by the quasi-linear geostatistical approach on a computing cluster. As alternative, we directly invert the time series (without temporal moments) by Ensemble-Kalman filtering.The high diffusion coefficient of temperature diminishes the penetration of the heat-tracer into the aquifer, which can partially be compensated by reverting the flow field and repeating the tracer tests. In tests with fluorscent tracers the signal

  9. Adaptive Finite Element Method Assisted by Stochastic Simulation of Chemical Systems

    KAUST Repository

    Cotter, Simon L.

    2013-01-01

    Stochastic models of chemical systems are often analyzed by solving the corresponding Fokker-Planck equation, which is a drift-diffusion partial differential equation for the probability distribution function. Efficient numerical solution of the Fokker-Planck equation requires adaptive mesh refinements. In this paper, we present a mesh refinement approach which makes use of a stochastic simulation of the underlying chemical system. By observing the stochastic trajectory for a relatively short amount of time, the areas of the state space with nonnegligible probability density are identified. By refining the finite element mesh in these areas, and coarsening elsewhere, a suitable mesh is constructed and used for the computation of the stationary probability density. Numerical examples demonstrate that the presented method is competitive with existing a posteriori methods. © 2013 Society for Industrial and Applied Mathematics.

  10. Calcium phosphate formation from sea urchin - (brissus latecarinatus via modified mechano-chemical (ultrasonic conversion method

    Directory of Open Access Journals (Sweden)

    R. Samur

    2013-07-01

    Full Text Available This study aims to produce apatite structures, such as hydroxyapatite (HA and fluorapatite (FA, from precursor calcium phosphates of biological origin, namely from sea urchin, with mechano-chemical stirring and hot-plating conversion method. The produced materials were heat treated at 800 °C for 4 hours. X-ray diffraction and scanning electron microscopy (SEM studies were conducted. Calcium phosphate phases were developed. The SEM images showed the formation of micro to nano-powders. The experimental results suggest that sea urchin, Brissus latecarinatus skeleton could be an alternative source for the production of various mono or biphasic calcium phosphates with simple and economic mechano-chemical (ultrasonic conversion method.

  11. Chemical fingerprinting of Gardenia jasminoides Ellis by HPLC-DAD-ESI-MS combined with chemometrics methods.

    Science.gov (United States)

    Han, Yan; Wen, Jun; Zhou, Tingting; Fan, Guorong

    2015-12-01

    A fingerprint analysis method has been developed for characterization and discrimination of Gardenia jasminoides Ellis from different areas. The chemometrics methods including similarity evaluation, principal components analysis (PCA) and hierarchical clustering analysis (HCA) were introduced to identify more useful chemical markers for improving the quality control standard of dried ripe fruits of G. jasminoides Ellis. Then the selected chemical markers were analyzed by high performance liquid chromatography-diode array detection-electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) qualitatively and quantitatively. 23 characteristic peaks were assigned while 19 peaks of them were identified by comparing retention times, UV and MS spectra with authentic compounds or literature data. Moreover, 14 of them were determined quantitatively which could effectively evaluate the quality of G. jasminoides Ellis. This study was expected to provide comprehensive information for the quality evaluation of G. jasminoides Ellis, which would be a valuable reference for further study and development of this herb and related medicinal products.

  12. Chemical vs. biotechnological synthesis of C13-apocarotenoids: current methods, applications and perspectives.

    Science.gov (United States)

    Cataldo, Vicente F; López, Javiera; Cárcamo, Martín; Agosin, Eduardo

    2016-07-01

    Apocarotenoids are natural compounds derived from the oxidative cleavage of carotenoids. Particularly, C13-apocarotenoids are volatile compounds that contribute to the aromas of different flowers and fruits and are highly valued by the Flavor and Fragrance industry. So far, the chemical synthesis of these terpenoids has dominated the industry. Nonetheless, the increasing consumer demand for more natural and sustainable processes raises an interesting opportunity for bio-production alternatives. In this regard, enzymatic biocatalysis and metabolically engineered microorganisms emerge as attractive biotechnological options. The present review summarizes promising bioengineering approaches with regard to chemical production methods for the synthesis of two families of C13-apocarotenoids: ionones/dihydroionones and damascones/damascenone. We discuss each method and its applicability, with a thorough comparative analysis for ionones, focusing on the production process, regulatory aspects, and sustainability.

  13. Controlling feeding behavior by chemical or gene-directed targeting in the brain: What’s so spatial about our methods?

    Directory of Open Access Journals (Sweden)

    Arshad M Khan

    2013-12-01

    Full Text Available Intracranial chemical injection (ICI methods have been used to identify the locations in the brain where feeding behavior can be controlled acutely. Scientists conducting ICI studies often document their injection site locations, thereby leaving kernels of valuable location data for others to use to further characterize feeding control circuits. Unfortunately, this rich dataset has not yet been formally contextualized with other published neuroanatomical data. In particular, axonal tracing studies have delineated several neural circuits originating in the same areas where ICI injection feeding-control sites have been documented, but it remains unclear whether these circuits participate in feeding control. However, comparing injection sites with other types of location data requires careful anatomical registration between the datasets. Here, a conceptual framework is presented for how such anatomical registration efforts can be performed. For example, by using a simple atlas alignment tool, a hypothalamic locus sensitive to the orexigenic effects of neuropeptide Y (NPY can be aligned accurately with the locations of neurons labeled by anterograde tracers or those known to express NPY receptors or feeding-related peptides. This approach can also be applied to those intracranial gene-directed injection (IGI methods (e.g., site-specific recombinase methods, RNA expression or interference, optogenetics and pharmacosynthetics that involve viral injections to targeted neuronal populations. Spatial alignment efforts can be accelerated if location data from ICI/IGI methods are mapped to stereotaxic brain atlases to allow powerful neuroinformatics tools to overlay different types of data in the same reference space. Atlas-based mapping will be critical for community-based sharing of location data for feeding control circuits, and will accelerate our understanding of structure-function relationships in the brain for mammalian models of obesity and

  14. Growth of ZnO Single Crystal by Chemical Vapor Transport Method

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    ZnO crystals were grown by CVT method in closed quartz tube under seeded condition. Carbon was used as a transport agent to enhance the chemical transport of ZnO in the growth process. ZnO single crystals were grown by using GaN/sapphire and GaN/Si wafer as seeds. The property and crystal quality of the ZnO single crystals was studied by photoluminescence spectroscopy and X-ray diffraction technique.

  15. Studies on tautomerism in tetrazole: comparison of Hartree Fock and density functional theory quantum chemical methods

    Science.gov (United States)

    Mazurek, A. P.; Sadlej-Sosnowska, N.

    2000-11-01

    A comparison of the ab initio quantum chemical methods: Hartree-Fock (HF) and hybrid density functional theory (DFT)/B3LYP for the treatment of tautomeric equilibria both in the gas phase and in the solution is made. The solvent effects were investigated in terms of the self-consistent reaction field (SCRF). Ionization potentials (IP), calculated by DFT/B3LYP, are also compared with those calculated previously within the HF frame.

  16. Method for conversion of carbohydrate polymers to value-added chemical products

    Science.gov (United States)

    Zhang, Zongchao C [Norwood, NJ; Brown, Heather M [Kennewick, WA; Su, Yu [Richland, WA

    2012-02-07

    Methods are described for conversion of carbohydrate polymers in ionic liquids, including cellulose, that yield value-added chemicals including, e.g., glucose and 5-hydroxylmethylfurfural (HMF) at temperatures below 120.degree. C. Catalyst compositions that include various mixed metal halides are described that are selective for specified products with yields, e.g., of up to about 56% in a single step process.

  17. A hybrid method for prediction and repositioning of drug Anatomical Therapeutic Chemical classes.

    Science.gov (United States)

    Chen, Lei; Lu, Jing; Zhang, Ning; Huang, Tao; Cai, Yu-Dong

    2014-04-01

    In the Anatomical Therapeutic Chemical (ATC) classification system, therapeutic drugs are divided into 14 main classes according to the organ or system on which they act and their chemical, pharmacological and therapeutic properties. This system, recommended by the World Health Organization (WHO), provides a global standard for classifying medical substances and serves as a tool for international drug utilization research to improve quality of drug use. In view of this, it is necessary to develop effective computational prediction methods to identify the ATC-class of a given drug, which thereby could facilitate further analysis of this system. In this study, we initiated an attempt to develop a prediction method and to gain insights from it by utilizing ontology information of drug compounds. Since only about one-fourth of drugs in the ATC classification system have ontology information, a hybrid prediction method combining the ontology information, chemical interaction information and chemical structure information of drug compounds was proposed for the prediction of drug ATC-classes. As a result, by using the Jackknife test, the 1st prediction accuracies for identifying the 14 main ATC-classes in the training dataset, the internal validation dataset and the external validation dataset were 75.90%, 75.70% and 66.36%, respectively. Analysis of some samples with false-positive predictions in the internal and external validation datasets indicated that some of them may even have a relationship with the false-positive predicted ATC-class, suggesting novel uses of these drugs. It was conceivable that the proposed method could be used as an efficient tool to identify ATC-classes of novel drugs or to discover novel uses of known drugs.

  18. Calcium phosphate formation from sea urchin - (brissus latecarinatus) via modified mechano-chemical (ultrasonic) conversion method

    OpenAIRE

    R. Samur; Ozyegin, L.; D. Agaogullari; F. N. Oktar; Agathopoulos, S.; Kalkandelen, C.; I. Duman; B. Ben-Nissan

    2013-01-01

    This study aims to produce apatite structures, such as hydroxyapatite (HA) and fluorapatite (FA), from precursor calcium phosphates of biological origin, namely from sea urchin, with mechano-chemical stirring and hot-plating conversion method. The produced materials were heat treated at 800 °C for 4 hours. X-ray diffraction and scanning electron microscopy (SEM) studies were conducted. Calcium phosphate phases were developed. The SEM images showed the formation of micro to nano-powders. The e...

