WorldWideScience

Sample records for chemical substances by ph

  1. [International Chemical Safety Cards: information source on hazards caused by chemical substances].

    Science.gov (United States)

    Pakulska, Daria; Czerczak, Sławomir

    2007-01-01

    International Chemical Safety Cards (ICSC) are produced by the International Programme on Chemical Safety (IPCS) in collaboration with the European Commission and various IPCS-participating institutions in different countries. ICSCs disseminate essential information on chemicals to promote their safe production, transport and use. Application of standard terminology along with relevant criteria facilitates the comparison of risk related to different chemicals, which makes the cards a successful hazard-communication tool. Translation of the cards into various languages all over the world reflects the range of their growing use. A multi-stage compilation of information contained in ICSCs, based on the most up-to-date world literature and professional databases, assures its reliability. Their concise form makes them easy in everyday use as a source of information on chemical safety. The range of information contained in ICSCs corresponds to that provided by Material Safety Data Sheets (MSDS), however, the former are more concise and simpler. Although ICSCs have no legal status they may complement a 16-point MSDSs and help in the implementation of labeling and classification of chemicals according to the Globally Harmonized System.

  2. Characterization and differentiation of chemical heterogeneity in humic substances by continuous intrinsic proton affinity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.X.; Dong, W.M.; Huang, M.E.; Tao, Z.Y.

    2002-07-01

    The chemical heterogeneity of proton binding on humic substances was studied via continuous intrinsic proton affinity distributions calculated using the condensation approximation from the master curves for two soil fulvic acids (FAs), one soil humic acid (HA) and one fulvic acid obtained from weathered coal. The master curves, i.e. plots of theta(T.H) (the overall protonation degree) versus Hs (the proton concentration in the diffuse double layer), were obtained from potentiometric titration curves at three ionic strengths. The value of Hs was calculated using an electrical double-layer model in which the humic substances were considered as rigid impermeable spheres. For all four samples, the proton affinity distributions were characterized by a few peaks with peak positions in the range 4-5.5. The similarities and differences between the samples studied were discussed.

  3. Short-column anion-exchange chromatography for soil and peat humic substances profiling by step-wise gradient of high pH aqueous sodium ethylenediaminetetraacetate.

    Science.gov (United States)

    Hutta, Milan; Ráczová, Janka; Góra, Róbert; Pessl, Juraj

    2015-08-21

    Novel anion-exchange liquid chromatographic method with step gradient of aqueous EDTA(4-) based mobile phase elution has been developed to profile available Slovak soil humic substances and alkaline extracts of various soils. The method utilize short glass column (30mm×3mm) filled in with hydrolytically stable particles (60μm diameter) Separon HEMA-BIO 1000 having (diethylamino)ethyl functional groups. Step gradient was programmed by mixing mobile phase composed of aqueous solution of sodium EDTA (pH 12.0; 5mmolL(-1)) and mobile phase constituted of aqueous solution of sodium EDTA (pH 12.0, 500mmolL(-1)). The FLD of HSs was set to excitation wavelength 480nm and emission wavelength 530nm (λem). Separation mechanism was studied by use of selected aromatic acids related to humic acids with the aid of UV spectrophotometric detection at 280nm. The proposed method benefits from high ionic strength (I=5molL(-1)) of the end mobile phase buffer and provides high recovery of humic acids (98%). Accurate and reproducible profiling of studied humic substances, alkaline extracts of various types of soils enables straightforward characterization and differentiation of HSs in arable and forest soils. Selected model aromatic acids were used for separation mechanism elucidation.

  4. [Responsibilities of enterprises introducing new dangerous chemical substances and preparations].

    Science.gov (United States)

    Cieśla, Jacek; Majka, Jerzy

    2004-01-01

    The paper reviews the responsibilities of producers, importers and distributors set in a new Act of January 2001 on chemical substances and preparations (Off. J. 2001, No. 11, item 84, with subsequent amendments). This Act together with executive provisions is aimed at harmonizing Polish legislation with EU requirements. The Act sets conditions, restriction and bans of production placing on the market and use of chemical substances and preparations in order to protect human health and environment against their harmful effects. The Act together with a number of executive provisions render those who introduce dangerous chemicals and chemical preparations, including distributors responsible for: classification and labelling of dangerous chemical substances and preparations; possessing, making available and up-dating safety data sheets; supplying packages containing certain dangerous substances with child-proof fastenings; notifying the Inspector for Chemical Substances and Preparations about placing a dangerous preparation on the market; notifying the Inspector about a new substance and conducting required studies; being properly qualified to handle dangerous substances. The Act strictly defines the term "placing a substance or a preparation on the market"--it means making a substance or a preparation available to third parties on the territory of The Republic of Poland, territories of the Member States of the European Union or the territory of Iceland, Liechtenstein and Norway, unless the Act provides otherwise; it also means introduction of a substance or a preparation from outside of the territory referred to above on the customs territory of The Republic of Poland, or that of the member states of the European Union and other states listed above. In addition, some of the responsibilities defined by the provisions of the law on chemical substances and preparations are also applicable to handling of biocidals, which are classified as dangerous substances. The Act

  5. Reduction of mercury (II) by humic substances-influence of pH, salinity of aquatic system

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Vudamala, K.; Coulibaly, M.; Ramteke, D.; Chennuri, K.; Lean, D.

    is depicted in Figure 1. It consisted of a Teflon reactor. Two Teflon tubes were connected from the top of the reactor. Ultrapure N2 gas was connected with one of the Teflon tubes. Reduced Hg (Hg0) produced inside the reactor was carried out by flushing... was performed to determine the influence of KMnO4 concentration on capturing Hg0 . A series of solutions, containing Hg(II) (20.0×10-9M) was taken in series of reactors. Stannous chloride (SnCl2 (0.5M) in HCl of 1.2 M) solution (as a reducing agent) was added...

  6. Physical-chemical characterization and stability study of alpha-trypsin at ph 3.0 by differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.M.C.; Santana, M.A.; Gomide, F.T.F.; Oliveira, J.S.; Vilas Boas, F.A.S.; Santoro, M.M.; Teixera, K.N. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas (ICB). Dept. de Bioquimica e Imunologia; Miranda, A.A.C.; Biondi, I. [Universidade Estadual de Feira de Santana (UEFS), BA (Brazil). Dept. de Ciencias Biologicas; Vasconcelos, A.B.; Bemquerer, M.P. [EMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF (Brazil). Parque Estacao Biologica (PqEB)

    2008-07-01

    Full text: {alpha}-Trypsin is a serine-protease with a polypeptide chain of 223 amino acid residues and six disulfide bridges. It is a globular protein with predominance of antiparallel {beta}-sheet secondary structure and it has two domains with similar structures. In the present work, a stability study of {alpha}-trypsin in the acid pH range was performed and physical-chemical denaturation parameters were measured by using differential scanning calorimetry (DSC). The {alpha}-trypsin has a shelf-life (t{sub 95%}) of about ten months at pH 3.0 and 4 deg C and its hydrolysis into the {psi}-trypsin isoform is negligible during six months as monitored by mass spectrometry (Micromass Q-ToF). The observed {delta}H{sub cal}/{delta}H{sub vH} ratio is close to unity for {alpha}-trypsin denaturation, which suggests the occurrence of a two-state transition, devoid of molten-globule intermediates. At pH 3.0, {alpha}-trypsin unfolded with T{sub m} 325.9 K and {delta}H= 99.10 kcal mol{sup -1}, and the change in heat capacity between the native and unfolded forms of the protein was estimated to be 1.96 {+-} 0.18 kcal mol{sup -1} K{sup -1}. The stability of {alpha}-trypsin calculated at 298 K and at pH 3.0 was {delta}G{sub U} = 6.10 kcal mol{sup -1}. These values are in the range expected for a small globular protein. These results show that the thermodynamic parameters for unfolding of {beta}-trypsin do not change substantially after its conversion to {alpha}-trypsin.

  7. Classification of Chemical Substances and Adverse Effects of Chemical Substances on Human Health

    OpenAIRE

    Söyleriz, Yüksel

    2015-01-01

    In this study, classification of chemical substances and adverse effects of chemical substances on human health in European Union and Turkey are assessed. Method In this study, national and international legislation and practices in the countries of the European Union are reviewed.

  8. [The disturbances of the thyroid hormone homeostasis caused by chemical substances occurring in natural environment].

    Science.gov (United States)

    Kiałka, Marta; Doroszewska, Katarzyna; Mrozińska, Sandra; Milewicz, Tomasz; Stochmal, Ewa; Krzysiek, Józef

    2014-01-01

    The thyroid is an endocrine gland synthesizing, storaging and secreting thyroxine (T4) and triiodothyronine (T3). Currently, there are more and more reports and evidences that various chemical contaminants present in the environment, mainly polychlorinated biphenyls, interfere with stages of regulation, synthesis, secretion, transport of thyroid hormones. That can have a significant negative impact on the human body's endocrine homeostasis.

  9. Groundwater contamination by microbiological and chemical substances released from hospital wastewater: health risk assessment for drinking water consumers.

    Science.gov (United States)

    Emmanuel, Evens; Pierre, Marie Gisèle; Perrodin, Yves

    2009-05-01

    Contamination of natural aquatic ecosystems by hospital wastewater is a major environmental and human health issue. Disinfectants, pharmaceuticals, radionuclides and solvents are widely used in hospitals for medical purposes and research. After application, some of these substances combine with hospital effluents and, in industrialised countries, reach the municipal sewer network. In certain developing countries, hospitals usually discharge their wastewater into septic tanks equipped with diffusion wells. The discharge of chemical compounds from hospital activities into the natural environment can lead to the pollution of water resources and risks for human health. The aim of this article is to present: (i) the steps of a procedure intended to evaluate risks to human health linked to hospital effluents discharged into a septic tank equipped with a diffusion well; and (ii) the results of its application on the effluents of a hospital in Port-au-Prince. The procedure is based on a scenario that describes the discharge of hospital effluents, via septic tanks, into a karstic formation where water resources are used for human consumption. COD, Chloroform, dichlomethane, dibromochloromethane, dichlorobromomethane and bromoform contents were measured. Furthermore, the presence of heavy metals (chrome, nickel and lead) and faecal coliforms were studied. Maximum concentrations were 700 NPP/100 ml for faecal coliforms and 112 mg/L for COD. A risk of infection of 10(-5) infection per year was calculated. Major chemical risks, particularly for children, relating to Pb(II), Cr(III), Cr(VI) and Ni(II) contained in the ground water were also characterised. Certain aspects of the scenario studied require improvement, especially those relating to the characterisation of drugs in groundwater and the detection of other microbiological indicators such as protozoa, enterococcus and viruses.

  10. Atividade alelopática de substâncias químicas isoladas da Acacia mangium e suas variações em função do PH Allelopathic activity of chemical substances isolated from Acacia mangium and its variations in function of PH

    Directory of Open Access Journals (Sweden)

    S.M. Luz

    2010-01-01

    Full Text Available Os objetivos deste trabalho foram isolar, identificar e caracterizar a atividade alelopática de substâncias químicas produzidas por Acacia mangium, além de determinar as variações na atividade das substâncias em função da variação do pH da solução. A atividade alelopática foi avaliada em bioensaios de germinação (25 ºC de temperatura e fotoperíodo de 12 horas e crescimento de radícula e hipocótilo (25 ºC de temperatura e fotoperíodo de 24 horas das plantas daninhas malícia (Mimosa pudica e mata-pasto (Senna obtusifolia. Avaliou-se a interferência do pH (3,0 e 9,0 da solução na atividade alelopática das substâncias sobre a germinação das sementes da espécie malícia. Os triterpenoides lupenona (3-oxolup-20(29-eno e lupeol (3β-hidroxilup-20(29-eno, obtidos das folhas caídas da planta doadora, isolados e em par, evidenciaram baixo efeito alelopático inibitório da germinação de sementes e do crescimento do hipocótilo, especialmente do primeiro, cujos efeitos não ultrapassaram o valor de 2,0%. Os efeitos promovidos sobre o crescimento da radícula foram de maior magnitude, atingindo valores superiores a 40%, com destaque para as inibições promovidas pela substância lupenona. Isoladamente, as substâncias promoveram efeitos superiores aos efetivados pelas substâncias analisadas em pares, indicando a existência de antagonismo. O pH da solução influenciou a atividade alelopática das substâncias; para lupenona os efeitos foram mais intensos em pH ácido, enquanto para lupeol os melhores resultados foram verificados em condições alcalinas, mostrando que este fator é ponto importante a ser considerado em trabalhos de campo.The aim of this study was to isolate, identify and characterize the allelopathic activity of the substances produced by Acacia mangium and to determine the variations of this activity according to the pH variation of the solution. The allelopathic activity was evaluated in germination

  11. Single probe nucleic acid immobilization on chemically modified single protein by controlling ionic strength and pH.

    Science.gov (United States)

    Yamasaki, Ryujiroh; Ito, Masateru; Lee, BongKuk; Jung, HoSup; Lee, HeaYeon; Kawai, Tomoji

    2007-11-05

    In an effort toward determining the feasibility of single molecule analysis, we describe a case whereby the binding of one biotinylated DNA to one streptavidin molecule via electrostatic interactions was controlled by altering in pH 4.0-9.0 and 0.16 of the ion strength. The quantitative analysis of immobilized probe ssDNA was realized in real-time via a quartz crystal microbalance (QCM) and electrochemical (EC) measurement in the range 100 pM to 50 microM of probe oligonucleotide concentration. The variation amount of biotinylated ssDNA immobilized on the streptavidin-modified surface at pH 7.5 was about 0.16 pmol, giving a ratio of streptavidin to biotinylated ssDNA of about 1:1.1. On the other hand, at pH 4.9, it was immobilized about 0.29 pmol. From the shape of the Langmuir plot and QCM, the immobilization efficiency of biotinylated DNA via streptavidin at pH 4.9 was approximately twofold that at pH 7.5. In view points of the reaction velocity, it was increased with decreasing buffer solution pH, indicating a strong interaction of negatively charged probe DNA with the positively charged streptavidin. And also the EC response value of deltaI/I(streptavidin) for the immobilized biotinylated ssDNA in pH 4.9 was about 49%, while the corresponding value for the pH 7.5 was approximately 34%. As DNA molecules possess negative charges, electrostatic repulsion occurred between streptavidin and biotinylated ssDNA at pH 7.5. At pH 4.9, the attraction between the biotinylated ssDNA and streptavidin resulted in increased adsorption which has an isoelectric point of about 5.9. It was deduced that the binding of biotinylated ssDNA to one or two of the four binding sites of streptavidin can be controlled by adjusting the pH-controlled electrostatic interaction.

  12. STUDENT AWARD FINALIST: Plasma Acid: A Chemically and Physically Metastable Substance

    Science.gov (United States)

    Shainsky, Natalie; Dobrynin, Danil; Ercan, Utku; Joshi, Suresh; Brooks, Ari; Ji, Haifeng; Fridman, Gregory; Cho, Young; Fridman, Alexander; Friedman, Gennady

    2011-10-01

    Non-thermal atmospheric pressure dielectric barrier discharge applied to the surface of a liquid creates a chemically and physically metastable substance. The properties and lifetime of the substance depend on the treatment conditions such as gas atmosphere and liquid medium used, treatment dose, and other parameters. When deionized water is used, the metastable substance becomes a strong oxidizer. We show that direct exposure of deionized water to neutral and charged species produced in plasma creates a strong oxidizer and acidic substance in this water which, for the lack of a better term, we termed plasma acid. Plasma acid can remain stable for relatively long time and its oxidizing power may be linked to the significant lowering of its pH. We report experiments that demonstrate plasma acid's metastability. We also show that observed pH of as low as 2.0 cannot be completely accounted for by the production of nitric acid; and that the conjugate base derived from superoxide is at least partly responsible for both, lowering of the pH and increase in the oxidizing power of the solution.

  13. Features of the Italian National Inventory of Chemical Substances.

    Science.gov (United States)

    Binetti, R; Marcello, I

    1994-01-01

    The Italian National Inventory of Chemical Substances (Inventario nazionale delle sostanze chimiche, INSC), a factual data bank on chemical toxicology produced by the Istituto Superiore di Sanità (ISS), consists of a computerized system on existing chemicals developed for routinary and emergency needs. Historical background, current status and future direction of INSC are discussed. The structure and the feature of INSC are briefly examined. Aspects of retrieval of information and the criteria for the inclusion of data and priority selection are also considered.

  14. 76 FR 75794 - Significant New Use Rules on Certain Chemical Substances; Withdrawal of Two Chemical Substances

    Science.gov (United States)

    2011-12-05

    ... July 27, 1989 (54 FR 31314). The docket for the direct final SNURs for these two chemical substances... entities is provided in the Federal Register issue of October 5, 2011 (76 FR 61566) (FRL-8880-2). If you..., 1345 (d) and (e), 1361; E.O. 11735, 38 FR 21243, 3 CFR, 1971-1975 Comp. p. 973; 42 U.S.C. 241,...

  15. Chemical substances as risk factors of nephropathy in diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Zofia Marchewka

    2009-12-01

    Full Text Available Although diabetes mellitus, a metabolic disease, does not fall into the group of diseases induced by toxic substances or environmental pollution, there is much evidence that some chemicals have considerable importance in its development. Exposure to substances with potential renal toxicity is especially dangerous for diabetics because it accelerates and intensifies diabetic nephropathy. This paper discusses the relationship between the xenobiotics and the development of diabetes mellitus and diabetic nephropathy with particular emphasis on those substances that causes the greatest damage to the kidneys. These are cadmium, iron, lead, arsenic, polychlorinated organic compounds, nitrogen compounds, and contrast agents. In addition, the mechanisms of diabetes mellitus induction or kidney damage by these xenobiotics are described.

  16. Occupational exposure to airborne chemical substances in paintings conservators

    Directory of Open Access Journals (Sweden)

    Anna Jeżewska

    2014-02-01

    Full Text Available Background: This paper presents the results of the quantitative study of the airborne chemical substances detected in the conservator's work environment. Material and Methods: The quantitative tests were carried out in 6 museum easel paintings conservation studios. The air test samples were taken at various stages of restoration works, such as cleaning, doubling, impregnation, varnishing, retouching, just to name a few. The chemical substances in the sampled air were measured by the GC-FID (gas chromatography with flame ionization detector test method. Results: The study results demonstrated that concentrations of airborne substances, e.g., toluene, 1,4-dioxane, turpentine and white spirit in the work environment of paintings conservators exceeded the values allowed by hygiene standards. It was found that exposure levels to the same chemical agents, released during similar activities, varied for different paintings conservation studios. It is likely that this discrepancy resulted from the indoor air exchange system for a given studio (e.g. type of ventilation and its efficiency, the size of the object under maintenance, and also from the methodology and protection used by individual employees. Conclusions: The levels of organic solvent vapors, present in the workplace air in the course of painting conservation, were found to be well above the occupational exposure limits, thus posing a threat to the worker's health. Med Pr 2014;65(1:33–41

  17. Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution

    Science.gov (United States)

    Sandoval-Paz, M. G.; Rodríguez, C. A.; Porcile-Saavedra, P. F.; Trejo-Cruz, C.

    2016-07-01

    Copper (I) selenide thin films with orthorhombic and cubic structure were deposited on glass substrates by using the chemical bath deposition technique. The effects of the solution pH on the films growth and subsequently the structural, optical and electrical properties of the films were studied. Films with orthorhombic structure were obtained from baths wherein both metal complex and hydroxide coexist; while films with cubic structure were obtained from baths where the metal hydroxide there is no present. The structural modifications are accompanied by changes in bandgap energy, morphology and electrical resistivity of the films.

  18. Effects of pH value and coagulant dosage on contact filtration of humic substances

    Institute of Scientific and Technical Information of China (English)

    蒋绍阶; 刘宗源; 梁建军

    2009-01-01

    Humic substances (especially fulvic acid (FA)) are the major components of natural organic matter (NOM) that widely exist in drinking water source. Due to their potential effects on public health,the removal of FA was one of the main concerns during the water treatment. Therefore,the contact filtration of FA by using aluminum sulfate as coagulant on the basis of jar tests was carried out. The effects of pH and coagulant dosage on the FA removal and the development of head loss were investigated. The results show that the range of pH value during the FA contact filtration can be effectively influenced by the dosage of aluminum sulfate,and the high aluminum sulfate dosage is an important factor that can result in early filter breakthrough. The FA filtration by deep-bed filtration or by membrane filtration is sometimes disparate under the same coagulation conditions. The choice of aluminum sulfate dosage by the method of membrane filtration,i.e. the "true color measurement",may result in inappropriate filter run,whereas it can be determined with simple jar tests by observing the formation of micro flocs. Considering the effects of pH on aluminum sulfate dosage and FA removal,the optimal pH range of 5.5?6.0 is suggested.

  19. The chemical substances and the neurotoxic effect on workers

    Directory of Open Access Journals (Sweden)

    Rosa Morales

    2013-12-01

    Full Text Available (Received: 2013/10/02 - Accepted: 2013/12/13Tens of thousands of workers are exposed to pollution by the neurotoxicity found in their different workplaces, small businesses, handcrafting industries and even at home. The problem gets worst due to the lack of information on the risks posed by these substances and the safety controls to be taken during its use, on the other hand, the overconfidence that exists about the abstraction of this danger when it comes to the exposure to small doses of toxicity by ignoring the cumulative effects of these substances every time they enter the body. In Ecuador, nowadays there are few studies that distinguish this exposure to these substances, and none on the incidence of the neurotoxic syndrome, considering it an important field to research. Workers who are exposed to chemical toxic substances are now associated to adverse human health effects, due to its aggression and because of the worker´s safety before breaking health directly. They enter the body by the respiratory, dermal or digestive system, and show a great affinity with the body grease so that it accumulates and affects the different organs, tissues, the central nervous system, the bone marrow and liver. Immediate acute and chronic long-term effects were detected due to the intensity and duration of the exposure. Some symptoms include drowsiness, loss of appetite, headache, dizziness, depression, anxiety, nervousness, fatigue, irritability, memory problems, mental sluggishness, apathy, seizures, motor skills incoordination, genetic alterations, among others.

  20. Removal of humic substances by biosorption

    Institute of Scientific and Technical Information of China (English)

    VUKOVI(C) Marija; DOMANOVAC Tomislav; BRI(S)KI Felicita

    2008-01-01

    Fungal pellets of Aspergillus niger 405, Aspergillus ustus 326, and Stachybotrys sp. 1103 were used for the removal of humic substances from aqueous solutions. Batchwise biosorption, carried out at pH 6 and 25℃, was monitored spectrophotometrically and the process described with Freundlich's model. Calculated sorption coefficients K/and n showed that A. niger exhibited the highest efficiency. A good match between the model and experimental data and a high correlation coefficient (R2) pointed out to judicious choice of the mechanism for removal of humic substances from the reaction medium. The sorption rate constants (k) for A. ustus and Stachybotrys sp. were almost equal, however higher than that for A. niger. Comparison of test results with the simulated ones demonstrated the applicability of the designed kinetic model for removal of humic substances from natural water by biosorption with fungal pellets. Different morphological structure of the examined fungal pellets showed that faster sorption does not imply the most efficient removal of humic substances. Desorption of humic substances from fungal pellets was complete, rapid, and yielded uniform results.

  1. Relative abundance of chemical forms of Cu(II) and Cd(II) on soybean roots as influenced by pH, cations and organic acids

    Science.gov (United States)

    Zhou, Qin; Liu, Zhao-Dong; Liu, Yuan; Jiang, Jun; Xu, Ren-Kou

    2016-11-01

    Little information is available on chemical forms of heavy metals on integrate plant roots. KNO3 (1 M), 0.05M EDTA at pH6 and 0.01 M HCl were used sequentially to extract the exchangeable, complexed and precipitated forms of Cu(II) and Cd(II) from soybean roots and then to investigate chemical form distribution of Cu(II) and Cd(II) on soybean roots. Cu(II) and Cd(II) adsorbed on soybean roots were mainly exchangeable form, followed by complexed form, while their precipitated forms were very low under acidic conditions. Soybean roots had a higher adsorption affinity to Cu(II) than Cd(II), leading to higher toxic of Cu(II) than Cd(II). An increase in solution pH increased negative charge on soybean and thus increased exchangeable Cu(II) and Cd(II) on the roots. Ca2+, Mg2+ and NH4+ reduced exchangeable Cu(II) and Cd(II) levels on soybean roots and these cations showed greater effects on Cd(II) than Cu(II) due to greater adsorption affinity of the roots to Cu(II) than Cd(II). L-malic and citric acids decreased exchangeable and complexed Cu(II) on soybean roots. In conclusion, Cu(II) and Cd(II) mainly existed as exchangeable and complexed forms on soybean roots. Ca2+ and Mg2+ cations and citric and L-malic acids can potentially alleviate Cu(II) and Cd(II) toxicity to plants.

  2. Chemical leasing business models: a contribution to the effective risk management of chemical substances.

    Science.gov (United States)

    Ohl, Cornelia; Moser, Frank

    2007-08-01

    Chemicals indisputably contribute greatly to the well-being of modern societies. Apart from such benefits, however, chemicals often pose serious threats to human health and the environment when improperly handled. Therefore, the European Commission has proposed a regulatory framework for the Registration, Evaluation and Authorization of Chemicals (REACH) that requires companies using chemicals to gather pertinent information on the properties of these substances. In this article, we argue that the crucial aspect of this information management may be the honesty and accuracy of the transfer of relevant knowledge from the producer of a chemical to its user. This may be particularly true if the application of potentially hazardous chemicals is not part of the user's core competency. Against this background, we maintain that the traditional sales concept provides no incentives for transferring this knowledge. The reason is that increased user knowledge of a chemical's properties may raise the efficiency of its application. That is, excessive and unnecessary usage will be eliminated. This, in turn, would lower the amount of chemicals sold and in competitive markets directly decrease profits of the producer. Through the introduction of chemical leasing business models, we attempt to present a strategy to overcome the incentive structure of classical sales models, which is counterproductive for the transfer of knowledge. By introducing two models (a Model A that differs least and a Model B that differs most from traditional sales concepts), we demonstrate that chemical leasing business models are capable of accomplishing the goal of Registration, Evaluation and Authorization of Chemicals: to effectively manage the risk of chemicals by reducing the total quantity of chemicals used, either by a transfer of applicable knowledge from the lessor to the lessee (Model A) or by efficient application of the chemical by the lessor him/herself (Model B).

  3. A chemical-biological similarity-based grouping of complex substances as a prototype approach for evaluating chemical alternatives.

    Science.gov (United States)

    Grimm, Fabian A; Iwata, Yasuhiro; Sirenko, Oksana; Chappell, Grace A; Wright, Fred A; Reif, David M; Braisted, John; Gerhold, David L; Yeakley, Joanne M; Shepard, Peter; Seligmann, Bruce; Roy, Tim; Boogaard, Peter J; Ketelslegers, Hans B; Rohde, Arlean M; Rusyn, Ivan

    2016-08-21

    Comparative assessment of potential human health impacts is a critical step in evaluating both chemical alternatives and existing products on the market. Most alternatives assessments are conducted on a chemical-by-chemical basis and it is seldom acknowledged that humans are exposed to complex products, not individual substances. Indeed, substances of Unknown or Variable composition, Complex reaction products, and Biological materials (UVCBs) are ubiquitous in commerce yet they present a major challenge for registration and health assessments. Here, we present a comprehensive experimental and computational approach to categorize UVCBs according to global similarities in their bioactivity using a suite of in vitro models. We used petroleum substances, an important group of UVCBs which are grouped for regulatory approval and read-across primarily on physico-chemical properties and the manufacturing process, and only partially based on toxicity data, as a case study. We exposed induced pluripotent stem cell-derived cardiomyocytes and hepatocytes to DMSO-soluble extracts of 21 petroleum substances from five product groups. Concentration-response data from high-content imaging in cardiomyocytes and hepatocytes, as well as targeted high-throughput transcriptomic analysis of the hepatocytes, revealed distinct groups of petroleum substances. Data integration showed that bioactivity profiling affords clustering of petroleum substances in a manner similar to the manufacturing process-based categories. Moreover, we observed a high degree of correlation between bioactivity profiles and physico-chemical properties, as well as improved groupings when chemical and biological data were combined. Altogether, we demonstrate how novel in vitro screening approaches can be effectively utilized in combination with physico-chemical characteristics to group complex substances and enable read-across. This approach allows for rapid and scientifically-informed evaluation of health impacts of

  4. Data showing chemical compositions of the essential oils of the leaves of Cymbopogon citratus obtained by varying pH of the extraction medium.

    Science.gov (United States)

    Ajayi, E O; Sadimenko, A P; Afolayan, A J

    2016-09-01

    This article describes the various chemical components as obtained from the oils in the leaves of Cymbopogon citratus using hydrodistillation and solvent-free microwave extraction methods. Furthermore, extractions of the oils were also carried out with a slight in pH variation and compared, "GC-MS evaluation of C. citratus (DC) Stapf oil obtained using modified hydrodistillation and microwave extraction methods" (Ajayi et al., 2016 [1]). The current article contains one table exhibiting a list of compounds in the four different methods of extraction. Comparative studies amongst the various methods of extraction are highlighted in the table.

  5. Effect of pH and dissociation on the fate and exposure of ionizable chemicals

    DEFF Research Database (Denmark)

    Franco, Antonio; Trapp, Stefan

    2010-01-01

    Ionizable organic chemicals comprise an important fraction of pharmaceuticals, pesticides as well as industrial chemicals. It has been estimated that 33% of the preregistered REACH substances is mostly ionized at pH 7. To extend the appliccability of existing exposure models, a Multimedia Activity...... parameters. The sensitivity analysis showed that the parameters describing ionization, pH and the dissociation constant (pKa), are among the most sensitive model parameters. The uncertainty analysis, however, indicated that these parameters are not the major source of uncertainty, which statistically...... justifies the use of species-specific models for ionics. The water content in air is a sensitive parameter for the PEC in air of molecules with negligible air-water partition coefficient, such as ions. The uncertainty of the QSARs for solid-water sorption significantly affects the PECs in soils...

  6. Precipitation and ultimate pH effect on chemical and gelation properties of protein prepared by isoelectric solubilization/precipitation process from pale, soft, exudative (PSE)-like chicken breast meat.

    Science.gov (United States)

    Zhao, X; Xing, T; Chen, X; Han, M-Y; Li, X; Xu, X-L; Zhou, G-H

    2016-11-11

    Pale, soft, exudative (PSE)-like chicken breast is considered deteriorated raw material in the poultry meat industry that has inferior processing ability. The chemical and gelation properties of PSE-like chicken breast meat paste were studied. These pastes were prepared by the pH adjustment method and protein isolation using the isoelectric solubilization/precipitation (ISP) process from PSE-like chicken meat. The ISP-isolated samples were solubilized at pH 11.0 and recovered at pH 5.5 and 6.2. The ultimate pH of the ISP-isolated protein and meat paste was adjusted to 6.2 and 7.0. The ultimate pH in this article referred to the final pH of the extracted protein and meat paste. Higher reactive sulfhydryl content and surface hydrophobicity were found in the precipitation at pH 6.2 than at pH 5.5. However, various ultimate pH values showed no significant influence on the surface hydrophobicity. The hardness of gel, as measured by textural profile analysis, was improved using 6.2 as the precipitation pH compared with pH 5.5. The viscoelastic modulus (G(')) of gel pastes prior to the thermal gelation was higher with ISP treatment. However, lower G(') was seen after thermal gelation compared with the control. Dynamic rheological measurement demonstrated a different gel-forming mechanism for protein precipitated at pH values of 5.5 and 6.2 compared with the meat paste. The cooking loss showed that the recovered protein failed to form a gel with good water-retention capacity unless the ultimate pH was adjusted to 7.0. Gels made from protein extracted by the ISP method had higher yellowness and lower redness values, probably due to protein denaturation. Precipitation at pH 6.2 formed a harder gel with lower water-retention ability than that at pH 5.5, and this result was possibly due to higher surface hydrophobicity and S-S bridge formation. Overall, network characteristics of ISP-treated protein gels were strongly dependent on precipitation pH and ultimate pH.

  7. Method for warning of radiological and chemical substances using detection paints on a vehicle surface

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA

    2012-03-13

    A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

  8. Food contact substances and chemicals of concern: a comparison of inventories.

    Science.gov (United States)

    Geueke, Birgit; Wagner, Charlotte C; Muncke, Jane

    2014-01-01

    Food contact materials (FCMs) are intended to be in contact with food during production, handling or storage. They are one possible source of food contamination, because chemicals may migrate from the material into the food. More than 6000 FCM substances appear on regulatory or non-regulatory lists. Some of these substances have been linked to chronic diseases, whilst many others lack (sufficient) toxicological evaluation. The aim of this study was the identification of known FCM substances that are also considered to be chemicals of concern (COCs). The investigation was based on the following three FCM lists: (1) the 2013 Pew Charitable Trusts database of direct and indirect food additives legally used in the United States (or Pew for short), (2) the current European Union-wide positive list for plastic FCMs (or Union for short), and (3) the 2011 non-plastics FCM substances database published by EFSA (or ESCO for short). These three lists of food contact substances (Pew, Union, ESCO lists) were compared with the Substitute It Now! (SIN) list 2.1, which includes chemicals fulfilling the criteria listed in article 57 of Regulation (EC) No. 1907/2006 (REACH), and the TEDX database on endocrine-disrupting chemicals. A total of 175 chemicals used in FCMs were identified as COCs. Fifty-four substances present on the SIN list 2.1 were also found on the Union and/or ESCO lists. Twenty-one of those 54 substances are candidates for Substances of Very High Concern (SVHC), and six of these 21 are listed on Annex XIV and intended for phase-out under REACH. In conclusion, COCs used in FCMs were identified and information about their applications, regulatory status and potential hazards was included.

  9. 77 FR 75390 - Significant New Use Rules on Certain Chemical Substances

    Science.gov (United States)

    2012-12-20

    ..., automotive coating, wastewater treatment, solid waste. CAS number: 1392095-50-9. Chemical substance... AGENCY 40 CFR Parts 9 and 721 RIN 2070-AB27 Significant New Use Rules on Certain Chemical Substances... significant new use rules (SNURs) under ] the Toxic Substances Control Act (TSCA) for 9 chemical...

  10. How accurate are the European Union's classifications of chemical substances.

    Science.gov (United States)

    Rudén, Christina; Hansson, Sven Ove

    2003-09-30

    The European Commission has decided on harmonized classifications for a large number of individual chemicals according to its own directive for classification and labeling of dangerous substances. We have compared the harmonized classifications for acute oral toxicity to the acute oral toxicity data available in the RTECS database. Of the 992 substances eligible for this comparison, 15% were assigned a too low danger class and 8% a too high danger class according to the RTECS data. Due to insufficient transparency-scientific documentations of the classification decisions are not available-the causes of this discrepancy can only be hypothesized. We propose that the scientific motivations of future classifications be published and that the apparent over- and underclassifications in the present system be either explained or rectified, according to what are the facts in the matter.

  11. Influence of pH on Chemical Forms of Phosphate Adfsorbed on Gothite Surfaces

    Institute of Scientific and Technical Information of China (English)

    LIUFAN; WANGDIAN-FEN; 等

    1995-01-01

    Chemical forms of the phosphate adsorbed on goethite surfaces and characteristics of the coordinate groups which exchange with P on goethite surfaces in solutions with different pll values were investigated.Results showed that the chemical forms of P on goethite surfaces changed from the dominance of monodentate corrdination to that of bidentate one with increasing pH of the solution.By influencing types of phosphate ions in solutions,pH affected the chemical forms of P on goethite surfaces,The amount of OH- displaced by phosphae on goethite surfaces was the most at pH 7.0,the second at pH 9.0,and the least at pH 4.5.

  12. Guidelines of Italian CCTN for classification of some effects of chemical substances

    Energy Technology Data Exchange (ETDEWEB)

    Mucci, N. [ISPESL, Monteporzio Catone, Rome (Italy). Dip. di Medicina del Lavoro; Camoni, I. [Ist. Superiore di Sanita`, Rome (Italy). Lab. di Tossicologia Applicata

    1996-03-01

    Definitions of the categories and the criteria for the classification of chemical substances on the basis of their potential carcinogenic, mutagenic and toxic-reproductive effects, elaborated by the Italian National Advisory Toxicological Committee (CCTN) in 1994. Besides all the allocations effected by the CCTN in the period 1977-1995 are reported, updated according to these criteria.

  13. The Matthew effect in environmental science publication: A bibliometric analysis of chemical substances in journal articles

    Directory of Open Access Journals (Sweden)

    Grandjean Philippe

    2011-11-01

    Full Text Available Abstract Background While environmental research addresses scientific questions of possible societal relevance, it is unclear to what degree research focuses on environmental chemicals in need of documentation for risk assessment purposes. Methods In a bibliometric analysis, we used SciFinder to extract Chemical Abstract Service (CAS numbers for chemicals addressed by publications in the 78 major environmental science journals during 2000-2009. The Web of Science was used to conduct title searches to determine long-term trends for prominent substances and substances considered in need of research attention. Results The 119,636 journal articles found had 760,056 CAS number links during 2000-2009. The top-20 environmental chemicals consisted of metals, (chlorinated biphenyls, polyaromatic hydrocarbons, benzene, and ethanol and contributed 12% toward the total number of links- Each of the top-20 substances was covered by 2,000-10,000 articles during the decade. The numbers for the 10-year period were similar to the total numbers of pre-2000 articles on the same chemicals. However, substances considered a high priority from a regulatory viewpoint, due to lack of documentation, showed very low publication rates. The persistence in the scientific literature of the top-20 chemicals was only weakly related to their publication in journals with a high impact factor, but some substances achieved high citation rates. Conclusions The persistence of some environmental chemicals in the scientific literature may be due to a 'Matthew' principle of maintaining prominence for the very reason of having been well researched. Such bias detracts from the societal needs for documentation on less well known environmental hazards, and it may also impact negatively on the potentials for innovation and discovery in research.

  14. Substance Abuse by Anesthesiology Residents.

    Science.gov (United States)

    Lutsky, Irving; And Others

    1991-01-01

    The analysis of 183 responses to a survey of former anesthesiology residents of the Medical College of Wisconsin found that 29 had been self-administered problematic substance abusers during their residencies, 23 had been alcohol dependent, and 6 had been drug dependent. More than 85 percent of respondents considered the drug policy information…

  15. New Concepts in the Evaluation of Biodegradation/Persistence of Chemical Substances using a Microbial Inoculum

    Directory of Open Access Journals (Sweden)

    Gérald eThouand

    2011-08-01

    Full Text Available The European REACH Regulation (Registration, Evaluation, Authorization of CHemical substances implies, among other things, the evaluation of the biodegradability of chemical substances produced by industry. A large set of test methods is available including detailed information on the appropriate conditions for testing. However, the inoculum used for these tests constitutes a ‘black box’. If biodegradation is achievable from the growth of a small group of specific microbial species with the substance as the only carbon source, the result of the test depends largely on the cell density of this group at ‘time zero’. If these species are relatively rare in an inoculum that is normally used, the likelihood of inoculating a test with sufficient specific cells becomes a matter of probability. Normally this probability increases with total cell density and with the diversity of species in the inoculum. Furthermore the history of the inoculum e.g. a possible pre-exposure to the test substance or similar substances will have a significant influence on the probability. A high probability can be expected for substances that are widely used and regularly released into the environment, whereas a low probability can be expected for new xenobio

  16. Influence of pH during chemical weathering of bricks: Long term exposure

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge; Charola, A. Elena

    2016-01-01

    Within the framework of environmental weathering of bricks in historical structures, this study focuses on new bricks currently employed for restoration projects. The bricks were subjected to an accelerated chemical weathering test by immersion in solutions with pH ranging from 3 to 13 for differ......Within the framework of environmental weathering of bricks in historical structures, this study focuses on new bricks currently employed for restoration projects. The bricks were subjected to an accelerated chemical weathering test by immersion in solutions with pH ranging from 3 to 13...... for different lengths of time up to 432 days, data to 288 days are presented since the project is still ongoing. The study analyzed the changes of pH induced in the solutions by the presence of the bricks (this also served to adjust the pH to the intended value), as well as the concentration of various ions...

  17. Classification of Chemical Substances Using Particulate Representations of Matter: An Analysis of Student Thinking

    Science.gov (United States)

    Stains, Marilyne; Talanquer, Vicente

    2007-01-01

    We applied a mixed-method research design to investigate the patterns of reasoning used by novice undergraduate chemistry students to classify chemical substances as elements, compounds, or mixtures based on their particulate representations. We were interested in the identification of the representational features that students use to build a…

  18. 78 FR 64016 - Importer of Controlled Substances, Notice of Registration, Boehringer Ingelheim Chemicals

    Science.gov (United States)

    2013-10-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Drug Enforcement Administration Importer of Controlled Substances, Notice of Registration, Boehringer Ingelheim Chemicals By Notice dated June 18, 2013, and published in the Federal Register on July 1, 2013, 78 FR...

  19. 78 FR 64018 - Manufacturer of Controlled Substances; Notice of Registration; Boehringer Ingelheim Chemicals, Inc.

    Science.gov (United States)

    2013-10-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Registration; Boehringer Ingelheim Chemicals, Inc. By Notice dated June 18, 2013, and published in the Federal Register on July 1, 2013, 78...

  20. 77 FR 67397 - Importer Of Controlled Substances; Notice of Registration; Boehringer Ingelheim Chemicals, Inc.

    Science.gov (United States)

    2012-11-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Drug Enforcement Administration Importer Of Controlled Substances; Notice of Registration; Boehringer Ingelheim Chemicals, Inc. By Notice dated July 17, 2012, and published in the Federal Register on July 26, 2012, 77...

  1. 77 FR 70188 - Manufacturer of Controlled Substances; Notice of Registration; Boehringer Ingelheim Chemicals, Inc.

    Science.gov (United States)

    2012-11-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Registration; Boehringer Ingelheim Chemicals, Inc. By Notice dated July 17, 2012, and published in the Federal Register on July 26, 2012, 77...

  2. Stability Evaluation and Chemical Type of Bioactive Substances Produced by Actinomyces Strain A01%放线菌A01发酵液中活性成分稳定性及其化学类型

    Institute of Scientific and Technical Information of China (English)

    卢彩鸽; 刘伟成; 刘霆; 王慧敏; 刘德文; 裘季燕

    2009-01-01

    The physical-chemical characteristics and chemical type of the bioactive substance obtained from the fermentation broth of actinomyces strain A01 were studied. The bioactive substance showed high inhibitory activity to many plant pathogenic fungi such as Botrytis cirwrea and Fusarium spp. . The ion characteristics and chemical type identification of the antibiotics were analysized by paper chromatogra-phy, paper electrophoresis and UV absorption spectrum. The results showed that the bioactive substance in neutral and alkaline environment was relatively stable. Its relative activity remained at 81.19% when treated 30 min under 100 ℃. It was not sensitive to protease, but more sensitive to UV. UV spectrum showed that the active compound presented three typical absorbance peaks at 291 nm, 305 nm and 319 nm, which is the typical characteristic of conjugated polyene chemicals. Combining the results of paper chromatography and paper electrophoresis, we may infer that the active substance produced by strain A01 could be a tetar-alkene neutral antibiotic. This study provides valuable information for the purification of the active substance and its further agricultural application.%本文研究了对多种植物病原真菌均表现出良好抑菌活性的菌株A01发酵液中活性成分对热、酸碱、蛋白酶及紫外线的稳定性,并采用pH纸层析、捷克氏八溶剂系统纸层析、纸电泳和紫外波长扫描等方法对其进行了化学类型的早期鉴别.结果表明,菌株A01发酵液中活性物质在中性及偏碱性环境中比较稳定;100℃处理30min相对活性还保持在81.19%;对蛋白酶不敏感,但对紫外线较敏感;紫外扫描在291、305和319nm处有典型共轭四烯生色基团的吸收峰,结合纸层析和纸电泳结果,表明该活性物质归为四烯类中性抗生素.

  3. International comparison of criteria for evaluating sensitization of PRTR-designated chemical substances.

    Science.gov (United States)

    Murakami, Tomoe; Oyama, Tsunehiro; Isse, Toyohi; Ogawa, Masanori; Sugie, Takuya; Kawamoto, Toshihiro

    2007-03-01

    In this study, we aim to compare the criteria for sensitizers among national organizations in various countries and international organizations, and to specify whether each Pollutant Release and Transfer Register (PRTR)-designated chemical substance is a sensitizer by each organization. The definition of sensitizing chemicals and the designation of respective sensitizers according to the PRTR law, Japan Society for Occupational Health (JSOH), American Conference of Governmental Industrial Hygienists (ACGIH), European Union (EU), and Deutsche Forschungsgemeinshaft (DFG) were studied. Of the 435 PRTR-designated chemical substances, 15 are listed as sensitizers according to the PRTR law, 16 as sensitizers of the airway and 21 as sensitizers of the skin by JSOH, 12 as sensitizers (no discrimination) by ACGIH, 19 (airway) and 85 (skin) by EU, and 15 (airway) and 43 (skin) by DFG. Only 9 substances were designated as sensitizers by all these organizations. The variation in the designation of sensitizers is accounted for by the differences in the classification criteria and grouping of chemical substances. JSOH limits the definition of sensitizers to substances that induce allergic reactions in humans and uses only human data. Other organizations utilize not only human evidence but also appropriate animal tests. In addition, EU designates an isocyanate as a sensitizer except those for which there is evidence showing that they do not cause respiratory sensitivity. The worldwide enforcement of the globally harmonized system (GHS) of classification and labeling of chemicals could promote not only the consistent designation of sensitizers among national and international organizations, but also the development of testing guidelines and classification criteria for mixtures.

  4. 31 CFR 598.309 - Narcotic drug; controlled substance; listed chemical.

    Science.gov (United States)

    2010-07-01

    ...; listed chemical. 598.309 Section 598.309 Money and Finance: Treasury Regulations Relating to Money and... SANCTIONS REGULATIONS General Definitions § 598.309 Narcotic drug; controlled substance; listed chemical. The terms narcotic drug, controlled substance, and listed chemical have the meanings given those...

  5. What is this Substance? What Makes it Different? Mapping Progression in Students' Assumptions about Chemical Identity

    Science.gov (United States)

    Ngai, Courtney; Sevian, Hannah; Talanquer, Vicente

    2014-09-01

    Given the diversity of materials in our surroundings, one should expect scientifically literate citizens to have a basic understanding of the core ideas and practices used to analyze chemical substances. In this article, we use the term 'chemical identity' to encapsulate the assumptions, knowledge, and practices upon which chemical analysis relies. We conceive chemical identity as a core crosscutting disciplinary concept which can bring coherence and relevance to chemistry curricula at all educational levels, primary through tertiary. Although chemical identity is not a concept explicitly addressed by traditional chemistry curricula, its understanding can be expected to evolve as students are asked to recognize different types of substances and explore their properties. The goal of this contribution is to characterize students' assumptions about factors that determine chemical identity and to map how core assumptions change with training in the discipline. Our work is based on the review and critical analysis of existing research findings on students' alternative conceptions in chemistry education, and historical and philosophical analyses of chemistry. From this perspective, our analysis contributes to the growing body of research in the area of learning progressions. In particular, it reveals areas in which our understanding of students' ideas about chemical identity is quite robust, but also highlights the existence of major knowledge gaps that should be filled in to better foster student understanding. We provide suggestions in this area and discuss implications for the teaching of chemistry.

