Sample records for chemical synthesis dna

  1. Chemically-enzymatic synthesis of photosensitive DNA. (United States)

    Westphal, Kinga; Zdrowowicz, Magdalena; Zylicz-Stachula, Agnieszka; Rak, Janusz


    The sensitizing propensity of radio-/photosensitizing nucleoside depends on DNA sequence surrounding a sensitizer. Therefore, in order to compare sensitizers with regard to their ability to induce a DNA damage one has to study the sequence dependence of damage yield. However, chemical synthesis of oligonucleotides labeled with sensitizing nucleosides is hindered due to the fact that a limited number of such nucleoside phosphoramidites are accessible. Here, we report on a chemically-enzymatic method, employing a DNA polymerase and ligase, that enables a modified nucleoside, in the form of its 5'-triphosphate, to be incorporated into DNA fragment in a pre-determined site. Using such a protocol two double-stranded DNA fragments - a long one, 75 base pairs (bp), and a short one, 30bp in length - were pin-point labeled with 5-bromodeoxyuridine. Four DNA polymerases together with DHPLC for the inspection of reaction progress were used to optimize the process under consideration. As an ultimate test showing that the product possessing an assumed nucleotide sequence was actually obtained, we irradiated the synthesized oligonucleotide with UVB photons and analyzed its photoreactivity with the LC-MS method. Our results prove that a general approach enabling precise labeling of DNA with any nucleoside modification processed by DNA polymerase and ligase has been worked out.

  2. A chemical method for fast and sensitive detection of DNA synthesis in vivo


    Salic, Adrian; Mitchison, Timothy J.


    We have developed a method to detect DNA synthesis in proliferating cells, based on the incorporation of 5-ethynyl-2′-deoxyuridine (EdU) and its subsequent detection by a fluorescent azide through a Cu(I)-catalyzed [3 + 2] cycloaddition reaction (“click” chemistry). Detection of the EdU label is highly sensitive and can be accomplished in minutes. The small size of the fluorescent azides used for detection results in a high degree of specimen penetration, allowing the staining of whole-mount ...

  3. A chemical method for fast and sensitive detection of DNA synthesis in vivo. (United States)

    Salic, Adrian; Mitchison, Timothy J


    We have developed a method to detect DNA synthesis in proliferating cells, based on the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) and its subsequent detection by a fluorescent azide through a Cu(I)-catalyzed [3 + 2] cycloaddition reaction ("click" chemistry). Detection of the EdU label is highly sensitive and can be accomplished in minutes. The small size of the fluorescent azides used for detection results in a high degree of specimen penetration, allowing the staining of whole-mount preparations of large tissue and organ explants. In contrast to BrdU, the method does not require sample fixation or DNA denaturation and permits good structural preservation. We demonstrate the use of the method in cultured cells and in the intestine and brain of whole animals.

  4. Simulated Screens of DNA Encoded Libraries: The Potential Influence of Chemical Synthesis Fidelity on Interpretation of Structure-Activity Relationships. (United States)

    Satz, Alexander L


    Simulated screening of DNA encoded libraries indicates that the presence of truncated byproducts complicates the relationship between library member enrichment and equilibrium association constant (these truncates result from incomplete chemical reactions during library synthesis). Further, simulations indicate that some patterns observed in reported experimental data may result from the presence of truncated byproducts in the library mixture and not structure-activity relationships. Potential experimental methods of minimizing the presence of truncates are assessed via simulation; the relationship between enrichment and equilibrium association constant for libraries of differing purities is investigated. Data aggregation techniques are demonstrated that allow for more accurate analysis of screening results, in particular when the screened library contains significant quantities of truncates.

  5. Systematic evaluation and optimization of modification reactions of oligonucleotides with amines and carboxylic acids for the synthesis of DNA-encoded chemical libraries. (United States)

    Franzini, Raphael M; Samain, Florent; Abd Elrahman, Maaly; Mikutis, Gediminas; Nauer, Angela; Zimmermann, Mauro; Scheuermann, Jörg; Hall, Jonathan; Neri, Dario


    DNA-encoded chemical libraries are collections of small molecules, attached to DNA fragments serving as identification barcodes, which can be screened against multiple protein targets, thus facilitating the drug discovery process. The preparation of large DNA-encoded chemical libraries crucially depends on the availability of robust synthetic methods, which enable the efficient conjugation to oligonucleotides of structurally diverse building blocks, sharing a common reactive group. Reactions of DNA derivatives with amines and/or carboxylic acids are particularly attractive for the synthesis of encoded libraries, in view of the very large number of building blocks that are commercially available. However, systematic studies on these reactions in the presence of DNA have not been reported so far. We first investigated conditions for the coupling of primary amines to oligonucleotides, using either a nucleophilic attack on chloroacetamide derivatives or a reductive amination on aldehyde-modified DNA. While both methods could be used for the production of secondary amines, the reductive amination approach was generally associated with higher yields and better purity. In a second endeavor, we optimized conditions for the coupling of a diverse set of 501 carboxylic acids to DNA derivatives, carrying primary and secondary amine functions. The coupling efficiency was generally higher for primary amines, compared to secondary amine substituents, but varied considerably depending on the structure of the acids and on the synthetic methods used. Optimal reaction conditions could be found for certain sets of compounds (with conversions >80%), but multiple reaction schemes are needed when assembling large libraries with highly diverse building blocks. The reactions and experimental conditions presented in this article should facilitate the synthesis of future DNA-encoded chemical libraries, while outlining the synthetic challenges that remain to be overcome.

  6. Towards the Batch Synthesis of Long DNA (United States)


    Laplacian on a Riemannian Manifold, Cambridge, Cambridge (1997). 131 Arfken , G., Mathematical Methods for Physicists. Academic Press, Orlando (1985...typical phosphoramidite chemical synthesis method .1 On the other hand, two ss (single-stranded) DNAs can be joined or ligated into a single ds (double...the preferred method for the de novo laboratory synthesis of long DNA.3 More generally there are undoubtedly profound clinical (e.g., gene therapeutic

  7. DNA adducts-chemical addons

    Directory of Open Access Journals (Sweden)

    T R Rajalakshmi


    Full Text Available DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde. This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could be carried out for early detection of cancer. When scanning tunneling microscope is used, the DNA results can be obtained earlier. DNA adducts in scientific experiments are used as biomarkers.

  8. DNA adducts-chemical addons (United States)

    Rajalakshmi, T. R.; AravindhaBabu, N.; Shanmugam, K. T.; Masthan, K. M. K.


    DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde). This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could be carried out for early detection of cancer. When scanning tunneling microscope is used, the DNA results can be obtained earlier. DNA adducts in scientific experiments are used as biomarkers. PMID:26015708

  9. DNA-Encoded Dynamic Combinatorial Chemical Libraries. (United States)

    Reddavide, Francesco V; Lin, Weilin; Lehnert, Sarah; Zhang, Yixin


    Dynamic combinatorial chemistry (DCC) explores the thermodynamic equilibrium of reversible reactions. Its application in the discovery of protein binders is largely limited by difficulties in the analysis of complex reaction mixtures. DNA-encoded chemical library (DECL) technology allows the selection of binders from a mixture of up to billions of different compounds; however, experimental results often show low a signal-to-noise ratio and poor correlation between enrichment factor and binding affinity. Herein we describe the design and application of DNA-encoded dynamic combinatorial chemical libraries (EDCCLs). Our experiments have shown that the EDCCL approach can be used not only to convert monovalent binders into high-affinity bivalent binders, but also to cause remarkably enhanced enrichment of potent bivalent binders by driving their in situ synthesis. We also demonstrate the application of EDCCLs in DNA-templated chemical reactions.

  10. Synthesis of DNA (United States)

    Mariella, Jr., Raymond P.


    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  11. Green chemistry for chemical synthesis


    Li, Chao-Jun; Trost, Barry M.


    Green chemistry for chemical synthesis addresses our future challenges in working with chemical processes and products by inventing novel reactions that can maximize the desired products and minimize by-products, designing new synthetic schemes and apparati that can simplify operations in chemical productions, and seeking greener solvents that are inherently environmentally and ecologically benign.

  12. Green chemistry for chemical synthesis (United States)

    Li, Chao-Jun; Trost, Barry M.


    Green chemistry for chemical synthesis addresses our future challenges in working with chemical processes and products by inventing novel reactions that can maximize the desired products and minimize by-products, designing new synthetic schemes and apparati that can simplify operations in chemical productions, and seeking greener solvents that are inherently environmentally and ecologically benign. PMID:18768813

  13. Chemical synthesis on SU-8

    DEFF Research Database (Denmark)

    Qvortrup, Katrine; Taveras, Kennedy; Thastrup, Ole;


    In this paper we describe a highly effective surface modification of SU-8 microparticles, the attachment of appropriate linkers for solid-supported synthesis, and the successful chemical modification of these particles via controlled multi-step organic synthesis leading to molecules attached...

  14. DNA Compatible Multistep Synthesis and Applications to DNA Encoded Libraries. (United States)

    Satz, Alexander Lee; Cai, Jianping; Chen, Yi; Goodnow, Robert; Gruber, Felix; Kowalczyk, Agnieszka; Petersen, Ann; Naderi-Oboodi, Goli; Orzechowski, Lucja; Strebel, Quentin


    Complex mixtures of DNA encoded small molecules may be readily interrogated via high-throughput sequencing. These DNA encoded libraries (DELs) are commonly used to discover molecules that interact with pharmaceutically relevant proteins. The chemical diversity displayed by the library is key to successful discovery of potent, novel, and drug-like chemical matter. The small molecule moieties of DELs are generally synthesized though a multistep process, and each chemical step is accomplished while it is simultaneously attached to an encoding DNA oligomer. Hence, library chemical diversity is often limited to DNA compatible synthetic reactions. Herein, protocols for 24 reactions are provided that have been optimized for high-throughput production of DELs. These protocols detail the multistep synthesis of benzimidazoles, imidazolidinones, quinazolinones, isoindolinones, thiazoles, and imidazopyridines. Additionally, protocols are provided for a diverse range of useful chemical reactions including BOC deprotection (under pH neutral conditions), carbamylation, and Sonogashira coupling. Last, step-by-step protocols for synthesizing functionalized DELs from trichloronitropyrimidine and trichloropyrimidine scaffolds are detailed.

  15. Synthesis, chemical characterization, computational studies and biological activity of new DNA methyltransferases (DNMTs) specific inhibitor. Epigenetic regulation as a new and potential approach to cancer therapy. (United States)

    Pellerito, C; Morana, O; Ferrante, F; Calvaruso, G; Notaro, A; Sabella, S; Fiore, T


    This work deals with the synthesis, the chemical characterization of dibutyltin(IV) complex of caffeic acid (Bu2Sn(IV)HCAF, caf1) and its cytotoxic action on tumor cells. The coordination environment at the tin center was investigated by FTIR, (119)Sn{(1)H} cross polarization magic angle spinning, electrospray ionization mass spectroscopy in the solid state and UV-vis, fluorescence and (1)H, (13)C and (119)Sn NMR spectroscopy in solution phases. Density functional theory study confirmed the proposed structures in solution phase and indicated the most probably stable conformation. The effects on viability of breast cancer MDA-MB231, colorectal cancer HCT116, hepatocellular carcinoma HepG2 and Chang liver cells, an immortalized non-tumor hepatic cell line, have been investigated. The effect of a variation in structure of caf1 was found to lead to a change in the respective antiproliferative properties: caf1 induces loss of viability in HCT116, MDA-MB-231, and HepG2; the complex shows only moderate effects in non-tumor Chang liver cells. caf1 exerts lower cytotoxic activity than Bu2SnCl2, suggesting that the binding with H3CAF modulates the marked cytotoxic activity exerted by Bu2SnCl2; caf1 displays a considerably more pronounced antitumoural effect towards cell lines than caffeic acid. It is known that caffeic acid can modulate DNA (cytosine-5)-methyltransferases 1 (DNMT1) mediated DNA methylation. In this paper we demonstrate that caf1 treatment was able to induce a time-dependent reduction of global DNA methylated status. This effect was also confirmed by a concomitant reduction DNMT1 expression level. The effect induced by caf1 was more evident not only with respect to untreated cells but also compared to H3CAF treated cells.

  16. Small-molecule discovery from DNA-encoded chemical libraries. (United States)

    Kleiner, Ralph E; Dumelin, Christoph E; Liu, David R


    Researchers seeking to improve the efficiency and cost effectiveness of the bioactive small-molecule discovery process have recently embraced selection-based approaches, which in principle offer much higher throughput and simpler infrastructure requirements compared with traditional small-molecule screening methods. Since selection methods benefit greatly from an information-encoding molecule that can be readily amplified and decoded, several academic and industrial groups have turned to DNA as the basis for library encoding and, in some cases, library synthesis. The resulting DNA-encoded synthetic small-molecule libraries, integrated with the high sensitivity of PCR and the recent development of ultra high-throughput DNA sequencing technology, can be evaluated very rapidly for binding or bond formation with a target of interest while consuming minimal quantities of material and requiring only modest investments of time and equipment. In this tutorial review we describe the development of two classes of approaches for encoding chemical structures and reactivity with DNA: DNA-recorded library synthesis, in which encoding and library synthesis take place separately, and DNA-directed library synthesis, in which DNA both encodes and templates library synthesis. We also describe in vitro selection methods used to evaluate DNA-encoded libraries and summarize successful applications of these approaches to the discovery of bioactive small molecules and novel chemical reactivity.

  17. Synthesis of PLGA nanoparticles of tea polyphenols and their strong in vivo protective effect against chemically induced DNA damage

    Directory of Open Access Journals (Sweden)

    Srivastava AK


    Full Text Available Amit Kumar Srivastava,1 Priyanka Bhatnagar,2 Madhulika Singh,1 Sanjay Mishra,1 Pradeep Kumar,2 Yogeshwer Shukla,1 Kailash Chand Gupta1,2 1Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR, Lucknow, India; 2Nucleic Acid Research Laboratory, Institute of Genomics and Integrative Biology (CSIR, Delhi University Campus, India Abstract: In spite of proficient results of several phytochemicals in preclinical settings, the conversion rate from bench to bedside is not very encouraging. Many reasons are attributed to this limited success, including inefficient systemic delivery and bioavailability under in vivo conditions. To achieve improved efficacy, polyphenolic constituents of black (theaflavin [TF] and green (epigallocatechin-3-gallate [EGCG] tea in poly(lactide-co-glycolide nanoparticles (PLGA-NPs were entrapped with entrapment efficacy of ~18% and 26%, respectively. Further, their preventive potential against 7,12-dimethylbenzanthracene (DMBA-induced DNA damage in mouse skin using DNA alkaline unwinding assay was evaluated. Pretreatment (topically of mouse skin with either TF or EGCG (100 µg/mouse doses exhibits protection of 45.34% and 28.32%, respectively, against DMBA-induced DNA damage. However, pretreatment with TF-loaded PLGA-NPs protects against DNA damage 64.41% by 1/20th dose of bulk, 71.79% by 1/10th dose of bulk, and 72.46% by 1/5th dose of bulk. Similarly, 51.28% (1/20th of bulk, 57.63% (1/10th of bulk, and 63.14% (1/5th of bulk prevention was noted using EGCG-loaded PLGA-NP doses. These results showed that tea polyphenol-loaded PLGA-NPs have ~30-fold dose-advantage than bulk TF or EGCG doses. Additionally, TF- or EGCG-loaded PLGA-NPs showed significant potential for induction of DNA repair genes (XRCC1, XRCC3, and ERCC3 and suppression of DNA damage responsive genes (p53, p21, MDM2, GADD45α, and COX-2 as compared with respective bulk TF or EGCG doses. Taken together, TF- or EGCG-loaded PLGA-NPs showed a superior

  18. DNA display III. Solid-phase organic synthesis on unprotected DNA.

    Directory of Open Access Journals (Sweden)

    David R Halpin


    Full Text Available DNA-directed synthesis represents a powerful new tool for molecular discovery. Its ultimate utility, however, hinges upon the diversity of chemical reactions that can be executed in the presence of unprotected DNA. We present a solid-phase reaction format that makes possible the use of standard organic reaction conditions and common reagents to facilitate chemical transformations on unprotected DNA supports. We demonstrate the feasibility of this strategy by comprehensively adapting solid-phase 9-fluorenylmethyoxycarbonyl-based peptide synthesis to be DNA-compatible, and we describe a set of tools for the adaptation of other chemistries. Efficient peptide coupling to DNA was observed for all 33 amino acids tested, and polypeptides as long as 12 amino acids were synthesized on DNA supports. Beyond the direct implications for synthesis of peptide-DNA conjugates, the methods described offer a general strategy for organic synthesis on unprotected DNA. Their employment can facilitate the generation of chemically diverse DNA-encoded molecular populations amenable to in vitro evolution and genetic manipulation.

  19. Chemical Synthesis of Glycosaminoglycans. (United States)

    Mende, Marco; Bednarek, Christin; Wawryszyn, Mirella; Sauter, Paul; Biskup, Moritz B; Schepers, Ute; Bräse, Stefan


    Glycosaminoglycans (GAGs) as one major part of the glycocalyx are involved in many essential biological cell processes, as well as in many courses of diseases. Because of the potential therapeutic application of GAG polymers, fragments, and also derivatives toward different diseases (e.g., heparin derivatives against Alzheimer's disease), there is a continual growing demand for new chemical syntheses, which suffice the high claim to stereoselectivity and chemoselectivity. This Review summarizes the progress of chemical syntheses of GAGs over the last 10 years. For each class of the glycosaminoglycans-hyaluronan (HA), heparan sulfate/heparin (HS/HP), chondroitin/dermatan sulfate (CS/DS), and keratan sulfate (KS)-mainly novel glycosylation strategies, elongation sequences, and protecting group patterns are discussed, but also (semi)automated syntheses, enzymatic approaches, and functionalizations of synthesized or isolated GAGs are considered.

  20. DNA sequencing by synthesis with degenerate primers

    Institute of Scientific and Technical Information of China (English)


    The degenerate primer-based sequencing Was developed by a synthesis method(DP-SBS)for high-throughput DNA sequencing,in which a set of degenerate primers are hybridized on the arrayed DNA templates and extended by DNA polymerase on microarrays.In this method,adifferent set of degenerate primers containing a give nnumber(n)of degenerate nucleotides at the 3'-ends were annealed to the sequenced templates that were immobilized on the solid surface.The nucleotides(n+1)on the template sequences were determined by detecting the incorporation of fluorescent labeled nucleotides.The fluorescent labeled nucleotide was incorporated into the primer in a base-specific manner after the enzymatic primer extension reactions and nine-base length were read out accurately.The main advanmge of the DP-SBS is that the method only uses very conventional biochemical reagents and avoids the complicated special chemical reagents for removing the labeled nucleotides and reactivating the primer for further extension.From the present study,it is found that the DP-SBS method is reliable,simple,and cost-effective for laboratory-sequencing a large amount of short DNA fragments.

  1. Mechanism for CCC DNA synthesis in hepadnaviruses.

    Directory of Open Access Journals (Sweden)

    Ji A Sohn

    Full Text Available Hepadnavirus replication requires the synthesis of a covalently closed circular (CCC DNA from the relaxed circular (RC viral genome by an unknown mechanism. CCC DNA formation could require enzymatic activities of the viral reverse transcriptase (RT, or cellular DNA repair enzymes, or both. Physical mapping of the 5' and 3' ends of RC DNA and sequence analysis of CCC DNA revealed that CCC DNA synthesis requires the removal of the RT and an RNA oligomer from the 5' ends of minus and plus strand DNA, respectively, removal of sequences from the terminally redundant minus strand, completion of the less than full-length plus strand, and ligation of the ends. Two models have been proposed that could explain CCC DNA formation. The first (model 1 invokes a role for the RT to catalyze a cleavage-ligation reaction leading to the formation of a unit length minus strand in CCC DNA and a DNA repair reaction for the completion and ligation of plus strand DNA; the second (model 2 predicts that CCC DNA formation depends entirely on cellular DNA repair enzymes. To determine which mechanism is utilized, we developed cell lines expressing duck hepatitis B virus genomes carrying mutations permitting us to follow the fate of viral DNA sequences during their conversion from RC to CCC DNA. Our results demonstrated that the oligomer at the 5' end of minus strand DNA is completely or at least partially removed prior to CCC DNA synthesis. The results indicated that both RC DNA strands undergo DNA repair reactions carried out by the cellular DNA repair machinery as predicted by model 2. Thus, our study provided the basis for the identification of the cellular components required for CCC DNA formation.

  2. Chemical ligation methods for the tagging of DNA-encoded chemical libraries. (United States)

    Keefe, Anthony D; Clark, Matthew A; Hupp, Christopher D; Litovchick, Alexander; Zhang, Ying


    The generation of DNA-encoded chemical libraries requires the unimolecular association of multiple encoding oligonucleotides with encoded chemical entities during combinatorial synthesis processes. This has traditionally been achieved using enzymatic ligation. We discuss a range of chemical ligation methods that provide alternatives to enzymatic ligation. These chemical ligation methods include the generation of modified internucleotide linkages that support polymerase translocation and other modified linkages that while not supporting the translocation of polymerases can also be used to generate individual cDNA molecules containing encoded chemical information specifying individual library members. We also describe which of these approaches have been successfully utilized for the preparation of DNA-encoded chemical libraries and those that were subsequently used for the discovery of inhibitors.

  3. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ (United States)

    Copeland, William C.; Kasiviswanathan, Rajesh; Longley, Matthew J.


    Summary Mitochondrial DNA is replicated by the nuclear encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand crosslinks from chemotherapy agents. Although many of these lesions block DNA replication, Pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by Pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis. PMID:26530671

  4. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ. (United States)

    Copeland, William C; Kasiviswanathan, Rajesh; Longley, Matthew J


    Mitochondrial DNA is replicated by the nuclear-encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand cross-links from chemotherapy agents. Although many of these lesions block DNA replication, pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis.

  5. Chemical Biology Probes from Advanced DNA-encoded Libraries. (United States)

    Salamon, Hazem; Klika Škopić, Mateja; Jung, Kathrin; Bugain, Olivia; Brunschweiger, Andreas


    The identification of bioactive compounds is a crucial step toward development of probes for chemical biology studies. Screening of DNA-encoded small molecule libraries (DELs) has emerged as a validated technology to interrogate vast chemical space. DELs consist of chimeric molecules composed of a low-molecular weight compound that is conjugated to a DNA identifier tag. They are screened as pooled libraries using selection to identify "hits." Screening of DELs has identified numerous bioactive compounds. Some of these molecules were instrumental in gaining a deeper understanding of biological systems. One of the main challenges in the field is the development of synthesis methodology for DELs.

  6. Chemical synthesis and biochemical reactivity of bacteriophage lambda PR promoter.



    By a combination of chemical and enzymatic methods, a 75 base pair DNA duplex containing the sequence of the lambda PR promoter including the OR1 and OR2 cI repressor binding sites was synthesized. The solid support phosphite triester procedure (Caruthers, M. H. et al., Cold Spring Harbor Symposia on Quantitative Biology XLVII, in press) was used for the synthesis of oligonucleotides comprising the sequence. We report here an adaptation of the method of DNA synthesis in test tubes. Assembly o...

  7. Standardized chemical synthesis of Pseudomonas aeruginosa pyocyanin

    Directory of Open Access Journals (Sweden)

    Rajkumar Cheluvappa


    As we have extracted pyocyanin both from P. aeruginosa cultures, and via chemical synthesis; we know the procedural and product-quality differences. We endorse the relative ease, safety, and convenience of using the chemical synthesis described here. Crucially, our “naturally endotoxin-free” pyocyanin can be extracted easily without using infectious bacteria.

  8. 酶促DNA合成研究的进展%Advance in Enzymatic DNA Synthesis

    Institute of Scientific and Technical Information of China (English)



    The advance in enzymatic DNA synthesis is introduced. Kornberg and his colleagues went through try phosphates and DNA synthesis. The immediate precursor of DNA synthesis was known. DNA polymerase was separated and purified. The chemical mechanism of DNA synthesis was revealed and infectious phage φX174DNA was synthesized.%笔者介绍了酶促DNA合成研究的进展.科恩伯格和他的同事经历了从合成核苷酸、核苷三磷酸到合成DNA的历程.他们分离并提纯了DNA聚合酶,弄清了合成DNA的最直接的前体,揭示了DNA合成的化学机理,合成了具有感染性的噬菌体φX174DNA.

  9. Protein chemical synthesis in drug discovery. (United States)

    Liu, Fa; Mayer, John P


    The discovery of novel therapeutics to combat human disease has traditionally been among the most important goals of research chemists. After a century of innovation, state-of-the-art chemical protein synthesis is now capable of efficiently assembling proteins of up to several hundred residues in length from individual amino acids. By virtue of its unique ability to incorporate non-native structural elements, chemical protein synthesis has been seminal in the recent development of several novel drug discovery technologies. In this chapter, we review the key advances in peptide and protein chemistry which have enabled our current synthetic capabilities. We also discuss the synthesis of D-proteins and their applications in mirror image phage-display and racemic protein crystallography, the synthesis of enzymes for structure-based drug discovery, and the direct synthesis of homogenous protein pharmaceuticals.

  10. New methods for chemical protein synthesis. (United States)

    Guan, Xiaoyang; Chaffey, Patrick K; Zeng, Chen; Tan, Zhongping


    Chemical protein synthesis is a useful tool to generate pure proteins which are otherwise difficult to obtain in sufficient amounts for structure and property analysis. Additionally, because of the precise and flexible nature of chemical synthesis, it allows for controllable variation of protein sequences, which is valuable for understanding the relationships between protein structure and function. Despite the usefulness of chemical protein synthesis, it has not been widely adopted as a tool for protein characterization, mainly because of the lack of general and efficient methods for the preparation and coupling of peptide fragments and for the folding of polypeptide chains. To address these issues, many new methods have recently been developed in the areas of solid-phase peptide synthesis, peptide fragment assembly, and protein folding. Here we review these recent technological advances and highlight the gaps needing to be addressed in future research.

  11. DNA synthesis in ataxia telangiectasia


    Jaspers, Nicolaas


    textabstractAfter the discovery that cultured cells from AT patients are hypersensitive to ionizing radiation the suggestion was made that AT-could be the 1 X-ray-analogue 1 of xeroderma pigmentosum. The latter syndrome (XP) is characterized by hypersensitivity to short-wave UV-radiation, caused by a reduced ability to properly remove UV-induced DNA damage. The evidence for a DNA repair defect in AT cells is not as strong as in the case of XP (see section 2.2.5 of this thesis). Different XP p...

  12. Thymidine analogues for tracking DNA synthesis. (United States)

    Cavanagh, Brenton L; Walker, Tom; Norazit, Anwar; Meedeniya, Adrian C B


    Replicating cells undergo DNA synthesis in the highly regulated, S-phase of the cell cycle. Analogues of the pyrimidine deoxynucleoside thymidine may be inserted into replicating DNA, effectively tagging dividing cells allowing their characterisation. Tritiated thymidine, targeted using autoradiography was technically demanding and superseded by 5-bromo-2-deoxyuridine (BrdU) and related halogenated analogues, detected using antibodies. Their detection required the denaturation of DNA, often constraining the outcome of investigations. Despite these limitations BrdU alone has been used to target newly synthesised DNA in over 20,000 reviewed biomedical studies. A recent breakthrough in "tagging DNA synthesis" is the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU). The alkyne group in EdU is readily detected using a fluorescent azide probe and copper catalysis using 'Huisgen's reaction' (1,3-dipolar cycloaddition or 'click chemistry'). This rapid, two-step biolabelling approach allows the tagging and imaging of DNA within cells whilst preserving the structural and molecular integrity of the cells. The bio-orthogonal detection of EdU allows its application in more experimental assays than previously possible with other "unnatural bases". These include physiological, anatomical and molecular biological experimentation in multiple fields including, stem cell research, cancer biology, and parasitology. The full potential of EdU and related molecules in biomedical research remains to be explored.

  13. Methanol synthesis beyond chemical equilibrium

    NARCIS (Netherlands)

    van Bennekom, J. G.; Venderbosch, R. H.; Winkelman, J. G. M.; Wilbers, E.; Assink, D.; Lemmens, K. P. J.; Heeres, H. J.


    In commercial methanol production from syngas, the conversion is thermodynamically limited to 0.3-0.7 leading to large recycles of non-converted syngas. This problem can be overcome to a significant extent by in situ condensation of methanol during its synthesis which is possible nowadays due to the

  14. Synthesis of novel anthraquinones: Molecular structure, molecular chemical reactivity descriptors and interactions with DNA as antibiotic and anti-cancer drugs (United States)

    Al-Otaibi, Jamelah S.; EL Gogary, Tarek M.


    Anthraquinones are well-known anticancer drugs. Anthraquinones anticancer drugs carry out their cytotoxic activities through their interaction with DNA, and inhibition of topoisomerase II activity. Anthraquinones (AQ5 and AQ5H) were synthesized and studied with 1,5-DAAQ by computational and experimental tools. The purpose of this study is to shade more light on mechanism of interaction between anthraquinone DNA affinic agents and different types of DNA. This study will lead to gain of information useful for drug design and development. Molecular structures were optimized using DFT B3LYP/6-31 + G(d). Depending on intramolecular hydrogen bonding interactions four conformers of AQ5 were detected within the range of about 42 kcal/mol. Molecular reactivity of the anthraquinone compounds was explored using global and condensed descriptors (electrophilicity and Fukui functions). NMR and UV-VIS electronic absorption spectra of anthraquinones/DNA were investigated at the physiological pH. The interaction of the anthraquinones (AQ5 and AQ5H) were studied with different DNA namely, calf thymus DNA, (Poly[dA].Poly[dT]) and (Poly[dG].Poly[dC]). UV-VIS electronic absorption spectral data were employed to measure the affinity constants of drug/DNA binding using Scatchard analysis. NMR study confirms qualitatively the drug/DNA interaction in terms of peak shift and broadening.

  15. Thymidine Analogues for Tracking DNA Synthesis

    Directory of Open Access Journals (Sweden)

    Brenton L. Cavanagh


    Full Text Available Replicating cells undergo DNA synthesis in the highly regulated, S-phase of the cell cycle. Analogues of the pyrimidine deoxynucleoside thymidine may be inserted into replicating DNA, effectively tagging dividing cells allowing their characterisation. Tritiated thymidine, targeted using autoradiography was technically demanding and superseded by 5-bromo-2-deoxyuridine (BrdU and related halogenated analogues, detected using antibodies. Their detection required the denaturation of DNA, often constraining the outcome of investigations. Despite these limitations BrdU alone has been used to target newly synthesised DNA in over 20,000 reviewed biomedical studies. A recent breakthrough in “tagging DNA synthesis” is the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU. The alkyne group in EdU is readily detected using a fluorescent azide probe and copper catalysis using ‘Huisgen’s reaction’ (1,3-dipolar cycloaddition or ‘click chemistry’. This rapid, two-step biolabelling approach allows the tagging and imaging of DNA within cells whilst preserving the structural and molecular integrity of the cells. The bio-orthogonal detection of EdU allows its application in more experimental assays than previously possible with other “unnatural bases”. These include physiological, anatomical and molecular biological experimentation in multiple fields including, stem cell research, cancer biology, and parasitology. The full potential of EdU and related molecules in biomedical research remains to be explored.

  16. Novel encoding methods for DNA-templated chemical libraries. (United States)

    Li, Gang; Zheng, Wenlu; Liu, Ying; Li, Xiaoyu


    Among various types of DNA-encoded chemical libraries, DNA-templated library takes advantage of the sequence-specificity of DNA hybridization, enabling not only highly effective DNA-templated chemical reactions, but also high fidelity in library encoding. This brief review summarizes recent advances that have been made on the encoding strategies for DNA-templated libraries, and it also highlights their respective advantages and limitations for the preparation of DNA-encoded libraries.

  17. DNA Nanoparticles for Improved Protein Synthesis In Vitro. (United States)

    Galinis, Robertas; Stonyte, Greta; Kiseliovas, Vaidotas; Zilionis, Rapolas; Studer, Sabine; Hilvert, Donald; Janulaitis, Arvydas; Mazutis, Linas


    The amplification and digital quantification of single DNA molecules are important in biomedicine and diagnostics. Beyond quantifying DNA molecules in a sample, the ability to express proteins from the amplified DNA would open even broader applications in synthetic biology, directed evolution, and proteomics. Herein, a microfluidic approach is reported for the production of condensed DNA nanoparticles that can serve as efficient templates for in vitro protein synthesis. Using phi29 DNA polymerase and a multiple displacement amplification reaction, single DNA molecules were converted into DNA nanoparticles containing up to about 10(4)  clonal gene copies of the starting template. DNA nanoparticle formation was triggered by accumulation of inorganic pyrophosphate (produced during DNA synthesis) and magnesium ions from the buffer. Transcription-translation reactions performed in vitro showed that individual DNA nanoparticles can serve as efficient templates for protein synthesis in vitro.


    Energy Technology Data Exchange (ETDEWEB)



    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  19. Alternative Fuels and Chemicals from Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    None, None


    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.


    Energy Technology Data Exchange (ETDEWEB)

    Peter Tijrn


    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  1. Alternative fuels and chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)



    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  2. New strategies in chemical synthesis and catalysis

    CERN Document Server

    Pignataro, Bruno


    Providing a comprehensive overview of the essential topics, this book covers the core areas of organic, inorganic, organometallic, biochemical synthesis and catalysis.The authors are among the rising stars in European chemistry, a selection of participants in the 2010 European Young Chemists Award competition, and their contributions deal with most of the frontier issues in chemical synthesis. They give an account of the latest research results in chemistry in Europe, as well as the state of the art in their field of research and the outlook for the future.

  3. Alternative Fuels and Chemicals from Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Peter Tijrn


    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.


    Energy Technology Data Exchange (ETDEWEB)



    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  5. Alternative Fuels and Chemicals From Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)



    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  6. Speciality chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.J.; Knifton, J.F. (Shell Development Company, Houston, TX (USA))


    Texaco has undertaken research to investigate the use of carbon monoxide and hydrogen as building blocks for the manufacture of amidocarbonylation products. The amidocarbonylation reaction offers a convenient method to construct two functionalities - amido and carboxylate - simultaneously. Texaco has extended this chemistry to make a variety of speciality chemicals by tailoring cobalt catalysts. Products which have been made including: surface active agents such as the C{sub 14} - C{sub 16} alkyl amidoacids; surfactants; intermediates for sweeteners like aspartame; food additives like glutamic acid; and chelating agents such as polyamidoacids. 20 refs., 10 figs., 1 tab.

  7. The Chemical Synthesis of Discodermolide (United States)

    Paterson, I.; Florence, G. J.

    The marine sponge-derived polyketide discodermolide is a potent antimitotic agent that represents a promising natural product lead structure in the treatment of cancer. Discodermolide shares the same microtubule-stabilising mechanism of action as Taxol®, inhibits the growth of solid tumours in animal models and shows synergy with Taxol. The pronounced cytotoxicity of discodermolide, which is maintained against cancer cell lines that display resistance to Taxol and other drugs, combined with its scarce availability from its natural source, has fuelled significant academic and industrial interest in devising a practical total synthesis as a means of ensuring a sustainable supply for drug development. This chapter surveys the various total syntheses of discodermolide that have been completed over the period 1993-2007, focusing on the strategies employed for introduction of the multiple stereocentres and achieving control over the alkene geometry, along with the various methods used for realising the pivotal fragment couplings to assemble progressively the full carbon skeleton. This dedicated synthetic effort has triumphed in removing the supply problem for discodermolide, providing sufficient material for extensive biological studies and enabling its early stage clinical development, as well as facilitating SAR studies for lead optimisation.

  8. Differential sensitivity to aphidicolin of replicative DNA synthesis and ultraviolet-induced unscheduled DNA synthesis in vivo in mammalian cells.

    Directory of Open Access Journals (Sweden)



    Full Text Available In vivo in mammalian cells, ultraviolet-induced unscheduled DNA synthesis was less sensitive to aphidicolin than was replicative DNA synthesis. Replicative DNA synthesis in HeLa, HEp-2, WI-38 VA-13 and CV-1 cells was inhibited more than 97% by aphidicolin at 10 micrograms/ml, whereas aphidicolin inhibition of DNA synthesis in ultraviolet-irradiated cells varied between 30% and 90% depending on cell types and assay conditions. Aphidicolin inhibition of unscheduled DNA synthesis (UDS in HeLa cells increased gradually with increasing aphidicolin concentration and reached approximately 90% at 100 micrograms/ml aphidicolin. A significant fraction of UDS in ultraviolet-irradiated HEp-2 cells was resistant to aphidicolin even at 300 micrograms/ml. Considered along with related information reported previously, the present results suggest that both aphidicolin-sensitive and insensitive DNA polymerases, DNA polymerase alpha and a non-alpha DNA polymerase (possibly DNA polymerase beta, are involved in in situ UDS in these ultraviolet-irradiated cells. Comparison of staphylococcal nuclease sensitivity between DNAs repaired in the presence and in the absence of aphidicolin in HEp-2 cells suggested that the involvement of DNA polymerase alpha in UDS favored DNA synthesis in the intranucleosomal region.

  9. Synthesis, physico-chemical investigations of Co(II), Ni(II) and Cu(II) complexes and their in vitro microbial, cytotoxic, DNA cleavage studies. (United States)

    Bagihalli, Gangadhar B; Patil, Sangamesh A


    A series of metal complexes of cobalt(II), nickel(II), and copper(II) have been synthesized with newly derived biologically active ligands. These ligands were synthesized by the condensation of 2-amino-4-phenyl-1,3-thiazole with 8-formyl-7-hydroxy- 4-methylcoumarin. The probable structure of the complexes has been proposed on the basis of analytical and spectroscopic data (IR, UV-Vis, ESR, FAB-mass, and thermoanalytical). Electrochemical study of the complexes is also reported. Elemental analysis of the complexes confined them to stoichiometry of the type ML(2).2H(2)O [M = Co(II), Ni(II), and Cu(II)]. The Schiff base and its metal(II) complexes have been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Staphylococcus pyogenes, and Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Aspergillus flavus, and Cladosporium) by the MIC method. The brine shrimp bioassay was carried out to study their in vitro cytotoxic properties, and also the Schiff base and its metal(II) complexes have been studied for DNA cleavage.

  10. Wet chemical synthesis of soluble gold nanogaps

    DEFF Research Database (Denmark)

    Jain, Titoo; Tang, Qingxin; Bjørnholm, Thomas;


    NRs) in aqueous solution. Through controlled end-to-end assembly of the AuNRs into dimers or chains, facilitated via target molecules, they can be used as electrical contacts. In this way, the preparation of AuNR-molecule-AuNR junctions by wet chemical methods may afford a large number of identical devices...... with little variation in the interface between molecule and electrode (AuNR). In this Account, we highlight recent progress in using chemically synthesized AuNRs as building blocks for molecular electronic applications. We outline the general synthesis and properties of AuNRs and describe the aqueous growth...... in the nanogaps lets us spectroscopically characterize the molecules via surface-enhanced Raman scattering. We discuss the incorporation of oligopeptides functionalized with acetylene units having uniquely identifiable vibrational modes. This acetylene moiety allows chemical reactions to be performed in the gaps...

  11. Impact and mechanism of TiO2 nanoparticles on DNA synthesis in vitro

    Institute of Scientific and Technical Information of China (English)


    The impact of TiO2 nanoparticles on DNA synthesis in vitro in the dark and the molecular mechanism of such impact were studied. The impact of TiO2 nanoparticles on DNA synthesis was investigated by adding TiO2 nanoparticles in different sizes and at various concentrations into the polymerase chain reaction (PCR) system. TiO2 nanoparticles were premixed with the DNA polymerase, the primer or the template, respectively and then the supernatant and the precipitation of each mixture were added into the PCR system separately to observe the impact on DNA synthesis. Sequentially the interaction be- tween TiO2 nanoparticles and the DNA polymerase, the primer or the template was further analyzed by using UV-visible spectroscopy and polyacrylamide gel electrophoresis (PAGE). The results suggest that TiO2 nanoparticles inhibit DNA synthesis in the PCR system in the dark more severely than mi- croscale TiO2 particles at the equivalent concentration and the inhibition effect of TiO2 nanoparticles is concentration dependent. The molecular mechanism of such inhibition is that in the dark, TiO2 nanoparticles interact with the DNA polymerase through physical adsorption while TiO2 nanoparticles do with the primer or the template in a chemical adsorption manner. The disfunction levels of the bio-molecules under the impact of TiO2 nanoparticles are in the following order: the primer > the tem- plate > the DNA polymerase.

  12. Chemical Space of DNA-Encoded Libraries. (United States)

    Franzini, Raphael M; Randolph, Cassie


    In recent years, DNA-encoded chemical libraries (DECLs) have attracted considerable attention as a potential discovery tool in drug development. Screening encoded libraries may offer advantages over conventional hit discovery approaches and has the potential to complement such methods in pharmaceutical research. As a result of the increased application of encoded libraries in drug discovery, a growing number of hit compounds are emerging in scientific literature. In this review we evaluate reported encoded library-derived structures and identify general trends of these compounds in relation to library design parameters. We in particular emphasize the combinatorial nature of these libraries. Generally, the reported molecules demonstrate the ability of this technology to afford hits suitable for further lead development, and on the basis of them, we derive guidelines for DECL design.

  13. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru


    as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position...... on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally......DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...

  14. RNA Primer Extension Hinders DNA Synthesis by Escherichia coli Mutagenic DNA Polymerase IV (United States)

    Tashjian, Tommy F.; Lin, Ida; Belt, Verena; Cafarelli, Tiziana M.; Godoy, Veronica G.


    In Escherichia coli the highly conserved DNA damage regulated dinB gene encodes DNA Polymerase IV (DinB), an error prone specialized DNA polymerase with a central role in stress-induced mutagenesis. Since DinB is the DNA polymerase with the highest intracellular concentrations upon induction of the SOS response, further regulation must exist to maintain genomic stability. Remarkably, we find that DinB DNA synthesis is inherently poor when using an RNA primer compared to a DNA primer, while high fidelity DNA polymerases are known to have no primer preference. Moreover, we show that the poor DNA synthesis from an RNA primer is conserved in DNA polymerase Kappa, the human DinB homolog. The activity of DinB is modulated by interactions with several other proteins, one of which is the equally evolutionarily conserved recombinase RecA. This interaction is known to positively affect DinB’s fidelity on damaged templates. We find that upon interaction with RecA, DinB shows a significant reduction in DNA synthesis when using an RNA primer. Furthermore, with DinB or DinB:RecA a robust pause, sequence and lesion independent, occurs only when RNA is used as a primer. The robust pause is likely to result in abortive DNA synthesis when RNA is the primer. These data suggest a novel mechanism to prevent DinB synthesis when it is not needed despite its high concentrations, thus protecting genome stability.

  15. Design, synthesis and selection of DNA-encoded small-molecule libraries. (United States)

    Clark, Matthew A; Acharya, Raksha A; Arico-Muendel, Christopher C; Belyanskaya, Svetlana L; Benjamin, Dennis R; Carlson, Neil R; Centrella, Paolo A; Chiu, Cynthia H; Creaser, Steffen P; Cuozzo, John W; Davie, Christopher P; Ding, Yun; Franklin, G Joseph; Franzen, Kurt D; Gefter, Malcolm L; Hale, Steven P; Hansen, Nils J V; Israel, David I; Jiang, Jinwei; Kavarana, Malcolm J; Kelley, Michael S; Kollmann, Christopher S; Li, Fan; Lind, Kenneth; Mataruse, Sibongile; Medeiros, Patricia F; Messer, Jeffrey A; Myers, Paul; O'Keefe, Heather; Oliff, Matthew C; Rise, Cecil E; Satz, Alexander L; Skinner, Steven R; Svendsen, Jennifer L; Tang, Lujia; van Vloten, Kurt; Wagner, Richard W; Yao, Gang; Zhao, Baoguang; Morgan, Barry A


    Biochemical combinatorial techniques such as phage display, RNA display and oligonucleotide aptamers have proven to be reliable methods for generation of ligands to protein targets. Adapting these techniques to small synthetic molecules has been a long-sought goal. We report the synthesis and interrogation of an 800-million-member DNA-encoded library in which small molecules are covalently attached to an encoding oligonucleotide. The library was assembled by a combination of chemical and enzymatic synthesis, and interrogated by affinity selection. We describe methods for the selection and deconvolution of the chemical display library, and the discovery of inhibitors for two enzymes: Aurora A kinase and p38 MAP kinase.

  16. Spinach thioredoxin m inhibits DNA synthesis in fertilized Xenopus eggs.


    Hartman, H; Wu, M.; Buchanan, B.B.; Gerhart, J C


    A role for thioredoxin in metazoan DNA synthesis has been assessed by injecting rapidly dividing Xenopus eggs with purified heterologous thioredoxins, which might act as inhibitors if they were to replace resident thioredoxins in some but not all reaction steps. Of 10 tested proteins, spinach chloroplast thioredoxin m is the most potent inhibitor. Eggs cleave and produce cells lacking nuclei. DNA synthesis is severely reduced. Development arrests before gastrulation. In egg extracts, thioredo...

  17. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.A. [Rutgers, The State Univ. of New Jersey, Piscataway, NJ (United States)


    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  18. Dual-pharmacophore DNA-encoded chemical libraries. (United States)

    Scheuermann, Jörg; Neri, Dario


    In contrast to single-pharmacophore DNA-encoded libraries, where only one chemical moiety is linked to DNA, dual-pharmacophore DNA-encoded chemical libraries feature the display of two independent small-molecules in close proximity. This, in principle, allows to explore adjacent epitopes on a pharmaceutical target of choice and hence the discovery of simultaneously binding pairs of fragments, by virtue of the chelate effect.

  19. Analytical Devices Based on Direct Synthesis of DNA on Paper. (United States)

    Glavan, Ana C; Niu, Jia; Chen, Zhen; Güder, Firat; Cheng, Chao-Min; Liu, David; Whitesides, George M


    This paper addresses a growing need in clinical diagnostics for parallel, multiplex analysis of biomarkers from small biological samples. It describes a new procedure for assembling arrays of ssDNA and proteins on paper. This method starts with the synthesis of DNA oligonucleotides covalently linked to paper and proceeds to assemble microzones of DNA-conjugated paper into arrays capable of simultaneously capturing DNA, DNA-conjugated protein antigens, and DNA-conjugated antibodies. The synthesis of ssDNA oligonucleotides on paper is convenient and effective with 32% of the oligonucleotides cleaved and eluted from the paper substrate being full-length by HPLC for a 32-mer. These ssDNA arrays can be used to detect fluorophore-linked DNA oligonucleotides in solution, and as the basis for DNA-directed assembly of arrays of DNA-conjugated capture antibodies on paper, detect protein antigens by sandwich ELISAs. Paper-anchored ssDNA arrays with different sequences can be used to assemble paper-based devices capable of detecting DNA and antibodies in the same device and enable simple microfluidic paper-based devices.

  20. Total Chemical Synthesis,Assembly of Human Torque Teno Virus Genome

    Institute of Scientific and Technical Information of China (English)

    Zheng Hou; Gengfu Xiao


    Torque teno virus(TTV)is a nonenveloped virus containing a single-stranded,circular DNA genome of approximately 3.8kb.We completely synthesized the 3808 nucleotides of the TTV(SANBAN isolate)genome,which contains a hairpin structure and a GC-rich region.More than 100 overlapping oligonucleotides were chemically synthesized and assembled by polymerise chain assembly reaction(PCA),and the synthesis was completed with splicing by overlap extension(SOEing).This study establishes the methodological basis of the chemical synthesis of a viral genome for use as a live attenuated vaccine or gene therapy vector.

  1. Replication stress activates DNA repair synthesis in mitosis

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Ying, Songmin; Bjerregaard, Victoria A


    mitosis serves as the trigger for completion of DNA replication at CFS loci in human cells. Given that this POLD3-dependent mitotic DNA synthesis is enhanced in aneuploid cancer cells that exhibit intrinsically high levels of chromosomal instability (CIN(+)) and replicative stress, we suggest...

  2. Design and Synthesis of Biaryl DNA-Encoded Libraries. (United States)

    Ding, Yun; Franklin, G Joseph; DeLorey, Jennifer L; Centrella, Paolo A; Mataruse, Sibongile; Clark, Matthew A; Skinner, Steven R; Belyanskaya, Svetlana


    DNA-encoded library technology (ELT) is a powerful tool for the discovery of new small-molecule ligands to various protein targets. Here we report the design and synthesis of biaryl DNA-encoded libraries based on the scaffold of 5-formyl 3-iodobenzoic acid. Three reactions on DNA template, acylation, Suzuki-Miyaura coupling and reductive amination, were applied in the library synthesis. The three cycle library of 3.5 million diversity has delivered potent hits for phosphoinositide 3-kinase α (PI3Kα).

  3. RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress

    DEFF Research Database (Denmark)

    Bhowmick, Rahul; Minocherhomji, Sheroy; Hickson, Ian D


    Homologous recombination (HR) is necessary to counteract DNA replication stress. Common fragile site (CFS) loci are particularly sensitive to replication stress and undergo pathological rearrangements in tumors. At these loci, replication stress frequently activates DNA repair synthesis in mitosis....... This mitotic DNA synthesis, termed MiDAS, requires the MUS81-EME1 endonuclease and a non-catalytic subunit of the Pol-delta complex, POLD3. Here, we examine the contribution of HR factors in promoting MiDAS in human cells. We report that RAD51 and BRCA2 are dispensable for MiDAS but are required to counteract...

  4. DNA-encoded chemical libraries: advancing beyond conventional small-molecule libraries. (United States)

    Franzini, Raphael M; Neri, Dario; Scheuermann, Jörg


    DNA-encoded chemical libraries (DECLs) represent a promising tool in drug discovery. DECL technology allows the synthesis and screening of chemical libraries of unprecedented size at moderate costs. In analogy to phage-display technology, where large antibody libraries are displayed on the surface of filamentous phage and are genetically encoded in the phage genome, DECLs feature the display of individual small organic chemical moieties on DNA fragments serving as amplifiable identification barcodes. The DNA-tag facilitates the synthesis and allows the simultaneous screening of very large sets of compounds (up to billions of molecules), because the hit compounds can easily be identified and quantified by PCR-amplification of the DNA-barcode followed by high-throughput DNA sequencing. Several approaches have been used to generate DECLs, differing both in the methods used for library encoding and for the combinatorial assembly of chemical moieties. For example, DECLs can be used for fragment-based drug discovery, displaying a single molecule on DNA or two chemical moieties at the extremities of complementary DNA strands. DECLs can vary substantially in the chemical structures and the library size. While ultralarge libraries containing billions of compounds have been reported containing four or more sets of building blocks, also smaller libraries have been shown to be efficient for ligand discovery. In general, it has been found that the overall library size is a poor predictor for library performance and that the number and diversity of the building blocks are rather important indicators. Smaller libraries consisting of two to three sets of building blocks better fulfill the criteria of drug-likeness and often have higher quality. In this Account, we present advances in the DECL field from proof-of-principle studies to practical applications for drug discovery, both in industry and in academia. DECL technology can yield specific binders to a variety of target

  5. Programme DNA Lattices: Design, Synthesis and Applications (United States)


    the Nick of Space: Generalized Nucleic Acid Complementarity and the Development of DNA Nanotechnology, Synlett 2000, 1536-1548, (2000) [See00c] N.C...Generalized Nucleic Acid Complementarity and the Development of DNA Nanotechnology, Synlett 2000, 1536-1548, (2000) 8. N.C. Seeman, DNA Nicks and Nodes

  6. Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy. (United States)

    Barhoumi, Aoune; Halas, Naomi J


    Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics.

  7. Isolation of RNA and DNA from leukocytes and cDNA synthesis.

    NARCIS (Netherlands)

    Jansen, J.H.; Reijden, B.A. van der


    In this chapter, methods to isolate RNA and DNA from human leukocytes for the subsequent use in molecular diagnostic tests are described. In addition, protocols for cDNA synthesis are given, both for the use in conventional reverse transcription (RT)-polymerase chain reaction (PCR), and for the use

  8. Ethyl coumarin-3-carboxylate: synthesis and chemical properties

    Directory of Open Access Journals (Sweden)

    Bakr F. Abdel-Wahab


    Full Text Available Ethyl coumarin-3-carboxylate occupies an important position in the organic synthesis and is used in production of biologically active compounds. Thus, the data published over the last few years on the methods of synthesis and chemical properties of ethyl coumarin-3-carboxylate are reviewed here for the first time. The reactions were classified as coumarin ring reactions and ester group reactions, and some of these reactions have been applied successfully to the synthesis of biologically and industrially important compounds.

  9. Aliphatic nitro alcohols. Synthesis, chemical transformations and applications

    Energy Technology Data Exchange (ETDEWEB)

    Shvekhgeimer, Mai-Genrikh A [A.N. Kosygin Moscow State Textile Academy, Moscow (Russian Federation)


    The data on the synthesis, chemical transformations and practical use of aliphatic nitro alcohols published over the last 25 years are described systematically and analysed. The bibliography includes 316 references.

  10. D-ribose inhibits DNA repair synthesis in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zunica, G.; Marini, M.; Brunelli, M.A.; Chiricolo, M.; Franceschi, C.


    D-ribose is cytotoxic for quiescent human lymphocytes and severely inhibits their PHA-induced proliferation at concentrations (25-50 mM) at which other simple sugars are ineffective. In order to explain these effects, DNA repair synthesis was evaluated in PHA-stimulated human lymphocytes treated with hydroxyurea and irradiated. D-ribose, in contrast to other reducing sugars, did not induce repair synthesis and therefore did not apparently damage DNA in a direct way, although it markedly inhibited gamma ray-induced repair. Taking into account that lymphocytes must rejoin physiologically-formed DNA strand breaks in order to enter the cell cycle, we suggest that D-ribose exerts its cytotoxic activity by interfering with metabolic pathways critical for the repair of DNA breaks.

  11. Efficiency, error and yield in light-directed maskless synthesis of DNA microarrays

    Directory of Open Access Journals (Sweden)

    Agbavwe Christy


    Full Text Available Abstract Background Light-directed in situ synthesis of DNA microarrays using computer-controlled projection from a digital micromirror device--maskless array synthesis (MAS--has proved to be successful at both commercial and laboratory scales. The chemical synthetic cycle in MAS is quite similar to that of conventional solid-phase synthesis of oligonucleotides, but the complexity of microarrays and unique synthesis kinetics on the glass substrate require a careful tuning of parameters and unique modifications to the synthesis cycle to obtain optimal deprotection and phosphoramidite coupling. In addition, unintended deprotection due to scattering and diffraction introduce insertion errors that contribute significantly to the overall error rate. Results Stepwise phosphoramidite coupling yields have been greatly improved and are now comparable to those obtained in solid phase synthesis of oligonucleotides. Extended chemical exposure in the synthesis of complex, long oligonucleotide arrays result in lower--but still high--final average yields which approach 99%. The new synthesis chemistry includes elimination of the standard oxidation until the final step, and improved coupling and light deprotection. Coupling Insertions due to stray light are the limiting factor in sequence quality for oligonucleotide synthesis for gene assembly. Diffraction and local flare are by far the largest contributors to loss of optical contrast. Conclusions Maskless array synthesis is an efficient and versatile method for synthesizing high density arrays of long oligonucleotides for hybridization- and other molecular binding-based experiments. For applications requiring high sequence purity, such as gene assembly, diffraction and flare remain significant obstacles, but can be significantly reduced with straightforward experimental strategies.

  12. Fucoxanthin Derivatives: Synthesis and their Chemical Properties. (United States)

    Komba, Shiro; Kotake-Nara, Eiichi; Machida, Sachiko


    Novel fucoxanthin derivatives that could change the size of mixed micelles were synthesized. The mixed micelles under consideration consist of a bile acid and some additives. To change the affinity against a bile acid, we designed the synthesis of a fucoxanthin-lithocholic acid complex. Lithocholic acid is one of the bile acids. The 3-OH on lithocholic acid was protected by a levulinyl group, and the protected lithocholic acid was selectively coupled via an ester linkage to the 3-OH on fucoxanthin to obtain levulinyl-protected lithocholyl fucoxanthin (LevLF). The levulinyl group was then selectively deprotected using hydrazine to obtain a lithocholyl fucoxanthin (LF). The average sizes of the micelles that contained these compounds (fucoxanthin, LevLF, and LF) with a bile acid (sodium taurocholate) were measured. The LevLF induced larger micelles than fucoxanthin or LF. Interestingly, the addition of 1-oleoyl-rac-glycerol induced a more efficient change in the micelle size. The large micelles grew larger, and the small micelles became smaller. Triple-mixed micelles with LevLF, sodium taurocholate, and 1-oleoyl-rac-glycerol formed the largest micelle with a diameter of 68 nm. On the other hand, triple-mixed micelles using LF, sodium taurocholate, and 1-oleoyl-rac-glycerol made the smallest micelles with diameters as low as 12 nm. We also investigated the hydrolysis of these compounds with enzymes (esterase from porcine liver, lipase from porcine pancreas, and cholesterol esterase from Pseudomonas sp.). The ester linkage between the lithocholic acid and fucoxanthin of LevLF was hydrolyzed with cholesterol esterase. In addition, the intestinal absorption was examined with Caco-2 cells, and no advantageous change in absorption efficiency was observed by chemically modifying the fucoxanthin unless different micelles sizes and increasing hydrophobicity are induced.

  13. Synthesis, characterization, DNA binding and in vitro antimicrobial studies of a novel tetra-substituted N-isopropyl-N-(4-ferrocenylphenyl)-N‧-(2,6-diethylphenyl)-N″-benzoylguanidine: Crystallographic structure and quantum chemical computations (United States)

    Rauf, Muhammad Khawar; Gul, Rukhsana; Rashid, Zahid; Badshah, Amin; Tahir, Muhammad Nawaz; Shahid, Muhammad; Khan, Azim


    A novel tetra-substituted guanidine, N-isopropyl-N-(4-ferrocenylphenyl)-N‧-(2,6-diethylphenyl)-N″-benzoylguanidine (1), [(CH3)2CH)(C5H5FeC5H4C6H4)NC(NHCOC6H5)(NHC6H3(CH2CH3)2] has been synthesized and characterized by elemental analysis, FT-IR, multinuclear (1H, 13C) NMR spectroscopy, single crystal X-rays diffraction analysis and density functional theory based quantum chemical calculations. The torsion angles indicating that the guanidine moiety and carbonyl group are almost co-planar, due to the pseudo hexagonal ring formed by intramolecular Nsbnd H⋯O hydrogen bonds. The DNA interaction studies performed by cyclic voltammetry and UV-visible spectroscopy are in close agreement with the binding constants (K) 1.4 × 104 and 1.2 × 104 respectively. The shift in peak potential, current and absorption maxima of the studied ferrocenyl guanidine in the presence of DNA discovered that CV coupled with UV-vis spectroscopy could provide an opportunity to elaborate DNA interaction mechanism, a prerequisite for the design of new drug like agents and understanding the molecular basis of their action. The synthesized compound (1) has also been screened for their antibacterial and antifungal.

  14. Efficient Synthesis of Peptide and Protein Functionalized Pyrrole-Imidazole Polyamides Using Native Chemical Ligation. (United States)

    Janssen, Brian M G; van Ommeren, Sven P F I; Merkx, Maarten


    The advancement of DNA-based bionanotechnology requires efficient strategies to functionalize DNA nanostructures in a specific manner with other biomolecules, most importantly peptides and proteins. Common DNA-functionalization methods rely on laborious and covalent conjugation between DNA and proteins or peptides. Pyrrole-imidazole (Py-Im) polyamides, based on natural minor groove DNA-binding small molecules, can bind to DNA in a sequence specific fashion. In this study, we explore the use of Py-Im polyamides for addressing proteins and peptides to DNA in a sequence specific and non-covalent manner. A generic synthetic approach based on native chemical ligation was established that allows efficient conjugation of both peptides and recombinant proteins to Py-Im polyamides. The effect of Py-Im polyamide conjugation on DNA binding was investigated by Surface Plasmon Resonance (SPR). Although the synthesis of different protein-Py-Im-polyamide conjugates was successful, attenuation of DNA affinity was observed, in particular for the protein-Py-Im-polyamide conjugates. The practical use of protein-Py-Im-polyamide conjugates for addressing DNA structures in an orthogonal but non-covalent manner, therefore, remains to be established.

  15. Efficient Synthesis of Peptide and Protein Functionalized Pyrrole-Imidazole Polyamides Using Native Chemical Ligation

    Directory of Open Access Journals (Sweden)

    Brian M. G. Janssen


    Full Text Available The advancement of DNA-based bionanotechnology requires efficient strategies to functionalize DNA nanostructures in a specific manner with other biomolecules, most importantly peptides and proteins. Common DNA-functionalization methods rely on laborious and covalent conjugation between DNA and proteins or peptides. Pyrrole-imidazole (Py–Im polyamides, based on natural minor groove DNA-binding small molecules, can bind to DNA in a sequence specific fashion. In this study, we explore the use of Py–Im polyamides for addressing proteins and peptides to DNA in a sequence specific and non-covalent manner. A generic synthetic approach based on native chemical ligation was established that allows efficient conjugation of both peptides and recombinant proteins to Py–Im polyamides. The effect of Py–Im polyamide conjugation on DNA binding was investigated by Surface Plasmon Resonance (SPR. Although the synthesis of different protein-Py–Im-polyamide conjugates was successful, attenuation of DNA affinity was observed, in particular for the protein-Py–Im-polyamide conjugates. The practical use of protein-Py–Im-polyamide conjugates for addressing DNA structures in an orthogonal but non-covalent manner, therefore, remains to be established.

  16. Flow Chemistry for Designing Sustainable Chemical Synthesis (journal article) (United States)

    An efficiently designed continuous flow chemical process can lead to significant advantages in developing a sustainable chemical synthesis or process. These advantages are the direct result of being able to impart a higher degree of control on several key reactor and reaction par...

  17. Nanodispersed Oxides-Plasma-Chemical Synthesis and Properties

    Institute of Scientific and Technical Information of China (English)

    Gheorghi VISSOKOV; Katerina ZAHARIEVA


    We discuss the plasma-chemical synthesis and the properties of transition metals oxides, Al2O3, SiO2, rare-earth oxides, oxides for ceramics and metal-ceramics, and oxides used as catalysts. Bearing in mind the indisputable advantages of using plasma-chemically synthesized nanodispersed oxides for the needs of various industrial fields, we set out to review the articles published in the past few years devoted to the problems of plasma-chemical synthesis and characterization of nanodispersed oxides.

  18. Novel selection methods for DNA-encoded chemical libraries. (United States)

    Chan, Alix I; McGregor, Lynn M; Liu, David R


    Driven by the need for new compounds to serve as biological probes and leads for therapeutic development and the growing accessibility of DNA technologies including high-throughput sequencing, many academic and industrial groups have begun to use DNA-encoded chemical libraries as a source of bioactive small molecules. In this review, we describe the technologies that have enabled the selection of compounds with desired activities from these libraries. These methods exploit the sensitivity of in vitro selection coupled with DNA amplification to overcome some of the limitations and costs associated with conventional screening methods. In addition, we highlight newer techniques with the potential to be applied to the high-throughput evaluation of DNA-encoded chemical libraries.