  19. EXTRACTION OF ASTAXANTHIN ESTERS FROM SHRIMP WASTE BY CHEMICAL AND MICROBIAL METHODS

    OpenAIRE

    A. Khanafari, A. Saberi, M. Azar, Gh. Vosooghi, Sh. Jamili, B. Sabbaghzadeh

    2007-01-01

    The carotenoid pigments specifically astaxanthin has many significant applications in food, pharmaceutical and cosmetic industries. The goal of this research was the extraction of Astaxanthin from a certain Persian Gulf shrimp species waste (Penaeus semisulcatus), purification and identification of the pigment by chemical and microbial methods. Microbial fermentation was obtained by inoculation of two Lactobacillus species Lb. plantarum and Lb. acidophilus in the medium culture containing shr...

  20. Optical methods for creating delivery systems of chemical compounds to plant roots

    Science.gov (United States)

    Kuznetsov, Pavel E.; Rogacheva, Svetlana M.; Arefeva, Oksana A.; Minin, Dmitryi V.; Tolmachev, Sergey A.; Kupadze, Machammad S.

    2004-08-01

    Spectrophotometric and fluorescence methods have been used for creation and investigation of various systems of target delivery of chemical compounds to roots of plants. The possibility of using liposomes, incrusted by polysaccharides of the external surface of nitrogen-fixing rizospheric bacteria Azospirillum brasilense SP 245, and nanoparticles incrusted by polysaccharides of wheat roots, as the named systems has been shown. The important role of polysaccharide-polysaccharide interaction in the adsorption processes of bacteria on wheat roots has been demonstrated.

  1. Correlative microscopy of densely labeled projection neurons using neural tracers.

    Science.gov (United States)

    Oberti, Daniele; Kirschmann, Moritz A; Hahnloser, Richard H R

    2010-01-01

    Three-dimensional morphological information about neural microcircuits is of high interest in neuroscience, but acquiring this information remains challenging. A promising new correlative technique for brain imaging is array tomography (Micheva and Smith, 2007), in which series of ultrathin brain sections are treated with fluorescent antibodies against neurotransmitters and synaptic proteins. Treated sections are repeatedly imaged in the fluorescence light microscope (FLM) and then in the electron microscope (EM). We explore a similar correlative imaging technique in which we differentially label distinct populations of projection neurons, the key routers of electrical signals in the brain. In songbirds, projection neurons can easily be labeled using neural tracers, because the vocal control areas are segregated into separate nuclei. We inject tracers into areas afferent and efferent to the main premotor area for vocal production, HVC, to retrogradely and anterogradely label different classes of projection neurons. We optimize tissue preparation protocols to achieve high fluorescence contrast in the FLM and good ultrastructure in the EM (using osmium tetroxide). Although tracer fluorescence is lost during EM preparation, we localize the tracer molecules after fixation and embedding by using fluorescent antibodies against them. We detect signals mainly in somata and dendrites, allowing us to classify synapses within a single ultrathin section as belonging to a particular type of projection neuron. The use of our method will be to provide statistical information about connectivity among different neuron classes, and to elucidate how signals in the brain are processed and routed among different areas.

  2. Correlative microscopy of densely labeled projection neurons using neural tracers

    Directory of Open Access Journals (Sweden)

    Daniele Oberti

    2010-06-01

    Full Text Available Three-dimensional morphological information about neural microcircuits is of high interest in neuroscience, but acquiring this information remains challenging. A promising new correlative technique for brain imaging is array tomography (Micheva and Smith, 2007, in which series of ultrathin brain sections are treated with fluorescent antibodies against neurotransmitters and synaptic proteins. Treated sections are repeatedly imaged in the fluorescence light microscope (FLM and then in the electron microscope (EM. We explore a similar correlative imaging technique in which we differentially label distinct populations of projection neurons, the key routers of electrical signals in the brain. In songbirds, projection neurons can easily be labeled using neural tracers, because the vocal control areas are segregated into separate nuclei. We inject tracers into areas afferent and efferent to the main premotor area for vocal production, HVC, to retrogradely and anterogradely label different classes of projection neurons. We optimize tissue preparation protocols to achieve high fluorescence contrast in the FLM and good ultrastructure in the EM (using osmium tetroxide. Although tracer fluorescence is lost during EM preparation, we localize the tracer molecules after fixation and embedding by using fluorescent antibodies against them. We detect signals mainly in somata and dendrites, allowing us to classify synapses within a single ultrathin section as belonging to a particular type of projection neuron. The use of our method will be to provide statistical information about connectivity among different neuron classes, and to elucidate how signals in the brain are processed and routed among different areas.

  3. Chemical footprint method for improved communication of freshwater ecotoxicity impacts in the context of ecological limits.

    Science.gov (United States)

    Bjørn, Anders; Diamond, Miriam; Birkved, Morten; Hauschild, Michael Zwicky

    2014-11-18

    The ecological footprint method has been successful in communicating environmental impacts of anthropogenic activities in the context of ecological limits. We introduce a chemical footprint method that expresses ecotoxicity impacts from anthropogenic chemical emissions as the dilution needed to avoid freshwater ecosystem damage. The indicator is based on USEtox characterization factors with a modified toxicity reference point. Chemical footprint results can be compared to the actual dilution capacity within the geographic vicinity receiving the emissions to estimate whether its ecological limit has been exceeded and hence whether emissions can be expected to be environmentally sustainable. The footprint method was illustrated using two case studies. The first was all inventoried emissions from European countries and selected metropolitan areas in 2004, which indicated that the dilution capacity was likely exceeded for most European countries and all landlocked metropolitan areas. The second case study indicated that peak application of pesticides alone was likely to exceed Denmark's freshwater dilution capacity in 1999-2011. The uncertainty assessment showed that better spatially differentiated fate factors would be useful and pointed out other major sources of uncertainty and some opportunities to reduce these.

  4. Weak error analysis of approximate simulation methods for multi-scale stochastic chemical kinetic systems

    CERN Document Server

    Anderson, David F

    2011-01-01

    A chemical reaction network is a chemical system involving multiple reactions and chemical species. The simplest stochastic models of such networks treat the system as a continuous time Markov chain with the state being the number of molecules of each species and with reactions modeled as possible transitions of the chain. In this paper we provide a general framework for understanding the weak error of numerical approximation techniques in this setting. For such models, there is typically a wide variation in scales in that the different species and reaction rates vary over several orders of magnitude. Quantifying how different numerical approximation techniques behave in this setting therefore requires that these scalings be taken into account in an appropriate manner. We quantify how the error of different methods depends upon both the natural scalings within a given system, and with the step-size of the numerical method. We show that Euler's method, also called explicit tau-leaping, acts as an order one met...

  5. Determination of organic chemicals in human whole blood: Preliminary method development for volatile organics

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, P.H.; Boggess, K.E.; Hosenfeld, J.M. (Midwest Research Institute, Kansas City, MO (USA)); Remmers, J.C.; Breen, J.J.; Robinson, P.E.; Stroup, C. (Environmental Protection Agency, Washington, DC (USA))

    1988-05-01

    Extensive commercial, industrial, and domestic use of volatile organic chemicals, virtually assures that the general population will be exposed to some level of this class of chemicals. Because blood interacts with the respiratory system and is a major component of the body, it is likely that the analysis of blood will show exposure to volatile organics. Monitoring of the blood in conjunction with monitoring of xenobiotic levels in urine and adipose tissue is an effective way to assess the total body burden resulting from exposure to a chemical. This article introduces a method for the detection and confirmation of selected volatile organics at parts-per-trillion (ppt) levels in whole human blood. Intended for routine use, the method consists of a dynamic headspace purge of water-diluted blood where a carrier gas sweeps the surface of the sample and removes a quantifiable amount of the volatile organics from the blood and into an adsorbent trap. The organics are thermally desorbed from the adsorbent trap and onto the analytical column in a gas-chromatographic/mass-spectrometric (GC/MS) system where limited mass-scan data are taken for qualitative and quantitative identification. Method validation results and limited population-survey results are also presented here.

  6. Method for 236U Determination in Seawater Using Flow Injection Extraction Chromatography and Accelerator Mass Spectrometry

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin; Steier, Peter;

    2015-01-01

    An automated analytical method implemented in a flow injection (FI) system was developed for rapid determination of 236U in 10 L seawater samples. 238U was used as a chemical yield tracer for the whole procedure, in which extraction chromatography (UTEVA) was exploited to purify uranium, after......, on the basis of studying the coprecipitation behavior of uranium with iron hydroxide. The analytical results indicate that the developed method is simple and robust, providing satisfactory chemical yields (80−100%) and high analysis speed (4 h/sample), which could be an appealing alternative to conventional...... manual methods for 236U determination in its tracer application....