  6. 77 FR 18752 - Benzidine-Based Chemical Substances; Di-n

    Science.gov (United States)

    2012-03-28

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 721 RIN 2070-AJ73 Benzidine-Based Chemical Substances; Di-n-pentyl phthalate (DnPP...-based chemical substances; a SNUR for di-n-pentyl phthalate (DnPP) (1,2-benzenedicarboxylic acid,...

  7. STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES : INDUCTION OF TRANSFORMATION BY A DESOXYRIBONUCLEIC ACID FRACTION ISOLATED FROM PNEUMOCOCCUS TYPE III.

    Science.gov (United States)

    Avery, O T; Macleod, C M; McCarty, M

    1944-02-01

    1. From Type III pneumococci a biologically active fraction has been isolated in highly purified form which in exceedingly minute amounts is capable under appropriate cultural conditions of inducing the transformation of unencapsulated R variants of Pneumococcus Type II into fully encapsulated cells of the same specific type as that of the heat-killed microorganisms from which the inducing material was recovered. 2. Methods for the isolation and purification of the active transforming material are described. 3. The data obtained by chemical, enzymatic, and serological analyses together with the results of preliminary studies by electrophoresis, ultracentrifugation, and ultraviolet spectroscopy indicate that, within the limits of the methods, the active fraction contains no demonstrable protein, unbound lipid, or serologically reactive polysaccharide and consists principally, if not solely, of a highly polymerized, viscous form of desoxyribonucleic acid. 4. Evidence is presented that the chemically induced alterations in cellular structure and function are predictable, type-specific, and transmissible in series. The various hypotheses that have been advanced concerning the nature of these changes are reviewed.

  8. Approaches to substance abuse in Cuba: Ricardo A. González MD PhD DrSc. Psychiatrist and consulting professor, Eduardo B. Ordaz Psychiatric Hospital, Havana. Interviewed by Christina Mills.

    Science.gov (United States)

    González, Ricardo

    2013-10-01

    For over 40 years, he has done one of the most difficult jobs in medicine; 4000 of his patients are among those many might write off as "lost causes." Yet he radiates optimism, his stories and experience reflecting a belief in the human potential to change and grow and a vocation to help his patients do so. Now an internationally recognized expert on addictions, in 1976 Dr González founded Cuba's first patient service for substance abuse at the Eduardo B. Ordaz Psychiatric Hospital in Havana, a program he directed until last year. It is now the national reference center for another 17 such programs, two more in Havana and one in every other Cuban province. In addition, it serves as a model for treatment centers catering to international patients (undoubtedly the most well known among them Diego Maradona, the Argentine soccer star): two in Holguin Province and one in Santiago Province, with another being developed at Las Praderas International Health Center in Havana. Dr González's 25 books on psychiatry, medical ethics and addictions attest to a prolific career in research and practice. Today, he continues to work "from retirement" as consulting professor and psychiatrist in the addiction service he founded, and also chairs Cuba's National Medical Ethics Commission. In this interview, Dr González shares insights from his years of experience addressing substance abuse, as well as on repercussions and management of such conditions in Cuba.

  9. Mechanisms of humic substances degradation by fungi

    Science.gov (United States)

    Chen, Y.; Hadar, Y.; Grinhut, T.

    2012-04-01

    Humic substances (HS) are formed by secondary synthesis reactions (humification) during the decay process and transformation of biomolecules originating from plants and other dead organisms. In nature, HS are extremely resistant to biological degradation. Thus, these substances are major components in the C cycle and in the biosphere and therefore, the understanding of the process leading to their formation and transformation and degradation is vital. Fungi active in the decomposition process of HS include mainly ascomycetes and basidiomycetes that are common in the upper layer of forest and grassland soils. Many basidiomycetes belong to the white-rot fungi (WRF) and litter-decomposing fungi (LDF). These fungi are considered to be the most efficient lignin degraders due to their nonspecific oxidizing enzymes: manganese peroxidase (MnP), lignin peroxidase (LiP) and laccase. Although bacteria dominate compost and participate in the turnover of HS, their ability to degrade stable macromolecules such as lignin and HS is limited. The overall objectives of this research were to corroborate biodegradation processes of HS by WRF. The specific objectives were: (i) To isolate, identify and characterize HS degrading WRF from biosolids (BS) compost; (ii) To study the biodegradation process of three types of HS, which differ in their structure, by WRF isolated from BS compost; and (iii) To investigate the mechanisms of HA degradation by WRF using two main approaches: (a) Study the physical and chemical analyses of the organic compounds obtained from direct fungal degradation of HA as well as elucidation of the relevant enzymatic reactions; and (b) Study the enzymatic and biochemical mechanisms involved during HA degradation. In order to study the capability of fungi to degrade HS, seventy fungal strains were isolated from biosolids (BS) compost. Two of the most active fungal species were identified based on rDNA sequences and designated Trametes sp. M23 and Phanerochaetesp., Y6

  10. Tenth anniversary of the Chemical Substances Act. 10 Jahre Chemikaliengesetz; Bilanz und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, J. (Umweltbundesamt, Berlin (Germany)); Arndt, R. (Bundesanstalt fuer Arbeitsschutz, Dortmund (Germany)); Bulling, W.B. (Bundesgesundheitsamt, Berlin (Germany)); Drescher, R.D. (Umweltbundesamt, Berlin (Germany)); Elstner, P. (Bundesgesundheitsamt, Berlin (Germany)); Heinemeyer, G. (Bundesgesundheitsamt, Berlin (Germany)); Kayser, D. (Bundesgesundheitsamt, Berlin (Germany)); Lange, A.W. (

    1992-11-01

    The chemical substances act is ten years old. These ten years have witnessed a stormy development in legislation on chemicals: what was new ground still at the beginning of the eighties, is now a vast area of law complemented by detailed individual regulations at the administrative level, firmly interlocked with the other areas of environmental law, and part of an overall concept for the safety of chemicals enjoying an international reputation. Currently, the chemical substances act is in a phase of inner consolidation and completion. This phase was ushered in by the proposed amendment of 1990, an amendment aimed to eliminate weak points on the basis of first experiences with the implementation of legal requirements existing under EC law. In the second part of this phase, revisions or completions which have meanwhile been effected or are being effected in community law must be integrated. Further legal regulations are to be expected in the area of prohibitions and restrictions. These are, so far, mainly attuned to individual cases and reactive in nature. Most important of all is the development of a uniform and appropriate catalogue of criteria. The aim must be to create the necessary boundary conditions for the use of chemicals in our industrial society ensuring sustainable, environmentally compatible development for a long time to come. (orig./HSCH)

  11. Migration of humus substances from soil to water and the main chemical reaction (in different natural zone of Russian Federation)

    Science.gov (United States)

    Dinu, Marina; Moiseenko, Tatiana; Gashkina, Natalia; Kremleva, Tatiana

    2014-05-01

    Migration of humus substances (HS) from soil to natural water has zonal specificity. Soil HS of different natural areas characterized by specific functional features, different molecular weight (MW) distribution and other physicochemical parameters. Due to the specifics of formation, waters in Russia widely distributed colored water with high concentrations of humus substances. HS involved in many chemical reactions in natural waters/soil. The most important: 1.Dissociation, association and same destruction - reactions are particularly important for assessing the acidification of natural waters 2.Complexation with metals - reactions reduce the toxicity of most metals We researched the differences in the qualitative and quantitative composition of soil HS catchment and HS in natural waters of some climatic zones. Samples were taking: the mixing zone forests (sod-podzolic soils) and the steppe zone (black earth) European Territory of Russia (ETR). In order to examine process of migration humus substances from soil to water have been performed HPLC, IR spectrometry and mass spectrometry analyses. We funded change of HS structure and MW in soil/water. The water HS of the mixed forest characterized as same ratio of functional groups as soil catchments. The molecular weight distribution in water - predominate medium (500-1000 kDa), and low molecular weight fractions (soils. In HS catchment soils predominate nitrogen- and sulfur- functional group and in HS water - nitrogen-, oxygen- functional group. The molecular weight of HS in natural waters is macromolecular fractions ( > 1000 kDa). For evaluating of the acidification effect on structures of humic substances in natural waters/soil we used date of survey more than 300 lakes on the European Russia (ETP) and Western Siberia (WS) for assessing chemical parameters. Chemical analyzes of water samples were performed by a single method in accordance with the recommendations ICP-Water report 105/2010, 2010. We researched HS

  12. A New Venture in Graduate Education: Co-Op Ph.D. Programme in Chemical Engineering.

    Science.gov (United States)

    Fahidy, Thomas Z.

    1980-01-01

    Describes a cooperative Ph.D. program at the University of Waterloo, Ontario, Canada, in which industrial and governmental employers participate with the Department of Chemical Engineering in training chemical engineers. (CS)

  13. Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters.

    Science.gov (United States)

    Sjöstedt, Carin S; Gustafsson, Jon Petter; Köhler, Stephan J

    2010-11-15

    A consistent chemical equilibrium model that calculates pH from charge balance constraints and aluminum and iron speciation in the presence of natural organic matter is presented. The model requires input data for total aluminum, iron, organic carbon, fluoride, sulfate, and charge balance ANC. The model is calibrated to pH measurements (n = 322) by adjusting the fraction of active organic matter only, which results in an error of pH prediction on average below 0.2 pH units. The small systematic discrepancy between the analytical results for the monomeric aluminum fractionation and the model results is corrected for separately for two different fractionation techniques (n = 499) and validated on a large number (n = 3419) of geographically widely spread samples all over Sweden. The resulting average error for inorganic monomeric aluminum is around 1 µM. In its present form the model is the first internally consistent modeling approach for Sweden and may now be used as a tool for environmental quality management. Soil gibbsite with a log *Ks of 8.29 at 25°C together with a pH dependent loading function that uses molar Al/C ratios describes the amount of aluminum in solution in the presence of organic matter if the pH is roughly above 6.0.

  14. 盐度和pH对底栖硅藻胞外多聚物的影响%Production of extracellular polymeric substances (EPS) by benthic diatom: effect of salinity and pH

    Institute of Scientific and Technical Information of China (English)

    陈长平; 高亚辉; 林鹏

    2006-01-01

    研究了盐度和pH值对底栖硅藻新月简柱藻(Cylindrotheca closterium(Her.)Reimann et Lewin)增殖、蛋白质含量和胞外多聚物(Extracellular Polymeric Substances,EPS)的影响.结果表明新月筒柱藻最适生长的盐度和pH值分别是15和8,属半咸水性生活.高盐度(>15)和低pH值(<pH8)的胁迫促进了胞外多聚物(EPS)的积累,说明EPS的存在可能有利于缓解外界的不利条件.胶体EPS和附着EPS对盐度和pH值的响应不同,反应了两种EPS功能上的差异.盐度和pH值对新月筒柱藻胞内碳水化合物的影响不显著.

  15. Dangerous chemical substances – Tools supporting occupational risk assessment

    OpenAIRE

    Elżbieta Dobrzyńska; Małgorzata Pośniak

    2014-01-01

    The assessment of risk associated with exposure to chemicals in the work environment is a task that still poses a lot of difficulties for the employers. At the same time the probability of adverse health effects faced by an employee as a result of such risks, and the related employer’s material losses should motivate employers to seek effective solutions aimed at assessing the risks and controling them to an acceptable level by the application of appropriate preventive measures. The paper pre...

  16. The ISS National Inventory of Chemical Substances (INSC).

    Science.gov (United States)

    Binetti, Roberto; Costamagna, Francesca Marina; Ceccarelli, Federica; D'angiolini, Antonella; Fabri, Alessandra; Riva, Giovanni; Satalia, Susanna; Marcello, Ida

    2008-01-01

    The INSC (Inventario Nazionale delle Sostanze Chimiche), a factual data bank, produced by Istituto Superiore di Sanità (ISS), consists of an electronic tool on chemical information developed for routine and emergency purposes. Historical background, current status and future perspectives of INSC are discussed. The structure and the feature of INSC are briefly examined. Aspects of information retrieval and the criteria for inclusion of data and priority selection are also considered.

  17. Risk Assessment of New Chemical Substances. Applicability of EXAMS II as an advanced Water Quality Model

    NARCIS (Netherlands)

    de Nijs ACM; Burns LA

    1990-01-01

    In the cluster project "Risk Assessment of New Chemical Substances methods are developed to systematically predict and assess the hazards for man and environment. After the basic screening of a substance has been carried out, a more extensive study can be performed using models adhered to the

  18. Dangerous chemical substances – Tools supporting occupational risk assessment

    Directory of Open Access Journals (Sweden)

    Elżbieta Dobrzyńska

    2014-10-01

    Full Text Available The assessment of risk associated with exposure to chemicals in the work environment is a task that still poses a lot of difficulties for the employers. At the same time the probability of adverse health effects faced by an employee as a result of such risks, and the related employer’s material losses should motivate employers to seek effective solutions aimed at assessing the risks and controling them to an acceptable level by the application of appropriate preventive measures. The paper presents examples of tools to assist the employer in the risk assessment associated with the presence of chemical agents in the workplace. Examples of guides, manuals, checklists and various interactive tools, developed in Poland and other European Union (EU countries, as well as in countries outside the EU and international organizations are described. These tools have been developed to meet the current requirements of the law and allow a rough estimation of chemical risk and based on these estimates take further steps to improve working conditions and safety. Med Pr 2014;65(5:683–692

  19. 75 FR 57169 - Significant New Use Rules on Certain Chemical Substances

    Science.gov (United States)

    2010-09-20

    ... results. CFR citation: 40 CFR 721.10209. PMN Number P-09-130 Chemical name: Soybean oil, epoxidized...) in rodents. The 28-day oral study should include, for all test doses, a neurotoxicity functional.../chemical properties of the PMN substance, as described in the New Chemical Program's PBT category (64...

  20. 78 FR 62443 - Perfluoroalkyl Sulfonates and Long-Chain Perfluoroalkyl Carboxylate Chemical Substances; Final...

    Science.gov (United States)

    2013-10-22

    ... AGENCY 40 CFR Parts 9 and 721 RIN 2070-AJ95 Perfluoroalkyl Sulfonates and Long-Chain Perfluoroalkyl... new use rule (SNUR) for perfluoroalkyl sulfonate (PFAS) chemical substances to add PFAS chemical.... EPA is also finalizing a SNUR for long-chain perfluoroalkyl carboxylate (LCPFAC) chemical...

  1. Thermal, chemical and pH induced unfolding of turmeric root lectin: modes of denaturation.

    Directory of Open Access Journals (Sweden)

    Himadri Biswas

    Full Text Available Curcuma longa rhizome lectin, of non-seed origin having antifungal, antibacterial and α-glucosidase inhibitory activities, forms a homodimer with high thermal stability as well as acid tolerance. Size exclusion chromatography and dynamic light scattering show it to be a dimer at pH 7, but it converts to a monomer near pH 2. Circular dichroism spectra and fluorescence emission maxima are virtually indistinguishable from pH 7 to 2, indicating secondary and tertiary structures remain the same in dimer and monomer within experimental error. The tryptophan environment as probed by acrylamide quenching data yielded very similar data at pH 2 and pH 7, implying very similar folding for monomer and dimer. Differential scanning calorimetry shows a transition at 350.3 K for dimer and at 327.0 K for monomer. Thermal unfolding and chemical unfolding induced by guanidinium chloride for dimer are both reversible and can be described by two-state models. The temperatures and the denaturant concentrations at which one-half of the protein molecules are unfolded, are protein concentration-dependent for dimer but protein concentration-independent for monomer. The free energy of unfolding at 298 K was found to be 5.23 Kcal mol-1 and 14.90 Kcal mol-1 for the monomer and dimer respectively. The value of change in excess heat capacity upon protein denaturation (ΔCp is 3.42 Kcal mol-1 K-1 for dimer. The small ΔCp for unfolding of CLA reflects a buried hydrophobic core in the folded dimeric protein. These unfolding experiments, temperature dependent circular dichroism and dynamic light scattering for the dimer at pH 7 indicate its higher stability than for the monomer at pH 2. This difference in stability of dimeric and monomeric forms highlights the contribution of inter-subunit interactions in the former.

  2. [Consumption of psychoactive substances by caregivers].

    Science.gov (United States)

    Gauthier, Françoise

    2012-11-01

    Prescribed medication, self-medication or doping the use of psychoactive substances by caregivers is varied. Doping behaviour in the care environment is under-estimated and trivialised. It is often difficult to spot at an early stage and yet this consumption is not without consequences on the quality and safety of work. Gérard-Marchant general hospital in Toulouse integrates this issue into its professional risk management policy.

  3. [Chemical constituents in higher polar substances from Desmodium caudatum].

    Science.gov (United States)

    Zhu, Dan; Wang, Di; Wang, Guang-Hui; Guo, Zhi-Jian; Zou, Xiu-Hong; Lin, Ting; Chen, Hai-Feng

    2014-08-01

    In this study the chemical constituents of the higher polar sustances from Desmodium caudatum were investigated.The compounds were isolated by using column chromatographies over silicagel, polyamide, ODS, Sephadex LH-20, and preparative HPLC. The structures of these compounds were identified on the basis of NMR and MS spectra. Thirteen compounds were obtained and their structures were identified as vanillin(1), loliolide(2), indole-3-carboxaldehyde(3), salicylic acid(4), swertisin(5), saccharumoside C(6), isosinensin (7), kaempferol 3-O-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside (8), isovitexin (9), vitexin (10), nothofagin(11), resveratroloside (12), and 2"-α-rhamnopyranosyl-7-O-methylvitexin (13). Except for compound 5, the remaining compounds were isolated from D. caudatum for the first time. Compounds 2, 3, 6-8, 11-13 were separated from the genus Desmodium for the first time.

  4. Data banks of chemical substances and their toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Craig, D.K.

    1992-12-31

    Rapid proliferation in the development of new chemical compounds, coupled with the discovery and/or identification of those already in existence, has led to a significant need to investigate their physicochemical and biological properties, to document the knowledge gained, and to communicate that knowledge in as convenient a manner as possible. This paper presents and briefly discusses several prominent chemical databases.

  5. Data banks of chemical substances and their toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Craig, D.K.

    1992-01-01

    Rapid proliferation in the development of new chemical compounds, coupled with the discovery and/or identification of those already in existence, has led to a significant need to investigate their physicochemical and biological properties, to document the knowledge gained, and to communicate that knowledge in as convenient a manner as possible. This paper presents and briefly discusses several prominent chemical databases.

  6. Effects of humic substances on the bioconcentration of polycyclic aromatic hydrocarbons: Correlations with spectroscopic and chemical properties of humic substances

    Science.gov (United States)

    Haitzer, M.; Abbt-Braun, G.; Traunspurger, W.; Steinberg, C.E.W.

    1999-01-01

    The presence of dissolved humic substances (HS, fulvic and humic acids) generally reduces the uptake of hydrophobic organic compounds into aquatic organisms. The extent of this effect depends both on the concentration and on the origin of the HS. The aim of this study was to investigate the role of qualitative differences between HS from different origins. The effects of seven different HS on the bioconcentration of pyrene and benzo[a]pyrene (BaP) in the nematode Caenorhabditis elegans were related to the spectroscopic and chemical properties of the HS. The effect of each humic material on the bioconcentration of pyrene or BaP was quantified as a 'biologically determined' partition coefficient K(DOC). We observed significant linear relationships between K(DOC) and the atomic H/C ratio, the specific absorptivity at 254 nm, the content of aromatic carbons (as determined by 13C nuclear magnetic resonance spectroscopy, the copper-complexing capacity, the content of phenolic OH groups, and the molecular weight of the HS. There was no discernible relationship of K(DOC) with the atomic (N + O)/C ratio, an indicator of the polarity of HS. Taken together, our results show that the variability in the effects of HS from different origins could be related to variations in bulk properties of the HS. Parameters describing the aromaticity of the humic materials seemed to be most useful for estimating effects of HS on the bioconcentration of pyrene and BaP.

  7. Effect of pH, Temperature, and Chemicals on the Endoglucanases and β-Glucosidases from the Thermophilic Fungus Myceliophthora heterothallica F.2.1.4. Obtained by Solid-State and Submerged Cultivation

    Directory of Open Access Journals (Sweden)

    Vanessa de Cássia Teixeira da Silva

    2016-01-01

    Full Text Available This work reports endoglucanase and beta-glucosidase production by the thermophilic fungus Myceliophthora heterothallica in solid-state (SSC and submerged (SmC cultivation. Wheat bran and sugarcane bagasse were used for SSC and cardboard for SmC. Highest endoglucanase production in SSC occurred after 192 hours: 1,170.6 ± 0.8 U/g, and in SmC after 168 hours: 2,642 ± 561 U/g. The endoglucanases and beta-glucosidases produced by both cultivation systems showed slight differences concerning their optimal pH and temperature. The number of endoglucanases was also different: six isoforms in SSC and ten in SmC. Endoglucanase activity remained above 50% after incubation between pH 3.0 and 9.0 for 24 h for both cultivation systems. The effect of several chemicals displayed variation between SSC and SmC isoenzymes. Manganese activated the enzymes from SmC but inhibited those from SSC. For β-glucosidases, maximum production on SmC was 244 ± 48 U/g after 168 hours using cardboard as carbon source. In SSC maximum production reached 10.9 ± 0.3 U/g after 240 h with 1 : 1 wheat bran and sugarcane bagasse. Manganese exerted a significant activation on SSC β-glucosidases, and glucose inhibited the enzymes from both cultivation systems. FeCl3 exerted the strongest inhibition for endoglucanases and β-glucosidases.

  8. Assessment of chemical emissions in life cycle impact assessment - focus on low substance data availability and

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred

    2004-01-01

    chemical groups, high data availability combined with low data demand, data useable in characterisation, user friendliness and transparency. A mainly qualitative evaluation of the existing selection methods against these performance criteria shows that none of these score high on all criteria...... be significantly dependent on the inclusion of toxicity- or chemical-related impact categories. The two main reasons for poor coverage of potential toxic impacts from chemical emissions in LCA studies are lack of available data on upstream emissions (e.g. emissions during production of raw materials) and lack...... of substance data on known emissions. To be able to characterize the potential toxic impacts on humans and the environment of chemical emissions, substance data on fate and effect are needed. The second goal of this thesis is to investigate how to deal with low substance data availability on especially effect...

  9. [Relation between oxygen uptake rate and biosorption of activated sludge against chemical substance].

    Science.gov (United States)

    Mihara, Yuichi; Inoue, Tatsuaki; Yokota, Katsushi

    2005-02-01

    In this study, the elucidation of the toxicity mechanism was undertaken regarding the IC(50) of the oxygen uptake rate (OUR) with relevance to the biosorption as a toxicity evaluation of chemical substances for activated sludge (AS). At the IC(50) oflinear alkyl benzene sulfonate (LAS), alkyl ethoxy sulfonate (AES), alpha-olefine sulfonate (AOS), sodium dodecyl sulfate (SDS), formaldehyde (FA), benzalkonium chloride (BZaC), benzethonium chloride (BZeC), rhodamine 6G (R-6G) and fuchsine (Fuc) in which the IC(50) belonged to the 100-1000 mg/l group, when it was compared with CV and MG. In ethanol (EtOH), isopropanol (PrOH), nile blue (NB), evans blue (EB), methylene blue (MB), methyl orange (MO), paraquat (PQ), chlorophyllin (Chl) and auramine (Aur), the IC(50) was large, and the biosorption of AS was weak at 0-15%. The biosorption of MG for AS followed the adsorption isotherm equation Y=0.002X(0.511) of Freundrich. The correlation coefficient was gamma=0.998 (n=8), and a very high correlation was obtained. In the qualitative OUR curve by AS pretreated with MG or CV which belonged to the IC(50) small group, the inhibition of remarkable OUR was observed. Therefore, the findings of the present investigation suggest that the inhibition of the OUR for AS by the tested chemical substances was markedly affected by the biosorption.

  10. International Conference on Harmonisation; guidance on Q6A specifications: test procedures and acceptance criteria for new drug substances and new drug products: chemical substances. Notice.

    Science.gov (United States)

    2000-12-29

    The Food and Drug Administration (FDA) is publishing a guidance entitled "Q6A Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances." The guidance was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The guidance describes or provides recommendations concerning the selection of test procedures and the setting and justification of acceptance criteria for new chemical drug substances and new drug products produced from them. The guidance is intended to assist in the establishment of a single set of global specifications for new drug substances and new drug products.

  11. Characterization of a novel mutation in NS1 protein of influenza A virus induced by a chemical substance for the attenuation of pathogenicity.

    Directory of Open Access Journals (Sweden)

    Kohei Sasaki

    Full Text Available It is generally accepted that live attenuated influenza vaccine (LAIV has the potential for use as a vaccination against flu. In this study, we demonstrated the nature of an influenza A virus (IAV mutant induced by treating the IAV with a stable furan derivative, (1R,2R-1-(5'-methylfur-3'-ylpropane-1,2,3-triol (MFPT, which had been isolated from Streptomyces sp. strain FV60 with the objective of it being an LAIV candidate. The resulting MFPT-resistant (MFPTr IAVs possessed attenuated pathogenicity in vitro and in vivo when compared with that of the parent virus (H1N1 subtype, NWS strain. Sequencing analysis revealed that a novel mutation, C490U in ns gene (P164S in NS1, was detected in all MFPTr virus clones tested. Therefore, NS1 might be a main target of MFPT, and it was suggested that the P164S mutation contributed to the attenuated pathogenicity of the mutants. Although the phosphatidylinositol 3-kinase (PI3K/Akt signaling pathway is one of the targets of NS1, the MFPTr virus suppressed the phosphorylation of Akt when compared with the wild-type (WT virus. It was suggested that this might lead to the subsequent inhibition of the cleavage of PARP-1 and caspase-3, which is important for the progression of apoptosis. At the same time, nucleoprotein (NP was found to be retained in the nuclei in MFPTr virus-infected cells while nuclear export of NP was detected in WT virus-infected cells. In addition, the expression levels of interferon-β transcripts were significantly decreased in MFPTr virus-infected cells. From these results it can be shown that the mutation, NS1P164S, might be one of the key residues to control NS1 function concerning the induction of apoptosis. In conclusion, MFPT induced favorable mutation in the ns gene for the attenuation of IAV, and therefore might provide the novel methodology for preparing LAIVs.

  12. Evidence of the chemical reaction of (18)O-labelled nitrite with CO2 in aqueous buffer of neutral pH and the formation of (18)OCO by isotope ratio mass spectrometry.

    Science.gov (United States)

    Tsikas, Dimitrios; Böhmer, Anke; Gros, Gerolf; Endeward, Volker

    2016-05-01

    Inorganic nitrite (NO2(-), ON-O(-) ←→ (-)O-NO) is the autoxidation product of nitric oxide (NO). Nitrite can also be formed from inorganic nitrate (ONO2(-)), the major oxidation product of NO in erythrocytes, by the catalytic action of bacterial nitrate reductase in gut and oral microflora. Nitrite can be reduced to NO by certain cellular proteins and enzymes, as well as in the gastric juice under acidic conditions. Hemoglobin, xanthine oxidoreductase and carbonic anhydrase (CA) have been reported to convert nitrite to NO. Renal CA isoforms are involved in the reabsorption of nitrite and may, therefore, play an important role in NO homeostasis. Yet, the mechanisms underlying the action of CA on nitrite are incompletely understood. The nitrate/nitrite system is regarded as a reservoir of NO. We have recently shown that nitrite reacts chemically with carbon dioxide (CO2), the regular substrate of CA. The present communication reports a stable isotope ratio mass spectrometry (IRMS) study on the reaction of NO2(-) and CO2 performed in 50 mM HEPES buffer of pH 7.4 at 37 °C. By using (18)O-labelled nitrite ((18)ON-O(-)/(-18)O-NO) and CO2 we observed formation of (18)O-labelled CO2. This finding is an unequivocal evidence of the chemical reaction of (18)ON-O(-)/(-18)O-NO with CO2. The reaction is rapid and involves nucleophilic attack of the negatively charged nitrite via one of its oxygen atoms on the partially positively charged CO2 molecule to form the putative intermediate (18)ON-O-CO2(-)/(-)O2C-(18)O-NO. The by far largest fraction of this intermediate decomposes back to (18)ON-O(-)/(-18)O-NO and CO2. A very small fraction of the intermediate, however, rearranges and finally decomposes to form (18)OCO and nitrite. This reaction is slower in the presence of an isolated erythrocytic CA isoform II. In summary, NO2(-), CO2 and CA are ubiquitous. The chemical reaction of NO2(-) with CO2 and its modulation by CA isoforms may play important roles in the transport of

  13. Sampling Odor Substances by Mist-Cyclone System

    Science.gov (United States)

    Matsubara, Osamu; Jiang, Zhiheng; Toyama, Shigeki

    2009-05-01

    Many techniques have been developed to measure odor substances. However most of those methods are based on using aquatic solutions(1),(2). Many odor substances specifically at low density situation, are difficult to dissolve into water. To absorb odor substances and obtain highest concentration solutions are key problems for olfactory systems. By blowing odor substances contained air mixture through mist of water and then separating the liquid from two-phases fluid with a cyclone unit a high concentration solution was obtained.

  14. Analysis of determination modalities concerning the exposure and emission limits values of chemical and radioactive substances; Analyse des modalites de fixation des valeurs limites d'exposition et d'emission pour les substances chimiques et radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, C.; Schneider, T

    2002-08-01

    This document presents the generic approach adopted by various organizations for the determination of the public exposure limits values to chemical and radioactive substances and for the determination of limits values of chemical products emissions by some installations. (A.L.B.)

  15. Substance Abuse by Youth and Young Adults in Rural America

    Science.gov (United States)

    Lambert, David; Gale, John A.; Hartley, David

    2008-01-01

    Purpose: Addressing substance abuse in rural America requires extending our understanding beyond urban-rural comparisons to how substance abuse varies across rural communities of different sizes. We address this gap by examining substance abuse prevalence across 4 geographic levels, focusing on youth (age 12-17 years) and young adults (age 18-25…

  16. PH Sensitive Polymers for Improving Reservoir Sweep and Conformance Control in Chemical Flooring

    Energy Technology Data Exchange (ETDEWEB)

    Mukul Sharma; Steven Bryant; Chun Huh

    2008-03-31

    There is an increasing opportunity to recover bypassed oil from depleted, mature oilfields in the US. The recovery factor in many reservoirs is low due to inefficient displacement of the oil by injected fluids (typically water). The use of chemical flooding methods to increase recovery efficiencies is severely constrained by the inability of the injected chemicals to contact the bypassed oil. Low sweep efficiencies are the primary cause of low oil recoveries observed in the field in chemical flooding operations even when lab studies indicate high oil recovery efficiency. Any technology that increases the ability of chemical flooding agents to better contact the remaining oil and reduce the amount of water produced in conjunction with the produced oil will have a significant impact on the cost of producing oil domestically in the US. This translates directly into additional economically recoverable reserves, which extends the economic lives of marginal and mature wells. The objective of this research project was to develop a low-cost, pH-triggered polymer for use in IOR processes to improve reservoir sweep efficiency and reservoir conformance in chemical flooding. Rheological measurements made on the polymer solution, clearly show that it has a low viscosity at low pH and exhibits a sudden increase in viscosity (by 2 orders of magnitude or more) at a pH of 3.5 to 4. This implies that the polymer would preferentially flow into zones containing water since the effective permeability to water is highest in these zones. As the pH of the zone increases due to the buffering capacity of the reservoir rock, the polymer solution undergoes a liquid to gel transition causing a sharp increase in the viscosity of the polymer solution in these zones. This allows operationally robust, in-depth conformance treatment of such water bearing zones and better mobility control. The rheological properties of HPAM solutions were measured. These include: steady-shear viscosity and

  17. Lutein-enriched emulsion-based delivery systems: Influence of pH and temperature on physical and chemical stability.

    Science.gov (United States)

    Davidov-Pardo, Gabriel; Gumus, Cansu Ekin; McClements, David Julian

    2016-04-01

    Lutein may be utilized in foods as a natural pigment or nutraceutical ingredient to improve eye health. Nevertheless, its use is limited by its poor water-solubility and chemical instability. We evaluated the effect of storage temperature and pH on the physical and chemical stability of lutein-enriched emulsions prepared using caseinate. The emulsions (initial droplet diameter=232 nm) remained physically stable at all incubation temperatures (5-70 °C); however the chemical degradation of lutein increased with increasing temperature (activation energy=38 kJ/mol). Solution pH had a major impact on the physical stability of the emulsions, causing droplet aggregation at pH 4 and 5. Conversely, the chemical stability of lutein was largely independent of the pH, with only a slight decrease in degradation at pH 8. This work provides important information for the rational design of emulsion-based delivery systems for a lipophilic natural dye and nutraceutical.

  18. The effect of pH, temperature and heating time on inulin chemical stability

    Directory of Open Access Journals (Sweden)

    Paweł Glibowski

    2011-06-01

    Full Text Available Background. Inulin is a storage carbohydrate found in many plants especially in chicory root, Jerusalem artichoke and dahlia tuber. It is a prebiotic with many functional properties. In earlier research concerning chemical stability of inulin, the effect of pH on rheological properties of inulin gels was mainly analysed. In these studies, the effect of time, temperature and pH on inulin chemical stability was not analysed profoundly especially considering the inulin concentrations unable to form gel structure. Thus, the aim of this work was to study the effect of the above mentioned factors on inulin chemical stability in water solution. Material and methods. 5% (w/w inulin solutions at pH 1-12 were heated at 20, 40, 60, 80 and 100°C for 5-60 min. After the neutralisation the content of reducing sugar was analysed according to Miller’s method (1959 with 3,5-dinitrosalicylic acid. Results. The conducted studies showed that inulin chemical stability at pH £ 4 decreased with an increase of heating time and temperature. In a neutral and basic environment inulin was chemically stable regardless of heating time and temperature. Conclusions. Inulin application in food systems may be limited in acidic products especially when heated above 60°C during the production process. However, in products at pH ≥ 5, the degradation of this fructan does not occur even at thermal processing.

  19. Comparison of some chemical and physico-chemical properties of natural and model sodium humates and of the biological activity of both substances in tomato water cultures

    Directory of Open Access Journals (Sweden)

    S. Gumiński

    2015-05-01

    Full Text Available Natural humate from compost and the model sunstance obtained from p-benzoquinone were dissolved in an acetone-water mixture and subjected to chromatography on a column of aluminium oxide. Similar fractions were obtained which were chemically and spectrophotometrically investigated for the content of functional groups. The particle size of these substances was determined by filtration on Sephadex molecular sieves. Experiments were performed with tomato in water cultures on stagnant nutrient solution. The biological activity of the corresponding fractions of natural and model humates was found to be analogous. The results are discussed and confronted with functional groups content and particle size of the respective substances.

  20. PH Sensitive Polymers for Improving Reservoir Sweep and Conformance Control in Chemical Flooring

    Energy Technology Data Exchange (ETDEWEB)

    Mukul Sharma; Steven Bryant; Chun Huh

    2008-03-31

    There is an increasing opportunity to recover bypassed oil from depleted, mature oilfields in the US. The recovery factor in many reservoirs is low due to inefficient displacement of the oil by injected fluids (typically water). The use of chemical flooding methods to increase recovery efficiencies is severely constrained by the inability of the injected chemicals to contact the bypassed oil. Low sweep efficiencies are the primary cause of low oil recoveries observed in the field in chemical flooding operations even when lab studies indicate high oil recovery efficiency. Any technology that increases the ability of chemical flooding agents to better contact the remaining oil and reduce the amount of water produced in conjunction with the produced oil will have a significant impact on the cost of producing oil domestically in the US. This translates directly into additional economically recoverable reserves, which extends the economic lives of marginal and mature wells. The objective of this research project was to develop a low-cost, pH-triggered polymer for use in IOR processes to improve reservoir sweep efficiency and reservoir conformance in chemical flooding. Rheological measurements made on the polymer solution, clearly show that it has a low viscosity at low pH and exhibits a sudden increase in viscosity (by 2 orders of magnitude or more) at a pH of 3.5 to 4. This implies that the polymer would preferentially flow into zones containing water since the effective permeability to water is highest in these zones. As the pH of the zone increases due to the buffering capacity of the reservoir rock, the polymer solution undergoes a liquid to gel transition causing a sharp increase in the viscosity of the polymer solution in these zones. This allows operationally robust, in-depth conformance treatment of such water bearing zones and better mobility control. The rheological properties of HPAM solutions were measured. These include: steady-shear viscosity and

  1. 75 FR 63827 - Integrated Risk Information System (IRIS); Request for Chemical Substance Nominations for 2011...

    Science.gov (United States)

    2010-10-18

    ... AGENCY Integrated Risk Information System (IRIS); Request for Chemical Substance Nominations for 2011.... The status and planned milestone dates can be found on the IRIS track system, accessible on the IRIS... http://www.regulations.gov Web site is an ``anonymous access'' system, which means EPA will not...

  2. Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition

    Science.gov (United States)

    This NERL-Cincinnati publication, “Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition” was prepared as the continuation of an initiative to gather together under a single cover a compendium of standardized laborato...

  3. 78 FR 27048 - Significant New Use Rules on Certain Chemical Substances

    Science.gov (United States)

    2013-05-09

    ... casting, wastewater treatment, solid waste. CAS number: 1391739-82-4. Chemical substance definition: The waste solids produced from the treatment of wastewaters during aluminum and iron casting, machining and... analogous cationic surfactants, EPA predicts toxicity to aquatic organisms may occur at concentrations...

  4. 78 FR 66700 - Toxic Substances Control Act Chemical Testing; Receipt of Test Data

    Science.gov (United States)

    2013-11-06

    ... (Reflexblau 3 G TTR Micronucleus Test in Male and Female NJRI Mice after Oral Administration). A Combined 28.... ingredient in aluminum Micronucleus Test in the etchant sequestrant; Mouse. latex stabilizer; Reverse... AGENCY Toxic Substances Control Act Chemical Testing; Receipt of Test Data AGENCY:...

  5. 78 FR 12684 - Proposed Significant New Use Rules on Certain Chemical Substances

    Science.gov (United States)

    2013-02-25

    ... things, that potentially exposed employees wear specified respirators unless actual measurements of the..., reinforcement additive. Based on test data on the PMN substance, and SAR analysis of test data on structurally... additives, mechanical reinforcement additives, energy storage additives, and chemical intermediates....

  6. 78 FR 23596 - Manufacturer of Controlled Substances, Notice of Application, American Radiolabeled Chemicals, Inc.

    Science.gov (United States)

    2013-04-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances, Notice of Application, American Radiolabeled Chemicals, Inc. Pursuant to Sec. 1301.33(a), Title 21 of the Code of Federal Regulations (CFR), this is notice that on March 11,...

  7. 77 FR 30026 - Manufacturer of Controlled Substances Notice of Application, Ampac Fine Chemicals LLC.

    Science.gov (United States)

    2012-05-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances Notice of Application, Ampac Fine Chemicals LLC. Pursuant to Sec. 1301.33(a), Title 21 of the Code of Federal Regulations (CFR), this is notice that on April 11, 2012, AMPAC...

  8. 77 FR 30027 - Manufacturer of Controlled Substances; Notice of Application; American Radiolabeled Chemicals, Inc.

    Science.gov (United States)

    2012-05-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Application; American Radiolabeled Chemicals, Inc. Pursuant to Sec. 1301.33(a), Title 21 of the Code of Federal Regulations (CFR), this is notice that on March 15,...

  9. Control of Oxygen Concentration by Using a Carbonaceous Substance

    Directory of Open Access Journals (Sweden)

    Mohanad Jadan

    2005-01-01

    Full Text Available The control of oxygen concentration in gas flow may be used in chemical industry, heat power engineering, ecology, automobile construction and other industrial branches. This control is realized over a broad range of oxygen concentrations. The control of the oxygen concentration is based on passing of gas flow through a measuring cavity of radio spectrometer and measurement of a magnetic resonance signal. A change in the magnetic resonance signal of a dispersed carbonaceous substance, placed into the cavity, indicates to the changes in oxygen concentrations. The dispersed anthracite and thermal treatment cellulose substance in the oxygen-free medium are proposed to use as a carbonaceous substance.

  10. Influence of soil pH on the sorption of ionizable chemicals: modeling advances.

    Science.gov (United States)

    Franco, Antonio; Fu, Wenjing; Trapp, Stefan

    2009-03-01

    The soil-water distribution coefficient of ionizable chemicals (K(d)) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K(d) values normalized to organic carbon (K(OC)) from the literature, a method was developed to estimate the K(OC) of monovalent organic acids and bases. The regression considers pH-dependent speciation and species-specific partition coefficients, calculated from the dissociation constant (pK(a)) and the octanol-water partition coefficient of the neutral molecule (log P(n)). Probably because of the lower pH near the organic colloid-water interface, the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of pH on the total sorption is contrasting. In fact, the shortcomings of the model assumptions affect the predictive power for acids and for bases differently. We evaluated accuracy and limitations of the regressions for their use in the environmental fate assessment of ionizable chemicals.

  11. Study of humic substances by fluorescence spectroscopy

    Directory of Open Access Journals (Sweden)

    Sona Konecna

    2010-12-01

    Full Text Available The purpose of this study is to determine main fluorophores of soil humic substances using 2D and 3D synchronous fluorescencespectroscopy (SFS. The measured synchronous spectra werecompared with standards IHSS. Differences between humic andfulvic acids as well as our and IHSS samples are discussed.

  12. STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES : II. EFFECT OF DESOXYRIBONUCLEASE ON THE BIOLOGICAL ACTIVITY OF THE TRANSFORMING SUBSTANCE.

    Science.gov (United States)

    McCarty, M; Avery, O T

    1946-01-31

    It has been shown that extremely minute amounts of purified preparations of desoxyribonuclease are capable of bringing about the complete and irreversible inactivation of the transforming substance of Pneumococcus Type III. The significance of the effect of the enzyme, and its bearing on the chemical nature of the transforming substance, together with certain considerations concerning the biological specificity of desoxyribonucleic acids in general, are discussed.

  13. SUBSTANCES AND CHEMICAL REACTIONS. TOPICS OF THE UNIVERSITARY ENTRY COURSE TREATED WITH DIFFERENT RESOURCES

    OpenAIRE

    René O. Güemes; Adriana E. Ortolani; María del C. Tiburzi; Falicoff, Claudia B.; José M. Raffaelli; Odetti, Héctor S.

    2011-01-01

    This research is focused to detect and compare difficulties presented in the comprehension of the topics "Substances" and "Chemical Reactions" in incoming pupils to the National University of the Litoral (Santa Fe, Argentina) implementing two different didactic strategies during the dictation of the "Course of Introduction to Chemistry". We worked with two groups of students; one group used a textbook, while the other worked with multimedia material in a computer classroom. Both groups were e...

  14. Influence of soil pH on the sorption of ionizable chemicals

    DEFF Research Database (Denmark)

    Franco, Antonio; Fu, Wenjing; Trapp, Stefan

    2009-01-01

    The soil-water distribution coefficient of ionizable chemicals (K-d) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K-d values normalized to organic carbon (K-OC) from the literature, a method was developed to estimate the K-OC of monovalent organic acids...... and bases. The regression considers pH-dependent speciation and species-specific partition coefficients, calculated from the dissociation constant (pK(a)) and the octanol-water partition coefficient of the neutral molecule (log P-n). Probably because of the lower pH near the organic colloid-water interface......, the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of pH...

  15. 海洋分离芽胞杆菌抗白念珠菌活性物质的理化性质及类别%Physico-Chemical Characters & Classification of Anti-Candida Bioactive Substances Produced by 7 Marine-Derived Bacillus Strains

    Institute of Scientific and Technical Information of China (English)

    刘全永; 杨铭; 王书锦

    2015-01-01

    为寻找新型抗真菌活性物质,采用管碟法对7株分离自海洋的芽胞杆菌在不同NaCl浓度下产生抗白念珠菌活性物质特性、活性物质的耐热性及不同pH值条件下的活性进行了比较,八大溶剂系统纸层析法对活性物质的类别进行了初步鉴定。结果表明,随着NaCl浓度的变化产生活性物质的量也在变化,NaCl浓度达7%时均不能产生,但在正常海洋环境盐浓度( NaCl含量2%~3%)下都产生;活性物质有很强的耐热性和耐酸碱性,说明其较稳定;7株菌产生的抗白念珠菌活性物质均为碱性水溶性抗生素。由于目前临床上抑制人体病原真菌活性物质绝大多数为脂溶性,因而这些芽胞杆菌产生的抗白念珠活性物质有可能为新型物质,此外本研究结果为这些菌株所产生活性物质的分离纯化提供了依据。%In order to search for new type of anti-fungal bioactive substances,method of tube plate was adopted to compare the features of 7 marine-isolated Bacillus strains producing anti-candida bioactive substances at different NaCl concentrations and their thermal resistance and under the condition of different pH value activity. Eight major solvent system of paper chromatography to initially identify the category of active substances was carried out. The result showed that with the variation of NaCl concentration the amount of the bioactive substances produced by the Bacillus strains also varied,all the Bacillus strains cannot produce anti-candida substances when NaCl was as high as 7%, however,they all could produce bioactive substances under normal sea circumstances saline concentration( NaCl con-tent at 2% ~3%);the active substances had strong heat and acid-alkaline resistances,suggesting they are fairly sta-ble. The anti-candida active substances produced by 7 strains were all alkaline and water soluble antibiotics. Due to the current clinically inhibiting human pathogenic fungi active

  16. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat [Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Amin, Mohd. Cairul Iqbal Mohd [Faculty of Pharmacy, University Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia)

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  17. Cruel disease, cruel medicine: self-treatment of cutaneous leishmaniasis with harmful chemical substances in Suriname.

    Science.gov (United States)

    Ramdas, Sahienshadebie

    2012-09-01

    Why are potentially harmful, non-biomedical chemical substances, such as battery acid, chlorine, herbicides, and insecticides, used in the treatment of cutaneous leishmaniasis (CL)? What drives people to use these products as medicine? This article is about perceptions of CL, and the quest for a cure, in Suriname, South America. It highlights the associative style of reasoning behind health seeking and discusses the use of harmful chemical substances as medicines. Cutaneous leishmaniasis, a parasitic disease, affects 1 to 1.5 million people globally. It has a spectrum of clinical manifestations, but the most prominent and disfiguring elements are extensive dermatological ulceration and scar formation from lesions. The data upon which this article is based are derived from anthropological research carried out in different parts of Suriname between September 2009 and December 2010. Data was collected through mainly qualitative methods, including interviewing 205 CL patients using structured questionnaires at the Dermatological Service in the capital Paramaribo. Almost all people with CL said they tried self-treatment, varying from the use of ethno-botanical products to non-biomedical chemical solutions. This article presents and interprets the views and practices of CL patients who sought treatment using harsh chemicals. It argues that a confluence of contextual factors - environmental, occupational, infrastructural, geographical, socio-cultural, economic, socio-psychological - leads to the use of harmful chemical substances to treat CL sores. This study is the first in Suriname - and one of the few done globally - focusing on social and cultural aspects related to CL health seeking. It aims to encourage health policy makers and health professionals to carefully initiate, provide, and evaluate CL treatment and prevention programs.