  19. Drug discovery with DNA-encoded chemical libraries. (United States)

    Buller, Fabian; Mannocci, Luca; Scheuermann, Jörg; Neri, Dario


    DNA-encoded chemical libraries represent a novel avenue for the facile discovery of small molecule ligands against target proteins of biological or pharmaceutical importance. Library members consist of small molecules covalently attached to unique DNA fragments that serve as amplifiable identification barcodes. This encoding allows the in vitro selection of ligands at subpicomolar concentrations from large library populations by affinity capture on a target protein of interest, in analogy to established technologies for the selection of binding polypeptides (e.g., antibodies). Different library formats have been explored by various groups, allowing the construction of chemical libraries comprising up to millions of DNA-encoded compounds. Libraries before and after selection have been characterized by PCR amplification of the DNA codes and subsequent relative quantification of library members using high-throughput sequencing. The most enriched compounds have then been further analyzed in biological assays, in the presence or in the absence of linked DNA. This article reviews experimental strategies used for the construction of DNA-encoded chemical libraries, revealing how selection, decoding, and hit validation technologies have been used for drug discovery programs.

  20. DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis (United States)

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra


    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  1. 20 years of DNA-encoded chemical libraries. (United States)

    Mannocci, Luca; Leimbacher, Markus; Wichert, Moreno; Scheuermann, Jörg; Neri, Dario


    The identification of specific binding molecules is a central problem in chemistry, biology and medicine. Therefore, technologies, which facilitate ligand discovery, may substantially contribute to a better understanding of biological processes and to drug discovery. DNA-encoded chemical libraries represent a new inexpensive tool for the fast and efficient identification of ligands to target proteins of choice. Such libraries consist of collections of organic molecules, covalently linked to a unique DNA tag serving as an amplifiable identification bar code. DNA-encoding enables the in vitro selection of ligands by affinity capture at sub-picomolar concentrations on virtually any target protein of interest, in analogy to established selection methodologies like antibody phage display. Multiple strategies have been investigated by several academic and industrial laboratories for the construction of DNA-encoded chemical libraries comprising up to millions of DNA-encoded compounds. The implementation of next generation high-throughput sequencing enabled the rapid identification of binding molecules from DNA-encoded libraries of unprecedented size. This article reviews the development of DNA-encoded library technology and its evolution into a novel drug discovery tool, commenting on challenges, perspectives and opportunities for the different experimental approaches.

  2. Translesion synthesis past acrolein-derived DNA adducts by human mitochondrial DNA polymerase γ. (United States)

    Kasiviswanathan, Rajesh; Minko, Irina G; Lloyd, R Stephen; Copeland, William C


    Acrolein, a mutagenic aldehyde, is produced endogenously by lipid peroxidation and exogenously by combustion of organic materials, including tobacco products. Acrolein reacts with DNA bases forming exocyclic DNA adducts, such as γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine (γ-HOPdG) and γ-hydroxy-1,N(6)-propano-2'-deoxyadenosine (γ-HOPdA). The bulky γ-HOPdG adduct blocks DNA synthesis by replicative polymerases but can be bypassed by translesion synthesis polymerases in the nucleus. Although acrolein-induced adducts are likely to be formed and persist in mitochondrial DNA, animal cell mitochondria lack specialized translesion DNA synthesis polymerases to tolerate these lesions. Thus, it is important to understand how pol γ, the sole mitochondrial DNA polymerase in human cells, acts on acrolein-adducted DNA. To address this question, we investigated the ability of pol γ to bypass the minor groove γ-HOPdG and major groove γ-HOPdA adducts using single nucleotide incorporation and primer extension analyses. The efficiency of pol γ-catalyzed bypass of γ-HOPdG was low, and surprisingly, pol γ preferred to incorporate purine nucleotides opposite the adduct. Pol γ also exhibited ∼2-fold lower rates of excision of the misincorporated purine nucleotides opposite γ-HOPdG compared with the corresponding nucleotides opposite dG. Extension of primers from the termini opposite γ-HOPdG was accomplished only following error-prone purine nucleotide incorporation. However, pol γ preferentially incorporated dT opposite the γ-HOPdA adduct and efficiently extended primers from the correctly paired terminus, indicating that γ-HOPdA is probably nonmutagenic. In summary, our data suggest that acrolein-induced exocyclic DNA lesions can be bypassed by mitochondrial DNA polymerase but, in the case of the minor groove γ-HOPdG adduct, at the cost of unprecedented high mutation rates.

  3. Design and synthesis of DNA four-helix bundles

    Energy Technology Data Exchange (ETDEWEB)

    Rangnekar, Abhijit; Gothelf, Kurt V [Department of Chemistry, Centre for DNA Nanotechnology (CDNA) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C (Denmark); LaBean, Thomas H, E-mail:, E-mail: [Department of Chemistry, Duke University, Durham, NC 27708 (United States)


    The field of DNA nanotechnology has evolved significantly in the past decade. Researchers have succeeded in synthesizing tile-based structures and using them to form periodic lattices in one, two and three dimensions. Origami-based structures have also been used to create nanoscale structures in two and three dimensions. Design and construction of DNA bundles with fixed circumference has added a new dimension to the field. Here we report the design and synthesis of a DNA four-helix bundle. It was found to be extremely rigid and stable. When several such bundles were assembled using appropriate sticky-ends, they formed micrometre-long filaments. However, when creation of two-dimensional sheet-like arrays of the four-helix bundles was attempted, nanoscale rings were observed instead. The exact reason behind the nanoring formation is yet to be ascertained, but it provides an exciting prospect for making programmable circular nanostructures using DNA.

  4. Tunable Hydrophobicity in DNA Micelles : Design, Synthesis, and Characterization of a New Family of DNA Amphiphiles

    NARCIS (Netherlands)

    Anaya, Milena; Kwak, Minseok; Musser, Andrew J.; Muellen, Klaus; Herrmann, Andreas; Müllen, Klaus


    This work describes the synthesis and characterization of a new family of DNA amphiphiles containing modified nucleobases. The hydrophobicity was imparted by the introduction of a dodec-1-yne chain at the 5-position of the uracil base, which allowed precise and simple tuning of the hydrophobic prope

  5. Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures. (United States)

    Lu, Chun-Hua; Cecconello, Alessandro; Willner, Itamar


    Interlocked circular DNA nanostructures, e.g., catenanes or rotaxanes, provide functional materials within the area of DNA nanotechnology. Specifically, the triggered reversible reconfiguration of the catenane or rotaxane structures provides a means to yield new DNA switches and to use them as dynamic scaffolds for controlling chemical functions and positioning functional cargoes. The synthesis of two-ring catenanes and their switchable reconfiguration by pH, metal ions, or fuel/anti-fuel stimuli are presented, and the functions of these systems, as pendulum or rotor devices or as switchable catalysts, are described. Also, the synthesis of three-, five-, and seven-ring catenanes is presented, and their switchable reconfiguration using fuel/anti-fuel strands is addressed. Implementation of the dynamically reconfigured catenane structures for the programmed organization of Au nanoparticle (NP) assemblies, which allows the plasmonic control of the fluorescence properties of Au NP/fluorophore loads associated with the scaffold, and for the operation of logic gates is discussed. Interlocked DNA rotaxanes and their different synthetic approaches are presented, and their switchable reconfiguration by means of fuel/anti-fuel strands or photonic stimuli is described. Specifically, the use of the rotaxane as a scaffold to organize Au NP assemblies, and the control of the fluorescence properties with Au NP/fluorophore hybrids loaded on the rotaxane scaffold, are introduced. The future prospectives and challenges in the field of interlocked DNA nanostructures and the possible applications are discussed.

  6. Analysis, synthesis and design of chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Turton, R. [West Virginia Univ., Morgantown, WV (United States); Bailie, R.C.; Whiting, W.B.


    The book illustrates key concepts through a running example from the real world: the manufacture of benzene; covers design, economic considerations, troubleshooting and health/environmental safety; and includes exclusive software for estimating chemical manufacturing equipment capital costs. This book will help chemical engineers optimize the efficiency of production processes, by providing both a philosophical framework and detailed information about chemical process design. Design is the focal point of the chemical engineering practice. This book helps engineers and senior-level students hone their design skills through process design rather than simply plant design. It introduces all the basics of process simulation. Learn how to size equipment, optimize flowsheets, evaluate the economics of projects, and plan the operation of processes. Learn how to use Process Flow Diagrams; choose the operating conditions for a process; and evaluate the performance of existing processes and equipment. Finally, understand how chemical process design impacts health, safety, the environment and the community.

  7. Synthesis, DNA binding and cytotoxic evaluation of aminoquinoline scaffolds

    Indian Academy of Sciences (India)

    Gopal Senthil Kumar; Mohamed Ashraf Ali; Tan Soo Choon; Rajendra Prasad Karnam Jayarampillai


    An effortless synthetic route has been developed for the synthesis of a new class of aminoquinoline substituted isoindolin-1,3-diones from regio-isomerical hydrazinylquinolines with phthalic anhydride in presence of Eaton’s reagent. DNA binding studies of selected isomeric compounds showed interaction withDNA via intercalation mode with higher binding affinity of 4-substituted quinolines rather than 2-substituted counterparts. Further, all compounds were screened for cytotoxic activity against three human cancer cell lines,among them compound 2c outranged standard doxorubicin against CCRF-CEM cell line.

  8. DNA microarray synthesis by using PDMS molecular stamps (Ⅲ)-- Optimization for the reaction conditions

    Institute of Scientific and Technical Information of China (English)


    Optimization for the technological processes of fabricating oligonucleotide microarray by the molecular stamping method is studied in this note. Three factors that affect the pressing coupling reactions of the nucleosides are focused on: the stability of the chemical activities of the reaction solutions, the contamination of the remain of the reactive nucleotides among the different spots on the chip, and the influence of the capping reaction on the hybridization result. The experiments show that the acetonitrile solution of tetrazole and nucleoside monomer could maintain sufficient reactive activity for more than 10 h. An effective method has been used and proved to eliminate the residual reactive nucleosides on chip with small molecules containing hydroxyl group. Finally, the capping step-- a regular step in the conventional DNA chemical synthesis can be neglected in our on-chip DNA synthetic process, which would not affect its hybridization results.

  9. Diversity-Oriented Synthesis as a Tool for Chemical Genetics

    Directory of Open Access Journals (Sweden)

    Elena Lenci


    Full Text Available Chemical genetics is an approach for identifying small molecules with the ability to induce a biological phenotype or to interact with a particular gene product, and it is an emerging tool for lead generation in drug discovery. Accordingly, there is a need for efficient and versatile synthetic processes capable of generating complex and diverse molecular libraries, and Diversity-Oriented Synthesis (DOS of small molecules is the concept of choice to give access to new chemotypes with high chemical diversity. In this review, the combination of chemical genetics and diversity-oriented synthesis to identify new chemotypes as hit compounds in chemical biology and drug discovery is reported, giving an overview of basic concepts and selected case studies.

  10. Species-specific kinetics and zonation of hepatic DNA synthesis induced by ligands of PPARalpha. (United States)

    Al Kholaifi, Abdullah; Amer, Abeer; Jeffery, Brett; Gray, Tim J B; Roberts, Ruth A; Bell, David R


    Peroxisome proliferator-activated receptor alpha (PPARalpha) ligands evoke a profound mitogenic response in rodent liver, and the aim of this study was to characterize the kinetics of induction of DNA synthesis. The CAR ligand, 1,4-bis[2-(3,5-dichoropyridyloxy)]benzene, caused induction of hepatocyte DNA synthesis within 48 h in 129S4/SvJae mice, but the potent PPARalpha ligand, ciprofibrate, induced hepatocyte DNA synthesis only after 3 or 4 days dosing; higher or lower doses did not hasten the DNA synthesis response. This contrasted with the rapid induction (24 h) reported by Styles et al., 1988, Carcinogenesis 9, 1647-1655. C57BL/6 and DBA/2J mice showed significant induction of DNA synthesis after 4, but not 2, days ciprofibrate treatment. Alderley Park and 129S4/SvJae mice dosed with methylclofenapate induced hepatocyte DNA synthesis at 4, but not 2, days after dosing and proved that inconsistency with prior work was not due to a difference in mouse strain or PPARalpha ligand. Ciprofibrate-induced liver DNA synthesis and growth was absent in PPARalpha-null mice and are PPARalpha dependent. In the Fisher344 rat, hepatocyte DNA synthesis was induced at 24 h after dosing, with a second peak at 48 h. Lobular localization of hepatocyte DNA synthesis showed preferential periportal induction of DNA synthesis in rat but panlobular zonation of hepatocyte DNA synthesis in mouse. These results characterize a markedly later hepatic induction of panlobular DNA synthesis by PPARalpha ligands in mouse, compared to rapid induction of periportal DNA synthesis in rat.

  11. His6 tag-assisted chemical protein synthesis (United States)

    Bang, Duhee; Kent, Stephen B. H.


    To make more practical the total chemical synthesis of proteins by the ligation of unprotected peptide building blocks, we have developed a method to facilitate the isolation and handling of intermediate products. The synthetic technique makes use of a His6 tag at the C terminus of the target polypeptide chain, introduced during the synthesis of the C-terminal peptide segment building block. The presence of a His6 tag enables the isolation of peptide or protein products directly from ligation reaction mixtures by Ni-NTA affinity column purification. This simple approach enables facile buffer exchange to alternate reaction conditions and is compatible with direct analytical control by protein MS of the multiple ligation steps involved in protein synthesis. We used syntheses of crambin and a modular tetratricopeptide repeat protein of 17 kDa as models to examine the utility of this affinity purification approach. The results show that His6 tag-assisted chemical protein synthesis is a useful method that substantially reduces handling losses and provides for rapid chemical protein syntheses. affinity purification | native chemical ligation

  12. On the Plasma-Chemical Synthesis of Nanopowders

    Institute of Scientific and Technical Information of China (English)

    G. Vissokov; Iv. Grancharov; Tsv. Tsvetanov


    This paper presents an overview of nanopowders preparation using low-temperature plasma (LTP). LTP with its unique processing capabilities provides an attractive and chemically unspecific route for powder synthesis. Nanopowders such as oxides, nitrides, carbides, catalysts and other nanopowders have been successfully synthesized in LTP reactors based on high intensity arcs, plasma jets and radio-frequency (r. f.) inductively coupled discharges.

  13. Plant biopolyester cutin: a tough way to its chemical synthesis. (United States)

    Benítez, José J; García-Segura, Rafael; Heredia, Antonio


    The chemical synthesis of an aliphatic biopolyester identical to the natural cutin which constitutes the major component of the cuticle of fruits and leaves of higher plants is for the first time achieved and reported. Potential applications of this new material is of great interest because its physical properties, non-toxicity, biodegradability, and availability of raw material.

  14. Recent advances in the chemical synthesis of RNA. (United States)

    Beaucage, Serge L; Reese, Colin B


    As a consequence largely of recent developments in RNA interference (RNAi) research, the availability of rapid and efficient methods for the chemical synthesis of RNA sequences has become a matter of considerable urgency. This unit is concerned mainly with work that has been carried out, especially in the past decade, on the design of new and improved methods of RNA synthesis. The main criteria for the choice of protecting groups for the 2'-hydroxy functions of the ribonucleoside building blocks, which is arguably the most crucial strategic decision to be made, are discussed. A number of new ether-, acetal-, orthoester-, and ester-based 2'-protecting groups are described and their application, mainly in phosphoramidite-based solid-phase synthesis, is discussed in some detail. Brief consideration is also given to solution-phase RNA synthesis, which may well prove to be of great importance if a systemic drug is developed and multikilogram quantities of synthetic RNA sequences are required.

  15. Replication stress activates DNA repair synthesis in mitosis. (United States)

    Minocherhomji, Sheroy; Ying, Songmin; Bjerregaard, Victoria A; Bursomanno, Sara; Aleliunaite, Aiste; Wu, Wei; Mankouri, Hocine W; Shen, Huahao; Liu, Ying; Hickson, Ian D


    Oncogene-induced DNA replication stress has been implicated as a driver of tumorigenesis. Many chromosomal rearrangements characteristic of human cancers originate from specific regions of the genome called common fragile sites (CFSs). CFSs are difficult-to-replicate loci that manifest as gaps or breaks on metaphase chromosomes (termed CFS 'expression'), particularly when cells have been exposed to replicative stress. The MUS81-EME1 structure-specific endonuclease promotes the appearance of chromosome gaps or breaks at CFSs following replicative stress. Here we show that entry of cells into mitotic prophase triggers the recruitment of MUS81 to CFSs. The nuclease activity of MUS81 then promotes POLD3-dependent DNA synthesis at CFSs, which serves to minimize chromosome mis-segregation and non-disjunction. We propose that the attempted condensation of incompletely duplicated loci in early mitosis serves as the trigger for completion of DNA replication at CFS loci in human cells. Given that this POLD3-dependent mitotic DNA synthesis is enhanced in aneuploid cancer cells that exhibit intrinsically high levels of chromosomal instability (CIN(+)) and replicative stress, we suggest that targeting this pathway could represent a new therapeutic approach.

  16. Synthesis, photochemical properties and DNA binding studies of dna cleaving agents based on chiral dipyridine dihydrodioxins salts (United States)

    Shamaev, Alexei

    Control of chemical reactions becomes especially challenging when chemical processes have to work within the complexity of biological environments. This is one of the reasons why the ability to design "caged" molecules with structure, reactivity, and biological activity that can be activated externally by light continues to draw significant attention, from both the practical and fundamental points of view. Possible applications of such molecules include design of molecular machines and switches, logic gate mimics, optical sensors, drug delivery systems, etc. Since "caged" molecules are of particular use for processes that occur in biochemical systems and in the environment, interesting light-sensitive systems, anti-cancer drugs, have been developed recently to control DNA cleavage. Caged molecules may interact with or bind with DNA and can be classified by their mechanism of action. Each of these classes of molecules has a different structure and interacts with DNA in a different way, but some molecules can combine several functionalities. The preponderance of caged molecules, anti-cancer drugs, capable of DNA cleavage or their metabolites incorporate Electron Transfer (ET) functionalities, which play important roles in physiological responses. These main groups include quinones (or phenolic precursors), metal complexes, aromatic nitro compounds (or reduced derivatives), and conjugated imines (or iminium species). Redox cycling with oxygen can occur giving rise to Oxidation Stress (OS) through generation of Reactive Oxygen Species (ROS) which can contribute to drug efficacy or can lead to undesirable toxicity. In some cases, ET results in interference with normal electron transport chains. In this work a series of caged molecules-chiral Pyrene Dihydridioxins (PDHD)-DNA chiral DNA intecalators and PDHD-metal complexes bearing masked o-quinone functionality activated through intramolecular ET were synthesized. The o-quinone release and intramolecular ET can be easily

  17. Targeting deubiquitinases enabled by chemical synthesis of proteins. (United States)

    Ohayon, Shimrit; Spasser, Liat; Aharoni, Amir; Brik, Ashraf


    Ubiquitination/ubiquitylation is involved in a wide range of cellular processes in eukaryotes, such as protein degradation and DNA repair. Ubiquitination is a reversible post-translational modification, with the removal of the ubiquitin (Ub) protein being catalyzed by a family of enzymes known as deubiquitinases (DUBs). Approximately 100 DUBs are encoded in the human genome and are involved in a variety of regulatory processes, such as cell-cycle progression, tissue development, and differentiation. DUBs were, moreover, found to be associated with several diseases and as such are emerging as potential therapeutic targets. Several directions have been pursued in the search for lead anti-DUB compounds. However, none of these strategies have delivered inhibitors reaching advanced clinical stages due to several challenges in the discovery process, such as the absence of a highly sensitive and practically available high-throughput screening assay. In this study, we report on the design and preparation of a FRET-based assay for DUBs based on the application of our recent chemical method for the synthesis of Ub bioconjugates. In the assay, the ubiquitinated peptide was specifically labeled with a pair of FRET labels and used to screen a library comprising 1000 compounds against UCH-L3. Such analysis identified a novel and potent inhibitor able to inhibit this DUB in time-dependent manner with k(inact) = 0.065 min(-1) and K(i) = 0.8 μM. Our assay, which was also found suitable for the UCH-L1 enzyme, should assist in the ongoing efforts targeting the various components of the ubiquitin system and studying the role of DUBs in health and disease.

  18. Computational method and system for modeling, analyzing, and optimizing DNA amplification and synthesis (United States)

    Vandersall, Jennifer A.; Gardner, Shea N.; Clague, David S.


    A computational method and computer-based system of modeling DNA synthesis for the design and interpretation of PCR amplification, parallel DNA synthesis, and microarray chip analysis. The method and system include modules that address the bioinformatics, kinetics, and thermodynamics of DNA amplification and synthesis. Specifically, the steps of DNA selection, as well as the kinetics and thermodynamics of DNA hybridization and extensions, are addressed, which enable the optimization of the processing and the prediction of the products as a function of DNA sequence, mixing protocol, time, temperature and concentration of species.

  19. Microwave Technology--Applications in Chemical Synthesis (United States)

    Microwave heating, being specific and instantaneous, is unique and has found a place for expeditious chemical syntheses. Specifically, the solvent-free reactions are convenient to perform and have advantages over the conventional heating protocols as summarized in the previous se...

  20. Swelling and Replicative DNA Synthesis of Detergent-treated Mouse Ascites Sarcoma Cells

    Directory of Open Access Journals (Sweden)



    Full Text Available Previous investigation showed that mouse ascites sarcoma cells permeabilized with appropriate concentrations of detergents (Triton X-100, Nonidet P-40 and Brij 58 had high replicative DNA synthesis in the presence of the four deoxyribonucleoside triphosphates, ATP, Mg2+ and proper ionic environment. The present study showed the optimum detergent concentration for DNA synthesis coincided closely with the minimum detergent concentration for inducing cell swelling. Phase contrast microscopy and electron microscopy of Triton-permeabilized cells showed the characteristic swollen cytoplasms and nucleus. Autoradiographic study showed that the DNA synthesis in permeable cells was confined to the nucleus. Cell viability and [3H] deoxythymidine uptake were impaired at much lower concentrations of Triton X-100 than the optimum concentration for in vitro DNA synthesis. In Triton-permeabilized cells, the minimum Triton concentration that produced cell swelling also seemed to produce high repliative DNA synthesis, which reflects the in vivo state of DNA synthesis.

  1. Metabolic design for cyanobacterial chemical synthesis. (United States)

    Oliver, John W K; Atsumi, Shota


    Photosynthetic chemical production in cyanobacteria is a promising technology for renewable energy, CO2 mitigation, and fossil fuel replacement. Metabolic engineering has enabled a direct biosynthetic process from CO2 fixation to chemical feedstocks and biofuels, without requiring costly production, storage, and breakdown of cellulose or sugars. However, direct production technology is challenged by a need to achieve high-carbon partitioning to products in order to be competitive. This review discusses principles for the design of biosynthetic pathways in cyanobacteria and describes recent advances in relevant genetic tools. This field is at a critical juncture in assessing the strength and feasibility of carbon partitioning. To address this, we have included the stoichiometry of reducing equivalents and carbon conservation for heterologous pathways, and a method for calculating product yields against a theoretical maximum.

  2. Synthesis of Ethyl Salicylate Using Household Chemicals (United States)

    Solomon, Sally; Hur, Chinhyu; Lee, Alan; Smith, Kurt


    Ethyl salicylate is synthesized, isolated, and characterized in a three-step process using simple equipment and household chemicals. First, acetylsalicylic acid is extracted from aspirin tablets with isopropyl alcohol, then hydrolyzed to salicylic acid with muriatic acid, and finally, the salicylic acid is esterified using ethanol and a boric acid catalyst. The experiment can be directed towards high school or university level students who have sufficient background in organic chemistry to recognize the structures and reactions that are involved.

  3. Synthesis, spectral and quantum chemical studies and use of (E)-3-[(3,5-bis(trifluoromethyl)phenylimino)methyl]benzene-1,2-diol and its Ni(II) and Cu(II) complexes as an anion sensor, DNA binding, DNA cleavage, anti-microbial, anti-mutagenic and anti-cancer agent (United States)

    Ünver, Hüseyin; Boyacıoğlu, Bahadır; Zeyrek, Celal Tuğrul; Yıldız, Mustafa; Demir, Neslihan; Yıldırım, Nuray; Karaosmanoğlu, Oğuzhan; Sivas, Hülya; Elmalı, Ayhan


    We report the synthesis of a novel Schiff base (E)-3-[(3,5-bis(trifluoromethyl) phenylimino)methyl] benzene-1,2-diol from the reaction of 2,3-dihydroxybenzaldehyde with 3,5-bis(trifluoromethyl)aniline, and its Ni(II) and Cu(II) complexes. The molecular structure of the Schiff base was experimentally determined using X-ray single-crystal data and was compared to the structure predicted by theoretical calculations using density functional theory (DFT), Hartree-Fock (HF) and Möller-Plesset second-order perturbation (MP2). In addition, nonlinear optical (NLO) effects of the compound was predicted using DFT. The antimicrobial activities of the compounds were investigated for their minimum inhibitory concentration. UV-Vis spectroscopy studies of the interactions between the compounds and calf thymus DNA (CT-DNA) showed that the compounds interacts with CT-DNA via intercalative binding. A DNA cleavage study showed that the Cu(II) complex cleaved DNA without any external agents. The compounds inhibited the base pair mutation in the absence of S9 with high inhibition rate. In addition, in vitro cytotoxicity of the Ni(II) complex towards HepG2 cell line was assayed by the MTT method. Also, the colorimetric response of the Schiff base in DMSO to the addition of equivalent amount of anions (F-, Br-, I-, CN-, SCN-, ClO4-, HSO4-, AcO-, H2PO4-, N3- and OH-) was investigated. In this regard, while the addition of F-, CN-, AcO- and OH- anions into the solution containing Schiff base resulted in a significant color change, the addition of Br-, I-, SCN-, ClO4-, HSO4-, H2PO4- and N3- anions resulted in no color change. The most discernable color change in the Schiff base was caused by CN-, which demonstrated that the ligand can be used to selectively detect CN-.

  4. Differential chromosomal and mitochondrial DNA synthesis in temperature-sensitive mutants of Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.


    The amount and type of residual DNA synthesis was determined in eight temperature-sensitive mutants of the smut fungus Ustilago maydis after incubation at the restrictive temperature (32/sup 0/C) for eight hours. Mutants ts-220, ts-207, ts-432 and ts-346 were found to have an overall reduction in the synthesis of both nuclear and mitochondrial DNA in comparison to the wild-type. In mutants ts-20, tsd 1-1, ts-84 and pol 1-1 nuclear DNA synthesis was depressed relative to mitochondrial synthesis. The DNA-polymerase mutant pol 1-1 had persistent nuclear synthesis at about 50% of the rate of synthesis of mitochondrial DNA and similar behavior was observed in a diploid homozygous strain. Mutant ts-84 had an initial burst of DNA synthesis which was reduced for nuclear but not mitochondrial synthesis after three hours preincubation at 32/sup 0/C. tsd 1-1 and ts-20 had nuclear residual synthesis amounting to about 25% of the relative rate of mitochondrial synthesis which correlates to increasing UV sensitivity of these strains on incubation at 32/sup 0/C. A pol 1-1 ts-84 double mutant had an additive loss of nuclear DNA synthesis which indicates that the steps of replication involved may be sequential.

  5. Studies on bleomycin-induced repair DNA synthesis in permeable mouse ascites sarcoma cells.

    Directory of Open Access Journals (Sweden)



    Full Text Available To study the mechanism of DNA excision repair, a DNA repair system employing permeable mouse sarcoma (SR-C3H/He cells was established and characterized. SR-C3H/He cells were permeabilized with a 0.0175% Triton X-100 solution. The permeable cells were treated with 1 mM ATP and 0.11 mM bleomycin, and then washed thoroughly to remove ATP and bleomycin. Repair DNA synthesis occurred in the bleomycin-damaged, permeable SR-C3H/He cells when incubated with ATP and four deoxyribonucleoside triphosphates. The repair nature of the DNA synthesis was confirmed by the BrdUMP density shift technique, and by the reduced sensitivity of the newly synthesized DNA to Escherichia coli exonuclease III. The DNA synthesis was optimally enhanced by addition of 0.08 M NaCl. Studies using selective inhibitors of DNA synthesis showed that aphidicolin-sensitive DNA polymerase (DNA polymerase alpha and/or delta and DNA polymerase beta were involved in the repair process. The present DNA repair system is thought to be useful to study nuclear DNA damage by bleomycin, removal of the damaged ends by an exonuclease, repair DNA synthesis by DNA polymerases and repair patch ligation by DNA ligase(s.

  6. RNA polymerase motors on DNA track: effects of traffic congestion on RNA synthesis

    CERN Document Server

    Tripathi, Tripti


    RNA polymerase (RNAP) is an enzyme that synthesizes a messenger RNA (mRNA) strand which is complementary to a single-stranded DNA template. From the perspective of physicists, an RNAP is a molecular motor that utilizes chemical energy input to move along the track formed by a ssDNA. In some circumstances, which are described in this paper, a large number of RNAPs move simultaneously along the same track. We refer to such collective movements of the RNAPs as RNAP traffic because of the similarities between the collective dynamics of the RNAPs on ssDNA track and that of vehicles in highway traffic. In this paper we develop a theoretical model for RNAP traffic by incorporating the steric interactions between RNAPs as well as the mechano-chemical cycle of individual RNAPs during the elongation of the mRNA. By a combination of analytical and numerical techniques, we calculate the rates of mRNA synthesis and the average density profile of the RNAPs on the ssDNA track. We also suggest novel experiments for testing o...

  7. Alternative fuels and chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)



    A DOE/PETC funded study was conducted to examine the use of a liquid phase mixed alcohol synthesis (LPMAS) plant to produce gasoline blending ethers. The LPMAS plant was integrated into three utilization scenarios: a coal fed IGCC power plant, a petroleum refinery using coke as a gasification feedstock, and a standalone natural gas fed partial oxidation plant. The objective of the study was to establish targets for the development of catalysts for the LPMAS reaction. In the IGCC scenario, syngas conversions need only be moderate because unconverted syngas is utilized by the combined cycle system. A once through LPMAS plant achieving syngas conversions in the range of 38--49% was found to be suitable. At a gas hourly space velocity of 5,000 sL/Kg-hr and a methanol:isobutanol selectivity ratio of 1.03, the target catalyst productivity ranges from 370 to 460 g iBuOH/Kg-hr. In the petroleum refinery scenario, high conversions ({approximately}95%) are required to avoid overloading the refinery fuel system with low Btu content unconverted syngas. To achieve these high conversions with the low H{sub 2}/CO ratio syngas, a recycle system was required (because of the limit imposed by methanol equilibrium), steam was injected into the LPMAS reactor, and CO{sub 2} was removed from the recycle loop. At the most economical recycle ratio, the target catalyst productivity is 265 g iBuOH/Kg-hr. In the standalone LPMAS scenario, essentially complete conversions are required to achieve a fuel balanced plant. At the most economical recycle ratio, the target catalyst productivity is 285 g iBuOH/Kg-hr. The economics of this scenario are highly dependent on the cost of the natural gas feedstock and the location of the plant. For all three case scenarios, the economics of a LPMAS plant is marginal at current ether market prices. Large improvements over demonstrated catalyst productivity and alcohol selectivity are required.

  8. Meteorites - A petrologic-chemical synthesis (United States)

    Dodd, Robert T.

    In this book, an attempt has been made to summarize current knowledge and understanding about meteorites in a manner comprehensible to both professional scientists and university students. Attention is given to the flux of meteoritic material, major meteorite types, sources of meteorites, the recovery of meteorites, meteorite nomenclature, and literature. The chemistry and classification of the chondrites is considered along with details regarding carbonaceous chondrites, ordinary chondrites, the enstatite chondrite-achondrite association, and questions regarding time and process in the evolution of chondrites. The eucrite association is discussed, taking into account eucrites, diogenites, howardites, mesosiderites, the radiometric ages of eucrites and their associates, and the chemical evolution of the eucrite association. Differentiated meteorites are considered along with source objects, and parent bodies.

  9. Universal strategies for the DNA-encoding of libraries of small molecules using the chemical ligation of oligonucleotide tags. (United States)

    Litovchick, Alexander; Clark, Matthew A; Keefe, Anthony D


    The affinity-mediated selection of large libraries of DNA-encoded small molecules is increasingly being used to initiate drug discovery programs. We present universal methods for the encoding of such libraries using the chemical ligation of oligonucleotides. These methods may be used to record the chemical history of individual library members during combinatorial synthesis processes. We demonstrate three different chemical ligation methods as examples of information recording processes (writing) for such libraries and two different cDNA-generation methods as examples of information retrieval processes (reading) from such libraries. The example writing methods include uncatalyzed and Cu(I)-catalyzed alkyne-azide cycloadditions and a novel photochemical thymidine-psoralen cycloaddition. The first reading method "relay primer-dependent bypass" utilizes a relay primer that hybridizes across a chemical ligation junction embedded in a fixed-sequence and is extended at its 3'-terminus prior to ligation to adjacent oligonucleotides. The second reading method "repeat-dependent bypass" utilizes chemical ligation junctions that are flanked by repeated sequences. The upstream repeat is copied prior to a rearrangement event during which the 3'-terminus of the cDNA hybridizes to the downstream repeat and polymerization continues. In principle these reading methods may be used with any ligation chemistry and offer universal strategies for the encoding (writing) and interpretation (reading) of DNA-encoded chemical libraries.

  10. Induction of DNA repair synthesis by ultraviolet radiation and methylmethanesulphonate in cultured mouse lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, V.; Zantedeschi, A.; Levis, A.G. (Padua Univ. (Italy). Ist. di Zoologia e Anatomia Comparata); Ronchese, F. (Inst. of Pathological Anatomy, Padua (Italy))


    The induction of DNA repair synthesis by UV-radiation and methylmethanesulphonate (MMS) was studied in mouse lymphocytes and leukemic cells by means of autoradiography and scintillation counting, after labelling in vitro with tritiated thymidine ((/sup 3/H)dThd). Repair stimulation was detected by both procedures in LSTRA AND YC8 leukemic cell lines as well as in primary fibroblasts of BALB/c and BALB/Mo mice. No stimulation was observed in primary cultures of lymphocytes from the spleen, thymus and lymph-nodes of the same mice. In primary lymphocytes neither stimulation with concanavalin A (Con A) nor pre-incubation with 5-bromodeoxyuridine (BUdR) were effective in making evident DNA repair. The data put into question the reliability of the repair test for the prediction of carcinogenic potential of chemicals.

  11. N-TiO: Chemical Synthesis and Photocatalysis

    Directory of Open Access Journals (Sweden)

    Matias Factorovich


    Full Text Available The chemical synthesis of nitrogen-doped titanium dioxide (N-TiO2 is explored in an attempt to understand the mechanisms of doping. Urea is used as precursor in a sol gel synthesis of N-TiO2. Chemical and structural changes during thermal treatment of the precursors were followed by several techniques. The effect of doping on band gap, morphology, and microstructure was also determined. The byproducts produced during firing correspond to those obtained during urea thermal decomposition. Polynitrogenated colored compounds produced at temperatures below 400°C may act as sensitizer. Incorporation of N in the TiO2 structure is possible at higher temperatures. Degradation experiments of salicylic acid under UVA and visible light (>400 nm in the presence of TiO2 or N-TiO2 indicate that doping decreases the activity under UVA light, while stable byproducts are produced under visible light.

  12. Adaptation and validation of DNA synthesis detection by fluorescent dye derivatization for high-throughput screening. (United States)

    Ranall, Max V; Gabrielli, Brian G; Gonda, Thomas J


    Cellular proliferation is fundamental to organism development, tissue renewal, and diverse disease states such as cancer. In vitro measurement of proliferation by high-throughput screening allows rapid characterization of the effects of small-molecule or genetic treatments on primary and established cell lines. Current assays that directly measure the cell cycle are not amenable to high-throughput processing and analysis. Here we report the adaptation of the chemical method for detecting DNA synthesis by 5-ethynyl-2'-deoxyuridine (EdU) incorporation into both high-throughput liquid handling and high-content imaging analysis. We demonstrate that chemical detection of EdU incorporation is effective for high-resolution analysis and quantitation of DNA synthesis by high-content imaging. To validate this assay platform we used treatments of MCF10A cells with media supplements and pharmacological inhibitors that are known to affect cell proliferation. Treatments with specific kinase inhibitors indicate that EGF and serum stimulation employs both the mitogen extracellular kinase (MEK)/extracellular-regulated kinase (ERK) and phosphoinositol-3 kinase (PI3K)/AKT signaling networks. As described here, this method is fast, reliable, and inexpensive and yields robust data that can be easily interpreted.

  13. Architectural self-construction in nature and chemical synthesis. (United States)

    Sorensen, Erik J


    The chemistry of squalene oxide (1) exemplifies that architectural complexity can be encoded in the structures of relatively simple, polyunsaturated molecules. When the concept of architectural self-construction is an integral part of the design of a chemical synthesis, powerful strategies can be uncovered. this article addresses studies which showed that polyunsaturated, 19-membered ring carbocycle contains all of the molecular information that is required to give the stereochemically complex polycyclic architecture of the cytotoxic natural product FR182877.

  14. Peptide Synthesis on a Next-Generation DNA Sequencing Platform. (United States)

    Svensen, Nina; Peersen, Olve B; Jaffrey, Samie R


    Methods for displaying large numbers of peptides on solid surfaces are essential for high-throughput characterization of peptide function and binding properties. Here we describe a method for converting the >10(7) flow cell-bound clusters of identical DNA strands generated by the Illumina DNA sequencing technology into clusters of complementary RNA, and subsequently peptide clusters. We modified the flow-cell-bound primers with ribonucleotides thus enabling them to be used by poliovirus polymerase 3D(pol) . The primers hybridize to the clustered DNA thus leading to RNA clusters. The RNAs fold into functional protein- or small molecule-binding aptamers. We used the mRNA-display approach to synthesize flow-cell-tethered peptides from these RNA clusters. The peptides showed selective binding to cognate antibodies. The methods described here provide an approach for using DNA clusters to template peptide synthesis on an Illumina flow cell, thus providing new opportunities for massively parallel peptide-based assays.

  15. Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals. (United States)

    Dhamankar, Himanshu; Prather, Kristala L J


    The dwindling nature of petroleum and other fossil reserves has provided impetus towards microbial synthesis of fuels and value added chemicals from biomass-derived sugars as a renewable resource. Microbes have naturally evolved enzymes and pathways that can convert biomass into hundreds of unique chemical structures, a property that can be effectively exploited for their engineering into Microbial Chemical Factories (MCFs). De novo pathway engineering facilitates expansion of the repertoire of microbially synthesized compounds beyond natural products. In this review, we visit some recent successes in such novel pathway engineering and optimization, with particular emphasis on the selection and engineering of pathway enzymes and balancing of their accessory cofactors.

  16. Synthesis and applications of 2-aminopyrimidine derivatives as key intermediates in chemical synthesis of biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Koroleva, Elena V; Gusak, K N; Ignatovich, Zh V [Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus (Belarus)


    Published data on the main approaches to the formation of the heterocyclic 2-aminopyrimidine system, which is one of important pharmacophores responsible for the biological properties of its derivatives, are described systematically. Main chemical transformations of functionalized 2-aminopyrimidines and their application in the synthesis of modern pharmaceuticals are considered.


    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A; Mitchell, A R


    C-terminal peptide {alpha}-thioesters are valuable intermediates in the synthesis/semisynthesis of proteins by native chemical ligation. They are prepared either by solid-phase peptide synthesis (SPPS) or biosynthetically by protein splicing techniques. The present paper reviews the different methods available for the chemical synthesis of peptide {alpha}-thioesters using Fmoc-based SPPS.

  18. DNA synthesis in the imaginal wing discs of the American bollworm Helicoverpa armigera (Hübner)

    Indian Academy of Sciences (India)

    A Josephrajkumar; B Subrahmanyam


    The effect of two insect growth regulators of plant origin viz. plumbagin and azadirachtin and the ecdysteroids 20-hydroxyecdysone, makisterone A and a phytoecdysteroid on DNA synthesis in imaginal wing discs of day 4 final instar Helicoverpa armigera larvae was studied. DNA synthesis increased with increase in time of incubation up to 8 h and decreased later without the addition of moulting hormone. Addition of 20-hydroxyecdysone supported long term acquisition of competence for DNA synthesis in the wing discs. Both DNA synthesis and protein content were drastically reduced in plumbagin and azadirachtin-treated insects. Under in vitro conditions, plumbagin had a more pronounced inhibitory effect than azadirachtin. All the ecdysteroids tested, viz. makisterone A, 20-hydroxyecdysone and the ecdysteroidal fraction from the silver fern Cheilanthes farinosa enhanced DNA synthesis.

  19. Multi-line split DNA synthesis: a novel combinatorial method to make high quality peptide libraries

    Directory of Open Access Journals (Sweden)

    Ueno Shingo


    Full Text Available Abstract Background We developed a method to make a various high quality random peptide libraries for evolutionary protein engineering based on a combinatorial DNA synthesis. Results A split synthesis in codon units was performed with mixtures of bases optimally designed by using a Genetic Algorithm program. It required only standard DNA synthetic reagents and standard DNA synthesizers in three lines. This multi-line split DNA synthesis (MLSDS is simply realized by adding a mix-and-split process to normal DNA synthesis protocol. Superiority of MLSDS method over other methods was shown. We demonstrated the synthesis of oligonucleotide libraries with 1016 diversity, and the construction of a library with random sequence coding 120 amino acids containing few stop codons. Conclusions Owing to the flexibility of the MLSDS method, it will be able to design various "rational" libraries by using bioinformatics databases.

  20. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. (United States)

    Lewis, Samantha C; Uchiyama, Lauren F; Nunnari, Jodi


    Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, hundreds to thousands of mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis--events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids are necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria.

  1. Bleomycin-induced DNA synthesis in a cell-free system using a permeable mouse sarcoma cell Extract.

    Directory of Open Access Journals (Sweden)



    Full Text Available To investigate factors involved in excision repair DNA synthesis, a soluble extract was prepared from permeable mouse sarcoma (SR-C3H/He cells by homogenization and ultracentrifugation. DNA synthesis measured by using native calf thymus DNA as the template-primer and the extract as the polymerase source showed low activity. The DNA synthesis was enhanced more than ten-fold by the addition of an appropriate concentration of bleomycin, a radiomimetic DNA-damaging drug. Using selective inhibitors of DNA polymerases, it was shown that the DNA polymerase involved in the bleomycin-induced DNA synthesis was DNA polymerase beta. In addition to DNA polymerase beta, an exonuclease which converts bleomycin-damaged DNA into suitable template-primers for repair DNA synthesis appeared to be present in the permeable cell extract.

  2. Chemical synthesis of peptides within the insulin superfamily. (United States)

    Liu, Fa; Zaykov, Alexander N; Levy, Jay J; DiMarchi, Richard D; Mayer, John P


    The synthesis of insulin has inspired fundamental advances in the art of peptide science while simultaneously revealing the structure-function relationship of this centrally important metabolic hormone. This review highlights milestones in the chemical synthesis of insulin that can be divided into two separate approaches: (i) disulfide bond formation driven by protein folding and (ii) chemical reactivity-directed sequential disulfide bond formation. Common to the two approaches are the persistent challenges presented by the hydrophobic nature of the individual A-chain and B-chain and the need for selective disulfide formation under mildly oxidative conditions. The extension and elaboration of these synthetic approaches have been ongoing within the broader insulin superfamily. These structurally similar peptides include the insulin-like growth factors and also the related peptides such as relaxin that signal through G-protein-coupled receptors. After a half-century of advances in insulin chemistry, we have reached a point where synthesis is no longer limiting structural and biological investigation within this family of peptide hormones. The future will increasingly focus on the refinement of structure to meet medicinal purposes that have long been pursued, such as the development of a glucose-sensitive insulin. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


    Institute of Scientific and Technical Information of China (English)

    陈晓光; 韩锐


    Glycyrrhetinic acid (GA) is an active component of Glycyrrhiza uraleusis fisch. In this study, GA was found to inhibit ear edema and ornithine decarboxykase (ODC)activity induced by croton oil in mice. GA could also protect rapid DNA damage and decrease the unscheduled DNA synthesis induced by benzo(α)pyrene, The results demonstrate that GA has a potential cancer chemopreventive activity.

  4. Cold Spring Harbor symposia on quantitative biology. Volume XLVII, Part 1. Structures of DNA

    Energy Technology Data Exchange (ETDEWEB)


    The proceedings for the 47th Annual Cold Spring Harbor Symposia on Quantitative Biology are presented. This symposium focused on the Structure of DNA. Topics presented covered research in the handedness of DNA, conformational analysis, chemically modified DNA, chemical synthesis of DNA, DNA-protein interactions, DNA within nucleosomes, DNA methylation, DNA replication, gyrases and topoisomerases, recombining and mutating DNA, transcription of DNA and its regulation, the organization of genes along DNA, repetitive DNA and pseudogenes, and origins of replication, centromeres, and teleomeres.

  5. Synthesis, DNA binding and topoisomerase inhibition of mononaphthalimide homospermidine derivatives

    Institute of Scientific and Technical Information of China (English)

    Zhi Yong Tian; Hong Xia Ma; Song Qiang Xie; Xue Wang; Jin Zhao; Chao Jie Wang; Wen Yuan Gao


    Two novel mononaphthalimide homospermidine derivatives (2a, 2b) with three or four methylene unit as linkages weresynthesized and evaluated for cytotoxicity against human leukemia K562, murine melanoma B 16 and Chinese hamster ovary CHOcell lines. The presence of homospermidine motif could greatly elevate the potency of 1,8-naphthalimide. Conjugate 2b with longerspacer exhibited higher in vitro cytotoxicity than 2a. The DNA binding experiments indicated that conjugates 2b could bind toherring sperm DNA. The topoisomerase Ⅱ poison trials revealed that 2b could inhibit the activity of top. Ⅱ.2008 Chao Jie Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  6. Nerve growth factor enhances DNA synthesis in cultured cerebellar neuroblasts. (United States)

    Confort, C; Charrasse, S; Clos, J


    The cerebellar neuroblasts in primary cultures from five-day-old rats bore NGF receptor immunoreactivity, suggesting a potential responsive to NGF. At low plating density, NGF was found to enhance DNA synthesis in these cells in a dose-dependent manner. As these cells synthesize NGF, one possibility to account for the lack of response of neuroblasts plated at high density is that the amount of endogenous trophic agent produced in this culture condition is sufficient to ensure an optimal effect. The results demonstrate that premitotic neuroblasts in the CNS, as well postmitotic neurons, are responsive to NGF. At the early stage of its development, the cerebellum therefore appears to be a very good autocrine model of NGF action.

  7. Inhibition of adenovirus DNA synthesis in vitro by sera from patients with systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, M.S.; Friefeld, B.R.; Keiser, H.D.


    Sera containing antinuclear antibodies from patients with systemic lupus erythematosus (SLE) and related disorders were tested for their effect on the synthesis of adenovirus (Ad) DNA in an in vitro replication system. After being heated at 60/sup 0/C for 1 h, some sera from patients with SLE inhibited Ad DNA synthesis by 60 to 100%. Antibodies to double-stranded DNA were present in 15 of the 16 inhibitory sera, and inhibitory activity copurified with anti-double-stranded DNA in the immunoglobulin G fraction. These SLE sera did not inhibit the DNA polymerases ..cap alpha.., BETA, ..gamma.. and had no antibody to the 72,000-dalton DNA-binding protein necessary for Ad DNA synthesis. The presence of antibodies to single-stranded DNA and a variety of saline-extractable antigens (Sm, Ha, nRNP, and rRNP) did not correlate with SLE serum inhibitory activity. Methods previously developed for studying the individual steps in Ad DNA replication were used to determine the site of inhibition by the SLE sera that contained antibody to double-stranded DNA. Concentrations of the SLE inhibitor that decreased the elongation of Ad DNA by greater than 85% had no effect on either the initiation of Ad DNA synthesis or the polymerization of the first 26 deoxyribonucleotides.

  8. Synthesis and characterization of nanoparticles of CZTSe by microwave-assited chemical synthesis (United States)

    Reyes Vallejo, O.; Sánchez, Mónica; Pal, Mou; Espinal, R.; Llorca, Jordi; Sebastian, P. J.


    In this study we present the synthesis of Cu2ZnSnSe4 (CZTSe) nanoparticles by microwave-assisted chemical synthesis employing organic solvents. The effect of reaction time, reactant concentration, solvent and additives (inorganic material) was studied on the structural and optical properties of the nanomaterials. The powder samples were analyzed by x-ray diffraction, Raman spectroscopy, x-ray energy dispersive spectroscopy and x-ray photoelectron spectroscopy. The results show that the synthesis performed with triethanolamine and deionized water is better than others solvents, producing nanocrystals of quaternary phase (CZTSe) with stoichiometric relations similar to the reported research in the literature, which falls in the range of Cu/(Zn+Sn): 0.8-1.0, Zn/Sn: 1.0-1.20. The nanoparticles of CZTSe synthesized in this study present desirable properties in order to use them in solar cell and photoelectrochemical cell applications.

  9. A New Direct Single-Molecule Observation Method for DNA Synthesis Reaction Using Fluorescent Replication Protein A

    Directory of Open Access Journals (Sweden)

    Shunsuke Takahashi


    Full Text Available Using a single-stranded region tracing system, single-molecule DNA synthesis reactions were directly observed in microflow channels. The direct single-molecule observations of DNA synthesis were labeled with a fusion protein consisting of the ssDNA-binding domain of a 70-kDa subunit of replication protein A and enhanced yellow fluorescent protein (RPA-YFP. Our method was suitable for measurement of DNA synthesis reaction rates with control of the ssλDNA form as stretched ssλDNA (+flow and random coiled ssλDNA (−flow via buffer flow. Sequentially captured photographs demonstrated that the synthesized region of an ssλDNA molecule monotonously increased with the reaction time. The DNA synthesis reaction rate of random coiled ssλDNA (−flow was nearly the same as that measured in a previous ensemble molecule experiment (52 vs. 50 bases/s. This suggested that the random coiled form of DNA (−flow reflected the DNA form in the bulk experiment in the case of DNA synthesis reactions. In addition, the DNA synthesis reaction rate of stretched ssλDNA (+flow was approximately 75% higher than that of random coiled ssλDNA (−flow (91 vs. 52 bases/s. The DNA synthesis reaction rate of the Klenow fragment (3’-5’exo– was promoted by DNA stretching with buffer flow.

  10. Interacting RNA polymerase motors on DNA track: effects of traffic congestion and intrinsic noise on RNA synthesis

    CERN Document Server

    Tripathi, Tripti


    RNA polymerase (RNAP) is an enzyme that synthesizes a messenger RNA (mRNA) strand which is complementary to a single-stranded DNA template. From the perspective of physicists, an RNAP is a molecular motor that utilizes chemical energy input to move along the track formed by a DNA. In many circumstances, which are described in this paper, a large number of RNAPs move simultaneously along the same track; we refer to such collective movements of the RNAPs as RNAP traffic. Here we develop a theoretical model for RNAP traffic by incorporating the steric interactions between RNAPs as well as the mechano-chemical cycle of individual RNAPs during the elongation of the mRNA. By a combination of analytical and numerical techniques, we calculate the rates of mRNA synthesis and the average density profile of the RNAPs on the DNA track. We also introduce, and compute, two new measures of {\\it fluctuations} in the synthesis of RNA. Analyzing these fluctuations, we show how the level of intrinsic noise in mRNA synthesis dep...

  11. Small targeted cytotoxics from DNA-encoded chemical libraries. (United States)

    Samain, Florent; Casi, Giulio


    Conventional chemotherapeutic drugs do not selectively localize to tumors, causing undesired toxicities to healthy organs, and precluding the escalation to therapeutically active regimens. The selective delivery at sites of disease of potent effector molecules represents a promising strategy for the treatment of cancer and other diseases. High affinity antibodies towards disease-associated antigens are currently the vehicles of choice for the targeted delivery of payloads. Low molecular weight ligands have the potential to overcome some of the intrinsic limitations associated with antibodies, and have recently been proposed for the development of a novel class of targeted therapeutics. However, the identification of binding molecules, which display high affinity properties and exquisite specificity against protein of therapeutic interest, remains a great challenge. DNA-encoded chemical library technology relies on small molecule libraries of unprecedented size to identify high affinity ligands towards specific target proteins, and could help in the development of next generation targeted cytotoxics.

  12. Chemical Synthesis and Electrochemical Characterization of Nanoporous Gold films

    DEFF Research Database (Denmark)

    Christiansen, Mikkel U-B; Seselj, Nedjeljko; Engelbrekt, Christian

    Nanoporous gold (NPG) is conventionally made via dealloying methods1. We present an alternative method for bottom-up chemical synthesis of nanoporous gold film (cNPGF), with properties resembling those of dealloyed NPG. The developed procedure is simple and only benign chemicals are used....... Chloroauric acid is reduced to nanoparticles (NPs) by 2-(N-morpholino)ethanesulfonate, acting also as a protecting agent for the NPs and as a pH buffer, while potassium chloride is used to control ionic strength. The film formation is controlled by parameters such as temperature, ionic strength...... and protonation of the buffer. Therefore, it is possible to influence the trapping of nanoparticles at the air-liquid interface, yielding porous thin film structures, Figure 1A. The produced cNPGFs have been investigated by atomic force microscopy (AFM), transmission electron microscopy (TEM) and cyclic...

  13. Method for innovative synthesis-design of chemical process flowsheets

    DEFF Research Database (Denmark)

    Kumar Tula, Anjan; Gani, Rafiqul

    of chemical processes, where, chemical process flowsheets could be synthesized in the same way as atoms or groups of atoms are synthesized to form molecules in computer aided molecular design (CAMD) techniques [4]. That, from a library of building blocks (functional process-groups) and a set of rules to join......, the implementation of the computer-aided process-group based flowsheet synthesis-design framework is presented together with an extended library of flowsheet property models to predict the environmental impact, safety factors, product recovery and purity, which are employed to screen the generated alternatives. Also...... flowsheet (the well-known Hydrodealkylation of toluene process) and another for a biochemical process flowsheet (production of ethanol from lignocellulose). In both cases, not only the reported designs are found and matched, but also new innovative designs are found, which is possible because...

  14. Synthesis, characterization, DNA binding, DNA cleavage, protein binding and cytotoxic activities of Ru(II) complexes. (United States)

    Thota, Sreekanth; Vallala, Srujana; Yerra, Rajeshwar; Rodrigues, Daniel Alencar; Raghavendra, Nulgumnalli Manjunathaiah; Barreiro, Eliezer J


    We report on the synthesis of novel Ru(II) compounds (Ru-1 to Ru-8) bearing R-pdc, 4-Cl-pbinh ligands (where R=4-CF3, 4-F, 4-OH pdc=3-phenyl-5-(1H-pyrrol-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide, pbinh=phenoxybenzylidene isonicotinyl hydrazides) and their in vitro antitumor activity toward the cell lines murine leukemia L1210, human lymphocyte CEM, human epithelial cervical carcinoma HeLa, BEL-7402 and Molt4/C8. Some of the complexes exhibited more potent antiproliferative activity against cell lines than the standard drug cisplatin. Ruthenium complex Ru-2 displayed potent cytotoxicity with than that of cisplatin. DNA-binding, DNA cleavage and protein binding properties of ruthenium complexes with these ligands are reported. Interactions of these ruthenium complexes with DNA revealed an intercalative mode of binding between them. Synchronous fluorescence spectra proved that the interaction of ruthenium complexes with bovine serum albumin (BSA) resulted in a conformational change of the latter.

  15. One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network. (United States)

    Wei, Gang; Zhou, Hualan; Liu, Zhiguo; Song, Yonghai; Wang, Li; Sun, Lanlan; Li, Zhuang


    Here, we describe a one-step synthesis of silver nanoparticles, nanorods, and nanowires on DNA network surface in the absence of surfactant. Silver ions were first adsorbed onto the DNA network and then reduced in sodium borohydride solution. Silver nanoparticles, nanorods, and nanowires were formed by controlling the size of pores of the DNA network. The diameter of the silver nanoparticles and the aspect ratio of the silver nanorods and nanowires can be controlled by adjusting the DNA concentration and reduction time.

  16. UV-assisted photocatalytic synthesis of highly dispersed Ag nanoparticles supported on DNA decorated graphene for quantitative iodide analysis. (United States)

    Kong, Fen-Ying; Li, Wei-Wei; Wang, Jing-Yi; Wang, Wei


    Herein, we report, for the first time, the synthesis of reduced graphene oxide-DNA-Ag (RGO-DNA-Ag) nanohybrids by ultraviolet (UV) irradiation of aqueous solutions of GO and Ag ions in the presence of DNA. The morphology and microstructure characterizations of the resultant nanohybrids reveal that the proposed method leads to the simultaneous reduction of GO and Ag ions together with efficient dispersion of Ag nanoparticles on the surface of RGO sheets. This simple and fast synthesis route is carried out at ambient conditions without using any additional chemical reducing agents, which has the potential to provide new avenues for the green fabrication of various RGO-based nanomaterials. Additionally, the RGO-DNA-Ag nanohybrids can be utilized as a novel sensing interfacial for direct determination of iodide by simple differential pulse voltammetry (DPV), without requiring any preceding preconcentration of the analyte. Based on the RGO-DNA-Ag nanohybrids modified electrode, a wide linear range of 1μM-1mM and a low detection limit of 0.2μM were obtained. This sensitive and direct method of analysis can be applied successfully to the determination of iodide in real samples.

  17. Synthesis of deoxynucleoside triphosphates that include proline, urea, or sulfonamide groups and their polymerase incorporation into DNA. (United States)

    Hollenstein, Marcel


    To expand the chemical array available for DNA sequences in the context of in vitro selection, I present herein the synthesis of five nucleoside triphosphate analogues containing side chains capable of organocatalysis. The synthesis involved the coupling of L-proline-containing residues (dU(tP)TP and dU(cP)TP), a dipeptide (dU(FP)TP), a urea derivative (dU(Bpu)TP), and a sulfamide residue (dU(Bs)TP) to a suitably protected common intermediate, followed by triphosphorylation. These modified dNTPs were shown to be excellent substrates for the Vent (exo(-)) and Pwo DNA polymerases, as well as the Klenow fragment of E. coli DNA polymerase I, although they were only acceptable substrates for the 9°N(m) polymerase. All of the modified dNTPs, with the exception of dU(Bpu)TP, were readily incorporated into DNA by the polymerase chain reaction (PCR). Modified oligonucleotides efficiently served as templates for PCR for the regeneration of unmodified DNA. Thermal denaturation experiments showed that these modifications are tolerated in the major groove. Overall, these heavily modified dNTPs are excellent candidates for SELEX.

  18. DNA and RNA Synthesis in Animal Cells in Culture--Methods for Use in Schools (United States)

    Godsell, P. M.; Balls, M.


    Describes the experimental procedures used for detecting DNA and RNA synthesis in xenopus cells by autoradiography. The method described is suitable for senior high school laboratory classes or biology projects, if supervised by a teacher qualified to handle radioisotopes. (JR)

  19. Effect of DNA polymerase inhibitors on DNA repair in intact and permeable human fibroblasts: Evidence that DNA polymerases. delta. and. beta. are involved in DNA repair synthesis induced by N-methyl-N prime -nitro-N-nitrosoguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, R.A.; Miller, M.R. (West Virginia Univ. Health Sciences Center, Morgantown (USA)); McClung, J.K. (Samuel Roberts Noble Foundation, Inc., East Ardmore, OK (USA))


    The involvement of DNA polymerases {alpha}, {beta}, and {delta} in DNA repair synthesis induced by N-methyl-N{prime}-nitro-N-nitrosoguanidine (MNNG) was investigated in human fibroblasts (HF). The effects of anti-(DNA polymerase {alpha}) monoclonal antibody, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), dideoxythymidine triphosphate (ddTTP), and aphidicolin on MNNG-induced DNA repair synthesis were investigated to dissect the roles of the different DNA polymerases. A subcellular system (permeable cells), in which DNA repair synthesis and DNA replication were differentiated by CsCl gradient centrifugation of BrdUMP density-labeled DNA, was used to examine the effects of the polymerase inhibitors. Another approach investigated the effects of several of these inhibitors of MNNG-induced DNA repair synthesis in intact cells by measuring the amount of ({sup 3}H)thymidine incorporated into repair DNA as determined by autoradiography and quantitation with an automated video image analysis system. In permeable cells, MNNG-induced DNA repair synthesis was inhibited 56% by 50 {mu}g of aphidicolin/mL, 6% by 10 {mu}M BuPdGTP, 13% by anti-(DNA polymerse {alpha}) monoclonal antibodies, and 29% by ddTTP. In intact cells, MNNG-induced DNA repair synthesis was inhibited 57% by 50 {mu}g of aphidicolin/mL and was not significantly inhibited by microinjecting anti-(DNA polymerase {alpha}) antibodies into HF nuclei. These results indicate that both DNA polymerase {delta} and {beta} are involved in repairing DNA damage caused by MNNG.

  20. Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids. (United States)

    Potdar, Mahesh K; Kelso, Geoffrey F; Schwarz, Lachlan; Zhang, Chunfang; Hearn, Milton T W


    Over the past decade, a variety of ionic liquids have emerged as greener solvents for use in the chemical manufacturing industries. Their unique properties have attracted the interest of chemists worldwide to employ them as replacement for conventional solvents in a diverse range of chemical transformations including biotransformations. Biocatalysts are often regarded as green catalysts compared to conventional chemical catalysts in organic synthesis owing to their properties of low toxicity, biodegradability, excellent selectivity and good catalytic performance under mild reaction conditions. Similarly, a selected number of specific ionic liquids can be considered as greener solvents superior to organic solvents owing to their negligible vapor pressure, low flammability, low toxicity and ability to dissolve a wide range of organic and biological substances, including proteins. A combination of biocatalysts and ionic liquids thus appears to be a logical and promising opportunity for industrial use as an alternative to conventional organic chemistry processes employing organic solvents. This article provides an overview of recent developments in this field with special emphasis on the application of more sustainable enzyme-catalyzed reactions and separation processes employing ionic liquids, driven by advances in fundamental knowledge, process optimization and industrial deployment.

  1. Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Mahesh K. Potdar


    Full Text Available Over the past decade, a variety of ionic liquids have emerged as greener solvents for use in the chemical manufacturing industries. Their unique properties have attracted the interest of chemists worldwide to employ them as replacement for conventional solvents in a diverse range of chemical transformations including biotransformations. Biocatalysts are often regarded as green catalysts compared to conventional chemical catalysts in organic synthesis owing to their properties of low toxicity, biodegradability, excellent selectivity and good catalytic performance under mild reaction conditions. Similarly, a selected number of specific ionic liquids can be considered as greener solvents superior to organic solvents owing to their negligible vapor pressure, low flammability, low toxicity and ability to dissolve a wide range of organic and biological substances, including proteins. A combination of biocatalysts and ionic liquids thus appears to be a logical and promising opportunity for industrial use as an alternative to conventional organic chemistry processes employing organic solvents. This article provides an overview of recent developments in this field with special emphasis on the application of more sustainable enzyme-catalyzed reactions and separation processes employing ionic liquids, driven by advances in fundamental knowledge, process optimization and industrial deployment.

  2. In vitro synthesis of ribosomal proteins directed by Escherichia coli DNA. (United States)

    Kaltschmidt, E; Kahan, L; Nomura, M


    In vitro synthesis of a number of E. coli 30S ribosomal proteins has been demonstrated in a cell-free system consisting of ribosomes, initiation factors, RNA polymerase, a fraction containing soluble enzymes and factors, and E. coli DNA. DNA-dependent synthesis of the following 30S proteins has been demonstrated: S4, S5, S7, S8, S9, S10, S13, S14, S16, S19, and S20.