  7. Chemometrics-assisted spectrophotometry method for the determination of chemical oxygen demand in pulping effluent.

    Science.gov (United States)

    Chen, Honglei; Chen, Yuancai; Zhan, Huaiyu; Fu, Shiyu

    2011-04-01

    A new method has been developed for the determination of chemical oxygen demand (COD) in pulping effluent using chemometrics-assisted spectrophotometry. Two calibration models were established by inducing UV-visible spectroscopy (model 1) and derivative spectroscopy (model 2), combined with the chemometrics software Smica-P. Correlation coefficients of the two models are 0.9954 (model 1) and 0.9963 (model 2) when COD of samples is in the range of 0 to 405 mg/L. Sensitivities of the two models are 0.0061 (model 1) and 0.0056 (model 2) and method detection limits are 2.02-2.45 mg/L (model 1) and 2.13-2.51 mg/L (model 2). Validation experiment showed that the average standard deviation of model 2 was 1.11 and that of model 1 was 1.54. Similarly, average relative error of model 2 (4.25%) was lower than model 1 (5.00%), which indicated that the predictability of model 2 was better than that of model 1. Chemometrics-assisted spectrophotometry method did not need chemical reagents and digestion which were required in the conventional methods, and the testing time of the new method was significantly shorter than the conventional ones. The proposed method can be used to measure COD in pulping effluent as an environmentally friendly approach with satisfactory results.

  8. The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics

    Science.gov (United States)

    Ren, Zhuyin; Pope, Stephen B.; Vladimirsky, Alexander; Guckenheimer, John M.

    2006-03-01

    This work addresses the construction and use of low-dimensional invariant manifolds to simplify complex chemical kinetics. Typically, chemical kinetic systems have a wide range of time scales. As a consequence, reaction trajectories rapidly approach a hierarchy of attracting manifolds of decreasing dimension in the full composition space. In previous research, several different methods have been proposed to identify these low-dimensional attracting manifolds. Here we propose a new method based on an invariant constrained equilibrium edge (ICE) manifold. This manifold (of dimension nr) is generated by the reaction trajectories emanating from its (nr-1)-dimensional edge, on which the composition is in a constrained equilibrium state. A reasonable choice of the nr represented variables (e.g., nr "major" species) ensures that there exists a unique point on the ICE manifold corresponding to each realizable value of the represented variables. The process of identifying this point is referred to as species reconstruction. A second contribution of this work is a local method of species reconstruction, called ICE-PIC, which is based on the ICE manifold and uses preimage curves (PICs). The ICE-PIC method is local in the sense that species reconstruction can be performed without generating the whole of the manifold (or a significant portion thereof). The ICE-PIC method is the first approach that locally determines points on a low-dimensional invariant manifold, and its application to high-dimensional chemical systems is straightforward. The "inputs" to the method are the detailed kinetic mechanism and the chosen reduced representation (e.g., some major species). The ICE-PIC method is illustrated and demonstrated using an idealized H2/O system with six chemical species. It is then tested and compared to three other dimension-reduction methods for the test case of a one-dimensional premixed laminar flame of stoichiometric hydrogen/air, which is described by a detailed mechanism

  9. The determination of mass of metabolites with tracers

    Energy Technology Data Exchange (ETDEWEB)

    Katz, J. (Cedars-Sinai Medical Center, Los Angeles, CA (USA))

    1989-08-01

    Application of tracers in vivo for the determination of replacement and mass of bloodborne compounds at steady state is discussed. Theory and methods to determine mass with tracers (total amount of compound-tracee-within the body) for compartmental and noncompartmental systems are presented, and their limitations examined. Methods to derive mass from the specific activity curves after bolus injection or infusion of tracer are described using graphic procedures or by equations using the parameters of exponential curves. The relationship between assumed models and the interpretation of tracer data is examined. The determination of both replacement (appearance, which equals utilization at steady state) and mass of most compounds present in both extracellular and intracellular fluids (such as lactate and amino acids) requires the application of the A-V mode for tracer administration and sampling of blood. Recycling of carbon affects the determination of mass with {sup 14}C. Estimates of true mass are provided with tritium-labeled compounds, even when tritium loss is by exchange with protons or through futile cycling. Estimates of the amount (body mass) of lactate, alanine, glutamate, and proline obtained with tritium-labeled compounds are presented. Most of these masses are intracellular. The concentration of lactate in tissues equals or is greater, and that of amino acids much greater than that in plasma. Hence, the so-called distribution space for these compounds, calculated conventionally by dividing mass by plasma concentration, would appear to be equal to or greater than the body water of lactate, and several liters per kilogram for amino acids.

  10. Optimal fractionation and bioassay plans for isolation of synergistic chemicals: The subtractive-combination method.

    Science.gov (United States)

    Byers, J A

    1992-09-01

    Studies of chemical ecology of an organism are founded on the isolation and identification of a semiochemical, often comprised of two or more synergistic compounds (each Synergist alone has little activity, but presented together they are bioactive). Chromatographie fractionation and bioassay methods of binary splitting, additive combination, and subtractive combination are compared for efficiency in isolating synergists. Formulas are derived for the latter two methods that calculate the expected number of bioassay tests required for isolation of from two to five synergists from biological extracts with any number of compounds, depending on the number of initial (major) Chromatographic fractions. A computer program based on the formulas demonstrates the superiority of the subtractive-combination method. Simulations with the program were used to determine the optimal number of initial fractions for the additive- and subtractive-combination methods when isolating two to five synergists from extracts of from 25 to 1200 compounds. Methods of bioassay, isolation, identification, and field testing of semiochemicals are discussed.

  11. Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces.

    Science.gov (United States)

    Maeda, Satoshi; Harabuchi, Yu; Takagi, Makito; Taketsugu, Tetsuya; Morokuma, Keiji

    2016-10-01

    In this account, a technical overview of the artificial force induced reaction (AFIR) method is presented. The AFIR method is one of the automated reaction-path search methods developed by the authors, and has been applied extensively to a variety of chemical reactions, such as organocatalysis, organometallic catalysis, and photoreactions. There are two modes in the AFIR method, i.e., a multicomponent mode and a single-component mode. The former has been applied to bimolecular and multicomponent reactions and the latter to unimolecular isomerization and dissociation reactions. Five numerical examples are presented for an Aldol reaction, a Claisen rearrangement, a Co-catalyzed hydroformylation, a fullerene structure search, and a nonradiative decay path search in an electronically excited naphthalene molecule. Finally, possible applications of the AFIR method are discussed.

  12. Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods

    Institute of Scientific and Technical Information of China (English)

    Fenwu Liu; Jun Zhou; Dianzhan Wang; Lixiang Zhou

    2012-01-01

    The sewage sludge conditioning process is critical to improve the sludge dewaterability prior to mechanical dewatering.Traditionally,sludge is conditioned by physical or chemical approaches,mostly with the addition of inorganic or organic chemicals.Here we report that bioleaching,an efficient and economical microbial method for the removal of sludge-borne heavy metals,also plays a significant role in enhancing sludge dewaterability.The effects of bioleaching and physical or chemical approaches on sludge dewaterability were compared.The conditioning result of bioleaching by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans on sludge dewatering was investigated and compared with the effects of hydrothermal(121 ℃ for 2 hr),microwave(1050 W for 50 sec),ultrasonic (250 W for 2 min),and chemical conditioning(24% ferric chloride and 68% calcium oxide; dry basis).The results show that the specific resistance to filtration(SRF)or capillary suction time(CST)of sludge is decreased by 93.1% or 74.1%,respectively,after fresh sludge is conditioned by bioleaching,which is similar to chemical conditioning treatment with ferric chloride and calcium oxide but much more effective than other conditioning approaches including hydrothermal,microwave,and ultrasonic conditioning.Furthermore,after sludge dewatering,bioleached sludge filtrate contains the lowest concentrations of chroma(18 times),COD(542 mg/L),total N(TN,300 mg/L),NH4+-N(208 mg/L),and total P(TP,2 mg/L)while the hydrothermal process resulted in the highest concentration of chroma(660 times),COD(18,155 mg/L),TN(472 mg/L),NH4+-N(381 mg/L),and TP(191 mg/L)among these selected conditioning methods.Moreover,unlike chemical conditioning,sludge bioleaching does not result in a significant reduction of organic matter,TN,and TP in the resulting dewatered sludge cake.Therefore,considering sludge dewaterability and the chemical properties of sludge filtrate and resulting dewatered sludge cakes,bioleaching has

  13. Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods.

    Science.gov (United States)

    Liu, Fenwu; Zhou, Jun; Wang, Dianzhan; Zhou, Lixiang

    2012-01-01

    The sewage sludge conditioning process is critical to improve the sludge dewaterability prior to mechanical dewatering. Traditionally, sludge is conditioned by physical or chemical approaches, mostly with the addition of inorganic or organic chemicals. Here we report that bioleaching, an efficient and economical microbial method for the removal of sludge-borne heavy metals, also plays a significant role in enhancing sludge dewaterability. The effects of bioleaching and physical or chemical approaches on sludge dewaterability were compared. The conditioning result of bioleaching by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans on sludge dewatering was investigated and compared with the effects of hydrothermal (121 degrees C for 2 hr), microwave (1050 W for 50 sec), ultrasonic (250 W for 2 min), and chemical conditioning (24% ferric chloride and 68% calcium oxide; dry basis). The results show that the specific resistance to filtration (SRF) or capillary suction time (CST) of sludge is decreased by 93.1% or 74.1%, respectively, after fresh sludge is conditioned by bioleaching, which is similar to chemical conditioning treatment with ferric chloride and calcium oxide but much more effective than other conditioning approaches including hydrothermal, microwave, and ultrasonic conditioning. Furthermore, after sludge dewatering, bioleached sludge filtrate contains the lowest concentrations of chroma (18 times), COD (542 mg/L), total N (TN, 300 mg/L), NH4(+)-N (208 mg/L), and total P (TP, 2 mg/L) while the hydrothermal process resulted in the highest concentration of chroma (660 times), COD (18,155 mg/L), TN (472 mg/L), NH4(+)-N (381 mg/L), and TP (191 mg/L) among these selected conditioning methods. Moreover, unlike chemical conditioning, sludge bioleaching does not result in a significant reduction of organic matter, TN, and TP in the resulting dewatered sludge cake. Therefore, considering sludge dewaterability and the chemical properties of sludge