  18. Psychoactive substance use by truck drivers: a systematic review.

    Science.gov (United States)

    Girotto, Edmarlon; Mesas, Arthur Eumann; de Andrade, Selma Maffei; Birolim, Marcela Maria

    2014-01-01

    The aim of this study was to summarise the scientific evidence on the prevalence of psychoactive substance use and on the factors associated with their intake among truck drivers. A systematic review was performed in the databases PubMed, Scientific Electronic Library Online, Latin American and Caribbean Health Sciences, and Cochrane and 36 cross-sectional studies were identified with quantitative results about the use of psychoactive substances by truck drivers. Out of these, 28 were carried out in countries with large land areas and 23 obtained their information through self-reporting. The most frequently studied substances were alcohol (n=25), amphetamines (n=17), marijuana (n=16) and cocaine (n=13). The prevalence of the use of these substances greatly varied: alcohol (0.1-91.0%); amphetamines (0.2-82.5%), marijuana (0.2-29.9%), cocaine (0.1-8.3%). The frequency of substance use was lower in studies that investigated the presence of these substances in biological samples than in those based on self-reported use. In 12 studies that evaluated factors associated with the intake of psychoactive substances, the following stood out: younger age, higher income, longer trips, alcohol consumption, driving in the night shift, travelling interstate routes, long or short sleep, fewer hours of rest, little experience of the driver, connection with small and medium sized companies, income below levels determined by labour agreements, productivity-based earnings and prior involvement in accidents. The frequency of psychoactive substance use by truck drivers seems to be high, although that greatly varies according to the type of substance and the method of collecting the information. The use of these substances was mainly associated with indicators of poor working conditions.

  19. TSCA Chemical Data Reporting Fact Sheet: Reporting Manufactured Chemical Substances from Metal Mining and Related Activities

    Science.gov (United States)

    This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.

  20. 40 CFR 799.5000 - Testing consent orders for substances and mixtures with Chemical Abstract Service Registry Numbers.

    Science.gov (United States)

    2010-07-01

    ... and mixtures with Chemical Abstract Service Registry Numbers. 799.5000 Section 799.5000 Protection of... Testing consent orders for substances and mixtures with Chemical Abstract Service Registry Numbers. This... adopted under 40 CFR part 790. Listed below in Chemical Abstract Service (CAS) Registry Number order...

  1. EFFECT OF NITRITE AND CITRIC ACID ON THE CHEMICAL COMPOSITION AND pH OF THE CANNED BEEF SAUSAGES

    Directory of Open Access Journals (Sweden)

    M.M.A. MAHA

    2015-01-01

    Full Text Available The effects of nitrite and citric acid as preservatives on the chemical composition and pH of the canned beef sausage were investigated after three months storage at room temperature (35±5ºc. Two experiments were conducted in this study, the first, was undertaken to determine the effect of nitrite as a preservative on the chemical composition and pH of the canned beef sausages retorted at 107.2°C (225ºF for 80 minutes, and at 115.5°C (240ºF for 40 minutes. The second experiment, which was based on the results of the first one, was conducted to determine the effects of the absence of nitrite on the canned beef sausage processed with meat treated by immersion in 1% citric acid before processing at (80 and 30ºc for one minute and drained, then the product retorted at 107.2°C for 80 minutes. The evaluation of percentages of the dry matter, ash, crude protein, fat and also pH were done monthly. The results in experiment 1 indicated that, percentages of the dry matter, ash and crude protein before and after canning of sausages were not significantly different (P>0.05. The fat (% was significantly different among treatments (P0.05 for the raw, cooked and canned sausages. Generally it was observed a decrease in moisture content (increases in dry matter content, ash%, crude protein fat (% and pH value with increasing of storage period. Citric acid had no clear effect on chemical properties and pH value.

  2. Soil pH Dynamics and Nitrogen Transformations Under Long-Term Chemical Fertilization in Four Typical Chinese Croplands

    Institute of Scientific and Technical Information of China (English)

    MENG Hong-qi; XU Ming-gang; L Jia-long; HE Xin-hua; LI Jian-wei; SHI Xiao-jun; PENG Chang; WANG Bo-ren; ZHANG Hui-min

    2013-01-01

    Long-term fertilization experiment provides the platform for understanding the proton budgets in nitrogen transformations of agricultural ecosystems. We analyzed the historical (1990-2005) observations on four agricultural long-term experiments in China (Changping, Chongqing, Gongzhuling and Qiyang) under four different fertilizations, i.e., no-fertilizer (control), sole chemical nitrogen fertilizer (FN), sole chemical phosphorous and potassium fertilizers (FPK) and chemical nitrogen, phosphorous and potassium fertilizers (FNPK). The significant decline in topsoil pH was caused not only by chemical N fertilization (0.29 and 0.89∆pH at Gongzhuling and Qiyang, respectively) but also by chemical PK fertilization (0.59∆pH at Gongzhuling). The enhancement of available nutrients in the topsoil due to long-term direct nutrients supply with chemical fertilizers was in the descending order of available P (168-599%)>available K (16-189%)>available N (9-33%). The relative rate of soil pH decline was lower under long-term judicious chemical fertilization (-0.036-0.034 ∆pH yr-1) than that under long-term sole N or PK fertilization (0.016-0.086 ∆pH yr-1). Long-term judicious chemical fertilization with N, P and K elements decreases the nutritional limitation to normal crop growth, under which more N output was distributed in biomass removal rather than the loss via nitrate leaching. We concluded that the N distribution percentage of nitrate leaching to biomass removal might be a suitable indicator to the sensitivity of agricultural ecosystems to acid inputs.

  3. Notification of the commission on the eco-toxicity of chemical substances; Avis de la commission d'evaluation de l'ecotoxicite des substances chimiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The french commission on the evaluation of the chemical substances eco-toxicity, published recommendations concerning the use of additives for the automotive fuels, for the cooling circuit of electric power plants and for gases against fire. The risks for the public health are analysed and safety precautions are asked. (A.L.B.)

  4. Regulation of sperm flagellar motility activation and chemotaxis caused by egg-derived substance(s) in sea cucumber.

    Science.gov (United States)

    Morita, Masaya; Kitamura, Makoto; Nakajima, Ayako; Sri Susilo, Endang; Takemura, Akihiro; Okuno, Makoto

    2009-04-01

    The sea cucumber Holothuria atra is a broadcast spawner. Among broadcast spawners, fertilization occurs by means of an egg-derived substance(s) that induces sperm flagellar motility activation and chemotaxis. Holothuria atra sperm were quiescent in seawater, but exhibited flagellar motility activation near eggs with chorion (intact eggs). In addition, they moved in a helical motion toward intact eggs as well as a capillary filled with the water layer of the egg extracts, suggesting that an egg-derived compound(s) causes motility activation and chemotaxis. Furthermore, demembranated sperm flagella were reactivated in high pH (> 7.8) solution without cAMP, and a phosphorylation assay using (gamma-32P)ATP showed that axonemal protein phosphorylation and dephosphorylation also occurred in a pH-dependent manner. These results suggest that the activation of sperm motility in holothurians is controlled by pH-sensitive changes in axonemal protein phosphorylation. Ca2+ concentration affected the swimming trajectory of demembranated sperm, indicating that Ca2+-binding proteins present at the flagella may be associated with regulation of flagellar waveform. Moreover, the phosphorylation states of several axonemal proteins were Ca2+-sensitive, indicating that Ca2+ impacts both kinase and phosphatase activities. In addition, in vivo sperm protein phosphorylation occurred after treatment with a water-soluble egg extract. Our results suggest that one or more egg-derived compounds activate motility and subsequent chemotactic behavior via Ca2+-sensitive flagellar protein phosphorylation.

  5. Risk of severe driver injury by driving with psychoactive substances

    DEFF Research Database (Denmark)

    Hels, Tove; Lyckegaard, Allan; Bernhoft, Inger Marie;

    2013-01-01

    /L) and benzoylecgonine. The least risky drug seemed to be cannabis and benzodiazepines and Z-drugs. For male drivers, the risk of being severely injured by driving with any of the psychoactive substances was about 65% of that of female drivers. For each of the substance groups there was a decrease in the risk of severe......Driving with alcohol and other psychoactive substances imposes an increased risk of severe injury accidents. In a population-based case-control design, the relative risks of severe driver injury (MAIS ≥ 2) by driving with ten substance groups were approximated by odds ratios (alcohol, amphetamines......, benzoylecgonine, cocaine, cannabis, illicit opiates, benzodiazepines and Z-drugs, i.e. zolpidem and zopiclone, medicinal opioids, alcohol-drug combinations and drug-drug combinations). Data from six countries were included in the study: Belgium, Denmark, Finland, Italy, Lithuania and the Netherlands. Case samples...

  6. Physico-chemical characterization of secondary organic aerosol derived from catechol and guaiacol as a model substance for atmospheric humic-like substances

    Directory of Open Access Journals (Sweden)

    J. Ofner

    2010-07-01

    Full Text Available Secondary organic aerosol was produced from the aromatic precursors catechol and guaiacol by reaction with ozone in the presence and absence of simulated sunlight and humidity and investigated for its properties as a proxy for humic-like substances (HULIS. Beside a small particle size, a relatively low molecular weight and typical optical features in the UV/VIS spectral range, HULIS contain a typical aromatic and/or olefinic chemical structure and highly oxidized functional groups within a high chemical diversity. Various methods were used to characterize the secondary organic aerosols obtained: Fourier transform infrared spectroscopy (FTIR demonstrated the formation of different carbonyl containing functional groups as well as structural and functional differences between aerosols formed at different environmental conditions. UV/VIS spectroscopy of filter samples showed that the particulate matter absorbs far into the visible range up to more than 500 nm. Ultrahigh resolved mass spectroscopy (ICR-FT/MS determined O/C-ratios between 0.3 and 1 and main molecular weights between 200 and 500 Da. Temperature-programmed-pyrolysis mass spectroscopy identified carboxylic acids and lactones as major functional groups. Particle sizing using CNC-DMPS demonstrated the formation of small particles during a secondary organic aerosol formation process. Particle imaging using field-emission-gun scanning electron microscopy (FEG-SEM showed spherical particles, forming clusters and chains. Hence, secondary organic aerosols from catechol and guaiacol are appropriate model substances for studies of the processing of aromatic secondary organic aerosols and atmospheric HULIS on the laboratory scale.

  7. Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in streptomycetes. I. Purification and characterization.

    Science.gov (United States)

    Onaka, H; Tabata, H; Igarashi, Y; Sato, Y; Furumai, T

    2001-12-01

    Streptomycetes, which belong to the Gram-positive bacteria, produce secondary metabolites and sporulate. The timing of starting the secondary metabolite production and the sporulation depends on environmental conditions such as nitrogen and carbon sources. In order to obtain a tool for understanding the regulation mechanism, we carried out screening for chemical substances that induce secondary metabolism and sporulation in streptomycetes and found an active substance from the culture broth of Streptomyces sp. TP-A0584. This substance designated goadsporin promoted the formation of red pigment and sporulation at a concentration of 1 microM in Streptomyces lividans TK23 which does not produce the pigment under normal growth conditions. Goadsporin is an oligopeptide consisting of 19 amino acids with the molecular formula C72H97N19020S2. Sporulation and/or secondary metabolite production was induced in 36 streptomycetes strains among 42 strains tested. These results suggest that goadsporin acts on a common regulation pathway for sporulation and secondary metabolism in streptomycetes and can be a powerful tool to analyze the regulation mechanism.

  8. Enhancement of Phosphorus Solubility by Humic Substances in Ferrosols

    Institute of Scientific and Technical Information of China (English)

    HUA Quan-Xian; LI Jian-Yun; ZHOU Jian-Min; WANG Huo-Yan; DU Chang-Wen; CHEN Xiao-Qin

    2008-01-01

    An investigation was conducted to study the effect of humic substance (HS) on the phosphorus (P) solubility in acidic soil. The soil (2.5 g), HS (0, 0.5, and 2.5 g), and P as monocalcium phosphate (0.31 and 1.25 g P kg-1 soil) were mixed with 50 mL distilled water and two different sequences of adding HS and P were used. The results indicated that the P concentration in water and 0.01 mol L-1 CaCl2 solution increased with increasing amounts of humic substance. The concentrations of Fe and Al were also increased. However, Olsen P decreased with increasing amount of humic substance.Water-soluble P concentrations from P rates at 0.31 and 1.25 g P kg-1 soil in the treatment with 0.5 g (2.5 g) humic substance addition were 360% and 70% (500% and 90%) higher, respectively, than those in the treatment with no humic substance addition. P extracted by 0.01 mol L-1 CaCl2 in the treatments with 0.5 and 2.5 g humic substance addition was increased by 400% and 540%, respectively, compared with that in the treatment without humic substance at the rate of 0.31 g P kg-1 soil, while the corresponding P concentrations were increased by 80% and 90% at the rate of 1.25 g P kg-1 soil. The order of mixing humic substance and phosphate did not significantly affect desorbed P and labile P extracted with CaCl2.

  9. Cadmium sorption in solution by a chitin: effect of pH; Sorption du cadmium en solution par une chitine: effet du pH

    Energy Technology Data Exchange (ETDEWEB)

    Benguella, B.; Benaissa, H. [Universtie de Tlemcen, Lab. de Materiaux Sorbants et Traitement des Eaux, Dept. de Chimie, Faculte des Sciences, Tlemcen (Algeria)

    2001-07-01

    The pH is an essential factor to take into consideration in the sorption mechanisms of metals: it acts both on the metal speciation in solution and on the chemical behaviour of the surface of the sorbing material, and thus indirectly on the sorption mechanism. The effect of the initial pH of the solution on the cadmium sorption by raw state chitin has been studied in static conditions. The approach used is the determination of the sorption kinetics and equilibria for different values of initial pH (pH < 7-7.5). An increase of the initial pH value of the solution leads to an increase of the cadmium sorption capacity by chitin at the equilibrium. The Langmuir model has revealed to be convenient for a mathematical description of the sorption isotherms obtained. (J.S.)

  10. What Is This Substance? What Makes It Different? Mapping Progression in Students' Assumptions about Chemical Identity

    Science.gov (United States)

    Ngai, Courtney; Sevian, Hannah; Talanquer, Vicente

    2014-01-01

    Given the diversity of materials in our surroundings, one should expect scientifically literate citizens to have a basic understanding of the core ideas and practices used to analyze chemical substances. In this article, we use the term 'chemical identity' to encapsulate the assumptions, knowledge, and practices upon which chemical…

  11. Chemical modification and pH dependence of kinetic parameters to identify functional groups in a glucosyltransferase from Strep. Mutans

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J.E.; Leone, A.; Bell, E.T.

    1986-05-01

    A glucosyltransferase, forming a predominantly al-6 linked glucan, was partially purified from the culture filtrate of S. mutans GS-5. The kinetic properties of the enzyme, assessed using the transfer of /sup 14/C glucose from sucrose into total glucan, were studied at pH values from pH 3.5 to 6.5. From the dependence of km on pH, a group with pKa = 5.5 must be protonated to maximize substrate binding. From plots of V/sub max/ vs pH two groups, with pKa's of 4.5 and 5.5 were indicated. The results suggest the involvement of either two carboxyl groups (one protonated, one unprotonated in the native enzyme) or a carboxyl group (unprotonated) and some other protonated group such as histidine, cysteine. Chemical modification studies showed that Diethylyrocarbonate (histidine specific) had no effect on enzyme activity while modification with p-phydroxy-mercuribenzoate or iodoacetic acid (sulfhydryl reactive) and carbodimide reagents (carboxyl specific) resulted in almost complete inactivation. Activity loss was dependent upon time of incubation and reagent concentration. The disaccharide lylose, (shown to be an inhibitor of the enzyme with similar affinity to sucrose) offers no protection against modification by the sulfhydryl reactive reagents.

  12. Gallic Acid as a Complexing Agent for Copper Chemical Mechanical Polishing Slurries at Neutral pH

    Science.gov (United States)

    Kim, Yung Jun; Kang, Min Cheol; Kwon, Oh Joong; Kim, Jae Jeong

    2011-05-01

    Gallic acid was investigated as a new complexing agent for copper (Cu) chemical mechanical polishing slurries at neutral pH. Addition of 0.03 M gallic acid and 1.12 M H2O2 at pH 7 resulted in a Cu removal rate of 560.73±17.49 nm/min, and the ratio of the Cu removal rate to the Cu dissolution rate was 14.8. Addition of gallic acid improved the slurry performance compared to glycine addition. X-ray photoelectron spectroscopy analysis and contact angle measurements showed that addition of gallic acid enhanced the Cu polishing behavior by suppressing the formation of surface Cu oxide.

  13. [A system for predicting the toxicity and hazard of chemical substances, based on the joint use of logistic and numerical methods].

    Science.gov (United States)

    Kharchevnikova, N V

    2005-01-01

    A version of a logical combinatorial intellectual system (DMS system) has been developed to predict the toxicity and hazards of chemical substances. The system is based on the combined description of the substances, which includes both structural and numerical descriptors, particularly those characterizing the reactivity of compounds or their metabolites. The selection of numerical descriptors is based on the classification of processes of the interaction of the substance with the body in accordance with the key stage of the mechanism responsible for its toxic action. The new version of the DSM system takes into account the fact that the toxicity and hazard of chemicals are frequently determined by their bioactivation. Examples of how to apply the system to the prediction of carcinogenicity are given.

  14. History of EPI Suite™ and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments.

    Science.gov (United States)

    Card, Marcella L; Gomez-Alvarez, Vicente; Lee, Wen-Hsiung; Lynch, David G; Orentas, Nerija S; Lee, Mari Titcombe; Wong, Edmund M; Boethling, Robert S

    2017-03-22

    Chemical property estimation is a key component in many industrial, academic, and regulatory activities, including in the risk assessment associated with the approximately 1000 new chemical pre-manufacture notices the United States Environmental Protection Agency (US EPA) receives annually. The US EPA evaluates fate, exposure and toxicity under the 1976 Toxic Substances Control Act (amended by the 2016 Frank R. Lautenberg Chemical Safety for the 21(st) Century Act), which does not require test data with new chemical applications. Though the submission of data is not required, the US EPA has, over the past 40 years, occasionally received chemical-specific data with pre-manufacture notices. The US EPA has been actively using this and publicly available data to develop and refine predictive computerized models, most of which are housed in EPI Suite™, to estimate chemical properties used in the risk assessment of new chemicals. The US EPA develops and uses models based on (quantitative) structure-activity relationships ([Q]SARs) to estimate critical parameters. As in any evolving field, (Q)SARs have experienced successes, suffered failures, and responded to emerging trends. Correlations of a chemical structure with its properties or biological activity were first demonstrated in the late 19(th) century and today have been encapsulated in a myriad of quantitative and qualitative SARs. The development and proliferation of the personal computer in the late 20(th) century gave rise to a quickly increasing number of property estimation models, and continually improved computing power and connectivity among researchers via the internet are enabling the development of increasingly complex models.

  15. A chemical risk ranking and scoring method for the selection of harmful substances to be specially controlled in occupational environments.

    Science.gov (United States)

    Shin, Saemi; Moon, Hyung-Il; Lee, Kwon Seob; Hong, Mun Ki; Byeon, Sang-Hoon

    2014-11-20

    This study aimed to devise a method for prioritizing hazardous chemicals for further regulatory action. To accomplish this objective, we chose appropriate indicators and algorithms. Nine indicators from the Globally Harmonized System of Classification and Labeling of Chemicals were used to identify categories to which the authors assigned numerical scores. Exposure indicators included handling volume, distribution, and exposure level. To test the method devised by this study, sixty-two harmful substances controlled by the Occupational Safety and Health Act in Korea, including acrylamide, acrylonitrile, and styrene were ranked using this proposed method. The correlation coefficients between total score and each indicator ranged from 0.160 to 0.641, and those between total score and hazard indicators ranged from 0.603 to 0.641. The latter were higher than the correlation coefficients between total score and exposure indicators, which ranged from 0.160 to 0.421. Correlations between individual indicators were low (-0.240 to 0.376), except for those between handling volume and distribution (0.613), suggesting that each indicator was not strongly correlated. The low correlations between each indicator mean that the indicators and independent and were well chosen for prioritizing harmful chemicals. This method proposed by this study can improve the cost efficiency of chemical management as utilized in occupational regulatory systems.

  16. A Chemical Risk Ranking and Scoring Method for the Selection of Harmful Substances to be Specially Controlled in Occupational Environments

    Directory of Open Access Journals (Sweden)

    Saemi Shin

    2014-11-01

    Full Text Available This study aimed to devise a method for prioritizing hazardous chemicals for further regulatory action. To accomplish this objective, we chose appropriate indicators and algorithms. Nine indicators from the Globally Harmonized System of Classification and Labeling of Chemicals were used to identify categories to which the authors assigned numerical scores. Exposure indicators included handling volume, distribution, and exposure level. To test the method devised by this study, sixty-two harmful substances controlled by the Occupational Safety and Health Act in Korea, including acrylamide, acrylonitrile, and styrene were ranked using this proposed method. The correlation coefficients between total score and each indicator ranged from 0.160 to 0.641, and those between total score and hazard indicators ranged from 0.603 to 0.641. The latter were higher than the correlation coefficients between total score and exposure indicators, which ranged from 0.160 to 0.421. Correlations between individual indicators were low (−0.240 to 0.376, except for those between handling volume and distribution (0.613, suggesting that each indicator was not strongly correlated. The low correlations between each indicator mean that the indicators and independent and were well chosen for prioritizing harmful chemicals. This method proposed by this study can improve the cost efficiency of chemical management as utilized in occupational regulatory systems.

  17. Alteration of chemical behavior of L-ascorbic acid in combination with nickel sulfate at different pH solutions in vitro

    Institute of Scientific and Technical Information of China (English)

    Shaheen A Maniyar; Jameel G Jargar; Swastika N Das; Salim A Dhundasi; Kusal K Das

    2012-01-01

    Objective: To evaluate the alteration of chemical behavior of L-ascorbic acid (vitamin C) with metal ion (nickel) at different pH solutions in vitro. Methods: Spectra of pure aqueous solution of L-ascorbic acid (E mark) compound and NiSO4 (H2O) (sigma USA) were evaluated by UV visible spectrophotometer. Spectral analysis of L-ascorbic acid and nickel at various pH (2.0, 7.0, 7.4 and 8.6) at room temperature of 29℃ was recorded. In this special analysis, combined solution of L-ascorbic acid and nickel sulfate at different pH was also recorded. Results: The result revealed that λmax (peak wavelength of spectra) of L-ascorbic acid at pH 2.0 was 289.0 nm whereas at neutral pH 7.0, λmax was 295.4 nm. In alkaline pH 8.6, λmax was 295.4 nm and at pH 7.4 the λmax of L-ascorbic acid remained the same as 295.4 nm. Nickel solution at acidic pH 2.0 was 394.5 nm, whereas at neutral pH 7.0 and pH 7.4 were the same as 394.5 nm. But at alkaline pH 8.6, λmax value of nickel sulfate became 392.0 nm. The combined solution of L-ascorbic acid and nickel sulfate (6 mg/mL each) at pH 2.0 showed 292.5 nm and 392.5 nm, respectively whereas at pH 7.0, L-ascorbic acid showed 296.5 nm and nickel sulfate showed 391.5 nm. At pH 7.4, L-ascorbic acid showed 297.0 nm and nickel sulfate showed 394.0 nm in the combined solution whereas at pH 8.6 (alkaline) L-ascorbic acid and nickel sulfate were showing 297.0 and 393.5 nm, respectively.Conclusions:alone or in combination with nickel sulfate in vitro at different pH. Perhaps oxidation of L-ascorbic acid to L-dehydro ascorbic acid via the free radical (HSc*) generation from the reaction of H2ASc+ Ni (II) is the cause of such alteration of λmax value of L-ascorbic acid in the presence of metal Results clearly indicate an altered chemical behavior of L-ascorbic acid either nickel.

  18. Intellectual substance of lyrics by Joseph Brodsky

    Directory of Open Access Journals (Sweden)

    Plekhanova I. I.

    2015-01-01

    Full Text Available The features of J. Brodsky’s lyricism, which are caused by intellectual dominant of his consciousness, are explored in the article. Intellect here is understood as “directed thinking” (C. G. Jung; in artistic version it is described as project-reflexive thinking. The article gives basic characteristics of the poet’s consciousness, which caused maximum closeness between biographic and poetic “Me”, striving for alienation from the world and self-discipline in spiritual development. The connection between attitude towards the world and its’ artistic realization is observed. Brodsky’s way of thinking is noted for its abstractness of goal, for its insight of integrity of existence and non-existence. But this way of thinking is realized as decoding of material signs of manifestation of holism.

  19. Activation and modulation of recombinantly expressed serotonin receptor type 3A by terpenes and pungent substances.

    Science.gov (United States)

    Ziemba, Paul M; Schreiner, Benjamin S P; Flegel, Caroline; Herbrechter, Robin; Stark, Timo D; Hofmann, Thomas; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-11-27

    Serotonin receptor type 3 (5-HT3 receptor) is a ligand-gated ion channel that is expressed in the central nervous system (CNS) as well as in the peripheral nervous system (PNS). The receptor plays an important role in regulating peristalsis of the gastrointestinal tract and in functions such as emesis, cognition and anxiety. Therefore, a variety of pharmacologically active substances target the 5-HT3 receptor to treat chemotherapy-induced nausea and vomiting. The 5-HT3 receptors are activated, antagonized, or modulated by a wide range of chemically different substances, such as 2-methyl-serotonin, phenylbiguanide, setrones, or cannabinoids. Whereas the action of all of these substances is well described, less is known about the effect of terpenoids or fragrances on 5-HT3A receptors. In this study, we screened a large number of natural odorous and pungent substances for their pharmacological action on recombinantly expressed human 5-HT3A receptors. The receptors were functionally expressed in Xenopus oocytes and characterized by electrophysiological recordings using the two-electrode voltage-clamp technique. A screening of two odorous mixes containing a total of 200 substances revealed that the monoterpenes, thymol and carvacrol, act as both weak partial agonists and positive modulators on the 5-HT3A receptor. In contrast, the most effective blockers were the terpenes, citronellol and geraniol, as well as the pungent substances gingerol, capsaicin and polygodial. In our study, we identified new modulators of 5-HT3A receptors out of the classes of monoterpenes and vanilloid substances that frequently occur in various plants.

  20. Cd phytoavailability in sewage sludge-amended soil of different pH estimated by an isotopic method and chemical extraction; Fitodisponibilidad de Cd en suelo de diferente pH tratado com lodo albanal estimada por metodo isotopico y extraccion quimica

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Villanueva, Felipe Carlos; Boaretto, Antonio Enedi; Abreu Junior, Cassio Hamilton; Muraoka, Takashi; Trevizam, Anderson Ricardo [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Div. de Produtividade Agroindustrial e Alimentos]. E-mail: falvarez@cena,usp.br; Nascimento Filho, Virgilio Franco do [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Div. de Desenvolvimento de Meeodos e Tecnicas Analiticas e Nucleares

    2008-07-01

    The Cd phytoavailability in sewage sludge-amended soils of different pHs using the {sup 109}Cd L-value isotopic method and Cd extracted by DTPA has been determined. Maize plants (Zea mais L.) were grown under greenhouse conditions in a xanthic ferralsol at different pHs amended with five sewage sludge (SS) rates, and labeled with 74 kBq kg{sup -1} of {sup 109}Cd. The SS rates altered the properties of the soil chemicals and these influenced the isotopic parameter (L-value) and percent of Cd uptake by plants from soil (%Cdpdfs) and SS (%CdpdfSS). L-values and Cd extracted by DTPA correlate significantly with SS rates and Cd uptake by plants and are efficient for predicting the Cd phytoavailability in the sewage sludge-amended soil. (author)

  1. Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter

    Science.gov (United States)

    Lim, Taekyung; Lee, Jonghun; Ju, Sanghyun

    2016-08-01

    We have developed a method to detect the presence of small amounts of chemical substances in water, using a Al2O3 nanoparticle thin film covered with phosphonic acid (HDF-PA) self-assembled monolayer. The HDF-PA self-assembled Al2O3 nanoparticle thin film acts as a liquid-vapour separation filter, allowing the passage of chemical vapour while blocking liquids. Prevention of the liquid from contacting the SnO2 nanowire and source-drain electrodes is required in order to avoid abnormal operation. Using this characteristic, the concentration of chemical substances in water could be evaluated by measuring the current changes in the SnO2 nanowire transistor covered with the HDF-PA self-assembled Al2O3 nanoparticle thin film.

  2. The prominent conformational plasticity of lactoperoxidase: a chemical and pH stability analysis.

    Science.gov (United States)

    Boscolo, Barbara; Leal, Sónia S; Salgueiro, Carlos A; Ghibaudi, Elena M; Gomes, Cláudio M

    2009-07-01

    Lactoperoxidase (LPO) is a structurally complex and stable mammalian redox enzyme. Here we aim at evaluating the influence of ionic interactions and how these intertwine with the structural dynamics, stability and activity of LPO. In this respect, we have compared LPO guanidinium hydrochloride (GdmCl) and urea denaturation pathways and performed a detailed investigation on the effects of pH on the LPO conformational dynamics and stability. Our experimental findings using far-UV CD, Trp fluorescence emission and ESR spectroscopies clearly indicate that LPO charged-denaturation with GdmCl induced a sharp two-step process versus a three-step unfolding mechanism induced by urea. This differential effect between GdmCl and urea suggests that ionic interactions must play a rather prominent role in the stabilization of LPO. With both denaturants, the protein core was shown to retain activity up to near the respective C(m) values. Moreover, a pH titration of LPO evidenced no significant conformational alterations or perturbation of heme activity within the 4 to 11 pH interval. In contrast, alterations of ionic interactions by poising LPO at pH 3, 2 and 12 resulted in a loss of secondary structure, loosening of tertiary contacts and loss of activity, which appear to be associated with the perturbation of the hydrophobic core, as evidenced by ANS binding, as well as disruption of the heme pocket demonstrated by optical and EPR spectroscopies. Overall, LPO is characterised by a high degree of peripheral structural plasticity without perturbation of the core heme moiety. The possible physiological meaning of such features is discussed.

  3. Concentration of 'forgotten' substances using the XAD concentration method. Suitability of the method for hydrophilic chemicals

    NARCIS (Netherlands)

    Collombon MT; LER

    2007-01-01

    Concentration of forgotten substances using the XAD concentration method In the nineties, RIVM developed a method to concentrate toxic substances on XAD (a synthetic resin). Using bioassays, the toxicity can be determined in the concentrate. 'Modern' toxic substances tend to be more polar then 'clas

  4. Metal Sequestration Is Influenced By Biochar Properties and Changes in pH

    Science.gov (United States)

    Clemente, J.; Beauchemin, S.; MacKinnon, T.; Martin, J.; Joern, B.; Johnston, C. T.

    2014-12-01

    Addition of biochars to impounded metal mine waste may improve the physical and chemical properties, and the biological activity and diversity of these contaminated sites. However, understanding how biochar addition influences metal(loid) mobility is necessary. Here, the sequestration of 5 metal(loid)s in suspensions of biochars adjusted to pH 4.5 or 6.0 were characterized. Solutions of the oxyanion As and the cations Ni, Cu, Zn, Cd were added at a single rate of 3 mmol kg-1 biochar. Six biochars were obtained by large-scale pyrolysis of softwood, hardwood, grass, and poultry litter under different conditions. Biochars were characterized using N2-BET (surface area), proximate analysis, elemental analysis, X-ray diffraction and Fourier transform infrared spectroscopy. In this study, metal(loid) sequestration depended on the suspension pH, metal(loid), and biochar characteristics. In most cases, a significantly (α=0.05) greater proportion of cation was sequestered in biochar suspensions adjusted to pH 6.0 compared to pH 4.5. In contrast, pH had no significant effect on the sequestration of As. The magnitude of the increase in sequestration at pH 6.0 compared to pH 4.5 can be attributed to specific biochar characteristics. Enhancement of Ni, Zn, and Cd sequestration at pH 6.0 compared to pH 4.5 was correlated (R2>0.50) to inorganic C content and neutralization potential of biochars. Furthermore, increased Cu sequestration at pH 6.0 compared to pH 4.5 was correlated (R2>0.50) to % Fixed matter and organic C content of biochars. This data suggests that at pH 6.0, sequestration of Ni, Zn, and Cd as carbonates and interactions between organic C and Cu were more favourable compared to pH 4.5. For Ni, Cu, and Cd, differences in sequestration at the two pH were also related (R2>0.50) to the relative distribution of functional groups. This study emphasizes the need for a more holistic understanding of how biochar properties influence metal sequestration.

  5. pH sensitivity of ammonium transport by Rhbg.

    Science.gov (United States)

    Nakhoul, Nazih L; Abdulnour-Nakhoul, Solange M; Schmidt, Eric; Doetjes, Rienk; Rabon, Edd; Hamm, L Lee

    2010-12-01

    Rhbg is a membrane glycoprotein that is involved in NH(3)/NH(4)(+) transport. Several models have been proposed to describe Rhbg, including an electroneutral NH(4)(+)/H(+) exchanger, a uniporter, an NH(4)(+) channel, or even a gas channel. In this study, we characterized the pH sensitivity of Rhbg expressed in Xenopus oocytes. We used two-electrode voltage clamp and ion-selective microelectrodes to measure NH(4)(+)-induced [and methyl ammonium (MA(+))] currents and changes in intracellular pH (pH(i)), respectively. In oocytes expressing Rhbg, 5 mM NH(4)Cl (NH(3)/NH(4)(+)) at extracellular pH (pH(o)) of 7.5 induced an inward current, decreased pH(i), and depolarized the cell. Raising pH(o) to 8.2 significantly enhanced the NH(4)(+)-induced current and pH(i) changes, whereas decreasing bath pH to 6.5 inhibited these changes. Lowering pH(i) (decreased by butyrate) also inhibited the NH(4)(+)-induced current and pH(i) decrease. In oocytes expressing Rhbg, 5 mM methyl amine hydrochloride (MA/MA(+)), often used as an NH(4)Cl substitute, induced an inward current, a pH(i) increase (not a decrease), and depolarization of the cell. Exposing the oocyte to MA/MA(+) at alkaline bath pH (8.2) enhanced the MA(+)-induced current, whereas lowering bath pH to 6.5 inhibited the MA(+) current completely. Exposing the oocyte to MA/MA(+) at low pH(i) abolished the MA(+)-induced current and depolarization; however, pH(i) still increased. These data indicate that 1) transport of NH(4)(+) and MA/MA(+) by Rhbg is pH sensitive; 2) electrogenic NH(4)(+) and MA(+) transport are stimulated by alkaline pH(o) but inhibited by acidic pH(i) or pH(o); and 3) electroneutral transport of MA by Rhbg is likely but is less sensitive to pH changes.

  6. Raising awareness of new psychoactive substances: chemical analysis and in vitro toxicity screening of 'legal high' packages containing synthetic cathinones.

    Science.gov (United States)

    Araújo, Ana Margarida; Valente, Maria João; Carvalho, Márcia; Dias da Silva, Diana; Gaspar, Helena; Carvalho, Félix; de Lourdes Bastos, Maria; Guedes de Pinho, Paula

    2015-05-01

    The world's status quo on recreational drugs has dramatically changed in recent years due to the rapid emergence of new psychoactive substances (NPS), represented by new narcotic or psychotropic drugs, in pure form or in preparation, which are not controlled by international conventions, but that may pose a public health threat comparable with that posed by substances listed in these conventions. These NPS, also known as 'legal highs' or 'smart drugs', are typically sold via Internet or 'smartshops' as legal alternatives to controlled substances, being announced as 'bath salts' and 'plant feeders' and is often sought after for consumption especially among young people. Although NPS have the biased reputation of being safe, the vast majority has hitherto not been tested and several fatal cases have been reported, namely for synthetic cathinones, with pathological patterns comparable with amphetamines. Additionally, the unprecedented speed of appearance and distribution of the NPS worldwide brings technical difficulties in the development of analytical procedures and risk assessment in real time. In this study, 27 products commercialized as 'plant feeders' were chemically characterized by gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. It was also evaluated, for the first time, the in vitro hepatotoxic effects of individual synthetic cathinones, namely methylone, pentedrone, 4-methylethcathinone (4-MEC) and 3,4-methylenedioxypyrovalerone (MDPV). Two commercial mixtures ('Bloom' and 'Blow') containing mainly cathinone derivatives were also tested, and 3,4-methylenedioxymethamphetamine (MDMA) was used as the reference drug. The study allowed the identification of 19 compounds, showing that synthetic cathinones are the main active compounds present in these products. Qualitative and quantitative variability was found in products sold with the same trade name in matching or different 'smartshops'. In the toxicity studies performed in

  7. Colour quantitation for chemical spot tests for a controlled substances presumptive test database.

    Science.gov (United States)

    Elkins, Kelly M; Weghorst, Alex C; Quinn, Alicia A; Acharya, Subrata

    2017-02-01

    Crime scene investigators (CSIs) often encounter unknown powders, capsules, tablets, and liquids at crime scenes, many of which are controlled substances. Because most drugs are white powders, however, visual determination of the chemical identity is difficult. Colourimetric tests are a well-established method of presumptive drug identification. Positive tests are often reported differently, however, because two analysts may perceive colour or record colourimetric results in different ways. In addition to perceiving colour differently, it is very common for there to be poor visibility conditions (e.g. rain, darkness) while performing these tests, further obscuring the results. In order to address these concerns and to create uniformity in the reporting of on-site colourimetric test results, this study has evaluated two of the state-of-the-art apps (ColorAssist® and Colorimeter®) for reporting the colour test results quantitatively in red-green-blue (RGB) format. The compiled library database of presumptive test results contains over 3300 data points including over 800 unique drug/test combinations. Variations observed between test replicates, from performing a test on different days, recording with a different device type (e.g. iPod Touch, iPhone models 4, 5c, 5s, or 6), and using different quantities of drug are discussed. Overall, the least variation in Euclidian norm was observed using ColorAssist® with the camera light (25.1±22.1) while the variation between replicates and data recorded using different devices was similar. The resulting library is uploaded to a smartphone application aimed to aid in identifying and interpreting suspected controlled substance evidence. Copyright © 2016 John Wiley & Sons, Ltd.

  8. PH2 internal energy distribution produced by the 193 nm photodissociation of PH3

    Science.gov (United States)

    Baugh, D.; Koplitz, B.; Xu, Z.; Wittig, C.

    1988-01-01

    Experimental results involving 193 nm PH3 photodissociation are reported. Detection of the PH2 fragment using laser induced fluorescence suggests that PH2 is formed with appreciable internal excitation, but no quantitative results concerning nascent PH2 could be obtained using this direct method. In related kinetics studies, the reaction of thermalized (300 K) PH2 with O2 yields a rate coefficient of 2.7×10-13 cm3 molecule-1 s-1, while PH2+NO is rather unreactive (k<10-14 cm3 molecule-1 s-1). In separate experiments, sub-Doppler spectroscopy on the H-atom fragment at Lyman-α (121.6 nm) allowed the center-of-mass kinetic energy distribution to be extracted; the PH2 internal energy distribution was obtained using energy conservation. Most of the available energy (E° ≂hν-D0=22 000 cm-1) appears as PH2 internal excitation; the mean internal energy is 14 000 cm-1 and the distribution peaks at ˜19 000 cm-1. The experimental distribution compares favorably with a simple statistical (prior) calculation, and the agreement is discussed in terms of possible photodissociation mechanisms.

  9. Measuring Phagosomal pH by Fluorescence Microscopy.

    Science.gov (United States)

    Canton, Johnathan; Grinstein, Sergio

    2017-01-01

    Dual wavelength ratiometric imaging has become a powerful tool for the study of pH in intracellular compartments. It allows for the dynamic imaging of live cells while accounting for changes in the focal plane, differential loading of the fluorescent probe, and photobleaching caused by repeated image acquisitions. Ratiometric microscopic imaging has the added advantage over whole population methods of being able to resolve individual cells and even individual organelles. In this chapter we provide a detailed discussion of the basic principles of ratiometric imaging and its application to the measurement of phagosomal pH, including probe selection, the necessary instrumentation, and calibration methods.

  10. PhD by Publication: A Student's Perspective

    Directory of Open Access Journals (Sweden)

    Peter Kanowski

    2008-01-01

    Full Text Available This article presents the first author's experiences as an Australian doctoral student undertaking a PhD by publication in the arena of the social sciences. She published nine articles in refereed journals and a peer-reviewed book chapter during the course of her PhD. We situate this experience in the context of current discussion about doctoral publication practices, in order to inform both postgraduate students and academics in general. The article discusses recent thinking about PhD by publication and identifies the factors that students should consider prior to adopting this approach, in terms of university requirements, supervisors' attitudes, the research subject matter, intellectual property, capacity and working style, and issues of co-authorship. It then outlines our perceptions of the advantages and disadvantages of undertaking a PhD by publication. We suggest that, in general, the advantages outweigh the disadvantages. We conclude by reflecting on how the first author's experiences relate to current discussions about fostering publications by doctoral students.

  11. 13C-NMR chemical shift databases as a quick tool to evaluate structural models of humic substances

    DEFF Research Database (Denmark)

    Nyrop Albers, Christian; Hansen, Poul Erik

    2010-01-01

    Models for humic and fulvic acids are discussed based on 13C liquid state NMR spectra combined with results from elemental analysis and titration studies. The analysis of NMR spectra is based on a full reconstruction of the NMR spectrum done with help of 13C-NMR data bases by adding up chemical...... side missing structural elements in the models can be suggested. A number of proposed structures for humic and fulvic acids are discussed based on the above analysis....... shifts of all substructures from the proposed models. A full reconstruction makes sure that all carbons are accounted for and enables on the negative side to discuss structural elements identified from recorded spectra of humic substances that cannot be observed in the simulated spectrum. On the positive...

  12. Oxidative stability of soybean oil in oleosomes as affected by pH and iron.

    Science.gov (United States)

    Kapchie, Virginie N; Yao, Linxing; Hauck, Catherine C; Wang, Tong; Murphy, Patricia A

    2013-12-01

    The oxidative stability of oil in soybean oleosomes, isolated using the Enzyme-Assisted Aqueous Extraction Process (EAEP), was evaluated. The effects of ferric chloride, at two concentration levels (100 and 500 μM), on lipid oxidation, was examined under pH 2 and 7. The peroxide value (PV) and thiobarbituric acid-reactive substance (TBARS) value of oil, in oleosome suspensions stored at 60 °C, were measured over a 12 day period. The presence of ferric chloride significantly (Poil in the isolated oleosome, as measured by the PV and TBARS. Greater lipid oxidation occurred under an acidic pH. In the pH 7 samples, the positively charged transition metals were strongly attracted to the negatively charged droplets. However, the low ζ-potential and the high creaming rate at this pH, may have limited the oxidation. Freezing, freeze-drying or heating of oleosomes have an insignificant impact on the oxidative stability of oil in isolated soybean oleosomes. Manufacturers should be cautious when adding oleosomes as ingredients in food systems containing transition metal ions.

  13. Effect of pH, salt and chemical rinses on bacterial attachment to extracellular matrix proteins.

    Science.gov (United States)

    Zulfakar, Siti Shahara; White, Jason D; Ross, Tom; Tamplin, Mark

    2013-06-01

    Microbial contamination of carcass surfaces occurs during slaughter and post-slaughter processing steps, therefore interventions are needed to enhance meat safety and quality. Although many studies have been done at the macro-level, little is known about specific processes that influence bacterial attachment to carcass surfaces, particularly the role of extracellular matrix (ECM) proteins. In the present study, the effect of pH and salt (NaCl, KCl and CaCl2) on attachment of Escherichia coli and Salmonella isolates to dominant ECM proteins: collagen I, fibronectin, collagen IV and laminin were assessed. Also, the effects of three chemical rinses commonly used in abattoirs (2% acetic acid, 2% lactic acid and 10% trisodium phosphate (TSP)) were tested. Within a pH range of 5-9, there was no significant effect on attachment to ECM proteins, whereas the effect of salt type and concentration varied depending on combination of strain and ECM protein. A concentration-dependant effect was observed with NaCl and KCl (0.1-0.85%) on attachment of E. coli M23Sr, but only to collagen I. One-tenth percent CaCl2 produced the highest level of attachment to ECM proteins for E. coli M23Sr and EC614. In contrast, higher concentrations of CaCl2 increased attachment of E. coli EC473 to collagen IV. Rinses containing TSP produced >95% reduction in attachment to all ECM proteins. These observations will assist in the design of targeted interventions to prevent or disrupt contamination of meat surfaces, thus improving meat safety and quality.

  14. In vitro antimicrobial activity of auxiliary chemical substances and natural extracts on Candida albicans and Enterococcus faecalis in root canals

    Directory of Open Access Journals (Sweden)

    Marcia Carneiro Valera

    2013-04-01

    Full Text Available Objective: The aim of this study was to evaluate the antimicrobial activity of auxiliary chemical substances and natural extracts on Candida albicans and Enterococcus faecalis inoculated in root canals. Material and Methods: Seventy-two human tooth roots were contaminated with C. albicans and E. faecalis for 21 days. The groups were divided according to the auxiliary chemical substance into: G1 2.5% sodium hypochlorite (NaOCl, G2 2% chlorhexidine gel (CHX, G3 castor oil, G4 glycolic Aloe vera extract, G5 glycolic ginger extract, and G6 sterile saline (control. The samples of the root canal were collected at different intervals: confirmation collection, at 21 days after contamination; 1st collection, after instrumentation; and 2nd collection, seven days after instrumentation. Microbiological samples were grown in culture medium and incubated at 37°C for 48 hours. Results: The results were submitted to the Kruskal-Wallis and Dunn (5% statistical tests. NaOCl and CHX completely eliminated the microorganisms of the root canals. Castor oil and ginger significantly reduced the number of CFU of the tested bacteria. Reduction of CFU/mL at the 1st and 2nd collections for groups G1, G2, G3 and G4 was greater in comparison to groups G5 and G6. Conclusion: It was concluded that 2.5% sodium hypochlorite and 2% chlorhexidine gel were more effective in eliminating C. albicans and E. faecalis, followed by the castor oil and glycolic ginger extract. The Aloe vera extract showed no antimicrobial activity.