  3. DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. (United States)

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J; Xing, Chao; Wang, Richard C; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R; Burstein, Ezra


    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations that disrupt nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts the expression of POLA1, which encodes the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency resulted in increased production of type I interferons. This enzyme is necessary for the synthesis of RNA:DNA primers during DNA replication and, strikingly, we found that POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Together this work identifies POLA1 as a critical regulator of the type I interferon response.

  4. Synthesis of Codon-optimized Human Interleukin-18 Gene by Combination of Chemical and Enzymatic Method

    Institute of Scientific and Technical Information of China (English)

    GAO Chao-hui; SHI Xiao-yue; HOU Xin-tong; MENG Qing-fan; Zhang Ying-jiu; TENG Li-rong


    According to the amino acid sequence and codon preference of E,coli,the human interleukin-18(IL-18)gene was optimized to avoid the rare codons,The total length of the synthesized gene is 571 bp;18 oligonucleotides,DNA fragments were designed and synthesized by the phosphoramidite four-step chemical method,The whole DNAsequence was synthesized by a one-step total gene synthesis method,and then inserted in pUC18 vector,Five positive clones identified by blue-white colony screening were sent to Shanghai Sangon Biological Engineering Technology and Service Co.,Ltd,for sequencing,The sequencing result shows that one clone contained the complete correct gene in all the five positive clones.

  5. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. (United States)

    Kosuri, Sriram; Eroshenko, Nikolai; Leproust, Emily M; Super, Michael; Way, Jeffrey; Li, Jin Billy; Church, George M


    Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.

  6. DNA-encoded chemical libraries: foundations and applications in lead discovery. (United States)

    Zimmermann, Gunther; Neri, Dario


    DNA-encoded chemical libraries have emerged as a powerful tool for hit identification in the pharmaceutical industry and in academia. Similar to biological display techniques (such as phage display technology), DNA-encoded chemical libraries contain a link between the displayed chemical building block and an amplifiable genetic barcode on DNA. Using routine procedures, libraries containing millions to billions of compounds can be easily produced within a few weeks. The resulting compound libraries are screened in a single test tube against proteins of pharmaceutical interest and hits can be identified by PCR amplification of DNA barcodes and subsequent high-throughput sequencing.

  7. Inhibition of mouse peritoneal macrophage DNA synthesis by infection with the Arenavirus Pichinde. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, A.M.; Jahrling, P.B.; Merrill, P.; Tobery, S.


    Macrophage DNA synthesis and proliferation occur during the development of cell-mediated immunity and in the early non-specific reaction to infection. Arenaviruses have a predilection for infection of cells of the reticuloendothelial system and in this study we have examined the effect of the arenavirus Pichinde on macrophage DNA synthesis. We have found that infection of mouse peritoneal macrophages with Pichinde caused a profound dose dependent inhibition of the DNA synthesis induced by macrophage growth factor/colony stimulating factor. At a multiplicity of inoculum of five there is a 75-95% inhibition of DNA synthesis. Viable virus is necessary for inhibition since Pichinde inactivated by heat or cobalt irradiation had no effect. Similarly, virus pre-treated with an antiserum to Pichinde was without inhibitory effect. Inhibition was demonstrated by measuring DNA synthesis spectrofluorometrically as well as by 3H-thymidine incorporation. The inhibition of DNA synthesis was not associated with any cytopathology. There was no evidence that the inhibition was due to soluble factors, such as prostaglandins or interferon, released by infected cells. These studies demonstrate, for the first time in vitro, a significant alteration in macrophage function caused by infection with an arenavirus. It is possible that inhibition of macrophage proliferation represents a mechanism by which some microorganisms interfere with host resistance.

  8. Modern catalysis in the synthesis of some pharmaceuticals and fine chemicals


    Petrović Slobodan D.; Mišić-Vuković Milica M.; Mijin Dušan Ž.


    Catalysis in the synthesis of Pharmaceuticals and line chemicals nowadays becomes more and more important. Synthesis that minimizes wastes is important from the economical aspect, as well as from the environmental aspect. "Green chemistry" or "green technology" is an effort to protect the environment by increasing the efficiency of the overall synthetic processes in the chemical industry by minimizing or eliminating wasteful by-products. Modern catalytic methods in the synthesis of some Pharm...

  9. Effect of Microwave Radiation on Enzymatic and Chemical Peptide Bond Synthesis on Solid Phase

    Directory of Open Access Journals (Sweden)

    Alessandra Basso


    Full Text Available Peptide bond synthesis was performed on PEGA beads under microwave radiations. Classical chemical coupling as well as thermolysin catalyzed synthesis was studied, and the effect of microwave radiations on reaction kinetics, beads' integrity, and enzyme activity was assessed. Results demonstrate that microwave radiations can be profitably exploited to improve reaction kinetics in solid phase peptide synthesis when both chemical and biocatalytic strategies are used.

  10. DNA replication initiation, doubling of rate of phospholipid synthesis, and cell division in Escherichia coli.


    Joseleau-Petit, D; Képès, F; Peutat, L; D'Ari, R; Képès, A


    In synchronized culture of Escherichia coli, the specific arrest of phospholipid synthesis (brought about by glycerol starvation in an appropriate mutant) did not affect the rate of ongoing DNA synthesis but prevented the initiation of new rounds. The initiation block did not depend on cell age at the time of glycerol removal, which could be before, during, or after the doubling in the rate of phospholipid synthesis (DROPS) and as little as 10 min before the expected initiation. We conclude t...

  11. RecG Directs DNA Synthesis during Double-Strand Break Repair.

    Directory of Open Access Journals (Sweden)

    Benura Azeroglu


    Full Text Available Homologous recombination provides a mechanism of DNA double-strand break repair (DSBR that requires an intact, homologous template for DNA synthesis. When DNA synthesis associated with DSBR is convergent, the broken DNA strands are replaced and repair is accurate. However, if divergent DNA synthesis is established, over-replication of flanking DNA may occur with deleterious consequences. The RecG protein of Escherichia coli is a helicase and translocase that can re-model 3-way and 4-way DNA structures such as replication forks and Holliday junctions. However, the primary role of RecG in live cells has remained elusive. Here we show that, in the absence of RecG, attempted DSBR is accompanied by divergent DNA replication at the site of an induced chromosomal DNA double-strand break. Furthermore, DNA double-stand ends are generated in a recG mutant at sites known to block replication forks. These double-strand ends, also trigger DSBR and the divergent DNA replication characteristic of this mutant, which can explain over-replication of the terminus region of the chromosome. The loss of DNA associated with unwinding joint molecules previously observed in the absence of RuvAB and RecG, is suppressed by a helicase deficient PriA mutation (priA300, arguing that the action of RecG ensures that PriA is bound correctly on D-loops to direct DNA replication rather than to unwind joint molecules. This has led us to put forward a revised model of homologous recombination in which the re-modelling of branched intermediates by RecG plays a fundamental role in directing DNA synthesis and thus maintaining genomic stability.

  12. Chemical Precipitation Synthesis and Thermoelectric Properties of Copper Sulfide (United States)

    Wu, Sixin; Jiang, Jing; Liang, Yinglin; Yang, Ping; Niu, Yi; Chen, Yide; Xia, Junfeng; Wang, Chao


    Earth-abundant copper sulfide compounds have been intensively studied as potential thermoelectric materials due to their high dimensionless figure of merit ZT values. They have a unique phonon-liquid electron-crystal model that helps to achieve high thermoelectric performance. Many methods, such as melting and ball-milling, have been adopted to synthesize this copper sulfide compound, but they both use expensive starting materials with high purity. Here, we develop a simple chemical precipitation approach to synthesize copper sulfide materials through low-cost analytically pure compounds as the starting materials. A high ZT value of 0.93 at 800 K was obtained from the samples annealed at 1273 K. Its power factor is around 8.0 μW cm-1 K-2 that is comparable to the highest record reported by traditional methods. But, the synthesis here has been greatly simplified with reduced cost, which will be of great benefit to the potential mass production of thermoelectric devices. Furthermore, this method can be applied to the synthesis of other sulfur compound thermoelectric materials.

  13. An optimized chemical synthesis of human relaxin-2. (United States)

    Barlos, Kostas K; Gatos, Dimitrios; Vasileiou, Zoe; Barlos, Kleomenis


    Human gene 2 relaxin (RLX) is a member of the insulin superfamily and is a multi-functional factor playing a vital role in pregnancy, aging, fibrosis, cardioprotection, vasodilation, inflammation, and angiogenesis. RLX is currently applied in clinical trials to cure among others acute heart failure, fibrosis, and preeclampsia. The synthesis of RLX by chemical methods is difficult because of the insolubility of its B-chain and the required laborious and low yielding site-directed combination of its A (RLXA) and B (RLXB) chains. We report here that oxidation of the Met(25) residue of RLXB improves its solubility, allowing its effective solid-phase synthesis and application in random interchain combination reactions with RLXA. Linear Met(O)(25)-RLX B-chain (RLXBO) reacts with a mixture of isomers of bicyclic A-chain (bcRLXA) giving exclusively the native interchain combination. Applying this method Met(O)(25)-RLX (RLXO) was obtained in 62% yield and was easily converted to RLX in 78% yield, by reduction with ammonium iodide.

  14. Soft chemical synthesis of silicon nanosheets and their applications (United States)

    Nakano, Hideyuki; Ikuno, Takashi


    Two-dimensional silicon nanomaterials are expected to show different properties from those of bulk silicon materials by virtue of surface functionalization and quantum size effects. Since facile fabrication processes of large area silicon nanosheets (SiNSs) are required for practical applications, a development of soft chemical synthesis route without using conventional vacuum processes is a challenging issue. We have recently succeeded to prepare SiNSs with sub-nanometer thicknesses by exfoliating layered silicon compounds, and they are found to be composed of crystalline single-atom-thick silicon layers. In this review, we present the synthesis and modification methods of SiNSs. These SiNSs have atomically flat and smooth surfaces due to dense coverage of organic moieties, and they are easily self-assembled in a concentrated state to form a regularly stacked structure. We have also characterized the electron transport properties and the electronic structures of SiNSs. Finally, the potential applications of these SiNSs and organic modified SiNSs are also reviewed.

  15. A proposed role played by benzene itself in the induction of acute cytopenia: inhibition of DNA synthesis. (United States)

    Lee, E W; Garner, C D; Johnson, J T


    A single intraperitoneal dose of benzene (880 mg/kg) in mice inhibited DNA synthesis of bone marrow cells within one hour postinjection. However, there was no inhibitory effect on the synthesis of heme and protein at that dosage. Dose-dependent inhibition of DNA synthesis by benzene was observed over the range of 440 to 1760 mg/kg, supporting the idea that cytopenia which was observed by others following multiple doses of benzene (e.g., 440 or 880 mg/kg) might be due to the inhibitory effect of benzene on DNA synthesis. In our studies, benzene concentrations above 81 micrograms/g wet bone marrow resulted in inhibition of DNA synthesis, regardless of whether it was given ip or by inhalation. The effect of benzene itself, rather than its toxic metabolites, on DNA synthesis was further seen in experiments using a bone marrow cell culture system and cell-free DNA synthetic system. Experimental results demonstrated that benzene alone was capable of inhibiting the DNA synthesis of bone marrow cells and that the reduced DNA synthesis resulted from the inhibitory effect of benzene on DNA polymerase alpha, the enzyme that catalyzes the last step of the DNA synthetic pathway. Thus, benzene itself could play a significant role in inducing myelotoxicity in the case of acute or subacute toxicity by exerting its inhibitory effect on DNA synthesis.

  16. Interacting RNA polymerase motors on a DNA track: effects of traffic congestion and intrinsic noise on RNA synthesis. (United States)

    Tripathi, Tripti; Chowdhury, Debashish


    RNA polymerase (RNAP) is an enzyme that synthesizes a messenger RNA (mRNA) strand which is complementary to a single-stranded DNA template. From the perspective of physicists, an RNAP is a molecular motor that utilizes chemical energy input to move along the track formed by DNA. In many circumstances, which are described in this paper, a large number of RNAPs move simultaneously along the same track; we refer to such collective movements of the RNAPs as RNAP traffic. Here we develop a theoretical model for RNAP traffic by incorporating the steric interactions between RNAPs as well as the mechanochemical cycle of individual RNAPs during the elongation of the mRNA. By a combination of analytical and numerical techniques, we calculate the rates of mRNA synthesis and the average density profile of the RNAPs on the DNA track. We also introduce, and compute, two different measures of fluctuations in the synthesis of RNA. Analyzing these fluctuations, we show how the level of intrinsic noise in mRNA synthesis depends on the concentrations of the RNAPs as well as on those of some of the reactants and the products of the enzymatic reactions catalyzed by RNAP. We suggest appropriate experimental systems and techniques for testing our theoretical predictions.

  17. Synergistic bombesin and insulin stimulation of DNA synthesis in human fetal kidney in serum-free culture. (United States)

    Brière, N; Chailler, P


    The respective influences of growth factors during kidney development can be directly evaluated using the chemically-defined serum-free culture system perfected in our laboratory. Since, in this culture model, conditions are minimal for growth and differentiation, DNA synthesis sharply decreases during the first 48 h. The addition of epidermal growth factor (EGF, 100 ng/ml), insulin (5 micrograms/ml) and transferrin (5 micrograms/ml) significantly restores this important cellular function. The objective of the present study was to determine the influence of bombesin, a potent mitogen, supplemented alone or in combination with insulin, transferrin and/or EGF. Cortical explants of human fetal kidneys (17-20 weeks) were maintained during 5 days in culture. When compared with 5 day controls (L-15 medium only), bombesin generated a maximal though weak effect on DNA synthesis at a concentration of 0.3 nM, corresponding to a stimulation index (SI) of 22%. When combined with either transferrin or EGF, or with transferrin plus EGF, bombesin did not alter the SI of individual factors. Insulin, in turn, greatly increased DNA synthesis (SI = 169%), while bombesin strongly potentiated this effect (SI = 275%). Transferrin also enhanced insulin SI from 169 to 240%. When added as a third factor, bombesin further potentiated the effectiveness (SI = 338%) of the combination insulin plus transferrin. These results indicate that bombesin controls cell proliferation in synergism with other regulators and hence may act as a competence growth factor during nephrogenesis.

  18. Frontiers and Approaches to Chemical Synthesis of Oligodeoxyribonucleotides



    The advantages and disadvantages of existing approaches to the synthesis of oligodeoxyribonucleotides (ODN) are discussed focusing on large-scale methods. The liquid phase and solid supported synthesis and the synthesis on soluble polymers are discussed. Different problems concerning the methods and implementation of the ODN synthesis are outlined depending on goals of using target oligomers.

  19. Genome Calligrapher: A Web Tool for Refactoring Bacterial Genome Sequences for de Novo DNA Synthesis. (United States)

    Christen, Matthias; Deutsch, Samuel; Christen, Beat


    Recent advances in synthetic biology have resulted in an increasing demand for the de novo synthesis of large-scale DNA constructs. Any process improvement that enables fast and cost-effective streamlining of digitized genetic information into fabricable DNA sequences holds great promise to study, mine, and engineer genomes. Here, we present Genome Calligrapher, a computer-aided design web tool intended for whole genome refactoring of bacterial chromosomes for de novo DNA synthesis. By applying a neutral recoding algorithm, Genome Calligrapher optimizes GC content and removes obstructive DNA features known to interfere with the synthesis of double-stranded DNA and the higher order assembly into large DNA constructs. Subsequent bioinformatics analysis revealed that synthesis constraints are prevalent among bacterial genomes. However, a low level of codon replacement is sufficient for refactoring bacterial genomes into easy-to-synthesize DNA sequences. To test the algorithm, 168 kb of synthetic DNA comprising approximately 20 percent of the synthetic essential genome of the cell-cycle bacterium Caulobacter crescentus was streamlined and then ordered from a commercial supplier of low-cost de novo DNA synthesis. The successful assembly into eight 20 kb segments indicates that Genome Calligrapher algorithm can be efficiently used to refactor difficult-to-synthesize DNA. Genome Calligrapher is broadly applicable to recode biosynthetic pathways, DNA sequences, and whole bacterial genomes, thus offering new opportunities to use synthetic biology tools to explore the functionality of microbial diversity. The Genome Calligrapher web tool can be accessed at  .

  20. Does trans-lesion synthesis explain the UV-radiation resistance of DNA synthesis in C. elegans embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Phil; Reddy, Jennifer; Svendsen, Betty-Ann (Texas Christian Univ., Fort Worth, TX (United States). Dept. of Biology)


    Over 10-fold larger fluences were required to inhibit both DNA synthesis and cell division in wild-type C.elegans embryos as compared with other model systems or C.elegans rad mutants. In addition, unlike in other organisms, the molecular weight of daughter DNA strands was reduced only after large, superlethal fluences. The molecular weight of nascent DNA fragments exceeded the interdimer distance by up to 19-fold, indicating that C.elegans embryos can replicate through non-instructional lesions. This putative trans-lesion synthetic capability may explain the refractory nature of UV-radiation on embryonic DNA synthesis and nuclear division in C.elegans. (author). 42 refs.; 7 figs.

  1. The POLD3 subunit of DNA polymerase δ can promote translesion synthesis independently of DNA polymerase ζ


    Hirota, Kouji; Yoshikiyo, Kazunori; Guilbaud, Guillaume; Tsurimoto, Toshiki; Murai, Junko; Tsuda, Masataka; Phillips, Lara G.; Narita, Takeo; Nishihara, Kana; Kobayashi, Kaori; Yamada, Kouich; Nakamura, Jun; Pommier, Yves; Lehmann, Alan; Sale, Julian E.


    The replicative DNA polymerase Polδ consists of a catalytic subunit POLD1/p125 and three regulatory subunits POLD2/p50, POLD3/p66 and POLD4/p12. The ortholog of POLD3 in Saccharomyces cerevisiae, Pol32, is required for a significant proportion of spontaneous and UV-induced mutagenesis through its additional role in translesion synthesis (TLS) as a subunit of DNA polymerase ζ. Remarkably, chicken DT40 B lymphocytes deficient in POLD3 are viable and able to replicate undamaged genomic DNA with ...

  2. Relationship between unscheduled DNA synthesis and mutation induction in male mice

    Energy Technology Data Exchange (ETDEWEB)

    Sega, G. A.


    Unscheduled DNA synthesis (UDS) induced in the germ cells of male mice by chemical and physical agents can be studied in vivo by making use of the timing of spermatogenesis and spermiogenesis. In meiotic and post-meiotic germ-cell stages UDS occurs from leptotene through mid-spermatid stages but is not detected in later stages. No consistent correlation has been seen between the occurrence of UDS in the germ cells and reduced dominant-lethal frequencies or reduced specific-locus mutation frequencies. It is suggested that the UDS observed in the germ cells may be principally involved in the removal of DNA lesions which, if left, could give rise to subtle genetic damage that current mammalian genetic tests may not be able to detect. Characterization of mouse stocks with reduced UDS capability in their germ cells plus the development of biochemical genetic markers that can measure single amino acid substitutions will likely be necessary before the relationship between UDS in mammalian germ cells and repair of genetic damage can be clearly established.

  3. Discovery of small-molecule interleukin-2 inhibitors from a DNA-encoded chemical library. (United States)

    Leimbacher, Markus; Zhang, Yixin; Mannocci, Luca; Stravs, Michael; Geppert, Tim; Scheuermann, Jörg; Schneider, Gisbert; Neri, Dario


    Libraries of chemical compounds individually coupled to encoding DNA tags (DNA-encoded chemical libraries) hold promise to facilitate exceptionally efficient ligand discovery. We constructed a high-quality DNA-encoded chemical library comprising 30,000 drug-like compounds; this was screened in 170 different affinity capture experiments. High-throughput sequencing allowed the evaluation of 120 million DNA codes for a systematic analysis of selection strategies and statistically robust identification of binding molecules. Selections performed against the tumor-associated antigen carbonic anhydrase IX (CA IX) and the pro-inflammatory cytokine interleukin-2 (IL-2) yielded potent inhibitors with exquisite target specificity. The binding mode of the revealed pharmacophore against IL-2 was confirmed by molecular docking. Our findings suggest that DNA-encoded chemical libraries allow the facile identification of drug-like ligands principally to any protein of choice, including molecules capable of disrupting high-affinity protein-protein interactions.

  4. Gap-directed translesion DNA synthesis of an abasic site on circular DNA templates by a human replication complex.

    Directory of Open Access Journals (Sweden)

    Giuseppe Villani

    Full Text Available DNA polymerase ε (pol ε is believed to be the leading strand replicase in eukaryotes whereas pols λ and β are thought to be mainly involved in re-synthesis steps of DNA repair. DNA elongation by the human pol ε is halted by an abasic site (apurinic/apyrimidinic (AP site. We have previously reported that human pols λ, β and η can perform translesion synthesis (TLS of an AP site in the presence of pol ε. In the case of pol λ and β, this TLS requires the presence of a gap downstream from the product synthetized by the ε replicase. However, since these studies were conducted exclusively with a linear DNA template, we decided to test whether the structure of the template could influence the capacity of the pols ε, λ, β and η to perform TLS of an AP site. Therefore, we have investigated the replication of damaged "minicircle" DNA templates. In addition, replication of circular DNA requires, beyond DNA pols, the processivity clamp PCNA, the clamp loader replication factor C (RFC, and the accessory proteins replication protein A (RPA. Finally we have compared the capacity of unmodified versus monoubiquitinated PCNA in sustaining TLS by pols λ and η on a circular template. Our results indicate that in vitro gap-directed TLS synthesis by pols λ and β in the presence of pol ε, RPA and PCNA is unaffected by the structure of the DNA template. Moreover, monoubiquitination of PCNA does not affect TLS by pol λ while it appears to slightly stimulate TLS by pol η.

  5. Enzymatic Synthesis of Rhamnose Containing Chemicals by Reverse Hydrolysis.

    Directory of Open Access Journals (Sweden)

    Lili Lu

    Full Text Available Rhamnose containing chemicals (RCCs are widely occurred in plants and bacteria and are known to possess important bioactivities. However, few of them were available using the enzymatic synthesis method because of the scarcity of the α-L-rhamnosidases with wide acceptor specificity. In this work, an α-L-rhamnosidase from Alternaria sp. L1 was expressed in Pichia pastroris strain GS115. The recombinant enzyme was purified and used to synthesize novel RCCs through reverse hydrolysis in the presence of rhamnose as donor and mannitol, fructose or esculin as acceptors. The effects of initial substrate concentrations, reaction time, and temperature on RCC yields were investigated in detail when using mannitol as the acceptor. The mannitol derivative achieved a maximal yield of 36.1% by incubation of the enzyme with 0.4 M L-rhamnose and 0.2 M mannitol in pH 6.5 buffers at 55°C for 48 h. In identical conditions except for the initial acceptor concentrations, the maximal yields of fructose and esculin derivatives reached 11.9% and 17.9% respectively. The structures of the three derivatives were identified to be α-L-rhamnopyranosyl-(1→6'-D-mannitol, α-L-rhamnopyranosyl-(1→1'-β-D-fructopyranose, and 6,7-dihydroxycoumarin α-L-rhamnopyranosyl-(1→6'-β-D-glucopyranoside by ESI-MS and NMR spectroscopy. The high glycosylation efficiency as well as the broad acceptor specificity of this enzyme makes it a powerful tool for the synthesis of novel rhamnosyl glycosides.

  6. Synthesis and Characterization of Chemically Etched Nanostructured Silicon

    KAUST Repository

    Mughal, Asad Jahangir


    Silicon is an essential element in today’s modern world. Nanostructured Si is a more recently studied variant, which has currently garnered much attention. When its spatial dimensions are confined below a certain limit, its optical properties change dramatically. It transforms from an indirect bandgap material that does not absorb or emit light efficiently into one which can emit visible light at room temperatures. Although much work has been conducted in understanding the properties of nanostructured Si, in particular porous Si surfaces, a clear understanding of the origin of photoluminescence has not yet been produced. Typical synthesis approaches used to produce nanostructured Si, in particular porous Si and nanocrystalline Si have involved complex preparations used at high temperatures, pressures, or currents. The purpose of this thesis is to develop an easier synthesis approach to produce nanostructured Si as well as arrive at a clearer understanding of the origin of photoluminescence in these systems. We used a simple chemical etching technique followed by sonication to produce nanostructured Si suspensions. The etching process involved producing pores on the surface of a Si substrate in a solution containing hydrofluoric acid and an oxidant. Nanocrystalline Si as well as nanoscale amorphous porous Si suspensions were successfully synthesized using this process. We probed into the phase, composition, and origin of photoluminescence in these materials, through the use of several characterization techniques. TEM and SEM were used to determine morphology and phase. FT-IR and XPS were employed to study chemical compositions, and steady state and time resolved optical spectroscopy techniques were applied to resolve their photoluminescent properties. Our work has revealed that the type of oxidant utilized during etching had a significant impact on the final product. When using nitric acid as the oxidant, we formed nanocrystalline Si suspensions composed of

  7. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis. (United States)

    Levring, Trine B; Kongsbak, Martin; Rode, Anna K O; Woetmann, Anders; Ødum, Niels; Bonefeld, Charlotte Menné; Geisler, Carsten


    Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined. The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys2. Vice-versa, the GSH synthesis inhibitor L-buthionine-sulfoximine (BSO) and inhibition of Cys2 uptake with glutamate inhibited GSH and DNA synthesis in parallel. We further found that thioredoxin (Trx) can partly substitute for GSH during DNA synthesis. Finally, we show that GSH or Trx is required for the activity of ribonucleotide reductase (RNR), the enzyme responsible for generation of the deoxyribonucleotide DNA building blocks. In conclusion, we show that activated human T cells require exogenous Cys2 to proliferate and that this is partly explained by the fact that Cys2 is required for production of GSH, which in turn is required for optimal RNR-mediated deoxyribonucleotide synthesis and DNA replication.

  8. Controlled oxidation of iron nanoparticles in chemical vapour synthesis (United States)

    Ruusunen, Jarno; Ihalainen, Mika; Koponen, Tarmo; Torvela, Tiina; Tenho, Mikko; Salonen, Jarno; Sippula, Olli; Joutsensaari, Jorma; Jokiniemi, Jorma; Lähde, Anna


    In the present study, iron oxide nanoparticles (primary particle size of 80-90 nm) with controlled oxidation state were prepared via an atmospheric pressure chemical vapour synthesis (APCVS) method. Iron pentacarbonyl [Fe(CO)5], a precursor material, was thermally decomposed to iron in the APCVS reactor. Subsequently, the iron was oxidized with controlled amount of oxygen in the reactor to produce nearly pure magnetite or haematite particles depending on the oxygen concentration. Size, morphology and crystal structure of the synthesized nanoparticles were studied with scanning mobility particle sizer (SMPS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). In addition, thermodynamic equilibrium calculations and computational fluid dynamics model were used to predict the oxidation state of the iron oxides and the reaction conditions during mixing. Aggregates of crystalline particles were formed, determined as magnetite at the oxygen volumetric fraction of 0.1 % and haematite at volumetric fraction of 0.5 %, according to the XRD. The geometric mean electrical mobility diameter of the aggregates increased from 110 to 155 nm when the volumetric fraction of oxygen increased from 0.1 to 0.5 %, determined using the SMPS. The aggregates were highly sintered based on TEM analyses. As a conclusion, APCVS method can be used to produce nearly pure crystalline magnetite or haematite nanoparticles with controlled oxidation in a continuous one-stage gas-phase process.

  9. Radiation chemical synthesis and characterization of UO 2 nanoparticles (United States)

    Roth, Olivia; Hasselberg, Hanna; Jonsson, Mats


    In a deep repository for spent nuclear fuel, U(VI)(aq) released upon dissolution of the fuel matrix could, in reducing parts of the system, be converted to U(IV) species which might coalesce and form nanometer-sized UO 2 particles. This type of particles is expected to have different properties compared to bulk UO 2(s). Hence, their properties, in particular the capacity for oxidant consumption, must be investigated in order to assess the effects of formation of such particles in a deep repository. In this work, methods for radiation chemical synthesis of nanometer-sized UO 2 particles, by electron- and γ-irradiation of U(VI) solutions, are presented. Electron-irradiation proved to be the most efficient method, showing high conversions of U(VI) and yielding small particles with a narrow size distribution (22-35 nm). Stable colloidal suspensions were obtained at low pH and ionic strength (pH 3, I = 0.03). Furthermore, the reactivity of the produced UO 2 particles towards H 2O 2 is investigated. The U(IV) fraction in the produced particles was found to be ˜20% of the total uranium content, and the results show that the UO 2 nanoparticles are significantly more reactive than micrometer-sized UO 2 when it comes to H 2O 2 consumption, the major part of the H 2O 2 being catalytically decomposed on the particle surface.

  10. 3D printing of versatile reactionware for chemical synthesis. (United States)

    Kitson, Philip J; Glatzel, Stefan; Chen, Wei; Lin, Chang-Gen; Song, Yu-Fei; Cronin, Leroy


    In recent decades, 3D printing (also known as additive manufacturing) techniques have moved beyond their traditional applications in the fields of industrial manufacturing and prototyping to increasingly find roles in scientific research contexts, such as synthetic chemistry. We present a general approach for the production of bespoke chemical reactors, termed reactionware, using two different approaches to extrusion-based 3D printing. This protocol describes the printing of an inert polypropylene (PP) architecture with the concurrent printing of soft material catalyst composites, using two different 3D printer setups. The steps of the PROCEDURE describe the design and preparation of a 3D digital model of the desired reactionware device and the preparation of this model for use with fused deposition modeling (FDM) type 3D printers. The protocol then further describes the preparation of composite catalyst-silicone materials for incorporation into the 3D-printed device and the steps required to fabricate a reactionware device. This combined approach allows versatility in the design and use of reactionware based on the specific needs of the experimental user. To illustrate this, we present a detailed procedure for the production of one such reactionware device that will result in the production of a sealed reactor capable of effecting a multistep organic synthesis. Depending on the design time of the 3D model, and including time for curing and drying of materials, this procedure can be completed in ∼3 d.

  11. Chemical Synthesis of Proanthocyanidins in Vitro and Their Reactions in Aging Wines

    Directory of Open Access Journals (Sweden)

    Qiu-Hong Pan


    Full Text Available Proanthocyanidins are present in many fruits and plant products like grapes and wine, and contribute to their taste and health benefits. In the past decades of years, substantial progresses has been achieved in the identification of composition and structure of proanthocyanidins, but the debate concerning the existence of an enzymatic or nonenzymatic mechanism for proanthocyanidin condensation still goes on. Substantial attention has been paid to elucidating the potential mechanism of formation by means of biomimetic and chemical synthesis in vitro. The present paper aims at summarizing the research status on chemical synthesis of proanthocyanidins, including non-enzymatic synthesis of proanthocyanidin precursors, chemical synthesis of proanthocyanidins with direct condensation of flavanols and stereoselective synthesis of proanthocyanidins. Proanthocyanidin-involved reactions in aging wines are also reviewed such as direct and indirect reactions among proanthocyanidins, flavanols and anthocyanins. Topics for future research in this field are also put forward in this paper.


    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Tijrn


    This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced


    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Tijrn


    This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced

  14. Bringing the science of proteins into the realm of organic chemistry: total chemical synthesis of SEP (synthetic erythropoiesis protein). (United States)

    Kent, Stephen B H


    Erythropoietin, commonly known as EPO, is a glycoprotein hormone that stimulates the production of red blood cells. Recombinant EPO has been described as "arguably the most successful drug spawned by the revolution in recombinant DNA technology". Recently, the EPO glycoprotein molecule has re-emerged as a major target of synthetic organic chemistry. In this article I will give an account of an important body of earlier work on the chemical synthesis of a designed EPO analogue that had full biological activity and improved pharmacokinetic properties. The design and synthesis of this "synthetic erythropoiesis protein" was ahead of its time, but has gained new relevance in recent months. Here I will document the story of one of the major accomplishments of synthetic chemistry in a more complete way than is possible in the primary literature, and put the work in its contemporaneous context.

  15. DNA synthesis in mouse brown adipose tissue is under. beta. -adrenergic control

    Energy Technology Data Exchange (ETDEWEB)

    Rehnmark, S.; Nedergaard, J. (Univ. of Stockholm (Sweden))


    The rate of DNA synthesis in mouse brown adipose tissue was followed with injections of ({sup 3}H)thymidine. Cold exposure led to a large increase in the rate of ({sup 3}H)thymidine incorporation, reaching a maximum after 8 days, after which the activity abruptly ceased. A series of norepinephrine injections was in itself able to increase ({sup 3}H)thymidine incorporation. When norepinephrine was injected in combination with the {alpha}-adrenergic antagonist phentolamine or with the {beta}-adrenergic antagonist propranolol, the stimulation was fully blocked by propranolol. It is suggested that stimulation of DNA synthesis in brown adipose tissue is a {beta}-adrenergically mediated process and that the tissue is an interesting model for studies of physiological control of DNA synthesis.

  16. Role of mucosal prostaglandins and DNA synthesis in gastric cytoprotection by luminal epidermal growth factor. (United States)

    Konturek, S J; Brzozowski, T; Piastucki, I; Dembinski, A; Radecki, T; Dembinska-Kiec, A; Zmuda, A; Gregory, H


    This study compares the effect of epidermal growth factor and prostaglandins (PGE2 or PGI2), applied topically to gastric mucosa, on gastric secretion and formation of ASA-induced gastric ulcerations in rats. Epidermal growth factor given topically in non-antisecretory doses prevented dose-dependently the formation of ASA-induced ulcers without affecting prostaglandin generation but with a significant rise in DNA synthesis in the oxyntic mucosa. The anti-ulcer effect of topical prostaglandins was also accompanied by an increase in DNA synthesis. This study indicates that topical epidermal growth factor, like PGE2 or PGI2, is cytoprotective and that this cytoprotection is not mediated by the inhibition of gastric secretion or prostaglandin formation but related to the increase in DNA synthesis in oxyntic mucosa. PMID:7030877

  17. Increment of DNA topoisomerases in chemically and virally transformed cells

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M.D.; Mladovan, A.G.; Baldi, A. (Instituto de Biologia y Medicina Experimental, Buenos Aires (Argentina))


    The activities of topoisomerases I and II were assayed in subcellular extracts obtained from nontumorigenic BALB/c 3T3 A31 and normal rat kidney (NRK) cell lines and from the same cells transformed by benzo(a)pyrene (BP-A31), Moloney (M-MSV-A31) and Kirsten (K-A31) sarcoma viruses, and simian virus 40 (SV-NRK). The enzymatic activity of topoisomerase I was monitored by the relaxation of negatively supercoiled pBR322 DNA and by the formation of covalent complexes between {sup 32}P-labeled DNA and topoisomerase I. Topoisomerase II activity was determined by decatenation of kinetoplast DNA (k-DNA). It was found that nuclear and cytoplasmic type I topoisomerase specific activities were higher in every transformed cell line than in the normal counterparts. These differences cannot be attributed to an inhibitory factor present in A31 cells. When chromatin was treated at increasing ionic strengths, the 0.4 M NaCl extract showed the highest topoisomerase I specific activity. Spontaneously transformed A31 cells showed topoisomerase I activity similar to that of extracts of cells transformed by benzo(a)pyrene. Topoisomerase II specific activity was also increased in SV-NRK cells, as judged by the assay for decatenation of k-DNA to yield minicircle DNA.

  18. High-throughput sequencing for the identification of binding molecules from DNA-encoded chemical libraries. (United States)

    Buller, Fabian; Steiner, Martina; Scheuermann, Jörg; Mannocci, Luca; Nissen, Ina; Kohler, Manuel; Beisel, Christian; Neri, Dario


    DNA-encoded chemical libraries are large collections of small organic molecules, individually coupled to DNA fragments that serve as amplifiable identification bar codes. The isolation of specific binders requires a quantitative analysis of the distribution of DNA fragments in the library before and after capture on an immobilized target protein of interest. Here, we show how Illumina sequencing can be applied to the analysis of DNA-encoded chemical libraries, yielding over 10 million DNA sequence tags per flow-lane. The technology can be used in a multiplex format, allowing the encoding and subsequent sequencing of multiple selections in the same experiment. The sequence distributions in DNA-encoded chemical library selections were found to be similar to the ones obtained using 454 technology, thus reinforcing the concept that DNA sequencing is an appropriate avenue for the decoding of library selections. The large number of sequences obtained with the Illumina method now enables the study of very large DNA-encoded chemical libraries (>500,000 compounds) and reduces decoding costs.

  19. A simple and accurate two-step long DNA sequences synthesis strategy to improve heterologous gene expression in pichia.

    Directory of Open Access Journals (Sweden)

    Jiang-Ke Yang

    Full Text Available In vitro gene chemical synthesis is a powerful tool to improve the expression of gene in heterologous system. In this study, a two-step gene synthesis strategy that combines an assembly PCR and an overlap extension PCR (AOE was developed. In this strategy, the chemically synthesized oligonucleotides were assembled into several 200-500 bp fragments with 20-25 bp overlap at each end by assembly PCR, and then an overlap extension PCR was conducted to assemble all these fragments into a full length DNA sequence. Using this method, we de novo designed and optimized the codon of Rhizopus oryzae lipase gene ROL (810 bp and Aspergillus niger phytase gene phyA (1404 bp. Compared with the original ROL gene and phyA gene, the codon-optimized genes expressed at a significantly higher level in yeasts after methanol induction. We believe this AOE method to be of special interest as it is simple, accurate and has no limitation with respect to the size of the gene to be synthesized. Combined with de novo design, this method allows the rapid synthesis of a gene optimized for expression in the system of choice and production of sufficient biological material for molecular characterization and biotechnological application.

  20. A simple and accurate two-step long DNA sequences synthesis strategy to improve heterologous gene expression in pichia. (United States)

    Yang, Jiang-Ke; Chen, Fang-Yuan; Yan, Xiang-Xiang; Miao, Li-Hong; Dai, Jiang-Hong


    In vitro gene chemical synthesis is a powerful tool to improve the expression of gene in heterologous system. In this study, a two-step gene synthesis strategy that combines an assembly PCR and an overlap extension PCR (AOE) was developed. In this strategy, the chemically synthesized oligonucleotides were assembled into several 200-500 bp fragments with 20-25 bp overlap at each end by assembly PCR, and then an overlap extension PCR was conducted to assemble all these fragments into a full length DNA sequence. Using this method, we de novo designed and optimized the codon of Rhizopus oryzae lipase gene ROL (810 bp) and Aspergillus niger phytase gene phyA (1404 bp). Compared with the original ROL gene and phyA gene, the codon-optimized genes expressed at a significantly higher level in yeasts after methanol induction. We believe this AOE method to be of special interest as it is simple, accurate and has no limitation with respect to the size of the gene to be synthesized. Combined with de novo design, this method allows the rapid synthesis of a gene optimized for expression in the system of choice and production of sufficient biological material for molecular characterization and biotechnological application.

  1. Chemical synthesis and modification of target phases of chalcogenide nanomaterials (United States)

    Sines, Ian T.

    Inorganic nanoparticles have been at the forefront of materials research in recent years due to their utility in modern technological processes. Chalcogenide nanomaterials are of particular interest because of their wide range of desirable properties for semiconductors, magnetic devices, and energy industries. Primary factors that dictate the properties of the material are the elemental composition, crystal structure, stoichiometry, crystallite size, and particle morphology. One of the most common approaches to synthesize these materials is through solution mediated routes. This approach offers unique advantages in controlling the morphology and particle size that other methods lack. This dissertation describes our recent work on exploiting solution chemical routes to control the crystal structure and composition of chalcogenide nanomaterials. We will start by discussing solution chemistry routes to synthesize non-equilibrium phases of chaclogenide nanomaterials. By using low-temperature bottom-up techniques it is possible to trap kinetically stable phases that cannot be accessed using traditional high-temperature techniques. We used solution chemistry to synthesize and characterize, for the first time, wurtzite-type MnSe. Wurtzite-type MnSe is the end-member of the highly investigated ZnxMn1-xSe solid solution, a classic magnetic semiconductor system. We will then discuss PbO-type FeS, another non-equilibrium phase that is isostructural with the superconducting phase of FeSe. We synthesized phase-pure PbO-type FeS using a low-temperature solvothermal route. We will then discuss the post-synthetic modification of chalcogenides nanomaterials. By exploiting the solubility of Se and S in tri-n-octylphosphine we can selectively extract the chalcogen from preformed chalcogenide nanomaterials. This gives chemists a technique for purification and phase-targeting of particular chalcogenide phases. This method can be modified to facilitate anion exchange. When Te is

  2. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    Energy Technology Data Exchange (ETDEWEB)

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.


    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated /sup 3/H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of /sup 3/H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture.

  3. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics. (United States)

    Ben Yehezkel, Tuval; Rival, Arnaud; Raz, Ofir; Cohen, Rafael; Marx, Zipora; Camara, Miguel; Dubern, Jean-Frédéric; Koch, Birgit; Heeb, Stephan; Krasnogor, Natalio; Delattre, Cyril; Shapiro, Ehud


    Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development.

  4. Capture of a third Mg²⁺ is essential for catalyzing DNA synthesis. (United States)

    Gao, Yang; Yang, Wei


    It is generally assumed that an enzyme-substrate (ES) complex contains all components necessary for catalysis and that conversion to products occurs by rearrangement of atoms, protons, and electrons. However, we find that DNA synthesis does not occur in a fully assembled DNA polymerase-DNA-deoxynucleoside triphosphate complex with two canonical metal ions bound. Using time-resolved x-ray crystallography, we show that the phosphoryltransfer reaction takes place only after the ES complex captures a third divalent cation that is not coordinated by the enzyme. Binding of the third cation is incompatible with the basal ES complex and requires thermal activation of the ES for entry. It is likely that the third cation provides the ultimate boost over the energy barrier to catalysis of DNA synthesis.

  5. Quantification of DNA synthesis in multicellular organisms by a combined DAPI and BrdU technique. (United States)

    Knobloch, Jürgen; Kunz, Werner; Grevelding, Christoph G


    The development of a novel method to detect and quantify mitotic activity in multicellular organisms is reported. The method is based on the combinatorial use of 4',6-diamidino-2-phenylindole (DAPI) as a dye for the specific staining of DNA and the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) as a marker for DNA synthesis. It is shown that on nitrocellulose filters, the amount of DNA can be determined by DAPI as a prerequisite for the subsequent quantification of mitotic activity by BrdU. As a model system to prove the applicability of this technique, the blood fluke Schistosoma mansoni has been used. It is demonstrated that the DNA synthesis rate is higher in adult female schistosomes than in adult males. Furthermore, dimethyl sulfoxide, a widely used solvent for many mitogens and inhibitors of mitosis, has no influence on mitotic activity in adult schistosomes.

  6. Quantitative Transcript Analysis in Plants: Improved First-strand cDNA Synthesis

    Institute of Scientific and Technical Information of China (English)

    Nai-Zhong XIAO; Lei BA; Preben Bach HOLM; Xing-Zhi WANG; Steve BOWRA


    The quantity and quality of first-strand cDNA directly influence the accuracy of transcriptional analysis and quantification. Using a plant-derived α-tubulin as a model system, the effect of oligo sequence and DTT on the quality and quantity of first-strand cDNA synthesis was assessed via a combination of semi-quantitative PCR and real-time PCR. The results indicated that anchored oligo dT significantly improved the quantity and quality of α-tubulin cDNA compared to the conventional oligo dT. Similarly, omitting DTT from the first-strand cDNA synthesis also enhanced the levels of transcript. This is the first time that a comparative analysis has been undertaken for a plant system and it shows conclusively that small changes to current protocols can have very significant impact on transcript analysis.

  7. Exploring experimental fitness landscapes for chemical synthesis and property optimization. (United States)

    Tibbetts, Katharine Moore; Feng, Xiao-Jiang; Rabitz, Herschel


    Optimization is a central goal in the chemical sciences, encompassing diverse objectives including synthesis yield, catalytic activity of a material, and binding efficiency of a molecule to a target protein. Considering the enormous size of chemical space and the expected large numbers of experiments necessary to search through it in any particular application, optimization in chemistry is surprisingly efficient. This good fortune has recently been explained by analysis of the fitness landscape, i.e., the functional relationship between a target objective J (e.g., percent yield, catalytic activity) and a suitable set of variables (e.g., resources such as reactant concentrations and processing conditions). Mathematical analysis has demonstrated that, upon satisfaction of reasonable physical assumptions, the fitness landscape contains no local sub-optimal "traps" that preclude identification of the globally best value of J, in a development called the "OptiChem" theorem. One of the key assumptions behind the theorem is that sufficient resources are available to achieve the posed optimization goal. This work assesses the validity of this assumption underlying the OptiChem theorem through examination of experimental data from the recent literature. In order to explore fitness landscapes in high dimensions where the landscape cannot be visualized, a high dimensional model representation (HDMR) of experimental data is used to construct a model landscape amenable to topology assessment via gradient algorithm search. This method is shown to correctly capture the trap-free topology of a four-dimensional landscape where the objective is to optimize the composition of a solid state material (subject to an elemental mole-fraction constraint) for catalytic activity towards the oxygen evolution reaction. Analysis of a six-dimensional landscape for the objective of maximizing the photoluminescence of rare-earth solid state materials subject to two elemental mole

  8. DNA-encoded chemistry: enabling the deeper sampling of chemical space. (United States)

    Goodnow, Robert A; Dumelin, Christoph E; Keefe, Anthony D


    DNA-encoded chemical library technologies are increasingly being adopted in drug discovery for hit and lead generation. DNA-encoded chemistry enables the exploration of chemical spaces four to five orders of magnitude more deeply than is achievable by traditional high-throughput screening methods. Operation of this technology requires developing a range of capabilities including aqueous synthetic chemistry, building block acquisition, oligonucleotide conjugation, large-scale molecular biological transformations, selection methodologies, PCR, sequencing, sequence data analysis and the analysis of large chemistry spaces. This Review provides an overview of the development and applications of DNA-encoded chemistry, highlighting the challenges and future directions for the use of this technology.

  9. Physisorption of DNA molecules on chemically modified single-walled carbon nanotubes with and without sonication. (United States)

    Umemura, Kazuo; Ishibashi, Yu; Oura, Shusuke


    We investigated the physisorption phenomenon of single-stranded DNA (ssDNA) molecules onto two types of commercially available chemically functionalized single-walled carbon nanotubes (SWNTs) by atomic force microscopy (AFM) and agarose gel electrophoresis. We found that DNA molecules can adsorb on the water-soluble SWNT surfaces without sonication, although sonication treatment has been used for hybridization of DNA and SWNTs in many previous studies. Using our method, damage of DNA molecules by sonication can be avoided. On the other hand, the amount of DNA molecules adsorbed on SWNT surfaces increased when the samples were sonicated. This fact suggests that the sonication is effective not only at debundling of SWNTs, but also at assisting DNA adsorption. Furthermore, DNA adsorption was affected by the types of functionalized SWNTs. In the case of SWNTs functionalized with polyethylene glycol (PEG-SWNT), physisorption of ssDNA molecules was confirmed only by agarose-gel electrophoresis. In contrast, amino-terminated SWNTs (NH2-SWNTs) showed a change in the height distribution profile based on AFM observations. These results suggest that DNA molecules tended to adsorb to NH2-SWNT surfaces, although DNA molecules can also adsorb on PEG-SWNT surfaces. Our results revealed fundamental information for developing nanobiodevices using hybrids of DNA and SWNTs.

  10. DNA-mediated silver nanoclusters: synthesis, properties and applications. (United States)

    Latorre, Alfonso; Somoza, Álvaro


    Fluorescent DNA-AgNCs have emerged as an alternative to standard emitters because of their unique properties: high fluorescent quantum yield, photostability, a broad pallet of colors (blue to near-IR), and the fact that their properties are easily modulated by the DNA sequence and environment. Applications as gene, ion, or small-molecule sensors have been reported.

  11. [Analysis of effectiveness of cDNA synthesis, induced using complementary primers and primers containing a noncomplementary base matrix]. (United States)

    D'iachenko, L B; Chenchik, A A; Khaspekov, G L; Tatarenko, A O; Bibilashvili, R Sh


    We have studied the efficiency of DNA synthesis catalyzed by M-MLV reverse transcriptase or Thermus aquaticus DNA polymerase for primers (4-17 nucleotides long) either completely matched or possessing a single mismatched base pair at all possible positions in the primer. It has been shown that DNA synthesis efficiency depends not only on the position of mismatched base pair but on the length and primary structure of the primer. The enzyme, template, and primer concentrations determine the relative level of mismatched DNA synthesis.

  12. Effect of ethidium bromide on transmission of mitochondrial genomes and DNA synthesis in the petite negative yeast Schizosaccharomyces pomhe. (United States)

    Wolf, K; Del Giudice, L


    Treatment of haploid strains of the petite negative yeast Schizosaccharomyces pomhe with ethidium bromide prior to mating with untreated cells reduces transmission of mitochondrial markers from the treated strains. This effect is fully reversible after 20 generations of growth in drug free medium before mating. In contrast to the petite positive yeast Saccharomyces cerevisiae, where nuclear DNA synthesis is not affected but mitochondrial DNA is degraded in the presence of 20 μg/ml ethidium bromide, the same concentration decreases both nuclear and mitochondrial DNA synthesis in Schizosaccharomyces pomhe. After removal of the drug, nuclear DNA synthesis increases faster than its mitochondrial counterpart in Schizosaccharomyces pomhe.

  13. A euryarchaeal histone modulates strand displacement synthesis by replicative DNA polymerases. (United States)

    Sun, Fei; Huang, Li


    Euryarchaeota and Crenarchaeota, the two main lineages of the domain Archaea, encode different chromatin proteins and differ in the use of replicative DNA polymerases. Crenarchaea possess a single family B DNA polymerase (PolB), which is capable of strand displacement modulated by the chromatin proteins Cren7 and Sul7d. Euryarchaea have two distinct replicative DNA polymerases, PolB and PolD, a family D DNA polymerase. Here we characterized the strand displacement activities of PolB and PolD from the hyperthermophilic euryarchaeon Pyrococcus furiosus and investigated the influence of HPfA1, a homolog of eukaryotic histones from P. furiosus, on these activities. We showed that both PolB and PolD were efficient in strand displacement. HPfA1 inhibited DNA strand displacement by both DNA polymerases but exhibited little effect on the displacement of a RNA strand annealed to single-stranded template DNA. This is consistent with the finding that HPfA1 bound more tightly to double-stranded DNA than to a RNA:DNA hybrid. Our results suggest that, although crenarchaea and euryarchaea differ in chromosomal packaging, they share similar mechanisms in modulating strand displacement by DNA polymerases during lagging strand DNA synthesis.

  14. Preparation of fluorescent DNA probe by solid-phase organic synthesis

    Directory of Open Access Journals (Sweden)


    Full Text Available Fluorescent DNA probe based on fluorescence resonance energy transfer (FRET was prepared by solid-phase organic synthesis when CdTe quantum dots (QDs were as energy donors and Au nanoparticles (AuNPs were as energy accepters. The poly(divinylbenzene core/poly(4-vinylpyridine shell microspheres, as solid-phase carriers, were prepared by seeds distillation-precipitation polymerization with 2,2′-azobisisobutyronitrile (AIBN as initiator in neat acetonitrile. The CdTe QDs and AuNPs were self-assembled on the surface of core/shell microspheres, and then the linkage of CdTe QDs with oligonucleotides (CdTe-DNA and AuNPs with complementary single-stranded DNA (Au-DNA was on the solid-phase carriers instead of in aqueous solution. The hybridization of complementary double stranded DNA (dsDNA bonded to the QDs and AuNPs (CdTe-dsDNA-Au determined the FRET distance of CdTe QDs and AuNPs. Compared with the fluorescence of CdTe-DNA, the fluorescence of CdTe-dsDNA-Au conjugates (DNA probes decreased extremely, which indicated that the FRET occurred between CdTe QDs and AuNPs. The probe system would have a certain degree recovery of fluorescence when the complementary single stranded DNA was introduced into this system, which showed that the distance between CdTe QDs and AuNPs was increased.

  15. Chemical structure and properties of interstrand cross-links formed by reaction of guanine residues with abasic sites in duplex DNA. (United States)

    Catalano, Michael J; Liu, Shuo; Andersen, Nisana; Yang, Zhiyu; Johnson, Kevin M; Price, Nathan E; Wang, Yinsheng; Gates, Kent S


    A new type of interstrand cross-link resulting from the reaction of a DNA abasic site with a guanine residue on the opposing strand of the double helix was recently identified, but the chemical connectivity of the cross-link was not rigorously established. The work described here was designed to characterize the chemical structure and properties of dG-AP cross-links generated in duplex DNA. The approach involved characterization of the nucleoside cross-link "remnant" released by enzymatic digestion of DNA duplexes containing the dG-AP cross-link. We first carried out a chemical synthesis and complete spectroscopic structure determination of the putative cross-link remnant 9b composed of a 2-deoxyribose adduct attached to the exocyclic N(2)-amino group of dG. A reduced analogue of the cross-link remnant was also prepared (11b). Liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis revealed that the retention times and mass spectral properties of synthetic standards 9b and 11b matched those of the authentic cross-link remnants released by enzymatic digestion of duplexes containing the native and reduced dG-AP cross-link, respectively. These results establish the chemical connectivity of the dG-AP cross-link released from duplex DNA and provide a foundation for detection of this lesion in biological samples. The dG-AP cross-link in duplex DNA was remarkably stable, decomposing with a half-life of 22 days at pH 7 and 23 °C. The intrinsic chemical stability of the dG-AP cross-link suggests that this lesion in duplex DNA may have the power to block DNA-processing enzymes involved in transcription and replication.

  16. Synthesis, DNA interaction and antimicrobial activities of three rimantadine analogues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bing-Mi; Zhang, Jun [Department of Pharmacy, Liaoning University, Shenyang 110036 (China); Wang, Xin, E-mail: [Department of Pharmacy, Liaoning University, Shenyang 110036 (China); Zhang, Li-Ping; Liu, Yang [Department of Pharmacy, Liaoning University, Shenyang 110036 (China); Niu, Hua-Ying [Jinan Dachpharm Development Co., Ltd., Jinan 250100 (China); Liu, Bin, E-mail: [Department of Pharmacy, Liaoning University, Shenyang 110036 (China)


    The interactions of three rimantadine analogues (RAs) with calf thymus deoxyribonucleic acid (ct-DNA) in buffer solution (pH 7.4) were investigated using berberine (BR) as a probe by various methods. Fluorescence studies revealed that the RAs interacted with DNA in vitro and the quenchings were all static. Furthermore, the binding modes of these compounds to DNA were disclosed as groove binding supported by absorption spectroscopy, viscosity measurement and denatured DNA experiment. The antimicrobial activities of the RAs were also evaluated in Staphylococcus aureus and Escherichia coli, and they all exhibited good bacteriostasic effects. The results might provide an important reference for investigation of the molecular mechanism associated with the DNA binding of the RAs. - Highlights: • Three rimantadine analogues were synthesized. • The RAs effectively quenched the intrinsic fluorescence of DNA via a static combination. • These analogues can bind to DNA via groove binding mode. • The antimicrobial activities of three analogues were also evaluated by the disk diffusion method.

  17. Chemical phosphorylation of deoxyribonucleosides and thermolytic DNA oligonucleotides. (United States)

    Ausín, Cristina; Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L


    The phosphorylating reagent bis[S-(4,4'-dimethoxytrityl)-2-mercaptoethyl]-N,N-diisopropylphosphoramidite is prepared in three steps from commercial methyl thioglycolate and diisopropylphosphoramidous dichloride. The phosphorylating reagent has been used successfully in the solid-phase synthesis of deoxyribonucleoside 5'-/3'-phosphate or -thiophosphate monoesters and oligonucleotide 5'-phosphate/-thiophosphate monoesters. Bis[S-(4,4'-dimethoxytrityl)-2-mercaptoethyl]-N,N-diisopropylphosphoramidite has also been employed in the construction of a thermolytic dinucleotide prodrug model to evaluate the ability of the reagent to produce thermosentive oligonucleotide prodrugs under mild temperature conditions ( approximately 25 degrees C) for potential therapeutic applications.

  18. DNA Oxidation Profiles of Copper Phenanthrene Chemical Nucleases (United States)

    Molphy, Zara; Slator, Creina; Chatgilialoglu, Chryssostomos; Kellett, Andrew


    The deleterious effects of metal-catalyzed reactive oxygen species (ROS) in biological systems can be seen in a wide variety of pathological conditions including cancer, cardiovascular disease, ageing, and neurodegenerative disorder. On the other hand however, targeted ROS production in the vicinity of nucleic acids - as demonstrated by metal-activated bleomycin - has paved the way for ROS-active chemotherapeutic drug development. Herein we report mechanistic investigations into the oxidative nuclease activity and redox properties of copper(II) developmental therapeutics [Cu(DPQ)(phen)]2+ (Cu-DPQ-Phen), [Cu(DPPZ)(phen)]2+ (Cu-DPPZ-Phen), and [{Cu(phen)2}2(μ-terph)](terph) (Cu-Terph), with results being compared directly to Sigman’s reagent [Cu(phen)2]2+ throughout (phen = 1,10-phenanthroline; DPQ = dipyridoquinoxaline; DPPZ = dipyridophenazine). Oxidative DNA damage was identified at the minor groove through use of surface bound recognition elements of methyl green, netropsin, and [Co(NH3)6]Cl3 that functioned to control complex accessibility at selected regions. ROS-specific scavengers and stabilisers were employed to identify the cleavage process, the results of which infer hydrogen peroxide produced metal-hydroxo or free hydroxyl radicals (•OH) as the predominant species. The extent of DNA damage owing to these radicals was then quantified through 8-oxo-2'-deoxyguanosine (8-oxo-dG) lesion detection under ELISA protocol with the overall trend following Cu-DPQ-Phen > Cu-Terph > Cu-Phen > Cu-DPPZ. Finally, the effects of oxidative damage on DNA replication processes were investigated using the polymerase chain reaction (PCR) where amplification of 120 base pair DNA sequences of varying base content were inhibited - particularly along A-T rich chains - through oxidative damage of the template strands.

  19. DNA Oxidation Profiles of Copper Phenanthrene Chemical Nucleases

    Directory of Open Access Journals (Sweden)

    Zara eMolphy


    Full Text Available The deleterious effects of metal-catalyzed reactive oxygen species (ROS in biological systems can be seen in a wide variety of pathological conditions including cancer, cardiovascular disease, ageing, and neurodegenerative disorder. On the other hand however, targeted ROS production in the vicinity of nucleic acids – as demonstrated by metal-activated bleomycin – has paved the way for ROS-active chemotherapeutic drug development. Herein we report mechanistic investigations into the oxidative nuclease activity and redox properties of copper(II developmental therapeutics [Cu(DPQ(phen]2+ (Cu-DPQ-Phen, [Cu(DPPZ(phen]2+ (Cu-DPPZ-Phen, and [{Cu(phen2}2(μ-terph](terph (Cu-Terph, with results being compared directly to Sigman’s reagent [Cu(phen2]2+ throughout (phen = 1,10-phenanthroline; DPQ = dipyridoquinoxaline; DPPZ = dipyridophenazine. Oxidative DNA damage was identified at the minor groove through use of surface bound recognition elements of methyl green, netropsin, and [Co(NH36]Cl3 that functioned to control complex accessibility at selected regions. ROS-specific scavengers and stabilisers were employed to identify the cleavage process, the results of which infer hydrogen peroxide produced metal-hydroxo or free hydroxyl radicals (•OH as the predominant species. The extent of DNA damage owing to these radicals was then quantified through 8-oxo-2'-deoxyguanosine (8-oxo-dG lesion detection under ELISA protocol with the overall trend following Cu-DPQ-Phen > Cu-Terph > Cu-Phen > Cu-DPPZ. Finally, the effects of oxidative damage on DNA replication processes were investigated using the polymerase chain reaction (PCR where amplification of 120 base pair DNA sequences of varying base content were inhibited – particularly along A-T rich chains – through oxidative damage of the template strands.

  20. Unscheduled DNA synthesis in xeroderma pigmentosum cells after microinjection of yeast photoreactivating enzyme.

    NARCIS (Netherlands)

    J.C.M. Zwetsloot; J.H.J. Hoeijmakers (Jan); W. Vermeulen (Wim); A.P.M. Eker (André); D. Bootsma (Dirk)


    textabstractPhotoreactivating enzyme (PRE) from yeast causes a light-dependent reduction of UV-induced unscheduled DNA synthesis (UDS) when injected into the cytoplasm of repair-proficieint human fibroblasts (Zwetsloot et al., 1985). This result indicates that the exogenous PRE monomerizers UV-induc

  1. Labelling of Cells Engaged in DNA Synthesis: Autoradiography and BrdU Staining

    DEFF Research Database (Denmark)

    Madsen, Peder Søndergaard


    The cell cycle is divided in four phases: G1 phase, S phase (DNA-synthesis), G2 phase (together termed interphase) and M phase (mitosis). Cells that have ceased proliferation enter a state of quiescence called G0. M phase is itself composed of two tightly coupled processes: mitosis, in which...

  2. Dissociation between insulin secretion and DNA synthesis in cultured pancreatic islets

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis


    Glucose has been suggested to be the most important stimulus for beta cell replication in vivo and in vitro. In order to study the relationship between insulin secretion and DNA synthesis, newborn rat islets were cultured in the presence of different concentrations of glucose, theophylline and 3-...

  3. Ruthenium(II) arene complexes with oligocationic triarylphosphine ligands: synthesis, DNA interactions and in vitro properties

    NARCIS (Netherlands)

    Snelders, D.J.M.; Casini, A.; Edafe, F.; van Koten, G.; Klein Gebbink, R.J.M.; Dyson, P.J.


    The synthesis, DNA binding properties and cytotoxicity of a series of Ru(II)-arene complexes containing oligocationic ammonium-functionalized triarylphosphines, of the type Ru(p-cymene)Cl2(L) (L ¼ oligocationic phosphine), are reported. The complexes are highly charged (the overall charge states bei

  4. Design, synthesis, and characterization of nucleosomes containing site-specific DNA damage. (United States)

    Taylor, John-Stephen


    How DNA damaged is formed, recognized, and repaired in chromatin is an area of intense study. To better understand the structure activity relationships of damaged chromatin, mono and dinucleosomes containing site-specific damage have been prepared and studied. This review will focus on the design, synthesis, and characterization of model systems of damaged chromatin for structural, physical, and enzymatic studies.

  5. Synthesis and structural characterization of piperazino-modified DNA that favours hybridization towards DNA over RNA

    DEFF Research Database (Denmark)

    Skov, Joan; Bryld, Torsten; Lindegaard, Dorthe


    modifications are tolerated in DNA:RNA hybrids but leave their melting temperatures virtually unaffected. Fluorescence data indicate that the pyrene moiety is residing outside the helix. The available data suggest that the DNA discrimination is due to (i) the positive charge of the piperazino ring having...... a greater impact in the narrow and deep minor groove of a B-type dsDNA duplex than in the wide and shallow minor groove of an A-type DNA:RNA hybrid and (ii) the B-type dsDNA duplex allowing the pyrene to intercalate and bury its apolar surface....