  14. Assessment of metal pollution in the Anzali Wetland sediments using chemical partitioning method and pollution indices

    Institute of Scientific and Technical Information of China (English)

    ESMAEILZADEH Marjan; KARBASSI Abdolreza; MOATTAR Faramarz

    2016-01-01

    Metal pollution in aquatic ecosystems is of immense importance. Under various environment circumstances, the metal contents of sediments can enter into the overlying water body leading to severe toxicity. This study aims to determine metal concentrations in sediments of Anzali International Wetland in Iran. Chemical partitioning method is used to determine the portion of anthropogenic pollution and the mobility potential of each metal. The intensity of metal pollution in sediments of the wetland is assessed using three reliable indices. The results of chemical partitioning reveal that cadmium bear the highest risk of being released into the aquatic environment and high amount of manganese in sulfide bond phase implies the initiation of redox state in aquatic environment of the Anzali Wetland. The results of chemical partitioning studies show that Pb, Cd, Mn and As have the highest anthropogenic portion. Cluster analysis also confirms the results of chemical partitioning and indicates that the mentioned metals can be originated from anthropogenic sources. Sediment pollution indices, including, Igeo, IPOLL, and m-ERM-Q reveal that metals are in the range of low to moderate pollution and also show that the highest metal pollution is in the eastern and central parts of the wetland. This can be ascribed to rivers which are the recipient of industrial, agricultural and municipal wastewaters and flow into these parts of the wetland.

  15. IMPACTS OF TEMPERATURE AND SELECTED CHEMICAL DIGESTION METHODS ON MICROPLASTIC PARTICLES.

    Science.gov (United States)

    Munno, Keenan; Helm, Paul A; Jackson, Donald A; Rochman, Chelsea; Sims, Alina

    2017-08-07

    Alkaline and wet peroxide oxidation (WPO) chemical digestion techniques used to extract microplastics from organic matrices were assessed for recoveries and for impacts on ability to identify polymer types. Methods using WPO generated enough heat to result in the complete loss of some types of microplastic particles, and boiling tests confirmed that temperatures >70 °C were responsible for the losses. Fourier transform infrared spectroscopy (FTIR) confirmed minimal alteration of the recovered polymers by the applied methods. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Computer Aided Methods & Tools for Separation & Purification of Fine Chemical & Pharmaceutical Products

    DEFF Research Database (Denmark)

    Afonso, Maria B.C.; Soni, Vipasha; Mitkowski, Piotr Tomasz

    2006-01-01

    aided system. The methods and tools are linked through the problems they are able to solve and the associated data-flow. The integrated computer aided system has been used to solve a number of industrial problems and summarized results from a selection, involving separation and purification issues......An integrated approach that is particularly suitable for solving problems related to product-process design from the fine chemicals, agrochemicals, food and pharmaceutical industries is presented together with the corresponding methods and tools, which forms the basis for an integrated computer...

  17. Elemental composition method for computation and analysis of simultaneous chemical and phase equilibrium

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An elemental composition method for computation and analysis of simultaneous chemical and phase equilibrium (CPE) of non-ideal mixtures is proposed. The concept of element is defined, the relationship between component composition and elemental composition is derived, and the concept of elemental potential and its physical meaning are further cleared from the view point of thermodynamics. The relationship between chemical potential and elemental potential is derived in the thermodynamic principles, and the computation equations for CPE problem are obtained based on elemental potential. A simple form of necessary and sufficient condition in terms of elemental composition for reactive azeotropes is derived, which takes the same functional form as the condition for azeotropes in non-reactive systems. The element in this note may be atoms, molecules or group radicals. The presented method is applicable to CPE problem of non-ideal mixtures, and the computation can be simplified by the dimension reducing method. The presented method was supplied to compute and analyze CPE problem of several examples and it is found that it is a robust and efficient method.

  18. SMET: systematic multiple enzyme targeting - a method to rationally design optimal strains for target chemical overproduction.

    Science.gov (United States)

    Flowers, David; Thompson, R Adam; Birdwell, Douglas; Wang, Tsewei; Trinh, Cong T

    2013-05-01

    Identifying multiple enzyme targets for metabolic engineering is very critical for redirecting cellular metabolism to achieve desirable phenotypes, e.g., overproduction of a target chemical. The challenge is to determine which enzymes and how much of these enzymes should be manipulated by adding, deleting, under-, and/or over-expressing associated genes. In this study, we report the development of a systematic multiple enzyme targeting method (SMET), to rationally design optimal strains for target chemical overproduction. The SMET method combines both elementary mode analysis and ensemble metabolic modeling to derive SMET metrics including l-values and c-values that can identify rate-limiting reaction steps and suggest which enzymes and how much of these enzymes to manipulate to enhance product yields, titers, and productivities. We illustrated, tested, and validated the SMET method by analyzing two networks, a simple network for concept demonstration and an Escherichia coli metabolic network for aromatic amino acid overproduction. The SMET method could systematically predict simultaneous multiple enzyme targets and their optimized expression levels, consistent with experimental data from the literature, without performing an iterative sequence of single-enzyme perturbation. The SMET method was much more efficient and effective than single-enzyme perturbation in terms of computation time and finding improved solutions.

  19. Comparative Studies on Methane Upgradation of Biogas by Removing of Contaminant Gases Using Combined Chemical Methods

    Directory of Open Access Journals (Sweden)

    Muhammad Rashed Al Mamun

    2015-07-01

    Full Text Available Biogas, which generated from renewable sources can be used as a sustainable energy to achieve resourceful targets of biofuel for internal combustion engines. This process can be achieved in combined absorption and adsorption chemical way. This method can be employed by aqueous solutions of calcium hydroxide, activated carbon, iron(II chloride, silica gel and sodium sulfate respectively. The presence of CO2, H2S and H2O in the biogas has lowering the calorific value and detrimental corrosion effects on the metal components. Removal of these contaminants from the biogas can therefore significantly improve the gas quality. A comparison study was investigated using combined chemical methods of improving the calorific value of biogas. Experiment results revealed that the aqueous solution used effectively in reacting with CO2 in biogas (over 85-90% removal efficiency, creating CH4 enriched biogas. The removal efficiency was the highest in method 1, where efficiency results were 91.5%, 97.1% and 91.8%, for CO2, H2S, and H2O, respectively. The corresponding CH4 enrichment was 97.5%. These results indicate that the method 1 is more suitable compare to method 2. However, both methane enrichment processes might be useful for cleaning and upgrading methane quality in biogas.

  20. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Young, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-10

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt or SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.

  1. Effect of Drying Methods on the Chemical Quality Traits of Cocoa Raw Material

    Directory of Open Access Journals (Sweden)

    G. Irie B. Zahouli

    2010-07-01

    Full Text Available This study concerns the measurement of some chemical quality properties of raw cocoa dried by solar and heating methods. Sun drying method is considered as standard process. Drying trials were conducted in thin layer using natural sun light drying method, heating methods by exposition of the beans to hot air ventilated oven at 60ºC and in sun light consecutive artificial drying methods. Changes in volatile acidity on the drying method were not very clear. Only sun and mixed dried raw cocoa showed a high volatile acidity. Oven and mixed drying methods have caused higher free acidity and higher Ammonium Nitrogen content in raw cocoa than natural drying methods. Changes in Ammonium Nitrogen in fermented appeared significantly due to the ferm entation. Also all studied drying processes did not influence the production of free fatty acids in raw cocoa. The results obtained from this study are essential in understanding and solving the problems associated with the final quality of raw cocoa material dependent on the drying methods. Better quality of raw cocoa material could be resulted from natural drying process than heating methods.

  2. Comparison of three magnetic nanoparticle tracers for sentinel lymph node biopsy in an in vivo porcine model

    Directory of Open Access Journals (Sweden)

    Pouw JJ

    2015-02-01

    Full Text Available Joost J Pouw,1,* Muneer Ahmed,2,* Bauke Anninga,2 Kimberley Schuurman,1 Sarah E Pinder,2 Mieke Van Hemelrijck,3 Quentin A Pankhurst,4,5 Michael Douek,2 Bennie ten Haken1 1MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands; 2Research Oncology, Division of Cancer Studies, King’s College London, Guy’s Hospital, London, UK; 3Cancer Epidemiology Group, Division of Cancer Studies, King’s College London, London, UK; 4Healthcare Biomagnetics Laboratory, University College London, London, UK; 5Institute of Biomedical Engineering, University College London, London, UK *These authors contributed equally to this work Introduction: Breast cancer staging with sentinel lymph node biopsy relies on the use of radioisotopes, which limits the availability of the procedure worldwide. The use of a magnetic nanoparticle tracer and a handheld magnetometer provides a radiation-free alternative, which was recently evaluated in two clinical trials. The hydrodynamic particle size of the used magnetic tracer differs substantially from the radioisotope tracer and could therefore benefit from optimization. The aim of this study was to assess the performance of three different-sized magnetic nanoparticle tracers for sentinel lymph node biopsy within an in vivo porcine model.Materials and methods: Sentinel lymph node biopsy was performed within a validated porcine model using three magnetic nanoparticle tracers, approved for use in humans (ferumoxytol, with hydrodynamic diameter dH =32 nm; Sienna+®, dH =59 nm; and ferumoxide, dH =111 nm, and a handheld magnetometer. Magnetometer counts (transcutaneous and ex vivo, iron quantification (vibrating sample magnetometry, and histopathological assessments were performed on all ex vivo nodes.Results: Transcutaneous “hotspots” were present in 12/12 cases within 30 minutes of injection for the 59 nm tracer, compared to 7/12 for the 32 nm tracer and 8/12 for

  3. Comparison of nursing students’ Satisfaction about two methods of demonstration and simulation for training of mask making against chemical attacks

    National Research Council Canada - National Science Library

    Monireh Ebadi; Simin Taj Sharififar; Faeze Baniyaghoobi; AmirHossein Pishgoie

    2016-01-01

    .... The aim of this study was a comparison of satisfaction about two methods including demonstration and simulation among nursing students for the training of mask making against chemical attacks in Iran. Methods...