  15. Chemical removal of nitrate from water by aluminum-iron alloys.

    Science.gov (United States)

    Xu, Jie; Pu, Yuan; Qi, Wei-Kang; Yang, Xiao Jin; Tang, Yang; Wan, Pingyu; Fisher, Adrian

    2017-01-01

    Zero-valent iron has been intensively investigated in chemical reduction of nitrate in water, but the reduction requires acidic or weak acidic pH conditions and the product of the reduction is exclusively ammonium, an even more toxic substance. Zero-valent aluminum is a stronger reductant than iron, but its use for the reduction of aqueous nitrate requires considerably alkaline pH conditions. In this study, aluminum-iron alloys with an iron content of 10%, 20% and 58% (termed Al-Fe10, Al-Fe20 and Al-Fe58, respectively) were investigated for the reduction of aqueous nitrate. Al-Fe alloys were efficient to reduce nitrate in water in an entire pH range of 2-12 and the reduction proceeded in a pseudo-first order at near neutral pH conditions. The observed reaction rate constant (Kobs) of Al-Fe10 was 3 times higher than that of Fe and the Kobs of Al-Fe20 doubled that of Al-Fe10. The nitrogen selectivity of the reduction by Al-Fe10, Al-Fe20 and Al-Fe58 was 17.6%, 23.9% and 40.3%, respectively at pH 7 and the nitrogen selectivity by Al-Fe20 increased from 18.9% at pH 2-60.3% at pH 12. The enhanced selectivity and reactivity of Al-Fe alloys were likely due to the presence of an intermetallic Al-Fe compound (Al13Fe4).

  16. Assessing the potential hazard of chemical substances for the terrestrial environment. Development of hazard classification criteria and quantitative environmental indicators.

    Science.gov (United States)

    Tarazona, J V; Fresno, A; Aycard, S; Ramos, C; Vega, M M; Carbonell, G

    2000-03-20

    Hazard assessment constitutes an essential tool in order to evaluate the potential effects of chemical substances on organisms and ecosystems. It includes as a first step, hazard identification, which must detect the potential dangers of the substance (i.e. the kind of effects that the substance may produce), and a second step to quantify each danger and to set the expected dose/response relationships. Hazard assessment plays a key role in the regulation of chemical substances, including pollution control and sustainable development. However, the aquatic environment has largely received more attention than terrestrial ecosystems. This paper presents the extrapolation of several basic concepts from the aquatic to the terrestrial compartment, and suggests possibilities for their regulatory use. Two specific proposals are discussed. The first focuses on the scientific basis of the hazard identification-classification criteria included in the EU regulations and their extrapolation to the terrestrial environment. The second focuses on the OECD programme for environmental indicators and the development of a soil pollution pressure indicator to quantify the potential hazards for the soil compartment and its associated terrestrial ecosystem related to the toxic chemicals applied deliberately (i.e. pesticides) or not (i.e. heavy metals in sludge-based fertilisers; industrial spills) to the soil.

  17. Endocrine disrupting chemicals and other substances of concern in food contact materials: an updated review of exposure, effect and risk assessment.

    Science.gov (United States)

    Muncke, Jane

    2011-10-01

    Food contact materials (FCM) are an underestimated source of chemical food contaminants and a potentially relevant route of human exposure to endocrine disrupting chemicals (EDCs). Quantifying the exposure of the general population to substances from FCM relies on estimates of food consumption and leaching into food. Recent studies using polycarbonate plastics show that food simulants do not always predict worst-case leaching of bisphenol A, a common FCM substance. Also, exposure of children to FCM substances is not always realistically predicted using the common conventions and thus possibly misjudged. Further, the exposure of the whole population to substances leaching into dry foods is underestimated. Consumers are exposed to low levels of substances from FCM across their entire lives. Effects of these compounds currently are assessed with a focus on mutagenicity and genotoxicity. This approach however neglects integrating recent new toxicological findings, like endocrine disruption, mixture toxicity, and developmental toxicity. According to these new toxicology paradigms women of childbearing age and during pregnancy are a new sensitive population group requiring more attention. Furthermore, in overweight and obese persons a change in the metabolism of xenobiotics is observed, possibly implying that this group of consumers is insufficiently protected by current risk assessment practice. Innovations in FCM risk assessment should therefore include routine testing for EDCs and an assessment of the whole migrate toxicity of a food packaging, taking into account all sensitive population groups. In this article I focus on recent issues of interest concerning either exposure to or effects of FCM-related substances. Further, I review the use of benzophenones and organotins, two groups of known or suspected EDCs, in FCM authorized in the US and EU.

  18. Effect of pH on biologic degradation of Microcystis aeruginosa by alga-lysing bacteria in sequencing batch biofilm reactors

    Institute of Scientific and Technical Information of China (English)

    Hongjing LI; Mengli HAO; Jingxian LIU; Chen CHEN1; Zhengqiu FAN; Xiangrong WANG

    2012-01-01

    In this paper, the effect of pH on biological degradation of Microcystis aeruginosa by alga-lysing bacteria in laboratory-scale sequencing batch biofilm reactors (SBBRs) was investigated. After 10 d filming with waste activated sludge, the biological film could be formed, and the bioreactors in which laid polyolefin resin filler were used to treat algal culture. By comparing the removal efficiency of chlorophyll a at different aerobic time, the optimum time was determined as 5 h. Under pH 6.5, 7.5, and 8.5 conditions, the removal rates of Microcystis aeruginosa were respectively 75.9%, 83.6%, and 78.3% (in term of chlorophyll a), and that of Chemical Oxygen Demand (CODMn) were 30.6%, 35.8%, and 33.5%. While the removal efficiencies of ammonia nitrogen (NH+ -N) were all 100%. It was observed that the sequence of the removal efficiencies of algae, NH+ -N and organic matter were pH 7.5 〉 pH 8.5 〉 pH 6.5. The results showed that the dominant alga-lysing bacteria in the SBBRs was strain HM-01, which was identified as Bacillus sp. by Polymerase Chain Reaction (PCR) amplification of the 16S rRNA gene, Basic Local Alignment Search Tool (BLAST) analysis, and compar- ison with sequences in the GenBank nucleotide database. The algicidal activated substance which HM-01 strain excreted could withstand high temperature and pressure, also had better hydrophily and stronger polarity.

  19. Preferences for treatment setting by substance users in India

    Directory of Open Access Journals (Sweden)

    Anju Dhawan

    2016-01-01

    Full Text Available Background: Drug and alcohol use is a growing public health concern for India. Treatment services delivery for substance use disorders is available through three sectors viz. Government (GO centres under Ministry of Health and FW, Non-Government (NGO under Ministry of Social Justice and Empowerment and the private sector. Information on ttreatment utilisation and preferences of treatment settings by substance users are not available for India. Methods: A performa was filled up prospectively for each consecutive new patient seeking treatment for drug/alcohol use (excluding tobacco at De-addiction centres funded by MOH&FW; NGOs under MoSJE and private psychiatrists between 15 th July to 15 th October, 2011. All data available for 182 drug using persons from private, 1228 persons from 35 NGOs and 1700 persons from GO organizations were entered into SPSS-21.0, data quality checks performed and analysed. Results: There was a variance in the population profile in the three sectors providing treatment delivery for substance users in India. Treatment seeking for illicit drugs (heroin, opiates and cannabis was higher in GO sector; injection drug use was higher in NGO sector while alcohol was higher in private sector. Conclusions: Strengthening linkages between GO and NGO sector is important for an improved coverage and quality of treatment services in the country. The Andersen′s Behavioural Model as theoretical background to clarify some issues in analyzing with larger datasets is warranted.

  20. THEORETICAL CHEMICAL ENGINEERING - Modeling and Simulation by Christo Boyadjiev

    Directory of Open Access Journals (Sweden)

    Simeon Oka

    2010-01-01

    Full Text Available Book Title: THEORETICAL CHEMICAL ENGINEERING - Modeling and Simulation Author(s: Christo Boyadjiev Institute of Chemical Engineering, Bulgarian Academy of Science, Sofia Publisher: Springer, 2010 ISBN: 978-3-642-10777-1 Review by: Prof. Simeon Oka, Ph. D., Scientific advisor - retired

  1. Fiscal 1997 report on the results of the international standardization R and D. Measurement of ultra-micro chemical substances and measuring methods of hormone effects; 1997 nendo seika hokokusho kokusai hyojun soseigata kenkyu kaihatsu. Chobiryo kagaku busshitsu no keisoku horumon eikyo sayo sokuteiho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Concerning the measurement system of ultra-micro hazardous chemical substances in the global environment, the paper examined the present situation of chemical substances such as dioxins, made an experimental study on the method to analyze dioxins in exhaust gas from an aspect of international consistency, and worked out a JIS draft. As to the standard measuring method of hormone effects of chemical substances, the paper developed the competitive bonding experiment system to measure bonding ability of chemical substances to homo sapiens estrogen receptor (ER). By measuring ER bonding ability of 78 kinds of chemical substances, the measuring method was developed. In the development of the assay system for detection of hormone-like compounds, the assay system with transfer activity via estrogen receptor as an index was established using cultured cells and yeast. Further, the development was made of a measuring method of receptor bonding activity of hormone-like substances. 33 refs., 151 figs., 66 tabs.

  2. Imaging in Vivo Extracellular pH with a Single Paramagnetic Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agent

    Directory of Open Access Journals (Sweden)

    Guanshu Liu

    2012-01-01

    Full Text Available The measurement of extracellular pH (pHe has potential utility for cancer diagnoses and for assessing the therapeutic effects of pH-dependent therapies. A single magnetic resonance imaging (MRI contrast agent that is detected through paramagnetic chemical exchange saturation transfer (PARACEST was designed to measure tumor pHe throughout the range of physiologic pH and with magnetic resonance saturation powers that are not harmful to a mouse model of cancer. The chemical characterization and modeling of the contrast agent Yb3+-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid, 10-o-aminoanilide (Yb-DO3A-oAA suggested that the aryl amine of the agent forms an intramolecular hydrogen bond with a proximal carboxylate ligand, which was essential for generating a practical chemical exchange saturation transfer (CEST effect from an amine. A ratio of CEST effects from the aryl amine and amide was linearly correlated with pH throughout the physiologic pH range. The pH calibration was used to produce a parametric pH map of a subcutaneous flank tumor on a mouse model of MCF-7 mammary carcinoma. Although refinements in the in vivo CEST MRI methodology may improve the accuracy of pHe measurements, this study demonstrated that the PARACEST contrast agent can be used to generate parametric pH maps of in vivo tumors with saturation power levels that are not harmful to a mouse model of cancer.

  3. Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria.

    Science.gov (United States)

    Wang, Jin; Li, Qing; Li, Ming-Ming; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo

    2014-07-01

    Competitive adsorption of heavy metals by extracellular polymeric substances (EPS) extracted from Desulfovibrio desulfuricans was investigated. Chemical analysis showed that different EPS compositions had different capacities for the adsorption of heavy metals which was investigated using Cu(2+) and Zn(2+). Batch adsorption tests indicated that EPS had a higher combined ability with Zn(2+) than Cu(2+). This was confirmed and explained by Fourier transform infrared (FTIR) and excitation-emission matrix (EEM) spectroscopy analysis. FTIR analysis showed that both polysaccharides and protein combined with Zn(2+) while only protein combined with Cu(2+). EEM spectra further revealed that tryptophan-like substances were the main compositions reacted with the heavy metals. Moreover, Zn(2+) had a higher fluorescence quenching ability than Cu(2+).

  4. Effects of temperature and pH on adsorption of basic brown 1 by the bacterial biopolymer poly(gamma-glutamic acid).

    Science.gov (United States)

    Inbaraj, B Stephen; Chiu, C P; Ho, G H; Yang, J; Chen, B H

    2008-03-01

    Poly(gamma-glutamic acid) (gamma-PGA), an extracellular polymeric substance (EPS) synthesized by Bacillus species, was explored to study its interaction with the basic brown 1 dye by conducting a systematic batch adsorption study as affected by two critical parameters, temperature and pH. Adsorption isotherms were closely predicted by Temkin equation among the eight isotherm models tested. The rate of adsorption was very rapid attaining equilibrium within 60 min and the kinetics were well described by both modified second-order and pseudo second-order models. Boyd's ion exchange model, which assumes exchanges of ions to be a chemical phenomenon, also fitted the kinetic data precisely. The adsorption rate increased with increasing solution temperature, however, a reversed trend was observed for the adsorption capacity. Changes in enthalpy, entropy and free energy values revealed dye adsorption by gamma-PGA to be an exothermic and spontaneous process involving no structural modification in gamma-PGA, whereas the activation energy of 37.21 kJ/mol indicated dye adsorption to be reaction-controlled. Following a rise in solution pH, the dye adsorption increased and reached a plateau at pH 5, while the maximum release of dye from spent gamma-PGA occurred at pH 1.5, suggesting a possible ion exchange mechanism. Ion exchange adsorption of basic dyes by gamma-PGA was further proved by the presence of two new IR bands at approximately 1600 and 1405.72 cm(-1), representing asymmetric and symmetric stretching vibration of carboxylate anion, for dye-treated gamma-PGA.

  5. Characterization of Bacteriocin like inhibitory substance produced by a new Strain Brevibacillus borstelensis AG1 Isolated from 'Marcha'

    Directory of Open Access Journals (Sweden)

    Nivedita Sharma

    2014-09-01

    Full Text Available In the present study, a bacterium isolated from Marcha- a herbal cake used as traditional starter culture to ferment local wine in North East India, was evaluated for bacteriocin like inhibitory substance production and was tested against six food borne/spoilage causing pathogens viz. Listeria monocytogenes MTCC 839, Bacillus subtilis MTCC 121, Clostridium perfringens MTCC 450, Staphylococcus aureus, Lactobacillus plantarum and Leuconostoc mesenteroides MTCC 107 by using bit/disc method followed by well diffusion method. The bacterial isolate was identified as Brevibacillus borstelensis on the basis of phenotypic, biochemical and molecular characteristics using 16Sr RNA gene technique. Bacteriocin like inhibitory substance produced by Brevibacillus borstelensis AG1 was purified by gel exclusion chromatography. The molecular mass of the Brevibacillus borstelensis AG1 was found to be 12 kDa. Purified bacteriocin like inhibitory substance of Brevibacillus borstelensis was further characterized by studying the effect of temperature, pH, proteolytic enzyme and stability. Bacteriocin like inhibitory substance was found to be thermostable upto 100 °C, active at neutral pH, sensitive to trypsin, and partially stable till third week of storage thus showing a bright prospective to be used as a potential food biopreservative.

  6. Characterization of Bacteriocin like inhibitory substance produced by a new Strain Brevibacillus borstelensis AG1 Isolated from 'Marcha'.

    Science.gov (United States)

    Sharma, Nivedita; Gupta, Anupama; Gautam, Neha

    2014-01-01

    In the present study, a bacterium isolated from Marcha- a herbal cake used as traditional starter culture to ferment local wine in North East India, was evaluated for bacteriocin like inhibitory substance production and was tested against six food borne/spoilage causing pathogens viz. Listeria monocytogenes MTCC 839, Bacillus subtilis MTCC 121, Clostridium perfringens MTCC 450, Staphylococcus aureus, Lactobacillus plantarum and Leuconostoc mesenteroides MTCC 107 by using bit/disc method followed by well diffusion method. The bacterial isolate was identified as Brevibacillus borstelensis on the basis of phenotypic, biochemical and molecular characteristics using 16Sr RNA gene technique. Bacteriocin like inhibitory substance produced by Brevibacillus borstelensis AG1 was purified by gel exclusion chromatography. The molecular mass of the Brevibacillus borstelensis AG1 was found to be 12 kDa. Purified bacteriocin like inhibitory substance of Brevibacillus borstelensis was further characterized by studying the effect of temperature, pH, proteolytic enzyme and stability. Bacteriocin like inhibitory substance was found to be thermostable upto 100 °C, active at neutral pH, sensitive to trypsin, and partially stable till third week of storage thus showing a bright prospective to be used as a potential food biopreservative.

  7. Characterization of Bacteriocin like inhibitory substance produced by a new Strain Brevibacillus borstelensis AG1 Isolated from ‘Marcha’

    Science.gov (United States)

    Sharma, Nivedita; Gupta, Anupama; Gautam, Neha

    2014-01-01

    In the present study, a bacterium isolated from Marcha- a herbal cake used as traditional starter culture to ferment local wine in North East India, was evaluated for bacteriocin like inhibitory substance production and was tested against six food borne/spoilage causing pathogens viz. Listeria monocytogenes MTCC 839, Bacillus subtilis MTCC 121, Clostridium perfringens MTCC 450, Staphylococcus aureus, Lactobacillus plantarum and Leuconostoc mesenteroides MTCC 107 by using bit/disc method followed by well diffusion method. The bacterial isolate was identified as Brevibacillus borstelensis on the basis of phenotypic, biochemical and molecular characteristics using 16Sr RNA gene technique. Bacteriocin like inhibitory substance produced by Brevibacillus borstelensis AG1 was purified by gel exclusion chromatography. The molecular mass of the Brevibacillus borstelensis AG1 was found to be 12 kDa. Purified bacteriocin like inhibitory substance of Brevibacillus borstelensis was further characterized by studying the effect of temperature, pH, proteolytic enzyme and stability. Bacteriocin like inhibitory substance was found to be thermostable upto 100 °C, active at neutral pH, sensitive to trypsin, and partially stable till third week of storage thus showing a bright prospective to be used as a potential food biopreservative. PMID:25477937

  8. Desorption of Hg(II) and Sb(V) on extracellular polymeric substances: effects of pH, EDTA, Ca(II) and temperature shocks.

    Science.gov (United States)

    Zhang, Daoyong; Lee, Duu-Jong; Pan, Xiangliang

    2013-01-01

    Extracellular polymeric substances (EPS) existed ubiquitously in biological systems affect the mobility and availability of heavy metals in the environments. The adsorption-desorption behaviors of Hg(II) and Sb(V) on EPS were investigated. The sorption rates follow Sb(V) > Hg(II), and the desorption rates follow reverse order. Applications of ethylene diamine tetraacetic acid (EDTA), Ca(II) and pH shocks affect desorption rates and desorbed quantities of Hg(II) from EPS-Hg complex. Temperature shock minimally affects the desorption rate of Hg(II). Conversely, the EPS-Sb complex is stable subjected to EDTA, Ca(II), temperature or pH shocks. The excitation-emission matrix (EEM) fluorescence spectroscopy and fast-Fourier (FT-IR) analysis showed that Hg(II) and Sb(V) principally interacted with polysaccharides and protein-like compounds in the EPS, respectively. The EPS-Hg complex presents a time bomb that may release high levels of Hg(II) in short time period under environmental shocks.

  9. Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils.

    Science.gov (United States)

    Pérez-Esteban, Javier; Escolástico, Consuelo; Masaguer, Alberto; Vargas, Carmen; Moliner, Ana

    2014-05-01

    We evaluated the effects of pH and soluble organic carbon affected by organic amendments on metal mobility to find out the optimal conditions for their application in the stabilization of metals in mine soils. Soil samples (pH 5.5-6.2) were mixed with 0, 30 and 60 th a(-1) of sheep-horse manure (pH 9.4) and pine bark compost (pH 5.7). A single-step extraction procedure was performed using 0.005 M CaCl2 adjusted to pH 4.0-7.0 and metal speciation in soil solution was simulated using NICA-Donnan model. Sheep-horse manure reduced exchangeable metal concentrations (up to 71% Cu, 75% Zn) due to its high pH and degree of maturity, whereas pine bark increased them (32% Cu, 33% Zn). However, at increasing dose and hence pH, sheep-horse manure increased soluble Cu because of higher soluble organic carbon, whereas soluble Cu and organic carbon increased at increasing dose and correspondingly decreasing pH in pine bark and non-amended treatments. Near the native pH of these soils (at pH 5.8-6.3), with small doses of amendments, there was minimum soluble Cu and organic carbon. Pine bark also increased Zn solubility, whereas sheep-horse manure reduced it as soluble Zn always decreased with increasing pH. Sheep-horse manure also reduced the proportion of free metals in soil solution (from 41% to 4% Cu, from 97% to 94% Zn), which are considered to be more bioavailable than organic species. Sheep-horse manure amendment could be efficiently used for the stabilization of metals with low risk of leaching to groundwater at low doses and at relatively low pH, such as the native pH of mine soils.

  10. FY 1998 annual report on the research on the possibility of introducing a usable chemical substance manufacturing system by utilizing natural gas containing CO2; CO{sub 2} gan'yu tennen gas den katsuyo ni yoru yuyo kagaku busshitsu seizo system donyu kanosei ni kansuru chosa kenkyu 1998 nendo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The trends of effective use of gas containing CO2 from natural gas fields are surveyed, and usable chemical substance manufacturing systems which utilize natural energy are investigated, evaluated and analyzed, to extract promising systems for effective use of CO2-containing natural gas and thereby to promote its effective use. Chapter 1 outlines possibility of integrated use of gas containing CO2 from natural gas fields and natural gas energy. Chapter 2 describes the research trends in the CO2 conversion reactions for using unexploited CO2 as the carbon source. Chapter 3 describes natural energy utilization technology applicable to gas containing CO2 from natural gas fields. Chapter 4 describes performance of chemical manufacturing systems utilizing natural gas containing CO2. The energy balances and CO2 emission coefficients are estimated, based on the above. The evaluation is implemented in the order of (1) conventional steam reforming, (2) steam reforming in which heat is supplied by a solar furnace, (3) examination of the exhaust gases from a methanol synthesis process, and (4) examination of CO2-mixed reforming. Chapter 5 describes summary and proposals. (NEDO)

  11. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities.

    Directory of Open Access Journals (Sweden)

    Simon P Rout

    Full Text Available One design concept for the long-term management of the UK's intermediate level radioactive wastes (ILW is disposal to a cementitious geological disposal facility (GDF. Under the alkaline (10.013.0 anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP are dominated by α- and β-isosaccharinic acids (ISA, which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0.

  12. A step-by-step procedure for pH model construction in aquatic systems

    Directory of Open Access Journals (Sweden)

    A. F. Hofmann

    2007-10-01

    Full Text Available We present, by means of a simple example, a comprehensive step-by-step procedure to consistently derive a pH model of aquatic systems. As pH modeling is inherently complex, we make every step of the model generation process explicit, thus ensuring conceptual, mathematical, and chemical correctness. Summed quantities, such as total inorganic carbon and total alkalinity, and the influences of modeled processes on them are consistently derived. The model is subsequently reformulated until numerically and computationally simple dynamical solutions, like a variation of the operator splitting approach (OSA and the direct substitution approach (DSA, are obtained. As several solution methods are pointed out, connections between previous pH modelling approaches are established. The final reformulation of the system according to the DSA allows for quantification of the influences of kinetic processes on the rate of change of proton concentration in models containing multiple biogeochemical processes. These influences are calculated including the effect of re-equilibration of the system due to a set of acid-base reactions in local equilibrium. This possibility of quantifying influences of modeled processes on the pH makes the end-product of the described model generation procedure a powerful tool for understanding the internal pH dynamics of aquatic systems.

  13. Tracking chemicals in products around the world: introduction of a dynamic substance flow analysis model and application to PCBs.

    Science.gov (United States)

    Li, Li; Wania, Frank

    2016-09-01

    Dynamically tracking flows and stocks of problematic chemicals in products (CiPs) in the global anthroposphere is essential to understanding their environmental fates and risks. The complex behavior of CiPs during production, use and waste disposal makes this a challenging task. Here we introduce and describe a dynamic substance flow model, named Chemicals in Products - Comprehensive Anthropospheric Fate Estimation (CiP-CAFE), which facilitates the quantification of time-variant flows and stocks of CiPs within and between seven interconnected world regions and the generation of global scale emission estimates. We applied CiP-CAFE to polychlorinated biphenyls (PCBs), first to evaluate its ability to reproduce previously reported global-scale atmospheric emission inventories and second to illustrate its potential applications and merits. CiP-CAFE quantifies the pathways of PCBs during production, use and waste disposal stages, thereby deducing the temporal evolution of in-use and waste stocks and identifying their long-term final sinks. Time-variant estimates of PCB emissions into air, water and soil can be attributed to different processes and be fed directly into a global fate and transport model. By capturing the international movement of PCBs as technical chemicals, and in products and waste, CiP-CAFE reveals that the extent of global dispersal caused by humans is larger than that occurring in the natural environment. Sensitivity analysis indicates that the model output is most sensitive to the PCB production volume and the lifetime of PCB-containing products, suggesting that a shortening of that lifetime is key to reducing future PCB emissions.

  14. Development of a new QSPR based tool to predict explosibility properties of chemical substances within the framework of REACH and GHS

    OpenAIRE

    Fayet, Guillaume; ROTUREAU, Patricia; Joubert, Laurent; Adamo, Carlo

    2010-01-01

    International audience; The new European régulation of Chemicals named REACH (for "Registration, Evaluation and Authorization of Chemicals") turned out in the practical registration phase in December 2008. It requires the new assessment of hazard properties for up to 140000 substances. In this context, the development of alternative prédictive methods for assessing hazardous properties of chemical substances is promoted in REACH and in the related new European classification System of substan...

  15. [Separation of cefoperazone and its S-isomer and other related substances by micellar electrokinetic capillary chromatography].

    Science.gov (United States)

    Zhang, Huiwen; Hu, Changqin; Xu, Mingzhe; Li, Yaping; Hang, Taijun

    2007-09-01

    The separation of cefoperazone, its S-isomer, impurity A and other unknown related substances by micellar electrokinetic capillary chromatography (MECC) using sodium dodecyl sulphate (SDS) as the micellar phase was investigated. The effects of pH, concentration of phosphate buffer solution, SDS micelle concentration, methanol volume fraction, applied voltage and temperature on the separation were studied. It was found that the migration of these compounds was affected by these factors, especially by pH of the solution. The elution, as well as the migration time and separation efficiency of cefoperazone, its S-isomer, impurity A and other related substances changed with the acidity of the solution. The optimized separation conditions consisted of a running buffer of 70 mmol/L sodium phosphate buffer, at pH 6.5, containing 100 mmol/L SDS, with an applied voltage of 15 kV and a temperature of 25 degrees C. An uncoated fused-silica capillary of 51.0 cm x 75 microm (42.5 cm of effective length) was used. The sample was injected into the column by pressure (5 kPa) for 5 s. The detection wavelength was set at 254 nm. Twenty-eight impurities in cefoperazone sodium could be detected. Cefoperazone sodium and the degradation products could be separated well. The method was applied to separate and determine cefoperazone and its related substances successfully.

  16. Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols

    OpenAIRE

    2010-01-01

    The characteristics of the extracellular polymeric substances (EPS) extracted with nine different extraction protocols from four different types of anaerobic granular sludge were studied. The efficiency of four physical (sonication, heating, cationic exchange resin (CER), and CER associated with sonication) and four chemical (ethylenediaminetetraacetic acid, ethanol, formaldehyde combined with heating, or NaOH) EPS extraction methods was compared to a control extraction protocols (i.e., centr...

  17. Defensive use of an acquired substance (carminic acid) by predaceous insect larvae.

    Science.gov (United States)

    Eisner, T; Ziegler, R; McCormick, J L; Eisner, M; Hoebeke, E R; Meinwald, J

    1994-06-15

    Larvae of two insects, a coccinellid beetle (Hyperaspis trifurcata) and a chamaemyiid fly (Leucopis sp.), feed on cochineal insects and appropriate their prey's defensive chemical, carminic acid, for protective purposes of their own. H. trifurcata discharges the chemical with droplets of blood (hemolymph) that it emits when disturbed; Leucopis sp. ejects the compound with rectal fluid. Ants are thwarted by these defenses, which are compared with the previously-described defense of a pyralid caterpillar (Laetilia coccidivora) that disgorges carminic acid-laden crop fluid. The defensive fluid of all three larvae contains carminic acid at concentrations spanning a range (0.2-6.2%) proven deterrent to ants. Many insects are known to appropriate defensive substances from plants. Insects that acquire defensive chemicals from animal sources may be relatively rare.

  18. pH modeling for maximum dissolved organic matter removal by enhanced coagulation

    Institute of Scientific and Technical Information of China (English)

    Jiankun Xie; Dongsheng Wang; John van Leeuwen; Yanmei Zhao; Linan Xing; Christopher W. K. Chow

    2012-01-01

    Correlations between raw water characteristics and pH after enhanced coagulation to maximize dissolved organic matter (DOM)removal using four typical coagulants (FeCl3,Al2(SO4)3,polyaluminum chloride (PAC1) and high performance polyaluminum chloride (HPAC)) without pH control were investigated.These correlations were analyzed on the basis of the raw water quality and the chemical and physical fractionations of DOM of thirteen Chinese source waters over three seasons.It was found that the final pH after enhanced coagulation for each of the four coagulants was influenced by the content of removable DOM (i.e.hydrophobic,and higher apparent molecular weight (AMW) DOM),the alkalinity and the initial pH of raw water.A set of feed-forward semi-empirical models relating the final pH after enhanced coagulation for each of the four coagulants with the raw water characteristics were developed and optimized based on correlation analysis.The established models were preliminarily validated for prediction purposes,and it was found that the deviation between the predicted data and actual data was low.This result demonstrated the potential for the application of these models in practical operation of drinking water treatment plants.

  19. Peptide hydrogelation triggered by enzymatic induced pH switch

    Science.gov (United States)

    Cheng, Wei; Li, Ying

    2016-07-01

    It remains challenging to develop methods that can precisely control the self-assembling kinetics and thermodynamics of peptide hydrogelators to achieve hydrogels with optimal properties. Here we report the hydrogelation of peptide hydrogelators by an enzymatically induced pH switch, which involves the combination of glucose oxidase and catalase with D-glucose as the substrate, in which both the gelation kinetics and thermodynamics can be controlled by the concentrations of D-glucose. This novel hydrogelation method could result in hydrogels with higher mechanical stability and lower hydrogelation concentrations. We further illustrate the application of this hydrogelation method to differentiate different D-glucose levels.

  20. 77 FR 48858 - Significant New Use Rules on Certain Chemical Substances

    Science.gov (United States)

    2012-08-15

    ... (non-confidential) use of the substance will be as a surfactant additive for dispersive use in fire fighting foams and vapor suppressing foams. In addition, EPA has concerns for the formation of...

  1. 77 FR 42990 - Significant New Use Rules on Certain Chemical Substances

    Science.gov (United States)

    2012-07-23

    ... review of EPA's risk assessment in the 5(e) consent order and the extensive experience of the Color..., paragraph (b)(2) of the NCEL of the consent order for the PMN substances contains an automatic sunset...

  2. 75 FR 29429 - Revocation of Significant New Use Rule on a Certain Chemical Substance

    Science.gov (United States)

    2010-05-26

    ... identification, pass through a metal detector, and sign the EPA visitor log. All visitor bags are processed... testing, EPA has determined that the substance is readily biodegradable, mitigating concerns for...

  3. The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins.

    Science.gov (United States)

    Henriques, Inês D S; Love, Nancy G

    2007-10-01

    The objective of this study was to evaluate the respiration inhibition induced by octanol, cadmium, N-ethylmaleimide (NEM) and cyanide on activated sludge biomasses with different floc structures but similar physiological characteristics. Mechanical shearing was applied to fresh mixed liquor to produce biomasses with different floc structure properties. Specific oxygen uptake rate assays were conducted on the sheared and unsheared mixed liquors. The results showed that mechanical shearing resulted in release of biopolymers from the floc extracellular polymeric substances (EPS) matrix into the bulk liquid and a simultaneous reduction in floc size. Shearing did not impact biomass viability. The respiration inhibition by octanol and cadmium was more severe in sheared mixed liquor than in the unsheared biomass. Conversely, the respiration inhibition induced by NEM and cyanide was similar for the different mixed liquors tested. We conclude that the EPS matrix functions as a protective barrier for the bacteria inside activated sludge flocs to chemicals that it has the potential to interact with, such as hydrophobic (octanol) and positively charged (cadmium) compounds, but that the toxicity response for soluble, hydrophilic toxins (NEM and cyanide) is not influenced by the presence of the polymer matrix.

  4. The prediction of pH by Gibbs free energy minimization in the sump solution under LOCA condition of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyoung Ju [Dept. of Nuclear Engineering, University of Kyunghee, Seoul (Korea, Republic of)

    2013-02-15

    It is required that the pH of the sump solution should be above 7.0 to retain iodine in a liquid phase and be within the material compatibility constraints under LOCA condition of PWR. The pH of the sump solution can be determined by conventional chemical equilibrium constants or by the minimization of Gibbs free energy. The latter method developed as a computer code called SOLGASMIX-PV is more convenient than the former since various chemical components can be easily treated under LOCA conditions. In this study, SOLGASMIX-PV code was modified to accommodate the acidic and basic materials produced by radiolysis reactions and to calculate the pH of the sump solution. When the computed pH was compared with measured by the ORNL experiment to verify the reliability of the modified code, the error between two values was within 0.3 pH. Finally, two cases of calculation were performed for the SKN 3 and 4 and UCN 1 and 2. As results, pH of the sump solution for the SKN 3 and 4 was between 7.02 and 7.45, and for the UCN 1 and 2 plant between 8.07 and 9.41. Furthermore, it was found that the radiolysis reactions have insignificant effects on pH because the relative concentrations of HCl, HNO3, and Cs are very low.

  5. THE PREDICTION OF pH BY GIBBS FREE ENERGY MINIMIZATION IN THE SUMP SOLUTION UNDER LOCA CONDITION OF PWR

    Directory of Open Access Journals (Sweden)

    HYOUNGJU YOON

    2013-02-01

    Full Text Available It is required that the pH of the sump solution should be above 7.0 to retain iodine in a liquid phase and be within the material compatibility constraints under LOCA condition of PWR. The pH of the sump solution can be determined by conventional chemical equilibrium constants or by the minimization of Gibbs free energy. The latter method developed as a computer code called SOLGASMIX-PV is more convenient than the former since various chemical components can be easily treated under LOCA conditions. In this study, SOLGASMIX-PV code was modified to accommodate the acidic and basic materials produced by radiolysis reactions and to calculate the pH of the sump solution. When the computed pH was compared with measured by the ORNL experiment to verify the reliability of the modified code, the error between two values was within 0.3 pH. Finally, two cases of calculation were performed for the SKN 3&4 and UCN 1&2. As results, pH of the sump solution for the SKN 3&4 was between 7.02 and 7.45, and for the UCN 1&2 plant between 8.07 and 9.41. Furthermore, it was found that the radiolysis reactions have insignificant effects on pH because the relative concentrations of HCl, HNO3, and Cs are very low.

  6. Histidine oxidation photosensitized by pterin: pH dependent mechanism.

    Science.gov (United States)

    Castaño, Carolina; Oliveros, Esther; Thomas, Andrés H; Lorente, Carolina

    2015-12-01

    Aromatic pterins accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder, due to the oxidation of tetrahydrobiopterin, the biologically active form of pterins. In this work, we have investigated the ability of pterin, the parent compound of aromatic pterins, to photosensitize the oxidation of histidine in aqueous solutions under UV-A irradiation. Histidine is an α-amino acid with an imidazole functional group, and is frequently present at the active sites of enzymes. The results highlight the role of the pH in controlling the competition between energy and electron transfer mechanisms. It has been previously demonstrated that pterins participate as sensitizers in photosensitized oxidations, both by type I (electron-transfer) and type II mechanisms (singlet oxygen ((1)O2)). By combining different analytical techniques, we could establish that a type I photooxidation was the prevailing mechanism at acidic pH, although a type II mechanism is also present, but it is more important in alkaline solutions.

  7. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    Science.gov (United States)

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  8. Influência pH na reposta de sementes de plantas daninhas a substâncias promotoras de germinação Influence of pH on the action of chemicals on weed seeds

    Directory of Open Access Journals (Sweden)

    Ricardo Carmona

    1997-01-01

    Full Text Available Determinou-se o efeito do pH na ação de algumas subst âncias promotoras de germinação em sementes de Chenopodium album L., Avena fatua L. e Rumex crispus L. A azida de sódio (A, nitrato de potássio + etileno (NE, NE + A, NE + A + tiuréia + peróxido de hidrogênio foram testados em solo (em bandej as e em papel (in vitro com soluções tampão em ambiente controlado. O efeito do NE no estímulo à germinação de sementes não foi afetado pelo pH na faixa de 3 a 9. A azida de sódio foi a substância que mais afetou as sementes, sendo este efeito pH dependente. Este composto foi extremamente deletério em sementes de C. album e A. fatua em solo ácido (pH 4,0, enquanto em solo básico ele estimulou a germinação em sementes de A. fatua, através da superação da dormência A combinação de NE + A em pH 6,2 inibiu a germinação de C. album e A. fatua, mostrando um antagonismo entre estes compostos. A mistura dos cinco compostos reduziu a influência do pH na ação deletéria da azida de sódio. O efeito deletério da azida foi menos afetado pela temperatura do que sua ação como superador de dormência. A solução extraída do solo não afetou a resposta de tratamentos químicos in vitro em diferentes temperaturas comparado a soluções tampão em pH semelhante. Discute-se a influência das características do solo na eficácia de substâncias químicas como superadores de dormência ou tratamentos deletérios às sementes.The effects of pH on the action of some dormancy-relieving chemicals were investi gated on seeds of Chenopodium album, Avena fatua and Rumex crispus. Sodium azide (A, potassium nitrate + ethephon (NE, NE + A, NE + A + thiourea + hydrogen peroxide were tested in soil trays or in paper (in vitro with buffer solutions in controlled environment. The response to NE was not affected by pH from 3 to 9. Sodium azide had the gre ate st effect on seed decline, but its effect was pH-dependent. This compound was extremely

  9. Mullerian inhibiting substance fractionation by dye affinity chromatography.

    Science.gov (United States)

    Budzik, G P; Powell, S M; Kamagata, S; Donahoe, P K

    1983-08-01

    Mullerian inhibiting substance (MIS), a large glycoprotein secreted by the fetal and neonatal testis, is responsible for regression of the Mullerian ducts in the male embryo. This fetal growth regulator has been purified more than 2000-fold from crude testicular incubation medium following fractionation on a triazinyl dye affinity support. A high yield of 60% recovered activity was achieved in the absence of exogenous carrier protein by stabilizing MIS with 2-mercaptoethanol, EDTA, and Nonidet-P40 and eliminating losses in the handling and concentration of MIS fractions. Although affinity elution with nucleotides has proved successful in other systems, MIS could not be eluted with ATP, GTP, or AMP, with or without divalent metal ions. Nucleotide elution, however, does remove contaminating proteins prior to MIS recovery with high ionic strength. The 2000-fold-purified MIS fraction, although not homogeneous, shows a reduction-sensitive band after SDS-gel electrophoresis that has been proposed to be the MIS dimer.

  10. Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals

    DEFF Research Database (Denmark)

    Rendal, Cecilie; Kusk, Kresten Ole; Trapp, Stefan

    2011-01-01

    It is recognized that the pH of exposure solutions can influence the toxicity and bioaccumulation of ionizing compounds. The present study investigates whether it can be considered a general rule that an ionizable compound is more toxic and more bioaccumulative when in the neutral state. Three...... processes were identified to explain the behavior of ionizing compounds with changing pH: the change in lipophilicity when a neutral compound becomes ionized, electrical attraction, and the ion trap. The literature was screened for bioaccumulation and toxicity tests of ionizing organic compounds performed...... a dynamic flux model based on the Fick-Nernst-Planck diffusion equation known as the cell model. The cell model predicts that bases with delocalized charges may in some cases show declining bioaccumulation with increasing pH. Little information is available for amphoteric and zwitterionic compounds; however...

  11. Biologically active substances produced by antarctic cryptoendolithic fungi.

    Science.gov (United States)

    Ocampo-Friedmann, R; Friedmann, E I

    1993-01-01

    Researchers report results of laboratory studies of over 200 microbial strains of fungi, algae, cyanobacteria, and heterotrophic bacteria collected in the Ross Desert region of Antarctica. All of the 35 fungal strains produced substances that inhibited the growth of cyanobacteria and algae. The inhibitory effect of the biologically active substance was evident in crushed cell extract but less in spent broth.

  12. "New drug" designations for new therapeutic entities: new active substance, new chemical entity, new biological entity, new molecular entity.

    Science.gov (United States)

    Branch, Sarah K; Agranat, Israel

    2014-11-13

    This Perspective addresses ambiguities in designations of "new drugs" intended as new therapeutic entities (NTEs). Designation of an NTE as a new drug is significant, as it may confer regulatory exclusivity, an important incentive for development of novel compounds. Such designations differ between jurisdictions according to their drug laws and drug regulations. Chemical, biological, and innovative drugs are addressed in turn. The terms new chemical entity (NCE), new molecular entity (NME), new active substance (NAS), and new biological entity (NBE) as applied in worldwide jurisdictions are clarified. Differences between them are explored through case studies showing why new drugs have different periods of exclusivity in different jurisdictions or none at all. Finally, this Perspective recommends that in future, for the purpose of new drug compilations, NME is used for a new chemical drug, NBE for a new biological drug, and the combined designation NTE should refer to either an NME or an NBE.

  13. Some theoretical and practical aspects in the separation of humic substances by combined liquid chromatography methods.

    Science.gov (United States)

    Hutta, Milan; Góra, Róbert; Halko, Radoslav; Chalányová, Mária

    2011-12-01

    Permanent need to understand nature, structure and properties of humic substances influences also separation methods that are in a wide scope used for fractionation, characterization and analysis of humic substances (HS). At the first glance techniques based on size-exclusion phenomena are the most useful and utilized for relating elution data to the molecular mass distribution of HS, however, with some limitations and exceptions, respectively, in the structural investigation of HS. The second most abundant separation mechanism is reversed-phase based on weak hydrophobic interactions beneficially combined with the step gradients inducing distinct features in rather featureless analytical signal of HS. Relatively great effort is invested to the developments of immobilized-metal affinity chromatography mimicking chelate-forming properties of HS as ligands in the environment. Surprisingly, relatively less attention is given to the ion-ion interactions based ion-exchange chromatography of HS. Chromatographic separation methods play also an important role in the examination of interactions of HS with pesticides. They allow us to determine binding constants and the other data necessary to predict the mobility of chemical pollutants in the environment. HS is frequently adversely acting in analytical procedures as interfering substance, so more detailed information is desired on manifestation of its numerous properties in analytical procedures. The article topic is covered by the review emphasizing advances in the field done in the period of last 10 years from 2000 till 2010.

  14. 77 FR 15234 - Controlled Substances and List I Chemical Registration and Reregistration Fees

    Science.gov (United States)

    2012-03-15

    ... overall strengths and weaknesses in recovering the full costs of the DCP. Based on the analysis provided... control of the manufacture, distribution, dispensing, importation, and exportation of controlled... Controlled Substances Import and Export Act (CSIEA) (21 U.S.C. 801-971), as amended (hereinafter,...

  15. 78 FR 38210 - Significant New Use Rules on Certain Chemical Substances

    Science.gov (United States)

    2013-06-26

    ... then apply in vitro and in silico methods within an integrated test strategy. In the event that... activity. Previously, in the Federal Register issue of December 28, 2011 (76 FR 81447) (FRL-9326-2), EPA... substance. The reasonably anticipated manner and methods of manufacturing, processing, distribution...

  16. 77 FR 20296 - Significant New Use Rules on Certain Chemical Substances

    Science.gov (United States)

    2012-04-04

    ... polyurethane foam catalyst. Based on test data on the PMN substance, EPA identified concerns for dermal...) analysis of test data on analogous aliphatic amines and phenol-amines, EPA predicts toxicity to aquatic... of test data on analogous aliphatic amines and phenol-amines, EPA predicts toxicity to...

  17. Relative absorption and dermal loading of chemical substances: Consequences for risk assessment

    NARCIS (Netherlands)

    Buist, H.E.; Schaafsma, G.; Sandt, J.J.M. van de

    2009-01-01

    Quantification of skin absorption is an essential step in reducing the uncertainty of dermal risk assessment. Data from literature indicate that the relative dermal absorption of substances is dependent on dermal loading. Therefore, an internal exposure calculated with absorption data determined at

  18. 78 FR 39340 - Manufacturer of Controlled Substances; Notice of Application; Boehringer Ingelheim Chemicals, Inc.

    Science.gov (United States)

    2013-07-01

    ... [Federal Register Volume 78, Number 126 (Monday, July 1, 2013)] [Notices] [Page 39340] [FR Doc No: 2013-15604] DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances..., Office of Diversion Control, Drug Enforcement Administration. [FR Doc. 2013-15604 Filed 6-28-13; 8:45...

  19. Control of Chemical Risks by Substitution of Harmful Substances

    DEFF Research Database (Denmark)

    Jacobsen, Thomas

    1997-01-01

    Substitution of volatile, organic solvents with non-volatile, low-toxic esters of fatty acids for cleaning purposes in offset printing has successfully been implemented in several European countries. Similar substitutions in other industrial cleaning processes seem possible, especially regarding ...

  20. Ureolytic nitrification at low pH by Nitrosospira spec.

    NARCIS (Netherlands)

    De Boer, W.; Laanbroek, R.

    1989-01-01

    An ureolytic ammonium-oxidizing chemolithotroph belonging to the genus Nitrosospira was shown to nitrify at pH 4.5 in a pH-stat with urea as a substrate. With ammonium as the sole substrate nitrification did not occur at pH values below 5.5. Nitrosomonas europaea ATCC 19718 and Nitrosospira briensis

  1. [Simultaneous determination of four common nonprotein nitrogen substances in urine by high performance liquid chromatography].

    Science.gov (United States)

    Ma, Yuhua; Huang, Dongqun; Zhang, Rui; Xu, Shiru; Feng, Shun

    2013-11-01

    A high performance liquid chromatographic (HPLC) method was proposed to simultaneously determine four common nonprotein nitrogen substances, including creatine (Cr), creatinine (Cn), uric acid (Ua) and pseudouridine (Pu) in urine. After proteins being removed by acetone precipitation method, freeze drying and redissolving, the urine samples were analyzed by HPLC. Chromatographic separation was performed on a Waters RP18 Column (150 mm x 4.60 mm, 3.5 microm) in gradient elution mode using 10.0 mmol/L KH2PO4 solution (pH 4.78) and acetonitrile as mobile phases at a flow rate of 0.8 mL/min. The samples were detected at 220 nm. Rapid separation was achieved within 7 min. Under the optimized conditions, good linearities of four common nonprotein nitrogen substances were obtained in the range of 0.1-250 mg/L. The detection limits were 9.31 (Cr), 26.19 (Cn), 4.70 (Ua), an 6.30 (Pu) microg/L and the recoveries were in the range of 81%-111% with the relative standar deviations of 0.23%-2.78% (n = 3). The results demonstrate that this method is simple, rapid and accurate with good reproducibility, and can provide early diagnosis and preliminary judgment for type 2 diabetes mellitus (T2DM) patients with renal damage.

  2. Speeding chemical reactions by focusing

    CERN Document Server

    Lacasta, A M; Sancho, J M; Lindenberg, K

    2012-01-01

    We present numerical results for a chemical reaction of colloidal particles which are transported by a laminar fluid and are focused by periodic obstacles in such a way that the two components are well mixed and consequently the chemical reaction is speeded up. The roles of the various system parameters (diffusion coefficients, reaction rate, obstacles sizes) are studied. We show that focusing speeds up the reaction from the diffusion limited rate (t to the power -1/2) to very close to the perfect mixing rate, (t to the power -1).