  6. An autonomous molecular assembler for programmable chemical synthesis (United States)

    Meng, Wenjing; Muscat, Richard A.; McKee, Mireya L.; Milnes, Phillip J.; El-Sagheer, Afaf H.; Bath, Jonathan; Davis, Benjamin G.; Brown, Tom; O'Reilly, Rachel K.; Turberfield, Andrew J.


    Molecular machines that assemble polymers in a programmed sequence are fundamental to life. They are also an achievable goal of nanotechnology. Here, we report synthetic molecular machinery made from DNA that controls and records the formation of covalent bonds. We show that an autonomous cascade of DNA hybridization reactions can create oligomers, from building blocks linked by olefin or peptide bonds, with a sequence defined by a reconfigurable molecular program. The system can also be programmed to achieve combinatorial assembly. The sequence of assembly reactions and thus the structure of each oligomer synthesized is recorded in a DNA molecule, which enables this information to be recovered by PCR amplification followed by DNA sequencing.

  7. Synthesis and characterization of DNA nano-meso-microspheres as drug delivery carriers for intratumoral chemotherapy (United States)

    Enriquez Schumacher, Iris Vanessa

    Conventional cancer chemotherapy results in systemic toxicity which severely limits effectiveness and often adversely affects patient quality of life. There is a need to find new drugs and delivery methods for less toxic therapy. Previous studies concerning DNA complexing with chemotherapy drugs suggest unique opportunities for DNA as a mesosphere drug carrier. The overall objective of this research was devoted to the synthesis and evaluation of novel DNA-drug nano-mesospheres designed for localized chemotherapy via intratumoral injection. My research presents DNA nano-meso-microspheres (DNA-MS) that were prepared using a modified steric stabilization method originally developed in this lab for the preparation of albumin MS. DNA-MS were prepared with glutaraldehyde covalent crosslinking (genipin crosslinking was attempted) through the DNA base pairs. In addition, novel crosslinking of DNA-MS was demonstrated using chromium, gadolinium, or iron cations through the DNA phosphate groups. Covalent and ionic crosslinked DNA-MS syntheses yielded smooth and spherical particle morphologies with multimodal size distributions. Optimized DNA-MS syntheses produced particles with narrow and normal size distributions in the 50nm to 5mum diameter size range. In aqueous dispersions approximately 200% swelling was observed with dispersion stability for more than 48 hours. Typical process conditions included a 1550rpm initial mixing speed and particle filtration through 20mum filters to facilitate preparation. DNA-MS were in situ loaded during synthesis for the first time with mitoxantrone, 5-fluorouracil, and methotrexate. DNA-MS drug incorporation was 12%(w/w) for mitoxantrone, 9%(w/w) for methotrexate, and 5%(w/w) for 5-fluorouracil. In vitro drug release into phosphate buffered saline was observed for over 35 days by minimum sink release testing. The effect of gadolinium crosslink concentration on mitoxantrone release was evaluated at molar equivalences in the range of 20% to

  8. Procafd: Computer Aided Tool for Synthesis-Design & Analysis of Chemical Process Flowsheets

    DEFF Research Database (Denmark)

    Kumar Tula, Anjan; Eden, Mario R.; Gani, Rafiqul


    In practice, chemical process synthesis-design involves identification of the processing route to reach a desired product from a specified set of raw materials, design of the operations involved in the processing route, the calculations of utility requirements, the calculations of waste...... are synthesized to form molecules in computer-aided molecular design (CAMD) techniques [4]. The main idea here was to apply the principle of group-contribution approach from chemical property estimation to the synthesis and design of chemical process flowsheets. That is, use process-groups representing different...... of mathematical programming techniques, (c) hybrid approach which combine two or more approaches. D’Anterroches [3] proposed a group contribution based hybrid approach to solve the synthesis-design problem where, chemical process flowsheets could be synthesized in the same way as atoms or groups of atoms...

  9. An efficient chemical synthesis of nicotinamide riboside (NAR) and analogues. (United States)

    Tanimori, Shinji; Ohta, Takeshi; Kirihata, Mitsunori


    A simple and efficient synthesis of nicotinamide riboside (NAR) 1 and derivatives 4 and 5 via trimethylsilyl trifluoromethanesulfonate (TMSOTf)-mediated N-glycosilation followed by spontaneous deacetylation by treating with methanol is reported.

  10. Synthesis of the Tellurium-Derivatized Phosphoramidites and their Incorporation into DNA Oligonucleotides (United States)

    Jiang, Sibo; Sheng, Jia


    Introduction In this unit, an efficient method for the synthesis of 2’-tellerium modified phosphoramidite and its incorporation into oligonucleotide are presented. We choose 5’-O-DMTr-2,2’-anhydro-uridine and -thymidine nucleosides (S.1, S.2) as starting materials due to their easy preparation. The 5’-O-DMTr-2,2’-anhydro-uridine and -thymidine can be converted to corresponding the 2’-tellerium-derivatized nucleosides by treating with the telluride nucleophiles. Subsequently, the 2’-Te-nucleosides can be transformed into 3’-phosphoramidites, which are the building blocks for DNA/RNA synthesis. The DNA synthesis, purification and applications of oligonucleotides containing 2’-Te-U or 2’-Te-T are described in this protocol. PMID:22147418

  11. DNA display I. Sequence-encoded routing of DNA populations.

    Directory of Open Access Journals (Sweden)

    David R Halpin


    Full Text Available Recently reported technologies for DNA-directed organic synthesis and for DNA computing rely on routing DNA populations through complex networks. The reduction of these ideas to practice has been limited by a lack of practical experimental tools. Here we describe a modular design for DNA routing genes, and routing machinery made from oligonucleotides and commercially available chromatography resins. The routing machinery partitions nanomole quantities of DNA into physically distinct subpools based on sequence. Partitioning steps can be iterated indefinitely, with worst-case yields of 85% per step. These techniques facilitate DNA-programmed chemical synthesis, and thus enable a materials biology that could revolutionize drug discovery.

  12. Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes. (United States)

    Ewert, Kai K; Kotamraju, Venkata Ramana; Majzoub, Ramsey N; Steffes, Victoria M; Wonder, Emily A; Teesalu, Tambet; Ruoslahti, Erkki; Safinya, Cyrus R


    Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles.

  13. DNA Polymerases Drive DNA Sequencing-by-Synthesis Technologies: Both Past and Present

    Directory of Open Access Journals (Sweden)

    Cheng-Yao eChen


    Full Text Available Next-generation sequencing (NGS technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. E. coli DNA polymerase I proteolytic (Klenow fragment was originally utilized in Sanger's dideoxy chain terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ⱷ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ⱷ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  14. Site Specific Synthesis and in-situ Immobilization of Fluorescent Silver Nanoclusters on DNA Nanoscaffolds Using Tollens Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Suchetan [Arizona State Univ., Tempe, AZ (United States); Varghese, R. [Arizona State Univ., Tempe, AZ (United States); Deng, Z. [Arizona State Univ., Tempe, AZ (United States); Zhao, Z. [Arizona State Univ., Tempe, AZ (United States); Kumar, A. [Arizona State Univ., Tempe, AZ (United States); Yan, Hao [Arizona State Univ., Tempe, AZ (United States); Liu, Yan [Arizona State Univ., Tempe, AZ (United States)


    DNA strands with specific sequences and covalently attached sugar moieties were used for the site-specific incorporation of the sugar units on a DNA origami scaffold. This approach enabled the subsequent site-specific synthesis and in situ immobilization of fluorescent Ag clusters at predefined positions on the DNA nanoscaffold by treatment with the Tollens reagent.

  15. Mitochondrial DNA synthesis studied autoradiographically in various cell types in vivo

    Directory of Open Access Journals (Sweden)

    H. Korr


    Full Text Available It is generally accepted that mitochondria are able to proliferate even in postmitotic cells due to their natural turnover and also to satisfy increased cell energy requirements. However, no detailed studies are available, particularly with respect to specific cell types. Since [3H]-thymidine is incorporated not only into nuclear (n DNA but also into the DNA of cytoplasmic mitochondria, an autoradiographic approach was developed at the light microscopy level in order to study basic questions of mitochondrial (mt proliferation in organs of rodents in situ via the cytoplasmic incorporation of [3H]-thymidine injected into the animals 1 h before sacrifice. Experiments carried out on mice after X-irradiation showed that cytoplasmic labeling was not due to a process such as unscheduled nuclear DNA synthesis (nUDS. Furthermore, half-lives of mitochondria between 8-23 days were deduced specifically in relation to cell types. The phase of mtDNA synthesis was about 75 min. Finally, mt proliferation was measured in brain cells of mice as a function of age. While all neurons showed a decreasing extent of mtDNA synthesis during old age, nUDS decreased only in distinct cell types of the cortex and hippocampus. We conclude that the leading theories explaining the phenomenon of aging are closely related, i.e., aging is due to a decreasing capacity of nDNA repair, which leads to unrepaired nDNA damage, or to an accumulation of mitochondria with damaged mtDNA, which leads to a deficit of cellular energy production

  16. Base J glucosyltransferase does not regulate the sequence specificity of J synthesis in trypanosomatid telomeric DNA. (United States)

    Bullard, Whitney; Cliffe, Laura; Wang, Pengcheng; Wang, Yinsheng; Sabatini, Robert


    Telomeric DNA of trypanosomatids possesses a modified thymine base, called base J, that is synthesized in a two-step process; the base is hydroxylated by a thymidine hydroxylase forming hydroxymethyluracil (hmU) and a glucose moiety is then attached by the J-associated glucosyltransferase (JGT). To examine the importance of JGT in modifiying specific thymine in DNA, we used a Leishmania episome system to demonstrate that the telomeric repeat (GGGTTA) stimulates J synthesis in vivo while mutant telomeric sequences (GGGTTT, GGGATT, and GGGAAA) do not. Utilizing an in vitro GT assay we find that JGT can glycosylate hmU within any sequence with no significant change in Km or kcat, even mutant telomeric sequences that are unable to be J-modified in vivo. The data suggests that JGT possesses no DNA sequence specificity in vitro, lending support to the hypothesis that the specificity of base J synthesis is not at the level of the JGT reaction.

  17. Physico-Chemical and In-vitro Microbial Studies of Newly Synthesis Organometallic Complexes

    Directory of Open Access Journals (Sweden)

    Isam Hussain Al-Karkhi


    Full Text Available Drugs normally synthesized to use as medication to treat diseases like cancer and microbial infections, these synthesized drugs were interested more than naturally-derived drugs which have been shows low activity or not as efficient against diseases. A new ligand 3-methylbenzyl (2Z-2-[1-(pyridin-4-ylethylidene]hydrazine carbodithioate (PE3MBC and its Cd(II, Cu(II, Co(II and Zn(II metal complexes. The new ligand and metal complexes were characterized via various physico-chemical and spectroscopic techniques. Cd(II complex show more activity against microbes and against cancer cell line MCF-7, while other complexes does not shows activity like cadmium complex, all the complexes does not shows any activity against MDAMB-231 cell line. The fatal of the cancer and the microbes cell was due to inhibition of DNA synthesis which was probably due to chelating with metals complexes, or could be referred to lipophilicity, presence of hydrophobic moiety in the complex molecule, also could be due to steric effects and electronic effects.

  18. Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts. (United States)

    Chen, Haorong; Zhang, Hanyu; Pan, Jing; Cha, Tae-Gon; Li, Shiming; Andréasson, Joakim; Choi, Jong Hyun


    DNA origami has received enormous attention for its ability to program complex nanostructures with a few nanometer precision. Dynamic origami structures that change conformation in response to environmental cues or external signals hold great promises in sensing and actuation at the nanoscale. The reconfiguration mechanism of existing dynamic origami structures is mostly limited to single-stranded hinges and relies almost exclusively on DNA hybridization or strand displacement. Here, we show an alternative approach by demonstrating on-demand conformation changes with DNA-binding molecules, which intercalate between base pairs and unwind DNA double helices. The unwinding effect modulates the helicity mismatch in DNA origami, which significantly influences the internal stress and the global conformation of the origami structure. We demonstrate the switching of a polymerized origami nanoribbon between different twisting states and a well-constrained torsional deformation in a monomeric origami shaft. The structural transformation is shown to be reversible, and binding isotherms confirm the reconfiguration mechanism. This approach provides a rapid and reversible means to change DNA origami conformation, which can be used for dynamic and progressive control at the nanoscale.

  19. Photolithographic Synthesis of High-Density DNA and RNA Arrays on Flexible, Transparent, and Easily Subdivided Plastic Substrates. (United States)

    Holden, Matthew T; Carter, Matthew C D; Wu, Cheng-Hsien; Wolfer, Jamison; Codner, Eric; Sussman, Michael R; Lynn, David M; Smith, Lloyd M


    The photolithographic fabrication of high-density DNA and RNA arrays on flexible and transparent plastic substrates is reported. The substrates are thin sheets of poly(ethylene terephthalate) (PET) coated with cross-linked polymer multilayers that present hydroxyl groups suitable for conventional phosphoramidite-based nucleic acid synthesis. We demonstrate that by modifying array synthesis procedures to accommodate the physical and chemical properties of these materials, it is possible to synthesize plastic-backed oligonucleotide arrays with feature sizes as small as 14 μm × 14 μm and feature densities in excess of 125 000/cm(2), similar to specifications attainable using rigid substrates such as glass or glassy carbon. These plastic-backed arrays are tolerant to a wide range of hybridization temperatures, and improved synthetic procedures are described that enable the fabrication of arrays with sequences up to 50 nucleotides in length. These arrays hybridize with S/N ratios comparable to those fabricated on otherwise identical arrays prepared on glass or glassy carbon. This platform supports the enzymatic synthesis of RNA arrays and proof-of-concept experiments are presented showing that the arrays can be readily subdivided into smaller arrays (or "millichips") using common laboratory-scale laser cutting tools. These results expand the utility of oligonucleotide arrays fabricated on plastic substrates and open the door to new applications for these important bioanalytical tools.

  20. Design and Synthesis of Triangulated DNA Origami Trusses. (United States)

    Matthies, Michael; Agarwal, Nayan P; Schmidt, Thorsten L


    DNA nanotechnology offers unique control over matter on the nanoscale. Here, we extend the DNA origami method to cover a range of wireframe truss structures composed of equilateral triangles, which use less material per volume than standard multiple-helix bundles. From a flat truss design, we folded tetrahedral, octahedral, or irregular dodecahedral trusses by exchanging few connector strands. Other than standard origami designs, the trusses can be folded in low-salt buffers that make them compatible with cell culture buffers. The structures also have defined cavities that may in the future be used to precisely position functional elements such as metallic nanoparticles or enzymes. Our graph routing program and a simple design pipeline will enable other laboratories to make use of this valuable and potent new construction principle for DNA-based nanoengineering.

  1. Design and synthesis of threading intercalators to target DNA. (United States)

    Howell, Lesley A; Gulam, Rosul; Mueller, Anja; O'Connell, Maria A; Searcey, Mark


    Threading intercalators are high affinity DNA binding agents that bind by inserting a chromophore into the duplex and locating one group in each groove. The first threading intercalators that can be conjugated to acids, sulfonic acids and peptides to target them to duplex DNA are described, based upon the well studied acridine-3- or 4-carboxamides. Cellular uptake of the parent acridine is rapid and it can be visualized in the nucleus of cells. Both the parent compounds and their conjugates maintain antitumor activity.

  2. Effects of seven chemicals on DNA damage in the rat urinary bladder: a comet assay study. (United States)

    Wada, Kunio; Yoshida, Toshinori; Takahashi, Naofumi; Matsumoto, Kyomu


    The in vivo comet assay has been used for the evaluation of DNA damage and repair in various tissues of rodents. However, it can give false-positive results due to non-specific DNA damage associated with cell death. In this study, we examined whether the in vivo comet assay can distinguish between genotoxic and non-genotoxic DNA damage in urinary bladder cells, by using the following seven chemicals related to urinary bladder carcinogenesis in rodents: N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN), glycidol, 2,2-bis(bromomethyl)-1,3-propanediol (BMP), 2-nitroanisole (2-NA), benzyl isothiocyanate (BITC), uracil, and melamine. BBN, glycidol, BMP, and 2-NA are known to be Ames test-positive and they are expected to produce DNA damage in the absence of cytotoxicity. BITC, uracil, and melamine are Ames test-negative with metabolic activation but have the potential to induce non-specific DNA damage due to cytotoxicity. The test chemicals were administered orally to male Sprague-Dawley rats (five per group) for each of two consecutive days. Urinary bladders were sampled 3h after the second administration and urothelial cells were analyzed by the comet assay and subjected to histopathological examination to evaluate cytotoxicity. In the urinary bladders of rats treated with BBN, glycidol, and BMP, DNA damage was detected. In contrast, 2-NA induced neither DNA damage nor cytotoxicity. The non-genotoxic chemicals (BITC, uracil, and melamine) did not induce DNA damage in the urinary bladders under conditions where some histopathological changes were observed. The results indicate that the comet assay could distinguish between genotoxic and non-genotoxic chemicals and that no false-positive responses were obtained.

  3. Synthesis of DNA Oligodeoxynucleotides Containing Site-Specific 1,3-Butadiene- Deoxyadenosine Lesions (United States)

    Wickramaratne, Susith; Seiler, Christopher L.


    Post-oligomerization synthesis is a useful technique for preparing site-specifically modified DNA oligomers. This approach involves site-specific incorporation of inherently reactive halogenated nucleobases into DNA strands using standard solid phase synthesis, followed by post-oligomerization nucleophilic aromatic substitution (SNAr) reactions with carcinogen-derived synthons. In these reactions, the inherent reactivities of DNA and carcinogen-derived species are reversed: the modified DNA nucleobase acts as an electrophile, while the carcinogen-derived species acts as a nucleophile. In the present protocol, we describe the use of the post-oligomerization approach to prepare DNA strands containing site- and stereospecific N6-adenine and N1, N6-adenine adducts induced by epoxide metabolites of the known human and animal carcinogen, 1,3-butadiene (BD). The resulting oligomers containing site specific, structurally defined DNA adducts can be used in structural and biological studies to reveal the roles of specific BD adducts in carcinogenesis and mutagenesis. PMID:26344227

  4. The nexus of vitamin homeostasis and DNA synthesis and modification in mammalian brain. (United States)

    Spector, Reynold; Johanson, Conrad E


    The purpose of this review is to discuss the implications of the 2009 discovery of the sixth deoxyribonucleoside (dN) [5-hydroxymethyldeoxycytidine (hmdC)] in DNA which is the most abundant in neurons. The concurrent discovery of the three ten-eleven translocation enzymes (TET) which not only synthesize but also oxidize hmdC in DNA, prior to glycosylase removal and base excision repair, helps explain many heretofore unexplained phenomena in brain including: 1) the high concentration of ascorbic acid (AA) in neurons since AA is a cofactor for the TET enzymes, 2) the requirement for reduced folates and the dN synthetic enzymes in brain, 3) continued DNA synthesis in non-dividing neurons to repair the dynamic formation/removal of hmdC, and 4) the heretofore unexplained mechanism to remove 5-methyldeoxycytidine, the fifth nucleoside, from DNA. In these processes, we also describe the important role of choroid plexus and CSF in supporting vitamin homeostasis in brain: especially for AA and folates, for hmdC synthesis and removal, and methylated deoxycytidine (mdC) removal from DNA in brain. The nexus linking AA and folates to methylation, hydroxymethylation, and demethylation of DNA is pivotal to understanding not only brain development but also the subsequent function.

  5. Single-molecule measurements of synthesis by DNA polymerase with base-pair resolution. (United States)

    Christian, Thomas D; Romano, Louis J; Rueda, David


    The catalytic mechanism of DNA polymerases involves multiple steps that precede and follow the transfer of a nucleotide to the 3'-hydroxyl of the growing DNA chain. Here we report a single-molecule approach to monitor the movement of E. coli DNA polymerase I (Klenow fragment) on a DNA template during DNA synthesis with single base-pair resolution. As each nucleotide is incorporated, the single-molecule Förster resonance energy transfer intensity drops in discrete steps to values consistent with single-nucleotide incorporations. Purines and pyrimidines are incorporated with comparable rates. A mismatched primer/template junction exhibits dynamics consistent with the primer moving into the exonuclease domain, which was used to determine the fraction of primer-termini bound to the exonuclease and polymerase sites. Most interestingly, we observe a structural change after the incorporation of a correctly paired nucleotide, consistent with transient movement of the polymerase past the preinsertion site or a conformational change in the polymerase. This may represent a previously unobserved step in the mechanism of DNA synthesis that could be part of the proofreading process.

  6. Synthesis of streptavidin-conjugated magnetic nanoparticles for DNA detection

    Energy Technology Data Exchange (ETDEWEB)

    Gong Peijun, E-mail:; Peng Zheyang; Wang Yao; Qiao Ru; Mao Weixing; Qian Haisheng; Zhang Mengya; Li Congcong; Shi Shenyuan [College of Chemistry and Life Sciences, Zhejiang Normal University (China)


    In this paper, we report a fabrication of streptavidin-coated magnetic nanoparticles used for DNA detection. Initially, amino-functionalized Fe{sub 3}O{sub 4} nanoparticles with high saturation magnetization are prepared by a photopolymerization method using allylamine as monomer. It is followed by covalent immobilization of streptavidin onto the particle surface via a two-step reaction using glutaraldehyde as coupling agent. Streptavidin-coated magnetic nanoparticles are characterized and further tested for their ability to capture DNA target after binding biotinylated oligonucleotide probes. The results show that the products ({approx}27.2 nm) have a maximum biotin-binding capacity of 0.71 nmol mg{sup -1} when the immobilization reaction is conducted with a mass ratio of streptavidin to magnetic carriers above 0.2 in phosphate buffered saline (pH 7.4) for 24 h. In addition, highly negative {zeta}-potential and good magnetic susceptibility of the nanocomposites make them applicable for DNA collection and detection, which is verified by the results from the preliminary application of streptavidin-coated magnetic nanoparticles in DNA detection. Therefore, the magnetic nanoparticles provide a promising approach for rapid collection and detection of gene.

  7. The chemical synthesis of porphobilinogen an important intermediate of the biosynthesis of the "pigments of life"


    Bobal, Pavel; Neier, Reinhard


    Porphobilinogen is the second dedicated intermediate in the biosynthesis of «pigments of life». Only very few alkylpyrroles have been isolated from natural sources so far. The absence of stabilising substituents confers to porphobilinogen a high reactivity. The chemical synthesis of porphobilinogen had to take its sensitivity into account. The published synthesis of this unusual pyrrole are reviewed. The synthetic strategies used are analysed and compared with the biosynthesis.

  8. Epigallocatechin gallate inhibits HBV DNA synthesis in a viral replication - inducible cell line

    Institute of Scientific and Technical Information of China (English)

    Wei He; Li-Xia Li; Qing-Jiao Liao; Chun-Lan Liu; Xu-Lin Chen


    AIM: To analyze the antiviral mechanism of Epigallocatechin gallate (EGCG) against hepatitis B virus (HBV) replication. METHODS: In this research, the HBV-replicating cell line HepG2.117 was used to investigate the antiviral mechanism of EGCG. Cytotoxicity of EGCG was analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Hepatitis B virus e antigen (HBeAg) and hepatitis B virus surface antigen (HBsAg) in the supernatant were detected by enzyme-linked immunosorbent assay. Precore mRNA and pregenomic RNA (pgRNA) levels were determined by semi-quantitative reverse transcription polymerase chain reaction (PCR) assay. The effect of EGCG on HBV core promoter activity was measured by dual luciferase reporter assay. HBV covalently closed circular DNA and replicative intermediates of DNA were quantified by real-time PCR assay. RESULTS: When HepG2.117 cells were grown in the presence of EGCG, the expression of HBeAg was suppressed, however, the expression of HBsAg was not affected. HBV precore mRNA level was also downregulated by EGCG, while the transcription of precore mRNA was not impaired. The synthesis of both HBV covalently closed circular DNA and replicative intermediates of DNA were reduced by EGCG treatment to a similar extent, however, HBV pgRNA transcripted from chromosome-integrated HBV genome was not affected by EGCG treatment, indicating that EGCG targets only replicative intermediates of DNA synthesis. CONCLUSION: In HepG2.117 cells, EGCG inhibits HBV replication by impairing HBV replicative intermediates of DNA synthesis and such inhibition results in reduced production of HBV covalently closed circular DNA.

  9. Total synthesis approaches to natural product derivatives based on the combination of chemical synthesis and metabolic engineering. (United States)

    Kirschning, Andreas; Taft, Florian; Knobloch, Tobias


    Secondary metabolites are an extremely diverse and important group of natural products with industrial and biomedical implications. Advances in metabolic engineering of both native and heterologous secondary metabolite producing organisms have allowed the directed synthesis of desired novel products by exploiting their biosynthetic potentials. Metabolic engineering utilises knowledge of cellular metabolism to alter biosynthetic pathways. An important technique that combines chemical synthesis with metabolic engineering is mutasynthesis (mutational biosynthesis; MBS), which advanced from precursor-directed biosynthesis (PDB). Both techniques are based on the cellular uptake of modified biosynthetic intermediates and their incorporation into complex secondary metabolites. Mutasynthesis utilises genetically engineered organisms in conjunction with feeding of chemically modified intermediates. From a synthetic chemist's point of view the concept of mutasynthesis is highly attractive, as the method combines chemical expertise with Nature's synthetic machinery and thus can be exploited to rapidly create small libraries of secondary metabolites. However, in each case, the method has to be critically compared with semi- and total synthesis in terms of practicability and efficiency. Recent developments in metabolic engineering promise to further broaden the scope of outsourcing chemically demanding steps to biological systems.

  10. Direct synthesis of nanocrystalline oxide powders by wet-chemical techniques

    Directory of Open Access Journals (Sweden)

    Vladimir V. Srdić


    Full Text Available In a recent period there is a great need for increasing the knowledge of tailoring the innovative procedures for the synthesis of electroceramic nanopowders and materials with improved quality for specific application. In order to produce electroceramics with desirable microstructure and properties, synthesis of stoichiometric, ultra-fine and agglomerate free powders with narrow size distributions is one of the most important steps. Within this scope, in the present paper we summarize our recent results on direct synthesis of some important perovskites and ferrites nanopowders by wet-chemical techniques.

  11. Solution-phase synthesis of inorganic nanostructures by chemical transformation from reactive templates

    Institute of Scientific and Technical Information of China (English)


    The solution-phase synthesis by chemical transformation from reactive templates has proved to be very effective in morphology-controlled synthesis of inorganic nanostructures. This review paper summarizes the recent progress in solution-phase synthesis of one-dimensional and hollow inorganic nanostructures via reactive templates, focusing on the approaches developed in our lab. The formation mechanisms based on reactive templates are discussed in depth to show the general concepts for the preparation processes. An outlook on the future development in this area is also presented.

  12. Molecular design, synthesis and evaluation of chemical biology tools

    NARCIS (Netherlands)

    Hoogenboom, Jorin


    Chapter 1 provides a perspective of synthetic organic chemistry as a discipline involved in the design, synthesis and evaluation of complex molecules. The reader is introduced with a brief history of synthetic organic chemistry, all the while dealing with different aspects of synthe

  13. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions (United States)

    Gardner, Shea N.; Mariella, Jr., Raymond P.; Christian, Allen T.; Young, Jennifer A.; Clague, David S.


    A method of fabricating a DNA molecule of user-defined sequence. The method comprises the steps of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an even or odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths. In one embodiment starting sequence fragments are of different lengths, n, n+1, n+2, etc.

  14. Simple Laboratory methods to measure cell proliferation using DNA synthesis property

    Directory of Open Access Journals (Sweden)

    Madhavan H N


    Full Text Available This is a mini-review on the techniques to measure proliferation of cells by estimation of DNA synthesis. This is not an exhaustive review of literature, but a bird’s eye view of a few selected articles which may provide the technical details to the readers.The nucleus of a cell occupies about 10-30% of the cells space, depends on the type of genetic material (DNA -DeoxyriboNucleic Acid. DNA is a long, double-stranded, helical molecule which carries the genetic information. Duplication of the DNA takes place by the phenomena of replication. One copy of double-stranded DNA molecule forms two double-stranded DNA molecules. DNA replication is the fundamental process used in all living organisms as it is the basis for biological inheritance. This process is known also as Mitosis in somatic cells. In Mitosis, the duplication process results in two genetically identical "daughter" cells from a single "parent" cell. The resulting double-stranded DNA molecules are identical; proof reading and error-checking mechanisms exist to ensure near perfect pair. Mitosis is divided into six phases: prophase, prometaphase, metaphase, anaphase, telophase, and cytokinesis.

  15. DNA Origami Rotaxanes: Tailored Synthesis and Controlled Structure Switching. (United States)

    Powell, John T; Akhuetie-Oni, Benjamin O; Zhang, Zhao; Lin, Chenxiang


    Mechanically interlocked supramolecular assemblies are appealing building blocks for creating functional nanodevices. Herein, we describe the multistep assembly of large DNA origami rotaxanes that are capable of programmable structural switching. We validated the topology and structural integrity of these rotaxanes by analyzing the intermediate and final products of various assembly routes by electrophoresis and electron microscopy. We further analyzed two structure-switching behaviors of our rotaxanes, which are both mediated by DNA hybridization. In the first mechanism, the translational motion of the macrocycle can be triggered or halted at either terminus. In the second mechanism, the macrocycle can be elongated after completion of the rotaxane assembly, giving rise to a unique structure that is otherwise difficult to access.

  16. Synthesis, Characterization, and DNA Binding Studies of Nanoplumbagin

    Directory of Open Access Journals (Sweden)

    Sheik Dawood Shahida Parveen


    Full Text Available The traditional anticancer medicine plumbagin (PLN was prepared as nanostructured material (nanoplumbagin, NPn1 from its commercial counterparts, simultaneously coencapsulating with cetyltrimethylammonium bromide or cyclodextrin as stabilizers using ultrasonication technique. Surface morphology of NPn analysed from atomic force microscopy (AFM indicates that NPn has tunable size between 75 nm and 100 nm with narrow particle size distribution. Its binding efficiency with herring sperm DNA was studied using spectral and electrochemical techniques and its efficiency was found to be more compared to the commercial microcrystalline plumbagin (PLN. DNA cleavage was also studied by gel electrophoresis. The observed results indicate that NPn1 has better solubility in aqueous medium and hence showed better bioavailability compared to its commercial counterparts.

  17. Modeling early physical and chemical events for DNA damage induced by photons and tritium beta particles

    Energy Technology Data Exchange (ETDEWEB)

    Moiseenko, V. [McMaster Univ., Dept. of Physics and Astronomy, Hamilton, Ontario (Canada); Waker, A.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Prestwich, W.V. [McMaster Univ., Dept. of Physics and Astronomy, Hamilton, Ontario (Canada)


    A method has been developed to model production of single-strand breaks (SSB) and double-strand breaks (DSB) in Deoxyribo Nucleic Acid (DNA) by ionizing radiations. Modeling is carried out by Monte Carlo means and includes consideration of direct energy depositions in DNA molecules, production of chemical species following water radiolysis, diffusion of chemical species, and their interactions with each other and DNA. Computer-generated electron tracks in liquid water are used to model energy deposition and to derive the initial localization of chemical species. Atomistic representation of the DNA with a first hydration shell is used to derive direct energy depositions in DNA molecules and the resulting consequences, and to derive coordinates of reactive sites for modeling of the chemical stage of radiation damage. Diffusion of chemical species is followed in time, and the reactions of species with each other and DNA are considered to occur in an encounter-controlled manner. Time of diffusion follow-up is restricted to 10{sup -12}- 10{sup -9} s, which yields a diffusion length of hydroxyl radicals comparable to that in the cellular environment. DNA SSB are assumed to result from any direct energy depositions in the sugar/phosphate moiety, ionizations in water molecules bound to sugar/phosphate and hydroxyl attacks on deoxyribose. DSB are assumed to result from two SSB on opposite strands separated by 10 or fewer base pairs. Photon radiations in the energy range 70 keV-1 MeV and tritium beta particles are considered. It is shown that for naked DNA in B-form (the configuration thought to be most biologically relevant) the effectiveness of tritium for SSB and DSB production is, within statistical uncertainties, comparable to photon radiation with energies in the range 70 keV-1 MeV, although a tendency for increased DSB production has been observed for 70 keV photons that represent orthovoltage X-rays and for tritium beta particles. It is predicted that hydroxyl

  18. Synthesis and biological activity of benzamide DNA minor groove binders. (United States)

    Khan, Gul Shahzada; Pilkington, Lisa I; Barker, David


    A range of di- and triaryl benzamides were synthesised to investigate the effect of the presence and nature of a polar sidechain, bonding and substitution patterns and functionalisation of benzylic substituents. These compounds were tested for their antiproliferative activity as well as their DNA binding activity. The most active compounds in all assays were unsymmetrical triaryl benzamides with a bulky or alkylating benzylic substituent and a polar amino sidechain.

  19. Review on palladium-containing perovskites: synthesis, physico-chemical properties and applications in catalysis. (United States)

    Essoumhi, Abdellatif; El Kazzouli, Saïd; Bousmina, Mosto


    This review reports on the recent advances in the synthesis and physico-chemical properties of palladium-containing perovskites. Initially, the perovskite structure is briefly reviewed, then palladium-containing perovskites synthesis and physico-chemical properties are detailed. The applications of palladium-containing perovskites in catalysis; namely, NO reduction, methane combustion, methanol as well as ethanol oxidation, are briefly highlighted. The involvement and the important contribution of palladium-containing perovskites in cross-coupling reactions, especially Suzuki-Miyaura, Sonogashira, Ulmann and Grignard, are discussed.

  20. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.


    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  1. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.


    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailing description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  2. Studies on a Novel Minor-groove Targeting Artificial Nuclease: Synthesis and DNA Binding Behavior

    Institute of Scientific and Technical Information of China (English)


    Nucleases play an important role in molecular biology, for example, in DNA sequencing. Synthetic polyamide conjugates can be considered as a novel tool for the selective inhibition of gene expressions and also as potential drugs in anticancer or antiviral chemotherapy. In this article, the synthesis of a novel minor-groove targeting artificial nuclease, an oligopyrrol-containing compound, has been reported. It was found that this novel compound can bind DNA in AT-rich minor groove with high affinity and site specificity. DNA binding behavior was determined by using UV-Vis and CD. It is indicated that compound 6 can enhance the Tm of DNA from 80. 4 C to 84. 4 ℃ and that it possesses a high binding constant value(Kb = 3.05×104 L/mol).

  3. Mechanism of Concerted RNA-DNA Primer Synthesis by the Human Primosome. (United States)

    Baranovskiy, Andrey G; Babayeva, Nigar D; Zhang, Yinbo; Gu, Jianyou; Suwa, Yoshiaki; Pavlov, Youri I; Tahirov, Tahir H


    The human primosome, a 340-kilodalton complex of primase and DNA polymerase α (Polα), synthesizes chimeric RNA-DNA primers to be extended by replicative DNA polymerases δ and ϵ. The intricate mechanism of concerted primer synthesis by two catalytic centers was an enigma for over three decades. Here we report the crystal structures of two key complexes, the human primosome and the C-terminal domain of the primase large subunit (p58C) with bound DNA/RNA duplex. These structures, along with analysis of primase/polymerase activities, provide a plausible mechanism for all transactions of the primosome including initiation, elongation, accurate counting of RNA primer length, primer transfer to Polα, and concerted autoregulation of alternate activation/inhibition of the catalytic centers. Our findings reveal a central role of p58C in the coordinated actions of two catalytic domains in the primosome and ultimately could impact the design of anticancer drugs.

  4. Recent Applications of Alkene Metathesis in Fine Chemical Synthesis (United States)

    Bicchielli, Dario; Borguet, Yannick; Delaude, Lionel; Demonceau, Albert; Dragutan, Ileana; Dragutan, Valerian; Jossifov, Christo; Kalinova, Radostina; Nicks, François; Sauvage, Xavier

    During the last decade or so, the emergence of the metathesis reaction in organic synthesis has revolutionised the strategies used for the construction of complex molecular structures. Olefin metathesis is indeed particularly suited for the construction of small open-chain molecules and macrocycles using crossmetathesis and ring-closing metathesis, respectively. These reactions serve, inter alia, as key steps in the synthesis of various agrochemicals and pharmaceuticals such as macrocyclic peptides, cyclic sulfonamides, novel macrolides, or insect pheromones. The present chapter is aiming at illustrating the great synthetic potential of metathesis reactions. Shortcomings, such as the control of olefin geometry and the unpredictable effect of substituents on the reacting olefins, will also be addressed. Examples to be presented include epothilones, amphidinolides, spirofungin A, and archazolid. Synthetic approaches involving silicon-tethered ring-closing metathesis, relay ring-closing metathesis, sequential reactions, domino as well as tandem metathesis reactions will also be illustrated.

  5. A new antiproliferative noscapine analogue: chemical synthesis and biological evaluation


    Ghaly, Peter E.; Abou El-Magd, Rabab M.; Churchill, Cassandra D. M.; Tuszynski, Jack A.; West, F. G.


    Noscapine, a naturally occurring opium alkaloid, is a widely used antitussive medication. Noscapine has low toxicity and recently it was also found to possess cytotoxic activity which led to the development of many noscapine analogues. In this paper we report on the synthesis and testing of a novel noscapine analogue. Cytotoxicity was assessed by MTT colorimetric assay using SKBR-3 and paclitaxel-resistant SKBR-3 breast cancer cell lines using different concentrations for both noscapine and t...

  6. “Miswak” Based Green Synthesis of Silver Nanoparticles: Evaluation and Comparison of Their Microbicidal Activities with the Chemical Synthesis

    Directory of Open Access Journals (Sweden)

    Mohammed Rafi Shaik


    Full Text Available Microbicidal potential of silver nanoparticles (Ag-NPs can be drastically improved by improving their solubility or wettability in the aqueous medium. In the present study, we report the synthesis of both green and chemical synthesis of Ag-NPs, and evaluate the effect of the dispersion qualities of as-prepared Ag-NPs from both methods on their antimicrobial activities. The green synthesis of Ag-NPs is carried out by using an aqueous solution of readily available Salvadora persica L. root extract (RE as a bioreductant. The formation of highly crystalline Ag-NPs was established by various analytical and microscopic techniques. The rich phenolic contents of S. persica L. RE (Miswak not only promoted the reduction and formation of NPs but they also facilitated the stabilization of the Ag-NPs, which was established by Fourier transform infrared spectroscopy (FT-IR analysis. Furthermore, the influence of the volume of the RE on the size and the dispersion qualities of the NPs was also evaluated. It was revealed that with increasing the volume of RE the size of the NPs was deteriorated, whereas at lower concentrations of RE smaller size and less aggregated NPs were obtained. During this study, the antimicrobial activities of both chemically and green synthesized Ag-NPs, along with the aqueous RE of S. persica L., were evaluated against various microorganisms. It was observed that the green synthesized Ag-NPs exhibit comparable or slightly higher antibacterial activities than the chemically obtained Ag-NPs.

  7. Effects of beta interferon on human fibroblasts at different population doubling levels. Proliferation, cell volume, thymidine uptake, and DNA synthesis



    Cellular aging had no effect on the ability of beta interferon to increase cell volume and population doubling time in 76-109 cells, a line of human skin fibroblasts. However, DNA synthesis in cells at high population doubling levels (PDL 55-70) was inhibited after 72 h of beta interferon treatment (1,000 U/ml) while no inhibition of DNA synthesis was observed in cells at middle population doubling levels (PDL 30-40).

  8. A Comparison between Chemical Synthesis Magnetite Nanoparticles and Biosynthesis Magnetite



    The preparation of Fe3O4 from ferrous salt by air in alkaline aqueous solution at various temperatures was proposed. The synthetic magnetites have different particle size distributions. We studied the properties of the magnetite prepared by chemical methods compared with magnetotactic bacterial nanoparticles. The results show that crystallite size, morphology, and particle size distribution of chemically prepared magnetite at 293 K are similar to biosynthesis of magnetite. The new preparation...

  9. Phosphorus-containing cyclodextrins. Characteristics of the synthesis and chemical behaviour (United States)

    Grachev, M. K.


    Published data on the preparation of phosphorus-containing cyclodextrins are summarized. It is demonstrated that some significant features of their synthesis and chemical behaviour are caused by specific supramolecular interactions involving the inner chiral cavity of cyclodextrins capable of incorporating various guests, which often leads to alteration of customary routes of chemical transformations. The possibilities of practical applications of phosphorus-containing cyclodextrins are briefly analyzed. The bibliography includes 89 references.

  10. Developing Inhibitors of Translesion DNA Synthesis as Therapeutic Agents Against Lung Cancer (United States)


    nuclear magnetic resonance ( NMR spectroscopy (Figure 3). Figure 2. Mass spectroscopy to verify the molecular weight of 3-ethynyl-5-nitroindolyl-2...8217 -deoxynucleoside. 0 20 25 mia Figure 3. NMR spectrum of 3-ethynyl-5-nitroindolyl- 2’ -deoxynucleoside. ~~. A-::.~, C-*!&t:.,. I As described...provided in Figure 2D . The kinetic parameters for pol  during normal and translesion DNA synthesis are summarized in Table 1. These data indicate

  11. Iron reverses impermeable chelator inhibition of DNA synthesis in CCl 39 cells.


    Alcain, F J; Löw, H; Crane, F. L.


    Treatment of Chinese hamster lung fibroblasts (CCl 39 cells) with the impermeable iron(II) chelator bathophenanthroline disulfonate (BPS) inhibits DNA synthesis when cell growth is initiated with growth factors including epidermal growth factor plus insulin, thrombin, or ceruloplasmin, but not with 10% fetal calf serum. The BPS treatment inhibits transplasma membrane electron transport. The treatment leads to release of iron from the cells as determined by BPS iron(II) complex formation over ...

  12. [DNA synthesis inhibition test of INAH by cultured human fibroblasts]. (United States)

    Nishio, K; Yanagisawa, K


    The most commonly used screening test of carcinogens is the Ames test. But this system occasionally shows false positive and false negative. Painter's method is one which has been developed to minimize false results. Now we test by Painter's method isonicotinic acid hydrazide, which shows negative in the Ames test but positive in an animal test. INAH showed positive by Painter's method. More chemicals are now under study for their carcinogenicity by Painter's method.

  13. Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA Binding, DNA Cleavage, and Antibacterial Activity Studies. (United States)

    Raza, Aun; Xu, Xiuquan; Xia, Li; Xia, Changkun; Tang, Jian; Ouyang, Zhen


    Quercetin-iron (II) complex was synthesized and characterized by elemental analysis, ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, mass spectrometry, proton nuclear magnetic resonance spectroscopy, thermogravimetry and differential scanning calorimetry, scanning electron micrography and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal:ligand) of the complex. Antioxidant study of the quercetin and its metal complex against 2, 2-di-phenyl-1-picryl hydrazyl radical showed that the complex has much more radical scavenging activity than free quercetin. The interaction of quercetin-iron (II) complex with DNA was determined using ultraviolet visible spectra, fluorescence spectra and agarose gel electrophoresis. The results showed that quercetin-iron (II) complex can intercalate moderately with DNA, quench a strong intercalator ethidium bromide and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form to nicked circular form and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was an oxidative cleavage pathway. These results revealed the potential nuclease activity of complex to cleave DNA. In addition, antibacterial activity of complex on E.coli and S. aureus was also investigated. The results showed that complex has higher antibacterial activity than ligand.

  14. Rutin-Nickel Complex: Synthesis, Characterization, Antioxidant, DNA Binding, and DNA Cleavage Activities. (United States)

    Raza, Aun; Bano, Shumaila; Xu, Xiuquan; Zhang, Rong Xian; Khalid, Haider; Iqbal, Furqan Muhammad; Xia, Changkun; Tang, Jian; Ouyang, Zhen


    The rutin-nickel (II) complex (RN) was synthesized and characterized by elemental analysis, UV-visible spectroscopy, IR, mass spectrometry, (1)H NMR, TG-DSC, SEM, and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal/ligand) of the complex. An antioxidant study of rutin and its metal complex against DPPH radical showed that the complex has more radical scavenging activity than free rutin. The interaction of complex RN with DNA was determined using fluorescence spectra and agarose gel electrophoresis. The results showed that RN can intercalate moderately with DNA, quench a strong intercalator ethidium bromide (EB), and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form (SC) to nicked circular form (NC), and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was a hydrolytic cleavage pathway. These results revealed the potential nuclease activity of the complex to cleave DNA.

  15. Automated screening for small organic ligands using DNA-encoded chemical libraries. (United States)

    Decurtins, Willy; Wichert, Moreno; Franzini, Raphael M; Buller, Fabian; Stravs, Michael A; Zhang, Yixin; Neri, Dario; Scheuermann, Jörg


    DNA-encoded chemical libraries (DECLs) are collections of organic compounds that are individually linked to different oligonucleotides, serving as amplifiable identification barcodes. As all compounds in the library can be identified by their DNA tags, they can be mixed and used in affinity-capture experiments on target proteins of interest. In this protocol, we describe the screening process that allows the identification of the few binding molecules within the multiplicity of library members. First, the automated affinity selection process physically isolates binding library members. Second, the DNA codes of the isolated binders are PCR-amplified and subjected to high-throughput DNA sequencing. Third, the obtained sequencing data are evaluated using a C++ program and the results are displayed using MATLAB software. The resulting selection fingerprints facilitate the discrimination of binding from nonbinding library members. The described procedures allow the identification of small organic ligands to biological targets from a DECL within 10 d.

  16. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. (United States)

    Cheung-Ong, Kahlin; Giaever, Guri; Nislow, Corey


    DNA-damaging agents have a long history of use in cancer chemotherapy. The full extent of their cellular mechanisms, which is essential to balance efficacy and toxicity, is often unclear. In addition, the use of many anticancer drugs is limited by dose-limiting toxicities as well as the development of drug resistance. Novel anticancer compounds are continually being developed in the hopes of addressing these limitations; however, it is essential to be able to evaluate these compounds for their mechanisms of action. This review covers the current DNA-damaging agents used in the clinic, discusses their limitations, and describes the use of chemical genomics to uncover new information about the DNA damage response network and to evaluate novel DNA-damaging compounds.

  17. Green chemical synthesis of silver nanomaterials with maltodextrin.

    Energy Technology Data Exchange (ETDEWEB)

    Tallant, David Robert; Lu, Ping; Lambert, Timothy N.; Bell, Nelson Simmons


    Silver nanomaterials have significant application resulting from their optical properties related to surface enhanced Raman spectroscopy, high electrical conductivity, and anti-microbial impact. A 'green chemistry' synthetic approach for silver nanomaterials minimizes the environmental impact of silver synthesis, as well as lowers the toxicity of the reactive agents. Biopolymers have long been used for stabilization of silver nanomaterials during synthesis, and include gum Arabic, heparin, and common starch. Maltodextrin is a processed derivative of starch with lower molecular weight and an increase in the number of reactive reducing aldehyde groups, and serves as a suitable single reactant for the formation of metallic silver. Silver nanomaterials can be formed under either a thermal route at neutral pH in water or by reaction at room temperature under more alkaline conditions. Deposited silver materials are formed on substrates from near neutral pH solutions at low temperatures near 50 C. Experimental conditions based on material concentrations, pH and reaction time are investigated for development of deposited films. Deposit morphology and optical properties are characterized using SEM and UV-vis techniques. Silver nanoparticles are generated under alkaline conditions by a dissolution-reduction method from precipitated silver (II) oxide. Synthesis conditions were explored for the rapid development of stable silver nanoparticle dispersions. UV-vis absorption spectra, powder X-ray diffraction (PXRD), dynamic light scattering (DLS), and transmission electron microscopy (TEM) techniques were used to characterize the nanoparticle formation kinetics and the influence of reaction conditions. The adsorbed content of the maltodextrin was characterized using thermogravimetric analysis (TGA).

  18. Interdisciplinary Learning for Chemical Engineering Students from Organic Chemistry Synthesis Lab to Reactor Design to Separation (United States)

    Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph


    A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…

  19. Nanostructured Mg-Al hydrotalcite as catalyst for fine chemical synthesis. (United States)

    Basahel, Sulaiman N; Al-Thabaiti, Shaeel A; Narasimharao, Katabathini; Ahmed, Nesreen S; Mokhtar, Mohamed


    This paper reviews the recent research of nanostructured Mg-Al hydrotalcite (Mg-Al HT) and its application as an efficient solid base catalyst for the synthesis of fine chemicals. Mg-Al HT has many beneficial features, such as low cost, selectivity, catalytic properties, and wide range of preparation and modification methods. They hold promise for providing sought-after, environmentally friendly technologies for the 21st century. Replacement of currently used homogeneous alkaline bases for the synthesis of fine chemicals by a solid catalyst can result in catalyst re-use and waste stream reduction. We introduce briefly the structure, properties and characterization of the nanostructured Mg-Al HT. The efficacy and benign applications of Mg-Al HT as an alternative solid base to homogenous catalysts in the synthesis of fine chemicals are then reviewed. The challenges for the future applications of Mg-Al HT in the synthesis of fine chemicals in terms of green protocol processes are discussed.

  20. A wet-chemical approach to perovskite and fluorite-type nanoceramics: synthesis and processing

    NARCIS (Netherlands)

    Veldhuis, Sjoerd Antonius


    In thesis the low-temperature, wet-chemical approach to various functional inorganic oxide materials is described. The main focus of this research is to control the material’s synthesis from liquid precursor to metal oxide powder or thin film; while understanding its formation mechanism. In addition

  1. Modeling and Experimental Studies on Phase and Chemical Equilibria in High-Pressure Methanol Synthesis

    NARCIS (Netherlands)

    van Bennekom, Joost G.; Winkelman, Jozef G. M.; Venderbosch, Robertus H.; Nieland, Sebastiaan D. G. B.; Heeres, Hero J.


    A solution method was developed to calculate the simultaneous phase and chemical equilibria in high-pressure methanol synthesis (P = 20 MPa, 463

  2. Synthesis of chemicals and polymers: towards cleaner processes and atom economy, session 5

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, A.; Thivolle-Cazat, J.; Hutchings, G.; Murata, K.; Leininger, S.; Sorokin, A.; Angelis, A. de; Apesteguia, C.I.; Mayoral, J.A.; Hardacre, C.; Jeon, J.; Tominaga, K.; Plasseraud, L.; Kervennal, J.; Souza, R.F. de; Ciardelli, F.; Dominguez, J.M.


    The abstracts of all the presentations (1 plenary session, 2 keynotes, 16 oral communications, 151 posters) of the thematic session 5 'synthesis of chemicals and polymers: towards cleaner processes and atom economy' are gathered in the CD-Rom of the conference. (O.M.)

  3. The Use of Aryl Hydrazide Linkers for the Solid Phase Synthesis of Chemically Modified Peptides

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Y; Mitchell, A R; Camarero, J A


    Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis of C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.

  4. STM CONTROL OF CHEMICAL REACTIONS: Single-Molecule Synthesis (United States)

    Hla, Saw-Wai; Rieder, Karl-Heinz


    The fascinating advances in single atom/molecule manipulation with a scanning tunneling microscope (STM) tip allow scientists to fabricate atomic-scale structures or to probe chemical and physical properties of matters at an atomic level. Owing to these advances, it has become possible for the basic chemical reaction steps, such as dissociation, diffusion, adsorption, readsorption, and bond-formation processes, to be performed by using the STM tip. Complete sequences of chemical reactions are able to induce at a single-molecule level. New molecules can be constructed from the basic molecular building blocks on a one-molecule-at-a-time basis by using a variety of STM manipulation schemes in a systematic step-by-step manner. These achievements open up entirely new opportunities in nanochemistry and nanochemical technology. In this review, various STM manipulation techniques useful in the single-molecule reaction process are reviewed, and their impact on the future of nanoscience and technology are discussed.

  5. Trophic magnification of organic chemicals: A global synthesis (United States)

    Walters, David; Jardine, T.D.; Cade, Brian S.; Kidd, K.A.; Muir, D.C.G.; Leipzig-Scott, Peter C.


    Production of organic chemicals (OCs) is increasing exponentially, and some OCs biomagnify through food webs to potentially toxic levels. Biomagnification under field conditions is best described by trophic magnification factors (TMFs; per trophic level change in log-concentration of a chemical) which have been measured for more than two decades. Syntheses of TMF behavior relative to chemical traits and ecosystem properties are lacking. We analyzed >1500 TMFs to identify OCs predisposed to biomagnify and to assess ecosystem vulnerability. The highest TMFs were for OCs that are slowly metabolized by animals (metabolic rate kM  0.2 day–1). This probabilistic model provides a new global tool for screening existing and new OCs for their biomagnification potential.

  6. Synthesis and chemical etching of Te/C nanocables

    Indian Academy of Sciences (India)

    Guang Sheng Cao; Yong Gang Liu; Wen Wu Yang; Chang Tan; Hui Li; Xiao Juan Zhang


    In this paper, Te/C nanocables were fabricated by a hydrothermal method in the presence of cetyltrimethylammonium bromide (CTAB). The products were characterized in detail by multiform techniques: transmission electron microscopy, X-ray diffraction, energy-dispersive X-ray analysis and Fourier transform infrared (FTIR) spectroscopy. The results showed that the products were nanocables with lengths of several microns, core about 20 nm in diameter, and a surrounding sheath of about 60–80 nm in thickness. Te/C nanocables were tailored freely by chemical etching. Carbonaceous nanotubes and Te/C nanocables with fragmentary Te core were obtained by adjusting time of chemical etching.

  7. A microfluidic DNA computing processor for gene expression analysis and gene drug synthesis. (United States)

    Zhang, Yu; Yu, Hao; Qin, Jianhua; Lin, Bingcheng


    Boolean logic performs a logical operation on one or more logic input and produces a single logic output. Here, we describe a microfluidic DNA computing processor performing Boolean logic operations for gene expression analysis and gene drug synthesis. Multiple cancer-related genes were used as input molecules. Their expression levels were identified by interacting with the computing related DNA strands, which were designed according to the sequences of cancer-related genes and the suicide gene. When all the expressions of the cancer-related genes fit in with the diagnostic criteria, positive diagnosis would be confirmed and then a complete suicide gene (gene drug) could be synthesized as an output molecule. Microfluidic chip was employed as an effective platform to realize the computing process by integrating multistep biochemical reactions involving hybridization, displacement, denaturalization, and ligation. By combining the specific design of the computing related molecules and the integrated functions of the microfluidics, the microfluidic DNA computing processor is able to analyze the multiple gene expressions simultaneously and realize the corresponding gene drug synthesis with simplicity and fast speed, which demonstrates the potential of this platform for DNA computing in biomedical applications.

  8. Green synthesis of gold nanoparticles for staining human cervical cancer cells and DNA binding assay. (United States)

    De, Swati; Kundu, Rikta; Ghorai, Atanu; Mandal, Ranju Prasad; Ghosh, Utpal


    Gold nanoparticles have been functionalized by non-ionic surfactants (polysorbates) used in pharmaceutical formulations. This results in the formation of more well-dispersed gold nanoparticles (GNPs) than the GNPs formed in neat water. The synthesized GNPs show good temporal stability. The synthesis conditions are mild and environmentally benign. The GNPs can bind to ct-DNA and displace bound dye molecules. The DNA-binding assay is significant as it preliminarily indicated that DNA-GNP conjugates can be formed. Such conjugates are extremely promising for applications in nanobiotechnology. The GNPs can also stain the human cervical cancer (HeLa) cells over a wide concentration range while remaining non-cytotoxic, thus providing a non invasive cell staining method. This result is very promising as we observe staining of HeLa cells at very low GNP concentrations (1 μM) while the cell viability is retained even at 10-fold higher GNP concentrations.

  9. Synthesis and Crystal Structure of 2’-Se-modified guanosine Containing DNA

    Energy Technology Data Exchange (ETDEWEB)

    Salon, J.; Sheng, J; Gan, J; Huang, Z


    Selenium modification of nucleic acids is of great importance in X-ray crystal structure determination and functional study of nucleic acids. Herein, we describe a convenient synthesis of a new building block, the 2{prime}-SeMe-modified guanosine (G{sub Se}) phosphoramidite, and report the first incorporation of the 2{prime}-Se-G moiety into DNA. The X-ray crystal structure of the 2{prime}-Se-modified octamer DNA (5{prime}-GTG{sub Se}TACAC-3{prime}) was determined at a resolution of 1.20 {angstrom}. We also found that the 2{prime}-Se modification points to the minor groove and that the modified and native structures are virtually identical. Furthermore, we observed that the 2{prime}-Se-G modification can significantly facilitate the crystal growth with respect to the corresponding native DNA.

  10. The histone variant H2A.Bbd is enriched at sites of DNA synthesis. (United States)

    Sansoni, Viola; Casas-Delucchi, Corella S; Rajan, Malini; Schmidt, Andreas; Bönisch, Clemens; Thomae, Andreas W; Staege, Martin S; Hake, Sandra B; Cardoso, M Cristina; Imhof, Axel


    Histone variants play an important role in shaping the mammalian epigenome and their aberrant expression is frequently observed in several types of cancer. However, the mechanisms that mediate their function and the composition of the variant-containing chromatin are still largely unknown. A proteomic interrogation of chromatin containing the different H2A variants macroH2A.1.2, H2A.Bbd and H2A revealed a strikingly different protein composition. Gene ontology analysis reveals a strong enrichment of splicing factors as well as components of the mammalian replisome in H2A.Bbd-containing chromatin. We find H2A.Bbd localizing transiently to sites of DNA synthesis during S-phase and during DNA repair. Cells that express H2A.Bbd have a shortened S-phase and are more susceptible to DNA damage, two phenotypes that are also observed in human Hodgkin's lymphoma cells that aberrantly express this variant. Based on our experiments we conclude that H2A.Bbd is targeted to newly synthesized DNA during replication and DNA repair. The transient incorporation of H2A.Bbd may be due to the intrinsic instability of nucleosomes carrying this variant or a faster chromatin loading. This potentially leads to a disturbance of the existing chromatin structure, which may have effects on cell cycle regulation and DNA damage sensitivity.

  11. Chemical synthesis of erythropoietin glycoforms for insights into the relationship between glycosylation pattern and bioactivity. (United States)

    Murakami, Masumi; Kiuchi, Tatsuto; Nishihara, Mika; Tezuka, Katsunari; Okamoto, Ryo; Izumi, Masayuki; Kajihara, Yasuhiro


    The role of sialyloligosaccharides on the surface of secreted glycoproteins is still unclear because of the difficulty in the preparation of sialylglycoproteins in a homogeneous form. We selected erythropoietin (EPO) as a target molecule and designed an efficient synthetic strategy for the chemical synthesis of a homogeneous form of five EPO glycoforms varying in glycosylation position and the number of human-type biantennary sialyloligosaccharides. A segment coupling strategy performed by native chemical ligation using six peptide segments including glycopeptides yielded homogeneous EPO glycopeptides, and folding experiments of these glycopeptides afforded the correctly folded EPO glycoforms. In an in vivo erythropoiesis assay in mice, all of the EPO glycoforms displayed biological activity, in particular the EPO bearing three sialyloligosaccharides, which exhibited the highest activity. Furthermore, we observed that the hydrophilicity and biological activity of the EPO glycoforms varied depending on the glycosylation pattern. This knowledge will pave the way for the development of homogeneous biologics by chemical synthesis.

  12. Chemical synthesis of erythropoietin glycoforms for insights into the relationship between glycosylation pattern and bioactivity (United States)

    Murakami, Masumi; Kiuchi, Tatsuto; Nishihara, Mika; Tezuka, Katsunari; Okamoto, Ryo; Izumi, Masayuki; Kajihara, Yasuhiro


    The role of sialyloligosaccharides on the surface of secreted glycoproteins is still unclear because of the difficulty in the preparation of sialylglycoproteins in a homogeneous form. We selected erythropoietin (EPO) as a target molecule and designed an efficient synthetic strategy for the chemical synthesis of a homogeneous form of five EPO glycoforms varying in glycosylation position and the number of human-type biantennary sialyloligosaccharides. A segment coupling strategy performed by native chemical ligation using six peptide segments including glycopeptides yielded homogeneous EPO glycopeptides, and folding experiments of these glycopeptides afforded the correctly folded EPO glycoforms. In an in vivo erythropoiesis assay in mice, all of the EPO glycoforms displayed biological activity, in particular the EPO bearing three sialyloligosaccharides, which exhibited the highest activity. Furthermore, we observed that the hydrophilicity and biological activity of the EPO glycoforms varied depending on the glycosylation pattern. This knowledge will pave the way for the development of homogeneous biologics by chemical synthesis. PMID:26824070

  13. Mechanisms of assembly of the enzyme-ssDNA complexes required for recombination-dependent DNA synthesis and repair in bacteriophage T4

    Energy Technology Data Exchange (ETDEWEB)

    Morrical, S.; Hempstead, K.; Morrical, M. [Univ. of Vermont College of Medicine, Burlington, VT (United States)


    During late stages of bacteriophage T4 infection in E. coli, the initiation of phage DNA replication is dependent on the homologous recombination activity of the T4 uvsX protein. In vitro, uvsX protein initiates DNA synthesis on a duplex template by inserting the 3{prime} end of a homologous ssDNA molecule into the duplex. The resulting D-loop structure serves as a primer-template junction for the assembly of the T4 replication fork. Two key steps in this initiation process are (A) the assembly of uvsX-ssDNA complexes necessary for recombination activity and for the priming of lead-strand DNA synthesis, and (B) the assembly of the T4 primosome (gp41 helicase/gp61 primase complex) onto the single-stranded template for lagging-strand synthesis. Our laboratory is focusing on the mechanisms of these two different but related enzyme-ssDNA assembly processes. In this extended abstract, we describe recent efforts in our laboratory to elucidate the mechanism by which the gp41 helicase enzyme is assembled onto gp32-covered ssDNA, a process requiring the activity of a special helicase assembly factor, the T4 gp59 protein.

  14. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases

    Institute of Scientific and Technical Information of China (English)

    Scott D McCulloch; Thomas A Kunkel


    In their seminal publication describing the structure of the DNA double helix [1], Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Half a century later, we more fully appreciate what a huge challenge it is to replicate six billion nucleotides with the accuracy needed to stably maintain the human genome over many generations. This challenge is perhaps greater than was realized 50 years ago, because subsequent studies have revealed that the genome can be destabilized not only by environmental stresses that generate a large number and variety of potentially cytotoxic and mutagenic lesions in DNA but also by various sequence motifs of normal DNA that present challenges to replication. Towards a better understanding of the many determinants of genome stability, this chapter reviews the fidelity with which undamaged and damaged DNA is copied, with a focus on the eukaryotic B- and Y-family DNA polymerases, and considers how this fidelity is achieved.

  15. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis. (United States)

    Crane, Erika A; Gademann, Karl


    Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody-drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products.

  16. A Comparison between Chemical Synthesis Magnetite Nanoparticles and Biosynthesis Magnetite. (United States)

    Kahani, Seyed Abolghasem; Yagini, Zahra


    The preparation of Fe3O4 from ferrous salt by air in alkaline aqueous solution at various temperatures was proposed. The synthetic magnetites have different particle size distributions. We studied the properties of the magnetite prepared by chemical methods compared with magnetotactic bacterial nanoparticles. The results show that crystallite size, morphology, and particle size distribution of chemically prepared magnetite at 293 K are similar to biosynthesis of magnetite. The new preparation of Fe3O4 helps to explain the mechanism of formation of magnetosomes in magnetotactic bacteria. The products are characterized by X-ray powder diffraction (XRD), infrared (IR) spectra, vibrating sample magnetometry (VSM), and scanning electron microscopy (SEM).