  4. Consistency Problem with Tracer Advection in the Atmospheric Model GAMIL

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kai; WAN Hui; WANG Bin; ZHANG Meigen

    2008-01-01

    The radon transport test,which is a widely used test case for atmospheric transport models,is carried out to evaluate the tracer advection schemes in the Grid-Point Atmospheric Model of IAP-LASG (GAMIL).TWO of the three available schemes in the model are found to be associated with significant biases in the polar regions and in the upper part of the atmosphere,which implies potentially large errors in the simulation of ozone-like tracers.Theoretical analyses show that inconsistency exists between the advection schemes and the discrete continuity equation in the dynamical core of GAMIL and consequently leads to spurious sources and sinks in the tracer transport equation.The impact of this type of inconsistency is demonstrated by idealized tests and identified as the cause of the aforementioned biases.Other potential effects of this inconsistency are also discussed.Results of this study provide some hints for choosing suitable advection schemes in the GAMIL model.At least for the polar-region-concentrated atmospheric components and the closely correlated chemical species,the Flux-Form Semi-Lagrangian advection scheme produces more reasonable simulations of the large-scale transport processes without significantly increasing the computational expense.

  5. Green Jobs: Definition and Method of Appraisal of Chemical and Biological Risks.

    Science.gov (United States)

    Cheneval, Erwan; Busque, Marc-Antoine; Ostiguy, Claude; Lavoie, Jacques; Bourbonnais, Robert; Labrèche, France; Bakhiyi, Bouchra; Zayed, Joseph

    2016-04-01

    In the wake of sustainable development, green jobs are developing rapidly, changing the work environment. However a green job is not automatically a safe job. The aim of the study was to define green jobs, and to establish a preliminary risk assessment of chemical substances and biological agents for workers in Quebec. An operational definition was developed, along with criteria and sustainable development principles to discriminate green jobs from regular jobs. The potential toxicity or hazard associated with their chemical and biological exposures was assessed, and the workers' exposure appraised using an expert assessment method. A control banding approach was then used to assess risks for workers in selected green jobs. A double entry model allowed us to set priorities in terms of chemical or biological risk. Among jobs that present the highest risk potential, several are related to waste management. The developed method is flexible and could be adapted to better appraise the risks that workers are facing or to propose control measures.

  6. Peculiarities of Enhancing Resistant Starch in Ruminants Using Chemical Methods: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Qendrim Zebeli

    2013-06-01

    Full Text Available High-producing ruminants are fed high amounts of cereal grains, at the expense of dietary fiber, to meet their high energy demands. Grains consist mainly of starch, which is easily degraded in the rumen by microbial glycosidases, providing energy for rapid growth of rumen microbes and short-chain fatty acids (SCFA as the main energy source for the host. Yet, low dietary fiber contents and the rapid accumulation of SCFA lead to rumen disorders in cattle. The chemical processing of grains has become increasingly important to confer their starch resistances against rumen microbial glycosidases, hence generating ruminally resistant starch (RRS. In ruminants, unlike monogastric species, the strategy of enhancing resistant starch is useful, not only in lowering the amount of carbohydrate substrates available for digestion in the upper gut sections, but also in enhancing the net hepatic glucose supply, which can be utilized by the host more efficiently than the hepatic gluconeogenesis of SCFA. The use of chemical methods to enhance the RRS of grains and the feeding of RRS face challenges in the practice; therefore, the present article attempts to summarize the most important achievements in the chemical processing methods used to generate RRS, and review advantages and challenges of feeding RRS to ruminants

  7. Tracer design for magnetic particle imaging (invited).

    Science.gov (United States)

    Ferguson, R Matthew; Khandhar, Amit P; Krishnan, Kannan M

    2012-04-01

    Magnetic particle imaging (MPI) uses safe iron oxide nanoparticle tracers to offer fundamentally new capabilities for medical imaging, in applications as vascular imaging and ultra-sensitive cancer therapeutics. MPI is perhaps the first medical imaging platform to intrinsically exploit nanoscale material properties. MPI tracers contain magnetic nanoparticles whose tunable, size-dependent magnetic properties can be optimized by selecting a particular particle size and narrow size-distribution. In this paper we present experimental MPI measurements acquired using a homemade MPI magnetometer: a zero-dimensional MPI imaging system designed to characterize tracer performance by measuring the derivative of the time-varying tracer magnetization, M'(H(t)), at a driving frequency of 25 kHz. We show that MPI performance is optimized by selecting phase-pure magnetite tracers of a particular size and narrow size distribution; in this work, tracers with 20 nm median diameter, log-normal distribution shape parameter, σ(v), equal to 0.26, and hydrodynamic diameter equal to 30 nm showed the best performance. Furthermore, these optimized MPI tracers show 4 × greater signal intensity (measured at the third harmonic) and 20% better spatial resolution compared with commercial nanoparticles developed for MRI.

  8. Assessment of Halon-1301 as a groundwater age tracer

    Science.gov (United States)

    Beyer, M.; van der Raaij, R.; Morgenstern, U.; Jackson, B.

    2015-06-01

    Groundwater dating is an important tool to assess groundwater resources in regards to their dynamics, i.e. direction and timescale of groundwater flow and recharge, contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However, ambiguous age interpretations are often faced, due to a limited set of available tracers and their individual restricted application ranges. For more robust groundwater dating multiple tracers need to be applied complementarily (or other characterisation methods need to be used to complement tracer information). It is important that additional, groundwater age tracers are found to ensure robust groundwater dating in future. We have recently suggested that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate, but its behaviour in water and suitability as a groundwater age tracer had not yet been assessed in detail. In this study, we determined Halon-1301 and inferred age information in 17 New Zealand groundwater samples and various modern (river) water samples. The samples were simultaneously analysed for Halon-1301 and SF6, which allowed for identification of issues such as contamination of the water with modern air during sampling. All analysed groundwater sites had also been previously dated with tritium, CFC-12, CFC-11 and SF6, and exhibited mean residence times ranging from modern (close to 0 years) to over 100 years. The investigated groundwater samples ranged from oxic to highly anoxic. All samples with available CFC data were degraded and/or contaminated in one or both of CFC-11 and CFC-12. This allowed us to make a first attempt of assessing the conservativeness of Halon-1301 in water, in terms of presence of local sources and its sensitivity towards degradation, which could affect the suitability of Halon-1301 as groundwater age tracer. Overall we found Halon-1301

  9. Developmental neurotoxicity testing: recommendations for developing alternative methods for the screening and prioritization of chemicals.

    Science.gov (United States)

    Crofton, Kevin M; Mundy, William R; Lein, Pamela J; Bal-Price, Anna; Coecke, Sandra; Seiler, Andrea E M; Knaut, Holger; Buzanska, Leonora; Goldberg, Alan

    2011-01-01

    Developmental neurotoxicity testing (DNT) is perceived by many stakeholders to be an area in critical need of alternative methods to current animal testing protocols and guidelines. An immediate goal is to develop test methods that are capable of screening large numbers of chemicals. This document provides recommendations for developing alternative DNT approaches that will generate the type of data required for evaluating and comparing predictive capacity and efficiency across test methods and laboratories. These recommendations were originally drafted to stimulate and focus discussions of alternative testing methods and models for DNT at the TestSmart DNT II meeting (http://caat.jhsph.edu/programs/workshops/dnt2.html) and this document reflects critical feedback from all stakeholders that participated in this meeting. The intent of this document is to serve as a catalyst for engaging the research community in the development of DNT alternatives and it is expected that these recommendations will continue to evolve with the science.

  10. An iterative method to compute the overlap Dirac operator at nonzero chemical potential

    CERN Document Server

    Bloch, J; Lang, B; Wettig, T

    2007-01-01

    The overlap Dirac operator at nonzero quark chemical potential involves the computation of the sign function of a non-Hermitian matrix. In this talk we present an iterative method, first proposed by us in Ref. [1], which allows for an efficient computation of the operator, even on large lattices. The starting point is a Krylov subspace approximation, based on the Arnoldi algorithm, for the evaluation of a generic matrix function. The efficiency of this method is spoiled when the matrix has eigenvalues close to a function discontinuity. To cure this, a small number of critical eigenvectors are added to the Krylov subspace, and two different deflation schemes are proposed in this augmented subspace. The ensuing method is then applied to the sign function of the overlap Dirac operator, for two different lattice sizes. The sign function has a discontinuity along the imaginary axis, and the numerical results show how deflation dramatically improves the efficiency of the method.

  11. FEARCF a multidimensional free energy method for investigating conformational landscapes and chemical reaction mechanisms

    Institute of Scientific and Technical Information of China (English)

    NAIDOO Kevin J.

    2012-01-01

    The development and implementation of a computational method able to produce free energies in multiple dimensions,descriptively named the free energies from adaptive reaction coordinate forces (FEARCF) method is described in this paper.While the method can be used to calculate free energies of association,conformation and reactivity here it is shown in the context of chemical reaction landscapes.A reaction free energy surface for the Claisen rearrangement of chorismate to prephenate is used as an illustration of the method's efficient convergence.FEARCF simulations are shown to achieve fiat histograms for complex multidimensional free energy volumes.The sampling efficiency by which it produces multidimensional free energies is demonstrated on the complex puckering of a pyranose ring,that is described by a three dimensional W(θ1,θ2,θ3) potential of mean force.