  3. Influence of pH value on Cu (II biosorption by lignocellulose peach shell waste material

    Directory of Open Access Journals (Sweden)

    Lopičić Zorica R.

    2013-01-01

    Full Text Available In the last decade, the pollution made by anthropogenic sources has reached large amounts with special attention on heavy metals because of their high toxicity, persistence and bioaccumulation tendency. Since the conventional methods for their removing are either too expensive or create large quantities of toxic sludge, the great attention has been paid to the new technologies such as biosorption, technology that use cheap, abundant, organic waste for sequestering pollutants from contaminated mediums. Among the other factors that affect biosorption process, pH value is one the most important because it directs both the metal solution chemistry as well as the activity of the biomass functional groups. In this paper the influence of pH value on biosorption of Cu (II by unmodified low-cost lignocellulose biosorbent - peach shell (PS particles, have been studied. The chemical composition of PS, point of zero charge (pHPZC as well as its surface morphology is also presented. Results have showed that this biosorbent contains mainly cellulose and lignin, the components that carry the functional groups responsible for metal binding. Its multilayer surface contains many pores and channels that help diffusion in deeper layers and force biosorption process. Point of zero charge determination was performed with three different KNO3 ionic strengths: 0,1M, 0,01M and 0,001M. The obtained value for pHPZC was 4,75±0,1 and showed that this biosorbent is non-sensitive to ionic strength of electrolyte applied. Biosorption experiments were done with peach shell particles whose diameter was -0,5+0,1mm at 25oC . The initial copper (II concentration was 50 mg/dm3 while the biosorbent concentration was 10g/dm3. Experiments were done with and without keeping pH constant. The influence of pH on biosorption process was examined in 2-6 pH range. The percentage of Cu (II removed by PS, reaches its maximum at pH 6, with the 90,43% removing but this percentage can also be

  4. Some new psychoactive substances: precursor chemicals and synthesis-driven end-products.

    Science.gov (United States)

    Collins, Michael

    2011-01-01

    This paper describes some of the new classes of 'designer drugs' being encountered today by forensic scientists and law enforcement agencies in Europe, the United States, and Australia. In particular, it concentrates on new cathinone derivatives, the tryptamines, new-generation phenethylamines, and some of the synthetic cannabinoids. The synthetic approaches towards many of these designer drugs including a discussion of the chemical precursors used in the syntheses are presented. Many of today's so-called designer drugs exist as a result of legitimate research into medical conditions and the natural product chemistry. A link between synthetic approaches published in the open scientific and medical literature and the exploitation of this research by clandestine manufacture of drugs for illicit purposes is drawn.

  5. Effect of pH and chemical mechanical planarization process conditions on the copper-benzotriazole complex formation

    Science.gov (United States)

    Cho, Byoung-Jun; Kim, Jin-Yong; Hamada, Satomi; Shima, Shohei; Park, Jin-Goo

    2016-06-01

    Benzotriazole (BTA) has been used to protect copper (Cu) from corrosion during Cu chemical mechanical planarization (CMP) processes. However, an undesirable Cu-BTA complex is deposited after Cu CMP processes and it should be completely removed at post-Cu CMP cleaning for next fabrication process. Therefore, it is very important to understand of Cu-BTA complex formation behavior for its applications such as Cu CMP and post-Cu CMP cleaning. The present study investigated the effect of pH and polisher conditions on the formation of Cu-BTA complex layers using electrochemical techniques (potentiodynamic polarization and electrochemical impedance spectroscopy) and the surface contact angle. The wettability was not a significant factor for the polishing interface, as no difference in the contact angles was observed for these processes. Both electrochemical techniques revealed that BTA had a unique advantage of long-term protection for Cu corrosion in an acidic condition (pH 3).

  6. Vacuolation induced by unfavorable pH in cyanobacteria

    Institute of Scientific and Technical Information of China (English)

    赵以军; 吴红艳; 郭厚良; 许敏; 程凯; 祝海燕

    2001-01-01

    Six species or strains of cyanobacteria, Anabaena sp. 595, Plectonema boryanum 246, Scytonema hofmanni 248, Nostoc sp. 96, Oscillatoria animlis 284 and Spirulina maxima 438, were cultured in unfavorable pH conditions for vacuole induction. At pH 5.0, 6.5, or 7.0, vacuoles were observed to form in both Anabaena sp. 595 and Plectonema boryanum 246, especially in the former. The vacuolation took place with some morphological changes, such as the cells being inflated, spherical and vacuolated, and with unequalized division. The induced vacuoles in An- abaena sp. 595 and Plectonema boryanum 246 were in spherical shape and in rather transparent appearance under a phase microscope. For Scytonema hofmanni 248, it was less sensitive to pH, its vacuole formation was found only at pH 6.5. No vacuolization occurred in the cells of Nostoc sp. 96, Oscillatoria animlis 284 and Spirulina maxima 438 at all pH conditions we used. Vacuolization under unfavorable pH provides a new proof for the existence of vacuole in cells of cyanobacteria and reflects the prokaryote's function in ecological environment.

  7. Characterization of a fungistatic substance produced by Aspergillus flavus isolated from soil and its significance in nature.

    Science.gov (United States)

    Chen, Yen-Ting; Lin, Mei-Ju; Yang, Ching-Hui; Ko, Wen-Hsiung

    2011-10-01

    A fungus capable of using vegetable tissues for multiplication in soil was isolated and identified as Aspergillus flavus based on morphological characteristics and sequence similarity of ITS and 28S. When grown in liquid medium prepared from the same vegetable tissues used in soil amendment, the isolate of A. flavus produced a substance capable of preventing disease development of black leaf spot of mustard cabbage caused by Alternaria brassicicola and inhibiting the germination of A. brassicicola conidia. The inhibitory substance was fungistatic, and was very stable under high temperature and high or low pH value. It was soluble in ethanol or methanol, moderately soluble in water, and insoluble in acetone, ethyl acetate or ether. The inhibitor is not a protein and has no charges on its molecule. This is the first discovery of the production of a fungistatic substance by this deleterious fungus. Results from this study suggest the possession of a strong competitive saprophytic ability by A. flavus, which in turn may explain the widespread occurrence of this fungus in soils. Production of a fungistatic substance when A. flavus was grown in medium prepared from vegetable tissues suggests the importance of antibiotic production in its competitive saprophytic colonization of organic matters in soils.

  8. A simultaneous determination of related substances by high performance liquid chromatography in a drug product using quality by design approach.

    Science.gov (United States)

    Tol, Trupti; Kadam, Nilesh; Raotole, Nilesh; Desai, Anita; Samanta, Gautam

    2016-02-05

    The combination of Abacavir, Lamivudine and Dolutegravir is an anti-retroviral formulation that displays high efficacy and superiority in comparison to other anti-retroviral combinations. Analysis of related substances in this combination drug product was very challenging due to the presence of nearly thirty peaks including the three active pharmaceutical ingredients (APIs), eleven known impurities and other pharmaceutical excipients. Objective of this study was to develop a single, selective, and robust high performance liquid chromatography method for the efficient separation of all peaks. Initially, one-factor-at-a-time (OFAT) approach was adopted to develop the method. But, it could not resolve all the critical peaks in such complex matrix. This led to the advent of two different HPLC methods for the determination of related substances, one for Abacavir and Lamivudine and the other for Dolutegravir. But, since analysis of a single sample using two methods instead of one is time and resource consuming and thus expensive, an attempt was made to develop a single and robust method by adopting quality by design (QbD) principles. Design of Experiments (DoE) was applied as a tool to achieve the optimum conditions through Response surface methodology with three method variables, pH, temperature, and mobile phase composition. As the study progressed, it was discovered that establishment of the design space was not viable due to the completely distant pH requirements of the two responses, i.e. (i) retention time for Lamivudine carboxylic acid and (ii) resolution between Abacavir impurity B and unknown impurity. Eventually, neglecting one of these two responses each time, two distinguished design spaces have been established and verified. Edge of failures at both design spaces indicate high probability of failure. It therefore, becomes very important to identify the most robust zone or normal operating range (NOR) within the design space with low risk of failure and high

  9. Determination of Erythromycin Ethylsuccinate and its Related Substances by Ion Suppression Chromatography

    Institute of Scientific and Technical Information of China (English)

    LEIJia-chuan; LUOShun-de; Guo-lin; YuJian-qing

    2003-01-01

    Aim:Method for the deternination of erythromycin ethylsuccinale(EES) by ion suppression chromatography(ISC) was developed and the influenc factors on ISC were investigated.Methods:A Zorbax SB-C18 column was used with 0.02mol.L-1 potassium dihydrogen phosphate-acetonitrile(45:55) as mobile phase,The pH and proportion of the mobile phase showed the greatest influences on retention and selectivity.Therefore,the pH of mobile was adjusted to 6.8,the bhest acetonitrile proportion was 55%.The column temperature was maintained at (300±0.5)℃.Acetonitrile was used as solvent for the sample preparation because EES is more stable in it.The flow rate was 1.2mL.min-1 and UV detection was performed at 210nm.Results :Under these chromatographic conditions,the main component (erythromycin A ethylsuccinate)and its related substances were separated.The calibration curve showed good linearity over the range of 0.1-1.0mg.mL-1,and its correlation coefficient was 0.9998.Conclusion:The method is very suitable for the analysis of erythromycin ethylsuccinate.

  10. Calcium carbonate formation on mica supported extracellular polymeric substance produced by Rhodococcus opacus

    Science.gov (United States)

    Szcześ, Aleksandra; Czemierska, Magdalena; Jarosz-Wilkołazka, Anna

    2016-10-01

    Extracellular polymeric substance (EPS) extracted from Rhodococcus opacus bacterial strain was used as a matrix for calcium carbonate precipitation using the vapour diffusion method. The total exopolymer and water-soluble exopolymer fraction of different concentrations were spread on the mica surface by the spin-coating method. The obtained layers were characterized using the atomic force microscopy measurement and XPS analysis. The effects of polymer concentration, initial pH of calcium chloride solution and precipitation time on the obtained crystals properties were investigated. Raman spectroscopy and scanning electron microscopy were used to characterize the precipitated minerals. It was found that the type of precipitated CaCO3 polymorph and the crystal size depend on the kind of EPS fraction. The obtained results indicates that the water soluble fraction favours vaterite dissolution and calcite growth, whereas the total EPS stabilizes vaterite and this effect is stronger at basic pH. It seems to be due to different contents of the functional group of EPS fractions.

  11. pH dependent studies of chemical bath deposition grown ZnO-SiO2 core-shell thin films

    Science.gov (United States)

    Seth, Rajni; Panwar, Sanjay; Kumar, Sunil; Kang, T. W.; Jeon, H. C.

    2017-01-01

    ZnO-SiO2 core-shell thin films were synthesized using chemical-bath deposition at different pH. Optical studies were done to optimize the thin films to find suitable parameters for solar cell buffer layers. These studies were done by measuring the transmission at 500 nm, which is the peak of the solar spectrum. All the parameters were seen to be highly pH dependent. The transmittance for a sample synthesized with a pH of 10.8 reached 85%. The transmittance was found not to depend on the bandgap values, but it was found possibly to depend on the fewer defect states created at a particular pH, as shown by Urbach energy and scanning electron microscopy (SEM) surface structure. An appreciable transmittance was observed in the blue region of the spectrum which had been missing until now in commercial CdS-based buffer layers. The Fourier-transform infrared and the energy dispersive X-ray spectra confirmed that the films were composed of only ZnO and silica only: no impurities were found. The urbach energy values and the SEM image of sample S3 clearly indicate the creation of fewer of defects, leading to higher crystallintiy and higher transmittance. Therefore, this shortcoming can be resolved by the substituted buffer layer of ZnO:SiO2 nano-composite thin film, which can enhance the blue response of the photovoltaic cells.

  12. 78 FR 4446 - Exempt Chemical Preparations Under the Controlled Substances Act

    Science.gov (United States)

    2013-01-22

    ...). American Radiolabeled Chemicals, Inc... 1,1-Dimethyltryptamine (1 mg/ Vial: 1 mL 12/22/2011 mL). American Radiolabeled Chemicals, Inc... 1,1-Dimethyltryptamine Vial: 1 mL 12/22/2011 -3H] as TFA salt....

  13. Approach to Classifying "Design" Drugs and New Potentially Dangerous Chemical Substances, with a Brief Review of the Problem

    Science.gov (United States)

    Asadullin, Azat R.; Galeeva, Elena Kh.; Achmetova, Elvina A.; Nikolaev, Ivan V.

    2016-01-01

    The urgency of this study has become vivid in the light of the growing problem of prevalence and use of new synthetic drug types. Lately there has been a tendency of expanding the range of psychologically active substances (PAS) used by addicts with the purpose of their illegal taking. The aim of this research is an attempt of systematizing and…

  14. Preparation of DNA-adsorbed TiO2 particles--augmentation of performance for environmental purification by increasing DNA adsorption by external pH regulation.

    Science.gov (United States)

    Amano, Takeharu; Toyooka, Tatsushi; Ibuki, Yuko

    2010-01-01

    We have previously developed a novel photocatalyst, DNA-attached titanium dioxide (DNA-TiO(2)), useful for the recovery and decomposition of chemicals [Suzuki et al. Environ. Sci. Technol. 42, 8076, 2008]. Chemicals accumulated in DNA near the surface of TiO(2) and were degraded under UV light. The efficiency of their removal was dependent on the amount of DNA adsorbed on TiO(2), indicating the attachment of larger amounts of DNA to result in higher efficiency. In this study, we succeeded in improving the performance of DNA-TiO(2) by increasing the amount of DNA adsorbed by regulating the external pH. The adsorption of DNA by TiO(2) dramatically increased at pH2, to about fourfold that at other pH values (pH4-10). Repeating the process of DNA addition increased the adsorption further. The attached DNA was stable on the surface of TiO(2) at pH2-10 and 4-56 degrees C, the same as DNA-TiO(2) prepared at pH7. As the DNA-TiO(2) prepared at pH2 retained much DNA on its surface, chemicals (methylene blue, ethidium bromide, etc.) which could intercalate or react with DNA were effectively removed from solutions. The photocatalytic degradation was slow at first, but the final degradation rate was higher than for non-adsorbed TiO(2) and DNA-TiO(2) prepared at pH7. These results indicated that preparation of DNA-TiO(2) at pH2 has advantages in that much DNA can be attached and large amounts of chemicals can be concentrated in the DNA, resulting in extensive decomposition under UV light.

  15. HELICOBACTER PYLORI GROWTH INHIBITION BY SUBSTANCE PRODUCED PSEUDOMONAS BY AEROGINOSA: IN VTRO STUDY

    Directory of Open Access Journals (Sweden)

    A FAZELI

    2003-03-01

    Full Text Available Resistance of H.pylori against metronidazole is increasingly appeared in reports of investigators of gastric infections. So that, seeking to find more effective anti-helicobacter drugs is a necessity. In this study, inhibitory effect of the P. aeroginosa-produced substance on H. pylori growth was determined using two methods, Cross-streak and Well-diffusion Only two out of 37 P. aeroginosa isalates were able to inhibit H. pylori growth which one of them was chosen for further investigation. Its antibacterial activity was tested on 31 isolates of H. pylori consisting 27 metrondazole-sensitive and 4 metronidazole-resistant isolates. The inhibitory substance was enable to kill both metrondazole-sensitive and resistant isolates of H. pylori. The substance could also inhibit the of several other bacteria including E.coli, Salmonella sp., Klebsiella sp., S. aureus and a gram positive bacilli. While the inhibitory effect of the substance had no change at 40c for 30 days, its effect substantially reduced by treating at 600c for 15 minutes. Treatment of substance at 600c (30 min. 80?c and 100?c (15 & 30min, and freezing (-20?c and melting (37?c inactivated its inhibitory effect completely. Treatment with trips in also could inactivate it. Thus P. aeroginosa-produced substance, probably is a protein and may be classified in bacteriocin group.

  16. Simultaneous determination by HPLC of 6 components in zedoary turmeric oil and its related injections with replacement method of chemical reference substance%HPLC替代对照品法同时测定莪术油及其注射液中6种成分的含量

    Institute of Scientific and Technical Information of China (English)

    何欢; 马双成; 张启明; 田颂九

    2009-01-01

    Objective:To establish and validate an HPLC method with single marker to simultaneously determine six components in zedoary turmeric oil and its related injections.Methods:The relative correction factors(RCF)of the five components(curdione,curcumol,curzerene,furanodiene,β-elemene)were measured by HPLC under different conditions with germacrone as standard reference.Assay of zedoary turmeric oil and its related injections was determined by replacement method of chemical reference substance and the conventional HPLC method with the above SIX components as the index components.The analysis was performed on a Waters Symmetry C_(18)(4.6 mm×250 mm,5 m)column;The mobile phase was composed of methanol-water with a linear gradient elution:The flow rate Was 1.0 mL·min~(-1) and the temperature of colulun was 30 ℃;The UV detection wavelength was set at 215 nm.Results:The quantitative results of the new method were almost consistent with the results of conventional HPLC method.Conclusion:For the first time,the replacement method of chemical reference substance is adopted in HPLC simultaneous determination of zedoary turmeric oil and its related injections.The new method is economical and practical which is highly effective and accurate for quality control of zedoary turmeric oil and its related injections.%目的:建立HPLC替代对照品法同时测定莪术油及其注射液中6种成分含量.方法:本文采用HPLC方法,在不同条件下测定(牛龙)牛儿酮与其他5种成分(莪术二酮、莪术醇、莪术烯、呋喃二烯及β-榄香烯)间的相对校正因子(RCF).以上述6种成分为指标,分别利用替代对照品法和常规含量测定方法对莪术油及其注射液进行含量测定.色谱条件:采用Waters Symmetry C_(18)(4.6 mm×250 mm,5 μm)色谱柱,流动相为甲醇-水,梯度洗脱,流速1.0 mL·min~(-1),柱温30℃,检测波长215 nm.结果:以替代对照品法测得的结果与常规含量测定方法结果一致.结论:本试验在

  17. Separation and identification of moxifloxacin impurities in drug substance by high-performance liquid chromatography coupled with ultraviolet detection and Fourier transform ion cyclotron resonance mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Cai Sheng Wu; Zhi Xin Jia; Bao Ming Ning; Jin Lan Zhang; Song Wu

    2012-01-01

    In this paper,a high-performance liquid chromatography coupled with ultraviolet detection and Fourier transform-ion cyclotron resonance mass spectrometry (HPLC-UV/FTICRMS) method was described for the investigation of impurity profile in moxifloxacin (MOX) drug substance and chemical reference substance.Ten impurities were detected by HPLC-UV,while eight impurities were identified by using the high accurate molecular mass combined with multiple-stage mass spectrometric data and fragmentation rules.In addition,to our knowledge,five impurities were founded for the first time in MOX drug substance.

  18. Comparing humic substance and protein compound effects on the bioaccumulation of perfluoroalkyl substances by Daphnia magna in water.

    Science.gov (United States)

    Xia, Xinghui; Dai, Zhineng; Rabearisoa, Andry Harinaina; Zhao, Pujun; Jiang, Xiaoman

    2015-01-01

    The influence of humic substances and protein compounds on the bioaccumulation of six types of perfluoroalkyl substances (PFASs) in Daphnia magna was compared. The humic substances included humic acid (HA) and fulvic acid (FA), the protein compounds included chicken egg albumin (albumin) and peptone, and the PFASs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid. Four concentrations (0, 1, 10, and 20 mg L(-1)) of the four dissolved organic matter (DOM) types were investigated. At the 1 mg L(-1) level, HA and albumin enhanced all tested PFAS bioaccumulation, whereas FA and peptone only enhanced the bioaccumulation of shorter-chain PFASs (PFOS, PFOA, and PFNA). However, all four DOM types decreased all tested PFAS bioaccumulation at the 20 mg L(-1) level, and the decreasing ratios of bioaccumulation factors caused by FA, HA, albumin, and peptone were 1-49%, 23-77%, 17-58%, and 8-56%, respectively compared with those without DOM. This is because DOM not only reduced the bioavailable concentrations and uptake rates of PFASs but also lowered the elimination rates of PFASs in D. magna, and these opposite effects would change with different DOM types and concentrations. Although the partition coefficients (L kg(-1)) of PFASs between HA and water (10(4.21)-10(4.98)) were much lower than those between albumin and water (10(4.92)-10(5.86)), their effects on PFAS bioaccumulation were comparable. This study suggests that although PFASs are a type of proteinophilic compounds, humic substances also have important effects on their bioavailability and bioaccumulation in aquatic organisms.

  19. CRIM-TRACK: sensor system for detection of criminal chemical substances

    Science.gov (United States)

    Munk, Jens K.; Buus, Ole T.; Larsen, Jan; Dossi, Eleftheria; Tatlow, Sol; Lässig, Lina; Sandström, Lars; Jakobsen, Mogens H.

    2015-10-01

    Detection of illegal compounds requires a reliable, selective and sensitive detection device. The successful device features automated target acquisition, identification and signal processing. It is portable, fast, user friendly, sensitive, specific, and cost efficient. LEAs are in need of such technology. CRIM-TRACK is developing a sensing device based on these requirements. We engage highly skilled specialists from research institutions, industry, SMEs and LEAs and rely on a team of end users to benefit maximally from our prototypes. Currently we can detect minute quantities of drugs, explosives and precursors thereof in laboratory settings. Using colorimetric technology we have developed prototypes that employ disposable sensing chips. Ease of operation and intuitive sensor response are highly prioritized features that we implement as we gather data to feed into machine learning. With machine learning our ability to detect threat compounds amidst harmless substances improves. Different end users prefer their equipment optimized for their specific field. In an explosives-detecting scenario, the end user may prefer false positives over false negatives, while the opposite may be true in a drug-detecting scenario. Such decisions will be programmed to match user preference. Sensor output can be as detailed as the sensor allows. The user can be informed of the statistics behind the detection, identities of all detected substances, and quantities thereof. The response can also be simplified to "yes" vs. "no". The technology under development in CRIM-TRACK will provide custom officers, police and other authorities with an effective tool to control trafficking of illegal drugs and drug precursors.

  20. Impact of soil pH and organic matter on the chemical bioavailability of vanadium species: The underlying basis for risk assessment.

    Science.gov (United States)

    Reijonen, Inka; Metzler, Martina; Hartikainen, Helinä

    2016-03-01

    The main objective of this study was to unravel the chemical reactions and processes dictating the potential bioavailability of vanadium (V). In environmental solutions V exists in two stable oxidation states, +IV and +V, of which + V is considered to be more toxic. In this study, the effect of speciation and soil pH on the chemical accessibility of V was investigated with two soils: 1) field soil rather rich in soil organic matter (SOM) and 2) coarse mineral soil low in SOM. Fresh soil samples treated with V(+V) (added as NaVO3) or V(+IV) (added as VOSO4) (pH adjusted to the range 4.0-6.9) were incubated for 3 months at 22 °C. The adsorption tendency of V species was explored by water extraction (Milli-Q water, 1:50 dw/V) and by sequential extraction (0.25 M KCl; 0.1 M KH2/K2HPO4; 0.1 M NaOH; 0.25 M H2SO4, 1:10 dw/V). The potential bioavailability of V was found to be dictated by soil properties. SOM reduced V(+V) to V(+IV) and acted as a sorbent for both species, which lowered the bioaccessibility of V. A high pH, in turn, favored the predominance of the V(+V) species and thus increased the chemical accessibility of V.

  1. Acid skim milk gels: The gelation process as affected by preheated pH

    NARCIS (Netherlands)

    Lakemond, C.M.M.; Vliet, van T.

    2008-01-01

    The effect of preheating milk (10 min 80 [degree sign]C) at pH values from 6.20 to 6.90 on formation of acid skim milk gels was studied by dynamic oscillation measurements. Up to pH 6.65 a higher pH of heating (pHheating) resulted in a higher G'. Since below pH 4.9 the development of G'(pH)/G'(pH=4.

  2. pH within pores in plant fiber cell walls assessed by Fluorescence Ratio Imaging

    DEFF Research Database (Denmark)

    Hidayat, Budi Juliman; Thygesen, Lisbeth Garbrecht; Johansen, Katja Salomon

    2013-01-01

    The pH within cell wall pores of filter paper fibers and hemp fibers was assessed by Fluorescence Ratio Imaging (FRIM). It was found that the Donnan effect affected the pH measured within the fibers. When the conductivity of the added liquid was low (0. 7 mS), pH values were lower within the cell...

  3. A Survey of Substance Use for Cognitive Enhancement by University Students in the Netherlands

    Directory of Open Access Journals (Sweden)

    Kimberly Johanna Schelle

    2015-02-01

    Full Text Available Background:Pharmacological cognitive enhancement, using chemicals to change cellular processes in the brain in order to enhance one’s cognitive capacities, is an often discussed phenomenon. The prevalence among Dutch university students is unknown.Methods:The study set out to achieve the following goals: (1 give an overview of different methods in order to assess the prevalence of use of prescription, illicit and lifestyle drugs for cognitive enhancement (2 investigate whether polydrug use and stress have a relationship with cognitive enhancement substance use (3 assessing opinions about cognitive enhancement prescription drug use. A nationwide survey was conducted among 1572 student respondents of all government supported Dutch universities. Results:The most detailed level of analysis ─ use of specific substances without a prescription and with the intention of cognitive enhancement ─ shows that prescription drugs, illicit drugs and lifestyle drugs are respectively used by 1.7%, 1.3% and 45.6% of the sample. The use of prescription drugs and illicit drugs is low compared to other countries. We have found evidence of polydrug use in relation to cognitive enhancement. A relation between stress and the use of lifestyle drugs for cognitive enhancement was observed. We report the findings of several operationalizations of cognitive enhancement drug use to enable comparison with a wider variety of previous and upcoming research.Conclusions:Results of this first study among university students in the Netherlands revealed a low prevalence of cognitive enhancement drug use compared to other countries. Multiple explanations, such as a difference in awareness of pharmacological cognitive enhancement among students, accessibility of drugs in the student population and inclusion criteria of enhancement substances are discussed. We urge enhancement researchers to take the different operationalizations and their effects on the prevalence numbers into

  4. The Matthew effect in environmental science publication: A bibliometric analysis of chemical substances in journal articles

    DEFF Research Database (Denmark)

    Grandjean, Philippe; Eriksen, Mette Lindholm; Ellegaard, Ole

    2011-01-01

    Background While environmental research addresses scientific questions of possible societal relevance, it is unclear to what degree research focuses on environmental chemicals in need of documentation for risk assessment purposes. Methods In a bibliometric analysis, we used SciFinder to extract...

  5. The Developing Brain: A Largely Overlooked Health Endpoint in Risk Assessments for Synthetic Chemical Substances

    Science.gov (United States)

    McElgunn, Barbara

    2010-01-01

    A large body of experimental animal research on the neurotoxic effects of certain environmental chemicals provides evidence of a cascade of neurobehavioural effects including learning deficits, hyperactivity, anxiety, depression, lack of motivation, increased aggressiveness, altered maternal care and bonding, and an over-reaction to small…

  6. 76 FR 81447 - Proposed Significant New Use Rules on Certain Chemical Substances

    Science.gov (United States)

    2011-12-28

    ... mechanical properties of rubbers, plastics, and lubricants; and a compound for use as an additive to increase... soluble particulates, including some carbon-based nano-sized chemicals, and test data correlating lung... device, and a compound that improves the mechanical properties of lubricants and plastics (P-09-142,...

  7. Capturing intracellular pH dynamics by coupling its molecular mechanisms within a fully tractable mathematical model.

    Directory of Open Access Journals (Sweden)

    Yann Bouret

    Full Text Available We describe the construction of a fully tractable mathematical model for intracellular pH. This work is based on coupling the kinetic equations depicting the molecular mechanisms for pumps, transporters and chemical reactions, which determine this parameter in eukaryotic cells. Thus, our system also calculates the membrane potential and the cytosolic ionic composition. Such a model required the development of a novel algebraic method that couples differential equations for slow relaxation processes to steady-state equations for fast chemical reactions. Compared to classical heuristic approaches based on fitted curves and ad hoc constants, this yields significant improvements. This model is mathematically self-consistent and allows for the first time to establish analytical solutions for steady-state pH and a reduced differential equation for pH regulation. Because of its modular structure, it can integrate any additional mechanism that will directly or indirectly affect pH. In addition, it provides mathematical clarifications for widely observed biological phenomena such as overshooting in regulatory loops. Finally, instead of including a limited set of experimental results to fit our model, we show examples of numerical calculations that are extremely consistent with the wide body of intracellular pH experimental measurements gathered by different groups in many different cellular systems.

  8. Brief Report: Pregnant by Age 15 Years and Substance Use Initiation among US Adolescent Girls

    Science.gov (United States)

    Cavazos-Rehg, Patricia A.; Krauss, Melissa J.; Spitznagel, Edward L.; Schootman, Mario; Cottler, Linda B.; Bierut, Laura Jean

    2012-01-01

    We examined substance use onset and associations with pregnancy by age 15 years. Participants were girls ages 15 years or younger (weighted n = 8319) from the 1999-2003 Youth Risk Behavior Surveillance System (YRBS). Multivariable logistic regression examined pregnancy as a function of substance use onset (i.e., age 10 years or younger, 11-12,…

  9. Analytical fractionation of aquatic humic substances and their metal species by means of multistage ultrafiltration.

    Science.gov (United States)

    Aster, B; Burba, P; Broekaert, J A

    1996-03-01

    The molecular-size fractionation of aquatic humic substances (HS) and their metal species by means of a novel sequential-stage ultrafiltration (UF) device equipped with five appropriate ultramembranes (1, 5, 10, 50 and 100 kD) is described. First of all, the concentration dynamics of macromolecules, particulary HS, during five-stage UF and its subsequent washing step has been modelled. Based on these results, the fractionation of aquatic HS (from ground and bog water) by means of multistage UF has been optimized for an analytical scale (10 ml sample, 1 mg/ml HS, 10 ml washing solution, pH 6.0). The molecular size-distribution of selected aquatic HS (BOC 1/2 from the "DFG-Versuchsfeld Bocholt", VM 5 from "Venner Moor", Germany) studied by five-stage UF exhibited strong systematic influences of the procedure used for their isolation. The molecular-size distribution of HS obtained by on-line UF and gel permeation chromatography (GPC) showed a satisfactory agreement in the range 1-50 kD. Moreover, when interrupting multistage UF for > 48 h a slow transformation in the HS samples has been found as gradually additional HS fractions of complexation time. Metal determinations as carried out by flame AAS, showed that considerable metal fractions in HS especially are present in molecules > 50 kD, which seemed to be rather acid-inert. With complexation times of 10 kD) has been found.

  10. Characterization of Combinatorial Effects of Toxic Substances by Cell Cultivation in Micro Segmented Flow

    Science.gov (United States)

    Cao, J.; Kürsten, D.; Funfak, A.; Schneider, S.; Köhler, J. M.

    This chapter reviews the application of micro segmented flow for the screening of toxic effects on bacteria, eukaryotic microorganisms, human cells and multicellular systems. Besides, the determination of complete dose/response functions of toxic substances with a minimum of cells and chemicals, it is reviewed how two- and multi-dimensional concentration spaces can be screened in order to evaluate combinatorial effects of chemicals on cells. The challenge for the development of new and miniaturized methods is derived from the increase of the number of different used substances in technique, agriculture and medicine, from the increasing release of new substances and nanomaterials into our environment and from the improvement of the insight of toxicity of natural substances and the interferences between different substances resulting in toxic effects on different organisms, cells and tissues. The application of two-dimensional toxicological screenings on selected examples of effector combinations is described. Examples for the detection of an independent, an additive and a synergistic interference between two substances are given. In addition, it is shown that the screening for toxicological effects in complete two-dimensional concentration spaces allows the detection of complex response behaviour—for example, the formation of tolerances and stimulation peaks—which thereby can be characterized. The characterization of interference of toxic organic substances with silver nanoparticles is reported as an example for the potential of micro segmented-flow technique for evaluating the toxicological impact of new materials. Finally, it is demonstrated that the technique can be applied for different organisms like simple bacteria, single cell alga such as Chlorella vulgaris and multicellular systems up to the development of complete organisms beginning from eggs.

  11. Survival of the faucet snail after chemical disinfection, pH extremes, and heated water bath treatments

    Science.gov (United States)

    Mitchell, A.J.; Cole, R.A.

    2008-01-01

    The faucet snail Bithynia tentaculata, a nonindigenous aquatic snail from Eurasia, was introduced into Lake Michigan in 1871 and has spread to the mid-Atlantic states, the Great Lakes region, Montana, and most recently, the Mississippi River. The faucet snail serves as intermediate host for several trematodes that have caused large-scale mortality among water birds, primarily in the Great Lakes region and Montana. It is important to limit the spread of the faucet snail; small fisheries equipment can serve as a method of snail distribution. Treatments with chemical disinfection, pH extremes, and heated water baths were tested to determine their effectiveness as a disinfectant for small fisheries equipment. Two treatments eliminated all test snails: (1) a 24-h exposure to Hydrothol 191 at a concentration of at least 20 mg/L and (2) a treatment with 50??C heated water for 1 min or longer. Faucet snails were highly resistant to ethanol, NaCl, formalin, Lysol, potassium permanganate, copper sulfate, Baquacil, Virkon, household bleach, and pH extremes (as low as 1 and as high as 13).

  12. [Adsorption of phenol chemicals by surfactant-modified zeolites].

    Science.gov (United States)

    Xie, Jie; Wang, Zhe; Wu, De-Yi; Li, Chun-Jie

    2012-12-01

    Two kinds of zeolites were prepared from fly ash and modified by surfactant subsequently. Surfactant-modified zeolites were studied for adsorption of phenol chemicals (phenol, p-chlorphenol, bisphenol A). It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after surfactant modification. The adsorption isotherms of phenol chemicals were well fitted by the Langmuir isotherm. For the two surfactant-surfactant modified zeolites, the maximum adsorption amounts of phenol, p-chlorphenol, and bisphenol A calculated from the Langmuir equation were 37.7, 52.36, 90.9 mg x g(-1) and 10.7, 22.83, 56.8 mg x g(-1), respectively. When pH values of solutions were higher than the pK(a) values of phenol chemicals, the removal efficiencies were getting higher with the increase of pH values. The octanol/water partition coefficient (K(ow)) was also found to be an important factor affecting adsorption of phenol chemicals by the modified zeolites. Higher K(ow) value, which means the greater hydrophobicity of the chemicals, resulted in a higher removal.

  13. Removal of suspended substances by coagulation and foam separation from municipal wastewater.

    Science.gov (United States)

    Suzuki, Y; Maruyama, T; Tegane, H; Goto, T

    2002-01-01

    A new method for solid-liquid separation for wastewater incorporating simple operation and shortened treatment time is necessary for improvement of sewage systems. In this study, removal of suspended solids from municipal wastewater by coagulation and foam separation using coagulant and milk casein was examined. By adding casein before the foam separation process, the removal of suspended substances was dramatically improved. The optimum condition for treating sewage was 20 mg-Fe/L of FeCl3, 3 mg/L of casein, and pH 5.5, which resulted in a removal rates of over 98% for turbidity and SS. A removal of 96-98% was also possible for phosphate and anionic surfactant. When PAC was used, the floc was also efficiently recovered in foam by the addition of casein. It became clear that coagulation and foam separation using casein as the collector is an effective method for removing suspended solids in municipal wastewater in a short time (within 10 min).

  14. Prenatal substance exposure: What predicts behavioral resilience by early adolescence?

    Science.gov (United States)

    Liebschutz, Jane M; Crooks, Denise; Rose-Jacobs, Ruth; Cabral, Howard J; Heeren, Timothy C; Gerteis, Jessie; Appugliese, Danielle P; Heymann, Orlaith D; Lange, Allison V; Frank, Deborah A

    2015-06-01

    Understanding behavioral resilience among at-risk adolescents may guide public policy decisions and future programs. We examined factors predicting behavioral resilience following intrauterine substance exposure in a prospective longitudinal birth-cohort study of 136 early adolescents (ages 12.4-15.9 years) at risk for poor behavioral outcomes. We defined behavioral resilience as a composite measure of lack of early substance use initiation (before age 14), lack of risky sexual behavior, or lack of delinquency. Intrauterine substance exposures included in this analysis were cocaine, tobacco, alcohol, and marijuana. We recruited participants from Boston Medical Center as mother-infant dyads between 1990 and 1993. The majority of the sample was African American/Caribbean (88%) and 49% female. In bivariate analyses, none and lower intrauterine cocaine exposure level predicted resilience compared with higher cocaine exposure, but this effect was not found in an adjusted model. Instead, strict caregiver supervision (adjusted odds ratio [AOR] = 6.02, 95% confidence interval (CI) [1.90, 19.00], p = .002), lower violence exposure (AOR = 4.07, 95% CI [1.77, 9.38], p < .001), and absence of intrauterine tobacco exposure (AOR = 3.71, 95% CI [1.28, 10.74], p = .02) predicted behavioral resilience. In conclusion, caregiver supervision in early adolescence, lower violence exposure in childhood, and lack of intrauterine tobacco exposure predicted behavioral resilience among a cohort of early adolescents with significant social and environmental risk. Future interventions should work to enhance parental supervision as a way to mitigate the effects of adversity on high-risk groups of adolescents. (PsycINFO Database Record

  15. Research and Discussion on Physical and Chemical Properties of Cultivating Substrate with Facilities

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This article, by comparing the basic concepts of substrate and soil, their composition of substance and methods of measuring the indexes of physical and chemical properties, analyzes and researches ways of choosing substrate for cultivation with facilities. It indicates that the normal physical and chemical indexes of evaluating a substrate are bulk density, total porosity, non-capillary porosity, ratio of big porosity to small porosity, the pH and the electrical conductivity (EC) value of the substrate. By...

  16. Accurate Three States Model for Amino Acids with Two Chemically Coupled Titrating Sites in Explicit Solvent Atomistic Constant pH Simulations and pKa Calculations.

    Science.gov (United States)

    Dobrev, Plamen; Donnini, Serena; Groenhof, Gerrit; Grubmüller, Helmut

    2017-01-10

    Correct protonation of titratable groups in biomolecules is crucial for their accurate description by molecular dynamics simulations. In the context of constant pH simulations, an additional protonation degree of freedom is introduced for each titratable site, allowing the protonation state to change dynamically with changing structure or electrostatics. Here, we extend previous approaches for an accurate description of chemically coupled titrating sites. A second reaction coordinate is used to switch between two tautomeric states of an amino acid with chemically coupled titratable sites, such as aspartate (Asp), glutamate (Glu), and histidine (His). To this aim, we test a scheme involving three protonation states. To facilitate charge neutrality as required for periodic boundary conditions and Particle Mesh Ewald (PME) electrostatics, titration of each respective amino acid is coupled to a "water" molecule that is charged in the opposite direction. Additionally, a force field modification for Amber99sb is introduced and tested for the description of carboxyl group protonation. Our three states model is tested by titration simulations of Asp, Glu, and His, yielding a good agreement, reproducing the correct geometry of the groups in their different protonation forms. We further show that the ion concentration change due to the neutralizing "water" molecules does not significantly affect the protonation free energies of the titratable groups, suggesting that the three states model provides a good description of biomolecular dynamics at constant pH.

  17. pH gradients induced by urea metabolism in 'artificial mouth' microcosm plaques.

    Science.gov (United States)

    Sissons, C H; Wong, L; Hancock, E M; Cutress, T W

    1994-06-01

    Evidence was sought for urea-induced pH gradients in dental plaque microcosm biofilms cultured from the mixed salivary bacteria in a multi plaque 'artificial mouth'. Application of 500 mmol/l urea for short periods (6 min) to 5-8 mm maximum-thickness plaques induced intraplaque pH gradients of up to 0.7 pH units with the surface alkaline relative to the inner plaque. These pH gradients persisted for more than 5 h in the absence of a flow of fluid. With 30-min urea applications and a flow of a basal medium containing mucin (BMM, pH 7.0), the pH of the inner (deeper) plaque regions also increased. Although the pH gradient initially formed was alkaline at the plaque surface, the BMM flow lowered the surface pH to neutrality whilst the inner layers were still alkaline, thereby reversing the pH gradient. In thick microcosm dental plaques, urea-induced pH gradients can therefore form and last many hours. They probably result from the significant time taken for urea to penetrate to the inner layers of plaque, its rapid metabolism by the outer plaque layers, and a rate-limiting clearance of ammonia. Even a slow BMM flow over the plaque greatly increased the rate of return to the resting pH, causing the gradients to change polarity.

  18. Optimizing Calcium Phosphates by the Control of pH and Temperature via Wet Precipitation.

    Science.gov (United States)

    Kim, YoungJae; Lee, Seon Yong; Roh, Yul; Lee, Jinhyeok; Kim, Juyeun; Lee, Yongwoo; Bang, Junseok; Lee, Young Jae

    2015-12-01

    A series of calcium phosphates synthesized through a wet precipitation route of hydroxylapatite (HAP) was investigated over a wide range of temperature and pH (25-80 degrees C, and pH 6.5-10.0) using a combination of microscopic and spectroscopic analyses. XRD and FTIR show that monetite and brushite are formed as a single phase at non-ideal conditions of HAP, respectively. From TGA results, it is found that brushite is converted to monetite at a range 175-200 degrees C when heated at the heating rate, 10 degrees C/min. This phase transformation is also observed when brushite is aged at pH 8.5 and 60 degrees C for 24 hr in solution. Morphology of brushite is sensitive to pH variation. At pH 6.5, tabular and platy crystals of brushite are observed whereas needle-like ones are predominant at pH 8.5. For HAP formed at pH 10.0, their shapes tend toward needle-like particles as temperature increases. HAP particles at pH 8.5 are very similar in morphology to HAP at pH 10.0, but their lengths are two or three times as great as those at pH 10.0. These observations demonstrate that desired phase and properties of calcium phosphates can be controlled by pH, temperature, and aging time through a wet precipitation method.

  19. Effect of humic substances on the precipitation of calcium phosphate

    Institute of Scientific and Technical Information of China (English)

    SONG Yong-hui; Hermann H. HAHN; Erhard HOFFMANN; Peter G. WEIDLER

    2006-01-01

    For phosphorus (P) recovery from wastewater, the effect of humic substances (HS) on the precipitation of calcium phosphate was studied. Batch experiments of calcium phosphate precipitation were undertaken with synthetic water that contained 20 mg/L phosphate (as P) and 20 mg/L HS (as dissolved organic carbon, DOC) at a constant pH value in the range of 8.0-10.0. The concentration variations of phosphate, calcium (Ca) and HS were measured in the precipitation process; the crystalline state and compositions of the precipitates were analysed by powder X-ray diffraction (XRD) and chemical methods, respectively. It showed that at solution pH 8.0, the precipitation rate and removal efficiency of phosphate were greatly reduced by HS, but at solution pH ≥9.0,the effect of HS was very small. The Ca consumption for the precipitation of phosphate increased when HS was added; HS was also removed from solution with the precipitation of calcium phosphate. At solution pH 8.0 and HS concentrations ≤ 3.5 mg/L, and at pH ≥ 9.0 and HS concentrations ≤ 10 mg/L, the final precipitates were proved to be hydroxyapatite (HAP) by XRD. The increases of solution pH value and initial Ca/P ratio helped reduce the influence of HS on the precipitation of phosphate.

  20. Iopamidol as a responsive MRI-chemical exchange saturation transfer contrast agent for pH mapping of kidneys: In vivo studies in mice at 7 T.

    Science.gov (United States)

    Longo, Dario Livio; Dastrù, Walter; Digilio, Giuseppe; Keupp, Jochen; Langereis, Sander; Lanzardo, Stefania; Prestigio, Simone; Steinbach, Oliver; Terreno, Enzo; Uggeri, Fulvio; Aime, Silvio

    2011-01-01

    Iopamidol (Isovue®-Bracco Diagnostic Inc.) is a clinically approved X-Ray contrast agent used in the last 30 years for a wide variety of diagnostic applications with a very good clinical acceptance. Iopamidol contains two types of amide functionalities that can be exploited for the generation of chemical exchange saturation transfer effect. The exchange rate of the two amide proton pools is markedly pH-dependent. Thus, a ratiometric method for pH assessment has been set-up based on the comparison of the saturation transfer effects induced by selective irradiation of the two resonances. This ratiometric approach allows to rule out the concentration effect of the contrast agent and provides accurate pH measurements in the 5.5-7.4 range. Upon injection of Iopamidol into healthy mice, it has been possible to acquire pH maps of kidney regions. Furthermore, it has been also shown that the proposed method is able to report about pH-changes induced in control mice fed with acidified or basified water for a period of a week before image acquisition.

  1. Antimicrobial activity and partial characterization of bacteriocin-like inhibitory substances produced by Lactobacillus spp. isolated from artisanal Mexican cheese.

    Science.gov (United States)

    Heredia-Castro, Priscilia Y; Méndez-Romero, José I; Hernández-Mendoza, Adrián; Acedo-Félix, Evelia; González-Córdova, Aarón F; Vallejo-Cordoba, Belinda

    2015-12-01

    Lactobacillus spp. from Mexican Cocido cheese were shown to produce bacteriocin-like substances (BLS) active against Staphylococcus aureus,Listeria innocua,Escherichia coli, andSalmonella typhimurium by using the disk diffusion method. Crude extracts of Lactobacillus fermentum showed strong inhibitory activity against Staph. aureus, L. innocua, E. coli, and Salmonella cholerae. Complete inactivation of antimicrobial activity was observed after treatment of crude extracts with proteinase K, pronase, papain, trypsin, and lysozyme, confirming their proteinaceous nature. However, antimicrobial activity was partly lost for some of the crude extracts when treated with α-amylase, indicating that carbohydrate moieties were involved. The antimicrobial activity of the crude extracts was stable at 65°C for 30min over a wide pH range (2-8), and addition of potassium chloride, sodium citrate, ethanol, and butanol did not affect antibacterial activity. However, antimicrobial activity was lost after heating at 121°C for 15min, addition of methanol or Tween 80. Fourteen out of 18 Lactobacillus spp. showed antimicrobial activity against different test microorganisms, and 12 presented bacteriocin-like substances. Generation time and growth rate parameters indicated that the antimicrobial activity of crude extracts from 3 different strains was effective against the 4 indicator microorganisms. One of the crude extracts showed inhibition not only against gram-positive but also against gram-negative bacteria. Bacteriocin-like substances produced by this specific Lactobacillus strain showed potential for application as a food biopreservative.

  2. Studies on the formation and forming mechanism of the related substance E in potassium clavulanate production by HPLC-MS/MS

    Directory of Open Access Journals (Sweden)

    Chuanqing Zhong

    2014-04-01

    Full Text Available The objective of this study was to investigate the formation and forming mechanism of the related substance E in potassium clavulanate production. The impurity with retention time of 11.1 min in potassium clavulanate final product was confirmed as the related substance E by high performance liquid chromatography with tandem mass spectrometric detection (HPLC-MS/MS.The related substance E analysis during the production of clavulanic acid showed that this impurity could be formed during both the fermentation and purification processes, especially in the later fermentation stage, filtration concentration and back-extraction procedure. Clavulanic acid was the precursor of the related substance E. Studies on its forming mechanism showed that the related substance E was formed by the combination of the imino group of one molecule of clavulanic acid with the carboxyl group of another molecule of clavulanic acid with the opening of β-lactam ring. Results of a multi-factor orthogonal test confirmed that the concentration of clavulanic acid was the dominant factor to accelerate the reaction, while the temperature was another contributing factor. The pH 5.0-6.5 had little impact on the generation of the related substance E.