  17. Chemical synthesis of superconducting MgB{sub 2} nanopowder

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Narottam P., E-mail: [Materials and Structures Division, NASA Glenn Research Center, Cleveland, OH 44135 (United States); Goldsby, Jon C.; Rogers, Richard B. [Materials and Structures Division, NASA Glenn Research Center, Cleveland, OH 44135 (United States); Susner, Michael A.; Sumption, Michael D. [Center for Superconducting and Magnetic Materials, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 (United States)


    Highlights: • MgB{sub 2} nanopowder has been synthesized by chemical method. • Powder characterized by XRD and SEM. • Superconducting behavior confirmed by susceptibility and magnetization measurements. • Nanopowder will facilitate the fabrication of small diameter MgB{sub 2} filaments. - Abstract: Superconducting MgB{sub 2} nanopowder has been synthesized through chemical reaction between lithium borohydride and magnesium hydride at relatively low temperatures. From quantitative Rietveld analysis, the average crystallite size of MgB{sub 2} powder was evaluated to be 33 nm. The superconducting transition temperature of the MgB{sub 2} nanopowder was found to be 38.8-38.9 K from magnetization and DC susceptibility measurements. Powder morphology has been evaluated by scanning electron microscopy.

  18. Plasma-chemical Synthesis and Regeneration of Catalysts for CH4 Steam Conversion

    Institute of Scientific and Technical Information of China (English)


    We carried out experimental studies concerning the plasma-chemical synthesis(PCS) of a catalyst for CH4 steam conversion and designed and built the equipment for PCS and/ or regeneration of spent catalyst for CH4 steam conversion. Under the conditions of an electric-arc low-temperature plasma (LTP), we studied the Ni-O-Al system and performed a comprehensive physicochemical analysis of the ultradispersed product obtained. It's the first time worldwide when the conditions of plasma-chemical synthesis and/ or regeneration of CH4 steam conversion catalysts under the conditions of electric-arc LTP are investigated depending on the plasma-chemical process (PCP) parameters and the plasma-chemical reactor (PCP) type (with CW-"cold walls" Tw = 500 K or WW-"warm walls" Tw = 1500 K), samples with a specific surface of 120 m2/g are obtained. Plasma-chemically synthesized and/ or regenerated samples have a homogenous chemical composition similar to that the Girdller (USA) conventional industrial catalyst. It is empirically established that the optimal temperature range in PCR for synthesis of samples with maximum dispersity is (2000 ~ 3000) K. Results from investigation on dynamics and kinetics of plasma-chemically synthesized and / or regenerated catalysts for CH4 steam conversion show that under LTP conditions premises for the formation of catalyst compositions are established. They are reduced 3 to 4 times faster than their industrial analogues. High specific surface of the samples, homogenous composition, high rate of active chemical surface formed by reduction, faulty crystal lattice of catalytically active phases and mostly high catalytic activity make them a potential competitor with their industrial analogues for their probable production in catalyst shops.

  19. Iron may induce both DNA synthesis and repair in rat hepatocytes stimulated by EGF/pyruvate

    Energy Technology Data Exchange (ETDEWEB)

    Chenoufi, N.; Loreal, O.; Cariou, S.; Hubert, N.; Lescoat, G. [Univ. Hospital Pontchaillou, Unite de Recherches Hepatologiques, INSERM U 49, Rennes (France); Drenou, B. [Univ. Hospital Pontchaillou, Lab. d`Hematologie et d`Immunologie, Rennes (France); Leroyer, P.; Brissot, P. [Univ. Hospital Pontchaillou, Clinique des Maladies du Foie, Rennes (France)


    Background/Aims: Hepatocellular carcinoma develops frequently in the course of genetic hemochromatosis, and a role of iron overload in hepatic carcinogenesis is strongly suggested. Methods: The aim of our study was to investigate the effect of iron exposure on DNA synthesis of adult rat hepatocytes maintained in primary culture stimulated or not by EGF/pyruvate and exposed to iron-citrate complex. Results: In EGF/pyruvate-stimulated cultures, the level of [{sup 3}H] methyl thymidine incorporation was strongly increased as compared to unstimulated cultures. The addition of iron to stimulated cultures increased [{sup 3}H] methyl thymidine incorporation. The mitotic index was also significantly higher at 72 h. However,the number of cells found in the cell layer was not significantly different from iron-citrate free culture. By flow cytometry, no difference in cell ploidy was found between iron-treated and untreated EGF/pyruvate-stimulated cultures. A significant increase in LDH leakage reflecting a toxic effect of iron was found in the cell medium 48 h after cell seeding. In addition, [{sup 3}H] methyl thymidine incorporation in the presence of hydroxyurea was increased in iron-treated compared to untreated cultures. Conclusions: Our results show that DNA synthesis is increased in the presence of iron in rat hepatocyte cultures stimulated by EGF/pyruvate, and they suggest that DNA synthesis is likely to be related both to cell proliferation and to DNA repair. These observations may allow better understanding of the role of iron overload in the development of hepatocellular carcinoma. (au) 61 refs.

  20. Synthesis, chemical modification, and surface assembly of carbon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Amma, A.; St. Angelo, S.K.; Mallouk, T.E. [Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 (United States); Razavi, B.; Mayer, T.S. [Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)


    Carbon nanotubules and nanowires were synthesized by pyrolysis of polymer precursors in the pores of alumina membranes. The nanowires were released by dissolving the membranes, and were then made hydrophobic or hydrophilic by chemical surface derivatization. These nanowires could be placed into lithographically defined wells on surfaces by means of electrostatic interactions with monolayers at the bottoms of the wells. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  1. Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates. (United States)

    Lonkar, Pallavi; Dedon, Peter C


    Chronic inflammation has long been recognized as a risk factor for many human cancers. One mechanistic link between inflammation and cancer involves the generation of nitric oxide, superoxide and other reactive oxygen and nitrogen species by macrophages and neutrophils that infiltrate sites of inflammation. Although pathologically high levels of these reactive species cause damage to biological molecules, including DNA, nitric oxide at lower levels plays important physiological roles in cell signaling and apoptosis. This raises the question of inflammation-induced imbalances in physiological and pathological pathways mediated by chemical mediators of inflammation. At pathological levels, the damage sustained by nucleic acids represents the full spectrum of chemistries and likely plays an important role in carcinogenesis. This suggests that DNA damage products could serve as biomarkers of inflammation and oxidative stress in clinically accessible compartments such as blood and urine. However, recent studies of the biotransformation of DNA damage products before excretion point to a weakness in our understanding of the biological fates of the DNA lesions and thus to a limitation in the use of DNA lesions as biomarkers. This review will address these and other issues surrounding inflammation-mediated DNA damage on the road to cancer.

  2. Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications. (United States)

    Correa, D S; Medeiros, E S; Oliveira, J E; Paterno, L G; Mattoso, Luiz C


    Conjugated polymers are organic materials endowed with a π-electron conjugation along the polymer backbone that present appealing electrical and optical properties for technological applications. By using conjugated polymeric materials in the nanoscale, such properties can be further enhanced. In addition, the use of nanostructured materials makes possible miniaturize devices at the micro/nano scale. The applications of conjugated nanostructured polymers include sensors, actuators, flexible displays, discrete electronic devices, and smart fabric, to name a few. In particular, the use of conjugated polymers in chemical and biological sensors is made feasible owning to their sensitivity to the physicochemical conditions of its surrounding environment, such as chemical composition, pH, dielectric constant, humidity or even temperature. Subtle changes in these conditions bring about variations on the electrical (resistivity and capacitance), optical (absorptivity, luminescence, etc.), and mechanical properties of the conjugated polymer, which can be precisely measured by different experimental methods and ultimately associated with a specific analyte and its concentration. The present review article highlights the main features of conjugated polymers that make them suitable for chemical sensors. An especial emphasis is given to nanostructured sensors systems, which present high sensitivity and selectivity, and find application in beverage and food quality control, pharmaceutical industries, medical diagnosis, environmental monitoring, and homeland security, and other applications as discussed throughout this review.

  3. Biochemical analysis of six genetic variants of error-prone human DNA polymerase ι involved in translesion DNA synthesis. (United States)

    Kim, Jinsook; Song, Insil; Jo, Ara; Shin, Joo-Ho; Cho, Hana; Eoff, Robert L; Guengerich, F Peter; Choi, Jeong-Yun


    DNA polymerase (pol) ι is the most error-prone among the Y-family polymerases that participate in translesion synthesis (TLS). Pol ι can bypass various DNA lesions, e.g., N(2)-ethyl(Et)G, O(6)-methyl(Me)G, 8-oxo-7,8-dihydroguanine (8-oxoG), and an abasic site, though frequently with low fidelity. We assessed the biochemical effects of six reported genetic variations of human pol ι on its TLS properties, using the recombinant pol ι (residues 1-445) proteins and DNA templates containing a G, N(2)-EtG, O(6)-MeG, 8-oxoG, or abasic site. The Δ1-25 variant, which is the N-terminal truncation of 25 residues resulting from an initiation codon variant (c.3G > A) and also is the formerly misassigned wild-type, exhibited considerably higher polymerase activity than wild-type with Mg(2+) (but not with Mn(2+)), coinciding with its steady-state kinetic data showing a ∼10-fold increase in kcat/Km for nucleotide incorporation opposite templates (only with Mg(2+)). The R96G variant, which lacks a R96 residue known to interact with the incoming nucleotide, lost much of its polymerase activity, consistent with the kinetic data displaying 5- to 72-fold decreases in kcat/Km for nucleotide incorporation opposite templates either with Mg(2+) or Mn(2+), except for that opposite N(2)-EtG with Mn(2+) (showing a 9-fold increase for dCTP incorporation). The Δ1-25 variant bound DNA 20- to 29-fold more tightly than wild-type (with Mg(2+)), but the R96G variant bound DNA 2-fold less tightly than wild-type. The DNA-binding affinity of wild-type, but not of the Δ1-25 variant, was ∼7-fold stronger with 0.15 mM Mn(2+) than with Mg(2+). The results indicate that the R96G variation severely impairs most of the Mg(2+)- and Mn(2+)-dependent TLS abilities of pol ι, whereas the Δ1-25 variation selectively and substantially enhances the Mg(2+)-dependent TLS capability of pol ι, emphasizing the potential translational importance of these pol ι genetic variations, e.g., individual differences


    Energy Technology Data Exchange (ETDEWEB)



    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  5. Alternative fuels and chemicals from synthesis gas. Fourth quarterly report, 1994

    Energy Technology Data Exchange (ETDEWEB)



    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.


    Energy Technology Data Exchange (ETDEWEB)



    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  7. Conceptual "Heat-Driven" approach to the synthesis of DNA oligonucleotides on microarrays. (United States)

    Grajkowski, A; Cieślak, J; Chmielewski, M K; Marchán, V; Phillips, L R; Wilk, A; Beaucage, S L


    The discovery of deoxyribonucleoside cyclic N-acylphosphoramidites, a novel class of phosphoramidite monomers for solid-phase oligonucleotide synthesis, has led to the development of a number of phosphate protecting groups that can be cleaved from DNA oligonucleotides under thermolytic neutral conditions. These include the 2-(N-formyl-N-methyl)aminoethyl, 4-oxopentyl, 3-(N-tert-butyl)carboxamido-1-propyl, 3-(2-pyridyl)-1-propyl, 2-[N-methyl-N-(2-pyridyl)]aminoethyl, and 4-methythiobutyl groups. When used for 5'-hydroxyl protection of nucleosides, the analogous 1-phenyl-2-[N-methyl-N-(2-pyridyl)]aminoethyloxycarbonyl group exhibited excellent thermolytic properties, which may permit an iterative "heat-driven" synthesis of DNA oligonucleotides on microarrays. In this regard, progress has been made toward the use of deoxyribonucleoside cyclic N-acylphosphoramidites in solid-phase oligonucleotide syntheses without nucleobase protection. Given that deoxyribonucleoside cyclic N-acylphosphoramidites produce oligonucleotides with heat-sensitive phosphate protecting groups, blocking the 5'-hydroxyl of these monomers with, for example, the thermolabile 1-phenyl-2-[N-methyl-N-(2-pyridyl)]aminoethyloxycarbonyl group may provide a convenient thermo-controlled method for the synthesis of oligonucleotides on microarrays.

  8. DNA-Conjugated Organic Chromophores in DNA Stacking Interactions

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V.; Pedersen, Erik Bjerregaard


    Since the discovery of the intercalation of acridine derivatives into DNA (1961), chemists have synthesized many intercalators tethered to DNA. Advances in the chemical synthesis of modified nucleosides along with progress in oligonucleotide synthesis have made it possible to introduce organic ch...... review presents those efforts in the design of intercalators/organic chromophores as oligonucleotide conjugates that form a foundation for the generation of novel nucleic acid architectures...

  9. Hit-Validation Methodologies for Ligands Isolated from DNA-Encoded Chemical Libraries. (United States)

    Zimmermann, Gunther; Li, Yizhou; Rieder, Ulrike; Mattarella, Martin; Neri, Dario; Scheuermann, Jörg


    DNA-encoded chemical libraries (DECLs) are large collections of compounds linked to DNA fragments, serving as amplifiable barcodes, which can be screened on target proteins of interest. In typical DECL selections, preferential binders are identified by high-throughput DNA sequencing, by comparing their frequency before and after the affinity capture step. Hits identified in this procedure need to be confirmed, by resynthesis and by performing affinity measurements. In this article we present new methods based on hybridization of oligonucleotide conjugates with fluorescently labeled complementary oligonucleotides; these facilitate the determination of affinity constants and kinetic dissociation constants. The experimental procedures were demonstrated with acetazolamide, a binder to carbonic anhydrase IX with a dissociation constant in the nanomolar range. The detection of binding events was compatible not only with fluorescence polarization methodologies, but also with Alphascreen technology and with microscale thermophoresis.

  10. AlkB recognition of a bulky DNA base adduct stabilized by chemical cross-linking

    Institute of Scientific and Technical Information of China (English)


    E.coli AlkB is a direct DNA/RNA repair protein that oxidatively reverses N1 alkylated purines and N3 alkylated pyrimidines to regular bases.Previous crystal structures have revealed N1-methyl adenine(1-meA) recognition by AlkB and a unique base flipping mechanism,but how the AlkB active site can accommodate bulky base adducts is largely unknown.Employing a previously developed chemical cross-linking technique,we crystallized AlkB with a duplex DNA containing a caged thymine base(cagedT).The structure revealed a flexible hairpin lid and a reorganized substrate recognition loop used by AlkB to accommodate cagedT.These observations demonstrate,at the molecular level,how bulky DNA adducts may be recognized and processed by AlkB.

  11. Synthesis, crystal structure analysis, spectral (NMR, FT-IR, FT-Raman and UV-Vis) investigations, molecular docking studies, antimicrobial studies and quantum chemical calculations of a novel 4-chloro-8-methoxyquinoline-2(1H)-one: An effective antimicrobial agent and an inhibition of DNA gyrase and lanosterol-14α-demethylase enzymes (United States)

    Murugavel, S.; Sundramoorthy, S.; Lakshmanan, D.; Subashini, R.; Pavan Kumar, P.


    The novel title compound 4-chloro-8-methoxyquinoline-2(1H)-one (4CMOQ) has been synthesized by slow evaporation solution growth technique at room temperature. The synthesized 4CMOQ molecule was characterized experimentally by FT-IR, FT-Raman, UV-Vis, NMR and single crystal diffraction (XRD) and theoretically by quantum chemical calculations. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311++G (d,p) basis set in ground state and compared with the experimental data. The entire vibrational assignments of wave numbers were made on the basis of potential energy distribution (PED) by VEDA 4 programme. The nuclear magnetic resonance spectra (1H and 13C NMR) are obtained by using the gauge-invariant atomic orbital (GIAO) method. The change in electron density (ED) in the antibonding orbital's and stabilization energies E(2) of the molecule have been evaluated by natural bond orbital (NBO) analysis to give clear evidence of stabilization. Moreover, electronic characteristics such as HOMO and LUMO energies, Mulliken atomic charges and molecular electrostatic potential surface are investigated. Absorption spectrum analysis, nonlinear optical properties, chemical reactivity descriptors and thermodynamic features are also outlined theoretically. Molecular docking studies were executed to understand the inhibitory activity of 4CMOQ against DNA gyrase and Lanosterol 14 α-demethylase. The antimicrobial activity of 4CMOQ was determined against bacterial strains such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and fungal strains such as Aspergillus niger, Monascus purpureus and Penicillium citrinum. The obtained results show that the compound exhibited good to moderate antimicrobial activity.

  12. DNA Binding and Recognition of a CC Mismatch in a DNA Duplex by Water-Soluble Peptidocalix[4]arenes: Synthesis and Applications. (United States)

    Alavijeh, Nahid S; Zadmard, Reza; Balalaie, Saeed; Alavijeh, Mohammad S; Soltani, Nima


    Water-soluble peptidocalix[4]arenes were synthesized by the introduction of arginine-rich narrow groove-binding residues at lower rims through solid-phase synthesis. The study of binding of these water-soluble bidentate ligands to well-matched and mismatched DNA duplexes by fluorescent titrations, ethidium bromide (EB) displacement assays, DNA-melting experiments, and circular dichroism (CD) analysis revealed a sequence-dependent groove-binding mechanism.

  13. Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method (United States)

    Chongad, L. S.; Sharma, A.; Banerjee, M.; Jain, A.


    Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H2S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD.

  14. A new antiproliferative noscapine analogue: chemical synthesis and biological evaluation. (United States)

    Ghaly, Peter E; Abou El-Magd, Rabab M; Churchill, Cassandra D M; Tuszynski, Jack A; West, F G


    Noscapine, a naturally occurring opium alkaloid, is a widely used antitussive medication. Noscapine has low toxicity and recently it was also found to possess cytotoxic activity which led to the development of many noscapine analogues. In this paper we report on the synthesis and testing of a novel noscapine analogue. Cytotoxicity was assessed by MTT colorimetric assay using SKBR-3 and paclitaxel-resistant SKBR-3 breast cancer cell lines using different concentrations for both noscapine and the novel compound. Microtubule polymerization assay was used to determine the effect of the new compound on microtubules. To compare the binding affinity of noscapine and the novel compound to tubulin, we have done a fluorescence quenching assay. Finally, in silico methods using docking calculations were used to illustrate the binding mode of the new compound to α,β-tubulin. Our cytotoxicity results show that the new compound is more cytotoxic than noscapine on both SKBR-3 cell lines. This was confirmed by the stronger binding affinity of the new compound, compared to noscapine, to tubulin. Surprisingly, our new compound was found to have strong microtubule-destabilizing properties, while noscapine is shown to slightly stabilize microtubules. Our calculation indicated that the new compound has more binding affinity to the colchicine-binding site than to the noscapine site. This novel compound has a more potent cytotoxic effect on cancer cell lines than its parent, noscapine, and hence should be of interest as a potential anti-cancer drug.

  15. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Stephen [University of Chicago


    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.

  16. Timing of initiation of macronuclear DNA synthesis is set during the preceding cell cycle in Paramecium tetraurelia: analysis of the effects of abrupt changes in nutrient level

    Energy Technology Data Exchange (ETDEWEB)

    Ching, A.S.L.; Berger, J.D.


    In many eukaryotic organisms, initiation of DNA synthesis is associated with a major control point within the cell cycle and reflects the commitment of the cell to the DNA replication-division portion of the cell cycle. In paramecium, the timing of DNA synthesis initiation is established prior to fission during the preceding cell cycle. DNA synthesis normally starts at 0.25 in the cell cycle. When dividing cells are subjected to abrupt nutrient shift-up by transfer from a chemostat culture to medium with excess food, or shift-down from a well-fed culture to exhausted medium, DNA synthesis initiation in the post-shift cell cycle occurs at 0.25 of the parental cell cycle and not at either 0.25 in the post-shift cell cycle or at 0.25 in the equilibrium cell cycle produced under the post-shift conditions. The long delay prior to initiation of DNA synthesis following nutritional shift-up is not a consequence of continued slow growth because the rate of protein synthesis increases rapidly to the normal level after shift-up. Analysis of the relation between increase in cell mass and initiation of DNA synthesis following nutritional shifts indicates that increase in cell mass, per se, is neither a necessary nor a sufficient condition for initiation of DNA synthesis, in spite of the strong association between accumulation of cell mass and initiation of DNA synthesis in cells growing under steady-state conditions.

  17. Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. (United States)

    Ranjan, Shivendu; Dasgupta, Nandita; Rajendran, Bhavapriya; Avadhani, Ganesh S; Ramalingam, Chidambaram; Kumar, Ashutosh


    Titanium dioxide nanoparticles (TNPs) are widely used in the pharmaceutical and cosmetics industries. It is used for protection against UV exposure due to its light-scattering properties and high refractive index. Though TNPs are increasingly used, the synthesis of TNPs is tedious and time consuming; therefore, in the present study, microwave-assisted hybrid chemical approach was used for TNP synthesis. In the present study, we demonstrated that TNPs can be synthesized only in 2.5 h; however, the commonly used chemical approach using muffle furnace takes 5 h. The activity of TNP depends on the synthetic protocol; therefore, the present study also determined the effect of microwave-assisted hybrid chemical approach synthetic protocol on microbial and cytotoxicity. The results showed that TNP has the best antibacterial activity in decreasing order from Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. The IC50 values of TNP for HCT116 and A549 were found to be 6.43 and 6.04 ppm, respectively. Cell death was also confirmed from trypan blue exclusion assay and membrane integrity loss was observed. Therefore, the study determines that the microwave-assisted hybrid chemical approach is time-saving; hence, this technique can be upgraded from lab scale to industrial scale via pilot plant scale. Moreover, it is necessary to find the mechanism of action at the molecular level to establish the reason for greater bacterial and cytotoxicological toxicity. Graphical abstract A graphical representation of TNP synthesis.

  18. Small molecule inhibitors of PCNA/PIP-box interaction suppress translesion DNA synthesis. (United States)

    Actis, Marcelo; Inoue, Akira; Evison, Benjamin; Perry, Scott; Punchihewa, Chandanamali; Fujii, Naoaki


    Proliferating cell nuclear antigen (PCNA) is an essential component for DNA replication and DNA damage response. Numerous proteins interact with PCNA through their short sequence called the PIP-box to be promoted to their respective functions. PCNA supports translesion DNA synthesis (TLS) by interacting with TLS polymerases through PIP-box interaction. Previously, we found a novel small molecule inhibitor of the PCNA/PIP-box interaction, T2AA, which inhibits DNA replication in cells. In this study, we created T2AA analogues and characterized them extensively for TLS inhibition. Compounds that inhibited biochemical PCNA/PIP-box interaction at an IC50 <5 μM inhibited cellular DNA replication at 10 μM as measured by BrdU incorporation. In cells lacking nucleotide-excision repair activity, PCNA inhibitors inhibited reactivation of a reporter plasmid that was globally damaged by cisplatin, suggesting that the inhibitors blocked the TLS that allows replication of the plasmid. PCNA inhibitors increased γH2AX induction and cell viability reduction mediated by cisplatin. Taken together, these findings suggest that inhibitors of PCNA/PIP-box interaction could chemosensitize cells to cisplatin by inhibiting TLS.

  19. Chemical synthesis and stabilization of magnesium substituted brushite

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Donghyun [Department of Biomedical Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of); Kumta, Prashant N., E-mail: [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Mechanical Engineering and Materials Sceince, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States)


    Hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) is the most ubiquitous calcium phosphate phase used in implant coatings and more recently in gene/drug delivery applications due to its chemical stability under normal physiological conditions (37 deg. C, pH {approx} 7.5, 1 atm.). However, different calcium phosphate phases, such as brushite (CaH(PO{sub 4}){center_dot}2(H{sub 2}O)) and tricalcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}) which are thermodynamically unstable under physiological conditions are also being explored for biomedical applications. One way of stabilizing these phases under physiological conditions is to introduce magnesium to substitute for calcium in the brushite lattice. The role of magnesium as a stabilizing agent for synthesizing brushite under physiological conditions at room temperature has been studied. Chemical analysis, Fourier transform infrared spectroscopy and X-ray diffraction have also been conducted to validate the formation of magnesium substituted brushite under physiological conditions.

  20. Assembly fabrication of linkers on glass surface and their effect on DNA synthesis and hybridization

    Institute of Scientific and Technical Information of China (English)

    ShenJiayao; XiaoPengfeng; HouPeng; JiMeiju; SunXiao; HeNongyue


    Linkers were assembled on a glass surface based on the hydrolysis and condensation of 3-glycidoxy-propyltrimethoxysilane (GPS). After the assembly of GPS, four approaches were tried to open the ending epoxide group of GPS or to further elongate the linkers. The effect of these approaches on DNA in situ synthesis and hybridization was investigated. For the spacing of the synthesis initiation sites, the wettability of the support and the length of the linking group that attaches the initiation site to the surface have direct influences on the yield of coupling reactions and the subsequent hybridization events. X-ray photoelectron spectroscopy (XPS) and mean contact angles of deionized water of the above slides were measured to assess the linker's characteristics in each procedure. It was proved that the glass slides were successfully modified and became excellent supports for the oligonucleotides synthesis. In addition, it proved best for the in situ oligonueleotides synthesis that a glass slide was in turn treated with ethylenediamine, glutaradehyde, ethanolamine and sodium borohydride solution at ambient temperature after silanized with GPS.

  1. Wet chemical synthesis of quantum dots for medical applications (United States)

    Cepeda-Pérez, E. I.; López-Luke, T.; Pérez-Mayen, L.; Hidalgo, Alberto; de la Rosa, E.; Torres-Castro, Alejandro; Ceja-Fdez, Andrea; Vivero-Escoto, Juan; Gonzalez-Yebra, Ana L.


    In recent years the use of nanoparticles in medical applications has boomed. This is because the various applications that provide these materials like drug delivery, cancer cell diagnostics and therapeutics [1-5]. Biomedical applications of Quantum Dots (QDs) are focused on molecular imaging and biological sensing due to its optical properties. The size of QDs can be continuously tuned from 2 to 10 nm in diameter, which, after polymer encapsulation, generally increases to 5 - 20 nm diminishing the toxicity. The QDs prepared in our lab have a diameter between 2 to 7 nm. Particles smaller than 5 nm can interact with the cells [2]. Some of the characteristics that distinguish QDs from the commonly used fluorophores are wider range of emission, narrow and more sharply defined emission peak, brighter emission and a higher signal to noise ratio compared with organic dyes [6]. In this paper we will show our progress in the study of the interaction of quantum dots in live cells for image and Raman spectroscopy applications. We will also show the results of the interaction of quantum dots with genomic DNA for diagnostic purposes.

  2. Synthesis of biodegradable polymer-mesoporous silica composite microspheres for DNA prime-protein boost vaccination. (United States)

    Ho, Jenny; Huang, Yi; Danquah, Michael K; Wang, Huanting; Forde, Gareth M


    DNA vaccines or proteins are capable of inducing specific immunity; however, the translation to the clinic has generally been problematic, primarily due to the reduced magnitude of immune response and poor pharmacokinetics. Herein we demonstrate a composite microsphere formulation, composed of mesoporous silica spheres (MPS) and poly(D,L-lactide-co-glycolide) (PLGA), enables the controlled delivery of a prime-boost vaccine via the encapsulation of plasmid DNA (pDNA) and protein in different compartments. Method with modified dual-concentric-feeding needles attached to a 40 kHz ultrasonic atomizer was studied. These needles focus the flow of two different solutions, which passed through the ultrasonic atomizer. The process synthesis parameters, which are important to the scale-up of composite microspheres, were also studied. These parameters include polymer concentration, feed flowrate, and volumetric ratio of polymer and pDNA-PEI/MPS-BSA. This fabrication technique produced composite microspheres with mean D[4,3] ranging from 6 to 34 microm, depending upon the microsphere preparation. The resultant physical morphology of composite microspheres was largely influenced by the volumetric ratio of pDNA-PEI/MPS-BSA to polymer, and this was due to the precipitation of MPS at the surface of the microspheres. The encapsulation efficiencies were predominantly in the range of 93-98% for pDNA and 46-68% for MPS. In the in vitro studies, the pDNA and protein showed different release kinetics in a 40 day time frame. The dual-concentric-feeding in ultrasonic atomization was shown to have excellent reproducibility. It was concluded that this fabrication technique is an effective method to prepare formulations containing a heterologous prime-boost vaccine in a single delivery system.

  3. Wet Chemical Synthesis and Screening of Thick Porous Oxide Films for Resistive Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Wilhelm F. Maier


    Full Text Available A method of wet chemical synthesis suitable for high throughput and combinatorial applications has been developed for the synthesis of porous resistive thick-film gas sensors. This method is based on the robot-controlled application of unstable metal oxide suspensions on an array of 64 inter-digital electrodes positioned on an Al2O3 substrate. SnO2, WO3, ZrO2, TiO2, CeO2, In2O3 and Bi2O3 were chosen as base oxides, and were optimised by doping or mixed oxide formation. The parallel synthesis of mixed oxide sensors is illustrated by representative examples. The electrical characteristics and the sensor performance of the films were measured by high-throughput impedance spectroscopy while supplying various test gases (H2, CO, NO, NO2, propene. Data collection, data mining techniques applied and the best potential sensor materials discovered are presented.

  4. Systematic methods for synthesis and design of sustainable chemical and biochemical processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    , biomass, coal, natural gas, rock, etc., that are usually extracted), to a bigger set of basic chemical products (such as, ethylene, benzene sulfuric acid, ammonia, etc., that are produced in large quantities), to an even bigger set of intermediates (such as, methanol, urea, succinic acid, ethylene glycol...... from the renewable resources, the sustainability of the product and therefore the process can be improved. Also, the number of alternatives that exist provide opportunities and challenges to find the best synthesis routes, for example, for process intensification or a multi-product processing complex...... like a biorefinery. The process synthesis design problem can be formulated as one where first a synthesis-design target (a process with desired qualities) is defined and then design alternatives (process flowsheets for different raw material-product connection) that match the target are identified...

  5. Alternative fuels and chemicals from synthesis gas. Quarterly report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)



    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts. The paper reports the progress on the following tasks: engineering and modifications: AFDU shakedown, operations, deactivation and disposal; and research and development on new processes for DME, chemistry and catalyst development, and oxygenates via synthesis gas.

  6. Wet-chemical synthesis and characteristics of Au nanoshell

    Institute of Scientific and Technical Information of China (English)

    LIU Zhongxin; SONG Hongwei; YU Lixin; YANG Linmei; PAN Guohui


    Gold nanoshells were prepared by an easy wet-chemical method, with Ag nanoparticles used as the templates. Transmission electron microscopy (TEM) indicated that the shells were sphere in shape, the size was homogenous, being about 20 nm, and no hard agglomerates were observed. The plasma resonance absorption of gold was tuned from visible to near-infrared (NIR) with the increased volume of HAuCl4. The temperature grads (ΔT) of the gold nanoshell hydrosol under the exposure of an 808-nm optical fiber laser with different power densities were measured. The highest ΔT was 30℃ (5 W/cm2, irradiation area was 2 cm2). This kind of gold nanoshell hydrosol is a promising material to be used in biomedicine such as photothermal cancer therapy, and its special photothermal convert property will photothermally trigger drug release.

  7. Accelerated Chemical Reactions and Organic Synthesis in Leidenfrost Droplets. (United States)

    Bain, Ryan M; Pulliam, Christopher J; Thery, Fabien; Cooks, R Graham


    Leidenfrost levitated droplets can be used to accelerate chemical reactions in processes that appear similar to reaction acceleration in charged microdroplets produced by electrospray ionization. Reaction acceleration in Leidenfrost droplets is demonstrated for a base-catalyzed Claisen-Schmidt condensation, hydrazone formation from precharged and neutral ketones, and for the Katritzky pyrylium into pyridinium conversion under various reaction conditions. Comparisons with bulk reactions gave intermediate acceleration factors (2-50). By keeping the volume of the Leidenfrost droplets constant, it was shown that interfacial effects contribute to acceleration; this was confirmed by decreased reaction rates in the presence of a surfactant. The ability to multiplex Leidenfrost microreactors, to extract product into an immiscible solvent during reaction, and to use Leidenfrost droplets as reaction vessels to synthesize milligram quantities of product is also demonstrated.

  8. Synthesis of Aligned Carbon Nanotubes by Thermal Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Gang; ZHOU Ming; MA Weiwei; CAI Lan


    Single crystal silicon was found to be very beneficial to the growth of aligned carbon nanotubes by chemical vapor deposition with C2H2 as carbon source. A thin film of Ni served as catalyst was deposited on the Si substrate by the K575X Peltier Cooled High Resolution Sputter Coater before growth. The growth properties of carbon nanotubes were studied as a function of the Ni catalyst layer thickness. The diameter, growth rate and areal density of the carbon nanotubes were controlled by the initial thickness of the catalyst layer. Steric hindrance between nanotubes forces them to grow in well-aligned manner at an initial stage of growth. Transmission electron microscope analysis revealed that nanotubes grew by a tip growth mechanism.

  9. Chemical vapor deposition synthesis of tunable unsubstituted polythiophene. (United States)

    Nejati, Siamak; Lau, Kenneth K S


    Despite having exceptional electroactive properties, applications of unsubstituted polythiophene (PTh) have been limited due to its insolubility. To overcome this challenge, we have employed oxidative chemical vapor deposition (oCVD) as a unique liquid-free technique to enable the oxidative polymerization of PTh using thiophene as the starting monomer and vanadium oxytrichloride as an effective vaporizable oxidant initiator. Vibrational and phototelectron spectroscopy indicated the formation of unsubstituted polythiophene. Cyclic voltammetry revealed its electrochromic behavior in solution. Significantly, polymer conjugation length and electrical conductivity can be tuned by controlling oCVD process variables. Polymerization is found to be adsorption-limited, so by providing sufficient monomer and limiting the amount of initiator at the growth surface, PTh is believed to be formed through α-α thiophene linkages.

  10. Synthesis of mullite coatings by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mulpuri, R.P.; Auger, M.; Sarin, V.K. [Boston Univ., MA (United States)


    Formation of mullite on ceramic substrates via chemical vapor deposition was investigated. Mullite is a solid solution of Al{sub 2}O{sub 3} and SiO{sub 2} with a composition of 3Al{sub 2}O{sub 3}{circ}2SiO{sub 2}. Thermodynamic calculations performed on the AlCl{sub 3}-SiCl{sub 4}-CO{sub 2}-H{sub 2} system were used to construct equilibrium CVD phase diagrams. With the aid of these diagrams and consideration of kinetic rate limiting factors, initial process parameters were determined. Through process optimization, crystalline CVD mullite coatings have been successfully grown on SiC and Si{sub 3}N{sub 4} substrates. Results from the thermodynamic analysis, process optimization, and effect of various process parameters on deposition rate and coating morphology are discussed.

  11. Calcium, Strontium and Barium Homogeneous Catalysts for Fine Chemicals Synthesis. (United States)

    Sarazin, Yann; Carpentier, Jean-François


    The large alkaline earths (Ae), calcium, strontium and barium, have in the past 15 years yielded a brand new generation of heteroleptic molecular catalysts for the production of fine chemicals. However, the integrity of these complexes is often plagued by ligand redistribution equilibria in solution. This personal account retraces the paths followed in our research group towards the design of stable heteroleptic alkalino-earth complexes, including the use of intramolecular noncovalent Ae···H-Si and Ae···F-C interactions. Their implementation as homogenous precatalysts for reactions such as the intramolecular and intermolecular hydroamination and hydrophosphination of activated alkenes, the hydrophosphonylation of ketones, and the dehydrogenative coupling of amines and hydrosilanes that enable the efficient and controlled formations of CP, CN, or SiN σ-bonds, is presented in a synthetic perspective that highlights their overall outstanding catalytic performance.

  12. Chemoenzymatic Synthesis and Chemical Recycling of Poly(ester-urethanes

    Directory of Open Access Journals (Sweden)

    Hiroto Hayashi


    Full Text Available Novel poly(ester-urethanes were prepared by a synthetic route using a lipase that avoids the use of hazardous diisocyanate. The urethane linkage was formed by the reaction of phenyl carbonate with amino acids and amino alcohols that produced urethane-containing diacids and hydroxy acids, respectively. The urethane diacid underwent polymerization with polyethylene glycol and a,w-alkanediols and also the urethane-containing hydroxy acid monomer was polymerized by the lipase to produce high-molecular-weight poly(ester-urethanes. The periodic introduction of ester linkages into the polyurethane chain by the lipase-catalyzed polymerization afforded chemically recyclable points. They were readily depolymerized in the presence of lipase into cyclic oligomers, which were readily repolymerized in the presence of the same enzyme. Due to the symmetrical structure of the polymers, poly(ester-urethanes synthesized in this study showed higher Tm, Young’s modulus and tensile strength values.

  13. Nanoparticle probes and mid-infrared chemical imaging for DNA microarray detection. (United States)

    Mossoba, Magdi M; Al-Khaldi, Sufian F; Schoen, Brianna; Yakes, Betsy Jean


    To date most mid-infrared spectroscopic studies have been limited, due to lack of sensitivity, to the structural characterization of a single oligonucleotide probe immobilized over the entire surface of a gold-coated slide or other infrared substrate. By contrast, widely used and commercially available glass slides and a microarray spotter that prints approximately 120-μm-diameter DNA spots were employed in the present work. To our knowledge, mid-infrared chemical imaging (IRCI) in the external reflection mode has been applied in the present study for the first time to the detection of nanostructure-based DNA microarrays spotted on glass slides. Alkyl amine-modified oligonucleotide probes were immobilized on glass slides that had been prefunctionalized with succinimidyl ester groups. This molecular fluorophore-free method entailed the binding of gold-nanoparticle-streptavidin conjugates to biotinylated DNA targets. Hybridization was visualized by the silver enhancement of gold nanoparticles. The adlayer of silver, selectively bound only to hybridized spots in a microarray, formed the external reflective infrared substrate that was necessary for the detection of DNA hybridization by IRCI in the present proof-of-concept study. IRCI made it possible to discriminate between diffuse and specular external reflection modes. The promising qualitative results are presented herein, and the implications for quantitative determination of DNA microarrays are discussed.

  14. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, Florian, E-mail:; Mehrkens, Dennis, E-mail:; Starbatty, Jutta, E-mail:; Nicol, Philipp, E-mail:; Eschenhagen, Thomas, E-mail:


    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  15. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures (United States)

    Whitesides, George M.; Mathias, John P.; Seto, Christopher T.


    Molecular self assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by non-covalent bonds. Molecular self-assembly is ubiquitous in biological systems, and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated non-covalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating non-biological structures having dimensions of 1-10(exp 2) nanometers. Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

  16. The impact of the chemical synthesis on the magnetic properties of intermetallic PdFe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos-Rubio, I.; Insausti, M.; Muro, I. Gil de [Universidad del País Vasco, UPV/EHU, Dpto. de Química Inorgánica (Spain); Arias-Duque, D. Carolina; Hernández-Garrido, Juan Carlos [Universidad de Cadiz, Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias (Spain); Rojo, T.; Lezama, L., E-mail: [Universidad del País Vasco, UPV/EHU, Dpto. de Química Inorgánica (Spain)


    Palladium-rich Iron nanoparticles in the 4–8 nm range have been produced by a combination of two methods: the thermal decomposition of organometallic precursors and the reduction of metallic salts by a polyol. Herein, it is shown how the details of the synthesis have a striking impact on the magnetic and morphological properties of the final products. In the synthesis of these bimetallic nanoparticles, the use of high reaction temperatures plays an essential role in attaining good chemical homogeneity, which has proved to have a key influence on the magnetic properties. Magnetic characterization has been performed by electron magnetic resonance and magnetization measurements, which have confirmed the superparamagnetic-like behavior at room temperature. No clear traces of magnetic polarization in palladium atoms have been detected. The combination of long-term stability and homogeneous chemical and magnetic properties makes these particles very suitable for a wide range of applications in nanotechnology.

  17. Synthesis of bioactive β-TCP coatings with tailored physico-chemical properties on zirconia bioceramics. (United States)

    Stefanic, Martin; Milacic, Radmila; Drazic, Goran; Škarabot, Miha; Budič, Bojan; Krnel, Kristoffer; Kosmač, Tomaž


    The objective of this work was to develop a synthesis procedure for the deposition of β-TCP coatings with tailored physico-chemical properties on zirconia bioceramics. The synthesis procedure involved two steps: (i) a rapid wet-chemical deposition of a biomimetic CaP coating and (ii) a subsequent post-deposition processing of the biomimetic CaP coating, which included a heat treatment between 800 and 1200 °C, followed by a short sonication in a water bath. By regulating the heating temperature the topography of the β-TCP coatings could be controlled. The average surface roughness (Ra) ranged from 42 nm for the coating that was heated at 900 °C (TCP-900) to 630 nm for the TCP-1200 coating. Moreover, the heating temperature also affected the dissolution rate of the coatings in a physiological solution, their protein-adsorption capacity and their bioactivity in a simulated body fluid.

  18. Chemical vs. biotechnological synthesis of C13-apocarotenoids: current methods, applications and perspectives. (United States)

    Cataldo, Vicente F; López, Javiera; Cárcamo, Martín; Agosin, Eduardo


    Apocarotenoids are natural compounds derived from the oxidative cleavage of carotenoids. Particularly, C13-apocarotenoids are volatile compounds that contribute to the aromas of different flowers and fruits and are highly valued by the Flavor and Fragrance industry. So far, the chemical synthesis of these terpenoids has dominated the industry. Nonetheless, the increasing consumer demand for more natural and sustainable processes raises an interesting opportunity for bio-production alternatives. In this regard, enzymatic biocatalysis and metabolically engineered microorganisms emerge as attractive biotechnological options. The present review summarizes promising bioengineering approaches with regard to chemical production methods for the synthesis of two families of C13-apocarotenoids: ionones/dihydroionones and damascones/damascenone. We discuss each method and its applicability, with a thorough comparative analysis for ionones, focusing on the production process, regulatory aspects, and sustainability.

  19. Alternate fuels and chemicals from synthesis gas: Vinyl acetate monomer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Colberg; Nick A. Collins; Edwin F. Holcombe; Gerald C. Tustin; Joseph R. Zoeller


    There has been a long-standing desire on the part of industry and the U.S. Department of Energy to replace the existing ethylene-based vinyl acetate monomer (VAM) process with an entirely synthesis gas-based process. Although there are a large number of process options for the conversion of synthesis gas to VAM, Eastman Chemical Company undertook an analytical approach, based on known chemical and economic principles, to reduce the potential candidate processes to a select group of eight processes. The critical technologies that would be required for these routes were: (1) the esterification of acetaldehyde (AcH) with ketene to generate VAM, (2) the hydrogenation of ketene to acetaldehyde, (3) the hydrogenation of acetic acid to acetaldehyde, and (4) the reductive carbonylation of methanol to acetaldehyde. This report describes the selection process for the candidate processes, the successful development of the key technologies, and the economic assessments for the preferred routes. In addition, improvements in the conversion of acetic anhydride and acetaldehyde to VAM are discussed. The conclusion from this study is that, with the technology developed in this study, VAM may be produced from synthesis gas, but the cost of production is about 15% higher than the conventional oxidative acetoxylation of ethylene, primarily due to higher capital associated with the synthesis gas-based processes.

  20. Synthesis and characterization of carbon nanofilms for chemical sensing (United States)

    Kumar, Vivek

    Carbon nanofilms obtained by high temperature graphitization of diamond surface in inert atmospheres or vacuum are modified by treatment in plasma of different precursor gases. At temperatures above 1000 °C, a stable conductive film of thickness between 10 - 100 nm and specific resistivity 10-3-10-4 Ωm, depending upon the heating conditions and the growth atmosphere, is formed on diamond surface. A gray, thin film of high surface resistivity is obtained in high vacuum, while at low vacuum (below 10-4 mbar), a thick black film of low surface resistivity forms. It is observed that the exposure to plasma reduces the surface conductance of carbon nanofilms as result of a partial removal of carbon and the plasma-stimulated amorphization. The rate of the reduction of conductance and hence the etching ability of plasma depends on the type of precursor gas. Hydrogen reveals the strongest etching ability, followed by oxygen and argon, whereas SF6 is ineffective. The carbon nanofilms show significant sensitivity of their electrical conductance to temperature and exposure to the vapors of common organic compounds. The oxygen plasma treated films exhibit selective response to acetone and water vapors. The fast response and recovery of the conductance are the features of the carbon nanofilms. The plasma-treated carbon nanofilm on graphitized diamond surface is discussed as a promising sensing material for development of all-carbon chemical sensors, which may be suitable for biological and medical applications. An alternative approach of fabrication of temperature and chemical sensitive carbon nanofilms on insulating substrates is proposed. The films are obtained by direct deposition of sputtered carbon on highly polished quartz substrates followed by subsequent annealing at temperatures above 400 °C. It is observed that the as-deposited films are essentially amorphous, while the heating induces irreversible structural ordering and gradual conversion of amorphous carbon in

  1. Total chemical synthesis of a thermostable enzyme capable of polymerase chain reaction. (United States)

    Xu, Weiliang; Jiang, Wenjun; Wang, Jiaxing; Yu, Linping; Chen, Ji; Liu, Xianyu; Liu, Lei; Zhu, Ting F


    Polymerase chain reaction (PCR) has been a defining tool in modern biology. Towards realizing mirror-image PCR, we have designed and chemically synthesized a mutant version of the 352-residue thermostable Sulfolobus solfataricus P2 DNA polymerase IV with l-amino acids and tested its PCR activity biochemically. To the best of our knowledge, this enzyme is the largest chemically synthesized protein reported to date. We show that with optimization of PCR conditions, the fully synthetic polymerase is capable of amplifying template sequences of up to 1.5 kb. The establishment of this synthetic route for chemically synthesizing DNA polymerase IV is a stepping stone towards building a d-enzyme system for mirror-image PCR, which may open up an avenue for the creation of many mirror-image molecular tools such as mirror-image systematic evolution of ligands by exponential enrichment.

  2. Fmoc-based peptide thioester synthesis with self-purifying effect: heading to native chemical ligation in parallel formats. (United States)

    Thomas, Franziska


    The chemical synthesis of proteins has facilitated functional studies of proteins due to the site-specific incorporation of post-translational modifications, labels, and non-proteinogenic amino acids. Moreover, native chemical ligation provides facile access to proteins by chemical means. However, the application of the native chemical ligation reaction in the synthesis of parallel formats such as protein arrays has been complicated because of the often cumbersome and time-consuming synthesis of the required peptide thioesters. An Fmoc-based peptide thioester synthesis with self-purification on the sulfonamide 'safety-catch' linker widens this bottleneck because HPLC purification can be avoided. The method is based on an on-resin cyclization-thiolysis reaction sequence. A macrocyclization via the N-terminus of the full-length peptide followed by a thiolytic C-terminal ring opening allows selective detachment of the truncation products and the full-length peptide. A brief overview of the chemical aspects of this method is provided including the optimization steps and the automation process. Furthermore, the application of the cyclization-thiolysis approach combined with the native chemical ligation reaction in the parallel synthesis of a library of 16 SH3-domain variants of SHO1 in yeast is described, demonstrating the value of this new technique for the chemical synthesis of protein arrays.

  3. Cationic triangulenes and helicenes: synthesis, chemical stability, optical properties and extended applications of these unusual dyes. (United States)

    Bosson, Johann; Gouin, Jérôme; Lacour, Jérôme


    Cationic triangulenes and helicenes are highly stable carbocations with planar and helical conformations respectively. These moieties are effective dyes with original absorption and emission properties. Over the last decade, they have received greater attention and are considered as valuable tools for the development of innovative applications. In this review, the synthesis of these unique compounds is presented together with their core chemical and physical properties. Representative applications spanning from surface sciences to biology and chemistry are presented.

  4. Synthesis of cysteine-rich peptides by native chemical ligation without use of exogenous thiols. (United States)

    Tsuda, Shugo; Yoshiya, Taku; Mochizuki, Masayoshi; Nishiuchi, Yuji


    Native chemical ligation (NCL) performed without resorting to the use of thiol additives was demonstrated to be an efficient and effective procedure for synthesizing Cys-rich peptides. This method using tris(2-carboxyethyl)phosphine (TCEP) as a reducing agent facilitates the ligation reaction even at the Thr-Cys or Ile-Cys site and enables one-pot synthesis of Cys-rich peptides throughout NCL and oxidative folding.

  5. Chemical biology--identification of small molecule modulators of cellular activity by natural product inspired synthesis. (United States)

    Hübel, Katja; Lessmann, Torben; Waldmann, Herbert


    The aim of this tutorial review is to introduce the reader to the concept, synthesis and application of natural product-inspired compound collections as an important field in chemical biology. This review will discuss how potentially interesting scaffolds can be identified (structural classification of natural products), synthesized in an appropriate manner (including stereoselective transformations for solid phase-bound compounds) and tested in biological assays (cell-based screening as well as biochemical in vitro assays). These approaches will provide the opportunity to identify new and interesting compounds as well as new targets for chemical biology and medicinal chemistry research.

  6. Synthesis of magnetic tunnel junctions with full in situ atomic layer and chemical vapor deposition processes

    Energy Technology Data Exchange (ETDEWEB)

    Mantovan, R., E-mail: [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Vangelista, S.; Kutrzeba-Kotowska, B.; Cocco, S.; Lamperti, A.; Tallarida, G. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Mameli, D. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Dipartimento di Scienze Chimiche, Universita di Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari (Italy); Fanciulli, M. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Dipartimento di Scienza dei Materiali, Universita degli studi Milano-Bicocca, Via R Cozzi 53, 20125 Milano (Italy)


    Magnetic tunnel junctions, i.e. the combination of two ferromagnetic electrodes separated by an ultrathin tunnel oxide barrier, are core elements in a large variety of spin-based devices. We report on the use of combined chemical vapor and atomic layer deposition processes for the synthesis of magnetic tunnel junctions with no vacuum break. Structural, chemical and morphological characterizations of selected ferromagnetic and oxide layers are reported, together with the evidence of tunnel magnetoresistance effect in patterned Fe/MgO/Co junctions.

  7. Chemical synthesis of Cd-free wide band gap materials for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R.; Sartale, S.D.; Ennaoui, A. [Hahn-Meitner-Institut, Berlin (Germany). Department of Solar Energy Research; Lokhande, C.D. [Shivaji University, Kolhapur (India). Department of Physics


    Chemical methods are nowadays very attractive, since they are relatively simple, low cost and convenient for larger area deposition of thin films. In this paper, we outline our work related to the synthesis and characterization of some wide band gap semiconducting material thin films prepared by using solution methods, namely, chemical bath deposition and successive ionic layer adsorption and reaction (SILAR). The optimum preparative parameters are given and respective structural, surface morphological, compositional, optical, and electrical properties are described. Some materials we used in solar cells as buffer layers and achieved remarkable results, which are summarized. (author)

  8. The past, present and potential for microfluidic reactor technology in chemical synthesis. (United States)

    Elvira, Katherine S; Casadevall i Solvas, Xavier; Wootton, Robert C R; deMello, Andrew J


    The past two decades have seen far-reaching progress in the development of microfluidic systems for use in the chemical and biological sciences. Here we assess the utility of microfluidic reactor technology as a tool in chemical synthesis in both academic research and industrial applications. We highlight the successes and failures of past research in the field and provide a catalogue of chemistries performed in a microfluidic reactor. We then assess the current roadblocks hindering the widespread use of microfluidic reactors from the perspectives of both synthetic chemistry and industrial application. Finally, we set out seven challenges that we hope will inspire future research in this field.

  9. Chemical vapor synthesis of size-selected zinc oxide nanoparticles. (United States)

    Polarz, Sebastian; Roy, Abhijit; Merz, Michael; Halm, Simon; Schröder, Detlef; Schneider, Lars; Bacher, Gerd; Kruis, Frank E; Driess, Matthias


    ZnO can be regarded as one of the most important metal oxide semiconductors for future applications. Similar to silicon in microelectronics, it is not only important to obtain nanoscale building blocks of ZnO, but also extraordinary purity has to be ensured. A new gas-phase approach to obtain size-selected, nanocrystalline ZnO particles is presented. The tetrameric alkyl-alkoxy zinc compound [CH(3)ZnOCH(CH(3))(2)](4) is chemically transformed into ZnO, and the mechanism of gas-phase transformation is studied in detail. Furthermore, the morphological genesis of particles via gas-phase sintering is investigated, and for the first time a detailed model of the gas-phase sintering processes of ZnO is presented. Various analytical techniques (powder XRD, TEM/energy-dispersive X-ray spectroscopy, magic-angle spinning NMR spectroscopy, FTIR spectroscopy, etc.) are used to investigate the structure and purity of the samples. In particular, the defect structure of the ZnO was studied by photoluminescence spectroscopy.

  10. Chemical synthesis of carbohydrates and their surface immobilization: a brief introduction. (United States)

    Werz, Daniel B


    For all carbohydrate microarrays, two important prerequisites are necessary: the carbohydrate of interest has to be obtained either by isolation from natural sources, enzymatic or chemical synthesis; an immobilization of the carbohydrate at the surface of the chip has to be achieved. This chapter provides a very brief overview of the chemical synthesis of carbohydrates (creation of building blocks, assembly, and deprotection) and of immobilization techniques. Numerous methods are known to construct oligosaccharides by chemical methods. A typical monosaccharide building block, used in oligosaccharide assembly, is equipped with different protecting groups that mask the hydroxyl and amine groups. In general, a good leaving group at the anomeric center that can easily be activated is mandatory; especially trichloroacetimidates, phosphates, and thioethers have been widely used for the creation of glycosidic bonds. After the complete assembly of the oligosaccharide, a global deprotection of all permanent protecting groups affords the desired target structure with free hydroxyl groups. Linkers, which were introduced during the synthesis, must often be modified at the end to create appropriate functionalities for surface immobilization.

  11. Synthesis, characterization, and photoactivated DNA cleavage by copper (II)/cobalt (II) mediated macrocyclic complexes. (United States)

    Naik, H R Prakash; Naik, H S Bhojya; Aravinda, T; Lamani, D S


    We report the synthesis of new photonuclease consisting of two Co(II)/Cu(II) complexes of macrocyclic fused quinoline. Metal complexes are [MLX(2)], type where M = Co(II) (5), Cu(II) (6), and X = Cl, and are well characterized by elemental analysis, Fourier transform infrared spectroscopy, (1)H-NMR and electronic spectra. We have shown that photocleavage of plasmid DNA is markedly enhanced when this ligand is irradiated in the presence of Cu(II), and more so than that of cobalt. The chemistry of ternary and binary Co(II) complexes showing efficient light induced (360 nm) DNA cleavage activity is summarized. The role of the metal in photoinduced DNA cleavage reactions is explored by designing complex molecules having macrocyclic structure. The mechanistic pathways are found to be concentration dependent on Co(II)/Cu(II) complexes and the photoexcitation energy photoredox chemistry. Highly effective DNA cleavage ability of 6 is attributed to the effective cooperation of the metal moiety.

  12. Requirement of Rad5 for DNA Polymerase ζ-Dependent Translesion Synthesis in Saccharomyces cerevisiae (United States)

    Pagès, Vincent; Bresson, Anne; Acharya, Narottam; Prakash, Satya; Fuchs, Robert P.; Prakash, Louise


    In yeast, Rad6–Rad18-dependent lesion bypass involves translesion synthesis (TLS) by DNA polymerases η or ζ or Rad5-dependent postreplication repair (PRR) in which error-free replication through the DNA lesion occurs by template switching. Rad5 functions in PRR via its two distinct activities—a ubiquitin ligase that promotes Mms2–Ubc13-mediated K63-linked polyubiquitination of PCNA at its lysine 164 residue and a DNA helicase that is specialized for replication fork regression. Both these activities are important for Rad5's ability to function in PRR. Here we provide evidence for the requirement of Rad5 in TLS mediated by Polζ. Using duplex plasmids carrying different site-specific DNA lesions—an abasic site, a cis–syn TT dimer, a (6-4) TT photoproduct, or a G-AAF adduct—we show that Rad5 is needed for Polζ-dependent TLS. Rad5 action in this role is likely to be structural, since neither the inactivation of its ubiquitin ligase activity nor the inactivation of its helicase activity impairs its role in TLS. PMID:18757916

  13. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives (United States)

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi


    The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues.

  14. Stability of the human polymerase δ holoenzyme and its implications in lagging strand DNA synthesis. (United States)

    Hedglin, Mark; Pandey, Binod; Benkovic, Stephen J


    In eukaryotes, DNA polymerase δ (pol δ) is responsible for replicating the lagging strand template and anchors to the proliferating cell nuclear antigen (PCNA) sliding clamp to form a holoenzyme. The stability of this complex is integral to every aspect of lagging strand replication. Most of our understanding comes from Saccharomyces cerevisae where the extreme stability of the pol δ holoenzyme ensures that every nucleobase within an Okazaki fragment is faithfully duplicated before dissociation but also necessitates an active displacement mechanism for polymerase recycling and exchange. However, the stability of the human pol δ holoenzyme is unknown. We designed unique kinetic assays to analyze the processivity and stability of the pol δ holoenzyme. Surprisingly, the results indicate that human pol δ maintains a loose association with PCNA while replicating DNA. Such behavior has profound implications on Okazaki fragment synthesis in humans as it limits the processivity of pol δ on undamaged DNA and promotes the rapid dissociation of pol δ from PCNA on stalling at a DNA lesion.

  15. DNA-Based Identification and Chemical Characteristics of Hypnea musciformis from Coastal Sites in Ghana

    DEFF Research Database (Denmark)

    Ale, Marcel Tutor; Barrett, Kristian; Addico, Gloria


    This work reveals new, important insights about the influence of broad spatial variationson the phylogenetic relationship and chemical characteristics of Ghanaian Hypnea musciformis—acarrageenan-containing red seaweed. DNA barcoding techniques alleviate the difficulty for accurate morphological i...

  16. PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Ayal Hendel


    Full Text Available Translesion DNA synthesis (TLS is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+ cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity.

  17. DNA-membrane complex damages in mammalian cells after gamma irradiation and chemical agent action and role of the complex in DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Saenko, A.S.; Kiseleva, V.I.; Synzynys, B.I. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)


    The sedimentation behavior of the DNA-membrane complex (DMC) from Ehrlich ascites tumor (EAT) cells after gamma irradiation and carminomycin (CM) treatment was studied. The DNA and membrane containing material released by alkaline lysis from EAT cells had an anomalous sedimentation relative to denatured DNA. The DMC sediments with a great sedimentation constant (255 S). Both the chemical and physical agents induced DNA single-strand breaks and damage of the DMC. It was shown that 0.01 g/ml CM did not affect the incorporation of exogenic thymidine into DNA but the DMC was completely disrupted by this CM dose. There was no correlation between postirradiation repair kinetics of the DMC and the kinetics of /sup 3/H-thymidine incorporation into DNA of ETA cells.


    Institute of Scientific and Technical Information of China (English)

    Xie Zuofu; Lin Xiandong; Zhou Dongmei; Lin Sheng


    Objective: To determine the effect of ascorbic acid (AA) on DNA synthesis, intracellular accumulation of ADM and ADM resistance of tumor cell lines.Methods: K562, K562/ADM and KB cell lines were used to study the effect of ascorbic acid on DNA synthesis,intracellular accumulation of ADM and ADM resistance by fluid scintillometry, MTT method, spectrofluorophotometry and immunocytochemistry. Results: Results showed that AA was capable of inhibiting DNA synthesis of K562 and K562/ADM in a dose-dependence fashion,but not KB cell line, and significantly reducing ADM sensitivity in K562 and KB cell lines, as well as potentiating obviously ADM resistance in K562/ADM cell line. Conclusion: These effects of AA may be closely correlated with significant elevation of intracellular accumulation of ADM in KB cell line, and significant reduction of that in K562 and K562/ADM cell lines but possibly not correlated with the expression of Pglycoprotein.

  19. Solid-phase synthesis and chemical space analysis of a 190-membered alkaloid/terpenoid-like library


    Moura-Letts, Gustavo; DiBlasi, Christine M.; Bauer, Renato A.; Tan, Derek S.


    Alkaloid and terpenoid natural products display an extensive array of chemical frameworks and biological activities. However such scaffolds remain underrepresented in current screening collections and are, thus, attractive targets for the synthesis of natural product-based libraries that access underexploited regions of chemical space. Recently, we reported a systematic approach to the stereoselective synthesis of multiple alkaloid/terpenoid-like scaffolds using transition metal-mediated cycl...

  20. Peptide Bond Synthesis by a Mechanism Involving an Enzymatic Reaction and a Subsequent Chemical Reaction. (United States)

    Abe, Tomoko; Hashimoto, Yoshiteru; Zhuang, Ye; Ge, Yin; Kumano, Takuto; Kobayashi, Michihiko


    We recently reported that an amide bond is unexpectedly formed by an acyl-CoA synthetase (which catalyzes the formation of a carbon-sulfur bond) when a suitable acid and l-cysteine are used as substrates. DltA, which is homologous to the adenylation domain of nonribosomal peptide synthetase, belongs to the same superfamily of adenylate-forming enzymes, which includes many kinds of enzymes, including the acyl-CoA synthetases. Here, we demonstrate that DltA synthesizes not only N-(d-alanyl)-l-cysteine (a dipeptide) but also various oligopeptides. We propose that this enzyme catalyzes peptide synthesis by the following unprecedented mechanism: (i) the formation of S-acyl-l-cysteine as an intermediate via its "enzymatic activity" and (ii) subsequent "chemical" S → N acyl transfer in the intermediate, resulting in peptide formation. Step ii is identical to the corresponding reaction in native chemical ligation, a method of chemical peptide synthesis, whereas step i is not. To the best of our knowledge, our discovery of this peptide synthesis mechanism involving an enzymatic reaction and a subsequent chemical reaction is the first such one to be reported. This new process yields peptides without the use of a thioesterified fragment, which is required in native chemical ligation. Together with these findings, the same mechanism-dependent formation of N-acyl compounds by other members of the above-mentioned superfamily demonstrated that all members most likely form peptide/amide compounds by using this novel mechanism. Each member enzyme acts on a specific substrate; thus, not only the corresponding peptides but also new types of amide compounds can be formed.

  1. Error-prone translesion synthesis past DNA-peptide cross-links conjugated to the major groove of DNA via C5 of thymidine. (United States)

    Wickramaratne, Susith; Boldry, Emily J; Buehler, Charles; Wang, Yen-Chih; Distefano, Mark D; Tretyakova, Natalia Y


    DNA-protein cross-links (DPCs) are exceptionally bulky, structurally diverse DNA adducts formed in cells upon exposure to endogenous and exogenous bis-electrophiles, reactive oxygen species, and ionizing radiation. If not repaired, DPCs can induce toxicity and mutations. It has been proposed that the protein component of a DPC is proteolytically degraded, giving rise to smaller DNA-peptide conjugates, which can be subject to nucleotide excision repair and replication bypass. In this study, polymerase bypass of model DNA-peptide conjugates structurally analogous to the lesions induced by reactive oxygen species and DNA methyltransferase inhibitors was examined. DNA oligomers containing site-specific DNA-peptide conjugates were generated by copper-catalyzed [3 + 2] Huisgen cyclo-addition between an alkyne-functionalized C5-thymidine in DNA and an azide-containing 10-mer peptide. The resulting DNA-peptide conjugates were subjected to steady-state kinetic experiments in the presence of recombinant human lesion bypass polymerases κ and η, followed by PAGE-based assays to determine the catalytic efficiency and the misinsertion frequency opposite the lesion. We found that human polymerase κ and η can incorporate A, G, C, or T opposite the C5-dT-conjugated DNA-peptide conjugates, whereas human polymerase η preferentially inserts G opposite the lesion. Furthermore, HPLC-ESI(-)-MS/MS sequencing of the extension products has revealed that post-lesion synthesis was highly error-prone, resulting in mutations opposite the adducted site or at the +1 position from the adduct and multiple deletions. Collectively, our results indicate that replication bypass of peptides conjugated to the C5 position of thymine by human translesion synthesis polymerases leads to large numbers of base substitution and frameshift mutations.