  12. General method and thermodynamic tables for computation of equilibrium composition and temperature of chemical reactions

    Science.gov (United States)

    Huff, Vearl N; Gordon, Sanford; Morrell, Virginia E

    1951-01-01

    A rapidly convergent successive approximation process is described that simultaneously determines both composition and temperature resulting from a chemical reaction. This method is suitable for use with any set of reactants over the complete range of mixture ratios as long as the products of reaction are ideal gases. An approximate treatment of limited amounts of liquids and solids is also included. This method is particularly suited to problems having a large number of products of reaction and to problems that require determination of such properties as specific heat or velocity of sound of a dissociating mixture. The method presented is applicable to a wide variety of problems that include (1) combustion at constant pressure or volume; and (2) isentropic expansion to an assigned pressure, temperature, or Mach number. Tables of thermodynamic functions needed with this method are included for 42 substances for convenience in numerical computations.

  13. Preparation of tetragonal CaO-ZrO2 nano-powder by chemical coprecipitation method

    Institute of Scientific and Technical Information of China (English)

    刘建本; 阮建明; 邹俭鹏; 李亚军; 骆锋

    2003-01-01

    With zirconium oxychloride, nitrate of lime and ammonia as raw materials, nano-powder of CaO-ZrO2 was prepared by chemical coprecipitation method. By use of azeotropic distillation processing, chemical coprecipitation precursor was obtained. Phase transformation of the precursor was observed at the temperature of 593.81 ℃ and 1 234.56 ℃ respectively with DTA analyses. Phase structure was analyzed through XRD and Raman spectra. The average particle size of tetragonal zirconium oxide powder was 9.8 and 43.7 nm after calcination at 600 and 1 100 ℃ respectively which was tested by TEM and BET analyses. Furthermore, the influences of the doping of nitrate of lime and the average particle size of zirconium oxide on the stability of tetragonal zirconium oxide were also discussed.

  14. Accelerating finite-rate chemical kinetics with coprocessors: comparing vectorization methods on GPUs, MICs, and CPUs

    CERN Document Server

    Stone, Christopher P

    2016-01-01

    Efficient ordinary differential equation solvers for chemical kinetics must take into account the available thread and instruction-level parallelism of the underlying hardware, especially on many-core coprocessors, as well as the numerical efficiency. A stiff Rosenbrock and nonstiff Runge-Kutta solver are implemented using the single instruction, multiple thread (SIMT) and single instruction, multiple data (SIMD) paradigms with OpenCL. The performances of these parallel implementations were measured with three chemical kinetic models across several multicore and many-core platforms. Two runtime benchmarks were conducted to clearly determine any performance advantage offered by either method: evaluating the right-hand-side source terms in parallel, and integrating a series of constant-pressure homogeneous reactors using the Rosenbrock and Runge-Kutta solvers. The right-hand-side evaluations with SIMD parallelism on the host multicore Xeon CPU and many-core Xeon Phi co-processor performed approximately three ti...

  15. Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods

    CERN Document Server

    Suleimanov, Yury V

    2015-01-01

    We present a simple protocol which allows fully automated discovery of elementary chemical reaction steps using in cooperation single- and double-ended transition-state optimization algorithms - the freezing string and Berny optimization methods, respectively. To demonstrate the utility of the proposed approach, the reactivity of several systems of combustion and atmospheric chemistry importance is investigated. The proposed algorithm allowed us to detect without any human intervention not only "known" reaction pathways, manually detected in the previous studies, but also new, previously "unknown", reaction pathways which involve significant atom rearrangements. We believe that applying such a systematic approach to elementary reaction path finding will greatly accelerate the possibility of discovery of new chemistry and will lead to more accurate computer simulations of various chemical processes.

  16. A novel interactive preferential evolutionary method for controller tuning in chemical processes☆

    Institute of Scientific and Technical Information of China (English)

    Chong Su; Hongguang Li

    2015-01-01

    In response to many multi-attribute decision-making (MADM) problems involved in chemical processes such as controller tuning, which suffer human's subjective preferential nature in human–computer interactions, a novel affective computing and preferential evolutionary solution is proposed to adapt human–computer interaction mechanism. Based on the stimulating response mechanism, an improved affective computing model is intro-duced to quantify decision maker's preference in selections of interactive evolutionary computing. In addition, the mathematical relationship between affective space and decision maker's preferences is constructed. Subse-quently, a human–computer interactive preferential evolutionary algorithm for MADM problems is proposed, which deals with attribute weights and optimal solutions based on preferential evolution metrics. To exemplify applications of the proposed methods, some test functions and, emphatical y, control er tuning issues associated with a chemical process are investigated, giving satisfactory results.

  17. Surface Nano Structures Manufacture Using Batch Chemical Processing Methods for Tooling Applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Calaon, Matteo; Gavillet, J.

    2011-01-01

    The patterning of large surface areas with nano structures by using chemical batch processes to avoid using highenergy intensive nano machining processes was investigated. The capability of different surface treatment methods of creating micro and nano structured adaptable mould inserts...... for subsequent polymer replication by injection moulding was analyzed. New tooling solutions to produce nano structured mould surfaces were investigated. Experiments based on three different chemical-based-batch techniques to establish surface nano (i.e. sub-μm) structures on large areas were performed. Three...... approaches were selected: (1) using Ø500 nm nano beads deposition for direct patterning of a 4” silicon wafer; (2) using Ø500 nm nano beads deposition as mask for 4” silicon wafer etching and subsequent nickel electroplating; (3) using the anodizing process to produce Ø500 nm structures on a 30x80 mm2...

  18. Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods.

    Science.gov (United States)

    Suleimanov, Yury V; Green, William H

    2015-09-08

    We present a simple protocol which allows fully automated discovery of elementary chemical reaction steps using in cooperation double- and single-ended transition-state optimization algorithms--the freezing string and Berny optimization methods, respectively. To demonstrate the utility of the proposed approach, the reactivity of several single-molecule systems of combustion and atmospheric chemistry importance is investigated. The proposed algorithm allowed us to detect without any human intervention not only "known" reaction pathways, manually detected in the previous studies, but also new, previously "unknown", reaction pathways which involve significant atom rearrangements. We believe that applying such a systematic approach to elementary reaction path finding will greatly accelerate the discovery of new chemistry and will lead to more accurate computer simulations of various chemical processes.

  19. Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor

    Indian Academy of Sciences (India)

    Sandeep Arya; Saleem Khan; Suresh Kumar; Rajnikant Verma; Parveen Lehana

    2013-08-01

    Copper telluride (CuTe) nanowires were synthesized electrochemically from aqueous acidic solution of copper (II) sulphate (CuSO4.5H2O) and tellurium oxide (TeO2) on a copper substrate by template-assisted electrodeposition method. The electrodeposition was conducted at 30 °C and the length of nanowires was controlled by adjusting deposition time. Structural characteristics were examined using X-ray diffraction and scanning electron microscope which confirm the formation of CuTe nanowires. Investigation for chemical sensing was carried out using air and chloroform, acetone, ethanol, glycerol, distilled water as liquids having dielectric constants 1, 4.81, 8.93, 21, 24.55, 42.5 and 80.1, respectively. The results unequivocally prove that copper telluride nanowires can be fabricated as chemical sensors with enhanced sensitivity and reliability.

  20. Low Temperature Growth of Vertically Aligned Carbon Nanotubes via Floating Catalyst Chemical Vapor Deposition Method

    Institute of Scientific and Technical Information of China (English)

    M.R. Atiyan; D.R. Awang Biak; F. Ahmadun; I.S. Ahamad; F. Mohd Yasin; H. Mohamed Yusoff

    2011-01-01

    Synthesis of carbon nanotubes (CNTs) below 600℃ using supporting catalyst chemical vapor deposition method was reported by many research groups. However, the floating catalyst chemical vapor deposition received less attention due to imperfect nanotubes produced. In this work, the effects of varying the preheating temperature on the synthesis of CNT were investigated. The reaction temperature was set at 570℃. The preheating set temperature was varied from 150 to 400℃ at 50℃ interval. Three O-ring shape heating mantels were used as heating source for the preheater. In situ monitoring device was used to observe the temperature profile in the reactor. Benzene and ferrocene were used as the carbon source and catalyst precursor, respectively. Vertically aligned CNTs were synthesized when the preheating temperature was set at 400℃. When the preheating temperature was increased up to 400℃, both the length and the alignment of CNTs produced were improved.

  1. Method of effecting expanding chemical anchor/seals for rock cavities

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, D.E.; Schlumpberger, M.X.

    1990-10-30

    This patent describes a method of sealing a cavity such as a borehole, well, or fissure against passage of fluids without fracturing walls of the cavity. It comprises: placing in the cavity, a wadding material capable of confining the flow of a supply of hardenable and volume expandable chemical grout which occupies a given volume in its initial unhardened and unexpanded condition, and an increased volume relative to the given volume in its hardened condition to exert an expansive force against confining surfaces; and adding into the cavity and against the material capable of confining the flow, a hardenable and volume expandable non-explosive demolition chemical grout material adapted to exert pressure and effect an expanded seal upon curing between confining surfaces of the cavity and the wadding material capable of confining the flow.