  3. Optimal pH in chlorinated swimming pools - balancing formation of by-products

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Albrechtsen, Hans-Jørgen; Andersen, Henrik Rasmus

    2013-01-01

    In order to identify the optimal pH range for chlorinated swimming pools the formation of trihalomethanes, haloacetonitriles and trichloramine was investigated in the pH-range 6.5–7.5 in batch experiments. An artificial body fluid analogue was used to simulate bather load as the precursor for by.......7 or lower. An optimal pH range for by-products formation in swimming pools was identified at pH 7.0–7.2. In the wider pH range (pH 6.8–7.5) the effect on by-product formation was negligible. Swimming pools should never be maintained at lower pH than 6.8 since formation of both haloacetonitriles...

  4. Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruichang [Chinese Academy of Sciences, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science (China); Zhang, Haibo; Tu, Chen; Hu, Xuefeng; Li, Lianzhen [Chinese Academy of Sciences, Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (China); Luo, Yongming, E-mail: ymluo@yic.ac.cn; Christie, Peter [Chinese Academy of Sciences, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science (China)

    2015-04-15

    The transport behavior of titanium dioxide nanoparticles (TiO{sub 2} NPs, 30 nm in diameter) was studied in well-defined porous media composed of clean quartz sand over a range of solution chemistry under acidic conditions. Transport of TiO{sub 2} NPs was dramatically enhanced by humic substances (HS) at acidic pH (4.0, 5.0 and 6.0), even at a low HS concentration of 0.5 mg L{sup −1}. Facilitated transport of TiO{sub 2} NPs was likely attributable to the increased stability of TiO{sub 2} NPs and repulsive interaction between TiO{sub 2} NPs and quartz sands due to the adsorbed HS. The mobility of TiO{sub 2} NPs was also increased with increasing pH from 4.0 to 6.0. Although transport of TiO{sub 2} NPs was insensitive to low ionic strength, it was significantly inhibited by high concentrations of NaCl and CaCl{sub 2}. In addition, calculated Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction energy indicated that high energy barriers were responsible for the high mobility of TiO{sub 2} NPs, while the secondary energy minimum could play an important role in the retention of TiO{sub 2} NPs at 100 mmol L{sup −1} NaCl. Straining and gravitational settlement of larger TiO{sub 2} NPs aggregates at 1 mg L{sup −1} HS, pH 5.0, and 2 mmol L{sup −1} CaCl{sub 2} could be responsible for the significant retention even in the presence of high energy barriers. Moreover, more favorable interaction between approaching TiO{sub 2} NPs and TiO{sub 2} NPs that had been already deposited on the collector resulted in a ripening-shape breakthrough curve at 2 mmol L{sup −1} CaCl{sub 2}. Overall, a combination of mechanisms including DLVO-type force, straining, and physical filtration was involved in the retention of TiO{sub 2} NPs over the range of solution chemistry examined in this study.

  5. Chemical modification of chitosan in the absence of solvent for diclofenac sodium removal: pH and kinetics studies

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Kerlaine Alexandre Araujo; Osorio, Luizangela Reis; Silva, Marcos Pereira; Silva Filho, Edson Cavalcanti da, E-mail: edsonfilho@ufpi.edu.br [Universidade Federal do Piaui (UFPI/CCN), Teresina, PI (Brazil). Centro de Ciencias da Natureza. Lab. Interdisciplinar de Materiais Avancados; Sousa, Kaline Soares [Universidade Federal da Paraiba (UFPB/CCEN), Joao Pessoa, PB (Brazil). Centro de Ciencias Exatas e da Natureza. Dept. de Quimica

    2014-08-15

    Chitosan was modified with acetylacetone and ethylenediamine in the absence of solvent. The new biopolymer obtained from the modification was characterized by elemental analysis and NMR 13C and applied in the removal of diclofenac sodium aqueous solution varying the pH and time. Through elemental analysis was possible to verify a decreasing in C/N relation after reaction with acetylacetone and an increasing after modification with ethylenediamine. From NMR analysis was verified the appearance of peaks around 160-210 ppm in both materials due to free carbonyl groups in the first step of the modification, besides the formation of imine bonds. The adsorption tests showed that the highest value occurred at pH 4 and from the results of the kinetic study was found that maximum adsorption occurred within 45 minutes and experimental data adjusted better to linear adjustment, following pseudo second-order model. The results show a material efficient in the removal of emerging pollutants. (author)

  6. Different scale experimental techniques to approach the problem of substances generated in the loss of control of chemical systems: a study on ethyl diazoacetate decomposition

    NARCIS (Netherlands)

    Marsanich, K.; Barontini, F.; Cozzani, V.; Creemers, A.F.L.; Kersten, R.J.A.

    2004-01-01

    Article 2 of European Community Directive 96/82/EC (known as 'Seveso-II' Directive) also requires consideration in the plant inventory of the dangerous substances 'which it is believed may be generated in the loss of control of an industrial chemical process'. The present study was directed to the f

  7. Fixation and transport of uranium by humic substances (1962); Fixation et transport de l'uranium par les substances humiques (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1962-03-15

    One enter upon the study of the part taken by organic substances in ores that contain uranium in a disseminated form, without mineralization, being considered the reaction between uranium and humus. 'Humic acids' are extracted from the peat by ammonia. By the fact of their ability to cationic exchange, these are forming humates with metal cations; monovalent humates, normally soluble in water, can become insoluble after treatment of humic acids with methanal. The polyvalent humates are insoluble in water, especially humates of U (IV) and uranyl U (VI). Action of Li, Na, K, Mg, Ca uranyl carbonates solutions on the humic acids results in the formation of humates containing uranyl and the other cation. 100 g of humic acids give a fixation of no more than 38 g of uranium as uranyl. In contact with uraniferous weakly concentrated solutions, they fix 4 to 8 g according to pH, with a yield in the extraction greater than 95 per cent. The action of a sodium humate solution on a humate of uranyl give a solution containing a soluble sodium and uranyl humate. The solution is precipitated at various degrees by the polyvalent cations and insoluble humic substances. In all cases, the fixation of uranium with such prepared humic acids corresponds to a chemisorption of uranyl cations. (author) [French] L'etude du role des matieres organiques dans les minerais contenant de l'uranium sous une forme disseminee, sans mineralisation, est abordee en envisageant les reactions de l'uranium et de l'humus. Des 'acides humiques' sont extraits de la tourbe par l'ammoniaque. Par leur capacite d'echange cationique, ils forment des humates avec les cations metalliques; les humates de metaux monovalents, normalement solubles dans l'eau, peuvent etre rendus insolubles apres traitement des acides humiques par le methanal. Les humates de metaux plurivalents sont insolubles dans l'eau, en particulier ceux de U (IV) et d'uranyle U (VI

  8. Study on Water—Soluble Organic Reducing Substances.I.Determination of Organic Reducing Substances by Differential Pulse Voltammetry

    Institute of Scientific and Technical Information of China (English)

    WUYOU-XIAN; DINGCHANG-PU

    1991-01-01

    A new method was proposed for study of organic reducing substances in soils.According to the theoretical relationship between the voltammetric behaviors and reduction-oxidation reaction of reducing substances,the working conditions of differential pulse voltammetry (d.p.v.)for determining the organic reducing substances produced during the processes of the anaerobic decomposition of plant materials were established with a glass carbon electrode as working electrode,1M Ag-AgCl electrode with large area as reference electrode,0.2M NH4Ac as supporting from -0.5 to +1.2 voltage(vs.M Ag-AgCl).The peak current proportional to the concentration of reducing substances,and the characteristic peak potential of each organic reducing substance were regarded as the quantitative and qualitative base,respectively.These results obtained under the conditions mentioned above directly reflect both the reducing intensity and capacity of the organic reducing system in soils.

  9. Reducing the Risks. In the aftermath of a terrorist attack, wastewater utilities may have to contend with decontamination water containing chemical, biological, or radiological substances

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Linda P.; Hornback, Chris; Strom, Daniel J.

    2006-08-01

    In the aftermath of a chemical, biological, or radiological (CBR) attack, decontamination of people and infrastructure will be needed. Decontamination inevitably produces wastewater, and wastewater treatment plants (WTPs) need to know how to handle decontamination wastewater. This article describes CBR substances; planning, coordinating, and communicating responses across agencies; planning within a utility; coordination with local emergency managers and first responders; mitigating effects of decontamination wastewater; and mitigating effects on utility personnel. Planning for Decontamination Wastewater: A Guide for Utilities, the document on which this article is based, was developed under a cooperative agreement from the U.S. Environmental Protection Agency by the National Association of Clean Water Agencies (NACWA) and its contractor, CH2MHILL, Inc.

  10. The perspective effects of various seed coating substances on rice seed variety Khao Dawk Mali 105 storability II: the case study of chemical and biochemical properties.

    Science.gov (United States)

    Thobunluepop, P; Pan-in, W; Pawelzik, E; Vearasilp, S

    2009-04-01

    The aim of this study was to investigate the effects of seed coating substances; chemical fungicide (CA) and biological fungicide polymers [chitosan-lignosulphonate polymer (CL) and eugenol incorporated into chitosan-lignosulphonate polymer (E+CL)] on chemical and biochemical changes of rice seeds cv. KDML 105, which have been studied during storage for 12 months. CA significantly affected the rice seed chemical properties and the associated seed deterioration. After 12 months storage, protein content decreased accompanied by declined of lipid content, increased free fatty acids and activated lipoxygenase enzyme. In the case of biological fungicide coated seeds, the antioxidative scavenging enzymes were ascorbate peroxidase and superoxide dismutase and a high antioxidant activity protected them. Moreover, the sugar content was positive correlated with seed germination and vigor. The biological coated seeds were found to maintain high sugar contents inside the seeds, which resulted high seed storability significantly. In contrast, under fungicide stress (CA), those compounds were lost that directly affected seed vigor during storage.

  11. Importance of sample pH on recovery of mutagenicity from drinking water by XAD resins

    Energy Technology Data Exchange (ETDEWEB)

    Ringhand, H.P.; Meier, J.R.; Kopfler, F.C.; Schenck, K.M.; Kaylor, W.H.; Mitchell, D.E.

    1987-04-01

    Sample pH and the presence of a chlorine residual were evaluated for their effects of the recovery of mutagenicity in drinking water following concentration by XAD resins. The levels of mutagenicity in the pH 2 concentrates were 7-8-fold higher than those of the pH 8 concentrates, suggesting that acidic compounds accounted for the majority of the mutagenicity. The presence of a chlorine residual had little effect on the levels of mutagenicity at either pH. Comparisons of the mutagenic activity for the pH 2 resin concentrates vs. pH 8 concentrates prepared by lyophilization further indicated that the acidic mutagens were products of disinfection with chlorine and not artifacts of the sample acidification step in the concentration procedure. 27 references, 6 figures, 1 table.

  12. Pasteurization of food by hydrostatic high pressure: chemical aspects.

    Science.gov (United States)

    Tauscher, B

    1995-01-01

    Food pasteurized by hydrostatic high pressure have already been marketed in Japan. There is great interest in this method also in Europe and USA. Temperature and pressure are the essential parameters influencing the state of substances including foods. While the influence of temperature on food has been extensively investigated, effects of pressure, also in combination with temperature, are attracting increasing scientific attention now. Processes and reactions in food governed by Le Chatelier's principle are of special interest; they include chemical reactions of both low- and macromolecular compounds. Theoretical fundamentals and examples of pressure affected reactions are presented.

  13. Thermal injuries caused by ignition of volatile substances by gas water heaters.

    Science.gov (United States)

    Rutan, R L; Desai, M H; Herndon, D N

    1993-01-01

    Based on the cumulative data of this tertiary care facility over the past 25 years, one out of every 70 pediatric patients admitted to our institution sustained their injuries during an explosive event instigated by the ignition of volatile substances from gas water heaters. The majority of injuries related to gas water heaters can be prevented by decreasing the temperature setpoint of the heater, by protecting the heater element itself, and by elevating the water heater to 18 inches above the floor. The first two issues have been adequately addressed; however, gas-fueled water heaters continue to be installed at floor level. Current national guidelines are too rigid and do not adequately address water-heater installation in private residences. Although general prevention campaigns target appropriate storage of volatile substances, they rarely address the explosive potential of gas water heaters in combination with combustible fumes.

  14. Science and Engineering Ph.D. Students' Career Outcomes, by Gender.

    Directory of Open Access Journals (Sweden)

    Annamaria Conti

    Full Text Available We examine differences in the careers of men and women Ph.D.s from two major European universities. Having performed regression analysis, we find that women are more likely than men to be employed in public administration when the alternatives are either academia or industry. Between the latter two alternatives, women are more likely to be employed in academia. These gender differences persist after accounting for Ph.D.s' and their supervisors' characteristics. Gender gaps are smaller for Ph.D.s with large research outputs and for those who conducted applied research. Restricting the analysis to Ph.D.s who pursued postdoc training, women are less likely than men to be employed in highly ranked universities, even after controlling for their research outputs. Finally, we find gender differences in Ph.D.s' appointment to professorship, which are explained by the Ph.D.s' publication output and the quality of their postdoc training.

  15. Science and Engineering Ph.D. Students' Career Outcomes, by Gender.

    Science.gov (United States)

    Conti, Annamaria; Visentin, Fabiana

    2015-01-01

    We examine differences in the careers of men and women Ph.D.s from two major European universities. Having performed regression analysis, we find that women are more likely than men to be employed in public administration when the alternatives are either academia or industry. Between the latter two alternatives, women are more likely to be employed in academia. These gender differences persist after accounting for Ph.D.s' and their supervisors' characteristics. Gender gaps are smaller for Ph.D.s with large research outputs and for those who conducted applied research. Restricting the analysis to Ph.D.s who pursued postdoc training, women are less likely than men to be employed in highly ranked universities, even after controlling for their research outputs. Finally, we find gender differences in Ph.D.s' appointment to professorship, which are explained by the Ph.D.s' publication output and the quality of their postdoc training.

  16. Effects of pH and acetic acid on homoacetic fermentation of lactate by Clostridium formicoaceticum.

    Science.gov (United States)

    Tang, I C; Okos, M R; Yang, S T

    1989-10-20

    Clostridium formicoaceticum homofermentatively converts lactate to acetate at 37 degrees C and pH 6.6-9.6. However, this fermentation is strongly inhibited by acetic acid at acidic pH. The specific growth rate of this organism decreased from a maximum at pH 7.6 to zero at pH 6.6. This inhibition effect was found to be attributed to both H(+) and undissociated acetic acid. At pH values below 7.6, the H(+) inhibited the fermentation following non-competitive inhibition kinetics. The acetic acid inhibition was found to be stronger at a lower medium pH. At pH 6.45-6.8, cell growth was found to be primarily limited by a maximum undissociated acetic acid concentration of 0.358 g/L (6mM). This indicates that the undissociated acid, not the dissociated acid, is the major acid inhibitor. At pH 7.6 or higher, this organism could tolerate acetate concentrations of higher than 0.8M, but salt (Na(+)) became a strong inhibitor at concentrations of higher than 0.4M. Acetic acid inhibition also can be represented by noncompetitive inhibition kinetics. A mathematical model for this homoacetic fermentation was also developed. This model can be used to simulate batch fermentation at any pH between 6.9 and 7.6.

  17. Substance use by college students: the role of intrinsic versus extrinsic motivation for athletic involvement.

    Science.gov (United States)

    Rockafellow, Bradley D; Saules, Karen K

    2006-09-01

    Certain types of athletic involvement may confer risk for substance use by college students. This study investigated whether motivational factors play a role in the relationship between athletic involvement and substance use. Intercollegiate athletes (n=98) and exercisers (n=120) were surveyed about substance use and motivation for athletic involvement. Athletes and exercisers who were extrinsically motivated had significantly higher rates of alcohol use than their intrinsically motivated counterparts. Results suggest that college students who are extrinsically motivated for involvement in physical activity/athletics--particularly those involved in team sports--may be in need of targeted prevention efforts.

  18. Are psychotic experiences among detained juvenile offenders explained by trauma and substance use?

    NARCIS (Netherlands)

    Colins, O.; Vermeiren, R.R.J.M.; Vreugdenhil, C.; Schuyten, G.; Broekaert, E.; Krabbendam, A.

    2009-01-01

    2). CONCLUSION: These findings suggest that psychotic experiences in detained adolescents may be explained by trauma and substance use. In addition, paranoia-related experiences seemed to be particularly associated with emotional abuse

  19. Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments

    Science.gov (United States)

    Park, Seung Shik; Yu, Jaemyeong

    2016-07-01

    PM2.5 samples from biomass burning (BB) emissions of three types - rice straw (RS), pine needles (PN), and sesame stems (SS) - were collected through laboratory-controlled combustion experiments and analyzed for the mass, organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and water soluble inorganic species (Na+, NH4+, K+, Ca2+, Mg2+, Cl-, NO3-, SO42-, and oxalate). The combustion experiments were carried out at smoldering conditions. Water-soluble HULIS in BB samples was isolated using a one-step solid phase extraction method, followed by quantification with a total organic carbon analyzer. This study aims to explore chemical and light absorption characteristics of HULIS from BB emissions. The contributions of HULIS (=1.94 × HULIS-C) to PM2.5 emissions were observed to be 29.5 ± 2.0, 15.3 ± 3.1, and 25.8 ± 4.0%, respectively, for RS, PN, and SS smoke samples. Contributions of HULIS-C to OC and WSOC for the RS, PN, and SS burning emissions were 0.26 ± 0.03 and 0.63 ± 0.05, 0.15 ± 0.04 and 0.36 ± 0.08, and 0.29 ± 0.08 and 0.51 ± 0.08, respectively. Light absorption by the water extracts from BB aerosols exhibited strong wavelength dependence, which is characteristic of brown carbon spectra with a sharply increasing absorption as wavelength decreases. The average absorption Ångström exponents (AAE) of the water extracts (WSOC) fitted between wavelengths of 300-400 nm were 8.3 (7.4-9.0), 7.4 (6.2-8.5), and 8.0 (7.1-9.3) for the RS, PN, and SS burning samples, which are comparable to the AAE values of BB samples reported in previous publications (e.g., field and laboratory chamber studies). The average mass absorption efficiencies of WSOC measured at 365 nm (MAE365) were 1.37 ± 0.23, 0.86 ± 0.09, and 1.38 ± 0.21 m2/gṡC for RS, PN, and SS burning aerosols, respectively. Correlations of total WSOC, hydrophilic WSOC (= total WSOC-HULIS-C), and HULIS-C concentrations in solution with the light

  20. Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH

    Energy Technology Data Exchange (ETDEWEB)

    Huertas, M.J., E-mail: mjhuertas@us.es [Instituto de Bioquimica Vegetal y Fotosintesis, CSIC-Universidad de Sevilla Avda Americo Vespucio, 49, 41092 Sevilla (Spain); Saez, L.P.; Roldan, M.D.; Luque-Almagro, V.M.; Martinez-Luque, M. [Departamento de Bioquimica y Biologia Molecular, Edificio Severo Ochoa, 1a Planta, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain); Blasco, R. [Departamento de Bioquimica y Biologia Molecular y Genetica, Facultad de Veterinaria, Universidad de Extremadura, 11071 Caceres (Spain); Castillo, F.; Moreno-Vivian, C. [Departamento de Bioquimica y Biologia Molecular, Edificio Severo Ochoa, 1a Planta, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain); Garcia-Garcia, I. [Departamento de Ingenieria Quimica, Edificio Marie Curie, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain)

    2010-07-15

    Water containing cyanide was biologically detoxified with the bacterial strain Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Volatilization of toxic hydrogen cyanide (HCN) was avoided by using an alkaline medium for the treatment. The operational procedure was optimized to assess cyanide biodegradation at variable pH values and dissolved oxygen concentrations. Using an initial pH of 10 without subsequent adjustment allowed total cyanide to be consumed at a mean rate of approximately 2.81 mg CN{sup -} L{sup -1} O.D.{sup -1} h{sup -1}; however, these conditions posed a high risk of HCN formation. Cyanide consumption was found to be pH-dependent. Thus, no bacterial growth was observed with a controlled pH of 10; on the other hand, pH 9.5 allowed up to 2.31 mg CN{sup -} L{sup -1} O.D.{sup -1} h{sup -1} to be converted. The combination of a high pH and a low dissolved oxygen saturation (10%) minimized the release of HCN. This study contributes new basic knowledge about this biological treatment, which constitutes an effective alternative to available physico-chemical methods for the purification of wastewater containing cyanide or cyano-metal complexes.

  1. REACH. Analytical characterisation of petroleum UVCB substances

    Energy Technology Data Exchange (ETDEWEB)

    De Graaff, R.; Forbes, S.; Gennart, J.P.; Gimeno Cortes, M.J.; Hovius, H.; King, D.; Kleise, H.; Martinez Martin, C.; Montanari, L.; Pinzuti, M.; Pollack, H.; Ruggieri, P.; Thomas, M.; Walton, A.; Dmytrasz, B.

    2012-10-15

    The purpose of this report is to summarise the findings of the scientific and technical work undertaken by CONCAWE to assess the feasibility and potential benefit of characterising petroleum UVCB substances (Substances of Unknown or Variable Composition, Complex reaction products or Biological Materials) beyond the recommendations issued by CONCAWE for the substance identification of petroleum substances under REACH. REACH is the European Community Regulation on chemicals and their safe use (EC 1907/2006). It deals with the Registration, Evaluation, Authorisation and Restriction of Chemical substances. The report is based on Member Company experience of the chemical analysis of petroleum UVCB substances, including analysis in support of REACH registrations undertaken in 2010. This report is structured into four main sections, namely: Section 1 which provides an introduction to the subject of petroleum UVCB substance identification including the purpose of the report, regulatory requirements, the nature of petroleum UVCB substances, and CONCAWE's guidance to Member Companies and other potential registrants. Section 2 provides a description of the capabilities of each of the analytical techniques described in the REACH Regulation. This section also includes details on the type of analytical information obtained by each technique and an evaluation of what each technique can provide for the characterisation of petroleum UVCB substances. Section 3 provides a series of case studies for six petroleum substance categories (low boiling point naphthas, kerosene, heavy fuel oils, other lubricant base oils, residual aromatic extracts and bitumens) to illustrate the value of the information derived from each analytical procedure, and provide an explanation for why some techniques are not scientifically necessary. Section 4 provides a summary of the conclusions reached from the technical investigations undertaken by CONCAWE Member Companies, and summarising the

  2. Preparation of Chemicals and Bulk Drug Substances for the U.S. Army Drug Development Program

    Science.gov (United States)

    1997-12-01

    which was purified by sublimation followed by chromatography. The purified acid was alkylated with 2- chloroethanol in the presence of base and the...3CH3 Cl Resolution of the corresponding dibutylaminophenanthrenemethanol (halofantrine) by fractional crystallization of the d- camphoric acid salt

  3. Fate models for chemical substances in exposure and risk assessment. Focused on estimation of atmospheric concentration; Bakuro{center_dot}risuku hyoka ni okeru kagaku busshitsu unmei yosoku moderu. Taikichu nodo suitei wo chushin toshite

    Energy Technology Data Exchange (ETDEWEB)

    Higashino, H. [National Inst. for Resources and Environment, Tsukuba (Japan)

    2000-09-20

    A fate model is one of the most effective tools in exposure and risk assessment of chemical substances. Two different type models are available for estimating the atmospheric concentration. One is unit box and multi compartment type model, the other is atmospheric dispersion model. These models should be used in different suitable situations because each model has both advantage and disadvantage. Estimation of the long-term average concentration in a comparatively wide region into which substances are continuously discharged should be required in the environmental assessment of chemical substances. We developed the model with which to estimate long-term average atmospheric concentrations of chemicals. The model validation was conducted for trichloroethylene and tetrachloroethylene concentrations in the atmosphere by comparing calculated values and observed values. Good agreement with the measured values was obtained for the monthly average concentration. The model is capable of estimating the long-term (such as monthly) average distribution of concentration of chemicals in a wide flat area such as the Kanto plain. (author)

  4. Vitellogenin synthesis in primary cultures of fish liver cells as endpoint for in vitro screening of the (anti)estrogenic activity of chemical substances.

    Science.gov (United States)

    Navas, José M; Segner, Helmut

    2006-10-25

    Concern over possible adverse effects of endocrine-disrupting compounds on fish has caused the development of appropriate testing methods. In vitro screening assays may provide initial information on endocrine activities of a test compound and thereby may direct and optimize subsequent testing. Induction of vitellogenin (VTG) is used as a biomarker of exposure of fish to estrogen-active substances. Since VTG induction can be measured not only in vivo but also in fish hepatocytes in vitro, the use of VTG induction response in isolated fish liver cells has been suggested as in vitro screen for identifying estrogenic-active substances. The main advantages of the hepatocyte VTG assay are considered its ability to detect effects of estrogenic metabolites, since hepatocytes in vitro remain metabolically competent, and its ability to detect both estrogenic and anti-estrogenic effects. In this article, we critically review the current knowledge on the VTG response of cultured fish hepatocytes to (anti)estrogenic substances. In particular, we discuss the sensitivity, specificity, and variability of the VTG hepatocyte assay. In addition, we review the available data on culture factors influencing basal and induced VTG production, the response to natural and synthetic estrogens as well as to xenoestrogens, the detection of indirect estrogens, and the sources of assay variability. The VTG induction in cultured fish hepatocytes is clearly influenced by culture conditions (medium composition, temperature, etc.) and culture system (hepatocyte monolayers, aggregates, liver slices, etc.). The currently available database on estrogen-mediated VTG induction in cultured teleost hepatocytes is too small to support conclusive statements on whether there exist systematic differences of the VTG response between in vitro culture systems, VTG analytical methods or fish species. The VTG hepatocyte assay detects sensitively natural and synthetic estrogens, whereas the response to

  5. Direct reduction of N-acetoxy-PhIP by tea polyphenols: a possible mechanism for chemoprevention against PhIP-DNA adduct formation.

    Science.gov (United States)

    Lin, Dong-Xin; Thompson, Patricia A; Teitel, Candee; Chen, Jun-Shi; Kadlubar, Fred F

    2003-01-01

    The chemopreventive effect of tea against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-DNA adduct formation and its mechanism were studied. Rats were exposed to freshly prepared aqueous extracts of green tea (3% (w/v)) as the sole source of drinking water for 10 days prior to administration with a single dose of PhIP (10 mg/kg body weight) by oral gavage. PhIP-DNA adducts in the liver, colon, heart, and lung were measured using the 32P-postlabelling technique. Rats pre-treated with tea and given PhIP 20 h before sacrifice had significantly reduced levels of PhIP-DNA adducts as compared with controls given PhIP alone. The possible mechanism of protective effect of tea on PhIP-DNA adduct formation was then examined in vitro. It was found that an aqueous extract of green and black tea, mixtures of green and black tea polyphenols, as well as purified polyphenols could strongly inhibit the DNA binding of N-acetoxy-PhIP, a putative ultimate carcinogen of PhIP formed in vivo via metabolic activation. Among these, epigallocatechin gallate was exceptionally potent. HPLC analyses of these incubation mixtures containing N-acetoxy-PhIP and the tea polyphenols each revealed the production of the parent amine, PhIP, indicating the involvement of a redox mechanism. In view of the presence of relatively high levels of tea polyphenols in rat and human plasma after ingestion of tea, this study suggests that direct reduction of the ultimate carcinogen N-acetoxy-PhIP by tea polyphenols is likely to be involved in the mechanism of chemoprotection of tea against this carcinogen.

  6. Direct reduction of N-acetoxy-PhIP by tea polyphenols: a possible mechanism for chemoprevention against PhIP-DNA adduct formation

    Energy Technology Data Exchange (ETDEWEB)

    Lin Dongxin; Thompson, Patricia A.; Teitel, Candee; Chen Junshi; Kadlubar, Fred F

    2003-03-01

    The chemopreventive effect of tea against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-DNA adduct formation and its mechanism were studied. Rats were exposed to freshly prepared aqueous extracts of green tea (3% (w/v)) as the sole source of drinking water for 10 days prior to administration with a single dose of PhIP (10 mg/kg body weight) by oral gavage. PhIP-DNA adducts in the liver, colon, heart, and lung were measured using the {sup 32}P-postlabelling technique. Rats pre-treated with tea and given PhIP 20 h before sacrifice had significantly reduced levels of PhIP-DNA adducts as compared with controls given PhIP alone. The possible mechanism of protective effect of tea on PhIP-DNA adduct formation was then examined in vitro. It was found that an aqueous extract of green and black tea, mixtures of green and black tea polyphenols, as well as purified polyphenols could strongly inhibit the DNA binding of N-acetoxy-PhIP, a putative ultimate carcinogen of PhIP formed in vivo via metabolic activation. Among these, epigallocatechin gallate was exceptionally potent. HPLC analyses of these incubation mixtures containing N-acetoxy-PhIP and the tea polyphenols each revealed the production of the parent amine, PhIP, indicating the involvement of a redox mechanism. In view of the presence of relatively high levels of tea polyphenols in rat and human plasma after ingestion of tea, this study suggests that direct reduction of the ultimate carcinogen N-acetoxy-PhIP by tea polyphenols is likely to be involved in the mechanism of chemoprotection of tea against this carcinogen.

  7. Determination and validation of zonisamide and its four related substances by HPLC and UV-spectrophotometry

    Directory of Open Access Journals (Sweden)

    Hosseini Maryam

    2010-01-01

    Full Text Available A selective and sensitive liquid chromatographic method has been developed for simultaneous determination of zonisamide and its four related substances in pharmaceutical dosage forms. The assay involved an isocratic elution in perfectsil Target C18 column using a mobile phase composition of disodium hydrogen phosphate buffer, acetonitrile and methanol (650:150:200 v/v, pH adjusted to 3±0.05 with flow rate 1.2 ml/min and analyte monitored at 240 nm. Also a simple and precise spectrophotometric method was developed for dissolution studies. These proposed methods are sensitive, accurate, reproducible and useful for the routine determination of zonisamide in pharmacy.

  8. Environmental pollution by persistent toxic substances and health risk in an industrial area of China

    Institute of Scientific and Technical Information of China (English)

    Jing Li; Yonglong Lu; Yajuan Shi; Tieyu Wang; Guang Wang; Wei Luo; Wentao Jiao; Chunli Chen; Feng Yan

    2011-01-01

    Soil is an important environmental medium that is closely associated with humans and their health.Despite this,very few studies have measured toxicants in soils,and associated them with health risks in humans.An assessment of health effects from exposure to contaminants in soils surrounding industrial areas of chemical production and storage is important.This article aims at determining pollution characteristics of persistent toxic substances (PTS) in an industrial area in China to unravel the relationship between soil pollution by PTS and human health.One hundred and five soil samples were collected and 742 questionnaires were handed out to residents living in and around an industrial area around Bohai Bay,Tianjin in Northern China.Concentrations of organochlorine pesticides and polycyclic aromatic hydrocarbons (PAHs) were determined in soil.Mann-Whitney U and binary multivariate nonconditional logistic regression models were employed to analyze the relationship between health indicators of local residents and contaminant levels.Odds ratio (OR) and a 95% confidence interval (CI) for health incidences were also calculated.The average concentrations of DDT (73.9 rig/g),HCH (654 ng/g) and PAHs (1225 ng/g) were relatively high in the industrial area.Residents living in the chemical industry parks were exposed to a higher levels of PTS than those living outside the chemical industry parks.This exposure was associated with a higher risk of breast cancer (OR 1.87,95% CI 0.12-30.06),stomach cancer (OR 1.87,95% CI 0.26-13.41),dermatitis (OR 1.72,95% CI 1.05-2.80),gastroenteritis (OR 1.59,95% CI 0.94-2.68),and pneumonia (OR 1.05,95% CI 0.58-1.89).

  9. Review of the state of the art of human biomonitoring for chemical substances and its application to human exposure assessment for food safety

    DEFF Research Database (Denmark)

    Choi, Judy; Mørck, Thit Aarøe; Polcher, Alexandra

    2015-01-01

    Human biomonitoring (HBM) measures the levels of substances in body fluids and tissues. Many countries have conducted HBM studies, yet little is known about its application towards chemical risk assessment, particularly in relation to food safety. Therefore a literature search was performed...... safety areas (namely exposure assessment), and for the implementation of a systematic PMM approach. But further work needs to be done to improve usability. Major deficits are the lack of HBM guidance values on a considerable number of substance groups, for which health based guidance values (HBGVs) have...

  10. Enrichment of the glycoalkaloids alpha-solanine and alpha-chaconine from potato juice by adsorptive bubble separation using a pH gradient.

    Science.gov (United States)

    Backleh, Marlène; Ekici, Perihan; Leupold, Günther; Coelhan, Mehmet; Parlar, Harun

    2004-08-01

    For the first time, the solanidine alkaloids alpha-solanine and alpha-chaconine could be quantitatively enriched from potato juice by Adsorptive Bubble Separation (ABS) with a pH gradient. The enrichment into the foam was influenced by the pH value, bubble size, and gas flow rate. The efficiency was highest on using diluted samples with a concentration between 2 and 6 mg L(-1) of the alkaloids at pH 6.0. The experiments with a standard solution of each alkaloid confirmed that these substances can be quantitatively enriched into the 'spumat' without surface active potato proteins. The transfer into the foam fraction under these conditions was similar to that from the aqueous potato extract.

  11. 77 FR 38085 - Manufacturer of Controlled Substances; Notice of Registration; Cayman Chemical Company

    Science.gov (United States)

    2012-06-26

    ... Company By Notice dated March 8, 2012, and published in the Federal Register on March 20, 2012, 77 FR... Hydroxybutyric Acid (2010) I Mescaline (7381) I N-Benzylpiperazine (7493) I 3,4-Methylenedioxyprovalerone...

  12. Goadsporin, a chemical substance which promotes secondary metabolism and Morphogenesis in streptomycetes. II. Structure determination.

    Science.gov (United States)

    Igarashi, Y; Kan, Y; Fujii, K; Fujita, T; Harada, K; Naoki, H; Tabata, H; Onaka, H; Furumai, T

    2001-12-01

    The structure of goadsporin was determined by using spectroscopic techniques. NMR analysis revealed that goadsporin consists of 19 amino acids, two of which are dehydroalanines (Deala), and six of which are cyclized to oxazoles (Oxz) and thiazoles (Thz) by dehydrative cyclization and dehydrogenation from serine, threonine and cysteine. NMR analysis established seven partial structures, and their sequence was determined by CID-MS/MS. Negative mode FAB-MS/MS gave product ions arising from charge-remote fragmentation that allowed determination of the sequence of the amino acid components as AcNH-Ala-MeOxz-Val-Deala-MeOxz-Ile-Leu-Thz-Ser-Gly-Gly-MeOxz-Leu-Deala-Oxz-Ala-Gly-Thz-Val-OH. The chiral amino acids were determined by the advanced Marfey's method to have L-configurations.

  13. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging

    Directory of Open Access Journals (Sweden)

    Zuzana eBurdikova

    2015-03-01

    Full Text Available Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g. pH, redox potential due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM. In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening.

  14. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging.

    Science.gov (United States)

    Burdikova, Zuzana; Svindrych, Zdenek; Pala, Jan; Hickey, Cian D; Wilkinson, Martin G; Panek, Jiri; Auty, Mark A E; Periasamy, Ammasi; Sheehan, Jeremiah J

    2015-01-01

    Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g., pH, redox potential) due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM). In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening.

  15. 76 FR 38170 - Toxic Substances Control Act Chemical Testing; Receipt of Test Data

    Science.gov (United States)

    2011-06-29

    .... 0259.1. Acute Toxicity to Daphnia 0259 and 0259.2......... Magna. Oral (Gavage) 0259, 0259.3, part 1.... Reproductive 0324, 0324.1, 0324.2.... Developmental Toxicity Screening Test by Oral Gavage Administration to CD... (Gavage) Toxicity Study in the Rat, OECD 407. Determination of Physico- 0290, transmittal;...

  16. 77 FR 58665 - Significant New Use Rules on Certain Chemical Substances

    Science.gov (United States)

    2012-09-21

    ... micronucleus test (OECD Test Guideline 474); and a mammalian bone marrow chromosomal aberration test (OECD Test... designations, including provisions for developing test data. B. What is the agency's authority for taking this...) consent orders). Tests recommended by EPA to provide sufficient information to evaluate the...

  17. 77 FR 61117 - Significant New Use Rules on Certain Chemical Substances

    Science.gov (United States)

    2012-10-05

    ... reverse mutation test (OPPTS Test Guideline 870.5100); a mammalian erythrocyte micronucleus test (OPPTS... micronucleus test (OPPTS Test Guideline 870.5395) by the intraperitoneal route; a combined repeated dose... SNURs and on the basis for significant new use designations, including provisions for developing...

  18. Production of bacteriocin-like inhibitory substance by Bifidobacterium lactis in skim milk supplemented with additives.

    Science.gov (United States)

    Martinez, Fabio Andres Castillo; Domínguez, José Manuel; Converti, Attilio; Oliveira, Ricardo Pinheiro de Souza

    2015-08-01

    Bacteriocins are natural compounds used as food biopreservatives instead of chemical preservatives. Bifidobacterium animalis subsp. lactis (Bifid. lactis) was shown to produce a bacteriocin-like inhibitory substance (BLIS) able to inhibit the growth of Listeria monocytogenes selected as an indicator microorganism. To enhance this production by the strain Bifid. lactis BL 04, skim milk (SM) was used as a fermentation medium either in the presence or in the absence of yeast extract, Tween 80 or inulin as stimulating additives, and the results in terms of bacterial growth and BLIS production were compared with those obtained in a traditional high cost complex medium such as Man, Rogosa and Sharpe (MRS). To this purpose, all the cultivations were carried out in flasks at 200 rpm under anaerobic conditions ensured by a nitrogen flowrate of 1.0 L/min for 48 h, and BLIS production was quantified by means of a modified agar diffusion assay at low values of both temperature and concentration of List. monocytogenes. Although all these ingredients were shown to exert positive influence on BLIS production in both media, yeast extract and SM were by far the best ingredient and the best medium, respectively, allowing for a BLIS production at the late exponential phase of 2000 AU/ml.

  19. Chemical substances injection in wells through the gas-lift line: state of the art; Injecao de produtos quimicos em pocos atraves de linha de gas-lift: estado-da-arte

    Energy Technology Data Exchange (ETDEWEB)

    Ramalho, Joao Batista Vianey da Silva [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Setor de Tecnologia de Producao, Processamento e Transporte]. E-mail: jramalho@cenpes.petrobras.com.br

    2000-12-01

    Injecting chemical substances on the subsurface in order to control incrustation, corrosion, emulsion and waxes, among other problems caused by the production at the oil wells, has not been used much because of the way they are usually injected. Recently, these products have been injected in wells through the gas-lift line, thus allowing control over the individual treatment in each well. The main conclusions arrived at with the reports made are the following: it is possible to inject chemical substances through the gas-lift line. The formulations of such products must be specific and they must contain the proper amounts of solvent to prevent the segregation of active matter. These products must be injected individually in the gas-lift line at each well. (author)

  20. Revision of Import and Export Requirements for Controlled Substances, Listed Chemicals, and Tableting and Encapsulating Machines, Including Changes To Implement the International Trade Data System (ITDS); Revision of Reporting Requirements for Domestic Transactions in Listed Chemicals and Tableting and Encapsulating Machines; and Technical Amendments. Final rule.

    Science.gov (United States)

    2016-12-30

    The Drug Enforcement Administration is updating its regulations for the import and export of tableting and encapsulating machines, controlled substances, and listed chemicals, and its regulations relating to reports required for domestic transactions in listed chemicals, gamma-hydroxybutyric acid, and tableting and encapsulating machines. In accordance with Executive Order 13563, the Drug Enforcement Administration has reviewed its import and export regulations and reporting requirements for domestic transactions in listed chemicals (and gamma-hydroxybutyric acid) and tableting and encapsulating machines, and evaluated them for clarity, consistency, continued accuracy, and effectiveness. The amendments clarify certain policies and reflect current procedures and technological advancements. The amendments also allow for the implementation, as applicable to tableting and encapsulating machines, controlled substances, and listed chemicals, of the President's Executive Order 13659 on streamlining the export/import process and requiring the government-wide utilization of the International Trade Data System (ITDS). This rule additionally contains amendments that implement recent changes to the Controlled Substances Import and Export Act (CSIEA) for reexportation of controlled substances among members of the European Economic Area made by the Improving Regulatory Transparency for New Medical Therapies Act. The rule also includes additional substantive and technical and stylistic amendments.

  1. Chemical and isotopic evidence for the in situ origin of marine humic substances

    Energy Technology Data Exchange (ETDEWEB)

    Nissenbaum, A.; (Weizmann Inst., Rehovot, Israel); Kaplan, I.R.

    1972-07-01

    Humic and fulvic acids were extracted from marine and nonmarine Recent sediments and from soils. These acids are shown to be major components of the organic matter from marine and nonmarine sediments--some marine sediments may contain 70% of their organic carbon in the humic and fulvic acid fraction. Marine and terrestrial humic acids have similar carbon and hydrogen content, but the former generally contain more sulfur and nitrogen. delta/sup 34/S values of marine humic acid indicate that the sulfur is introduced into the organic matter as hydrogen sulfide produced by sulfate reduction. Marine humates have a rather constant delta/sup 13/C value of -20 to -22%, whereas the delta/sup 13/C of soil humic acid is related to its plant source material and usually ranges around -25 to -26%. The evidence shows that marine humic acids can be formed in situ from degradation products of plankton and are not necessarily transported from the continent. The suggested pathway of marine humic acid formation and transformation in the sediment is (1) degraded cellular material..-->..(2) water-soluble complex containing amino acids and carbohydrates..-->..(3) fulvic acids..-->..(4) humic acids..-->..(5) kerogen.

  2. Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS).

    Science.gov (United States)

    Huang, Yuegao; Coman, Daniel; Ali, Meser M; Hyder, Fahmeed

    2015-01-01

    Relaxivity-based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd(3+)) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the nonexchangeable or the exchangeable protons on the lanthanide complexes themselves. The nonexchangeable protons (e.g. -CHx, where 3 ≥ x ≥ 1) are detected using a three-dimensional chemical shift imaging method called biosensor imaging of redundant deviation in shifts (BIRDS), whereas the exchangeable protons (e.g. -OH or -NHy , where 2 ≥ y ≥ 1) are measured with chemical exchange saturation transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP(8-)) chelated with thulium (Tm(3+) ) and ytterbium (Yb(3+)). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e. 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP(5-) than with TmDOTA-4AmP(5-). In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging.

  3. Inhibitory effects of selected dietary flavonoids on the formation of total heterocyclic amines and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in roast beef patties and in chemical models.

    Science.gov (United States)

    Zhu, Qin; Zhang, Shuang; Wang, Mingfu; Chen, Jie; Zheng, Zong-Ping

    2016-02-01

    In this study, the inhibitory effects of eight kinds of dietary flavonoids on the formation of heterocyclic amines (HAs) were investigated in roast beef patties. The results showed that most of them exhibited significant inhibition on both total HAs and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), one of the most abundant HAs. Among the studied flavonoids, phlorizin, epigallocatechin gallate (EGCG), and quercetin were found to be the most effective in both the reductions of total HAs (55-70%) and PhIP (60-80%). The reaction activity between the flavonoid and phenylacetaldehyde, a key intermediate in PhIP formation, showed a good correlation with the inhibition of PhIP formation in an aqueous model system (R(2) = 0.8904) and a di(ethylene) glycol reaction system (R(2) = 0.6514). However, no significant correlation was found between the flavonoid antioxidant capacity and PhIP formation (R(2) = 0.2359). The postulated adducts of flavonoids-phenylacetaldehyde were further confirmed by LC-MS analysis in the chemical models. Since phenylacetaldehyde is the chief intermediate in PhIP formation, these results suggest that the inhibitory effects of flavonoids on PhIP formation are mainly dependent on their abilities to trap phenylacetaldehyde as opposed to their antioxidant capacities.

  4. Production of citrinin-free Monascus pigments by submerged culture at low pH.

    Science.gov (United States)

    Kang, Biyu; Zhang, Xuehong; Wu, Zhenqiang; Wang, Zhilong; Park, Sunghoon

    2014-02-05

    Microbial fermentation of citrinin-free Monascus pigments is of great interest to meet the demand of food safety. In the present work, the effect of various nitrogen sources, such as monosodium glutamate (MSG), cornmeal, (NH4)₂SO₄, and NaNO₃, on Monascus fermentation was examined under different initial pH conditions. The composition of Monascus pigments and the final pH of fermentation broth after Monascus fermentation were determined. It was found that nitrogen source was directly related to the final pH and the final pH regulated the composition of Monascus pigments and the biosynthesis of citrinin. Thus, an ideal nitrogen source can be selected to control the final pH and then the citrinin biosynthesis. Citrinin-free orange pigments were produced at extremely low initial pH in the medium with (NH4)₂SO₄ or MSG as nitrogen source. No citrinin biosynthesis at extremely low pH was further confirmed by extractive fermentation of intracellular pigments in the nonionic surfactant Triton X-100 micelle aqueous solution. This is the first report about the production of citrinin-free Monascus pigments at extremely low pH.

  5. TSST-1, enterotoxin and bacteriocin-like substance production by Staphylococcus aureus isolated from foods

    Directory of Open Access Journals (Sweden)

    S.A. Carvalho

    2013-10-01

    Full Text Available The production of Toxic Shock Syndrome Toxin-1 (TSST-1, enterotoxins and bacteriocin-like substances was evaluated in 95 strains of Staphylococcus aureus recovered from raw bovine milk (n=31 and from food samples involved in staphylococcal food poisoning (n=64. Enterotoxigenicity tests with the membrane over agar associated to optimal sensibility plate assays were performed and showed that 96.77% of strains recovered from milk and 95.31% from food samples produced enterotoxins A, B, C, D or TSST-1. Reference strains S. epidermidis, Bacillus cereus, Listeria monocytogenes, Lactobacillus casei, Pseudomonas aeruginosa, S. aureus, Salmonella Typhimurium, Escherichia coli, Enterococcus faecalis and Bacteroides fragilis were used as indicator bacteria in the antagonistic assays, the first five being sensitive to antagonistic substances. Brain heart infusion agar, in pH values ranging from 5.0 to 7.0 in aerobic atmosphere showed to be the optimum condition for antagonistic activity as evaluated with the best producer strains against the most sensitive indicator bacterium, L. monocytogenes. Sensitivity to enzymes confirmed the proteinaceous nature of these substances. Neither bacteriophage activity nor fatty acids were detected and the antagonistic activity was not due to residual chloroform. Results did not establish a positive correlation between the bacteriocinogenic profile and toxigenicity in the tested S. aureus strains.