  2. Synthesis of spin-labeled riboswitch RNAs using convertible nucleosides and DNA-catalyzed RNA ligation. (United States)

    Büttner, Lea; Seikowski, Jan; Wawrzyniak, Katarzyna; Ochmann, Anne; Höbartner, Claudia


    Chemically stable nitroxide radicals that can be monitored by electron paramagnetic resonance (EPR) spectroscopy can provide information on structural and dynamic properties of functional RNA such as riboswitches. The convertible nucleoside approach is used to install 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and 2,2,5,5-tetramethylpyrrolidin-1-oxyl (proxyl) labels at the exocyclic N(4)-amino group of cytidine and 2'-O-methylcytidine nucleotides in RNA. To obtain site-specifically labeled long riboswitch RNAs beyond the limit of solid-phase synthesis, we report the ligation of spin-labeled RNA using an in vitro selected deoxyribozyme as catalyst, and demonstrate the synthesis of TEMPO-labeled 53 nt SAM-III and 118 nt SAM-I riboswitch domains (SAM=S-adenosylmethionine).

  3. DNA synthesis index: higher for human gallbladders with cholesterol gallstones than with pigment gallstones

    Energy Technology Data Exchange (ETDEWEB)

    Lamote, J.; Putz, P.; Francois, M.; Willems, G.


    (/sup 3/H)dThd uptake by the gallbladder epithelium was estimated in 33 patients with cholesterol stones, in 13 patients with pigment stones, and in 12 gallbladders without stones. Proliferative parameters were estimated by autoradiography after in vitro incubation with (/sup 3/H)-dThd. Stones were identified by quantitative infrared spectroscopy. The degree of inflammation of the gallbladder wall was estimated by a histologic scoring method. In the gallbladders containing cholesterol stones the DNA synthesis index (1.39 +/- 0.28%) was higher (P less than .01) than in the gallbladders without stones (0.19 +/- 0.04%). No significant increase in proliferative parameters was found in the gallbladders with pigment stones (0.24 +/- 0.06%). No correlation was found between total stone number, weight or volume, and the DNA synthesis index. No evidence was observed that inflammation could influence the epithelial cell proliferation. Something in the bile of patients with cholesterol stones rather than the physical presence of stones may be the cause of the variations observed.

  4. Amino acids attached to 2'-amino-LNA: Synthesis of DNA mixmer oligonucleotides with increased duplex stability

    DEFF Research Database (Denmark)

    Johannsen, Marie Willaing; Wengel, Jesper; Wamberg, Michael Chr.;


    The synthesis of 2'-amino-LNA (locked nucleic acid) opens up exciting possibilities for modification of nucleic acids by conjugation to the 2'-nitrogen. Incorporation of unmodified and N-functionalized 2'-amino-LNA nucleotides improve duplex stability compared to unmodified DNA. 2'-Amino......-LNA nucleosides derivatized with amino acids have been synthesized and incorporated into DNA oligonucleotides. Following oligonucleotide synthesis, peptides have been added using solid phase peptide coupling chem. Modification of oligonucleotides with pos. charged residues greatly improves thermal stability....

  5. A bichaperone (Hsp70-Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. (United States)

    Germaniuk, Aleksandra; Liberek, Krzysztof; Marszalek, Jaroslaw


    Mitochondrial DNA synthesis is a thermosensitive process in the yeast Saccharomyces cerevisiae. We found that restoration of mtDNA synthesis following heat treatment of cells is dependent on reactivation of the mtDNA polymerase Mip1p through the action of a mitochondrial bichaperone system consisting of the Hsp70 system and the Hsp78 oligomeric protein. mtDNA synthesis was inefficiently restored after heat shock in yeast lacking either functional component of the bichaperone system. Furthermore, the activity of purified Mip1p was also thermosensitive; however, the purified components of the mitochondrial bichaperone system (Ssc1p, Mdj1p, Mge1p, and Hsp78p) were able to protect its activity under moderate heat shock conditions as well as to reactivate thermally inactivated Mip1p. Interestingly, the reactivation of endogenous Mip1p contributed more significantly to the restoration of mtDNA synthesis than did import of newly synthesized Mip1p from the cytosol. These observations suggest an important link between function of mitochondrial chaperones and the propagation of mitochondrial genomes under ever-changing environmental conditions.

  6. Effects of chemical carcinogens and physicochemical factors on the UV spectrophotometric determination of DNA. (United States)

    Kim, Hyung Sik; Byun, Soo Hyun; Lee, Byung Mu


    The ultraviolet (UV) absorbance ratio of 260/280 nm has been used as an indicator of DNA purity. However, the A260/A280 ratio may be beyond the normal range (1.8-1.9) due to physicochemical alterations produced by pH and temperature, and carcinogenic chemical modification. When the pH of the DNA solution buffer increased from 3 to 11, the A260/A280 ratio changed significantly from 1.5 to 2.2 in mixtures of DNA bases [A:T:C:G = 28.5:28.5: 21.5:21.5, i.e., (A + T)/(all four bases) = 57%, expressed as mole percent], of deoxyribonucleosides (adenosine:thymidine:cytidine:guanosine= 28.5:28.5:21.5:21.5, as mole percent), or of deoxyribonucleotides (dAMP:dTMP:dGMP:dCMP = 28.5:28.5:21.5:21.5, as mole percent) examined. The A260/A280 ratio increased with RNA contamination and exceeded 1.9 when RNA concentration was >30%, as mole percent. In contrast, the A260/A280 ratio was linearly reduced by increasing the protein concentration. Phenol (>0.02%) contamination also reduced the A260/A280 ratio to below 1.8. Benzo[a]pyrene diol epoxide (BPDE), a reactive carcinogen metabolite of benzo[a]pyrene (BaP), decreased the A260/A280 ratio correlated with the degree to which it modified the DNA. These results suggest that the UV A260/A280 ratio is significantly affected by pH and the presence of contaminating species of macromolecules and chemicals.

  7. The PCNA-associated protein PARI negatively regulates homologous recombination via the inhibition of DNA repair synthesis

    DEFF Research Database (Denmark)

    Burkovics, Peter; Dome, Lili; Juhasz, Szilvia


    Successful and accurate completion of the replication of damage-containing DNA requires mainly recombination and RAD18-dependent DNA damage tolerance pathways. RAD18 governs at least two distinct mechanisms: translesion synthesis (TLS) and template switching (TS)-dependent pathways. Whereas TS...... is mainly error-free, TLS can work in an error-prone manner and, as such, the regulation of these pathways requires tight control to prevent DNA errors and potentially oncogenic transformation and tumorigenesis. In humans, the PCNA-associated recombination inhibitor (PARI) protein has recently been shown...... to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during...

  8. Synthesis, Characterization, Molecular Modeling, and DNA Interaction Studies of Copper Complex Containing Food Additive Carmoisine Dye. (United States)

    Shahabadi, Nahid; Akbari, Alireza; Jamshidbeigi, Mina; Khodarahmi, Reza


    A copper complex of carmoisine dye; [Cu(carmoisine)2(H2O)2]; was synthesized and characterized by using physico-chemical and spectroscopic methods. The binding of this complex with calf thymus (ct) DNA was investigated by circular dichroism, absorption studies, emission spectroscopy, and viscosity measurements. UV-vis results confirmed that the Cu complex interacted with DNA to form a ground-state complex and the observed binding constant (2× 10(4) M(-1)) is more in keeping with the groove bindings with DNA. Furthermore, the viscosity measurement result showed that the addition of complex causes no significant change on DNA viscosity and it indicated that the intercalation mode is ruled out. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the reaction. The results of circular dichroism (CD) suggested that the complex can change the conformation of DNA from B-like form toward A-like conformation. The cytotoxicity studies of the carmoisine dye and its copper complex indicated that both of them had anticancer effects on HT-29 (colon cancer) cell line and they may be new candidates for treatment of the colon cancer.

  9. A comprehensive strategy to discover inhibitors of the translesion synthesis DNA polymerase κ.

    Directory of Open Access Journals (Sweden)

    Kinrin Yamanaka

    Full Text Available Human DNA polymerase kappa (pol κ is a translesion synthesis (TLS polymerase that catalyzes TLS past various minor groove lesions including N(2-dG linked acrolein- and polycyclic aromatic hydrocarbon-derived adducts, as well as N(2-dG DNA-DNA interstrand cross-links introduced by the chemotherapeutic agent mitomycin C. It also processes ultraviolet light-induced DNA lesions. Since pol κ TLS activity can reduce the cellular toxicity of chemotherapeutic agents and since gliomas overexpress pol κ, small molecule library screens targeting pol κ were conducted to initiate the first step in the development of new adjunct cancer therapeutics. A high-throughput, fluorescence-based DNA strand displacement assay was utilized to screen ∼16,000 bioactive compounds, and the 60 top hits were validated by primer extension assays using non-damaged DNAs. Candesartan cilexetil, manoalide, and MK-886 were selected as proof-of-principle compounds and further characterized for their specificity toward pol κ by primer extension assays using DNAs containing a site-specific acrolein-derived, ring-opened reduced form of γ-HOPdG. Furthermore, candesartan cilexetil could enhance ultraviolet light-induced cytotoxicity in xeroderma pigmentosum variant cells, suggesting its inhibitory effect against intracellular pol κ. In summary, this investigation represents the first high-throughput screening designed to identify inhibitors of pol κ, with the characterization of biochemical and biologically relevant endpoints as a consequence of pol κ inhibition. These approaches lay the foundation for the future discovery of compounds that can be applied to combination chemotherapy.

  10. Synthesis of a multibranched porphyrin-oligonucleotide scaffold for the construction of DNA-based nano-architectures. (United States)

    Clavé, Guillaume; Chatelain, Grégory; Filoramo, Arianna; Gasparutto, Didier; Saint-Pierre, Christine; Le Cam, Eric; Piétrement, Olivier; Guérineau, Vincent; Campidelli, Stéphane


    The interest in the functionalization of oligonucleotides with organic molecules has grown considerably over the last decade. In this work, we report on the synthesis and characterization of porphyrin-oligonucleotide hybrids containing one to four DNA strands (P1-P4). The hybrid P4, which inserts one porphyrin and four DNA fragments, was combined with gold nanoparticles and imaged by transmission electron microscopy.

  11. Phospholipase C-delta1 expression is linked to proliferation, DNA synthesis, and cyclin E levels. (United States)

    Stallings, Jonathan D; Zeng, Yue X; Narvaez, Francisco; Rebecchi, Mario J


    We previously reported that phospholipase C-delta1 (PLC-delta1) accumulates in the nucleus at the G1/S transition, which is largely dependent on its binding to phosphatidylinositol 4,5-bisphosphate ( Stallings, J. D., Tall, E. G., Pentyala, S., and Rebecchi, M. J. (2005) J. Biol. Chem. 280, 22060-22069 ). Here, using small interfering RNA (siRNA) that specifically targets rat PLC-delta1, we investigated whether this enzyme plays a role in cell cycle control. Inhibiting expression of PLC-delta1 significantly decreased proliferation of rat C6 glioma cells and altered S phase progression. [3H]Thymidine labeling and fluorescence-activated cell sorting analysis indicated that the rates of G1/S transition and DNA synthesis were enhanced. On the other hand, knockdown cultures released from the G1/S boundary were slower to reach full G2/M DNA content, consistent with a delay in S phase. The levels of cyclin E, a key regulator of the G1/S transition and DNA synthesis, were elevated in asynchronous cultures as well as those blocked at the G1/S boundary. Epifluorescence imaging showed that transient expression of human phospholipase C-delta1, resistant to these siRNA, suppressed expression of cyclin E at the G1/S boundary despite treatment of cultures with rat-specific siRNA. Although whole cell levels of phosphatidylinositol 4,5-bisphosphate were unchanged, suppression of PLC-delta1 led to a significant rise in the nuclear levels of this phospholipid at the G1/S boundary. These results support a role for PLC-delta1 and nuclear phospholipid metabolism in regulating cell cycle progression.

  12. High-throughput sequencing allows the identification of binding molecules isolated from DNA-encoded chemical libraries. (United States)

    Mannocci, Luca; Zhang, Yixin; Scheuermann, Jörg; Leimbacher, Markus; De Bellis, Gianluca; Rizzi, Ermanno; Dumelin, Christoph; Melkko, Samu; Neri, Dario


    DNA encoding facilitates the construction and screening of large chemical libraries. Here, we describe general strategies for the stepwise coupling of coding DNA fragments to nascent organic molecules throughout individual reaction steps as well as the first implementation of high-throughput sequencing for the identification and relative quantification of the library members. The methodology was exemplified in the construction of a DNA-encoded chemical library containing 4,000 compounds and in the discovery of binders to streptavidin, matrix metalloproteinase 3, and polyclonal human IgG.

  13. Phenyl 1,2,3-triazole-thymidine ligands stabilize G-quadruplex DNA, inhibit DNA synthesis and potentially reduce tumor cell proliferation over 3'-azido deoxythymidine. (United States)

    Mahesh Kumar, Jerald; Idris, Mohammed M; Srinivas, Gunda; Vinay Kumar, Pallerla; Meghah, Vuppalapaty; Kavitha, Mitta; Reddy, Chada Raji; Mainkar, Prathama S; Pal, Biswajit; Chandrasekar, Srivari; Nagesh, Narayana


    Triazoles are known for their non-toxicity, higher stability and therapeutic activity. Few nucleoside (L1, L2 and L3) and non-nucleoside 1,2,3-triazoles (L4-L14) were synthesised using click chemistry and they were screened for tumor cell cytotoxicity and proliferation. Among these triazole ligands studied, nucleoside ligands exhibited higher potential than non-nucleoside ligands. The nucleoside triazole analogues, 3'-Phenyl-1,2,3- triazole-thymidine (L2) and 3'-4-Chlorophenyl-1,2,3-triazole-thymidine (L3), demonstrated higher cytotoxicity in tumor cells than in normal cells. The IC₅₀ value for L3 was lowest (50 µM) among the ligands studied. L3 terminated cell cycle at S, G2/M phases and enhanced sub-G1 populations, manifesting induction of apoptosis in tumor cells. Confocal studies indicated that nucleoside triazole ligands (L2/L3) cause higher DNA fragmentation than other ligands. Preclinical experiments with tumor-induced mice showed greater reduction in tumor size with L3. In vitro DNA synthesis reaction with L3 exhibited higher DNA synthesis inhibition with quadruplex forming DNA (QF DNA) than non quadruplex forming DNA (NQF DNA). T(m) of quadruplex DNA increased in the presence of L3, indicating its ability to enhance stability of quadruplex DNA at elevated temperature and the results indicate that it had higher affinity towards quadruplex DNA than the other forms of DNA (like dsDNA and ssDNA). From western blot experiment, it was noticed that telomerase expression levels in the tissues of tumor-induced mice were found to be reduced on L3 treatment. Microcalorimetry results emphasise that two nucleoside triazole ligands (L2/L3) interact with quadruplex DNA with significantly higher affinity (K(d)≈10⁻⁷ M). Interestingly the addition of an electronegative moiety to the phenyl group of L2 enhanced its anti-proliferative activity. Though IC₅₀ values are not significantly low with L3, the studies on series of synthetic 1,2,3-triazole ligands are

  14. The possible roles of water in the prebiotic chemical evolution of DNA. (United States)

    Cui, Shuxun


    There is no doubt that water is pivotal to life. Yet, as the emergence of life is still a big challenge in science, the detailed involvement of water in that process is not well recognized. Following the clues provided by recent single-molecule studies on DNA, we attempt to elucidate the possible roles of water in the prebiotic chemical evolution. Water has long been recognized as an important reactant in the Miller-Urey experiment and then as the only solvent of the primitive soup. Besides that, water also played a vital role in the prebiotic chemical evolution: water is the important criterion in the combinatorial library screening for self-assembling macromolecules. With this notion, the uniformity of biochemistry for all terrestrial life may be explained. A possible roadmap from the inorganic world to the origin of life is also discussed.

  15. Preparation of DNA-adsorbed TiO2 particles with high performance for purification of chemical pollutants. (United States)

    Suzuki, Hiroshi; Amano, Takeharu; Toyooka, Tatsushi; Ibuki, Yuko


    Photocatalysis using semiconductors such as titanium dioxide (TiO2) has been studied and applied to the treatment of wastewater and purification of air, because of its ability to decompose organic contaminants. However, there are still problems associated with the practical application of photocatalytic reactions, one of which is that contact between the reactants and catalysts is absolutely required, because the reaction occurs atthe surface of the catalysts. This restrictsthe purification of pollutants on a large scale. In this study, we developed novel DNA-adsorbed TiO2 particles (DNA-TiO2) to solve the problem. Because DNA has an unique double-stranded structure and interacts with several chemicals, DNA-TiO2 can accumulate chemicals on the surface of TiO2. DNA intercalators (Methylene Blue and ethidium bromide), small amounts of which exist in large-volume solutions, were instantaneously trapped in DNA-TiO2 and degraded under ultraviolet (UV) light rapidly, compared to nonadsorbed TiO2. The efficiency of removal and photocatalytic degradation was dependent on the amount of DNA adsorbed on the surface of TiO2 and was independent of the size of DNA. Even if the pH (2-10) and temperature (approximately 56 degrees C) of the solution were changed, DNA remained stable on TiO2, and the ability to remove intercalators was also maintained. DNA-TiO2 could accumulate other pigments such as Acridine Orange, Orange II, Neutral Red, Brilliant Green, and Crystal Violet. These results suggested that DNA-TiO2 is beneficial for the removal and degradation of chemicals having affinity for DNA and dispersing in a large field.

  16. Antiproliferative activity of bicyclic benzimidazole nucleosides: synthesis, DNA-binding and cell cycle analysis. (United States)

    Sontakke, Vyankat A; Lawande, Pravin P; Kate, Anup N; Khan, Ayesha; Joshi, Rakesh; Kumbhar, Anupa A; Shinde, Vaishali S


    An efficient route was developed for synthesis of bicyclic benzimidazole nucleosides from readily available d-glucose. The key reactions were Vörbruggen glycosylation and ring closing metathesis (RCM). Primarily, to understand the mode of DNA binding, we performed a molecular docking study and the binding was found to be in the minor groove region. Based on the proposed binding model, UV-visible and fluorescence spectroscopic techniques using calf thymus DNA (CT-DNA) demonstrated a non-intercalative mode of binding. Antiproliferative activity of nucleosides was tested against MCF-7 and MDA-MB-231 breast cancer cell lines and found to be active at low micromolar concentrations. Compounds and displayed significant antiproliferative activity as compared to and with the reference anticancer drug, doxorubicin. Cell cycle analysis showed that nucleoside induced cell cycle arrest at the S-phase. Confocal microscopy has been performed to validate the induction of cellular apoptosis. Based on these findings, such modified bicyclic benzimidazole nucleosides will make a significant contribution to the development of anticancer drugs.

  17. Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA

    Institute of Scientific and Technical Information of China (English)

    Parker L Andersen; Fang Xu; Wei Xiao


    In addition to well-defined DNA repair pathways, all living organisms have evolved mechanisms to avoid cell death caused by replication fork collapse at a site where replication is blocked due to disruptive covalent modi-fications of DNA. The term DNA damage tolerance (DDT) has been employed loosely to include a collection of mechanisms by which cells survive replication-blocking lesions with or without associated genomic instability. Recent genetic analyses indicate that DDT in eukaryotes, from yeast to human, consists of two parallel pathways with one being error-free and another highly mutagenic. Interestingly, in budding yeast, these two pathways are mediated by sequential modifications of the proliferating cell nuclear antigen (PCNA) by two ubiquitination complexes Rad6-Rad18 and Mms2-Ubcl3-Rad5. Damage-induced monoubiquitination of PCNA by Rad6-Rad18 promotes translesion synthesis (TLS) with increased mutagenesis, while subsequent polyubiquitination of PCNA at the same Ki64 residue by Mms2-Ubcl3-Rad5 promotes error-free lesion bypass. Data obtained from recent studies suggest that the above mechanisms are conserved in higher eukaryotes. In particular, mammals contain multiple specialized TLS polymerases. Defects in one of the TLS polymerases have been linked to genomic insta-bility and cancer.

  18. Synthesis of full length and truncated microcin B17 analogues as DNA gyrase poisons. (United States)

    Thompson, Robert E; Collin, Frédéric; Maxwell, Anthony; Jolliffe, Katrina A; Payne, Richard J


    Microcin B17 (MccB17) is a post-translationally modified peptide containing thiazole and oxazole heterocycles that interrupt the peptide backbone. MccB17 is capable of poisoning DNA gyrase through stabilization of the gyrase-DNA cleavage complex and has therefore attracted significant attention. Using a combination of Fmoc-strategy solid-phase peptide synthesis and solution-phase fragment assembly we have prepared a library of full-length and truncated MccB17 analogues to investigate key structural requirements for gyrase-poisoning activity. Synthetic peptides lacking the glycine-rich N-terminal portion of the full-length sequence showed strong stabilization of the gyrase-DNA cleavage complex with increased potency relative to the full-length sequences. This truncation, however, led to a decrease in antibacterial activity of these analogues relative to their full-length counterparts indicating a potential role of the N-terminal region of the natural product for cellular uptake.

  19. Chemical synthesis of the lantibiotic lacticin 481 reveals the importance of lanthionine stereochemistry. (United States)

    Knerr, Patrick J; van der Donk, Wilfred A


    Lantibiotics are a family of antibacterial peptide natural products characterized by the post-translational installation of the thioether-containing amino acids lanthionine and methyllanthionine. Until recently, only a single naturally occurring stereochemical configuration for each of these cross-links was known. The discovery of lantibiotics with alternative lanthionine and methyllanthionine stereochemistry has prompted an investigation of its importance to biological activity. Here, solid-supported chemical synthesis enabled the total synthesis of the lantibiotic lacticin 481 and analogues containing cross-links with non-native stereochemical configurations. Biological evaluation revealed that these alterations abolished the antibacterial activity in all of the analogues, revealing the critical importance of the enzymatically installed stereochemistry for the biological activity of lacticin 481.

  20. Chemical synthesis and characterization of highly soluble conducting polyaniline in the mixtures of common solvents

    Directory of Open Access Journals (Sweden)

    Zeghioud Hichem


    Full Text Available This work presents the synthesis and characterization of soluble and conducting polyaniline PANI-PIA according to chemical polymerization route. This polymerization pathway leads to the formation of poly(itaconic acid doped polyaniline salts, which are highly soluble in a number of mixtures between organic common polar solvents and water, the solubility reaches 4 mg mL-1. The effect of synthesis parameters such as doping level on the conductivity and the study of solubility and other properties of the resulting PANI salts were also undertaken. The maximum of conductivity was found equal to 2.48×10-4 S cm-1 for fully protonated PANI-EB. In addition, various characterizations of the synthesized materials were also done with the help of viscosity measurements, UV-vis spectroscopy, XRD, FTIR and finally TGA for the thermal properties behaviour.

  1. Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu


    Full Text Available Hexagonal boron nitrite (h-BN is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers. The quality of as-grown h-BN is confirmed by complementary characterizations including high-resolution transition electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photo-electron spectroscopy. This work will pave the way for production of large-scale and high-quality h-BN and its applications as well.

  2. Physical-chemical characterization of Tunisian clays for the synthesis of geopolymers materials (United States)

    Selmani, S.; Essaidi, N.; Gouny, F.; Bouaziz, S.; Joussein, E.; Driss, A.; Sdiri, A.; Rossignol, S.


    Natural clay materials from Tunisia were examined as an aluminosilicate source for the synthesis of consolidated materials at low temperatures. Three clay samples were collected from the El Kef, Douiret and Gafsa basins and calcined at different temperatures. All of the samples were characterized using chemical and mineralogical analyses, thermogravimetry, dilatometry, and Fourier transform infrared spectroscopy (FTIR) measurements. The chemical (XRF) and mineralogical analyses (XRD and FTIR) indicated that all of the samples contained various amounts of kaolinite and quartz, followed by calcite, mica, palygorskite and gypsum. Curing produced a binder which did not significantly affect the physic-chemical properties of these clays. The obtained materials heterogeneous did not reach the geopolymerization stage, most likely because of their low kaolinite content. The addition of a suitable aluminosilicate to these clays is therefore recommended to produce homogeneous consolidated geopolymers. The synthesized materials obtained after the addition of metakaolin to the formulation to improve reactivity have interesting properties, thereby providing good potential for Tunisian clays in the synthesis of geopolymers.

  3. Linking DNA adduct formation and human cancer risk in chemical carcinogenesis. (United States)

    Poirier, Miriam C


    Over two centuries ago, Sir Percival Pott, a London surgeon, published a pioneering treatise showing that soot exposure was the cause of high incidences of scrotal cancers occurring in young men who worked as chimney sweeps. Practicing at a time when cellular pathology was not yet recognized, Sir Percival nonetheless observed that the high incidence and short latency of the chimney sweep cancers, was fundamentally different from the rare scrotal cancers typically found in elderly men. Furthermore, his diagnosis that the etiology of these cancers was related to chimney soot exposure, was absolutely accurate, conceptually novel, and initiated the field of "occupational cancer epidemiology." After many intervening years of research focused on mechanisms of chemical carcinogenesis, briefly described here, it is clear that DNA damage, or DNA adduct formation, is "necessary but not sufficient" for tumor induction, and that many additional factors contribute to carcinogenesis. This review includes a synopsis of carcinogen-induced DNA adduct formation in experimental models and in the human population, with particular attention paid to molecular dosimetry and molecular cancer epidemiology. Environ. Mol. Mutagen. 57:499-507, 2016. © 2016 Wiley Periodicals, Inc.

  4. cis-acting sequences that control the level of viral DNA synthesis in the polyomavirus late region. (United States)

    Melucci-Vigo, G; Ciotta, C; Risuleo, G


    A deletion in the polyomavirus late region results in a drastic reduction of viral replication, as shown after transfection of viral DNA into 3T6 cells. This mutation is cis acting, since cotransfection with wild-type DNA did not restore the normal phenotype. Viral DNA synthesis returned to normal levels only after reintroduction of the authentic sequences in either orientation. The data presented here suggest that these sequences are involved in the binding of a factor(s) that controls the level of viral replication. Images PMID:2552181

  5. Characterization of the defects in bacteriophage T7 DNA synthesis during growth in the Escherichia coli mutant tsnB.


    DeWyngaert, M A; Hinkle, D C


    The Escherichia coli mutant tsnB (M. Chamberlin, J. Virol. 14:509-516, 1974) is unable to support the growth of bacteriophage T7, although all classes of phage proteins are produced and the host is killed by the infection. During growth in this mutant host, the rate of phage DNA synthesis is reduced and the DNA is not packaged into stable, phagelike particles. The replicating DNA forms concatemers but the very large replicative intermediates (approximately 440S) identified by Paetkau et al. (...


    Institute of Scientific and Technical Information of China (English)


    Hepatocytes were isolated from livers of adult male Sprague-Dawley rats and cultured in Williams'E Medium with [3 H] thymidine. The effect of 5-hydroxytryptamine (5-HT) was investigated through adding various concentrations (10-8~10-3 mol/L) of 5-HT to the hepatocyte cultures in the presence or absence of epidermal growth factor (EGF) and insulin. The involvement of 5-HT2 receptor was examined by adding a 5-HT2 receptor antagonist, ketanserin (10-6 mol/L), to some of the cultures containing 5-HT. The increment of DNA synthesis was measured by [3 H] thymidine incorporation. The results showed that 5-HT2 (≥10-6 mol/L) significantly (P<0.05) increased the amount of DNA synthesis induced by EGF and insulin in the cultured adult rat hepaptocytes. The effect of 5-HT in enhancing DNA synthesis began to appear at a concentration between 10-7 and 10-6 mol/L and reached maximum at concentrations of ≥10-4 mol/L. The enhancement of DNA synthesis by 5-HT was significantly (P<0.05) antagonized by ketanserin, suggesting that this effect of 5-HT was mediated by 5-HT2 receptor subtype.

  7. Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement (United States)

    Srinivas, Niranjan

    Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry. In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive. Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for

  8. [Chemical and DNA analyses for the products of a psychoactive plant, Voacanga africana]. (United States)

    Kikura-Hanajiri, Ruri; Maruyama, Takuro; Miyashita, Akinori; Goda, Yukihiro


    Voacanga africana (Apocynaceae) is a small tropical African tree. The root bark and seeds of this tree contain a number of alkaloids, including ibogaine (a hallucinogenic/aphrodisiac compound in bark), tabersonine (a major constituteent of seeds) and other voacanga alkaloids, traditionally used in Africa for religious purposes. Recently, some kinds of products containing this plant (root bark and seeds) have been distributed in the drug market in expectation of its hallucinogenic/aphrodisiac effects. There has been no report that has discussed quantitative analyses of these alkaloids in the products and their botanical origins. In this study, to investigate the trend of such a non-controlled psychotropic plant of abuse, a simultaneous analytical method was developed using LC/MS for the voacanga alkaloids including ibogaine and tabersonine in the commercial products of V. africana. Moreover, the botanical origins of these products were investigated by DNA analyses. As a result of the LC/MS analyses, the products were classified into two chemical types; an ibogaine-type and a tabersonine-type. The samples of the ibogaine-type contain ibogaine (0.05-0.6%) and other voacanga alkaloids; voacamine, voacamidine and voacangine, while those of the tabersonine-type mainly contain tabersonine (0.6-1.6%). The sequence analyses of chloroplast DNA, trnL-F region suggested that most of the products were derived from V. africana or closely related plants. They were classified into four genotypes based on nucleotide sequence of the trnL-F IGS region. The proposed methods of chemical and DNA analyses would be useful for investigating the trend in the distribution of the products of V. africana.

  9. Contiguous 2,2,4-triamino-5(2H)-oxazolone obstructs DNA synthesis by DNA polymerases α, β, η, ι, κ, REV1 and Klenow Fragment exo-, but not by DNA polymerase ζ. (United States)

    Suzuki, Masayo; Kino, Katsuhito; Kawada, Taishu; Oyoshi, Takanori; Morikawa, Masayuki; Kobayashi, Takanobu; Miyazawa, Hiroshi


    Guanine is the most easily oxidized of the four DNA bases, and contiguous guanines (GG) in a sequence are more readily oxidized than a single guanine in a sequence. Continued oxidation of GGs results in a contiguous oxidized guanine lesion. Two contiguous 2,5-diamino-4H-imidazol-4-ones, an oxidized form of guanine that hydrolyses to 2,2,4-triamino-5(2H)-oxazolone (Oz), are detected following the oxidation of GG. In this study, we analysed translesion synthesis (TLS) across two contiguous Oz molecules (OzOz) using Klenow Fragment exo(-) (KF exo(-)) and DNA polymerases (Pols) α, β, ζ, η, ι, κ and REV1. We found that KF exo(-) and Pols α, β, ι and REV1 inserted one nucleotide opposite the 3' Oz of OzOz and stalled at the subsequent extension, and that Pol κ incorporated no nucleotide. Pol η only inefficiently elongated the primer up to full-length across OzOz; the synthesis of most DNA strands stalled at the 3' or 5' Oz of OzOz. Surprisingly, however, Pol ζ efficiently extended the primer up to full-length across OzOz, unlike the other DNA polymerases, but catalysed error-prone nucleotide incorporation. We therefore believe that Pol ζ is required for efficient TLS of OzOz. These results show that OzOz obstructs DNA synthesis by DNA polymerases except Pol ζ.

  10. Synthesis and spectroscopic studies of the aminoglycoside (neomycin)--perylene conjugate binding to human telomeric DNA. (United States)

    Xue, Liang; Ranjan, Nihar; Arya, Dev P


    Synthesis of a novel perylene-neomycin conjugate (3) and the properties of its binding to human telomeric G-quadruplex DNA, 5'-d[AG3(T2AG3)3] (4), are reported. Various spectroscopic techniques were employed to characterize the binding of conjugate 3 to 4. A competition dialysis assay revealed that 3 preferentially binds to 4, in the presence of other nucleic acids, including DNA, RNA, DNA-RNA hybrids, and other higher-order structures (single strands, duplexes, triplexes, other G-quadruplexes, and the i-motif). UV thermal denaturation studies showed that thermal stabilization of 4 increases as a function of the increasing concentration of 3. The fluorescence intercalator displacement (FID) assay displayed a significantly tighter binding of 3 with 4 as compared to its parent constituents [220-fold stronger than neomycin (1) and 4.5-fold stronger than perylene diamine (2), respectively]. The binding of 3 with 4 resulted in pronounced changes in the molar ellipticity of the DNA absorption region as confirmed by circular dichroism. The UV-vis absorption studies of the binding of 3 to 4 resulted in a red shift in the spectrum of 3 as well as a marked hypochromic change in the perylene absorption region, suggesting that the ligand-quadruplex interaction involves stacking of the perylene moiety. Docking studies suggest that the perylene moiety serves as a bridge that end stacks on 4, making contacts with two thymine bases in the loop, while the two neomycin moieties branch into the grooves of 4.

  11. Synthesis and Characterization of Tin(IV) Oxide Obtained by Chemical Vapor Deposition Method (United States)

    Nagirnyak, Svitlana V.; Lutz, Victoriya A.; Dontsova, Tatiana A.; Astrelin, Igor M.


    The effect of precursors on the characteristics of tin oxide obtained by chemical vapor deposition (CVD) method was investigated. The synthesis of nanosized tin(IV) oxide was carried out with the use of two different precursors: tin(II) oxalate obtained using tin chloride(II) and oxalic acid; tin(II) oxalate obtained using tin chloride(II); and ammonium oxalate. The synthesized tin(IV) oxide samples were studied by electron microscopy, X-ray diffraction and optical spectra. The lattice parameters of tin(IV) oxide samples were defined, the bandgap of samples were calculated.

  12. Synthesis and Characterization of Tin(IV) Oxide Obtained by Chemical Vapor Deposition Method


    Nagirnyak, Svitlana V.; Lutz, Victoriya A.; Dontsova, Tatiana A.; Astrelin, Igor M.


    The effect of precursors on the characteristics of tin oxide obtained by chemical vapor deposition (CVD) method was investigated. The synthesis of nanosized tin(IV) oxide was carried out with the use of two different precursors: tin(II) oxalate obtained using tin chloride(II) and oxalic acid; tin(II) oxalate obtained using tin chloride(II); and ammonium oxalate. The synthesized tin(IV) oxide samples were studied by electron microscopy, X-ray diffraction and optical spectra. The lattice parame...

  13. In-situ preparation of polymer-coated alumina nanopowders by chemical vapor synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Schallehn, M.; Winterer, M.; Weirich, T.E.; Hahn, H. [Inst. of Materials Science, Darmstadt Univ. of Technology, Darmstadt (Germany); Keiderling, U. [Hahn-Meitner-Inst., Berlin (Germany)


    Nanocrystalline alumina particles coated with polyethylene have been prepared by a two-step chemical vapor synthesis (CVS) process using a hot-wall reactor to synthesize the nanocrystalline alumina core, and a RF plasma reactor for the subsequent polymer coating. The particle radius is about 4 nm, with the radius of the ceramic core being about 2.5 nm and the coating thickness about 1.5 nm. The powders have been characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), small-angle neutron scattering (SANS), and high-resolution transmission electron microscopy (HRTEM). (orig.)

  14. Synthesis and oxidation behavior of boron-substituted carbon powders by hot filament chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)


    Boron-substituted carbon powder, BxC1-x with x up to 0.17, has been successfully synthesized by hot filament chemical vapor deposition. The boron concentration in prepared BxC1-x samples can be controlled by varying the relative proportions of methane and diborane. X-ray diffraction, transmission electron microscopy, and electron energy loss spectrum confirm the successful synthesis of an amorphous BC5 compound, which consists of 10―20 nm particles with disk-like morphology. Thermogravimetry measurement shows that BC5 compound starts to oxidize ap-proximately at 620℃ and has a higher oxidation resistance than carbon.

  15. Chemical Capping Synthesis of Nickel Oxide Nanoparticles and their Characterizations Studies

    CERN Document Server

    rifaya, M Nowsath; Alagar, M; 10.5923/j.nn.20120205.01


    This work reports aspect related to chemical capping synthesis of nano-sized particles of nickel oxide. It is a simple, novel and cost effective method. The average particle size, specific surface area, crystallinity index are estimated from XRD analysis. The structural, functional groups and optical characters are analyzed with using of SEM, FTIR and UV- visible techniques. XRD studies confirm the presence of high degree of crystallinity nature of nickel oxide nanoparticles. Their particle size is found to be 12 nm and specific surface area (SSA) is 74m2 g-1. The optical band gap energy value 3.83ev has also been determined from UV-vis spectrum.

  16. Interaction between Escherichia coli DNA polymerase IV and single-stranded DNA-binding protein is required for DNA synthesis on SSB-coated DNA. (United States)

    Furukohri, Asako; Nishikawa, Yoshito; Akiyama, Masahiro Tatsumi; Maki, Hisaji


    DNA polymerase IV (Pol IV) is one of three translesion polymerases in Escherichia coli. A mass spectrometry study revealed that single-stranded DNA-binding protein (SSB) in lysates prepared from exponentially-growing cells has a strong affinity for column-immobilized Pol IV. We found that purified SSB binds directly to Pol IV in a pull-down assay, whereas SSBΔC8, a mutant protein lacking the C-terminal tail, failed to interact with Pol IV. These results show that the interaction between Pol IV and SSB is mediated by the C-terminal tail of SSB. When polymerase activity was tested on an SSBΔC8-coated template, we observed a strong inhibition of Pol IV activity. Competition experiments using a synthetic peptide containing the amino acid sequence of SSB tail revealed that the chain-elongating capacity of Pol IV was greatly impaired when the interaction between Pol IV and SSB tail was inhibited. These results demonstrate that Pol IV requires the interaction with the C-terminal tail of SSB to replicate DNA efficiently when the template ssDNA is covered with SSB. We speculate that at the primer/template junction, Pol IV interacts with the tail of the nearest SSB tetramer on the template, and that this interaction allows the polymerase to travel along the template while disassembling SSB.

  17. DNA-Based Identification and Chemical Characteristics of Hypnea musciformis from Coastal Sites in Ghana

    Directory of Open Access Journals (Sweden)

    Marcel Tutor Ale


    Full Text Available This work reveals new, important insights about the influence of broad spatial variations on the phylogenetic relationship and chemical characteristics of Ghanaian Hypnea musciformis—a carrageenan-containing red seaweed. DNA barcoding techniques alleviate the difficulty for accurate morphological identification. COI barcode sequences of the Ghanaian H. musciformis showed <0.7% intraspecies divergence, indicating no distinct phylogenetic variation, suggesting that they actually belong to the same species. Thus, the spatial distribution of the sampling sites along the coast of Ghana did not influence the phylogenetic characteristics of H. musciformis in the region. The data also showed that the Ghanaian Hypnea sp. examined in this work should be regarded as the same species as the H. musciformis collected in Brazilian Sao Paulo (KP725276 with only 0.8%–1.3% intraspecies divergence. However, the comparison of COI sequences of Ghanaian H. musciformis with the available COI sequence of H. musciformis from other countries showed intraspecies divergences of 0%–6.9% indicating that the COI sequences for H. musciformis in the GenBank may include different subspecies. Although samples did not differ phylogenetically, the chemical characteristics of the H. musciformis differed significantly between different sampling locations in Ghana. The levels of the monosaccharides, notably galactose (20%–30% dw and glucose (10%–18% dw, as well as the seawater inorganic salt concentration (21–32 mg/L and ash content (19%–33% dw, varied between H. musciformis collected at different coastal locations in Ghana. The current work demonstrated that DNA-based identification allowed a detailed understanding of H. musciformis phylogenetic characteristics and revealed that chemical compositional differences of H. musciformis occur along the Ghanaian coast which are not coupled with genetic variations among those samples.

  18. Synthesis of Novel Metal Ion Sensors Based on DNA-Metal Interactions

    Institute of Scientific and Technical Information of China (English)

    Akira Ono; Shiqi Cao; Humika Togashi; Yoko Miyake


    @@ 1Introduction The interactions of metal ions with nucleic acids, nucleosides, and nucleo-bases have been extensively investigated[1,2]. We have reported that thymine-thymine (T-T) and cytosine-cytosine (C- C) miss base pairs in DNA duplexes highly selectively capture HgⅡ ion and Ag Ⅰ ion, which result in formations of metal-mediated base pairs, T-HgⅡ -T and C-AgⅠ -C, in duplexes[3]. The phenomenon is expected to be useful for a variety of studies such as synthesis of nano-wires containing metal ions, developing metal-ion sensing methods, etc.Here, we report novel oligodeoxyribonucleotide (ODN)-based sensors that detect HgⅡ ions and AgⅠ ions in aqueous solutions.

  19. Synthesis and crystal structure study of 2′-Se-adenosine-derivatized DNA

    Institute of Scientific and Technical Information of China (English)

    SALON; Jozef


    The selenium derivatization of nucleic acids is a novel and promising strategy for 3D structure determination of nucleic acids.Selenium can serve as an excellent anomalous scattering center to solve the phase problem,which is one of the two major bottlenecks in macromolecule X-ray crystallography.The other major bottleneck is crystallization.It has been demonstrated that the incorporated selenium functionality at the 2′-positions of the nucleosides and nucleotides is stable and does not cause significant structure perturbation.Furthermore,it was observed that the 2′-Se-derivatization could facilitate crystallization of oligonucleotides with fast crystal growth and high diffraction quality.Herein,we describe a convenient synthesis of the 2′-Se-adenosine phosphoramidite,and report the first synthesis and X-ray crystal structure determination of the DNA containing the 2′-Se-A derivatization.The 3D structure of 2′-Se-A-DNA decamer 5′-GTACGCGT(2′-Se-A)C-3′2 was determined at 1.75 ? resolution,the 2′-Se-functionality points to the minor groove,and the Se-modified and native structures are virtually identical.Moreover,we have observed that the 2′-Se-A modification can greatly facilitate the crystal growth with high diffraction quality.In conjunction with the crystallization facilitation by the 2′-Se-U and 2′-Se-T,this novel observation on the 2′-Se-A functionality suggests that the 2′-Se moiety is sole responsible for the crystallization facilitation and the identity of nucleobases does not influence the crystal growth significantly.

  20. Growth pattern of single fission yeast cells is bilinear and depends on temperature and DNA synthesis. (United States)

    Baumgärtner, Stephan; Tolić-Nørrelykke, Iva M


    Cell growth and division have to be tightly coordinated to keep the cell size constant over generations. Changes in cell size can be easily studied in the fission yeast Schizosaccharomyces pombe because these cells have a cylindrical shape and grow only at the cell ends. However, the growth pattern of single cells is currently unclear. Linear, exponential, and bilinear growth models have been proposed. Here we measured the length of single fission yeast cells with high spatial precision and temporal resolution over the whole cell cycle by using time-lapse confocal microscopy of cells with green fluorescent protein-labeled plasma membrane. We show that the growth profile between cell separation and the subsequent mitosis is bilinear, consisting of two linear segments separated by a rate-change point (RCP). The change in growth rate occurred at the same relative time during the cell cycle and at the same relative extension for different temperatures. The growth rate before the RCP was independent of temperature, whereas the growth rate after the RCP increased with an increase in temperature, leading to clear bilinear growth profiles at higher temperatures. The RCP was not directly related to the initiation of growth at the new end (new end take-off). When DNA synthesis was inhibited by hydroxyurea, the RCP was not detected. This result suggests that completion of DNA synthesis is required for the increase in growth rate. We conclude that the growth of fission yeast cells is not a simple exponential growth, but a complex process with precise rates regulated by the events during the cell cycle.

  1. The effect of human milk on DNA synthesis of neonatal rat hepatocytes in primary culture. (United States)

    Kohno, Y; Shiraki, K; Mura, T


    We studied the effect of human milk on DNA synthesis of neonatal hepatocytes to elucidate the physiologic role of human milk in growth of the liver. Neonatal hepatocytes were isolated from 5-d-old rats and cultured in serum-free medium. Human milk stimulated DNA synthesis of these hepatocytes in a concentration-dependent manner. The stimulatory activity of 7.5% (vol/vol) human milk plus 0.1 mumol/L insulin was five times that of control and was almost the same as that of 20 micrograms/L human epidermal growth factor (hEGF) plus insulin. The effect of human milk was additive with treatment with hEGF and insulin. The milk associated with prolonged jaundice of infants was significantly more active than the milk that was not associated with jaundice, although the concentration of hEGF was not different between the two types of milk. The mitogenic activity of milk was heat-labile, inactivated by DTT and stable after treatment with trypsin. Three peaks of the activity were detected in milk by gel filtration and the fraction containing proteins of molecular weight between 36,000 and 76,000 showed the highest activity. Anti-hEGF antibody did not inhibit this activity completely. These results suggested the presence of mitogens other than hEGF or a more active form of hEGF in human milk. The milk associated with breast-milk jaundice exerts a different influence on cell growth and may affect maturation of the liver function related to bilirubin metabolism. The mitogenic activity of milk might be important for growth and development of the liver in infants.

  2. Synthesis of G-N2-(CH2)3-N2-G Trimethylene DNA interstrand cross-links (United States)

    Gruppi, Francesca; Salyard, Tracy L. Johnson; Rizzo, Carmelo J.


    The synthesis of G-N2-(CH2)3-N2-G trimethylene DNA interstrand cross-links (ICLs) in a 5′-CG-3′ and 5′-GC-3′ sequence from oligodeoxynucleotides containing N2-(3-aminopropyl)-2′-deoxyguanosine and 2-fluoro-O6-(trimethylsilylethyl)inosine is presented. Automated solid-phase DNA synthesis was used for unmodified bases and modified nucleotides were incorporated via their corresponding phosphoramidite reagent by a manual coupling protocol. The preparation of the phosphoramidite reagents for incorporation of N2-(3-aminopropyl)-2′-deoxyguanosine is reported. The high-purity trimethylene DNA interstrand cross-link product is obtained through a nucleophilic aromatic substitution reaction between the N2-(3-aminopropyl)-2′-deoxyguanosine and 2-fluoro-O6-(trimethylsilylethyl)inosine containing oligodeoxynucleotides. PMID:25431636

  3. Polyurethane Molecular Stamps for the in situ Synthesis of DNA Microarray

    Institute of Scientific and Technical Information of China (English)


    Fabrication of polyurethane molecular stamps (PU stamps) based on polypropylene glycol (PPG) and toluene diisocyanate (TDI), using 3, 3(-dichloro-4, 4(-methylenedianiline (MOCA) as the crosslinker, is reported. It was shown from the contact angle measurement that PU stamps surface has good affinity with acetonitrile, guaranteeing the well distribution of DNA monomers on patterned stamps. Laser confocal fluorescence microscopy images of oligonucleotide arrays after hybridization confirmed polyurethane is an excellent material for molecular stamps when transferring polar chemicals and conducting reactions on interfaces by stamping.

  4. DNA Three Way Junction Core Decorated with Amino Acids-Like Residues-Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Claudia Addamiano


    Full Text Available Construction and physico-chemical behavior of DNA three way junction (3WJ functionalized by protein-like residues (imidazole, alcohol and carboxylic acid at unpaired positions at the core is described. One 5′-C(S-propargyl-thymidine nucleotide was specifically incorporated on each strand to react through a post synthetic CuACC reaction with either protected imidazolyl-, hydroxyl- or carboxyl-azide. Structural impacts of 5′-C(S-functionalization were investigated to evaluate how 3WJ flexibility/stability is affected.

  5. Synthesis of a drug delivery vehicle for cancer treatment utilizing DNA-functionalized gold nanoparticles (United States)

    Brann, Tyler

    The treatment of cancer with chemotherapeutic agents has made great strides in the last few decades but still introduces major systemic side effects. The potent drugs needed to kill cancer cells often cause irreparable damage to otherwise healthy organs leading to further morbidity and mortality. A therapy with intrinsic selective properties and/or an inducible activation has the potential to change the way cancer can be treated. Gold nanoparticles (GNPs) are biocompatible and chemically versatile tools that can be readily functionalized to serve as molecular vehicles. The ability of these particles to strongly absorb light with wavelengths in the therapeutic window combined with the heating effect of surface plasmon resonance makes them uniquely suited for noninvasive heating in biologic applications. Specially designed DNA aptamers have shown their ability to serve as drug carriers through intercalation as well as directly acting as therapeutic agents. By combining these separate molecules a multifaceted drug delivery vehicle can be created with great potential as a selective and controllable treatment for cancer. Oligonucleotide-coated GNPs have been created using spherical GNPs but little work has been reported using gold nanoplates in this way. Using the Diasynth method gold nanoplates were produced to absorb strongly in the therapeutic near infrared (nIR) window. These particles were functionalized with two DNA oligonucleotides: one serving as an intercalation site for doxorubicin, and another, AS1411, serving directly as an anticancer targeting/therapeutic agent. These functional particles were fully synthesized and processed along with confirmation of DNA functionalization and doxorubicin intercalation. Doxorubicin is released via denaturation of the DNA structure into which doxorubicin is intercalated upon the heating of the gold nanoplate well above the DNA melting temperature. This temperature increase, due to light stimulation of surface plasmon

  6. Novel microwave assisted chemical synthesis of Nd₂Fe₁₄B hard magnetic nanoparticles. (United States)

    Swaminathan, Viswanathan; Deheri, Pratap Kumar; Bhame, Shekhar Dnyaneswar; Ramanujan, Raju Vijayaraghavan


    The high coercivity and excellent energy product of Nd2Fe14B hard magnets have led to a large number of high value added industrial applications. Chemical synthesis of Nd2Fe14B nanoparticles is challenging due to the large reduction potential of Nd(3+) and the high tendency for Nd2Fe14B oxidation. We report the novel synthesis of Nd2Fe14B nanoparticles by a microwave assisted combustion process. The process consisted of Nd-Fe-B mixed oxide preparation by microwave assisted combustion, followed by the reduction of the mixed oxide by CaH2. This combustion process is fast, energy efficient and offers facile elemental substitution. The coercivity of the resulting powders was ∼8.0 kOe and the saturation magnetization was ∼40 emu g(-1). After removal of CaO by washing, saturation magnetization increased and an energy product of 3.57 MGOe was obtained. A range of magnetic properties was obtained by varying the microwave power, reduction temperature and Nd to Fe ratio. A transition from soft to exchange coupled to hard magnetic properties was obtained by varying the composition of NdxFe1-xB8 (x varies from 7% to 40%). This synthesis procedure offers an inexpensive and facile platform to produce exchange coupled hard magnets.

  7. Induction of DNA synthesis and apoptosis are separable functions of E2F-1

    DEFF Research Database (Denmark)

    Phillips, A C; Bates, S; Ryan, K M;


    The family of E2F transcription factors have an essential role in mediating cell cycle progression, and recently, one of the E2F protein family, E2F-1, has been shown to participate in the induction of apoptosis. Cooperation between E2F and the p53 tumor suppressor protein in this apoptotic...... response had led to the suggestion that cell cycle progression induced by E2F-1 expression provides an apoptotic signal when placed in conflict with an arrest to cell cycle progression, such as provided by p53. We show here that although apoptosis is clearly enhanced by p53, E2F-1 can induce significant...... apoptosis in the absence of p53. Furthermore, this apoptotic function of E2F-1 is separable from the ability to accelerate entry into DNA synthesis. Analysis of E2F-1 mutants indicates that although DNA-binding is required, transcriptional transactivation is not necessary for the induction of apoptosis by E...

  8. Delay in maturation of the submandibular gland in Chagas disease correlates with lower DNA synthesis

    Directory of Open Access Journals (Sweden)

    José B Alves


    Full Text Available It has been demonstrated that the acute phase of Trypanosoma cruzi infection promotes several changes in the oral glands. The present study examined whether T. cruzi modulates the expression of host cell apoptotic or mitotic pathway genes. Rats were infected with T. cruzi then sacrificed after 18, 32, 64 or 97 days, after which the submandibular glands were analyzed by immunohistochemistry. Immunohistochemical analyses using an anti-bromodeoxyuridine antibody showed that, during acute T. cruzi infection, DNA synthesizing cells in rat submandibular glands were lower than in non-infected animals (p < 0.05. However, after 64 days of infection (chronic phase, the number of immunolabeled cells are similar in both groups. However, immunohistochemical analysis of Fas and Bcl-2 expression did not find any difference between infected and non-infected animals in both the acute and chronic stages. These findings suggest that the delay in ductal maturation observed at the acute phase of Chagas disease is correlated with lower expression of DNA synthesis genes, but not apoptotic genes.

  9. Epidermal DNA synthesis in organ culture explants. A study of hairless mouse ear epidermis. (United States)

    Hansteen, I L; Iversen, O H; Refsum, S B


    Explants of split mouse ear were incubated in organ culture for up to 48 h, and the cell proliferation was studied by the addition of Thymidine-methyl-3-H (3HTdR) to the medium during different time periods, mainly for the first 14 h of incubation. Cultures were started at 0900, 2130 and 2300. In all cases the labelling index remained stable for 6-8 h, and then increased. The mean grain count, however, was falling and so was the epidermal DNA-specific uptake of 3HTdR. Based on the experimental results, calculations can be made of the flux of cells through S. It is concluded that the increasing LI is not due to inherent diurnal variation in cell proliferation, and is not a sign of real growth but caused instead by a complete block of the cell exit from S, probably combined with periods of an increased entrance rate into S. Other methodological factors, however, may also contribute to the increasing LI. Hence, this system is not suited for the measurement of factors that influence epidermal DNA synthesis.

  10. Bacterial Obg proteins: GTPases at the nexus of protein and DNA synthesis. (United States)

    Kint, Cyrielle; Verstraeten, Natalie; Hofkens, Johan; Fauvart, Maarten; Michiels, Jan


    Obg proteins (also known as ObgE, YhbZ and CgtA) are conserved P-loop GTPases, essential for growth in bacteria. Like other GTPases, Obg proteins cycle between a GTP-bound ON and a GDP-bound OFF state, thereby controlling cellular processes. Interestingly, the in vitro biochemical properties of Obg proteins suggest that they act as sensors for the cellular GDP/GTP pools and adjust their activity according to the cellular energy status. Obg proteins have been attributed a host of cellular functions, including roles in essential cellular processes (DNA replication, ribosome maturation) and roles in different stress adaptation pathways (stringent response, sporulation, general stress response). This review summarizes the current knowledge on Obg activity and function. Furthermore, we present a model that integrates the different functions of Obg by assigning it a fundamental role in cellular physiology, at the hub of protein and DNA synthesis. In particular, we believe that Obg proteins might provide a connection between different global pathways in order to fine-tune cellular processes in response to a given energy status.

  11. Synthesis of tetrapeptide Bz-RGDS-NH2 by a combination of chemical and enzymatic methods. (United States)

    Huang, Yi-Bing; Cai, Yu; Yang, Sen; Wang, Hua; Hou, Rui-Zhen; Xu, Li; Xiao-Xia, Wu; Zhang, Xue-Zhong


    The tetrapeptide Bz-Arg-Gly-Asp-Ser-NH(2) (Bz-RGDS-NH(2)) was successfully synthesized by a combination of chemical and enzymatic methods in this study. Firstly, the precursor tripeptide Gly-Asp-Ser-NH(2) (GDS-NH(2)) was synthesized by a novel chemical method in four steps including chloroacetylation of l-aspartic acid, synthesis of chloroacetyl l-aspartic acid anhydride, the synthesis of ClCH(2)COAsp-SerOMe and ammonolysis of ClCH(2)COAsp-SerOMe. Secondly, lipase (PPL) was used to catalyze the formation of Bz-RGDS-NH(2) in aqueous water-miscible organic cosolvent systems using Bz-Arg-OEt as the acyl donor and GDS-NH(2) as the nucleophile. The optimum conditions were Bz-Arg-OEt 50 mM; GDS-NH(2) 400 mM; 10 degrees C, 0.1M phosphate buffer, pH 7.5; 60% DMF or 58% DMSO, PPL: 10 mg ml(-1) with the maximum yields of the tetrapeptide of 73.6% for DMF and 70.4% for DMSO, respectively. The secondary hydrolysis of the tetrapeptide product did not take place due to the absence of amidase activity of lipase.

  12. A review of engineering aspects of intensification of chemical synthesis using ultrasound. (United States)

    Sancheti, Sonam V; Gogate, Parag R


    Cavitation generated using ultrasound can enhance the rates of several chemical reactions giving better selectivity based on the physical and chemical effects. The present review focuses on overview of the different reactions that can be intensified using ultrasound followed by the discussion on the chemical kinetics for ultrasound assisted reactions, engineering aspects related to reactor designs and effect of operating parameters on the degree of intensification obtained for chemical synthesis. The cavitational effects in terms of magnitudes of collapse temperatures and collapse pressure, number of free radicals generated and extent of turbulence are strongly dependent on the operating parameters such as ultrasonic power, frequency, duty cycle, temperature as well as physicochemical parameters of liquid medium which controls the inception of cavitation. Guidelines have been presented for the optimum selection based on the critical analysis of the existing literature so that maximum process intensification benefits can be obtained. Different reactor designs have also been analyzed with guidelines for efficient scale up of the sonochemical reactor, which would be dependent on the type of reaction, controlling mechanism of reaction, catalyst and activation energy requirements. Overall, it has been established that sonochemistry offers considerable potential for green and sustainable processing and efficient scale up procedures are required so as to harness the effects at actual commercial level.

  13. Involvement of sulfoquinovosyl diacylglycerol in DNA synthesis in Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Aoki Motohide


    Full Text Available Abstract Background Sulfoquinovosyl diacylglycerol (SQDG is present in the membranes of cyanobacteria and their postulated progeny, plastids, in plants. A cyanobacterium, Synechocystis sp. PCC 6803, requires SQDG for growth: its mutant (SD1 with the sqdB gene for SQDG synthesis disrupted can grow with external supplementation of SQDG. However, upon removal of SQDG from the medium, its growth is retarded, with a decrease in the cellular content of SQDG throughout cell division, and finally ceases. Concomitantly with the decrease in SQDG, the maximal activity of photosynthesis at high-light intensity is repressed by 40%. Findings We investigated effects of SQDG-defect on physiological aspects in Synechocystis with the use of SD1. SD1 cells defective in SQDG exhibited normal photosynthesis at low-light intensity as on culturing. Meanwhile, SD1 cells defective in SQDG were impaired in light-activated heterotrophic growth as well as in photoautotrophic growth. Flow cytometric analysis of the photoautotrophically growing cells gave similar cell size histograms for the wild type and SD1 supplemented with SQDG. However, the profile of SD1 defective in SQDG changed such that large part of the cell population was increased in size. Of particular interest was the microscopic observation that the mitotic index, i.e., population of dumbbell-like cells with a septum, increased from 14 to 29% in the SD1 culture without SQDG. Flow cytometric analysis also showed that the enlarged cells of SD1 defective in SQDG contained high levels of Chl, however, the DNA content was low. Conclusions Our experiments strongly support the idea that photosynthesis is not the limiting factor for the growth of SD1 defective in SQDG, and that SQDG is responsible for some physiologically fundamental process common to both photoautotrophic and light-activated heterotrophic growth. Our findings suggest that the SQDG-defect allows construction of the photosynthetic machinery at an

  14. Detection of short repeated genomic sequences on metaphase chromosomes using padlock probes and target primed rolling circle DNA synthesis

    Directory of Open Access Journals (Sweden)

    Stougaard Magnus


    Full Text Available Abstract Background In situ detection of short sequence elements in genomic DNA requires short probes with high molecular resolution and powerful specific signal amplification. Padlock probes can differentiate single base variations. Ligated padlock probes can be amplified in situ by rolling circle DNA synthesis and detected by fluorescence microscopy, thus enhancing PRINS type reactions, where localized DNA synthesis reports on the position of hybridization targets, to potentially reveal the binding of single oligonucleotide-size probe molecules. Such a system has been presented for the detection of mitochondrial DNA in fixed cells, whereas attempts to apply rolling circle detection to metaphase chromosomes have previously failed, according to the literature. Methods Synchronized cultured cells were fixed with methanol/acetic acid to prepare chromosome spreads in teflon-coated diagnostic well-slides. Apart from the slide format and the chromosome spreading everything was done essentially according to standard protocols. Hybridization targets were detected in situ with padlock probes, which were ligated and amplified using target primed rolling circle DNA synthesis, and detected by fluorescence labeling. Results An optimized protocol for the spreading of condensed metaphase chromosomes in teflon-coated diagnostic well-slides was developed. Applying this protocol we generated specimens for target primed rolling circle DNA synthesis of padlock probes recognizing a 40 nucleotide sequence in the male specific repetitive satellite I sequence (DYZ1 on the Y-chromosome and a 32 nucleotide sequence in the repetitive kringle IV domain in the apolipoprotein(a gene positioned on the long arm of chromosome 6. These targets were detected with good efficiency, but the efficiency on other target sites was unsatisfactory. Conclusion Our aim was to test the applicability of the method used on mitochondrial DNA to the analysis of nuclear genomes, in particular as

  15. Small targeted cytotoxics: current state and promises from DNA-encoded chemical libraries. (United States)

    Krall, Nikolaus; Scheuermann, Jörg; Neri, Dario


    The targeted delivery of potent cytotoxic agents has emerged as a promising strategy for the treatment of cancer and other serious conditions. Traditionally, antibodies against markers of disease have been used as drug-delivery vehicles. More recently, lower molecular weight ligands have been proposed for the generation of a novel class of targeted cytotoxics with improved properties. Advances in this field crucially rely on efficient methods for the identification and optimization of organic molecules capable of high-affinity binding and selective recognition of target proteins. The advent of DNA-encoded chemical libraries allows the construction and screening of compound collections of unprecedented size. In this Review, we survey developments in the field of small ligand-based targeted cytotoxics and show how innovative library technologies will help develop the drugs of the future.

  16. Effects of Pulsed Electric Fields on DNA Synthesis in an Osteoblast-Like Cell Line (UMR-106)

    Institute of Scientific and Technical Information of China (English)


    The study of the bioeffects of electromagnetic fields (EMFs) is an important national task in biological physics. Using EMFs to treat bone diseases involves electrical technology, biology, and medicine. But the effects of EMFs are still controversial and the mechanisms are not yet clear. Therefore, more effect is needed to detect the effects at the cellular and molecular levels. This paper investigates the effects of low-energy, low-frequency pulsed capacitively coupled electric fields (PCCEFs) on DNA synthesis in UMR-106 osteoblast-like cells. The equipment can generate 25250Hz frequency, 0300V amplitude and 0.2ms pulse width signal. DNA synthesis is judged by the uptake of 3H-thymidine (3H-TdR). The results showed that the response of UMR-106 cells to electric field exposure are characterized by: (a) a frequency window for increased DNA synthesis, with a peak near 125Hz; (b) decreased synthesis with increasing electric intensity with repression at 100V/cm and 25Hz.