  2. High quality thin films of thermoelectric misfit cobalt oxides prepared by a chemical solution method

    Science.gov (United States)

    Rivas-Murias, Beatriz; Manuel Vila-Fungueiriño, José; Rivadulla, Francisco

    2015-01-01

    Misfit cobaltates ([Bi/Ba/Sr/Ca/CoO]nRS[CoO2]q) constitute the most promising family of thermoelectric oxides for high temperature energy harvesting. However, their complex structure and chemical composition makes extremely challenging their deposition by high-vacuum physical techniques. Therefore, many of them have not been prepared as thin films until now. Here we report the synthesis of high-quality epitaxial thin films of the most representative members of this family of compounds by a water-based chemical solution deposition method. The films show an exceptional crystalline quality, with an electrical conductivity and thermopower comparable to single crystals. These properties are linked to the epitaxial matching of the rock-salt layers of the structure to the substrate, producing clean interfaces free of amorphous phases. This is an important step forward for the integration of these materials with complementary n-type thermoelectric oxides in multilayer nanostructures. PMID:26153533

  3. High quality thin films of thermoelectric misfit cobalt oxides prepared by a chemical solution method.

    Science.gov (United States)

    Rivas-Murias, Beatriz; Manuel Vila-Fungueiriño, José; Rivadulla, Francisco

    2015-07-08

    Misfit cobaltates ([Bi/Ba/Sr/Ca/CoO]n(RS)[CoO2]q) constitute the most promising family of thermoelectric oxides for high temperature energy harvesting. However, their complex structure and chemical composition makes extremely challenging their deposition by high-vacuum physical techniques. Therefore, many of them have not been prepared as thin films until now. Here we report the synthesis of high-quality epitaxial thin films of the most representative members of this family of compounds by a water-based chemical solution deposition method. The films show an exceptional crystalline quality, with an electrical conductivity and thermopower comparable to single crystals. These properties are linked to the epitaxial matching of the rock-salt layers of the structure to the substrate, producing clean interfaces free of amorphous phases. This is an important step forward for the integration of these materials with complementary n-type thermoelectric oxides in multilayer nanostructures.

  4. A new particle-like method for high-speed flows with chemical non-equilibrium

    Directory of Open Access Journals (Sweden)

    Fábio Rodrigues Guzzo

    2010-04-01

    Full Text Available The present work is concerned with the numerical simulation of hypersonic blunt body flows with chemical non-equilibrium. New theoretical and numerical formulations for coupling the chemical reaction to the fluid dynamics are presented and validated. The fluid dynamics is defined for a stationary unstructured mesh and the chemical reaction process is defined for “finite quantities” moving through the stationary mesh. The fluid dynamics is modeled by the Euler equations and the chemical reaction rates by the Arrhenius law. Ideal gases are considered. The thermodynamical data are based on JANNAF tables and Burcat’s database. The algorithm proposed by Liou, known as AUSM+, is implemented in a cell-centered based finite volume method and in an unstructured mesh context. Multidimensional limited MUSCL interpolation method is used to perform property reconstructions and to achieve second-order accuracy in space. The minmod limiter is used. The second order accuracy, five stage, Runge-Kutta time-stepping scheme is employed to perform the time march for the fluid dynamics. The numerical code VODE, which is part of the CHEMKIN-II package, is adopted to perform the time integration for the chemical reaction equations. The freestream reacting fluid is composed of H2 and air at the stoichiometric ratio. The emphasis of the present paper is on the description of the new methodology for handling the coupling of chemical and fluid mechanic processes, and its validation by comparison with the standard time-splitting procedure. The configurations considered are the hypersonic flow over a wedge, in which the oblique detonation wave is induced by an oblique shock wave, and the hypersonic flow over a blunt body. Differences between the solutions obtained with each formulation are presented and discussed, including the effects of grid refinement in each case. The primary objective of such comparisons is the validation of the proposed methodology. Moreover, for

  5. Characteristic comparison of metal films coated onto the cenosphere by chemical and magnetron sputtering methods

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Metal-coated cenospheres have been widely used in Industries. Different coating methods result in different characteristic metal films. Hie metal film on the cenosphere by chemical coating does not appear to be very smooth, exhibiting metal piled up and pin holes on the surface and leaving some spots uncoated. Meanwhile, the metal film is not tightly absorbed onto cenospheres and is easy to peel off. However, the metal film prepared by magnetron sputtering is compact, smooth and without pin holes. The film has good affinity to the cenosphere surface. Such films do not separate with it even when the cenosphere is crushed. Both the metal films give the same XRD patterns, indicating tnat the crystal structure of the metal films by these two methods is the same. Chemical coating is a complex process and harmful to the environment, but it fits ultrafine powder coating (the particle size can be less than 2 μm). The magnetron sputtering method is environmental friendly and works quickly, but this method requires specially designed equipment and does not work for ultrafine powders. If the particle size is less than 30 μm, the coating process is hard to carry on.

  6. EXTRACTION OF ASTAXANTHIN ESTERS FROM SHRIMP WASTE BY CHEMICAL AND MICROBIAL METHODS

    Directory of Open Access Journals (Sweden)

    A. Khanafari, A. Saberi, M. Azar, Gh. Vosooghi, Sh. Jamili, B. Sabbaghzadeh

    2007-04-01

    Full Text Available The carotenoid pigments specifically astaxanthin has many significant applications in food, pharmaceutical and cosmetic industries. The goal of this research was the extraction of Astaxanthin from a certain Persian Gulf shrimp species waste (Penaeus semisulcatus, purification and identification of the pigment by chemical and microbial methods. Microbial fermentation was obtained by inoculation of two Lactobacillus species Lb. plantarum and Lb. acidophilus in the medium culture containing shrimp waste powder by the intervention of lactose sugar, yeast extract, the composition of Both and the coolage (-20oC. The carotenoids were extracted by an organic solvent system. After purification of astaxanthin with the thin layer chromatography method by spectrophotometer, NMR and IR analysis the presence of astaxanthin esters was recognized in this specific species of Persian Gulf shrimp. Results obtained from this study showed that the coolage at –20 oC not only does not have an amplifying effect on the production of astaxanthin but also slightly reduces this effect. Also the effect of intervention of lactose sugar showed more effectiveness in producing astaxanthin than yeast extract or more than with the presence of both. The results also indicated that there is not much difference in the ability of producing the pigment by comparing both Lb. plantarum and Lb. acidophillus. Also results showed the microbial method of extraction of astaxanthin is more effective than chemical method. The pigment extracted from certain amount of shrimp powder, 23.128 mg/g, was calculated.

  7. Compartmental modeling and tracer kinetics

    CERN Document Server

    Anderson, David H

    1983-01-01

    This monograph is concerned with mathematical aspects of compartmental an­ alysis. In particular, linear models are closely analyzed since they are fully justifiable as an investigative tool in tracer experiments. The objective of the monograph is to bring the reader up to date on some of the current mathematical prob­ lems of interest in compartmental analysis. This is accomplished by reviewing mathematical developments in the literature, especially over the last 10-15 years, and by presenting some new thoughts and directions for future mathematical research. These notes started as a series of lectures that I gave while visiting with the Division of Applied ~1athematics, Brown University, 1979, and have developed in­ to this collection of articles aimed at the reader with a beginning graduate level background in mathematics. The text can be used as a self-paced reading course. With this in mind, exercises have been appropriately placed throughout the notes. As an aid in reading the material, the e~d of a ...

  8. A modified next reaction method for simulating chemical systems with time dependent propensities and delays.

    Science.gov (United States)

    Anderson, David F

    2007-12-01

    Chemical reaction systems with a low to moderate number of molecules are typically modeled as discrete jump Markov processes. These systems are oftentimes simulated with methods that produce statistically exact sample paths such as the Gillespie algorithm or the next reaction method. In this paper we make explicit use of the fact that the initiation times of the reactions can be represented as the firing times of independent, unit rate Poisson processes with internal times given by integrated propensity functions. Using this representation we derive a modified next reaction method and, in a way that achieves efficiency over existing approaches for exact simulation, extend it to systems with time dependent propensities as well as to systems with delays.

  9. Effects of Different Cooking Methods on the Physico-Chemical and Quality Attributes of Eggplants

    Directory of Open Access Journals (Sweden)

    Uthumporn Utra

    2016-07-01

    Full Text Available Two types of eggplants (Solanum melongena L., Chinese Eggplant and Indian Eggplant were cooked at three different cooking methods including frying, grilling and superheated steam (SHS. The objective of this research was to discover the effect of different cooking methods on the quality attributes of eggplant in terms of the physico-chemical properties, antioxidant properties and overall acceptability. The conditions for frying and grilling were set at 170°C for 7 minutes meanwhile; two parameters were used in SHS including 170°C for 7 minutes and 220°C at 15 minutes as the optimum conditions. SHS gives highest results in terms of physicochemical properties and antioxidant properties but frying methods gain high scores for the overall acceptability. Based on the results it can be concluded that even though SHS gives healthier and better results of the eggplant, but, texture, taste and aroma will influence on the acceptability of the final food products.

  10. Determination of recharge modes of aquifers by use of chemical and isotopic tracers. Case study of the contact zone between Western High-Atlas Chain and Souss Plain (SW Morocco

    Directory of Open Access Journals (Sweden)

    Tagma, T.