  6. Improved PVDF membrane performance by doping extracellular polymeric substances of activated sludge.

    Science.gov (United States)

    Guan, Yan-Fang; Huang, Bao-Cheng; Qian, Chen; Wang, Long-Fei; Yu, Han-Qing

    2017-04-15

    Polyvinylidene fluoride (PVDF) membrane has been widely applied in water and wastewater treatment because of its high mechanical strength, thermal stability and chemical resistance. However, the hydrophobic nature of PVDF membrane makes it readily fouled, substantially reducing water flux and overall membrane rejection ability. In this work, an in-situ blending modifier, i.e., extracellular polymeric substances (EPS) from activated sludge, was used to enhance the anti-fouling ability of PVDF membrane. Results indicate that the pure water flux of the membrane and its anti-fouling performance were substantially improved by blending 8% EPS into the membrane. By introducing EPS, the membrane hydrophilicity was increased and the cross section morphology was changed when it interacted with polyvinl pyrrolidone, resulting in the formation of large cavities below the finger-like pores. In addition, the fraction of pores with a size of 100-500 nm increased, which was also beneficial to improving membrane performance. Surface thermodynamic calculations indicate the EPS-functionalized membrane had a higher cohesion free energy, implying its good pollutant rejection and anti-fouling ability. This work provides a simple, efficient and cost-effective method to improve membrane performance and also extends the applications of EPS.

  7. Iontophoretic transdermal delivery of glycyrrhizin: effects of pH, drug concentration, co-ions, current intensity, and chemical enhancers.

    Science.gov (United States)

    Yamamoto, Rie; Takasuga, Shinri; Kominami, Katsuya; Sutoh, Chiyo; Kinoshita, Mine; Kanamura, Kiyoshi; Takayama, Kozo

    2013-01-01

    The aim of the present study was to evaluate the feasibility of transdermal delivery of glycyrrhizin, an agent used in the treatment of chronic hepatitis C, by cathodal iontophoresis using Ag/AgCl electrodes in vitro. The effects of donor pH (pH 4-7), concentration of drug (0.025-0.2% (w/v)), concentration of external chloride ions (Cl(-)) (0-133 mM), current strength (0-0.5 mA/cm(2)), and permeation enhancers (urea and Tween 80) on the skin permeability of glycyrrhizin were examined in in vitro skin permeation studies using porcine ear skin as the membrane. The cumulative amount of permeated glycyrrhizin and the steady-state skin permeation flux of glycyrrhizin across porcine skin increased in a pH-dependent manner. The skin permeability of glycyrrhizin was independent of the concentration of drug and competed only with a high external Cl(-) concentration. The skin permeation flux of glycyrrhizin increased with the current (R(2)=0.8955). The combination of iontophoresis and enhancers provided an additive or synergistic effect, and a skin permeation flux of about 60 µg/h/cm(2) was achieved. The plasma concentration of glycyrrhizin in humans, extrapolated from the in vitro steady-state permeation flux across porcine skin, was within the therapeutic level. These results suggest that cathodal iontophoresis can be used as a transdermal drug delivery system for glycyrrhizin using reasonable patch sizes and acceptable levels of current intensity.

  8. The fusogenic state of Mayaro virus induced by low pH and by hydrostatic pressure.

    Science.gov (United States)

    Freitas, Monica; Da Poian, Andrea T; Barth, Ortrud M; Rebello, Moacyr A; Silva, Jerson L; Gaspar, Luciane P

    2006-01-01

    Mayaro virus is an enveloped virus that belongs to the Alphavirus genus. To gain insight into the mechanism involved in Mayaro virus membrane fusion, we used hydrostatic pressure and low pH to isolate a fusion-active state of Mayaro glycoproteins. In response to pressure, E1 glycoprotein undergoes structural changes resulting in the formation of a stable conformation. This state was characterized and correlated to that induced by low pH as measured by intrinsic fluorescence, 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid, dipotassium salt fluorescence, fluorescence resonance energy transfer, electron microscopy, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In parallel, we used a neutralization assay to show that Mayaro virus in the fusogenic state retained most of the original immunogenic properties and could elicit high titers of neutralizing antibodies.

  9. Control and switching of first hyperpolarizability by pH

    Science.gov (United States)

    Asselberghs, Inge; Hennrich, Gunther; Coe, Benjamin J.; Koen, Clays

    2006-08-01

    Modulating the electronic, magnetic and optical properties at the molecular level using an external trigger has been extended to the field of nonlinear optics. The switching molecule is designed to have a complexation site or a redox active unit which can guarantee electronic communication over the whole conjugated system. The alteration of the nonlinear property is then induced by the modulation of the internal charge-transfer due to the response of the molecule to the external stimulus. This can be achieved by cation binding, protonation/deprotonation or electrochemically.

  10. Dual wavelength fluorescent ratiometric pH measurement by scanning near-field optical microscopy

    Science.gov (United States)

    Li, Yongbo; Shinohara, Ryosuke; Iwami, Kentaro; Ohta, Yoshihiro; Umeda, Norihiro

    2010-08-01

    A novel method to observe pH distribution by dual wavelength fluorescent ratiometric pH measurement by scanning near-field optical microscopy (SNOM) is developed. In this method, in order to investigate not only the pH of mitochondrial membrane but also its distribution in the vicinity, a pH sensitive fluorescent reagent covers mitochondria instead of injecting it to mitochondria. This method utilizes a dual-emission pH sensitive dye and SNOM with a themally-pulled and metal-coated optical fiber to improve the spatial resolution. Time-dependence of Fluorescent intensity ratio (FIR) under acid addition is investigated. As the distances between the dropped point and the SNOM probe becomes closer, the time when FIR changes becomes earlier. The response of mitochondria under supplement of nutrition is studied by using this method. While the probe is near to mitochondria, the ratio quickly becomes to increase. In conclusion, it was confirmed that the temporal variation of pH can be detected by this method, and pH distribution in the vicinity of mitochondria is able to be measured by this method.

  11. REDUCTION OF HUMIC SUBSTANCES IN WATER BY APPLICATION OF ULTRASOUND WAVES AND ULTRAVIOLET IRRADIATION

    Directory of Open Access Journals (Sweden)

    A. H. Mahvi ، A. Maleki ، R. Rezaee ، M. Safari

    2009-10-01

    Full Text Available Humic substances mainly humic acids constitute the major fraction of natural organic matter in water supplies. They play an important role in the formation of harmful disinfection by products. Degradation of humic acids by means of ultraviolet radiation and ultrasonic irradiation processes was investigated in a laboratory-scale batch photoreactor equipped with an 300 W immersed-type medium-pressure mercury vapour lamp and sonoreactor with low frequency (42 kHz plate type transducer at 170 W of acoustic power with emphasis on the effect of various parameters on degradation efficiency. Experiments were performed at humic acids initial concentrations varying between 2.5-10 mg/L. Oxidation of humic substances has been followed over time by measuring total organic carbon and UV absorbance in 254 nm and 436 nm. Initial results indicated a strong capacity of photolysis for degradation of humic substances. The results also showed that ultrasonic alone cannot be an efficient method for degradation of humic substances in comparison with UV process. The maximum degradation efficiency of humic substances after 90 min of irradiation, however, was only 5.7% and reached a maximum value of 9.5% after 300 min of irradiation. It was found that total organic carbon can be removed effectively by photolysis. It was also found that lower concentrations of humic substances favor the humic substances degradation. Also, the experimental results indicated that the kinetics of ultrasono-oxidation and photo-oxidation processes fit well by pseudo-first order kinetics.

  12. Hemolytic anemia caused by chemicals and toxins

    Science.gov (United States)

    ... This list is not all-inclusive. Alternative Names Anemia - hemolytic - caused by chemicals or toxins References Michel M. Autoimmune and intravascular hemolytic anemias. In: Goldman L, Schafer ...

  13. Reduction of intracellular pH by tenidap. Involvement of cellular anion transporters in the pH change.

    Science.gov (United States)

    McNiff, P; Robinson, R P; Gabel, C A

    1995-10-26

    Tenidap [5-chloro-2,3-dihydro-3-(hydroxy-2-thienylmethylene)-2-oxo-1H- indole-1-carboxamide], a novel antirheumatic agent, produces a rapid and sustained intracellular acidification when applied to cells in culture. To investigate the mechanism by which this change in ionic homeostasis is achieved, the acidification activities of structural analogs of tenidap were determined, and the movements of [14C]tenidap into and out of cells were explored. The acidification activity of tenidap was enhanced by lowering extracellular pH, suggesting that the free acid species was required for this process. Consistent with this requirement, a non-acidic analog of tenidap did not produce a change in intracellular pH (pHi). In contrast, multihalogenated derivatives of tenidap produced greater changes in pHi than did tenidap, and one analog produced a transient acidification from which the cell recovered; this recovery, however, was blocked by an inhibitor of the Na+/H+ antiporter. Fibroblasts incubated with [14C]tenidap achieved within 5 min a level of cell-associated drug that remained constant during longer incubations. Simultaneous addition of the electrogenic ionophore valinomycin or the P-glycoprotein inhibitor 4-(3,4-dihydro-6,7-dimethoxy-2(1H)-isoquinolinyl)-N-[2-(3,4-dimethoxyphe nyl) ethyl]-6,7-dimethoxy-2-quinazolinamine (CP-100,356) caused a time- and concentration-dependent increase in the level of cell-associated [14C]tenidap; other agents tested did not promote this enhanced cellular accumulation. [14C]Tenidap accumulated by fibroblasts in the presence of CP-100,356 subsequently was released when these cells were placed in a tenidap- and CP-100,356-free medium. Importantly, several agents that are known to inhibit anion transport processes, including alpha-cyano-beta-(1-phenylindol-3-yl) acrylate, 5-nitro-2(3-phenylpropylamino)-benzoic acid, and meclofenamic acid, inhibited efflux of [14C]tenidap. In contrast, ethacrynic acid and 4,4'-diisothiocyanatostilbene-2

  14. Membrane biofouling by extracellular polymeric substances or soluble microbial products from membrane bioreactor sludge.

    Science.gov (United States)

    Ramesh, A; Lee, D J; Lai, J Y

    2007-03-01

    This study extracted the soluble microbial products and loosely bound and tightly bound extracellular polymeric substances (EPS) from suspended sludge from a membrane bioreactor, original and aerobically/anaerobically digested, and compared their fouling potentials on a microfiltration membrane. The resistance of cake layer accounts for 95-98% of the total filtration resistances when filtering the whole sludges, with anaerobically digested sludge presenting the highest resistance among the three tested sludges. The tightly bound EPS has the highest potential to foul the membrane; however, the loosely bound EPS contribute most of the filtration resistances of the whole sludges. The foulants corresponding to the irreversible fouling have chemical fingerprints similar to those from loosely bound EPS, which have a greater predilection to proteins and humic substances than to polysaccharides.

  15. Dose-response modeling : Evaluation, application, and development of procedures for benchmark dose analysis in health risk assessment of chemical substances

    OpenAIRE

    Sand, Salomon

    2005-01-01

    In this thesis, dose-response modeling and procedures for benchmark dose (BMD) analysis in health risk assessment of chemical substances have been investigated. The BMD method has been proposed as an alternative to the NOAEL (no-observedadverse- effect-level) approach in health risk assessment of non-genotoxic agents. According to the BMD concept, a dose-response model is fitted to data and the BMD is defined as the dose causing a predetermined change in response. A lowe...

  16. [Fast detection of white vinegar varieties and pH by Vis/NIR spectroscopy].

    Science.gov (United States)

    Wang, Li; Liu, Fei; He, Yong

    2008-04-01

    White vinegar is a condiment indispensable in our life, but our understanding of the white vinegar and evaluation of its quality and function has been gained through routine chemical and physical analysis. It is called for to develop more time- and cost-efficient methodologies for white vinegar detection. Visible and near infrared spectroscopy (Vis/NIR) is a nondestructive, fast and accurate technique for the measurement of chemical components based on overtone and combination bands of specific functional groups. Vis/NIR transmittance spectroscopy and chemometrics methods were utilized in classification and pH mensuration of white vinegar in the present study. First, the spectral curves of white vinegar were obtained by handheld Vis/NIR spectroradiometer, then principal component analysis (PCA) was used to process the spectral data after pretreatment. Five principal components (PCs) were selected based on accumulative reliabilities (AR), and these selected PCs would be taken as the inputs of the three-layer back-propagation artificial neural network (BP-ANN). A total of 240 white vinegar samples were divided into calibration set and validation set randomly, the calibration set had 180 samples with 60 samples of each variety, and the validation set had 60 samples with 20 samples of each variety. The BP-ANN was trained using samples in calibration set, the optimal three-layer BP-ANN model with 5 nodes in input layer, 6 nodes in hidden layer, and 2 nodes in output layer would be obtained, and the transfer function of sigmoid was used in each layer. Then, this model was used to predict the samples in the validation set. The result indicated that a 100% recognition ration was achieved with the threshold predictive error +/- 0.1, the bias between predictive value and standard value was lower than 5%. It could be concluded that PCA combined with BP-ANN was an available method for varieties recognition and pH mensuration of white vinegar based on Vis/NIR transmittance

  17. STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES : III. AN IMPROVED METHOD FOR THE ISOLATION OF THE TRANSFORMING SUBSTANCE AND ITS APPLICATION TO PNEUMOCOCCUS TYPES II, III, AND VI.

    Science.gov (United States)

    McCarty, M; Avery, O T

    1946-01-31

    1. An improved method is outlined for the isolation and purification of the pneumococcal transforming substance. This method makes use of the fact that citrate inhibits the destructive action of the enzyme, desoxyribonuclease, which is released together with the active material during lysis of the living bacterial cells. A fivefold greater yield of purified transforming agent is obtained by the present method than by the procedure previousiy described. 2. The specific transforming substance has been isolated from pneumococci of types II and VI, in addition to Type III. In each instance the biologically active material has been found to consist of desoxyribonucleic acid.

  18. Internal Active Thermal Control System (IATCS) Sodium Bicarbonate/Carbonate Buffer in an Open Aqueous Carbon Dioxide System and Corollary Electrochemical/Chemical Reactions Relative to System pH Changes

    Science.gov (United States)

    Stegman, Thomas W.; Wilson, Mark E.; Glasscock, Brad; Holt, Mike

    2014-01-01

    The International Space Station (ISS) Internal Active Thermal Control System (IATCS) experienced a number of chemical changes driven by system absorption of CO2 which altered the coolant’s pH. The natural effects of the decrease in pH from approximately 9.2 to less than 8.4 had immediate consequences on system corrosion rates and corrosion product interactions with specified coolant constituents. The alkalinity of the system was increased through the development and implementation of a carbonate/bicarbonate buffer that would increase coolant pH to 9.0 – 10.0 and maintain pH above 9.0 in the presence of ISS cabin concentrations of CO2 up to twenty times higher than ground concentrations. This paper defines how a carbonate/bicarbonate buffer works in an open carbon dioxide system and summarizes the analyses performed on the buffer for safe and effective application in the on-orbit system. The importance of the relationship between the cabin environment and the IATCS is demonstrated as the dominant factor in understanding the system chemistry and pH trends before and after addition of the carbonate/bicarbonate buffer. The paper also documents the corollary electrochemical and chemical reactions the system has experienced and the rationale for remediation of these effects with the addition of the carbonate/bicarbonate buffer.

  19. Establishment of Advanced Technique for the Prediction of pH in the Sump Solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Cheol; Kim, Sang Nyung [Kyunghee Univ., Yongin (Korea, Republic of)

    2010-05-15

    During LOCA Iodine is leaked from RCS along with the coolant in the form of CsI and finally collected in the sump. When the iodine in the sump is regasified, the material of the containment vessel is likely to be damaged, and the iodine is highly likely to be leaked to the outside due to the cracks in the containment vessel or through the vent. So it can threaten the safety of the NPP to a considerable degree. Accordingly, to prevent the regasification of the iodine inside the sump solution, it is stipulated that the pH of the sump solution should be 7.0 or greater and 8.5 or less. The pH of the sump solution is determined by the boric acid-neutralizing additive (referred to as TSP hereinafter) reaction, organic reaction, and the chemical equilibrium of fission products. Accordingly, correct pH estimation in consideration of them is necessary As the pH calculation method considering only the boric acid-TSP reaction is presently used in Korea, the results are not accurate and calculation was complicated. Accordingly, this study intends to take other compounds affecting the pH of the sump solution into consideration, and to use the free minimization, a theory of chemical equilibrium, and the Lagrange Multiplier Technique to establish a simple and accurate method of calculating the pH. The first-year study investigated the correlation of the pH-Iodine behavior and the substances affecting pH. In this year's study the program for calculating the pH of the sump solution will be established by improving the SOLGASMIX-PV code, the chemical equilibrium calculation program

  20. Chemical and geochemical study on the hot spring. Affecting factor of pH and the origin of chemical constituents in Dogo spring; Onsen no chikyu kagakuteki kosatsu. Dogo onsen no pH chi kettei inshi to kagaku seibun no kigen ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Maki, T.; Ishimaru, T.; Tagashira, K.; Ono, C. [Ehime Prefectural Inst. of Public Health, Ehime (Japan)

    1994-12-31

    Dogo Spring is a non-volcanic hot spring (not a spring that gushes up in association with live volcanic activities) and located about 10 kilometers away from the coast line. Therefore, the spring water quality is not affected by these geological environments, allowing the interactions with the mother rock to be identified relatively easily. In order to investigate the relationship between chemical constituents in the hot spring and the mother rock, a leaching test was carried out on boring-cores and representative rocks existing in Ehime Prefecture. Considerations were given on the factors in the mother rock affecting the hot spring constituents, the high pH value in Dogo Spring, and the origin of the constituents. The result indicated that pH value in the leaching solution from the boring-cores taken from Dogo Spring is higher than that in the leaching solution from representative rocks in Ehime Prefecture; it suggested that the high pH value in Dogo Spring is correlated to the gushing mother rock (Ryoke granite); it also suggested that the Dogo Spring water has about the same concentration as in the dissolved constituents in the leaching solution from the Dogo Spring boring-cores, and the dissolved constituents in the Dogo Spring water is closely related with the composing mother rock (Ryoke granite). 12 refs., 9 figs., 6 tabs.

  1. Entrapment of glucoamylase by sol-gel technique in PhTES/TEOS hybrid matrixes

    Directory of Open Access Journals (Sweden)

    B. Vlad-Oros

    2007-12-01

    Full Text Available Mesoporous silica particles were prepared by the sol-gel method from different alkoxysilane precursors and used as a host matrix for encapsulation of glucoamylase, an enzyme widely used in fermentative industry. The aim was to investigate the physico-chemical properties of the different silica powders and their effect on the enzyme kinetics. The encapsulated enzymes followed Michaelis-Menten kinetics. The Michaelis constant (KM and the maximum rate of starch hydrolysis reaction (Vmax were calculated according to the Michaelis-Menten and Lineweaver-Burke plots. The values of the Michaelis constant (KM of the encapsulated enzymes were higher than those of the free enzyme. The temperature and pH infl uence on the activity of free and immobilized glucoamylase were also compared. The results of this study show that the enzymes immobilized in organic/inorganic hybrid silica matrixes (obtained by the sol-gel method, allowing the entrapped glucoamylase to retain its biological activity, are suitable for many different applications, (medicinal, clinical, analytical.

  2. Preparation of amorphous calcium-magnesium phosphates at pH 7 and characterization by x-ray absorption and fourier transform infrared spectroscopy

    NARCIS (Netherlands)

    Holt, C.; Kemenade, M.J.J.M. van; Harries, J.E.; Nelson, L.S.; Bailey, R.T.; Hukins, D.W.L.; Hasnain, S.S.; Bruyn, P.L. de

    1988-01-01

    Amorphous calcium-magnesium phosphates were prepared by precipitation from moderately supersaturated aqueous solutions at pH 7. Chemical analysis of the samples by ion chromatography showed that up to about 50% of the phosphate ions were protonated, the proportion increasing with the magnesium to ca

  3. Rule-Based Classification of Chemical Structures by Scaffold.

    Science.gov (United States)

    Schuffenhauer, Ansgar; Varin, Thibault

    2011-08-01

    Databases for small organic chemical molecules usually contain millions of structures. The screening decks of pharmaceutical companies contain more than a million of structures. Nevertheless chemical substructure searching in these databases can be performed interactively in seconds. Because of this nobody has really missed structural classification of these databases for the purpose of finding data for individual chemical substructures. However, a full deck high-throughput screen produces also activity data for more than a million of substances. How can this amount of data be analyzed? Which are the active scaffolds identified by an assays? To answer such questions systematic classifications of molecules by scaffolds are needed. In this review it is described how molecules can be hierarchically classified by their scaffolds. It is explained how such classifications can be used to identify active scaffolds in an HTS data set. Once active classes are identified, they need to be visualized in the context of related scaffolds in order to understand SAR. Consequently such visualizations are another topic of this review. In addition scaffold based diversity measures are discussed and an outlook is given about the potential impact of structural classifications on a chemically aware semantic web.

  4. Denitrification at pH 4 by a soil-derived Rhodanobacter-dominated community.

    Science.gov (United States)

    van den Heuvel, R N; van der Biezen, E; Jetten, M S M; Hefting, M M; Kartal, B

    2010-12-01

    Soil denitrification is a major source of nitrous oxide emission that causes ozone depletion and global warming. Low soil pH influences the relative amount of N₂O produced and consumed by denitrification. Furthermore, denitrification is strongly inhibited in pure cultures of denitrifying microorganisms below pH 5. Soils, however, have been shown to denitrify at pH values as low as pH 3. Here we used a continuous bioreactor to investigate the possibility of significant denitrification at low pH under controlled conditions with soil microorganisms and naturally available electron donors. Significant NO₃⁻ and N₂O reduction were observed for 3 months without the addition of any external electron donor. Batch incubations with the enriched biomass showed that low pH as well as low electron donor availability promoted the relative abundance of N₂O as denitrification end-product. Molecular analysis of the enriched biomass revealed that a Rhodanobacter-like bacterium dominated the community in 16S rRNA gene libraries as well as in FISH microscopy during the highest denitrification activity in the reactor. We conclude that denitrification at pH 4 with natural electron donors is possible and that a Rhodanobacter species may be one of the microorganisms involved in acidic denitrification in soils.

  5. Influence of pH on inhibition of Streptococcus mutans by Streptococcus oligofermentans.

    Science.gov (United States)

    Liu, Ying; Chu, Lei; Wu, Fei; Guo, Lili; Li, Mengci; Wang, Yinghui; Wu, Ligeng

    2014-02-01

    Streptococcus oligofermentans is a novel strain of oral streptococcus that can specifically inhibit the growth of Streptococcus mutans. The aims of this study were to assess the growth of S. oligofermentans and the ability of S. oligofermentans to inhibit growth of Streptococcus mutans at different pH values. Growth inhibition was investigated in vitro using an interspecies competition assay. The 4-aminoantipyine method was used to measure the initial production rate and the total yield of hydrogen peroxide in S. oligofermentans. S. oligofermentans grew best at pH 7.0 and showed the most pronounced inhibitory effect when it was inoculated earlier than S. mutans. In terms of the total yield and the initial production rate of hydrogen peroxide by S. oligofermentans, the effects of the different culture pH values were as follows: pH 7.0 > 6.5 > 6.0 > 7.5 > 5.5 = 8.0 (i.e. there was no significant difference between pH 5.5 and pH 8.0). Environmental pH and the sequence of inoculation significantly affected the ability of S. oligofermentans to inhibit the growth of S. mutans. The degree of inhibition may be attributed to the amount of hydrogen peroxide produced.

  6. Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols

    NARCIS (Netherlands)

    Abzac, D' P.; Bordas, F.; Hullebusch, E.; Lens, P.N.L.; Guibaud, G.

    2010-01-01

    The characteristics of the extracellular polymeric substances (EPS) extracted with nine different extraction protocols from four different types of anaerobic granular sludge were studied. The efficiency of four physical (sonication, heating, cationic exchange resin (CER), and CER associated with son

  7. A Cytogenetic Footprint for Mammary Carcinomas Induced by PhIP in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Christian, A T

    2001-04-01

    PhIP (2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine), a mutagen/carcinogen belonging to the class of heterocyclic amines (HCAs) found in cooked meats, is a mammary gland carcinogen in rats and has been implicated in the etiology of certain human cancers including breast cancer. To gain insight into the genomic alterations associated with PhIP-induced mammary gland carcinogenesis, we used comparative genomic hybridization (CGH) to examine chromosomal abnormalities in rat mammary carcinomas induced by PhIP, and for comparison, by DMBA (7,12-dimethylbenz[a]anthracene), a potent experimental mammary carcinogen. There was a consistent and characteristic pattern of chromosome-region loss in PhIP-induced carcinomas that clearly distinguished them from carcinomas induced by DMBA.

  8. Evidence for production of a bacteriocin-like substance by Staphylococcus pseudintermedius, inhibitory to Staphylococcus aureus from foods.

    Science.gov (United States)

    Pinto, Taiz Siqueira; de Oliveira, Cybelle Pereira; da Costa, Ana Carolina Vieira; Lima, Catiana Oliveira; Barreto, Humberto Medeiros; de Souza, Evandro Leite; Siqueira-Junior, José Pinto

    2013-01-01

    This study assessed the production of a bacteriocin-like substance by Staphylococcus pseudintermedius S28, and evaluates its inhibitory effect against isolates of S. aureus from foods. All indicator isolates were sensitive to the substance produced from S. pseudintermedius S28, showing growth inhibition zones ranging from 14.2 to 28.3 mm. The inhibitory substance has no effect against the producer strain. The inhibitory substance was affected by proteolytic enzymes, while glycolytic and lipolytic enzymes had no effect, suggesting that the active substance could be considered as a bacteriocin-like substance. From these results, S. pseudintermedius S28 could be an interesting producer of a bacteriocin-like substance capable of strongly inhibiting S. aureus.

  9. Influence of bath PH value on microstructure and corrosion resistance of phosphate chemical conversion coating on sintered Nd-Fe-B permanent magnets

    Science.gov (United States)

    Ding, Xia; Xue, Long-fei; Wang, Xiu-chun; Ding, Kai-hong; Cui, Sheng-li; Sun, Yong-cong; Li, Mu-sen

    2016-10-01

    The effect of bath PH value on formation, microstructure and corrosion resistance of the phosphate chemical conversion (PCC) coatings as well as the effect on the magnetic property of the magnets is investigated in this paper. The results show that the coating mass and thickness increase with the decrease of the bath PH value. Scanning electron microscopy observation demonstrates that the PCC coatings are in a blocky structure with different grain size. Transmission electron microscope and X-ray diffractometer tests reveal the coatings are polycomponent and are mainly composed of neodymium phosphate hydrate and praseodymium phosphate hydrate. The electrochemical analysis and static immersion corrosion test show the corrosion resistance of the PCC coatings prepared at bath PH value of 0.52 is worst. Afterwards the corrosion resistance increases first and then decreases with the increasing of the bath PH values. The magnetic properties of all the samples with PCC treatment are decreased. The biggest loss is occurred when the bath PH value is 0.52. Taken together, the optimum PH range of 1.00-1.50 for the phosphate solution has been determined.

  10. Ph3CCOOSnPh3.Ph3PO AND Ph3CCOOSnPh3.Ph3AsO: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    ABDOU MBAYE

    2014-08-01

    Full Text Available The mixture of ethanolic solutions of Ph3CCOOSnPh3 and Ph3PO or Ph3AsO gives Ph3CCOOSnPh3.Ph3PO and Ph3CCOOSnPh3.Ph3AsO adducts which have been characterized by infrared spectroscopy. A discrete structure is suggested for both, the environment around the tin centre being trigonal bipyramidal, the triphenylacetate anion behaving as a mondentate ligand.

  11. Water quality improvement of a lagoon containing mixed chemical industrial wastewater by micro-electrolysis-contact oxidization

    Institute of Scientific and Technical Information of China (English)

    Ya-fei ZHOU; Mao LIU; Qiong WU

    2011-01-01

    A lagoon in the New Binhai District, a high-speed developing area, Tianjin, China, has long been receiving the mixed chemical industrial wastewater from a chemical industrial park. This lagoon contained complex hazardous substances such as heavy metals and accumulative pollutants which stayed over time with a poor biodegradability. According to the characteristics of wastewater in the lagoon, the micro-electrolysis process was applied to improve the biodegradability before the bioprocess treatment. By the orthogonal experimental study of main factors influencing the efficiency of the treatment method, the best control parameters were obtained, including pH=2.0, a volume ratio of Fe and reaction wastewater of 0.03750, a volume ratio of Fe and the granular activated carbon (GAC) of 2.0, a mixing speed of 200 r/min, and a hydraulic retention time (HRT) of 1.5 h. In the meantime, the removal rate of chemical oxygen demand (COD) was up to 64.6%, and NH4-N and Pb in the influent were partly removed. After the micro-electrolysis process, the ratio of biochemical oxygen demand (BOD) to COD (B/C ratio) was greater than 0.6, thus providing a favorable basis for bioprocess treatment.

  12. Influence of impregnation by inorganic substances on the yield of pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Shevkoplyas, V.N.; Saranchuk, V.I. [AN Ukrainskoj SSR, Donetsk (Ukraine). Inst. Fiziko-Organicheskoj Khimii i Uglekhimii

    1998-09-01

    In papers was shown that fossil coals impregnation by aqueous solution of inorganic substances with a subsequent pyrolysis leads to the rise of the rate and depth of its organic mass destruction into liquid and gaseous products. This is, apperently, conditioned by changes in coals structure already on the stage of treatment. But, there are few papers that study an activating effect of inorganic reactants upon natural coals structure and their behaviour at pyrolysis. One of the methods which allows to judge structural transformation in coals at their impregnation by inorganic substances is an X-ray analysis. (orig.)

  13. Effects of pH and temperature on dimerization rate of glycine: Evaluation of favorable environmental conditions for chemical evolution of life

    Science.gov (United States)

    Sakata, Kasumi; Kitadai, Norio; Yokoyama, Tadashi

    2010-12-01

    To evaluate favorable environmental conditions for the chemical evolution of life, we studied the effects of pH and temperature on the dimerization rate of glycine (Gly: NH 2-CH 2-COOH), one of the simplest amino acids. Gly dimerizes to form glycylglycine (GlyGly), and GlyGly further reacts to form diketopiperazine (DKP). Gly solutions with pH ranging from 3.1 to 10.9 were heated for 1-14 days at 140 °C, and changes in concentrations of Gly, GlyGly, and DKP were evaluated. At pH 9.8, the experiments were conducted at 120, 140, 160, and 180 °C. The dimerization rate of Gly was nearly constant at pH 3-7 and increased with increasing pH from 7 to 9.8 and then decreased with further increases in pH. To elucidate the reason for this pH dependency, we evaluated the role of the three dissociation states of Gly (cationic state: Gly +, zwitterionic state: Gly ±, and anionic state: Gly -). For pH >6, the dominant forms are Gly ± and Gly -, and the molar fraction of Gly ± decreases and that of Gly - increases with increasing pH. The dimerization rate was determined for each dissociation state. The reaction between Gly ± and Gly - was found to be the fastest; the rate constant of the reaction between Gly ± and Gly - was 10 times the size of that between Gly - and Gly - and 98 times that between Gly ± and Gly ±. The dimerization rate became greatest at pH 9.8 because the molar fractions of Gly ± and Gly - are approximately equal at this pH. The dimerization rate increased with temperature, and an activation energy of 88 kJ mol -1 was obtained. Based on these results and previous reports on the stability of amino acids under hydrothermal conditions, we determined that Gly dimerizes most efficiently under alkaline pH (˜9.8) at about 150 °C.

  14. Effect of pH on the structure and drug release profiles of layer-by-layer assembled films containing polyelectrolyte, micelles, and graphene oxide

    Science.gov (United States)

    Han, Uiyoung; Seo, Younghye; Hong, Jinkee

    2016-04-01

    Layer by layer (lbl) assembled multilayer thin films are used in drug delivery systems with attractive advantages such as unlimited selection of building blocks and free modification of the film structure. In this paper, we report the fundamental properties of lbl films constructed from different substances such as PS-b-PAA amphiphilic block copolymer micelles (BCM) as nano-sized drug vehicles, 2D-shaped graphene oxide (GO), and branched polyethylenimine (bPEI). These films were fabricated by successive lbl assembly as a result of electrostatic interactions between the carboxyl group of BCM and amine group of functionalized GO or bPEI under various pH conditions. We also compared the thickness, roughness, morphology and degree of adsorption of the (bPEI/BCM) films to those in the (GO/BCM) films. The results showed significant difference because of the distinct pH dependence of each material. In addition, drug release rates of the GO/BCM film were more rapid those of the (bPEI/BCM) film in pH 7.4 and pH 2 PBS buffer solutions. In (bPEI/BCM/GO/BCM) film, the inserted GO layers into bPEI/BCM multilayer induced rapid drug release. We believe that these materials & pH dependent film properties allow developments in the control of coating techniques for biological and biomedical applications.

  15. Online preconcentration of arsenic compounds by dynamic pH junction-capillary electrophoresis.

    Science.gov (United States)

    Jaafar, Jafariah; Irwan, Zildawarni; Ahamad, Rahmalan; Terabe, Shigeru; Ikegami, Tohru; Tanaka, Nobuo

    2007-02-01

    An online preconcentration technique by dynamic pH junction was studied to improve the detection limit for anionic arsenic compounds by CE. The main target compound is roxarsone, or 3-nitro-4-hydroxyphenylarsonic acid, which is being used as an animal feed additive. The other inorganic and organoarsenic compounds studied are the possible biotransformation products of roxarsone. The arsenic species were separated by a dynamic pH junction in a fused-silica capillary using 15 mM phosphate buffer (pH 10.6) as the BGE and 15 mM acetic acid as the sample matrix. CE with UV detection was monitored at a wavelength of 192 nm. The influence of buffer pH and concentration on dynamic pH junction were investigated. The arsenic species focusing resulted in LOD improvement by a factor of 100-800. The combined use of C18 and anion exchange SPE and dynamic pH junction to CE analysis of chicken litter and soils helps to increase the detection sensitivity. Recoveries of spiked samples ranged between 70 and 72%.

  16. Biofilm biomass disruption by natural substances with potential for endodontic use

    Directory of Open Access Journals (Sweden)

    Flávio Rodrigues Ferreira Alves

    2013-02-01

    Full Text Available This study evaluated the in vitro effects of four natural substances on the biomass of bacterial biofilms to assess their potential use as root canal irrigants. The following substances and their combinations were tested: 0.2% farnesol; 5% xylitol; 20% xylitol; 0.2% farnesol and 5% xylitol; 0.2% farnesol, 5% xylitol, and 0.1% lactoferrin; 5% xylitol and 0.1% lactoferrin; and 20 mM salicylic acid. The crystal violet assay was used to evaluate the effects of these substances on the biomass of biofilms formed by Enterococcus faecalis and Staphylococcus epidermidis. All substances except for 20 mM salicylic acid and 20% xylitol reduced biofilm mass when compared to controls. The combination of farnesol and xylitol was the most effective agent against E. faecalis ATCC 29212 (p < 0.05. Farnesol combined with xylitol and lactoferrin was the most effective against biofilms of the endodontic strain of E. faecalis MB35 (p < 0.05. Similarly, combinations involving farnesol, xylitol, and lactoferrin reduced the biomass of S. epidermidis biofilms. In general, farnesol, xylitol, and lactoferrin or farnesol and xylitol reduced biofilm biomass most effectively. Therefore, it was concluded that combinations of antibiofilm substances have potential use in endodontic treatment to combat biofilms.

  17. Initiation of lipid autoxidation by ABAP at pH 4-10 in SDS micelles.

    Science.gov (United States)

    Musialik, Malgorzata; Kita, Marcin; Litwinienko, Grzegorz

    2008-02-21

    The rates of radical generation, R(i), by two water soluble initiators: 2,2'-azobis(2-methylpropionamidine) and 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide], and the lipid soluble 2,2'-azobisisobutyronitrile were measured in an SDS micellar system over a pH range of 4-10. Enhanced values of R(i) at low pH are attributed to Coulombic repulsion of protonated radicals.

  18. Sensitization of Listeria monocytogenes to Low pH, Organic Acids, and Osmotic Stress by Ethanol

    Science.gov (United States)

    Barker, Clive; Park, Simon F.

    2001-01-01

    The killing of Listeria monocytogenes following exposure to low pH, organic acids, and osmotic stress was enhanced by the addition of 5% (vol/vol) ethanol. At pH 3, for example, the presence of this agent stimulated killing by more than 3 log units in 40 min of exposure. The rate of cell death at pH 3.0 was dependent on the concentration of ethanol. Thus, while the presence 10% (vol/vol) ethanol at pH 3.0 stimulated killing by more than 3 log units in just 5 min, addition of 1.25% (vol/vol) ethanol resulted in less than 1 log unit of killing in 10 min. The ability of 5% (vol/vol) ethanol to stimulate killing at low pH and at elevated osmolarity was also dependent on the amplitude of the imposed stress, and an increase in the pH from 3.0 to 4.0 or a decrease in the sodium chloride concentration from 25 to 2.5% led to a marked reduction in the effectiveness of 5% (vol/vol) ethanol as an augmentative agent. Combinations of organic acids, low pH, and ethanol proved to be particularly effective bactericidal treatments; the most potent combination was pH 3.0, 50 mM formate, and 5 % (vol/vol) ethanol, which resulted in 5 log units of killing in just 4 min. Ethanol-enhanced killing correlated with damage to the bacterial cytoplasmic membrane. PMID:11282610

  19. Histidine-proline-rich glycoprotein as a plasma pH sensor. Modulation of its interaction with glycosaminoglycans by ph and metals.

    Science.gov (United States)

    Borza, D B; Morgan, W T

    1998-03-06

    The middle domain of plasma histidine-proline-rich glycoprotein (HPRG) contains unusual tandem pentapeptide repeats (consensus G(H/P)(H/P)PH) and binds heparin and transition metals. Unlike other proteins that interact with heparin via lysine or arginine residues, HPRG relies exclusively on histidine residues for this interaction. To assess the consequences of this unusual requirement, we have studied the interaction between human plasma HPRG and immobilized glycosaminoglycans (GAGs) using resonant mirror biosensor techniques. HPRG binding to immobilized heparin was strikingly pH-sensitive, producing a titration curve with a midpoint at pH 6.8. There was little binding of HPRG to heparin at physiological pH in the absence of metals, but the interaction was promoted by nanomolar concentrations of free zinc and copper, and its pH dependence was shifted toward alkaline pH by zinc. The affinity of HPRG for various GAGs measured in a competition assay decreased in the following order: heparin > dermatan sulfate > heparan sulfate > chondroitin sulfate A. Binding of HPRG to immobilized dermatan sulfate had a midpoint at pH 6.5, was less influenced by zinc, and exhibited cooperativity. Importantly, plasminogen interacted specifically with GAG-bound HPRG. We propose that HPRG is a physiological pH sensor, interacting with negatively charged GAGs on cell surfaces only when it acquires a net positive charge by protonation and/or metal binding. This provides a mechanism to regulate the function of HPRG (the local pH) and rationalizes the role of its unique, conserved histidine-proline-rich domain. Thus, under conditions of local acidosis (e.g. ischemia or hypoxia), HPRG can co-immobilize plasminogen at the cell surface as well as compete for heparin with other proteins such as antithrombin.

  20. Effective flocculation of target microalgae with self-flocculating microalgae induced by pH decrease.

    Science.gov (United States)

    Liu, Jiexia; Tao, Yujun; Wu, Jinheng; Zhu, Yi; Gao, Baoyan; Tang, Yu; Li, Aifen; Zhang, Chengwu; Zhang, Yuanming

    2014-09-01

    A flocculation method was developed to harvest target microalgae with self-flocculating microalgae induced by decreasing pH to just below isoelectric point. The flocculation efficiencies of target microalgae were much higher than those flocculated only via pH decrease. The mechanism could be that negatively charged self-flocculating microalgal cells became positively charged during pH decrease, subsequently attracted negatively charged target microalgae cells to form flocs and settled down due to gravity. Microalgal biomass concentration and released polysaccharide (RPS) from target microalgae influenced flocculation efficiencies, while multivalent metal ions in growth medium could not. Furthermore, neutralizing pH and then supplementing nutrients allowed flocculated medium to be recycled for cultivation. Finally, Spearman's Rank Correlation Coefficients (Rs) between flocculation efficiency and key factors were also investigated. These results suggest that this method is effective, simple to operate and allows the reuse of flocculated medium, thereby contributing to the economic production from microalgae to biodiesel.

  1. Analytical fractionation of aquatic humic substances and their metal species by means of multistage ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Aster, B. [Institute for Spectrochemistry and Applied Spectroscopy, Postfach 10 1352, D-44139 Dortmund (Germany); Burba, P. [Institute for Spectrochemistry and Applied Spectroscopy, Postfach 10 1352, D-44139 Dortmund (Germany); Broekaert, J.A.C. [University of Dortmund, D-44227 Dortmund (Germany)

    1996-03-01

    The molecular-size fractionation of aquatic humic substances (HS) and their metal species by means of a novel sequential-stage ultrafiltration (UF) device equipped with five appropriate ultramembranes (1, 5, 10, 50 and 100 kD) is described. First of all, the concentration dynamics of macromolecules, particulary HS, during five-stage UF and its subsequent washing step has been modelled. Based on these results, the fractionation of aquatic HS (from ground and bog water) by means of multistage UF has been optimized for an analytical scale (10 ml sample, 1 mg/ml HS, 10 ml washing solution, pH 6.0). The molecular size-distribution of selected aquatic HS (BOC 1/2 from the ``DFG-Versuchsfeld Bocholt``, VM 5 from ``Venner Moor``, Germany) studied by five-stage UF exhibited strong systematic influences of the procedure used for their isolation. The molecular-size distribution of HS obtained by on-line UF and gel permeation chromatography (GPC) showed a satisfactory agreement in the range 1-50 kD. Moreover, when interrupting multistage UF for > 48 h a slow transformation in the HS samples has been found as gradually additional HS fractions of < 1 kD have been formed. Besides unloaded HS molecules, the molecular-size distribution of freshly formed metal species of HS (1.0 mg metal/g HS of Al(III), Cd(II), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), Zn(II), each) has been characterized by multistage UF as a function of pH-value, degree of loading and complexation time. Metal determinations as carried out by flame AAS, showed that considerable metal fractions in HS especially are present in molecules > 50 kD, which seemed to be rather acid-inert. With complexation times of < 2 days a transient shift of the molecular size distribution of both HS and their metal species (e.g., Al(III), Fe(III)) to higher values (> 10 kD) has been found. (orig.). With 9 figs., 2 tabs.

  2. Role of pH on antioxidants production by Spirulina (Arthrospira) platensis.

    Science.gov (United States)

    Ismaiel, Mostafa Mahmoud Sami; El-Ayouty, Yassin Mahmoud; Piercey-Normore, Michele

    2016-01-01

    Algae can tolerate a broad range of growing conditions but extreme conditions may lead to the generation of highly dangerous reactive oxygen species (ROS), which may cause the deterioration of cell metabolism and damage cellular components. The antioxidants produced by algae alleviate the harmful effects of ROS. While the enhancement of antioxidant production in blue green algae under stress has been reported, the antioxidant response to changes in pH levels requires further investigation. This study presents the effect of pH changes on the antioxidant activity and productivity of the blue green alga Spirulina (Arthrospira) platensis. The algal dry weight (DW) was greatly enhanced at pH 9.0. The highest content of chlorophyll a and carotenoids (10.6 and 2.4mg/g DW, respectively) was recorded at pH 8.5. The highest phenolic content (12.1mg gallic acid equivalent (GAE)/g DW) was recorded at pH 9.5. The maximum production of total phycobiliprotein (159mg/g DW) was obtained at pH 9.0. The antioxidant activities of radical scavenging activity, reducing power and chelating activity were highest at pH 9.0 with an increase of 567, 250 and 206% compared to the positive control, respectively. Variation in the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) was also reported. While the high alkaline pH may favor the overproduction of antioxidants, normal cell metabolism and membrane function is unaffected, as shown by growth and chlorophyll content, which suggests that these conditions are suitable for further studies on the harvest of antioxidants from S. platensis.

  3. Role of pH on antioxidants production by Spirulina (Arthrospira platensis

    Directory of Open Access Journals (Sweden)

    Mostafa Mahmoud Sami Ismaiel

    2016-06-01

    Full Text Available Abstract Algae can tolerate a broad range of growing conditions but extreme conditions may lead to the generation of highly dangerous reactive oxygen species (ROS, which may cause the deterioration of cell metabolism and damage cellular components. The antioxidants produced by algae alleviate the harmful effects of ROS. While the enhancement of antioxidant production in blue green algae under stress has been reported, the antioxidant response to changes in pH levels requires further investigation. This study presents the effect of pH changes on the antioxidant activity and productivity of the blue green alga Spirulina (Arthrospira platensis. The algal dry weight (DW was greatly enhanced at pH 9.0. The highest content of chlorophyll a and carotenoids (10.6 and 2.4 mg/g DW, respectively was recorded at pH 8.5. The highest phenolic content (12.1 mg gallic acid equivalent (GAE/g DW was recorded at pH 9.5. The maximum production of total phycobiliprotein (159 mg/g DW was obtained at pH 9.0. The antioxidant activities of radical scavenging activity, reducing power and chelating activity were highest at pH 9.0 with an increase of 567, 250 and 206% compared to the positive control, respectively. Variation in the activity of the antioxidant enzymes superoxide dismutase (SOD, catalase (CAT and peroxidase (POD was also reported. While the high alkaline pH may favor the overproduction of antioxidants, normal cell metabolism and membrane function is unaffected, as shown by growth and chlorophyll content, which suggests that these conditions are suitable for further studies on the harvest of antioxidants from S. platensis.

  4. Injectable pectin hydrogels produced by internal gelation: pH dependence of gelling and rheological properties.

    Science.gov (United States)

    Moreira, Helena R; Munarin, Fabiola; Gentilini, Roberta; Visai, Livia; Granja, Pedro L; Tanzi, Maria Cristina; Petrini, Paola

    2014-03-15

    The production of injectable pectin hydrogels by internal gelation with calcium carbonate is proposed. The pH of pectin was increased with NaOH or NaHCO3 to reach physiological values. The determination of the equivalence point provided evidence that the pH can be more precisely modulated with NaHCO3 than with NaOH. Degradation and inability to gel was observed for pectin solutions with pH 5.35 or higher. Therefore, pectin solutions with pH values varying from 3.2 (native pH) to 3.8 were chosen to produce the gels. The increase of the pH for the crosslinked hydrogels, as well as the reduction of the gelling time and their thickening, was dependent upon the amount of calcium carbonate, as confirmed by rheology. Hydrogel extracts were not cytotoxic for L-929 fibroblasts. On the overall, the investigated formulations represent interesting injectable systems providing an adequate microenvironment for cell, drug or bioactive molecules delivery.