  17. DNA polymerase delta, RFC and PCNA are required for repair synthesis of large looped heteroduplexes in Saccharomyces cerevisiae. (United States)

    Corrette-Bennett, Stephanie E; Borgeson, Claudia; Sommer, Debbie; Burgers, Peter M J; Lahue, Robert S


    Small looped mispairs are corrected by DNA mismatch repair (MMR). In addition, a distinct process called large loop repair (LLR) corrects loops up to several hundred nucleotides in extracts of bacteria, yeast or human cells. Although LLR activity can be readily demonstrated, there has been little progress in identifying its protein components. This study identified some of the yeast proteins responsible for DNA repair synthesis during LLR. Polyclonal antisera to either Pol31 or Pol32 subunits of polymerase delta efficiently inhibited LLR in extracts by blocking repair just prior to gap filling. Gap filling was inhibited regardless of whether the loop was retained or removed. These experiments suggest polymerase delta is uniquely required in yeast extracts for LLR-associated synthesis. Similar results were obtained with antisera to the clamp loader proteins Rfc3 and Rfc4, and to PCNA, i.e. LLR was inhibited just prior to gap filling for both loop removal and loop retention. Thus PCNA and RFC seem to act in LLR only during repair synthesis, in contrast to their roles at both pre- and post-excision steps of MMR. These biochemical experiments support the idea that yeast polymerase delta, RFC and PCNA are required for large loop DNA repair synthesis.

  18. Protein-DNA chimeras: synthesis of two-arm chimeras and non-mechanical effects of the DNA spring

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yong; Wang, Andrew; Qu Hao; Zocchi, Giovanni, E-mail: zocchi@physics.ucla.ed [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095-1547 (United States)


    DNA molecular springs have recently been used to control the activity of enzymes and ribozymes. In this approach, the mechanical stress exerted by the molecular spring alters the enzyme's conformation and thus the enzymatic activity. Here we describe a method alternative to our previous one to attach DNA molecular springs to proteins, where two separate DNA 'arms' are coupled to the protein and subsequently ligated. We report certain non-mechanical effects associated with the DNA spring observed in some chimeras with specific DNA sequences and the nucleotide binding enzyme guanylate kinase. If a ssDNA 'arm' is attached to the protein by one end only, we find that in some cases (depending on the DNA sequence and attachment point on the protein's surface) the unhybridized DNA arm inhibits the enzyme, while hybridization of the DNA arm leads to an apparent activation of the enzyme. One interpretation is that, in these cases, hybridization of the DNA arm removes it from the vicinity of the active site of the enzyme. We show how mechanical and non-mechanical effects of the DNA spring can be distinguished. This is important if one wants to use the protein-DNA chimeras to quantitatively study the response of the enzyme to mechanical perturbations.

  19. Synthesis, characterization, anti-microbial, DNA binding and cleavage studies of Schiff base metal complexes

    Directory of Open Access Journals (Sweden)

    Poomalai Jayaseelan


    Full Text Available A novel Schiff base ligand has been prepared by the condensation between butanedione monoxime with 3,3′-diaminobenzidine. The ligand and metal complexes have been characterized by elemental analysis, UV, IR, 1H NMR, conductivity measurements, EPR and magnetic studies. The molar conductance studies of Cu(II, Ni(II, Co(II and Mn(II complexes showed non-electrolyte in nature. The ligand acts as dibasic with two N4-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The spectroscopic data of metal complexes indicated that the metal ions are complexed with azomethine nitrogen and oxyimino nitrogen atoms. The binuclear metal complexes exhibit octahedral arrangements. DNA binding properties of copper(II metal complex have been investigated by electronic absorption spectroscopy. Results suggest that the copper(II complex bind to DNA via an intercalation binding mode. The nucleolytic cleavage activities of the ligand and their complexes were assayed on CT-DNA using gel electrophoresis in the presence and absence of H2O2. The ligand showed increased nuclease activity when administered as copper complex and copper(II complex behave as efficient chemical nucleases with hydrogen peroxide activation. The anti-microbial activities and thermal studies have also been studied. In anti-microbial activity all complexes showed good anti-microbial activity higher than ligand against gram positive, gram negative bacteria and fungi.

  20. DNA aptamers for selective identification and separation of flame retardant chemicals. (United States)

    Kim, Un-Jung; Kim, Byoung Chan


    Polybrominated diphenyl ethers (PBDEs) are group of chemicals which are representative persistent organic pollutants (POPs) and used as brominated flame retardants for many consumer products. PBDEs were phased out since 2009 but are still frequently observed in various environmental matrices and human body. Here, we report ssDNA aptamers which bind to BDE47, one of the PBDE congeners commonly found in various environmental matrices, and show affinity to other major tri-to hepta- BDE congeners. The PBDE specific aptamers were isolated from random library of ssDNA using Mag-SELEX. Two out of 15 sequences, based on their alignment and hairpin loop structures, were chosen to determine dissociation constant with BDE47 and showed from picomolar to nanomolar affinities (200 pM and 1.53 nM). The aptamers displayed high selectivity to the original target, BDE47, and implying general specificity to PBDE backbone with varying affinities to other congeners. Further, we showed that the use of two aptamers together could enhance the separation efficiency of BDE47 and other BDE congeners when dissolved in a solvent compared to use of single aptamer. These aptamers are expected to provide a tool for preliminary screening or quick separation of PBDEs in environmental samples prior to trace quantitative analysis.

  1. Gammaherpesvirus gene expression and DNA synthesis are facilitated by viral protein kinase and histone variant H2AX. (United States)

    Mounce, Bryan C; Tsan, Fei Chin; Droit, Lindsay; Kohler, Sarah; Reitsma, Justin M; Cirillo, Lisa A; Tarakanova, Vera L


    Gammaherpesvirus protein kinases are an attractive therapeutic target as they support lytic replication and latency. Via an unknown mechanism these kinases enhance expression of select viral genes and DNA synthesis. Importantly, the kinase phenotypes have not been examined in primary cell types. Mouse gammaherpesvirus-68 (MHV68) protein kinase orf36 activates the DNA damage response (DDR) and facilitates lytic replication in primary macrophages. Significantly, H2AX, a DDR component and putative orf36 substrate, enhances MHV68 replication. Here we report that orf36 facilitated expression of RTA, an immediate early MHV68 gene, and DNA synthesis during de novo infection of primary macrophages. H2AX expression supported efficient RTA transcription and phosphorylated H2AX associated with RTA promoter. Furthermore, viral DNA synthesis was attenuated in H2AX-deficient macrophages, suggesting that the DDR system was exploited throughout the replication cycle. The interactions between a cancer-associated gammaherpesvirus and host tumor suppressor system have important implications for the pathogenesis of gammaherpesvirus infection.

  2. Chemical shifts assignments of the archaeal MC1 protein and a strongly bent 15 base pairs DNA duplex in complex. (United States)

    Loth, Karine; Landon, Céline; Paquet, Françoise


    MC1 is the most abundant architectural protein present in Methanosarcina thermophila CHTI55 in laboratory growth conditions and is structurally unrelated to other DNA-binding proteins. MC1 functions are to shape and to protect DNA against thermal denaturation by binding to it. Therefore, MC1 has a strong affinity for any double-stranded DNA. However, it recognizes and preferentially binds to bent DNA, such as four-way junctions and negatively supercoiled DNA minicircles. Combining NMR data, electron microscopy data, biochemistry, molecular modelisation and docking approaches, we proposed recently a new type of DNA/protein complex, in which the monomeric protein MC1 binds on the concave side of a strongly bent 15 base pairs DNA. We present here the NMR chemical shifts assignments of each partner in the complex, (1)H (15)N MC1 protein and (1)H (13)C (15)N bent duplex DNA, as first step towards the first experimental 3D structure of this new type of DNA/protein complex.

  3. Synthesis and DNA-binding properties of novel DNA cyclo-intercalators containing purine-glucuronic acid hybrids. (United States)

    Zhang, Renshuai; Chen, Shaopeng; Wang, Xueting; Yu, Rilei; Li, Mingjing; Ren, Sumei; Jiang, Tao


    Novel DNA cyclo-intercalators, which incorporated two intercalator subunits linked by two bridges, were synthesized. Binding of the compounds to calf-thymus DNA was studied by fluorescence spectroscopy, and docking simulations were used to predict the binding modes of these cyclic compounds. The spectral data demonstrated that all of these compounds can interact with CT-DNA. The sugar moiety played an important role in the process of binding between the intercalators containing glucuronic acid and DNA. The length and flexibility of the connecting bridges affected the binding affinity of the resultant cyclo-intercalators. Docking simulations showed that compounds 7 and 8 interact with DNA as mono-intercalators.

  4. Poly(ADP-ribose)--a unique natural polymer structural features, biological role and approaches to the chemical synthesis. (United States)

    Drenichev, Mikhail S; Mikhailov, Sergey N


    Poly(ADP-ribose) (PAR) is a natural polymer, taking part in numerous important cellular processes. Several enzymes are involved in biosynthesis and degradation of PAR. One of them, poly(ADP-ribose)polymerase-1 (PARP-1) is considered to be a perspective target for the design of new drugs, affecting PAR metabolism. The structure of PAR was established by enzymatic hydrolysis and further analysis of the products, but total chemical synthesis of PAR hasn't been described yet. Several approaches have been developed on the way to chemical synthesis of this unique biopolymer.

  5. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays (United States)

    Ferguson, Jane A.


    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  6. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines. (United States)

    Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R


    Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis.

  7. Chemical characterization and DNA tracking of Sardinian botargo by Mugil cephalus from different geographical origins. (United States)

    Barra, Andrea; Garau, Vincenzo Luigi; Dessi, Sandro; Sarais, Giorgia; Cereti, Elisabetta; Arlorio, Marco; Coisson, Jean Daniel; Cabras, Paolo


    The chemical composition of the Sardinian botargo by Mugil cephalus from different geographical origins was investigated. Fat ( approximately 20%), proteins ( approximately 50%), moisture ( approximately 22%), and salt ( approximately 7%) were measured in ground (G) and whole (W) commercial products. Among the nutritional compounds, omega-3 fatty acids were approximately 8%, squalene was approximately 15 mg/100 g, vitamin E was approximately 8.5 mg/kg, and cholesterol was approximately 300 mg/100 g, on average in both products. Antioxidant properties, assessed by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) test and expressed as Trolox equivalent antioxidant capacity (TEAC), showed quite good activity in extracted oil (0.8-1.1 mmol of Tolox/L). Major constituents in the samples varied noticeably, but only few statistical differences were evidenced between G or W products or between samples from different origins. Principal component analysis (PCA) of random amplified polymorphic DNA (RAPD) and proteins, coupled with both, did not differentiate samples from different origins. On the basis of our results, chemical and molecular data exclude the differentiation of samples from diverse origins.

  8. Ultraviolet light photobiology of the protozoan Tetrahymena pyriformis and chemical reactivation of DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, J.S.


    The tunable dye laser was developed in order to perform UV-B and UV-C (254-320 nm) action spectra studies on several different organisms. Using the laser, action spectra studies have been performed for Escherichia coli, Saccharomyces, Chlamydomonas, Caenorhabditis elegans, Paramecium, and Tetrahymena pyriformis. Studies generally indicate increasing LD{sub 50} values with increasing wavelength. Two notable findings were made: (1) The action spectra does not follow the DNA absorption spectra at 280, 290 and 295 nm; (2) The repair competent/repair defective sensitization factor does not remain constant throughout the wavelength region. In addition it was found that the repair defective strain of E. coli, Bs-1, showed an increase in survival with increasing UV irradiation, at certain dose levels. Further experiments were designed to better characterize the reactivation. Tetrahymena were exposed to UV-C and reactivated with methyl methanesulfonate (MMS) and 4-nitro quinoline oxide (4-NQO). In both cases survival was seen to increase after chemical exposure. Likewise, UV-C was found to reactivate chemical damage (MMS).

  9. DNA damage and autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely [Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583 (United States); Panayiotidis, Mihalis I. [School of Community Health Sciences, University of Nevada, Reno, NV 89557 (United States); Franco, Rodrigo, E-mail: [Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583 (United States)


    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  10. Integrated 3D-printed reactionware for chemical synthesis and analysis (United States)

    Symes, Mark D.; Kitson, Philip J.; Yan, Jun; Richmond, Craig J.; Cooper, Geoffrey J. T.; Bowman, Richard W.; Vilbrandt, Turlif; Cronin, Leroy


    Three-dimensional (3D) printing has the potential to transform science and technology by creating bespoke, low-cost appliances that previously required dedicated facilities to make. An attractive, but unexplored, application is to use a 3D printer to initiate chemical reactions by printing the reagents directly into a 3D reactionware matrix, and so put reactionware design, construction and operation under digital control. Here, using a low-cost 3D printer and open-source design software we produced reactionware for organic and inorganic synthesis, which included printed-in catalysts and other architectures with printed-in components for electrochemical and spectroscopic analysis. This enabled reactions to be monitored in situ so that different reactionware architectures could be screened for their efficacy for a given process, with a digital feedback mechanism for device optimization. Furthermore, solely by modifying reactionware architecture, reaction outcomes can be altered. Taken together, this approach constitutes a relatively cheap, automated and reconfigurable chemical discovery platform that makes techniques from chemical engineering accessible to typical synthetic laboratories.

  11. Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mantovan, R., E-mail:; Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Chikoidze, E.; Dumont, Y. [GEMaC, Université de Versailles St. Quentin en Yvelines-CNRS, Versailles (France); Fanciulli, M. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Milano (Italy)


    R-Fe-O (R = rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er{sub 2}O{sub 3} and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO{sub 3} and ErFe{sub 2}O{sub 4} phases develop following subsequent thermal annealing processes at 850 °C in air and N{sub 2}. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

  12. Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition (United States)

    Mantovan, R.; Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G.; Chikoidze, E.; Dumont, Y.; Fanciulli, M.


    R-Fe-O (R = rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er2O3 and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO3 and ErFe2O4 phases develop following subsequent thermal annealing processes at 850 °C in air and N2. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

  13. Phosphorylation of the PCNA binding domain of the large subunit of replication factor C by Ca2+/calmodulin-dependent protein kinase II inhibits DNA synthesis

    DEFF Research Database (Denmark)

    Maga, G; Mossi, R; Fischer, R


    that the PCNA binding domain is phosphorylated by the Ca2+/calmodulin-dependent protein kinase II (CaMKII), an enzyme required for cell cycle progression in eukaryotic cells. The DNA binding domain, on the other hand, is not phosphorylated. Phosphorylation by CaMKII reduces the binding of PCNA to RF......Replication factor C (RF-C) is a heteropentameric protein essential for DNA replication and DNA repair. It is a molecular matchmaker required for loading of the proliferating cell nuclear antigen (PCNA) sliding clamp onto double-strand DNA and for PCNA-dependent DNA synthesis by DNA polymerases...

  14. Post-irradiation chemical processing of DNA damage generates double-strand breaks in cells already engaged in repair (United States)

    Singh, Satyendra K.; Wang, Minli; Staudt, Christian; Iliakis, George


    In cells exposed to ionizing radiation (IR), double-strand breaks (DSBs) form within clustered-damage sites from lesions disrupting the DNA sugar–phosphate backbone. It is commonly assumed that these DSBs form promptly and are immediately detected and processed by the cellular DNA damage response (DDR) apparatus. This assumption is questioned by the observation that after irradiation of naked DNA, a fraction of DSBs forms minutes to hours after exposure as a result of temperature dependent, chemical processing of labile sugar lesions. Excess DSBs also form when IR-exposed cells are processed at 50°C, but have been hitherto considered method-related artifact. Thus, it remains unknown whether DSBs actually develop in cells after IR exposure from chemically labile damage. Here, we show that irradiation of ‘naked’ or chromatin-organized mammalian DNA produces lesions, which evolve to DSBs and add to those promptly induced, after 8–24 h in vitro incubation at 37°C or 50°C. The conversion is more efficient in chromatin-associated DNA, completed within 1 h in cells and delayed in a reducing environment. We conclude that IR generates sugar lesions within clustered-damage sites contributing to DSB formation only after chemical processing, which occurs efficiently at 37°C. This subset of delayed DSBs may challenge DDR, may affect the perceived repair kinetics and requires further characterization. PMID:21745815

  15. Electric Current Activated Combustion Synthesis and Chemical Ovens Under Terrestrial and Reduced Gravity Conditions (United States)

    Unuvar, C.; Fredrick, D.; Anselmi-Tamburini, U.; Manerbino, A.; Guigne, J. Y.; Munir, Z. A.; Shaw, B. D.


    Combustion synthesis (CS) generally involves mixing reactants together (e.g., metal powders) and igniting the mixture. Typically, a reaction wave will pass through the sample. In field activated combustion synthesis (FACS), the addition of an electric field has a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product as well as capillary flow, mass-transport in porous media, and Marangoni flows, which are influenced by gravity. The objective is to understand the role of an electric field in CS reactions under conditions where gravity-related effects are suppressed or altered. The systems being studied are Ti+Al and Ti+3Al. Two different ignition orientations have been used to observe effects of gravity when one of the reactants becomes molten. This consequentially influences the position and concentration of the electric current, which in turn influences the entire process. Experiments have also been performed in microgravity conditions. This process has been named Microgravity Field Activated Combustion Synthesis (MFACS). Effects of gravity have been demonstrated, where the reaction wave temperature and velocity demonstrate considerable differences besides the changes of combustion mechanisms with the different high currents applied. Also the threshold for the formation of a stable reaction wave is increased under zero gravity conditions. Electric current was also utilized with a chemical oven technique, where inserts of aluminum with minute amounts of tungsten and tantalum were used to allow observation of effects of settling of the higher density solid particles in liquid aluminum at the present temperature profile and wave velocity of the reaction.

  16. Wet chemical synthesis of chitosan hydrogel-hydroxyapatite composite membranes for tissue engineering applications. (United States)

    Madhumathi, K; Shalumon, K T; Rani, V V Divya; Tamura, H; Furuike, T; Selvamurugan, N; Nair, S V; Jayakumar, R


    Chitosan, a deacetylated derivative of chitin is a commonly studied biomaterial for tissue-engineering applications due to its biocompatibility, biodegradability, low toxicity, antibacterial activity, wound healing ability and haemostatic properties. However, chitosan has poor mechanical strength due to which its applications in orthopedics are limited. Hydroxyapatite (HAp) is a natural inorganic component of bone and teeth and has mechanical strength and osteoconductive property. In this work, HAp was deposited on the surface of chitosan hydrogel membranes by a wet chemical synthesis method by alternatively soaking the membranes in CaCl(2) (pH 7.4) and Na(2)HPO(4) solutions for different time intervals. These chitosan hydrogel-HAp membranes were characterized using SEM, AFM, EDS, FT-IR and XRD analyses. MTT assay was done to evaluate the biocompatibility of these membranes using MG-63 osteosarcoma cells. The biocompatibility studies suggest that chitosan hydrogel-HAp composite membranes can be useful for tissue-engineering applications.

  17. Synthesis and chemical reactions of the steroidal hormone 17α-methyltestosterone. (United States)

    El-Desoky, El-Sayed Ibrahim; Reyad, Mahmoud; Afsah, Elsayed Mohammed; Dawidar, Abdel-Aziz Mahmoud


    Structural modifications of natural products with complex structures like steroids require great synthetic effort. A review of literature is presented on the chemistry of the steroidal hormone 17α-methyltestosterone that is approved by Food and Drug Administration (FDA) in the United States as an androgen for estrogen-androgen hormone replacement therapy treatment. The analog also offers special possibilities for the prevention/treatment of hormone-sensitive cancers. The testosterone skeleton has important functionalities in the molecule that can act as a carbonyl component, an active methylene compound, α,β-unsaturated enone and tertiary hydroxyl group in various chemical reactions to access stereoisomeric steroidal compounds with potent activity. In addition, microbiological methods of synthesis and transformation of this hormone are presented.

  18. [Emission characteristics and hazard assessment analysis of volatile organic compounds from chemical synthesis pharmaceutical industry]. (United States)

    Li, Yan; Wang, Zhe-Ming; Song, Shuang; Xu, Zhi-Rong; Xu, Ming-Zhu; Xu, Wei-Li


    In this study, volatile organic compounds (VOCs) released from chemical synthesis pharmaceutical industry in Taizhou, Zhejiang province were analyzed quantitatively and qualitatively. The total volatile organic compounds (TVOCs) was in the range of 14.9-308.6 mg · m(-3). Evaluation models of ozone formation potentials (OFP) and health risk assessment were adopted to preliminarily assess the environmental impact and health risk of VOCs. The results showed that the values of OFP of VOCs were in the range of 3.1-315.1 mg · m(-3), based on the maximum incremental reactivity, the main principal contribution was toluene, tetrahydrofuran (THF), acetic ether etc. The non-carcinogenic risk and the carcinogen risk fell in the ranges of 9.48 x 10(-7)-4.98 x 10(-4) a(-1) and 3.17 x 10(-5)- 6.33 x 10(-3). The principal contribution of VOCs was benzene, formaldehyde and methylene chloride.

  19. Chemical Synthesis and Functionalization of Cobalt Ferrite Nanoparticles with Oleic Acid and Citric Acid Encapsulation

    Directory of Open Access Journals (Sweden)

    Watawe Shrikant C.


    Full Text Available The functionalized nanoparticles have now a prime importance because of their wide ranging biomedical applications. The particles having size range 30nm-150nm are useful for cell wall interaction specifically the pinocytosis which takes place in all types of cells. The Cobalt ferrite nanoparticles have been synthesized using chemical co- precipitation route and the pH and temperature of the synthesis is controlled to obtain the optimum sized particles. The coating of Sodium Oleate and Citric acid was carried out in aqueous medium at room temperature. The characterization of coated and uncoated particles has been carried out using XRD and IR which confirm the ferrite structure formation. The TGA-DTA analysis shows the coating of magnetic particles. The SEM micrographs reveal the particle size, before and after coating to be in the range of 45 to 90 nm. The saturation magnetization is found to be 16.8 emu/gm.

  20. Copper Nanoparticles Mediated by Chitosan: Synthesis and Characterization via Chemical Methods

    Directory of Open Access Journals (Sweden)

    Muhammad Sani Usman


    Full Text Available Herein we report a synthesis of copper nanoparticles (Cu-NPs in chitosan (Cts media via a chemical reaction method. The nanoparticles were synthesized in an aqueous solution in the presence of Cts as stabilizer and CuSO4·5H2O precursor. The synthesis proceeded with addition of NaOH as pH moderator, ascorbic acid as antioxidant and hydrazine as the reducing agent. The characterization of the prepared NPs was done using ultraviolet-visible spectroscopy, which showed a 593 nm copper band. The Field Emission Scanning Electron Microscope (FESEM images were also observed, and found to be in agreement with the UV-Vis result, confirming the formation of metallic Cu-NPs. The mean size of the Cu-NPs was estimated to be in the range of 35–75 nm using X-ray diffraction. XRD was also used in analysis of the crystal structure of the NPs. The interaction between the chitosan and the synthesized NPs was studied using Fourier transform infrared (FT-IR spectroscopy, which showed the capping of the NPs by Cts.

  1. Bio-electrochemical synthesis of commodity chemicals by autotrophic acetogens utilizing CO2 for environmental remediation. (United States)

    Jabeen, Gugan; Farooq, Robina


    Bio-electrochemical synthesis (BES) is a technique in which electro-autotrophic bacteria such as Clostridium ljungdahlii utilize electric currents as an electron source from the cathode to reduce CO2 to extracellular, multicarbon, exquisite products through autotrophic conversion. The BES of volatile fatty acids and alcohols directly from CO2 is a sustainable alternative for non-renewable, petroleum-based polymer production. This conversion of CO2 implies reduction of greenhouse gas emissions. The synthesis of heptanoic acid, heptanol, hexanoic acid and hexanol, for the first time, by Clostridium ljungdahlii was a remarkable achievement of BES. In our study, these microorganisms were cultivated on the cathode of a bio-electrochemical cell at -400 mV by a DC power supply at 37 degree Centrigrade, pH 6.8, and was studied for both batch and continuous systems. Pre-enrichment of bio-cathode enhanced the electroactivity of cells and resulted in maximizing extracellular products in less time. The main aim of the research was to investigate the impact of low-cost substrate CO2, and the longer cathode recovery range was due to bacterial reduction of CO2 to multicarbon chemical commodities with electrons driven from the cathode. Reactor design was simplified for cost-effectiveness and to enhance energy efficiencies. The Columbic recovery of ethanoic acid, ethanol, ethyl butyrate, hexanoic acid, heptanoic acid and hexanol being in excess of 80 percent proved that BES was a remarkable technology.

  2. Survey of marine natural product structure revisions: a synergy of spectroscopy and chemical synthesis. (United States)

    Suyama, Takashi L; Gerwick, William H; McPhail, Kerry L


    The structural assignment of new natural product molecules supports research in a multitude of disciplines that may lead to new therapeutic agents and or new understanding of disease biology. However, reports of numerous structural revisions, even of recently elucidated natural products, inspired the present survey of techniques used in structural misassignments and subsequent revisions in the context of constitutional or configurational errors. Given the comparatively recent development of marine natural products chemistry, coincident with modern spectroscopy, it is of interest to consider the relative roles of spectroscopy and chemical synthesis in the structure elucidation and revision of those marine natural products that were initially misassigned. Thus, a tabulated review of all marine natural product structural revisions from 2005 to 2010 is organized according to structural motif revised. Misassignments of constitution are more frequent than perhaps anticipated by reliance on HMBC and other advanced NMR experiments, especially when considering the full complement of all natural products. However, these techniques also feature prominently in structural revisions, specifically of marine natural products. Nevertheless, as is the case for revision of relative and absolute configuration, total synthesis is a proven partner for marine, as well as terrestrial, natural products structure elucidation. It also becomes apparent that considerable 'detective work' remains in structure elucidation, in spite of the spectacular advances in spectroscopic techniques.

  3. Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization (United States)

    Chaki, S. H.; Malek, Tasmira J.; Chaudhary, M. D.; Tailor, J. P.; Deshpande, M. P.


    The authors report the synthesis of Fe3O4 nanoparticles by wet chemical reduction technique at ambient temperature and its characterization. Ferric chloride hexa-hydrate (FeCl3 · 6H2O) and sodium boro-hydrate (NaBH4) were used for synthesis of Fe3O4 nanoparticles at ambient temperature. The elemental composition of the synthesized Fe3O4 nanoparticles was determined by energy dispersive analysis of x-rays technique. The x-ray diffraction (XRD) technique was used for structural characterization of the nanoparticles. The crystallite size of the nanoparticles was determined using XRD data employing Scherrer’s formula and Hall-Williamson’s plot. Surface morphology of as-synthesized Fe3O4 nanoparticles was studied by scanning electron microscopy. High resolution transmission electron microscopy analysis of the as-synthesized Fe3O4 nanoparticles showed narrow range of particles size distribution. The optical absorption of the synthesized Fe3O4 nanoparticles was studied by UV-vis-NIR spectroscopy. The as-synthesized nanoparticles were analyzed by Fourier transform infrared spectroscopy technique for absorption band study in the infrared region. The magnetic properties of the as-synthesized Fe3O4 nanoparticles were evaluated by vibrating sample magnetometer technique. The thermal stability of the as-synthesized Fe3O4 nanoparticles was studied by thermogravimetric technique. The obtained results are elaborated and discussed in details in this paper.

  4. Boundary layer chemical vapour synthesis of self-organised ferromagnetically filled radial-carbon-nanotube structures. (United States)

    Boi, Filippo S; Wilson, Rory M; Mountjoy, Gavin; Ibrar, Muhammad; Baxendale, Mark


    Boundary layer chemical vapour synthesis is a new technique that exploits random fluctuations in the viscous boundary layer between a laminar flow of pyrolysed metallocene vapour and a rough substrate to yield ferromagnetically filled radial-carbon-nanotube structures departing from a core agglomeration of spherical nanocrystals individually encapsulated by graphitic shells. The fluctuations create the thermodynamic conditions for the formation of the central agglomeration in the vapour which subsequently defines the spherically symmetric diffusion gradient that initiates the radial growth. The radial growth is driven by the supply of vapour feedstock by local diffusion gradients created by endothermic graphitic-carbon formation at the vapour-facing tips of the individual nanotubes and is halted by contact with the isothermal substrate. The radial structures are the dominant product and the reaction conditions are self-sustaining. Ferrocene pyrolysis yields three common components in the nanowire encapsulated by multiwall carbon nanotubes, Fe3C, α-Fe, and γ-Fe. Magnetic tuning in this system can be achieved through the magnetocrystalline and shape anisotropies of the encapsulated nanowire. Here we demonstrate proof that alloying of the encapsulated nanowire is an additional approach to tuning of the magnetic properties of these structures by synthesis of radial-carbon-nanotube structures with γ-FeNi encapsulated nanowires.

  5. Bio-electrochemical synthesis of commodity chemicals by autotrophic acetogens utilizing CO_{2} for environmental remediation

    Indian Academy of Sciences (India)



    Bio-electrochemical synthesis (BES) is a technique in which electro-autotrophic bacteria such as Clostridiumljungdahlii utilize electric currents as an electron source from the cathode to reduce CO_{2} to extracellular, multicarbon,exquisite products through autotrophic conversion. The BES of volatile fatty acids and alcohols directly fromCO_{2} is a sustainable alternative for non-renewable, petroleum-based polymer production. This conversion ofCO_{2} implies reduction of greenhouse gas emissions. The synthesis of heptanoic acid, heptanol, hexanoic acidand hexanol, for the first time, by Clostridium ljungdahlii was a remarkable achievement of BES. In ourstudy, these microorganisms were cultivated on the cathode of a bio-electrochemical cell at −400 mV by aDC power supply at 37°C, pH 6.8, and was studied for both batch and continuous systems. Pre-enrichment ofbio-cathode enhanced the electroactivity of cells and resulted in maximizing extracellular products in lesstime. The main aim of the research was to investigate the impact of low-cost substrate CO_{2}, and the longercathode recovery range was due to bacterial reduction of CO_{2} to multicarbon chemical commodities withelectrons driven from the cathode. Reactor design was simplified for cost-effectiveness and to enhance energyefficiencies. The Columbic recovery of ethanoic acid, ethanol, ethyl butyrate, hexanoic acid, heptanoic acidand hexanol being in excess of 80% proved that BES was a remarkable technology.

  6. Synthesis of high performance ceramic fibers by chemical vapor deposition for advanced metallics reinforcing (United States)

    Revankar, Vithal; Hlavacek, Vladimir


    The chemical vapor deposition (CVD) synthesis of fibers capable of effectively reinforcing intermetallic matrices at elevated temperatures which can be used for potential applications in high temperature composite materials is described. This process was used due to its advantage over other fiber synthesis processes. It is extremely important to produce these fibers with good reproducible and controlled growth rates. However, the complex interplay of mass and energy transfer, blended with the fluid dynamics makes this a formidable task. The design and development of CVD reactor assembly and system to synthesize TiB2, CrB, B4C, and TiC fibers was performed. Residual thermal analysis for estimating stresses arising form thermal expansion mismatch were determined. Various techniques to improve the mechanical properties were also performed. Various techniques for improving the fiber properties were elaborated. The crystal structure and its orientation for TiB2 fiber is discussed. An overall view of the CVD process to develop CrB2, TiB2, and other high performance ceramic fibers is presented.

  7. Modified chemical synthesis of porous α-Sm{sub 2}S{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumbhar, V.S.; Jagadale, A.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur, (M.S.) 416004 (India); Gaikwad, N.S. [Rayat Shikshan Sanstha, Satara, (M.S.) 415 001 (India); Lokhande, C.D., E-mail: [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur, (M.S.) 416004 (India)


    Highlights: • A novel chemical route to prepare α-Sm{sub 2}S{sub 3} thin films. • A porous honeycomb like morphology of the α-Sm{sub 2}S{sub 3} thin film. • An application of α-Sm{sub 2}S{sub 3} thin film toward its supercapacitive behaviour. - Abstract: The paper reports synthesis of porous α-Sm{sub 2}S{sub 3} thin films using modified chemical synthesis, also known as successive ionic layer adsorption and reaction (SILAR) method. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), wettability and ultraviolet–visible spectroscopy (UV–vis) techniques are used for the study of structural, elemental, morphological and optical properties of α-Sm{sub 2}S{sub 3} films. An orthorhombic crystal structure of α-Sm{sub 2}S{sub 3} is resulted from XRD study. The SEM and AFM observations showed highly porous α-Sm{sub 2}S{sub 3} film surface. An optical band gap of 2.50 eV is estimated from optical absorption spectrum. The porous α-Sm{sub 2}S{sub 3} thin film tuned for supercapacitive behaviour using cyclic voltammetry and galvanostatic charge discharge showed a specific capacitance and energy density of 294 Fg{sup –1} and 48.9 kW kg{sup –1}, respectively in 1 M LiClO{sub 4}–propylene carbonate electrolyte.

  8. Synthesis of carbon nanotubes using the cobalt nanocatalyst by thermal chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Madani, S.S. [Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Zare, K. [Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Department of Chemistry, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Ghoranneviss, M. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Salar Elahi, A., E-mail: [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)


    The three main synthesis methods of Carbon nanotubes (CNTs) are the arc discharge, the laser ablation and the chemical vapour deposition (CVD) with a special regard to the latter one. CNTs were produced on a silicon wafer by Thermal Chemical Vapor Deposition (TCVD) using acetylene as a carbon source, cobalt as a catalyst and ammonia as a reactive gas. The DC-sputtering system was used to prepare cobalt thin films on Si substrates. A series of experiments was carried out to investigate the effects of reaction temperature and deposition time on the synthesis of the nanotubes. The deposition time was selected as 15 and 25 min for all growth temperatures. Energy Dispersive X-ray (EDX) measurements were used to investigate the elemental composition of the Co nanocatalyst deposited on Si substrates. Atomic Force Microscopy (AFM) was used to characterize the surface topography of the Co nanocatalyst deposited on Si substrates. The as-grown CNTs were characterized under Field Emission Scanning Electron Microscopy (FESEM) to study the morphological properties of CNTs. Also, the grown CNTs have been investigated by High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. The results demonstrated that increasing the temperature leads to increasing the diameter of CNTs. The ideal reaction temperature was 850 °C and the deposition time was 15 min. - Graphical abstract: FESEM images of CNTs grown on the cobalt catalyst at growth temperatures of (a) 850 °C, (b) 900 °C, (c) 950 °C and (d) 1000 °C during the deposition time of 15 min. - Highlights: • Carbon nanotubes (CNTs) were produced on a silicon wafer by TCVD technique. • EDX and AFM were used to investigate the elemental composition and surface topography. • FESEM was used to study the morphological properties of CNTs. • The grown CNTs have been investigated by HRTEM and Raman spectroscopy.

  9. Synthesis of a Hoechst 32258 analogue amino acid building block for direct incorporation of a fluorescent, high-affinity DNA binding motif into peptides

    DEFF Research Database (Denmark)

    Behrens, C; Harrit, N; Nielsen, P E


    The synthesis of a new versatile "Hoechst 33258-like" Boc-protected amino acid building block for peptide synthesis is described. It is demonstrated that this new ligand is an effective mimic of Hoechst 33258 in terms of DNA affinity and sequence specificity. Furthermore, this minor groove binder...

  10. Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm. (United States)

    Gürler, H; Malama, E; Heppelmann, M; Calisici, O; Leiding, C; Kastelic, J P; Bollwein, H


    The objective was to examine if there are relationships between alterations in sperm viability, reactive oxygen species (ROS) synthesis, and DNA integrity induced by cryopreservation of bovine sperm. Four ejaculates were collected from each of six bulls. Each ejaculate was diluted and divided into two aliquots; one was incubated for 24 hours at 37 °C, and the other frozen, thawed, and incubated for 24 hours at 37 °C. Analyses of quality of sperm were performed after 0, 3, 6, 12, and 24 hours of incubation. Progressive motile sperm was determined with computer assisted sperm analysis. Percentages of plasma membrane- and acrosome-intact sperm, sperm with a high mitochondrial membrane potential, sperm showing a high degree of DNA fragmentation (%DFI), and their reactive oxygen species content were assessed with dichlorofluorescein-diacetate, dihydrorhodamine, diaminofluorescein diacetate, and mitochondrial superoxide indicator using flow cytometry. Although all other sperm parameters showed alterations (P  0.05, 0.91 ± 0.23) in nonfrozen sperm. Cryopreservation induced changes of all sperm parameters (P synthesis of H2O2 showed a similar exponential rise (P synthesis of H2O2 but not to sperm viability and synthesis of other reactive oxygen species.

  11. Chemical synthesis of a glycoprotein having an intact human complex-type sialyloligosaccharide under the Boc and Fmoc synthetic strategies. (United States)

    Yamamoto, Naoki; Tanabe, Yasutaka; Okamoto, Ryo; Dawson, Philip E; Kajihara, Yasuhiro


    The chemical synthesis of complex glycoproteins is an ongoing challenge in protein chemistry. We have examined the synthesis of a single glycoform of monocyte chemotactic protein-3 (MCP-3), a CC-chemokine that consists of 76 amino acids and one N-glycosylation site. A three-segment native chemical ligation strategy was employed using unprotected peptides and glycopeptide. Importantly, the synthesis required the development of methods for the generation of sialylglycopeptide-alphathioesters. For the sialylglycopeptide-alphathioester segment, we examined and successfully implemented approaches using Fmoc-SPPS and Boc-SPPS. To avoid use of hydrogen fluoride, the Boc approach utilized minimal side chain protection and direct thiolysis of the resin bound peptide. Using these strategies, we successfully synthesized a glycoprotein having an intact and homogeneous complex-type sialyloligosaccharide.

  12. N-Linked Glycosyl Auxiliary-Mediated Native Chemical Ligation on Aspartic Acid: Application towards N-Glycopeptide Synthesis. (United States)

    Chai, Hua; Le Mai Hoang, Kim; Vu, Minh Duy; Pasunooti, Kalyan; Liu, Chuan-Fa; Liu, Xue-Wei


    A practical approach towards N-glycopeptide synthesis using an auxiliary-mediated dual native chemical ligation (NCL) has been developed. The first NCL connects an N-linked glycosyl auxiliary to the thioester side chain of an N-terminal aspartate oligopeptide. This intermediate undergoes a second NCL with a C-terminal thioester oligopeptide. Mild cleavage provides the desired N-glycopeptide.

  13. [New biological active derivatives of indomethacin and acetylsalicylic acid. Synthesis, physico-chemical characterisation and structure validation]. (United States)

    Stan, Catalina; Stefanache, Alina; Dumitrache, M


    It is well known that niflumic acid glycinamide has a good antiinflammatory action useful in gum inflammatory diseases. The objective of this study was to obtain new glycinamides of acetylsalicylic acid and indomethacin, which could have a better antiinflammatory action than niflumic acid glycinamide. The study presents the synthesis, physico-chemical characterisation and structure validation of these glycinamides.

  14. Synthesis of Si/SiO2/ZnO nanoporous materials using chemical and electrochemical deposition techniques (United States)

    Dauletbekova, A. K.; Alzhanova, A. Ye.; Akilbekov, A. T.; Mashentseva, A. A.; Zdorovets, M. V.; Balabekov, K. N.


    The work represents the results of forming Zn-based nanoprecipitates in nanoporous amorphous silicon dioxide on silicon substrate by the template synthesis method. SEM and AFM images of the surface after chemical and electrochemical deposition of zinc were obtained. The analysis of photoluminescence of the precipitated samples resulted in the assumption of formation of nanoclusters of zinc oxide.

  15. Discovery of TNF inhibitors from a DNA-encoded chemical library based on diels-alder cycloaddition. (United States)

    Buller, Fabian; Zhang, Yixin; Scheuermann, Jörg; Schäfer, Juliane; Bühlmann, Peter; Neri, Dario


    DNA-encoded chemical libraries are promising tools for the discovery of ligands toward protein targets of pharmaceutical relevance. DNA-encoded small molecules can be enriched in affinity-based selections and their unique DNA "barcode" allows the amplification and identification by high-throughput sequencing. We describe selection experiments using a DNA-encoded 4000-compound library generated by Diels-Alder cycloadditions. High-throughput sequencing enabled the identification and relative quantification of library members before and after selection. Sequence enrichment profiles corresponding to the "bar-coded" library members were validated by affinity measurements of single compounds. We were able to affinity mature trypsin inhibitors and identify a series of albumin binders for the conjugation of pharmaceuticals. Furthermore, we discovered a ligand for the antiapoptotic Bcl-xL protein and a class of tumor necrosis factor (TNF) binders that completely inhibited TNF-mediated killing of L-M fibroblasts in vitro.

  16. Synthesis and investigation of the specific activity of the DNA-doxorubicin conjugates (United States)

    Kokorev, A. V.; Zaborovskiy, A. V.; Kotlyarov, A. A.; Balykova, L. A.; Malkina, M. A.; Kargina, I. V.; Gromova, E. V.; Medvezhonkov, V. Yu; Gurevich, K. G.; Shchukin, S. A.; Pyataev, N. A.


    In the present work, the method of obtaining the conjugate of the anticancer chemotherapeutic agent doxorubicin to the exogenous double-stranded DNA of the sturgeons is proposed (the source: commercial drug “Derinat”). The optimal conditions for synthesis of conjugate (pH, temperature and the mass ratio of the components), ensuring the highest degree of binding the chemotherapeutic agent to a carrier, were picked out. Clearing the conjugate from the non-encapsulated chemotherapeutic agent was being made by ultrafiltration method. The investigation of the toxicity and specific antineoplastic activity of the synthesized complex was conducted. The performance of the drug toxicity were established on the intact mice in compliance with the accepted standards. The antineoplastic activity was evaluated upon the Tumor Growth Inhibition Index and Metastasis Inhibition Index on mice with the transplanted Lewis lung carcinoma (LLC). It was demonstrated that the conjugate toxicity is approximately lower that the one of the unconjugated doxorubicin (LD 50 was equal 14.6 mg/kg and 9.9 mg/kg for the conjugate and doxorubicin, respectively). The specific antineoplastic activity was investigated in equitoxic doses of the drug. It was established that the conjugate being administered in equitoxic doses possesses a stronger antineoplastic activity, than the water-soluble drug (maximum 35% more as to the tumor volume and 51% more as to the Tumor Growth Inhibition index).

  17. Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. (United States)

    Robinson, Ian; Tung, Le D; Maenosono, Shinya; Wälti, Christoph; Thanh, Nguyen T K


    Core-shell magnetic nanoparticles have received significant attention recently and are actively investigated owing to their large potential for a variety of applications. Here, the synthesis and characterization of bimetallic nanoparticles containing a magnetic core and a gold shell are discussed. The gold shell facilitates, for example, the conjugation of thiolated biological molecules to the surface of the nanoparticles. The composite nanoparticles were produced by the reduction of a gold salt on the surface of pre-formed cobalt or magnetite nanoparticles. The synthesized nanoparticles were characterized using ultraviolet-visible absorption spectroscopy, transmission electron microscopy, energy dispersion X-ray spectroscopy, X-ray diffraction and super-conducting quantum interference device magnetometry. The spectrographic data revealed the simultaneous presence of cobalt and gold in 5.6±0.8 nm alloy nanoparticles, and demonstrated the presence of distinct magnetite and gold phases in 9.2±1.3 nm core-shell magnetic nanoparticles. The cobalt-gold nanoparticles were of similar size to the cobalt seed, while the magnetite-gold nanoparticles were significantly larger than the magnetic seeds, indicating that different processes are responsible for the addition of the gold shell. The effect on the magnetic properties by adding a layer of gold to the cobalt and magnetite nanoparticles was studied. The functionalization of the magnetic nanoparticles is demonstrated through the conjugation of thiolated DNA to the gold shell.

  18. Regulation of translesion DNA synthesis: Posttranslational modification of lysine residues in key proteins. (United States)

    McIntyre, Justyna; Woodgate, Roger


    Posttranslational modification of proteins often controls various aspects of their cellular function. Indeed, over the past decade or so, it has been discovered that posttranslational modification of lysine residues plays a major role in regulating translesion DNA synthesis (TLS) and perhaps the most appreciated lysine modification is that of ubiquitination. Much of the recent interest in ubiquitination stems from the fact that proliferating cell nuclear antigen (PCNA) was previously shown to be specifically ubiquitinated at K164 and that such ubiquitination plays a key role in regulating TLS. In addition, TLS polymerases themselves are now known to be ubiquitinated. In the case of human polymerase η, ubiquitination at four lysine residues in its C-terminus appears to regulate its ability to interact with PCNA and modulate TLS. Within the past few years, advances in global proteomic research have revealed that many proteins involved in TLS are, in fact, subject to a previously underappreciated number of lysine modifications. In this review, we will summarize the known lysine modifications of several key proteins involved in TLS; PCNA and Y-family polymerases η, ι, κ and Rev1 and we will discuss the potential regulatory effects of such modification in controlling TLS in vivo.

  19. Harnessing DNA Synthesis to Develop Rapid Responses to Emerging and Pandemic Pathogens

    Directory of Open Access Journals (Sweden)

    Lisa M. Runco


    Full Text Available Given the interconnected nature of our world today, emerging pathogens and pandemic outbreaks are an ever-growing threat to the health and economic stability of the global community. This is evident by the recent 2009 Influenza A (H1N1 pandemic, the SARS outbreak, as well as the ever-present threat of global bioterrorism. Fortunately, the biomedical community has been able to rapidly generate sequence data so these pathogens can be readily identified. To date, however, the utilization of this sequence data to rapidly produce relevant experimental results or actionable treatments is lagging in spite of obtained sequence data. Thus, a pathogenic threat that has emerged and/or developed into a pandemic can be rapidly identified; however, translating this identification into a targeted therapeutic or treatment that is rapidly available has not yet materialized. This commentary suggests that the growing technology of DNA synthesis should be fully implemented as a means to rapidly generate in vivo data and possibly actionable therapeutics soon after sequence data becomes available.

  20. Candida famata (Debaryomyces hansenii) DNA sequences containing genes involved in riboflavin synthesis. (United States)

    Voronovsky, Andriy Y; Abbas, Charles A; Dmytruk, Kostyantyn V; Ishchuk, Olena P; Kshanovska, Barbara V; Sybirna, Kateryna A; Gaillardin, Claude; Sibirny, Andriy A


    Previously cloned Candida famata (Debaryomyces hansenii) strain VKM Y-9 genomic DNA fragments containing genes RIB1 (codes for GTP cyclohydrolase II), RIB2 (encodes specific reductase), RIB5 (codes for dimethylribityllumazine synthase), RIB6 (encodes dihydroxybutanone phosphate synthase) and RIB7 (codes for riboflavin synthase) were sequenced. The derived amino acid sequences of C. famata RIB genes showed extensive homology to the corresponding sequences of riboflavin synthesis enzymes of other yeast species. The highest identity was observed to homologues of D. hansenii CBS767, as C. famata is the anamorph of this hemiascomycetous yeast. The D. hansenii CBS767 RIB3 gene encoding specific deaminase was cloned. This gene successfully complemented riboflavin auxotrophy of the rib3 mutant of flavinogenic yeast, Pichia guilliermondii. Putative iron-responsive elements (potential sites for binding of the transcription factors Fep1p or Aft1p and Aft2p) were found in the upstream regions of some C. famata and D. hansenii RIB genes. The sequences of C. famata RIB genes have been submitted to the EMBL data library under Accession Nos AJ810169-AJ810173.

  1. Density functional theory molecular modeling, chemical synthesis, and antimicrobial behaviour of selected benzimidazole derivatives (United States)

    Marinescu, Maria; Tudorache, Diana Gabriela; Marton, George Iuliu; Zalaru, Christina-Marie; Popa, Marcela; Chifiriuc, Mariana-Carmen; Stavarache, Cristina-Elena; Constantinescu, Catalin


    Eco-friendly, one-pot, solvent-free synthesis of biologically active 2-substituted benzimidazoles is presented and discussed herein. Novel N-Mannich bases are synthesized from benzimidazoles, secondary amines and formaldehyde, and their structures are confirmed by 1H nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and elemental analysis. All benzimidazole derivatives are evaluated by qualitative and quantitative methods against 9 bacterial strains. The largest microbicide and anti-biofilm effect is observed for the 2-(1-hydroxyethyl)-compounds. Density functional theory (DFT) modeling of the molecular structure and frontier molecular orbitals, i.e. highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO/LUMO), is accomplished by using the GAMESS 2012 software. Antimicrobial activity is correlated with the electronic parameters (chemical hardness, electronic chemical potential, global electrophilicity index), Mullikan atomic charges and geometric parameters of the benzimidazole compounds. The planarity of the compound, symmetry of the molecule, and the presence of a nucleophilic group, are advantages for a high antimicrobial activity. Finally, we briefly show that further accurate processing of such compounds into thin films and hybrid structures, e.g. by laser ablation matrix-assisted pulsed laser evaporation and/or laser-induced forward transfer, may indeed provide simple and environmental friendly, state-of-the-art solutions for antimicrobial coatings.

  2. Chemical vapor transport and solid-state exchange synthesis of new copper selenite bromides (United States)

    Charkin, Dmitri O.; Kayukov, Roman A.; Zagidullin, Karim A.; Siidra, Oleg I.


    A new dimorphic copper selenite bromide, Cu5(SeO3)4Br2 was obtained via chemical transport reactions. α-Cu5(SeO3)4Br2, monoclinic (1m) and β-Cu5(SeO3)4Br2, triclinic (1a) polymorphs were produced simultaneously upon reaction of amorphous, partially dehydrated copper selenite and copper bromide. 1m is similar to Cu5(SeO3)4Cl2, whereas 1a is distantly related to Ni5(SeO3)4Br2 and Co5(SeO3)4Br2. Attempts to reproduce synthesis of 1a via exchange reaction between Na2SeO3 and CuBr2 resulted in a new Na2[Cu7O2](SeO3)4Br4 (2). Current study demonstrates for the first time, that both chemical vapor and exchange reactions can be employed in preparation of new selenite halides.

  3. Chemical synthesis of Fe{sub 2}O{sub 3} thin films for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Kulal, P.M.; Dubal, D.P.; Lokhande, C.D. [Holography and Material Research Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Fulari, V.J., E-mail: [Holography and Material Research Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)


    Research highlights: > Simple chemical synthesis of Fe{sub 2}O{sub 3}. > Formation of amorphous and hydrous Fe{sub 2}O{sub 3}. > Potential candidate for supercapacitors. - Abstract: Fe{sub 2}O{sub 3} thin films have been prepared by novel chemical successive ionic layer adsorption and reaction (SILAR) method. Further these films were characterized for their structural, morphological and optical properties by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrum, scanning electron microscopy (SEM), wettability test and optical absorption studies. The XRD pattern showed that the Fe{sub 2}O{sub 3} films exhibit amorphous in nature. Formation of iron oxide compound was confirmed from FTIR studies. The optical absorption showed existence of direct optical band gap of energy 2.2 eV. Fe{sub 2}O{sub 3} film surface showed superhydrophilic nature with water contact angle less than 10{sup o}. The supercapacitive properties of Fe{sub 2}O{sub 3} thin film investigated in 1 M NaOH electrolyte showed supercapacitance of 178 F g{sup -1} at scan rate 5 mV/s.

  4. Gas temperature measurements inside a hot wall chemical vapor synthesis reactor. (United States)

    Notthoff, Christian; Schilling, Carolin; Winterer, Markus


    One key but complex parameter in the chemical vapor synthesis (CVS) of nanoparticles is the time temperature profile of the gas phase, which determines particle characteristics such as size (distribution), morphology, microstructure, crystal, and local structure. Relevant for the CVS process and for the corresponding particle characteristics is, however, not the T(t)-profile generated by an external energy source such as a hot wall or microwave reactor but the temperature of the gas carrying reactants and products (particles). Due to a complex feedback of the thermodynamic and chemical processes in the reaction volume with the external energy source, it is very difficult to predict the real gas phase temperature field from the externally applied T(t)-profile. Therefore, a measurement technique capable to determine the temperature distribution of the gas phase under process conditions is needed. In this contribution, we demonstrate with three proof of principle experiments the use of laser induced fluorescence thermometry to investigate the CVS process under realistic conditions.

  5. Gas temperature measurements inside a hot wall chemical vapor synthesis reactor (United States)

    Notthoff, Christian; Schilling, Carolin; Winterer, Markus


    One key but complex parameter in the chemical vapor synthesis (CVS) of nanoparticles is the time temperature profile of the gas phase, which determines particle characteristics such as size (distribution), morphology, microstructure, crystal, and local structure. Relevant for the CVS process and for the corresponding particle characteristics is, however, not the T(t)-profile generated by an external energy source such as a hot wall or microwave reactor but the temperature of the gas carrying reactants and products (particles). Due to a complex feedback of the thermodynamic and chemical processes in the reaction volume with the external energy source, it is very difficult to predict the real gas phase temperature field from the externally applied T(t)-profile. Therefore, a measurement technique capable to determine the temperature distribution of the gas phase under process conditions is needed. In this contribution, we demonstrate with three proof of principle experiments the use of laser induced fluorescence thermometry to investigate the CVS process under realistic conditions.

  6. Exploration of cellular DNA lesion, DNA-binding and biocidal ordeal of novel curcumin based Knoevenagel Schiff base complexes incorporating tryptophan: Synthesis and structural validation (United States)

    Chandrasekar, Thiravidamani; Raman, Natarajan


    A few novel Schiff base transition metal complexes of general formula [MLCl] (where, L = Schiff base, obtained by the condensation reaction of Knoevenagel condensate of curcumin, L-tryptophan and M = Cu(II), Ni(II), Co(II), and Zn(II)), were prepared by stencil synthesis. They were typified using UV-vis, IR, EPR spectral techniques, micro analytical techniques, magnetic susceptibility and molar conductivity. Geometry of the metal complexes was examined and recognized as square planar. DNA binding and viscosity studies revealed that the metal(II) complexes powerfully bound via an intercalation mechanism with the calf thymus DNA. Gel-electrophoresis technique was used to investigate the DNA cleavage competence of the complexes and they establish to approve the cleavage of pBR322 DNA in presence of oxidant H2O2. This outcome inferred that the synthesized complexes showed better nuclease activity. Moreover, the complexes were monitored for antimicrobial activities. The results exposed that the synthesized compounds were forceful against all the microbes under exploration.

  7. Mutations for Worse or Better: Low-Fidelity DNA Synthesis by SOS DNA Polymerase V Is a Tightly Regulated Double-Edged Sword. (United States)

    Jaszczur, Malgorzata; Bertram, Jeffrey G; Robinson, Andrew; van Oijen, Antoine M; Woodgate, Roger; Cox, Michael M; Goodman, Myron F


    1953, the year of Watson and Crick, bore witness to a less acclaimed yet highly influential discovery. Jean Weigle demonstrated that upon infection of Escherichia coli, λ phage deactivated by UV radiation, and thus unable to form progeny, could be reactivated by irradiation of the bacterial host. Evelyn Witkin and Miroslav Radman later revealed the presence of the SOS regulon. The more than 40 regulon genes are repressed by LexA protein and induced by the coproteolytic cleavage of LexA, catalyzed by RecA protein bound to single-stranded DNA, the RecA* nucleoprotein filament. Several SOS-induced proteins are engaged in repairing both cellular and extracellular damaged DNA. There's no "free lunch", however, because error-free repair is accompanied by error-prone translesion DNA synthesis (TLS), involving E. coli DNA polymerase V (UmuD'2C) and RecA*. This review describes the biochemical mechanisms of pol V-mediated TLS. pol V is active only as a mutasomal complex, pol V Mut = UmuD'2C-RecA-ATP. RecA* donates a single RecA subunit to pol V. We highlight three recent insights. (1) pol V Mut has an intrinsic DNA-dependent ATPase activity that governs polymerase binding and dissociation from DNA. (2) Active and inactive states of pol V Mut are determined at least in part by the distinct interactions between RecA and UmuC. (3) pol V is activated by RecA*, not at a blocked replisome, but at the inner cell membrane.

  8. Effects of 8-halo-7-deaza-2'-deoxyguanosine triphosphate on DNA synthesis by DNA polymerases and cell proliferation. (United States)

    Yin, Yizhen; Sasaki, Shigeki; Taniguchi, Yosuke


    8-OxodG (8-oxo-2'-deoxyguanosine) is representative of nucleoside damage and shows a genotoxicity. To significantly reveal the contributions of 7-NH and C8-oxygen to the mutagenic effect of 8-oxodG by DNA polymerases, we evaluated the effects of the 8-halo-7-deaza-dG (8-halogenated 7-deaza-2'-deoxyguanosine) derivatives by DNA polymerases. 8-Halo-7-deaza-dGTPs were poorly incorporated by both KF(exo(-)) and human DNA polymerase β opposite dC or dA into the template DNA. Furthermore, it was found that KF(exo(-)) was very sensitive to the introduction of the C8-halogen, while polymerase β can accommodate the C8-halogen resulting in an efficient dCTP insertion opposite the 8-halo-7-deaza-dG in the template DNA. These results indicate that strong hydrogen bonding between 7-NH in the 8-oxo-G nucleobase and 1-N in the adenine at the active site of the DNA polymerase is required for the mutagenic effects. Whereas, I-deaza-dGTP shows an antiproliferative effect for the HeLa cells, suggesting that it could become a candidate as a new antitumor agent.

  9. The influence of beryllium on cell survival rates in theIn-vitro culture system, on intracellular DNA synthesis and on SRBC-IgM antibody production responses


    Yoshida, Tsutomu; Shima , Syogo; Kurita , Hideki; Nagaoka, Kaoru; Taniwaki, Hiroshige; Asada, Yasuki; Shai , Kai-ping; Koike, Mitsumasa; Morita, Kunihiko


    Immunocytotoxicity of beryllium (Be) was evaluated by studying cell viability, intracellular DNA synthesis and SRBC-IgM response in an in-vitro culture system using non-sensitized spleen cells of a C57BL mouse. Be addition showed a suppressive effect on cell viability, an enhancing effect on DNA synthesis and on IgM antibody production. The suppressive effect on cell viability manifested itself markedly as the concentration of Be was increased or the culture time was prolonged. The DNA synthe...

  10. Pathways for synthesis of new selenium-containing oxo-compounds: Chemical vapor transport reactions, hydrothermal techniques and evaporation method (United States)

    Kovrugin, Vadim M.; Colmont, Marie; Siidra, Oleg I.; Gurzhiy, Vladislav V.; Krivovichev, Sergey V.; Mentré, Olivier


    Due to the low and close melting and sublimation temperatures (340 and 350 °C, respectively), the crystal growth of selenates and/or selenites is generally achieved using either chemical vapor transport routes, hydrothermal methods due to the good solubility and reactivity of (SeO3)2- anions or isothermal evaporation synthesis. Here we report examples many new crystal structures obtained using these synthesis routes. Particularly, description of each process is given with theoretical and practical information assorted with description of selected structures.

  11. Synthesis and post-treatments of biomimetic apatites: How working conditions may configure final physico-chemical features

    Directory of Open Access Journals (Sweden)

    Drouet Christophe


    Full Text Available Nanocrystalline apatites constitute the mineral part of hard tissues, and can be reproduced synthetically. Nonetheless, the impact of synthesis/post-synthesis parameters is often disregarded. Based on actualized knowledge on their physico-chemical features, we investigated these aspects on a systematic experimental basis. The apatite maturation state has a direct effect on the surface and core of the nanocrystals. Drying and re-immersion aspects were also examined in view of applications as implantable biomaterials: an equilibration of the samples surface is proposed to avoid acidification phenomena after re-immersion of dried samples.

  12. Unscheduled DNA synthesis in rat pleural mesothelial cells treated with mineral fibres. (United States)

    Renier, A; Lévy, F; Pillière, F; Jaurand, M C


    Unscheduled DNA synthesis (UDS) was studied in confluent rat pleural mesothelial cells (RPMCs) arrested in G0/G1 with hydroxyurea (HU) and treated with various fibre types, i.e., chrysotile, crocidolite or attapulgite. In addition, the effects of UV light and of benzo[a]pyrene were determined as references. Using autoradiography after [3H]thymidine incorporation ([3H]dThd), RPMCs treated with 4 micrograms/cm2 of chrysotile fibres exhibited a low but significant enhancement of net grains compared to untreated cells. Treatment with higher doses of chrysotile was not possible because of the impairment of microscopic observation due to the presence of the fibres. Using liquid scintillation counting, RPMCs treated with chrysotile or crocidolite showed a significant dose-dependent increase in [3H]dThd incorporation compared to untreated cells. In contrast, attapulgite did not enhance [3H]dThd incorporation compared to untreated cells. Treatment of RPMCs with 1, 2 or 4 micrograms/ml of benzo[a]pyrene resulted in a significant increase in [3H]dThd incorporation. In order to discount a possible role of S cells in the augmentation of [3H]dThd incorporation, despite the presence of 5 mM HU, S cells were counted by autoradiography. Results indicated that the percentage of S cells was similar in asbestos-treated and untreated cultures. Stimulation of the S phase also seems unlikely because treatment of RPMCs with asbestos fibres in the absence of HU resulted in a reduction of [3H]dThd incorporation attributed to an impairment of the S phase by the fibres. 1-4 micrograms/ml benzo[a]pyrene or 10-50 J/m2 UV light resulted in an approximate doubling of [3H]dThd incorporation. The effects of inhibitors of DNA repair were determined in chrysotile-treated RPMCs. [3H]dThd incorporation was inhibited by cytosine arabinoside and nalidixic acid. These results show that asbestos produces UDS in RPMCs.

  13. Pure magnetic hard fct FePt nanoparticles: Chemical synthesis, structural and magnetic properties correlations

    Energy Technology Data Exchange (ETDEWEB)

    Suber, L., E-mail: [ISM-CNR, Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM (Italy); Marchegiani, G. [ISM-CNR, Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM (Italy); Olivetti, E.S.; Celegato, F.; Coïsson, M.; Tiberto, P. [INRIM, Electromagnetism Division, Strada delle Cacce 91, 10135 Torino (Italy); Allia, P. [DISAT Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Barrera, G. [Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, 10125 Torino (Italy); Pilloni, L. [UTTMAT-CHI, Via Anguillarese 10, 00123 S. Maria di Galeria, Roma (Italy); Barba, L. [IC-CNR, Area Science Park, SS 14 Km 163.5 Basovizza, 34149 Trieste (Italy); Padella, F. [UTTMAT-CHI, Via Anguillarese 10, 00123 S. Maria di Galeria, Roma (Italy); Cossari, P. [IGAG-CNR, Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM (Italy); Chiolerio, A. [Istituto Italiano di Tecnologia, Center for Space Human Robotics, Corso Trento 21, 10129 Torino (Italy)


    FePt nanoparticles, containing a near-equal atomic percentage of Fe and Pt, with a face centered tetragonal structure (fct), are challenging for potential applications in high performance permanent magnets and high density data storage. In this study, we report on the chemical synthesis, carried out both solvothermally and hydrothermally in autoclave reacting iron (III) acetylacetonate and platinum (II) acetylacetonate with tri- or tetra-ethylene glycol, these employed as solvents, reducers and particle surface protecting agents as well. In both methods, a subsequent thermal treatment at high temperatures is necessary to transform the magnetic soft face centered cubic (fcc) phase to the hard fct one. Organic low-weight molecules, generally used to protect the nanoparticle surface and avoid particle aggregation, are decomposed by the thermal treatment resulting in particle aggregation and coalescence phenomena; on the contrary, in this case, a polymer matrix is formed as particle protecting agent and, by thermally treating the hydrothermally prepared nanoparticles up to 750 °C for 1 h, the pure magnetic hard fct phase is obtained while preserving the nanostructure. A detailed study is carried out on FePt nanoparticle structure (fcc and fct phases) and correlated to the magnetic properties of the system. - Highlights: • fct FePt nanoparticles for hard magnetic nanotechnology applications. • Influence of synthesis parameters on the precursor fcc FePt nanoparticle structure. • Easy hydrothermal method for preparing pure fct FePt nanoparticles. • Monitoring the role of temperature and time on the FePt fcc–fct phase transformation. • Correlation between FePt nanoparticle structural and magnetic properties.