    2008-06-01

    Full Text Available Determination of the origin of recharge of the unconfined aquifer in the right side of the Souss wadi between Agadir and Taroudant (South-western of Morocco was based on the use of hydrochemical and isotopic analysis of groundwater, surface water and springs of the contact zone between the High-Atlas Chain and the Souss plain.The correspondence in the space evolution of the various chemical elements of evaporitic origin (SO42-, Cl-, Sr2+ in groundwater, piedmont springs, and surface water reveals the existence of recharge water from the adjacent High-Atlas Chain.The various recharge modes of the different aquifers (High Atlas and Souss plain determined by isotopic analysis, shows that the source of groundwater for the unconfined Souss aquifer seems to be composite between a direct infiltration on the High-Atlas tributaries and a remote recharge from the bordering High Atlas aquifers.La determinación del origen de los aportes de agua de la capa freática de la ribera derecha del rio Souss entre Agadir y Taroudant (Suroeste de Marruecos se ha basado en la hidroquímica y el análisis isotópico de las aguas subterráneas, aguas superficiales y manantiales de la zona de contacto entre el Alto Atlas y la llanura de Souss.La correspondencia en la evolución espacial de los diferentes elementos químicos de origen evaporítico (SO42-, Cl-, Sr2+ en las aguas subterráneas, manantiales de pie de monte y aguas superficiales, revela la existencia de una recarga de agua procedente de la cadena del Alto Atlas. El análisis de los modos de recarga de los diferentes acuíferos (Alto Atlas y llanura de Souss determinado por análisis isotópico, demuestra que la alimentación de la capa freática de Souss a partir del Alto Atlas parece ser mixta, compuesta por una infiltración directa de los afluentes del Alto Atlas y una alimentación lejana desde los acuiferos que limitan con el borde del Alto Atlas.

  11. Recycling and Resistance of Petrogenic Particulate Organic Carbon: Implications from A Chemical Oxidation Method

    Science.gov (United States)

    Zhang, T.; Li, G.; Ji, J.

    2013-12-01

    Petrogenic particulate organic carbon (OCpetro) represents a small fraction of photosynthetic carbon which escapes pedogenic-petrogenic degradation and gets trapped in the lithosphere. Exhumation and recycling of OCpetro are of significant importance in the global carbon cycle because OCpetro oxidation represents a substantial carbon source to the atmosphere while the re-burial of OCpetro in sediment deposits has no net effect. Though studies have investigated various behaviors of OCpetro in the surface environments (e.g., riverine mobilization, marine deposition, and microbial remineralization), less attention has been paid to the reaction kinetics and structural transformations during OCpetro oxidation. Here we assess the OCpetro-oxidation process based on a chemical oxidation method adopted from soil studies. The employed chemical oxidation method is considered an effective simulation of natural oxidation in highly oxidative environments, and has been widely used in soil studies to isolate the inert soil carbon pool. We applied this chemical method to the OCpetro-enriched black shale samples from the middle-lower Yangtze (Changjiang) basin, China, and performed comprehensive instrumental analyses (element analysis, Fourier transform infrared (FTIR) spectrum, and Raman spectrum). We also conducted step-oxidizing experiments following fixed time series and monitored the reaction process in rigorously controlled lab conditions. In this work, we present our experiment results and discuss the implications for the recycling and properties of OCpetro. Particulate organic carbon concentration of black shale samples before and after oxidation helps to quantify the oxidability of OCpetro and constrain the preservation efficiency of OCpetro during fluvial erosion over large river basin scales. FTIR and Raman analyses reveal clear structural variations on atomic and molecular levels. Results from the step-oxidizing experiments provide detailed information about the reaction

  12. Biochar and hydrochar reactivity assessed by chemical, physical and biological methods

    Science.gov (United States)

    Naisse, Christophe; Alexis, Marie; Wiedner, Katja; Glaser, Bruno; pozzi, Alessandro; Carcaillet, Christopher; Criscuoli, Irene; Miglietta, Franco; Rumpel, Cornelia

    2014-05-01

    Field application of biochar is intended to increase soil carbon (C) storage. The assessment of C storage potential of biochars lacks methods and standard materials. In this study, we compared the chemical reactivity of biochars and hydrochars and their potential mineralisation before and after physical weathering as one possibility to evaluate their environmental stability. We used biochars produced by gasification (GSs) and hydrochars produced by hydrothermal carbonisation (HTCs) produced from three different feedstocks as well as Holocene charcoals (150 and 2000 yr old). Their chemical reactivity was analysed after acid dichromate oxidation and their mineralisation potential after laboratory incubations before and after physical weathering. Our results showed that use of acid dichromate oxidation may allow for differentiation of the reactivity of modern biochars but that chemical reactivity of biochars is poorly suited to assess their environmental residence time because it may change with exposure time in soil. Physical weathering induced a carbon loss and increased biological stability of biochar, while reducing its positive priming effect on native soil organic matter. Model extrapolations based on our data showed that decadal C sequestration potential of GS and HTC is globally equivalent when all losses including those due to priming and physical weathering were taken into account. However, at century scale only GS may have the potential to increase soil C storage.

  13. Methods to Assess the Protective Efficacy of Emollients against Climatic and Chemical Aggressors

    Science.gov (United States)

    Roure, Romain; Lanctin, Marion; Nollent, Virginie; Bertin, Christiane

    2012-01-01

    Exposure to harsh environmental conditions, such as cold and dry climate and chemicals can have an abrasive effect on skin. Skin care products containing ingredients that avert these noxious effects by reinforcement of the barrier function can be tested using in vivo models. The objective is to use in vivo models to assess the efficacy of emollients in protecting skin against climatic and chemical insults. A first model used a stream of cooled air to mimic cold wind. A second used sodium lauryl sulfate (SLS) under patch as chemical aggressor. In the model with simulated wind exposure, the untreated exposed area had a significant decrease in hydration. In contrast, application of an emollient caused a significant increase in hydration that was maintained after wind exposure. In the second model with SLS exposure, application of a barrier cream before SLS patch significantly reduced the dehydrating effect of SLS with a significant difference in variation between both areas. Application of the cream reduced TEWL, indicative of a physical reinforcement of the skin barrier. The two presented test methods, done under standardized conditions, can be used for evaluation of protective effect of emollient, by reinforcing the barrier function against experimentally induced skin dehydration. PMID:22952472

  14. Structure activity studies of an analgesic drug tapentadol hydrochloride by spectroscopic and quantum chemical methods

    Science.gov (United States)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng

    2015-11-01

    Tapentadol is a novel opioid pain reliever drug with a dual mechanism of action, having potency between morphine and tramadol. Quantum chemical calculations have been carried out for tapentadol hydrochloride (TAP.Cl) to determine the properties. The geometry is optimised and the structural properties of the compound were determined from the optimised geometry by B3LYP method using 6-311++G(d,p), 6-31G(d,p) and cc-pVDZ basis sets. FT-IR and FT-Raman spectra are recorded in the solid phase in the region of 4000-400 and 4000-100 cm-1, respectively. Frontier molecular orbital energies, LUMO-HOMO energy gap, ionisation potential, electron affinity, electronegativity, hardness and chemical potential are also calculated. The stability of the molecule arising from hyperconjugative interactions and charge delocalisation has been analysed using NBO analysis. The 1H and 13C nuclear magnetic resonance chemical shifts of the molecule are analysed.

  15. Growth and characterization of ZnO nanostructured thin films by a two step chemical method

    Science.gov (United States)

    Kumar, P. Suresh; Raj, A. Dhayal; Mangalaraj, D.; Nataraj, D.

    2008-12-01

    Zinc oxide (ZnO) nanostructured seed layer was grown by successive ionic layer adsorption and reaction (SILAR) method on glass substrate. The as-prepared nanostructured seed layer was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) for its structure and surface morphology. XRD results showed (0 0 2) oriented ZnO seed layer growth. Surface morphology study revealed the cluster of ZnO nanocrystals with hexagonal shape. ZnO nanorods (NRs) have been grown over the as-prepared ZnO nanostructured seed layer using a simple chemical bath deposition (CBD) method by immersing seed layer substrate in a chemical bath. It has been found that the morphology of the nanostructured seed layer is a key influencing factor for the growth of vertical ZnO NRs. In our growth method, we were successful in growing vertical NRs with diameter of about 70-150 nm with perfect hexagonal shape. Photoluminescence (PL) and Raman studies were carried out to analyse the crystal quality of our as-grown ZnO nanorods.

  16. Growth and characterization of ZnO nanostructured thin films by a two step chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. Suresh; Raj, A. Dhayal [Thin Film and Nanomaterials Research Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046 (India); Mangalaraj, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India)], E-mail: dmraj800@yahoo.com; Nataraj, D. [Thin Film and Nanomaterials Research Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046 (India)

    2008-12-30

    Zinc oxide (ZnO) nanostructured seed layer was grown by successive ionic layer adsorption and reaction (SILAR) method on glass substrate. The as-prepared nanostructured seed layer was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) for its structure and surface morphology. XRD results showed (0 0 2) oriented ZnO seed layer growth. Surface morphology study revealed the cluster of ZnO nanocrystals with hexagonal shape. ZnO nanorods (NRs) have been grown over the as-prepared ZnO nanostructured seed layer using a simple chemical bath deposition (CBD) method by immersing seed layer substrate in a chemical bath. It has been found that the morphology of the nanostructured seed layer is a key influencing factor for the growth of vertical ZnO NRs. In our growth method, we were successful in growing vertical NRs with diameter of about 70-150 nm with perfect hexagonal shape. Photoluminescence (PL) and Raman studies were carried out to analyse the crystal quality of our as-grown ZnO nanorods.

  17. The application of thermal methods for determining chemical composition of carbonaceous aerosols: a review.

    Science.gov (United States)

    Chow, Judith C; Yu, Jian Zhen; Watson, John G; Ho, Steven Sai Hang; Bohannan, Theresa L; Hays, Michael D; Fung, Kochy K

    2007-09-01

    Thermal methods of various forms have been used to quantify carbonaceous materials. Thermal/optical carbon analysis provides measurements of organic and elemental carbon concentrations as well as fractions evolving at specific temperatures in ambient and source aerosols. Detection of thermally desorbed organic compounds with thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) identifies and quantifies over 100 individual organic compounds in p