  14. Synthesis and characterization of chemically anchored adenosine with PHEMA grafted gold nanoparticles (United States)

    Bach, Long Giang; Islam, Md. Rafiqul; Jeong, Yeon Tae; Gal, Yeong Soon; Lim, Kwon Taek


    The synthesis of chemically anchored adenosine with biocompatible poly(2-hydroxylethyl methacrylate) grafted gold nanoparticles (Ado-i-PHEMA-g-AuNPs) was realized by employing a simple strategy. Disulfide-containing poly(2-hydroxylethyl methacrylate) (DT-PHEMA) was initially synthesized by atom transfer radical polymerization (ATRP). The formation of DT-PHEMA was confirmed by 1H-NMR and FT-IR. The molecular weight and molecular weight distribution were found to be 9.6 kg/mol and 1.40 from GPC analysis. DT-PHEMA was subsequently used for the synthesis of PHEMA-g-AuNPs by a grafting to protocol. The grafting of DT-PHEMA on the surface of AuNPs was confirmed by FT-IR, TGA, XPS, and EDX analyses. The particle size of the PHEMA-g-AuNPs was found to be ca. 5.0 nm from HR-TEM analysis. Boronic acid was used for functionalization of PHEMA-g-AuNPs, which was then subjected for covalent immobilization with adenosine via strong interaction between free hydroxyl groups of adenosine and boronic acid. Characterization and properties of the Ado-i-PHEMA-g-AuNPs were investigated by taking advantage from FT-IR, XPS, EDX, and UV-visible spectroscopy. The Ado-i-PHEMA-g-AuNPs nanocomposite exhibits a surface plasmon resonance peak at 586 nm which is red shifted from AuNPs (521 nm), indicating significant changes of surface property upon PHEMA-adenosine immobilization onto the surface of AuNPs.

  15. Characterization of the defects in bacteriophage T7 DNA synthesis during growth in the Escherichia coli mutant tsnB. (United States)

    DeWyngaert, M A; Hinkle, D C


    The Escherichia coli mutant tsnB (M. Chamberlin, J. Virol. 14:509-516, 1974) is unable to support the growth of bacteriophage T7, although all classes of phage proteins are produced and the host is killed by the infection. During growth in this mutant host, the rate of phage DNA synthesis is reduced and the DNA is not packaged into stable, phagelike particles. The replicating DNA forms concatemers but the very large replicative intermediates (approximately 440S) identified by Paetkau et al. (J. Virol. 22:130-141, 1977) are not detected in T7+-infected tsnB cells. These large structures are formed in tsnB cells infected with a T7 gene 3 (endonuclease) mutant, where normal processing of the large intermediates into shorter concatemers is blocked. At later times during infection of tsnB cells, the replicating DNA accumulates in molecules about 30% shorter than unit length. Analysis of this DNA with a restriction endonuclease indicates that it is missing sequences from the ends (particularly the left end) of the genome. The loss of these specific sequences does not occur during infections with T7 gene 10 (head protein) or gene 19 (maturation protein) mutants. This suggests that the processing of concatemers into unit-length DNA molecules may occur normally in T7 -infected tsnB cells and that the shortened DNA arises from exonucleolytic degradation of the mature DNA molecules. These results are discussed in relation to our recent observation (M. A. DeWyngaert and D. C. Hinkle, J. Biol. Chem. 254:11247-11253, 1979) that E. coli tsnB produces an altered RNA polymerase which is resistance to inhibition by the T7 gene 2 protein.

  16. DNA strand breaks detected in embryos of the adult snails, Potamopyrgus antipodarum, and in neonates exposed to genotoxic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Vincent-Hubert, Francoise, E-mail: [Unite de Recherche Hydrosystemes et Bioprocedes, equipe BELCA, IRSTEA/CEMAGREF, 1 rue Pierre-Gilles de Gennes, CS10030, 92761 Antony cedex, 92163 Antony (France); Revel, Messika [Unite de Recherche Hydrosystemes et Bioprocedes, equipe BELCA, IRSTEA/CEMAGREF, 1 rue Pierre-Gilles de Gennes, CS10030, 92761 Antony cedex, 92163 Antony (France); Garric, Jeanne [MALY Laboratoire d' ecotoxicologie, IRSTEA/CEMAGREF, 23 bis Quai Chauveau, 69006 Lyon (France)


    We tested the freshwater mudsnail Potamopyrgus antipodarum, which is a species that has already been used for endocrine-disrupting compounds (EDCs) to determine whether early life stages of aquatic organisms are sensitive to genotoxic chemicals. For this purpose, we first developed the alkaline comet assay on adults, embryos, and neonates. The comet assay protocol was validated on both embryonic cells exposed in vitro to hydrogen peroxide and adult snails in the reproducing stage exposed to methyl methane sulfonate. During the latter experiment, DNA strand breaks were investigated on both embryonic cells and on adult gill cells. The second part of this study investigated the stability of DNA strand breaks in adult reproducing snails and neonates exposed to cadmium (Cd) and bisphenol A for 8 days. Hydrogen peroxide-induced DNA strand breaks in vitro in isolated embryonic cells. Exposure of adult reproducing snails to methyl methane sulfonate for 24 h induced DNA strand breaks in embryos. Bisphenol A induced a significant increase in the DNA strand-break level in whole embryonic cells and whole neonate cells. Cd was genotoxic for both embryos and neonates during the exposure time and also after 7 days of depuration, suggesting that Cd could inhibit DNA repair enzymes. These preliminary results on this original model have encouraged us to consider the impact of genotoxic environmental contaminants on the F1 generation.

  17. DNA interstrand cross-links of an antitumor trinuclear platinum(II) complex: thermodynamic analysis and chemical probing. (United States)

    Malina, Jaroslav; Farrell, Nicholas P; Brabec, Viktor


    The trinuclear platinum compound [{trans-PtCl(NH(3))(2)}(2)(μ-trans-Pt(NH(3))(2){NH(2)(CH(2))(6)NH(2)}(2))](4+) (BBR3464) belongs to the polynuclear class of platinum-based anticancer agents. These agents form in DNA long-range (Pt,Pt) interstrand cross-links, whose role in the antitumor effects of BBR3464 predominates. Our results show for the first time that the interstrand cross-links formed by BBR3464 between two guanine bases in opposite strands separated by two base pairs (1,4-interstrand cross-links) exist as two distinct conformers, which are not interconvertible, not only if these cross-links are formed in the 5'-5', but also in the less-usual 3'-3' direction. Analysis of the conformers by differential scanning calorimetry, chemical probes of DNA conformation, and minor groove binder Hoechst 33258 demonstrate that each of the four conformers affects DNA in a distinctly different way and adopts a different conformation. The results also support the thesis that the molecule of antitumor BBR3464 when forming DNA interstrand cross-links may adopt different global structures, including different configurations of the linker chain of BBR3464 in the minor groove of DNA. Our findings suggest that the multiple DNA interstrand cross-links available to BBR3464 may all contribute substantially to its cytotoxicity.

  18. Medicinal plants recommended by the world health organization: DNA barcode identification associated with chemical analyses guarantees their quality.

    Directory of Open Access Journals (Sweden)

    Rafael Melo Palhares

    Full Text Available Medicinal plants are used throughout the world, and the regulations defining their proper use, such as identification of the correct species and verification of the presence, purity and concentration of the required chemical compounds, are widely recognized. Herbal medicines are made from vegetal drugs, the processed products of medicinal species. These processed materials present a number of challenges in terms of botanical identification, and according to the World Health Organization (WHO, the use of incorrect species is a threat to consumer safety. The samples used in this study consisted of the dried leaves, flowers and roots of 257 samples from 8 distinct species approved by the WHO for the production of medicinal herbs and sold in Brazilian markets. Identification of the samples in this study using DNA barcoding (matK, rbcL and ITS2 regions revealed that the level of substitutions may be as high as 71%. Using qualitative and quantitative chemical analyses, this study identified situations in which the correct species was being sold, but the chemical compounds were not present. Even more troubling, some samples identified as substitutions using DNA barcoding contained the chemical compounds from the correct species at the minimum required concentration. This last situation may lead to the use of unknown species or species whose safety for human consumption remains unknown. This study concludes that DNA barcoding should be used in a complementary manner for species identification with chemical analyses to detect and quantify the required chemical compounds, thus improving the quality of this class of medicines.

  19. [Overgrowth and DNA synthesis of neuroepithelium in embryonic stages of induced Long-Evans rat myeloschisis]. (United States)

    Chono, Y


    Overgrowth of the myeloschisis, namely the excessive amount of the neural plate tissue, has been reported in the human myeloschisis. However, it is still debatable how the overgrowth develops and whether the overgrowth is the cause, or the secondary effect of spinal dysraphism. The author induced myeloschisis in the fetuses of Long-Evans rats by the administration of ethylenethiourea (ETU) to pregnant rats on day 10 of gestation. The fetuses were removed 1 hour after the treatment with bromodeoxyuridine (BrdU) to the dams on day 14 and 21. The fetuses were fixed in alcohol and embedded in paraffin. H-E staining and the immunohistologic examination were performed on the staining patterns to anti-neurofilament (NFP), anti-glial fibrillary acidic protein (GFAP) and anti-BrdU antibody by ABC method. On day 14, the lateral portion of everted neural plate showed a loose arrangement of cells and there was rosette formation in the mesoderm. On day 21, cell necrosis was observed at the dorsolateral portion of myeloschisis, although the ventral portion showed almost normal cytoarchitecture and was positive to NFP and GFAP. The cause of myeloschisis in this model is supposed to be the local and direct cytotoxic effect of ETU to neuro-ectodermal junction. On day 14, control animals contained few BrdU-incorporated cells at the basal plate of neural tube. In contrast, everted neural plate showed an active uptake of BrdU diffusely in the subependymal matrix layer cells. Overgrowth was not yet identified. On day 21, overgrowth of myeloschisis was found in spite of a few positive cells to BrdU which was identical to the control animals. These findings seem to suggest that cells in the myeloschisis retain their ability of DNA synthesis for longer periods of development and overgrowth found on day 21 is possibly a secondary effect of spinal dysraphism in this model.

  20. Synthesis of nanoscale materials via a novel chemical vapor deposition based apparatus (United States)

    Klug, Kevin L.

    Nanoscale materials are of interest due to the unusual properties afforded by their size. Two such morphologies, nanoparticles and the recently discovered "nanobelt" materials, are explored in this thesis. A novel nanoscale material synthesis apparatus was constructed. It consists of four primary components: an evaporation chamber, a chemical vapor deposition furnace, a collection chamber, and a powder reservoir. A two-stage subsonic jet separates the first two components, permitting nanoparticle production to occur independently of subsequent chemical and thermal treatment. An experimental design was conducted to examine the roles of several variables during the formation of graphite-encapsulated nickel nanoparticles. Coating morphology was strongly dependent on furnace temperature, which exhibited a more subtle influence on mean particle size. The percentage of nickel surviving acid treatment depended primarily on hydrocarbon identity, as well as furnace temperature and carbon atom flux. Acetylene at high temperature yielded crystalline carbon coatings and the greatest percentage of protected nickel achieved, but with an excess of carbon in the product. Additional encapsulated nickel experiments were conducted with reduced acetylene flowrates and a staggered furnace temperature. Thermogravimetric analysis of the as-collected powder revealed that the coating was a crystalline and amorphous carbon hybrid. While this coating effectively protected large clumps of embedded nickel, removal of the amorphous carbon by oxidation rendered individual particles susceptible to hydrochloric acid attack. Amorphous silica was introduced as an alternative coating material via tetraethoxysilane decomposition. Transmission electron microscopy confirmed the production of well-dispersed, acid-resistant particles with a nickel core and silica shell. The synthesis of nanoscale alumina heterogeneous catalyst substrates was investigated. Exposure of aluminum nanoparticles to large

  1. A Novel Cobalt(Ⅲ) Mixed-polypyridyl Complex: Synthesis,Characterization and DNA Binding

    Institute of Scientific and Technical Information of China (English)

    CHEN,Hui-Li(陈绘丽); YANG,Pin(杨频)


    A novel complex[Co(phen)2HPIP]Cl3[phen=phenanethroline,HPIP=2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanethroline]has been synthesized and structurally characterized by elemental analysis,UV,IR and 1H NMR spectroscopies. The interaction of the complex with calf thymus DNA(CT DNA)has been studied using absorption and emission spectroscopy, DNA melting techniques and cyclic voltammetry. The compound shows absorption hypochromicity, fluorescence enhancement and DNA melting temperature increment when binding to CT DNA. CV measurement shows a shift in reduction potential and a change in peak current with addition of DNA.These results prove that the compound inserts into DNA base pairs. The shift of peak potential indicates the ion interaction mode between the complex and DNA. The binding constant of the compound to DNA is 4.37×104. The complex also seems to be an efficient photocleavage reagent.

  2. Synthesis of titanium oxide nanoparticles using DNA-complex as template for solution-processable hybrid dielectric composites

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J.C. [Center for Sustainable Materials Chemistry, 153 Gilbert Hall, Oregon State University, Corvallis, OR (United States); Mejia, I.; Murphy, J.; Quevedo, M. [Department of Materials Science and Engineering, University of Texas at Dallas, Dallas, TX (United States); Garcia, P.; Martinez, C.A. [Engineering and Technology Institute, Autonomous University of Ciudad Juarez, Ciudad Juarez, Chihuahua (Mexico)


    Highlights: • We developed a synthesis method to produce TiO{sub 2} nanoparticles using a DNA complex. • The nanoparticles were anatase phase (~6 nm diameter), and stable in alcohols. • Composites showed a k of 13.4, 4.6 times larger than the k of polycarbonate. • Maximum processing temperature was 90 °C. • Low temperature enables their use in low-voltage, low-cost, flexible electronics. - Abstract: We report the synthesis of TiO{sub 2} nanoparticles prepared by the hydrolysis of titanium isopropoxide (TTIP) in the presence of a DNA complex for solution processable dielectric composites. The nanoparticles were incorporated as fillers in polycarbonate at low concentrations (1.5, 5 and 7 wt%) to produce hybrid dielectric films with dielectric constant higher than thermally grown silicon oxide. It was found that the DNA complex plays an important role as capping agent in the formation and suspension stability of nanocrystalline anatase phase TiO{sub 2} at room temperature with uniform size (∼6 nm) and narrow distribution. The effective dielectric constant of spin-cast polycarbonate thin-films increased from 2.84 to 13.43 with the incorporation of TiO{sub 2} nanoparticles into the polymer host. These composites can be solution processed with a maximum temperature of 90 °C and could be potential candidates for its application in low-cost macro-electronics.

  3. DNA polymerase kappa from Trypanosoma cruzi localizes to the mitochondria, bypasses 8-oxoguanine lesions and performs DNA synthesis in a recombination intermediate. (United States)

    Rajão, M A; Passos-Silva, D G; DaRocha, W D; Franco, G R; Macedo, A M; Pena, S D J; Teixeira, S M; Machado, C R


    DNA polymerase kappa (Pol kappa) is a low-fidelity polymerase that has the ability to bypass several types of lesions. The biological role of this enzyme, a member of the DinB subfamily of Y-family DNA polymerases, has remained elusive. In this report, we studied one of the two copies of Pol kappa from the protozoan Trypanosoma cruzi (TcPol kappa). The role of this TcPol kappa copy was investigated by analysing its subcellular localization, its activities in vitro, and performing experiments with parasites that overexpress this polymerase. The TcPOLK sequence has the N-terminal extension which is present only in eukaryotic DinB members, but its C-terminal region is more similar to prokaryotic and archaeal counterparts since it lacks C(2)HC motifs and PCNA interaction domain. Our results indicate that in contrast to its previously described orthologues, this polymerase is localized to mitochondria. The overexpression of TcPOLK increases T. cruzi resistance to hydrogen peroxide, and in vitro polymerization assays revealed that TcPol kappa efficiently bypasses 8-oxoguanine lesions. Remarkably, our results also demonstrate that the DinB subfamily of polymerases can participate in homologous recombination, based on our findings that TcPol kappa increases T. cruzi resistance to high doses of gamma irradiation and zeocin and can catalyse DNA synthesis within recombination intermediates.

  4. Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication. (United States)

    Zhu, Xiaoli; Sun, Liya; Chen, Yangyang; Ye, Zonghuang; Shen, Zhongming; Li, Genxi


    Graphene, a single atom thick and two dimensional carbon nano-material, has been proven to possess many unique properties, one of which is the recent discovery that it can interact with single-stranded DNA through noncovalent π-π stacking. In this work, we demonstrate that a new strategy to fabricate many kinds of biosensors can be developed by combining this property with cascade chemical reactions. Taking the fabrication of glucose sensor as an example, while the detection target, glucose, may regulate the graphene-DNA interaction through three cascade chemical reactions, electrochemical techniques are employed to detect the target-regulated graphene-DNA interaction. Experimental results show that in a range from 5μM to 20mM, the glucose concentration is in a natural logarithm with the logarithm of the amperometric response, suggesting a best detection limit and detection range. The proposed biosensor also shows favorable selectivity, and it has the advantage of no need for labeling. What is more, by controlling the cascade chemical reactions, detection of a variety of other targets may be achieved, thus the strategy proposed in this work may have a wide application potential in the future.

  5. DNA Methylation Pyrosequencing Assay Is Applicable for the Assessment of Epigenetic Active Environmental or Clinical Relevant Chemicals

    Directory of Open Access Journals (Sweden)

    Ana-Maria Florea


    Full Text Available Exposure of cells and organisms to stressors might result in epigenetic changes. Here it is shown that investigation of DNA methylation using pyrosequencing is an alternative for in vitro and in vivo toxicological testing of epigenetic effects induced by chemicals and drugs. An in vitro evaluation of global and CpG site specific DNA methylation upon treatment of cells with chemicals/drugs is shown. Bisulfite genomic sequencing of methylation controls showed high methylation of LINE1 in methylation positive control and low methylation in the negative controls. The CpG sites within the LINE1 element are methylated at different levels. In vitro cell cultures show a methylation level ranging from 56% to 49%. Cultures of drug resistant tumor cells show significant hypomethylation as compared with the originating nonresistant tumor cells. The in vitro testing of epigenetically active chemicals (5-methyl-2’-deoxycytidine and trichostatin A revealed a significant change of LINE1 methylation status upon treatment, while specific CpG sites were more prone to demethylation than others (focal methylation. In conclusion, DNA methylation using pyrosequencing might be used not only for testing epigenetic toxins/drugs but also in risk assessment of drugs, food, and environmental relevant pollutants.

  6. Synthesis and Physical and Chemical Properties of Hypergolic Chemicals such as N,N,N-Trimethylhydrazinium and 1-Ethyl-4-Methyl-1,2,4-Triazolium Salts

    Directory of Open Access Journals (Sweden)

    Young-Seok Kim


    Full Text Available Hypergolic chemicals N,N,N-trimethylhydrazinium iodide, [TMH]+[I]−, and 1-ethyl-4-methyl-1,2,4-triazolium iodide, [EMT]+[I]− were firstly synthesized by nucleophilic substitution (SN2. The successful synthesis of hypergolic chemicals [TMH]+[I]− and [EMT]+[I]− was confirmed by IR and 1H-NMR spectroscopy and, GC-mass spectrometry. Subsequently the hypergolic chemicals [TMH]+[X]− (X = CN−, N3−, NO3−, NO2−, ClO4−, AlCl4− were prepared via an ion exchange reaction from [TMH]+[I]− and [EMT]+[I]−, respectively. After that, a mixture of hypergolic chemicals was prepared by dissolving the synthesized hypergolic chemicals in 2-hydroxyethylhydrazine (HOCH2CH2NHNH2. The physical and chemical properties of the mixture such as decomposition temperature (Td, density (d, viscosity (η, and decomposition energy (ΔHd was then evaluated to determine suitability for use as liquid rocket fuels. The ignition delay (ID time of the mixture of hypergolic chemicals with [TMH]+[N3]− and [TMH]+[CN]− using H2O2 as an oxidizer was determined as 55.6 ms and 97.4 ms; respectively. The ID time of the mixture of hypergolic chemicals with [EMT]+[N3]−; [EMT]+[CN]−; [EMT]+[AlCl4]−; and [EMT]+[I]− using H2O2 as an oxidizer was also determined as 18.0 ms; 32.6 ms; 27.6 ms; and 7.96 ms; respectively. The synthesized mixture of hypergolic chemicals could thus be used as a rocket propellant liquid fuel.

  7. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array. (United States)

    Fuller, Carl W; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J; Kasianowicz, John J; Davis, Randy; Roever, Stefan; Church, George M; Ju, Jingyue


    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5'-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods.

  8. Synthesis mechanism of sono-chemically prepared mesoporous ZnS nanoparticles (United States)

    Motejadded Emrooz, H. B.; Jalaly, M.


    The mechanism of sono-chemically synthesized mesoporous ZnS nanoparticles has been investigated. ZnS nanoparticles were synthesized with a facile and quick method. The sonication process was carried out for several times up to 60 min. The synthesized particles have been characterized with scanning electron microscopy, transmission electron microscopy, high resolution x-ray diffraction, UV–visible technique, diffuse reflectance spectroscopy, Brunauer–Emmett–Teller and Fourier transformation infrared spectroscopy. Based on x-ray diffraction patterns, crystallite size and lattice strain increase with sonication time. Adsorption–desorption results showed that applying the sono-chemistry synthesizing method in the aqueous atmosphere will cause a mesoporous structure. The obtained specific surface area of the synthesized mesoporous ZnS nanoparticles varied from 53 to 58 m2 · g‑1. Also the surface areas created from the porosity of the particles varied from 27 to 29 m2 · g‑1. Regarding these results, the mechanism of porosity formation during synthesis of nanoparticles has been explained. Photocatalytic behavior of the synthesized particles has been investigated for degradation of methylene blue from aqueous solution. Factors affecting this behavior have been discussed and it was found that interaction between opposing factors caused the specimen synthesized with 40 min sonication time has the best methylene blue degradation efficiency.

  9. Synthesis of mono and multidomain YIG particles by chemical coprecipitation or ceramic procedure

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Garcia, L. [Departamento de Materiales Nanoestructurados, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Suarez, M., E-mail: m.suarez@cinn.e [Departamento de Materiales Nanoestructurados, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Menendez, J.L. [Departamento de Materiales Nanoestructurados, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo -UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain)


    Yttrium iron garnet powders have been synthesized by chemical coprecipitation using two different precursors, nitrates and chlorides, and by an oxides mixture route. It is shown that depending on the precursors and synthesis conditions used pure yttrium iron garnet powders can be obtained with a mono or multidomain magnetic behaviour. The yttrium iron garnet crystalline structure, as studied by Raman spectroscopy, was already formed after calcination at temperatures as low as 800 {sup o}C when the nitrate precursors were used. However, calcination temperatures of up to 1100 {sup o}C were required to obtain yttrium iron garnet powders when the precursors were chlorides or when the oxides mixture route was chosen. The saturation magnetization of the powders correlates well with the structural characterization: when nitrate precursors were used, the saturation magnetization was already close to the bulk value, 26.8 emu/cm{sup 3}, after calcination at 800 {sup o}C. However, the saturation magnetization of the powders obtained by the chlorides and oxides mixture routes was close to zero up to calcination temperatures of 1100 {sup o}C. Finally, both the chlorides and the oxides mixture routes yield multidomain micron sized yttrium iron garnet powders, whereas the nitrates route led to monodomain submicron sized powders.

  10. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. (United States)

    Kim, Ki Kang; Hsu, Allen; Jia, Xiaoting; Kim, Soo Min; Shi, Yumeng; Hofmann, Mario; Nezich, Daniel; Rodriguez-Nieva, Joaquin F; Dresselhaus, Mildred; Palacios, Tomas; Kong, Jing


    Hexagonal boron nitride (h-BN) is very attractive for many applications, particularly, as protective coating, dielectric layer/substrate, transparent membrane, or deep ultraviolet emitter. In this work, we carried out a detailed investigation of h-BN synthesis on Cu substrate using chemical vapor deposition (CVD) with two heating zones under low pressure (LP). Previous atmospheric pressure (AP) CVD syntheses were only able to obtain few layer h-BN without a good control on the number of layers. In contrast, under LPCVD growth, monolayer h-BN was synthesized and time-dependent growth was investigated. It was also observed that the morphology of the Cu surface affects the location and density of the h-BN nucleation. Ammonia borane is used as a BN precursor, which is easily accessible and more stable under ambient conditions than borazine. The h-BN films are characterized by atomic force microscopy, transmission electron microscopy, and electron energy loss spectroscopy analyses. Our results suggest that the growth here occurs via surface-mediated growth, which is similar to graphene growth on Cu under low pressure. These atomically thin layers are particularly attractive for use as atomic membranes or dielectric layers/substrates for graphene devices.

  11. Control of nanoparticle agglomeration through variation of the time-temperature profile in chemical vapor synthesis (United States)

    Djenadic, Ruzica; Winterer, Markus


    The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.

  12. Synthesis of a family of spirocyclic scaffolds: building blocks for the exploration of chemical space. (United States)

    Kumar, Sarvesh; Thornton, Paul D; Painter, Thomas O; Jain, Prashi; Downard, Jared; Douglas, Justin T; Santini, Conrad


    This report describes the preparation of a series of 17 novel racemic spirocyclic scaffolds that are intended for the creation of compound libraries by parallel synthesis for biological screening. Each scaffold features two points of orthogonal diversification. The scaffolds are related to each other in four ways: (1) through stepwise changes in the size of the nitrogen-bearing ring; (2) through the oxidation state of the carbon-centered point of diversification; (3) through the relative stereochemical orientation of the two diversification sites in those members that are stereogenic; and (4) through the provision of both saturated and unsaturated versions of the furan ring in the scaffold series derived from 3-piperidone. The scaffolds provide incremental changes in the relative orientation of the diversity components that would be introduced onto them. The scaffolds feature high sp(3) carbon content which is essential for the three-dimensional exploration of chemical space. This characteristic is particularly evident in those members of this family that bear two stereocenters, i.e., the two series derived from 3-piperidone and 3-pyrrolidinone. In the series derived from 3-piperidone we were able to "split the difference" between the two diastereomers by preparation of their corresponding unsaturated version.

  13. The nature of outsourced preclinical research--the example of chemical synthesis. (United States)

    Festel, Gunter W


    The possibility to buy standardized external services or even new and innovative methods within drug discovery has increased dramatically during the last decades. Service providers are able to provide timely and efficient solutions to any given problem within preclinical research. The outsourcing behavior depends on the specific company type. Generally, the outsourcing level of emerging pharmaceutical and biotechnology companies is much higher than established companies due to low or missing internal resources. Whereas the "make-or-buy" decisions of large and fully integrated pharmaceutical companies are mainly competency driven, those of mid-size and small pharmaceutical, as well as biotech companies show a specific combination of cost/capacity and competency. The three different cooperation models "price competition", "project selection," and "strategic partnership" were identified. For all types of companies, the cooperation model of "strategic partnership" offers access to high-level expertise while reducing fixed costs and complexity. This was shown using chemical synthesis as an example but is also true for other areas of preclinical research.

  14. Synthesis of advanced chemically bonded ceramics for solidification of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Seneda, Jose A.; Dellamano, Jose C.; Queiroz, Carlos A.S.; Genova, Luis A.; Rocha, Soraya M.R. da; Vicente, Roberto, E-mail: jaseneda@ipen.b, E-mail: jcdellam@ipen.b, E-mail: cqueiroz@ipen.b, E-mail: lgenova@ipen.b, E-mail: smrrocha@ipen.b, E-mail: rvicente@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)


    This paper presents the results of a preliminary study on the synthesis of advanced chemically bounded ceramics for use to immobilize radioactive wastes. A monolithic, crystalline, ceramic-like material, in the form of MgKPO{sub 4}.6H{sub 2}O, is obtained by reaction of magnesium oxide with potassium monophosphate, at room temperature. The thermodynamics of the reaction indicates the need of a previous treatment of the MgO above 1200 deg C to avoid the formation of magnesium phosphate salts, as revealed by thermogravimetric analysis and X-ray diffraction. The different crystalline phases and microstructure of reaction products are analyzed by X-ray diffraction and scanning electron microscopy, indicating that the material has the characteristics of a matrix for immobilization of radioactive waste. Results obtained thus far indicate the possibility of using this material to replace Portland cement in waste immobilization, offsetting the higher cost of raw material input with a larger fraction of waste in the waste form. More research on characterization of the waste form with mechanical strength tests of specimens incorporating varying waste compositions, and on the leaching potential of the material for a series of radioactive as well hazardous industrial wastes is being planned. (author)

  15. Synthesis of Copper Nanoparticles in Ethylene Glycol by Chemical Reduction with Vanadium (+2 Salts

    Directory of Open Access Journals (Sweden)

    Andrea Pietro Reverberi


    Full Text Available Copper nanoparticles have been synthesized in ethylene glycol (EG using copper sulphate as a precursor and vanadium sulfate as an atypical reductant being active at room temperature. We have described a technique for a relatively simple preparation of such a reagent, which has been electrolytically produced without using standard procedures requiring an inert atmosphere and a mercury cathode. Several stabilizing agents have been tested and cationic capping agents have been discarded owing to the formation of complex compounds with copper ions leading to insoluble phases contaminating the metallic nanoparticles. The elemental copper nanoparticles, stabilized with polyvinylpyrrolidone (PVP and sodium dodecyl sulphate (SDS, have been characterized for composition by energy dispersive X-ray spectroscopy (EDS, and for size by dynamic light scattering (DLS, and transmission electron microscopy (TEM, giving a size distribution in the range of 40–50 nm for both stabilizing agents. From a methodological point of view, the process described here may represent an alternative to other wet-chemical techniques for metal nanoparticle synthesis in non-aqueous media based on conventional organic or inorganic reductants.

  16. Direct chemical synthesis of MnO2 nanowhiskers on MXene surfaces for supercapacitor applications

    KAUST Repository

    Rakhi, Raghavan Baby


    Transition metal carbides (MXenes) are an emerging class of two dimensional (2D) materials with promising electrochemical energy storage performance. Herein, for the first time, by direct chemical synthesis, nanocrystalline ε-MnO2 whiskers were formed on MXene nanosheet surfaces (ε-MnO2/Ti2CTx and ε-MnO2/Ti3C2Tx) to make nanocomposite electrodes for aqueous pseudocapacitors. The ε-MnO2 nanowhiskers increase the surface area of the composite electrode and enhance the specific capacitance by nearly three orders of magnitude compared to pure MXene based symmetric supercapacitors. Combined with enhanced pseudocapacitance, the fabricated ε-MnO2/MXene supercapacitors exhibited excellent cycling stability with ~88% of the initial specific capacitance retained after 10000 cycles which is much higher than pure ε-MnO2 based supercapacitors (~74%). The proposed electrode structure capitalizes on the high specific capacitance of MnO2 and the ability of MXenes to improve conductivity and cycling stability.

  17. Reaction parameter study for the chemical synthesis of adsorbent silica gel

    Directory of Open Access Journals (Sweden)

    María Carolina Sáenz


    Full Text Available This article presents an appropriate set of reaction parameters (reaction temperature, sulphuric acid and sodium silicate reagent concentration for obtaining adsorbent silica gel (ASG using Colombian-produced raw materials. The core of ASG synthesis lies in sulphuric acid’s neutralisation reaction with sodium silicate. Their effect on final ASG moisture adsorption capacity was measured after changing such synthesis’ above–mentioned reaction parameters. Within the range of conditions studied, it was found that the highest adsorption capacity occurred by combining both low sodium silicate concentration with high temperatures or high sulphuric acid concentration and temperature. Synthesised ASG was also compared to a commercial product (Gel de sílice granulare con indicatore. Montedison group. Batch number 1684G100. Code number 453301 using adsorption capacity plots, BET areas, X–ray di-ffraction, mass and infrared spectrometry and mechanical strength measurements. Synthesised ASG presented larger specific surface areas but weaker mechanical strength than the commercial one. Likewise, all evaluated samples exhibited a low degree of molecular arrangement and conventional ASG chemical structure.

  18. Structural properties of zinc oxide and titanium dioxide nanoparticles prepared by chemical vapor synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Akgul, Guvenc, E-mail: [Bor Vocational School, Nigde University, 51700 Nigde (Turkey); Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Akgul, Funda Aksoy [Physics Department, Nigde University, 51240 Nigde (Turkey); Attenkofer, Klaus [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Winterer, Markus [Nanoparticle Process Technology, Department of Engineering Sciences, and Center for NanoIntegration Duisburg-Essen, CeNIDE, University of Duisburg-Essen (Germany)


    Highlights: ► Local structure determination of ZnO and TiO{sub 2} nanostructures by XANES and EXAFS. ► Zn K and Ti K absorption edge XANES investigations of nanopowder samples. ► Investigation of pre-edge peak features of TiO{sub 2} nanosamples. ► Obtaining of local structure parameters of nano ZnO and TiO{sub 2} using EXAFS. ► Good agreement of EXAFS results and crystal structure datas. -- Abstract: Transition metal (TM) oxides provide a wide range of functional materials especially when nanostructured. Titanium dioxide (TiO{sub 2}) and wurtzite type zinc oxide (ZnO) nanostructured materials were fabricated by chemical vapor synthesis (CVS). Crystal and local structures of the prepared nanosamples were ascertained using X-ray diffraction (XRD), X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) techniques. Based on the XRD data, a second phase(s) was not found in both samples. A single wurtzite and anatase type structures were observed in ZnO and TiO{sub 2} nanosamples, respectively. Ti K pre-edge features of XANES spectrum indicated the presence of sixfold coordinated Ti in TiO{sub 2} nanosamples. The results showed that CVS is quite useful method to produce high crystalline nanoparticles.

  19. Nanostructured Thin Film Synthesis by Aerosol Chemical Vapor Deposition for Energy Storage Applications (United States)

    Chadha, Tandeep S.

    Renewable energy sources offer a viable solution to the growing energy demand while mitigating concerns for greenhouse gas emissions and climate change. This has led to a tremendous momentum towards solar and wind-based energy harvesting technologies driving efficiencies higher and costs lower. However, the intermittent nature of these energy sources necessitates energy storage technologies, which remain the Achilles heel in meeting the renewable energy goals. This dissertation focusses on two approaches for addressing the needs of energy storage: first, targeting direct solar to fuel conversion via photoelectrochemical water-splitting and second, improving the performance of current rechargeable batteries by developing new electrode architectures and synthesis processes. The aerosol chemical vapor deposition (ACVD) process has emerged as a promising single-step approach for nanostructured thin film synthesis directly on substrates. The relationship between the morphology and the operating parameters in the process is complex. In this work, a simulation based approach has been developed to understand the relationship and acquire the ability of predicting the morphology. These controlled nanostructured morphologies of TiO2 , compounded with gold nanoparticles of various shapes, are used for solar water-splitting applications. Tuning of light absorption in the visible-light range along with reduced electron-hole recombination in the composite structures has been demonstrated. The ACVD process is further extended to a novel single-step synthesis of nanostructured TiO2 electrodes directly on the current collector for applications as anodes in lithium-ion batteries, mainly for electric vehicles and hybrid electric vehicles. The effect of morphology of the nanostructures has been investigated via experimental studies and electrochemical transport modelling. Results demonstrate the exceptional performance of the single crystal one-dimensional nanostructures over granular

  20. A Chemical Synthesis of Ferromagnetic Zn0.99Co0.01O Nano-Needles

    Institute of Scientific and Technical Information of China (English)

    BI Hong; CHEN Qian-Wang; YOU Feng-Yong; ZHOU Xiao-Li


    @@ Zn0.99Co0.01 O nano-needles are synthesized by using pure ZnO powder as the starting material via chemical reactions in ammonia aqueous solution. The nano-needles show the room-temperature ferromagnetism (RTFM) characterized by using a superconducting quantum interference device. Non-reductive chemical synthesis steps ensure to prevent forming Co-metal nanoclusters within the doped sample. All the results of thermal gravimetric analysis, Fourier transform infrared spectroscopy, x-ray diffraction and ultraviolet spectroscopy demonstrate that Co ions have doped into ZnO lattices and occupied some Zn sites without changing the wurtzite structure of ZnO lattices, and no potential second phase except for the doped Co ions substituting the Zn sites in ZnO lattice can account for the observed RTFM behaviour. Moreover, the synthesis process is of high reproducibility over 80% which is higher than that of commonly-used sol-gel method.

  1. Mixed lineage kinase 3 inhibits phorbol myristoyl acetate-induced DNA synthesis but not osteopontin expression in rat mesangial cells. (United States)

    Parameswaran, Narayanan; Hall, Carolyn S; Bock, Barbara C; Sparks, Harvey V; Gallo, Kathleen A; Spielman, William S


    Mixed lineage kinase 3 (MLK 3) (also called SPRK or PTK-1) is a recently described member of the family of the mixed lineage kinase subfamily of Ser/Thr protein kinases that interacts with mitogen-activated protein kinase pathways. In order to test the biological relevance and potential interaction of MLK 3 with protein kinase C-mediated signaling pathways, human MLK 3 was stably expressed in rat glomerular mesangial cells using a retroviral vector (LXSN) and the effects of phorbol myristoyl acetate (PMA) on DNA synthesis and osteopontin mRNA expression were examined. In control (vector-transfected) mesangial cells PMA increased [3H]-thymidine incorporation in a concentration-dependent manner. In mesangial cells stably expressing MLK 3, the PMA-induced increase in [3H]-thymidine incorporation was significantly reduced (> 50%). However, the PMA-induced increase in osteopontin mRNA was not affected by MLK 3 expression. To determine the mechanisms of these effects, activation of ERK2, JNK1 and p38 in response to PMA was examined in both vector and MLK 3 transfected cells. ERK2 activation was increased several fold by PMA in control cells but was attenuated significantly in MLK 3 expressing cells, suggesting that MLK 3 expression in mesangial cells can negatively regulate the ERK pathway. PMA had no significant effect on JNK and P38 activation, in either vector- or MLK 3-expressing cells. PD98059, a MEK inhibitor blocked PMA-induced DNA synthesis without affecting osteopontin expression. These results suggest that while protein kinase C activation increases cellular proliferation and osteopontin mRNA expression, over-expression of MLK 3 affects only the PKC-induced DNA synthesis, probably through inhibition of ERK. These results also indicate a novel mechanism of growth regulation by a member of the mixed-lineage kinase family that might have significant therapeutic implications in proliferative glomerulonephritis.

  2. Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Enrique Iglesia


    This project explores the extension of previously discovered Fe-based catalysts with unprecedented Fischer-Tropsch synthesis rate, selectivity, and ability to convert hydrogen-poor synthesis gas streams typical of those produced from coal and biomass sources. Contract negotiations were completed on December 9, 2004. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic performance previously reported. During this second reporting period, we have prepared and tested several Fe-based compositions for Fischer-Tropsch synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. These studies established modest improvements in rates and selectivities with light hydrocarbon recycle without any observed deleterious effects, opening up the opportunities for using of recycle strategies to control temperature profiles in fixed-bed Fe-based Fischer-Tropsch synthesis reactors without any detectable kinetic detriment. In a parallel study, we examined similar effects of recycle for cobalt-based catalysts; marked selectivity improvements were observed as a result of the removal of significant transport restrictions on these catalysts. Finally, we have re-examined some previously unanalyzed data dealing with the mechanism of the Fischer-Tropsch synthesis, specifically kinetic isotope effects on the rate and selectivity of chain growth reactions on Fe-based catalysts.

  3. Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modeling. (United States)

    Rescifina, Antonio; Zagni, Chiara; Varrica, Maria Giulia; Pistarà, Venerando; Corsaro, Antonino


    The interaction of small molecules with DNA plays an essential role in many biological processes. As DNA is often the target for majority of anticancer and antibiotic drugs, study about the interaction of drug and DNA has a key role in pharmacology. Moreover, understanding the interactions of small molecules with DNA is of prime significance in the rational design of more powerful and selective anticancer agents. Two of the most important and promising targets in cancer chemotherapy include DNA alkylating agents and DNA intercalators. For these last the DNA recognition is a critical step in their anti-tumor action and the intercalation is not only one kind of the interactions in DNA recognition but also a pivotal step of several clinically used anti-tumor drugs such as anthracyclines, acridines and anthraquinones. To push clinical cancer therapy, the discovery of new DNA intercalators has been considered a practical approach and a number of intercalators have been recently reported. The intercalative binding properties of such molecules can also be harnessed as diagnostic probes for DNA structure in addition to DNA-directed therapeutics. Moreover, the problem of intercalation site formation in the undistorted B-DNA of different length and sequence is matter of tremendous importance in molecular modeling studies and, nowadays, three models of DNA intercalation targets have been proposed that account for the binding features of intercalators. Finally, despite DNA being an important target for several drugs, most of the docking programs are validated only for proteins and their ligands. Therefore, a default protocol to identify DNA binding modes which uses a modified canonical DNA as receptor is needed.

  4. Process Parameters for Successful Synthesis of Carbon Nanotubes by Chemical Vapor Deposition: Implications for Chemical Mechanisms and Life-cycle Assessment (United States)

    Xue, Ke

    Manufacturing of carbon nanotubes (CNTs) via chemical vapor deposition (CVD) calls for thermal treatment associated with gas-phase rearrangement and catalyst deposition to achieve high cost efficiency and limited influence on environmental impact. Taking advantage of higher degree of structure control and economical efficiency, catalytic chemical vapor deposition (CCVD) has currently become the most prevailing synthesis approach for the synthesis of large-scale pure CNTs in past years. Because the synthesis process of CNTs dominates the potential ecotoxic impacts, materials consumption, energy consumption and greenhouse gas emissions should be further limited to efficiently reduce life cycle ecotoxicity of carbon naotubes. However, efforts to reduce energy and material requirements in synthesis of CNTs by CCVD are hindered by a lack of mechanistic understanding. In this thesis, the effect of operating parameters, especially the temperature, carbon source concentration, and residence time on the synthesis were studied to improve the production efficiency in a different angle. Thus, implications on the choice of operating parameters could be provided to help the synthesis of carbon nanotubes. Here, we investigated the typical operating parameters in conditions that have yielded successful CNT production in the published academic literature of over seventy articles. The data were filtered by quality of the resultant product and deemed either "successful" or "unsuccessful" according to the authors. Furthermore, growth rate data were tabulated and used as performance metric for the process whenever possible. The data provided us an opportunity to prompt possible and common methods for practioners in the synthesis of CNTs and motivate routes to achieve energy and material minimization. The statistical analysis revealed that methane and ethylene often rely on thermal conversion process to form direct carbon precursor; further, methane and ethylene could not be the direct

  5. Induction of maturation of human B-cell lymphomas in vitro. Morphologic changes in relation to immunoglobulin and DNA synthesis. (United States)

    Beiske, K.; Ruud, E.; Drack, A.; Marton, P. F.; Godal, T.


    In vitro stimulation of cells from 8 non-Hodgkin's lymphomas comprising several histologic types with a tumor promotor (TPA) and with or without anti-immunoglobulins directed against the surface immunoglobulin of the tumor cells is reported. Morphologic transformation to immunoblastic and plasmablastic cells, but not to plasma cells, and induction of Ig and DNA synthesis were observed. A comparative analysis, including flow cytofluorometry, light microscopy combined with immunocytochemistry, and electron microscopy, suggests that the three events may not always be associated phenomena at the single-cell level even in monoclonal cell populations. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 PMID:6375389

  6. Solid-phase synthesis and chemical space analysis of a 190-membered alkaloid/terpenoid-like library. (United States)

    Moura-Letts, Gustavo; Diblasi, Christine M; Bauer, Renato A; Tan, Derek S


    Alkaloid and terpenoid natural products display an extensive array of chemical frameworks and biological activities. However such scaffolds remain underrepresented in current screening collections and are, thus, attractive targets for the synthesis of natural product-based libraries that access underexploited regions of chemical space. Recently, we reported a systematic approach to the stereoselective synthesis of multiple alkaloid/terpenoid-like scaffolds using transition metal-mediated cycloaddition and cyclization reactions of enyne and diyne substrates assembled on a tert-butylsulfinamide lynchpin. We report herein the synthesis of a 190-membered library of alkaloid/terpenoid-like molecules using this synthetic approach. Translation to solid-phase synthesis was facilitated by the use of a tert-butyldiarylsilyl (TBDAS) linker that closely mimics the tert-butyldiphenysilyl protecting group used in the original solution-phase route development work. Unexpected differences in stereoselectivity and regioselectivity were observed in some reactions when carried out on solid support. Further, the sulfinamide moiety could be hydrolyzed or oxidized efficiently without compromising the TBDAS linker to provide additional amine and sulfonamide functionalities. Principal component analysis of the structural and physicochemical properties of these molecules confirmed that they access regions of chemical space that overlap with bona fide natural products and are distinct from areas addressed by conventional synthetic drugs and drug-like molecules. The influences of scaffolds and substituents were also evaluated, with both found to have significant impacts on location in chemical space and three-dimensional shape. Broad biological evaluation of this library will provide valuable insights into the abilities of natural product-based libraries to access similarly underexploited regions of biological space.

  7. High-affinity triplex targeting of double stranded DNA using chemically modified peptide nucleic acid oligomers

    DEFF Research Database (Denmark)

    Hansen, Mads E; Bentin, Thomas; Nielsen, Peter E


    While sequence-selective dsDNA targeting by triplex forming oligonucleotides has been studied extensively, only very little is known about the properties of PNA-dsDNA triplexes-mainly due to the competing invasion process. Here we show that when appropriately modified using pseudoisocytosine subs...

  8. Decomposition of Ethanol and Dimethyl Ether during Chemical Vapor Deposition Synthesis of Single-Walled Carbon Nanotubes (United States)

    Hou, Bo; Xiang, Rong; Inoue, Taiki; Einarsson, Erik; Chiashi, Shohei; Shiomi, Junichiro; Miyoshi, Akira; Maruyama, Shigeo


    In this study, we investigated carbon feedstock decomposition conditions on the synthesis of single-walled carbon nanotubes (SWNTs) by chemical vapor deposition. We simulated gas-phase thermal decomposition of ethanol and dimethyl ether (DME) at typical SWNT growth conditions using the chemical kinetic model, and confirmed the reaction trends and primary products using Fourier transform infrared (FT-IR) spectroscopy. Molar fractions were correlated against residence time in the reactor by adjusting the volumetric gas flow rate, and concentration profiles of reaction species were compared to the predicted decomposition mechanism. Signature peak intensities indicated concentrations of both ethanol and DME.

  9. The role of the chemical composition of monetite on the synthesis and properties of α-tricalcium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Jo, E-mail: [Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE (United Kingdom); MacDonald, James F., E-mail: [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Hanna, John V., E-mail: [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Shirosaki, Yuki, E-mail: [Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima, Kita-ku, Okayama 700-8530 (Japan); Hayakawa, Satoshi, E-mail: [Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima, Kita-ku, Okayama 700-8530 (Japan); Osaka, Akiyoshi, E-mail: [Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima, Kita-ku, Okayama 700-8530 (Japan); Skakle, Janet M.S., E-mail: [Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE (United Kingdom); Gibson, Iain R., E-mail: [Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE (United Kingdom); School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom)


    There has been a resurgence of interest in alpha-tricalcium phosphate (α-TCP), with use in cements, polymer composites and in bi- and tri-phasic calcium phosphate bone grafts. The simplest and most established method for preparing α-TCP is the solid state reaction of monetite (CaHPO{sub 4}) and calcium carbonate at high temperatures, followed by quenching. In this study, the effect of the chemical composition of reagents used in the synthesis of α-TCP on the local structure of the final product is reported and findings previously reported pertaining to the phase composition and stability are also corroborated. Chemical impurities in the monetite reagents were identified and could be correlated to the calcium phosphate products formed; magnesium impurities favoured the formation of β-TCP, whereas single phase α-TCP was favoured when magnesium levels were low. Monetite synthesised in-house exhibited a high level of chemical purity; when this source was used to produce an α-TCP sample, the α-polymorph could be obtained by both quenching and by cooling to room temperature in the furnace at rates between 1 and 10 °C/min, thereby simplifying the synthesis process. It was only when impurities were minimised that the 12 phosphorus environments in the α-TCP structure could be resolved by {sup 31}P nuclear magnetic resonance; samples containing chemical impurity showed differing degrees of line-broadening. Reagent purity should therefore be considered a priority when synthesising/characterising the α-polymorph of TCP. - Highlights: • Most commercial sources of monetite contain impurities that affect synthesis of phase pure α-TCP. • Ratio of α:β-TCP polymorphs formed by solid state reaction is dependent on reactant chemical purity. • If reagents in α-TCP synthesis are chemically pure, quenching is not required to obtain α-polymorph. • 12 unique P sites in α-TCP were only fully realised by {sup 31}P NMR when chemically pure reagents are used.

  10. Single crystal XRD, vibrational and quantum chemical calculation of pharmaceutical drug paracetamol: A new synthesis form. (United States)

    Anitha, R; Gunasekaran, M; Kumar, S Suresh; Athimoolam, S; Sridhar, B


    The common house hold pharmaceutical drug, paracetamol (PAR), has been synthesized from 4-chloroaniline as a first ever report. After the synthesis, good quality single crystals were obtained for slow evaporation technique under the room temperature. The crystal and molecular structures were re-determined by the single crystal X-ray diffraction. The vibrational spectral measurements were carried out using FT-IR and FT-Raman spectroscopy in the range of 4000-400 cm(-1). The single crystal X-ray studies shows that the drug crystallized in the monoclinic system polymorph (Form-I). The crystal packing is dominated by N-H⋯O and O-H⋯O classical hydrogen bonds. The ac diagonal of the unit cell features two chain C(7) and C(9) motifs running in the opposite directions. These two chain motifs are cross-linked to each other to form a ring R4(4)(22) motif and a chain C2(2)(6) motif which is running along the a-axis of the unit cell. Along with the classical hydrogen bonds, the methyl group forms a weak C-H⋯O interactions in the crystal packing. It offers the support for molecular assembly especially in the hydrophilic regions. Further, the strength of the hydrogen bonds are studied the shifting of vibrational bands. Geometrical optimizations of the drug molecule were done by the Density Functional Theory (DFT) using the B3LYP function and Hartree-Fock (HF) level with 6-311++G(d,p) basis set. The optimized molecular geometry and computed vibrational spectra are compared with experimental results which show significant agreement. The factor group analysis of the molecule was carried out by the various molecular symmetry, site and factor group species using the standard correlation method. The Natural Bond Orbital (NBO) analysis was carried out to interpret hyperconjugative interaction and intramolecular charge transfer (ICT). The chemical softness, chemical hardness, electro-negativity, chemical potential and electrophilicity index of the molecule were found out first

  11. Computational study of putative residues involved in DNA synthesis fidelity checking in Thermus aquaticus DNA polymerase I. (United States)

    Elias, Angela A; Cisneros, G Andrés


    A fidelity-checking site for DNA polymerase I has been proposed based on recent single-molecule Förster resonance energy transfer studies. The checking site is believed to ensure proper base pairing of the newly inserted nucleotide. Computational studies have been utilized to predict residues involved in this putative checking site on the Klenow and Bacillus fragments. Here, we employ energy decomposition analysis, electrostatic free energy response, and noncovalent interaction plots to identify the residues involved in the hypothesized checking site in the homologous Klenow fragment from Thermus aquaticus (Klentaq). Our results indicate multiple protein residues that show altered interactions for three mispairs compared to the correctly paired DNA dimer. Many of these residues are also conserved along A family polymerases.

  12. Facile synthesis of Graphene Oxide/Double-stranded DNA composite liquid crystals and Hydrogels

    Indian Academy of Sciences (India)

    Rajendra Kurapati; Ashok M Raichur; U Venkateswara Reddy; N Suryaprakash


    Investigation of the interactions between graphene oxide (GO) and biomolecules is very crucialfor the development of biomedical applications based on GO. This study reports the first observation of thespontaneous formation of self-assembled liquid crystals and three-dimensional hydrogels of graphene oxidewith double-stranded DNA by simple mixing in an aqueous buffer media without unwinding double-strandedDNA to single-stranded DNA. The GO/dsDNA hydrogels have shown controlled porosity by changing the concentration of the components. The strong binding between dsDNA and graphene is proved by Ramanspectroscopy

  13. Real-time single-molecule studies of the motions of DNA polymerase fingers illuminate DNA synthesis mechanisms. (United States)

    Evans, Geraint W; Hohlbein, Johannes; Craggs, Timothy; Aigrain, Louise; Kapanidis, Achillefs N


    DNA polymerases maintain genomic integrity by copying DNA with high fidelity. A conformational change important for fidelity is the motion of the polymerase fingers subdomain from an open to a closed conformation upon binding of a complementary nucleotide. We previously employed intra-protein single-molecule FRET on diffusing molecules to observe fingers conformations in polymerase-DNA complexes. Here, we used the same FRET ruler on surface-immobilized complexes to observe fingers-opening and closing of individual polymerase molecules in real time. Our results revealed the presence of intrinsic dynamics in the binary complex, characterized by slow fingers-closing and fast fingers-opening. When binary complexes were incubated with increasing concentrations of complementary nucleotide, the fingers-closing rate increased, strongly supporting an induced-fit model for nucleotide recognition. Meanwhile, the opening rate in ternary complexes with complementary nucleotide was 6 s(-1), much slower than either fingers closing or the rate-limiting step in the forward direction; this rate balance ensures that, after nucleotide binding and fingers-closing, nucleotide incorporation is overwhelmingly likely to occur. Our results for ternary complexes with a non-complementary dNTP confirmed the presence of a state corresponding to partially closed fingers and suggested a radically different rate balance regarding fingers transitions, which allows polymerase to achieve high fidelity.

  14. DNA microarray synthesis by using PDMS molecular stamp (II) -- Oligonucleotide on-chip synthesis using PDMS stamp

    Institute of Scientific and Technical Information of China (English)


    Based on the standard phosphoramidites chemistry protocol, two oligonucleotides synthetic routes were studied by contact stamping reactants to a modified glass slide. Route A was a contact coupling reaction, in which a nucleoside monomer was transferred and coupled to reactive groups (OH) on a substrate by spreading the nucleoside activated with tetrazole on a polydimethylsiloxane (PDMS) stamp. Route B was a contact detritylation, in which one nucleoside was fixed on the desired synthesis regions where dimethoxytrityl (DMT) protecting groups on the 5′-hydroxyl of the support-bound nucleoside were removed by stamping trichloroacetic acid (TCA) distributed on features on a PDMS stamp. Experiments showed that the synthetic yield and the reaction speed of route A were higher than those of route B. It was shown that 20 mer oligonucleotide arrays immobilized on the glass slide were successfully synthesized using the PDMS stamps, and the coupling efficiency showed no difference between the PDMS stamping and the conventional synthesis methods.


    Energy Technology Data Exchange (ETDEWEB)

    Chenna, Ahmed; Gupta, Ramesh C.; Bonala, Radha R.; Johnson, Francis; Huang, Bo


    N2-(4-Hydroxyphenyl)-2'-deoxyguanosine-5'-O-DMT-3'-phosphoramidite has been synthesized and used to incorporate the N2-(4-hydroxyphenyl)-2'-dG (N2-4-HOPh-dG) into DNA, using solid-state synthesis technology. The key step to obtaining the xenonucleoside is a palladium (Xantphos-chelated) catalyzed N2-arylation (Buchwald-Hartwig reaction) of a fully protected 2'-deoxyguanosine derivative by 4-isobutyryloxybromobenzene. The reaction proceeded in good yield and the adduct was converted to the required 5'-O-DMT-3'-O-phosphoramidite by standard methods. The latter was used to synthesize oligodeoxynucleotides in which the N2-4-HOPh-dG adduct was incorporated site-specifically. The oligomers were purified by reverse-phase HPLC. Enzymatic hydrolysis and HPLC analysis confirmed the presence of this adduct in the oligomers.

  16. Urinary tract infection drives genome instability in uropathogenic Escherichia coli and necessitates translesion synthesis DNA polymerase IV for virulence. (United States)

    Gawel, Damian; Seed, Patrick C


    Uropathogenic Escherichia coli (UPEC) produces ~80% of community-acquired UTI, the second most common infection in humans. During UTI, UPEC has a complex life cycle, replicating and persisting in intracellular and extracellular niches. Host and environmental stresses may affect the integrity of the UPEC genome and threaten its viability. We determined how the host inflammatory response during UTI drives UPEC genome instability and evaluated the role of multiple factors of genome replication and repair for their roles in the maintenance of genome integrity and thus virulence during UTI. The urinary tract environment enhanced the mutation frequency of UPEC ~100-fold relative to in vitro levels. Abrogation of inflammation through a host TLR4-signaling defect significantly reduced the mutation frequency, demonstrating in the importance of the host response as a driver of UPEC genome instability. Inflammation induces the bacterial SOS response, leading to the hypothesis that the UPEC SOS-inducible translesion synthesis (TLS) DNA polymerases would be key factors in UPEC genome instability during UTI. However, while the TLS DNA polymerases enhanced in vitro, they did not increase in vivo mutagenesis. Although it is not a source of enhanced mutagenesis in vivo, the TLS DNA polymerase IV was critical for the survival of UPEC during UTI during an active inflammatory assault. Overall, this study provides the first evidence of a TLS DNA polymerase being critical for UPEC survival during urinary tract infection and points to independent mechanisms for genome instability and the maintenance of genome replication of UPEC under host inflammatory stress.

  17. Interaction of anthraquinone anti-cancer drugs with DNA:Experimental and computational quantum chemical study (United States)

    Al-Otaibi, Jamelah S.; Teesdale Spittle, Paul; El Gogary, Tarek M.


    Anthraquinones form the basis of several anticancer drugs. Anthraquinones anticancer drugs carry out their cytotoxic activities through their interaction with DNA, and inhibition of topoisomerase II activity. Anthraquinones (AQ4 and AQ4H) were synthesized and studied along with 1,4-DAAQ by computational and experimental tools. The purpose of this study is to shade more light on mechanism of interaction between anthraquinone DNA affinic agents and different types of DNA. This study will lead to gain of information useful for drug design and development. Molecular structures were optimized using DFT B3LYP/6-31 + G(d). Depending on intramolecular hydrogen bonding interactions two conformers of AQ4 were detected and computed as 25.667 kcal/mol apart. Molecular reactivity of the anthraquinone compounds was explored using global and condensed descriptors (electrophilicity and Fukui functions). Molecular docking studies for the inhibition of CDK2 and DNA binding were carried out to explore the anti cancer potency of these drugs. NMR and UV-VIS electronic absorption spectra of anthraquinones/DNA were investigated at the physiological pH. The interaction of the three anthraquinones (AQ4, AQ4H and 1,4-DAAQ) were studied with three DNA (calf thymus DNA, (Poly[dA].Poly[dT]) and (Poly[dG].Poly[dC]). NMR study shows a qualitative pattern of drug/DNA interaction in terms of band shift and broadening. UV-VIS electronic absorption spectra were employed to measure the affinity constants of drug/DNA binding using Scatchard analysis.

  18. Inhibition of thyrotropin-stimulated DNA synthesis by microinjection of inhibitors of cellular Ras and cyclic AMP-dependent protein kinase. (United States)

    Kupperman, E; Wen, W; Meinkoth, J L


    Microinjection of a dominant interfering mutant of Ras (N17 Ras) caused a significant reduction in thyrotropin (thyroid-stimulating hormone [TSH])-stimulated DNA synthesis in rat thyroid cells. A similar reduction was observed following injection of the heat-stable protein kinase inhibitor of the cyclic AMP-dependent protein kinase. Coinjection of both inhibitors almost completely abolished TSH-induced DNA synthesis. In contrast to TSH, overexpression of cellular Ras protein did not stimulate the expression of a cyclic AMP response element-regulated reporter gene. Similarly, injection of N17 Ras had no effect on TSH-stimulated reporter gene expression. Moreover, overexpression of cellular Ras protein stimulated similar levels of DNA synthesis in the presence or absence of the heat-stable protein kinase inhibitor. Together, these results suggest that in Wistar rat thyroid cells, a full mitogenic response to TSH requires both Ras and cyclic APK-dependent protein kinase.

  19. DNA synthesis and microtubule assembly-related events in fertilized Paracentrotus lividus eggs: reversible inhibition by 10 mM procaine. (United States)

    Raymond, M N; Foucault, G; Coffe, G; Pudles, J


    This report describes the effects of 10 mM procaine on microtubule assembly and on DNA synthesis, as followed by [3H]colchicine binding assays and [3H]thymidine incorporation respectively, in fertilized Paracentrotus lividus eggs. In the absence of microtubule assembly inhibitors, about 25% of the total egg tubulin is submitted to two cycles of polymerization prior to the first cell division, this polymerization process precedes DNA synthesis. If the zygotes are treated with 10 mM procaine in the course of the cell cycle, tubulin polymerization is inhibited or microtubules are disassembled. DNA synthesis is inhibited when procaine treatment is performed 10 min, before the initiation of the S-period. However, when the drug is applied in the course of this synthetic period, the process is normally accomplished, but the next S-period becomes inhibited. Moreover, procaine treatment increases the cytoplasmic pH of the fertilized eggs by about 0.6 to 0.8 pH units. This pH increase precedes microtubule disassembly and inhibition of DNA synthesis. Washing out the drug induces a decrease of the intracellular pH which returns to about the same value as that of the fertilized egg controls. This pH change is then followed by the reinitiation of microtubule assembly, DNA synthesis and cell division. Our results show that the inhibition of both tubulin polymerization and DNA synthesis in fertilized eggs treated with 10 mM procaine, appears to be related to the drug-induced increase in cytoplasmic pH.

  20. Effects of cadmium on estrogen receptor mediated signaling and estrogen induced DNA synthesis in T47D human breast cancer cells. (United States)

    Zang, Yu; Odwin-Dacosta, Shelly; Yager, James D


    Cadmium (Cd) has been shown to bind to the human estrogen receptor (ER), yet studies on Cd's estrogenic effects have yielded inconsistent results. In this study, we investigated the effects of Cd on DNA synthesis and its simultaneous effects on both genomic (mediated by nuclear ER (nER)) and non-genomic (mediated by membrane-bound ER (mER)) signaling in human breast cancer derived T47D cells. No effects on DNA synthesis were observed for non-cytotoxic concentrations of CdCl(2) (0.1-1000 nM), and Cd did not increase progesterone receptor (PgR) or pS2 mRNA levels. However, Cd stimulated phosphorylation of ERK1/2 MAPK, detectable following 10 min and 18 h of treatment. The sustained Cd-induced ERK1/2 phosphorylation was inhibited by the ER antagonist ICI 182,780, suggesting the involvement of ER. In addition, Cd enhanced DNA synthesis and pS2 mRNA levels in estrogen (10 pM estradiol) treated T47D cells. The MEK1/2 specific inhibitor U0126 blocked DNA synthesis stimulated by estradiol (E2) and the E2-Cd mixtures. These findings indicate that the ERK1/2 signaling is critical in E2-related DNA synthesis. The sustained ERK1/2 phosphorylation may contribute to the Cd-induced enhancement of DNA synthesis and pS2 mRNA in mixture with low-concentration E2.