  5. Effect of initial pH in levan production by Zymomonas mobilis immobilized in sodium alginate

    Directory of Open Access Journals (Sweden)

    Vidiany Aparecida Queiroz Santos

    2014-04-01

    Full Text Available Zymomonas mobilis was immobilized using a cell suspension fixed to 8.6 x 107 CFU mL-1 by spectrophotometry. This biomass was suspended in sodium alginate solution (3% that was dropped with a hypodermic syringe into 0.2 M calcium chloride solution. Was test two initial pH of fermentation medium (4 and 5 and different sucrose concentrations 15, 20, 25, 30 and 35% at 30˚C, without stirring for 24, 48, 72 and 96 hours. The levan production to pH 4 was high in sucrose 25% for 24 (16.51 g L-1 and 48 (15.31 g L-1 hours. The best values obtained to pH 5 was in sucrose 35% during 48 (22.39 g L-1 and 96 (23.5 g L-1 hours, respectively. The maximum levan yield was 40.8% and 22.47% in sucrose 15% to pH 4 and 5, respectively. Substrate consumption to pH 4 was bigger in sucrose 15 (56.4% and 20% (59.4% and to pH 5 was in 25 (68.85% and 35% (64.64%. In relation to immobilization efficiency, Zymomonas mobilis showed high adhesion and colonization in support, indicated by cell growth increased from 107 to 109 CFU mL-1 during fermentation time.

  6. Prenatal susceptibility to carcinogenesis by xenobiotic substances including vinyl chloride.

    OpenAIRE

    Rice, J M

    1981-01-01

    The carcinogenicity of vinyl chloride for experimental animals when administered transplacentally is reviewed in comparison with known transplacental carcinogens, including those that, like vinyl chloride, are dependent on enzyme-mediated metabolic conversion to a reactive intermediate in maternal or fetal tissues. Vinyl chloride is converted by mixed-function oxidases to the reactive metabolite chlorooxirane, the carcinogenicity of which is also reviewed. Vinyl chloride is unequivocally a tr...

  7. Non-monotonic swelling of surface grafted hydrogels induced by pH and/or salt concentration

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Gabriel S. [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, La Plata (Argentina); Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208 (United States); Olvera de la Cruz, Monica [Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Szleifer, I., E-mail: igal@northwestern.edu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-09-28

    We use a molecular theory to study the thermodynamics of a weak-polyacid hydrogel film that is chemically grafted to a solid surface. We investigate the response of the material to changes in the pH and salt concentration of the buffer solution. Our results show that the pH-triggered swelling of the hydrogel film has a non-monotonic dependence on the acidity of the bath solution. At most salt concentrations, the thickness of the hydrogel film presents a maximum when the pH of the solution is increased from acidic values. The quantitative details of such swelling behavior, which is not observed when the film is physically deposited on the surface, depend on the molecular architecture of the polymer network. This swelling-deswelling transition is the consequence of the complex interplay between the chemical free energy (acid-base equilibrium), the electrostatic repulsions between charged monomers, which are both modulated by the absorption of ions, and the ability of the polymer network to regulate charge and control its volume (molecular organization). In the absence of such competition, for example, for high salt concentrations, the film swells monotonically with increasing pH. A deswelling-swelling transition is similarly predicted as a function of the salt concentration at intermediate pH values. This reentrant behavior, which is due to the coupling between charge regulation and the two opposing effects triggered by salt concentration (screening electrostatic interactions and charging/discharging the acid groups), is similar to that found in end-grafted weak polyelectrolyte layers. Understanding how to control the response of the material to different stimuli, in terms of its molecular structure and local chemical composition, can help the targeted design of applications with extended functionality. We describe the response of the material to an applied pressure and an electric potential. We present profiles that outline the local chemical composition of the

  8. Report on achievements in fiscal 1999 on the project for research and development of an intellectual base creating and utilizing technology. Research and development of standard substances related to internal secretion disturbing chemical substances (researches on preservation stability and the valuing methods related to pure substance standard substances, mixed standard substances and composition type standard substances); 1999 nendo chiteki kiban sosei riyo gijutsu kenkyu kaihatsu seika hokokusho. Naibunpi kakuran kagaku busshitsu kanren hyojun busshitsu no kenkyu kaihatsu (junbusshitsu hyojun, kongo hyojun oyobi soseigata hyojun busshitsu ni kakawaru hozon anteisei, nezuke hoho nado ni tsuite no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This paper describes the achievements in fiscal 1999 on researching and developing standard substances related to internal secretion disturbing chemical substances. Environmental contamination due to environmental hormones has a large number of scientifically unclear points. These points are related to the basic conditions for the existence of living organisms, whereas serious impacts transcending the generations are feared. In addition, the environmental hormones have been observed in water quality, water bottom quality, and living environments for aquatic animals. Standardization in technologies to measure them, and arrangement of standard substances are demanded strongly. Based on these circumstances, evaluations were given on the following matters: determination of purity of the reference substances with regard to the standard solutions of di-2-ethyl hexyl phthalate, di-n-butyl phthalate, and diethyl phthalate among the standard substances required for the measurement, establishment of methods for measuring impurities and preparing the standard solutions, establishment of the methods to measure concentrations of the standard solutions, and the preservation stability of the standard solutions. As a result, standard solutions with accurate concentrations and excellent stability were developed. In addition, development was performed on the composition type standard substance for which a certified value was given to PCB in soil. (NEDO)

  9. Improvement of the optimum pH of Aspergillus niger xylanase towards an alkaline pH by site-directed mutagenesis.

    Science.gov (United States)

    Li, Fei; Xie, Jingcong; Zhang, Xuesong; Zhao, Linguo

    2015-01-01

    In an attempt to shift the optimal pH of the xylanase B (XynB) from Aspergillus niger towards alkalinity, target mutation sites were selected by alignment between Aspergillus niger xylanase B and other xylanases that have alkalophilic pH optima that highlight charged residues in the eight-residues-longer loop in the alkalophilic xylanase. Multiple engineered XynB mutants were created by site-directed mutagenesis with substitutions Q164K and Q164K+D117N. The variant XynB-117 had the highest optimum pH (at 5.5), which corresponded to a basic 0.5 pH unit shift when compared with the wild-type enzyme. However, the optimal pH of the XynB- 164 mutation was not changed, similar to the wild type. These results suggest that the residues at positions 164 and 117 in the eight-residues-longer loop and the cleft's edge are important in determining the pH optima of XynB from Aspergillus niger.

  10. Simultaneous separation and determination of process-related substances and degradation products of venlafaxine by reversed-phase HPLC.

    Science.gov (United States)

    Nageswara Rao, R; Narasa Raju, A

    2006-12-01

    A simple and rapid gradient RP HPLC method for simultaneous separation and determination of venlafaxine and its related substances in bulk drugs and pharmaceutical formulations has been developed. As many as four process impurities and one degradation product of venlafaxine have been separated on a Kromasil KR100-5C18 (4.6 mm x 250 mm; particle size 5 microm) column with gradient elution using 0.3% diethylamine buffer (pH 3.0) and ACN/methanol (90:10 v/v) as a mobile phase. The column was maintained at 40 degrees C and the eluents were monitored with photo diode array detection at 225 nm. The chromatographic behaviour of all the compounds was examined under variable compositions of different solvents, temperatures, buffer concentrations and pH. The method was validated in terms of accuracy, precision and linearity as per ICH guidelines. The inter- and intraday assay precision was method was successfully applied to the analysis of commercial formulations and the recoveries of venlafaxine were in the range of 99.32-100.67 with %RSD method could be of use not only for rapid and routine evaluation of the quality of venlafaxine in bulk drug manufacturing units but also for the detection of its impurities in pharmaceutical formulations. Forced degradation of venlafaxine was carried out under thermal, photo, acidic, basic and peroxide conditions and the acid degradation products were characterized by ESI-MS/MS, 1H NMR and FT-IR spectral data.

  11. Metal accumulation by stream bryophytes, related to chemical speciation.

    Science.gov (United States)

    Tipping, E; Vincent, C D; Lawlor, A J; Lofts, S

    2008-12-01

    Metal accumulation by aquatic bryophytes was investigated using data for headwater streams of differing chemistry. The Windermere Humic Aqueous Model (WHAM) was applied to calculate chemical speciation, including competitive proton and metal interactions with external binding sites on the plants. The speciation modelling approach gives smaller deviations between observed and predicted bryophyte contents of Cu, Zn, Cd and Pb than regressions based on total filtered metal concentrations. If all four metals, and Ni, are considered together, the WHAM predictions are superior at the 1% level. Optimised constants for bryophyte binding by the trace metals are similar to those for humic substances and simple carboxylate ligands. Bryophyte contents of Na, Mg and Ca are approximately explained by binding at external sites, while most of the K is intracellular. Oxide phases account for some of the Al, and most of the Mn, Fe and Co.

  12. Control of precipitation patterns in two-dimensions by pH field

    Science.gov (United States)

    Molnár, Ferenc, Jr.; Roszol, László; Volford, András; Lagzi, István

    2011-02-01

    Systematic deformation of a moving precipitation front into a 2D stationary profile by a pH field generated by acidic and basic reservoirs and its design procedure are discussed. Results indicate that in some pattern formation systems, where the pattern emerges by a precipitation reaction of metal and hydroxide ions, phenomena can be governed by a complex pH field. The pattern formation can be described and discussed by taking into account acid-base chemistry. Our approach, which relies on solving either time-dependent reaction-diffusion equations or derived Laplace's equation, provides a reasonable description of the system.

  13. α--AMYLASES OF Aspergillus flavus var. oryzae AND Bacillus subtilis: THE SUBSTRATE SPECIFICITY AND RESISTANCE TO A NUMBER OF CHEMICALLY ACTIVE SUBSTANCES

    Directory of Open Access Journals (Sweden)

    K. V. Avdiyuk

    2013-06-01

    Full Text Available The ability of Aspergillus flavus var. oryzae 80428 and Bacillus subtilis 147 α-amylases to split different carbohydrate-containing substrates, such as maltose, sucrose, trehalose, dextrin, α- and β-cyclodextrin, amylose, amylopectin, glycogen, pullulan, soluble starch, insoluble starch, corn starch, wheat starch, dextran 500 has been studied. It was shown that investigated enzymes differ by substrate specificity. α-Amylase of A. flavus var. oryzae 80428 rapidly hydrolysed soluble potato and wheat starch, while the α-amylase of B. subtilis 147 — only wheat starch. Both enzymes don’t cleave maltose, α-cyclodextrin and dextran 500. A. flavus var. oryzae 80428 α-amylase display very small ability to hydrolyze pullulan, while α-amylase of B. subtilis 147 it does not act in general. The lowest values of Michaelis constant for both enzymes at splitting of glycogen have been obtained, indicating that enzymes have the greatest affinity to this substrate. The studies of influence of chemically active substances on activity of A. flavus var. oryzae 80428 and B. subtilis 147 ?-amylases show there are resistant to urea, deoxycholic acid, Tween-80, Triton X-100 and hydrogen peroxide. It’s indicate the enzymes tested may be competitive in compare with earlier described in literature enzymes. The obtained results give a possibility to propose in future usage these enzymes in different fields of industry, foremost in detergent industry.

  14. Chemical and spectroscopic characterization of dissolved humic substances in a mangrove-fringed estuary in the eastern coast of Hainan Island, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yaoling; DU Jinzhou; PENG Bo; ZHANG Fenfen; ZHAO Xin; ZHANG Jing

    2013-01-01

    Mangrove-derived dissolved organic matter (DOM) has an important effect on estuarine and coastal area on a large scale.In order to improve the understanding of origin,composition,and fate of DOM in mangrove-fringed estuarine and coastal areas,dissolved humic substances (DHS) were isolated from one mangrove pore-water sample and one near-shore seawater sample downstream the mangrove pore-water site in the eastern coast of Hainan Island,South China.Fulvic acids,humic acids and XAD-4 fractions were obtained from the two water samples by using a two-column array of XAD-8 and XAD-4 resins.Chemical and spectroscopic methods were used to analyze the features of these DHS.Compared to the mangrovepore-water DHS,the near-shore seawater DHS were found rich in 13C with lower C/N ratios and more aliphatic compounds and carbohydrates,but less aromatic structures and carboxyl groups.As for the three fractions of the two DHS,XAD-4 fractions contain more aliphatics,carbohydrates,carboxyl groups,and enrich in 13C with respect to both fulvic and humic acids.Photo-oxidation transformation and contribution from marine-derived DOM were considered as the main reasons resulted in the difference in compositional features for these DHS in this study.

  15. Chemical, zooplankton, and marine toxic substances data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 02 June 1978 - 02 June 1979 (NODC Accession 8000002)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, zooplankton, and marine toxic substances data were collected using moored current meter casts and other instruments in the Gulf of Mexico from June 2, 1978...

  16. Current direction, chemical, and marine toxic substances data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 09 September 1978 - 19 November 1979 (NODC Accession 8000043)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, marine toxic substances, and chemical data were collected using moored current meter casts and other instruments in the Gulf of Mexico from...

  17. Current direction, benthic organisms, zooplankton, chemical, toxis substances, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 24 March 1981 - 19 February 1982 (NODC Accession 8200129)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, benthic organisms, zooplankton, chemical, toxic substances, and other data were collected using moored current meter casts and other instruments...

  18. Chemical, benthic organisms, zooplankton, marine toxic substances, and other data from moored current meter casts and other instruments in the Gulf of Mexico during the Brine Disposal project, 30 August 1979 - 21 September 1981 (NODC Accession 8200012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, marine toxic substances, benthic organisms, zooplankton, and other data were collected using moored current meter casts and other instruments in the Gulf...

  19. Recovery-Promoting Care as Experienced by Persons with Severe Mental Illness and Substance Misuse

    Science.gov (United States)

    Cruce, Gunilla; Ojehagen, Agneta; Nordstrom, Monica

    2012-01-01

    This paper explores recovery-promoting care as experienced by persons with concomitant severe mental illness and substance misuse. Sixteen in-depth interviews, based on an interview guide concerning their experiences of health, life situation and care, were held with eight participants in an outpatient treatment programme. The analysis aimed to…

  20. Physico-chemical characterization of SOA derived from catechol and guaiacol – a model substance for the aromatic fraction of atmospheric HULIS

    Directory of Open Access Journals (Sweden)

    K. Whitmore

    2011-01-01

    Full Text Available Secondary organic aerosol (SOA was produced from the aromatic precursors catechol and guaiacol by reaction with ozone in the presence and absence of simulated sunlight and humidity and investigated for its properties as a proxy for HUmic-LIke Substances (HULIS. Beside a small particle size, a relatively low molecular weight and typical optical features in the UV/VIS spectral range, HULIS contain a typical aromatic and/or olefinic chemical structure and highly oxidized functional groups within a high chemical diversity. Various methods were used to characterize the secondary organic aerosols obtained: Fourier transform infrared spectroscopy (FTIR demonstrated the formation of several carbonyl containing functional groups as well as structural and functional differences between aerosols formed at different environmental conditions. UV/VIS spectroscopy of filter samples showed that the particulate matter absorbs far into the visible range up to more than 500 nm. Ultrahigh resolved mass spectroscopy (ICR-FT/MS determined O/C-ratios between 0.3 and 1 and observed m/z ratios between 200 and 450 to be most abundant. Temperature-programmed-pyrolysis mass spectroscopy (TPP-MS identified carboxylic acids and lactones/esters as major functional groups. Particle sizing using a condensation-nucleus-counter and differential-mobility-particle-sizer (CNC/DMPS monitored the formation of small particles during the SOA formation process. Particle imaging, using field-emission-gun scanning electron microscopy (FEG-SEM, showed spherical particles, forming clusters and chains. We conclude that catechol and guaiacol are appropriate precursors for studies of the processing of aromatic SOA with atmospheric HULIS properties on the laboratory scale.

  1. Recommendations on chemicals management policy and legislation in the framework of the Egyptian-German twinning project on hazardous substances and waste management.

    Science.gov (United States)

    Wagner, Burkhard O; Aziz, Elham Refaat Abdel; Schwetje, Anja; Shouk, Fatma Abou; Koch-Jugl, Juliane; Braedt, Michael; Choudhury, Keya; Weber, Roland

    2013-04-01

    The sustainable management of chemicals and their associated wastes-especially legacy stockpiles-is always challenging. Developing countries face particular difficulties as they often have insufficient treatment and disposal capacity, have limited resources and many lack an appropriate and effective regulatory framework. This paper describes the objectives and the approach of the Egyptian-German Twinning Project under the European Neighbourhood Policy to improve the strategy of managing hazardous substances in the Egyptian Environmental Affairs Agency (EEAA) between November 2008 and May 2011. It also provides an introduction to the Republic of Egypt's legal and administrative system regarding chemical controls. Subsequently, options for a new chemical management strategy consistent with the recommendations of the United Nations Chemicals Conventions are proposed. The Egyptian legal and administrative system is discussed in relation to the United Nations' recommendations and current European Union legislation for the sound management of chemicals. We also discuss a strategy for the EEAA to use the existing Egyptian legal system to implement the United Nations' Globally Harmonized System of Classification and Labelling of Chemicals, the Stockholm Convention and other proposed regulatory frameworks. The analysis, the results, and the recommendations presented may be useful for other developing countries in a comparable position to Egypt aspiring to update their legislation and administration to the international standards of sound management of chemicals.

  2. CHEMICAL CLEANING OF NANOFILTRATION MEMBRANES FOULED BY ORGANIC MATTERS

    Directory of Open Access Journals (Sweden)

    CHARLENE C. H. KOO

    2016-07-01

    Full Text Available Membrane fouling is a term to describe non-integral substance on membrane surface which results in rapid decline of permeation flux and deteriorate the performance of membrane. Chemical cleaning agents especially like alkaline cleaners are most widely employed to restore the membrane performance. This research mainly investigated the potential use of sodium hydroxide (NaOH and sodium hypochlorite (NaOCl as the chemical cleaning agents to restore the permeate flux of organically fouled nanofiltration (NF membranes under varying applied pressure and flow condition. The performances of the cleaning protocols were quantified using flux recovery and resistance removal. The results demonstrated that NaOCl is more effective than NaOH. This observation is also in line with FTIR analysis in which the transmittance intensity showed by FTIR spectra of NaOCl is higher than that of NaOH. The results also reported that higher flux recovery and resistance removal were achieved when the fouled NF membranes were cleaned with higher concentration of chemical agents and applied pressure. However, the improvements of flux recovery and resistance removal by increasing the applied pressure were found insignificant at higher applied pressure range (16 to 18 bar than the lower applied pressure range (i.e. 12 to 14 bar. This research plays an important role by identifying the key parameters that could restore the flux of organically fouled NF membranes significantly.

  3. Anaerobic sediment potential acidification and metal release risk assessment by chemical characterization and batch resuspension experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nanno, M.P. di [Univ. de San Martin, Buenos Aires (Argentina). Escuela de Ciencia y Technologia; Curutchet, G. [Univ. de San Martin, Buenos Aires (Argentina). Escuela de Ciencia y Technologia; CONICET, Buenos Aires (Argentina); Ratto, S. [Univ. de Buenos Aires (Argentina). Catedra de Edafologia

    2007-06-15

    Background, Aim and Scope: Sediments act as a sink for toxic substances (heavy metals, organic pollutants) and, consequently, dredged materials often contain pollutants which are above safe limits. In polluted anaerobic sediments, the presence of sulphides and redox potential changes creates a favorable condition for sulphide oxidation to sulphate, resulting in potential toxic metal release. The oxidation reaction is catalyzed by several microorganisms. Some clean up measures, such as dredging, can initiate the process. The aim of the present work is to assess the acidification and metal release risk in the event of sediment dredging and also to compare two different acid base account techniques with the resuspension results. The oxidation mechanism by means of inoculation with an Acidithiobacillus ferrooxidans strain was also evaluated. Materials and Methods: The sediments were chemically characterized (pH; organic oxidizable carbon; acid volatile sulphides; total sulphur; moisture; Cr, Cu and Zn aqua regia contents). A metal sequential extraction procedure (Community Bureau of Reference, BCR technique) was applied to calculate the Acid Producing Potential (APP) and Acid Consuming Capacity (ACC) of the sediment samples through Fe, Ca{sup 2+} and SO{sub 4}{sup 2-} measurements. The acid base account was also performed by the Sobek methodology (Acid producing potential - AP - calculated with total sulphur and neutralization potential - NP - by titration of the remaining acid after a reaction period with the sample). Fresh sediments were placed in agitated shake flasks and samples were taken at different times to evaluate pH, SO{sub 4}{sup 2-} and Cr, Cu, Zn and Fe{sup 2+} concentration. Some of the systems were inoculated with an Acidithiobacillus ferrooxidans strain to assess the biological catalysis on sulphide oxidation. Results: Sediment chemical characterization showed high organic matter content (5.4-10.6%), total sulphur (0.36-0.86%) and equivalent CaCO{sub 3

  4. Methodological guide: management of industrial sites potentially contaminated by radioactive substances; Guide methodologique: gestion des sites industriels potentiellement contamines par des substances radioactives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    At the request of the Ministries of Health and the Environment, IPSN is preparing and publishing the first version of the methodological guide devoted to managing industrial sites potentially contaminated by radioactive substances. This guide describes a procedure for defining and choosing strategies for rehabilitating such industrial sites. (author)

  5. pH Tolerance in Freshwater Bacterioplankton: Trait Variation of the Community as Measured by Leucine Incorporation

    OpenAIRE

    Bååth, Erland; Kritzberg, Emma

    2015-01-01

    pH is an important factor determining bacterial community composition in soil and water. We have directly determined the community tolerance (trait variation) to pH in communities from 22 lakes and streams ranging in pH from 4 to 9 using a growth-based method not relying on distinguishing between individual populations. The pH in the water samples was altered to up to 16 pH values, covering in situ pH ± 2.5 U, and the tolerance was assessed by measuring bacterial growth (Leu incorporation) in...

  6. Determination of the priority substances regulated by 2000/60/EC and 2008/105/EC Directives in the surface waters supplying water treatment plants of Athens, Greece.

    Science.gov (United States)

    Golfinopoulos, Spyros K; Nikolaou, Anastasia D; Thomaidis, Nikolaos S; Kotrikla, Anna Maria; Vagi, Maria C; Petsas, Andreas S; Lekkas, Demetris F; Lekkas, Themistokles D

    2017-03-21

    An investigation into the occurrence of priority substances regulated by 2000/60/EC Water Framework Directive and 2008/105/EC Directive was conducted for a period of one year in the surface water sources supplying the water treatment plants (WTPs) of Athens and in the raw water of WTPs. Samples from four reservoirs and four water treatment plants of Athens were taken seasonally. The substances are divided into seven specific groups, including eight volatile organic compounds (VOCs), diethylhexylphthalate, four organochlorine pesticides (OCPs), three organophosphorus/organonitrogen pesticides (OPPs/ONPs), four triazines and phenylurea herbicides, pentachlorophenol, and four metals. The aforementioned substances belong to different chemical categories, and different analytical methods were performed for their determination. The results showed that the surface waters that feed the WTPs of Athens are not burdened with significant levels of toxic substances identified as European Union (EU) priority substances. Atrazine, hexachlorocyclohexane, endosulfan, trifluralin, anthracene and 4-nonylphenol were occasionally observed at very low concentrations. Their presence in a limited number of cases could be attributed to waste disposal, agricultural activities, and to a limited industrial activity in the area nearby the water bodies.

  7. PREDICTING CHEMICAL REACTIVITY OF HUMIC SUBSTANCES FOR MINERALS AND XENOBIOTICS: USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY AND VIRTUAL REALITY

    Science.gov (United States)

    In this chapter we review the literature on scanning probe microscopy (SPM), virtual reality (VR), and computational chemistry and our earlier work dealing with modeling lignin, lignin-carbohydrate complexes (LCC), humic substances (HSs) and non-bonded organo-mineral interactions...

  8. COMPARISON BETWEEN SOME PHYSICAL - CHEMICAL CHARACTERISTICS OF CACAO MILK AND RAW MILK

    OpenAIRE

    Florin Roman

    2009-01-01

    The paper presents a comparison between some physical - chemical characteristics of the cacao milk and of the raw milk. For this comparison we made the following determinations for both types of milk: the determination of the dry substance using the drying oven with a 102 °C temperature, the determination of the proteic substance by titration with sodium hydroxide ( NaOH ) N/10, the milk pasteurization control by the starch and potassium iodide test and the pH determination using the indicato...

  9. Chaperonin-Inspired pH Protection by Mesoporous Silica SBA-15 on Myoglobin and Lysozyme.

    Science.gov (United States)

    Lynch, Michele M; Liu, Jichuan; Nigra, Michael; Coppens, Marc-Olivier

    2016-09-20

    While enzymes are valuable tools in many fields of biotechnology, they are fragile and must be protected against denaturing conditions such as unfavorable solution pH. Within living organisms, chaperonins help enzymes fold into their native shape and protect them from damage. Inspired by this natural solution, mesoporous silica SBA-15 with different pore diameters is synthesized as a support material for immobilizing and protecting enzymes. In separate experiments, the model enzymes myoglobin and lysozyme are physically adsorbed to SBA-15 and exposed to a range of buffered pH conditions. The immobilized enzymes' biocatalytic activities are quantified and compared to the activities of nonimmobilized enzymes in the same solution conditions. It has been observed that myoglobin immobilized on SBA-15 is protected from acidic denaturation from pH 3.6 to 5.1, exhibiting relative activity of up to 350%. Immobilized lysozyme is protected from unfavorable conditions from pH 6.6 to 7.6, with relative activity of up to 200%. These results indicate that the protective effects conferred to enzymes immobilized by physical adsorption to SBA-15 are driven by the enzymes' electrostatic attraction to the material's surface. The pore diameter of SBA-15 affects the quality of protection given to immobilized enzymes, but the contribution of this effect at different pH values remains unclear.

  10. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome.

    Directory of Open Access Journals (Sweden)

    Edward V LaBelle

    Full Text Available Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (∼ 5. Hydrogen production by biocathodes poised at -600 mV vs. SHE increased >100-fold and acetate production ceased at acidic pH, but ∼ 5-15 mM (catholyte volume/day acetate and >1,000 mM/day hydrogen were attained at pH ∼ 6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV by the Acetobacterium-dominated community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈ 2.6 gallons gasoline equivalent, 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured.

  11. Alterations in the metabolomics of sulfur-containing substances in rat kidney by betaine.

    Science.gov (United States)

    Kim, Young Chul; Kwon, Do Young; Kim, Ji Hyun

    2014-04-01

    Earlier studies have shown that betaine administration may modulate the metabolism of sulfur amino acids in the liver. In this study, we determined the changes in the metabolomics of sulfur-containing substances induced by betaine in the kidney, the other major organ actively involved in the transsulfuration reactions. Male rats received betaine (1%) in drinking water for 2 weeks before killing. Betaine intake did not affect betaine-homocysteine methyltransferase activity or its protein expression in the renal tissue. Expression of methionine synthase was also unchanged. However, methionine levels were increased significantly both in plasma and kidney. Renal methionine adenosyltransferase activity and S-adenosylmethionine concentrations were increased, but there were no changes in S-adenosylhomocysteine, homocysteine, cysteine levels or cystathionine β-synthase expression. γ-Glutamylcysteine synthetase expression or glutathione levels were not altered, but cysteine dioxygenase and taurine levels were decreased significantly. In contrast, betaine administration induced cysteine sulfinate decarboxylase and its metabolic product, hypotaurine. These results indicate that the metabolomics of sulfur-containing substances in the kidney is altered extensively by betaine, although the renal capacity for methionine synthesis is unresponsive to this substance unlike that of the liver. It is suggested that the increased methionine availability due to an enhancement of its uptake from plasma may account for the alterations in the metabolomics of sulfur-containing substances in the kidney. Further studies need to be conducted to clarify the physiological/pharmacological significance of these findings.

  12. Darcys Law Expressed by Chemical Index

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Darcys formula expressed by chemical indexes (ion activity a and saturation index f) is derived with the aid of the kinetics of multi-mineral dissolution. The implication of the formula and the relationship between the formula and the original Darcy′s law expressed by hydraulic index (hydraulic gradient, I ) are discussed here. An analytic expression is established in this paper for the determination of the residence time of groundwater by chemical indexes, whose equivalence to isotopic age is studled. The formulas are derived from the calculation of permeability coefficient (K), conductivity coefficient (T) and actual velocity of groundwater (U). Finally, this paper introduces hydrogeological chemical kinetics constant (kj) and its determination method, differential and integral equations for chemical kinetics of groundwater in three-dimensional space.

  13. Improvement of chemical monitoring of water-chemistry conditions at thermal power stations based on electric conductivity and pH measurements

    Science.gov (United States)

    Larin, A. B.; Larin, B. M.

    2016-05-01

    The increased requirements to the quality of the water heat conductor for working superhigh (SHP) and supercritical (SCP) pressure power plants and promising units, including combined-cycle gas turbine (CCGT) units and power plants with ultrasupercritical parameters (USCPs), can largely be satisfied through specific electric conductivity and pH measurements for cooled heat conductor samples combined with calculations of ionic equilibria and indirect measurements of several specified and diagnostic parameters. The possibility of calculating the ammonia and chloride concentrations and the total concentration of hardness and sodium cations in the feed water of drum-type boilers and the phosphate and salt contents in boiler water was demonstrated. An equation for evaluating the content of potentially acid substances in the feed water of monotube boilers was suggested. The potential of the developed procedure for evaluating the state of waterchemistry conditions (WCCs) in power plants with CCGT units was shown.

  14. Topics in Chemical Instrumentation: Solid State Electrometer for pH and Specific Ion Electrode Potential Measurements.

    Science.gov (United States)

    Edstrom, Ronald D.; Ewing, Galen W., Ed.

    1979-01-01

    The design, construction, and operation of a solid state electrometer is described. The instrument used the case and meter movement from an obsolete commercial pH meter. The cost of materials, purchased in 1977 in unit quantities, was $60. (BB)

  15. Gender minority social stress in adolescence: disparities in adolescent bullying and substance use by gender identity.

    Science.gov (United States)

    Reisner, Sari L; Greytak, Emily A; Parsons, Jeffrey T; Ybarra, Michele L

    2015-01-01

    Bullying and substance use represent serious public health issues facing adolescents in the United States. Few large-sample national studies have examined differences in these indicators by gender identity. The Teen Health and Technology Study (N = 5,542) sampled adolescents ages 13 to 18 years old online. Weighted multivariable logistic regression models investigated disparities in substance use and tested a gender minority social stress hypothesis, comparing gender minority youth (i.e., who are transgender/gender nonconforming and have a gender different from their sex assigned at birth) and cisgender (i.e., whose gender identity or expression matches theirs assigned at birth). Overall, 11.5% of youth self-identified as gender minority. Gender minority youth had increased odds of past-12-month alcohol use, marijuana use, and nonmarijuana illicit drug use. Gender minority youth disproportionately experienced bullying and harassment in the past 12 months, and this victimization was associated with increased odds of all substance use indicators. Bullying mediated the elevated odds of substance use for gender minority youth compared to cisgender adolescents. Findings support the use of gender minority stress perspectives in designing early interventions aimed at addressing the negative health sequelae of bullying and harassment.

  16. Synthesis of Nanocrystalline SnOx (x = 1–2 Thin Film Using a Chemical Bath Deposition Method with Improved Deposition Time, Temperature and pH

    Directory of Open Access Journals (Sweden)

    Zulkarnain Zainal

    2011-09-01

    Full Text Available Nanocrystalline SnOx (x = 1–2 thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnOx thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnOx nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnOx. Photosensitivity was detected in the positive region under illumination with white light.

  17. δ15N measurement of organic and inorganic substances by EA-IRMS: a speciation-dependent procedure.

    Science.gov (United States)

    Gentile, Natacha; Rossi, Michel J; Delémont, Olivier; Siegwolf, Rolf T W

    2013-01-01

    Little attention has been paid so far to the influence of the chemical nature of the substance when measuring δ(15)N by elemental analysis (EA)-isotope ratio mass spectrometry (IRMS). Although the bulk nitrogen isotope analysis of organic material is not to be questioned, literature from different disciplines using IRMS provides hints that the quantitative conversion of nitrate into nitrogen presents difficulties. We observed abnormal series of δ(15)N values of laboratory standards and nitrates. These unexpected results were shown to be related to the tailing of the nitrogen peak of nitrate-containing compounds. A series of experiments were set up to investigate the cause of this phenomenon, using ammonium nitrate (NH(4)NO(3)) and potassium nitrate (KNO(3)) samples, two organic laboratory standards as well as the international secondary reference materials IAEA-N1, IAEA-N2-two ammonium sulphates [(NH(4))(2)SO(4)]-and IAEA-NO-3, a potassium nitrate. In experiment 1, we used graphite and vanadium pentoxide (V(2)O(5)) as additives to observe if they could enhance the decomposition (combustion) of nitrates. In experiment 2, we tested another elemental analyser configuration including an additional section of reduced copper in order to see whether or not the tailing could originate from an incomplete reduction process. Finally, we modified several parameters of the method and observed their influence on the peak shape, δ(15)N value and nitrogen content in weight percent of nitrogen of the target substances. We found the best results using mere thermal decomposition in helium, under exclusion of any oxygen. We show that the analytical procedure used for organic samples should not be used for nitrates because of their different chemical nature. We present the best performance given one set of sample introduction parameters for the analysis of nitrates, as well as for the ammonium sulphate IAEA-N1 and IAEA-N2 reference materials. We discuss these results considering the

  18. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids) , 2015. Scientific Opinion on Flavouring Group Evaluation 65, Revisio n 1 (FGE.65Rev1 ) : Consideration of sulfur - substituted furan derivatives used as flavouring agents evaluated by JECFA (59th meeting) structurally related to a subgroup of substances within the group of ‘ Furfuryl and furan derivatives with and without additional side - chain substituents and heteroatoms from chemical group 14’ evaluated by JECFA in FGE.13Rev2 (2011)

    DEFF Research Database (Denmark)

    Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further...... for the materials of commerce have also been considered and for all 33 substances, the information is adequate....

  19. An aposymbiotic primary coral polyp counteracts acidification by active pH regulation

    Science.gov (United States)

    Ohno, Yoshikazu; Iguchi, Akira; Shinzato, Chuya; Inoue, Mayuri; Suzuki, Atsushi; Sakai, Kazuhiko; Nakamura, Takashi

    2017-01-01

    Corals build their skeletons using extracellular calcifying fluid located in the tissue–skeleton interface. However, the mechanism by which corals control the transport of calcium and other ions from seawater and the mechanism of constant alkalization of calcifying fluid are largely unknown. To address these questions, we performed direct pH imaging at calcification sites (subcalicoblastic medium, SCM) to visualize active pH upregulation in live aposymbiotic primary coral polyps treated with HCl-acidified seawater. Active alkalization was observed in all individuals using vital staining method while the movement of HPTS and Alexa Fluor to SCM suggests that certain ions such as H+ could diffuse via a paracellular pathway to SCM. Among them, we discovered acid-induced oscillations in the pH of SCM (pHSCM), observed in 24% of polyps examined. In addition, we discovered acid-induced pH up-regulation waves in 21% of polyps examined, which propagated among SCMs after exposure to acidified seawater. Our results showed that corals can regulate pHSCM more dynamically than was previously believed. These observations will have important implications for determining how corals regulate pHSCM during calcification. We propose that corals can sense ambient seawater pH via their innate pH-sensitive systems and regulate pHSCM using several unknown pH-regulating ion transporters that coordinate with multicellular signaling occurring in coral tissue.

  20. Submicrometer fiber-optic chemical sensors: Measuring pH inside single cells. Progress report, October 1990--August 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kopelman, R.

    1993-12-01

    Starting from scratch, we went in two and a half years to 0.04 micron optical microscopy resolution. We have demonstrated the application of near-field scanning optical microscopy to DNA samples and opened the new fields of near-field scanning spectroscopy and submicron opto- chemical sensors. All of these developments have been important steps towards in-situ DNA imaging and characterization on the nanoscale. Our first goal was to make NSOM (near-field scanning optical microscopy) a working enterprise, capable of ``zooming-in`` towards a sample and imaging with a resolution exceeding that of traditional microscopy by a factor of ten. This has been achieved. Not only do we have a resolution of about 40 nm but we can image a 1 {times} 1 micron object in less than 10 seconds. Furthermore, the NSOM is a practical instrument. The tips survive for days or weeks of scanning and new methods of force feedback will soon protect the most fragile samples. Reproducible images of metal gratings, gold particles, dye balls (for calibration) and of several DNA samples have been made, proving the practicality of our approach. We also give highly resolved Force/NSOM images of human blood cells. Our second goal has been to form molecular optics (e.g., exciton donor) tips with a resolution of 2--10 nm for molecular excitation microscopy (MEM). We have produced such tips, and scanned with them, but only with a resolution comparable to that of our standard NSOM tips. However, we have demonstrated their potential for high resolution imaging capabilities: (1) An energy transfer (tip to sample) based feedback capability. (2) A Kasha (external heavy atom) effect based feedback. In addition, a novel and practical opto-chemical sensor that is a billion times smaller than the best ones available has been developed as well. Finally, we have also performed spatially resolved fluorescence spectroscopy.

  1. Carbon dioxide, oxygen, and pH detection in animal adipose tissue by means of extracorporeal microdialysis

    Science.gov (United States)

    Baldini, F.; Bizzarri, A.; Cajlakovic, M.; Feichtner, F.; Gianesello, L.; Giannetti, A.; Gori, G.; Konrad, C.; Mencaglia, A. A.; Mori, E.; Pavoni, V.; Perna, A. M.; Trono, C.

    2007-05-01

    Atypical physiological symptoms can be developed in healthy people under critically ill conditions. pH, pO II and pCO II are informative indicators of the conditions of a living system and can be valuable in determining the physiologic status of the critically ill patients. The continuous monitoring of these small molecules into the interstitial fluid (ISF) is a promising approach to reduce diagnostic blood loss and painful stress associated with blood sampling. Microdialysis is the approach followed for the extraction of the sample from the subcutaneous adipose tissue; the drawn interstitial fluid flows through a microfluidic circuit formed by the microdialysis catheter in series with a glass capillary on the internal wall of which the appropriate chemistry for sensing is immobilised. Absorption changes for pH sensor and modulation of the fluorescence lifetime for pO II and pCO II are the working principle. Phenol red covalently bound into the internal wall of a glass capillary by means of the Mannich reaction and platinum(II) tetrakis-pentafluorophenyl-porphyrine entrapped within a polymerised polystyrene layer are the chemical transducers used for pH and oxygen detection; the ion pair 8- hydroxypyrene-1,3,6-trisulfonic acid trisodium salt/ tetraoctylammonium hydroxide, dissolved in a silicon-based polymeric matrix, is used for the carbon dioxide detection. A suitable hemorrhagic shock model was developed in order to validate clinically the developed sensors in the condition of extreme stress and the obtained results show that the adipose tissue can become an alternative site for the continuous oitoring of pH, pO II and pCO II.

  2. 21 CFR 1300.04 - Definitions relating to the dispensing of controlled substances by means of the Internet.

    Science.gov (United States)

    2010-04-01

    ... controlled substances by means of the Internet. 1300.04 Section 1300.04 Food and Drugs DRUG ENFORCEMENT... substances by means of the Internet. (a) Any term not defined in this part or elsewhere in this chapter shall... evaluation of the patient. (c) The term deliver, distribute, or dispense by means of the Internet...

  3. Effect of pH, urea, peptide length, and neighboring amino acids on alanine alpha-proton random coil chemical shifts.

    Science.gov (United States)

    Carlisle, Elizabeth A; Holder, Jessica L; Maranda, Abby M; de Alwis, Adamberage R; Selkie, Ellen L; McKay, Sonya L

    2007-01-01

    Accurate random coil alpha-proton chemical shift values are essential for precise protein structure analysis using chemical shift index (CSI) calculations. The current study determines the chemical shift effects of pH, urea, peptide length and neighboring amino acids on the alpha-proton of Ala using model peptides of the general sequence GnXaaAYaaGn, where Xaa and Yaa are Leu, Val, Phe, Tyr, His, Trp or Pro, and n = 1-3. Changes in pH (2-6), urea (0-1M), and peptide length (n = 1-3) had no effect on Ala alpha-proton chemical shifts. Denaturing concentrations of urea (8M) caused significant downfield shifts (0.10 +/- 0.01 ppm) relative to an external DSS reference. Neighboring aliphatic residues (Leu, Val) had no effect, whereas aromatic amino acids (Phe, Tyr, His and Trp) and Pro caused significant shifts in the alanine alpha-proton, with the extent of the shifts dependent on the nature and position of the amino acid. Smaller aromatic residues (Phe, Tyr, His) caused larger shift effects when present in the C-terminal position (approximately 0.10 vs. 0.05 ppm N-terminal), and the larger aromatic tryptophan caused greater effects in the N-terminal position (0.15 ppm vs. 0.10 C-terminal). Proline affected both significant upfield (0.06 ppm, N-terminal) and downfield (0.25 ppm, C-terminal) chemical shifts. These new Ala correction factors detail the magnitude and range of variation in environmental chemical shift effects, in addition to providing insight into the molecular level interactions that govern protein folding.

  4. Fermentation, fractionation and purification of streptokinase by chemical reduction method

    Directory of Open Access Journals (Sweden)

    M Niakan

    2011-05-01

    Full Text Available Background and Objectives: Streptokinase is used clinically as an intravenous thrombolytic agent for the treatment of acute myocardial infarction and is commonly prepared from cultures of Streptococcus equisimilis strain H46A. The objective of the present study was the production of streptokinase from strain H46A and purification by chemical reduction method."nMaterials and Methods: The rate of streptokinase production evaluated under the effect of changes on some fermentation factors. Moreover, due to the specific structure of streptokinase, a chemical reduction method employed for the purification of streptokinase from the fermentation broth. The H46A strain of group C streptococcus, was grown in a fermentor. The proper pH adjusted with NaOH under glucose feeding in an optimum temperature. The supernatant of the fermentation product was sterilized by filtration and concentrated by ultrafiltration. The pH of the concentrate was adjusted, cooled, and precipitated by methanol. Protein solution was reduced with dithiothreitol (DTT. Impurities settled down by aldrithiol-2 and the biological activity of supernatant containing streptokinase was determined."nResults: In the fed -batch culture, the rate of streptokinase production increased over two times as compared with the batch culture and the impurities were effectively separated from streptokinase by reduction method."nConclusion: Improvements in SK production are due to a decrease in lag phase period and increase in the growth rate of logarithmic phase. The methods of purification often result in unacceptable losses of streptokinase, but the chemical reduction method give high yield of streptokinase and is easy to perform it.

  5. Effects of pH and Corn Steep Liquor Variability on Mannitol Production by Lactobacillus intermedius NRRL B-3693

    Science.gov (United States)

    Lactobacillus intermedius NRRL B-3693 produce mannitol, lactic acid, and acetic acid when grown on fructose at 37 deg C. The optimal pH for mannitol production from fructose by the heterofermentative lactic acid bacterium (LAB) in pH controlled fermentation was at pH 5.0. It produced 160.7±1.1 g m...

  6. Evaluation of the protective effect of chemical additives in the oxidation of phenolic compounds catalysed by peroxidase.

    Science.gov (United States)

    Torres, Juliana Arriel; Chagas, Pricila Maria Batista; Silva, Maria Cristina; Dos Santos, Custódio Donizete; Corrêa, Angelita Duarte

    2016-01-01

    The use of oxidoredutive enzymes in removing organic pollutants has been the subject of much research. The oxidation of phenolic compounds in the presence of chemical additives has been the focus of this study. In this investigation, the influence of the additives polyethylene glycol and Triton X-100 was evaluated in the phenol oxidation, caffeic acid, chlorogenic acid and total phenolic compounds present in coffee processing wastewater (CPW) at different pH values, performed by turnip peroxidase and peroxidase extracted from soybean seed hulls. The influence of these additives was observed only in the oxidation of phenol and caffeic acid. In the oxidation of other studied phenolic compounds, the percentage of oxidation remained unchanged in the presence of these chemical additives. In the oxidation of CPW in the presence of additives, no change in the oxidation of phenolic compounds was observed. Although several studies show the importance of evaluating the influence of additives on the behaviour of enzymes, this study found a positive response from the economic point of view for the treatment of real wastewater, since the addition of these substances showed no influence on the oxidation of phenolic compounds, which makes the process less costly.

  7. Modulation of sheep ruminal urea transport by ammonia and pH.

    Science.gov (United States)

    Lu, Zhongyan; Stumpff, Friederike; Deiner, Carolin; Rosendahl, Julia; Braun, Hannah; Abdoun, Khalid; Aschenbach, Jörg R; Martens, Holger

    2014-09-01

    Ruminal fermentation products such as short-chain fatty acids (SCFA) and CO2 acutely stimulate urea transport across the ruminal epithelium in vivo, whereas ammonia has inhibitory effects. Uptake and signaling pathways remain obscure. The ruminal expression of SLC14a1 (UT-B) was studied using polymerase chain reaction (PCR). The functional short-term effects of ammonia on cytosolic pH (pHi) and ruminal urea transport across native epithelia were investigated using pH-sensitive microelectrodes and via flux measurements in Ussing chambers. Two variants (UT-B1 and UT-B2) could be fully sequenced from ovine ruminal cDNA. Functionally, transport was passive and modulated by luminal pH in the presence of SCFA and CO2, rising in response to luminal acidification to a peak value at pH 5.8 and dropping with further acidification, resulting in a bell-shaped curve. Presence of ammonia reduced the amplitude, but not the shape of the relationship between urea flux and pH, so that urea flux remained maximal at pH 5.8. Effects of ammonia were concentration dependent, with saturation at 5 mmol/l. Clamping the transepithelial potential altered the inhibitory potential of ammonia on urea flux. Ammonia depolarized the apical membrane and acidified pHi, suggesting that, at physiological pH (urea transport. We conclude that transport of urea across the ruminal epithelium involves proteins subject to rapid modulation by manipulations that alter pHi and the cytosolic concentration of NH4 (+). Implications for epithelial and ruminal homeostasis are discussed.

  8. Predicting Anatomical Therapeutic Chemical (ATC classification of drugs by integrating chemical-chemical interactions and similarities.

    Directory of Open Access Journals (Sweden)

    Lei Chen

    Full Text Available The Anatomical Therapeutic Chemical (ATC classification system, recommended by the World Health Organization, categories drugs into different classes according to their therapeutic and chemical characteristics. For a set of query compounds, how can we identify which ATC-class (or classes they belong to? It is an important and challenging problem because the information thus obtained would be quite useful for drug development and utilization. By hybridizing the informations of chemical-chemical interactions and chemical-chemical similarities, a novel method was developed for such purpose. It was observed by the jackknife test on a benchmark dataset of 3,883 drug compounds that the overall success rate achieved by the prediction method was about 73% in identifying the drugs among the following 14 main ATC-classes: (1 alimentary tract and metabolism; (2 blood and blood forming organs; (3 cardiovascular system; (4 dermatologicals; (5 genitourinary system and sex hormones; (6 systemic hormonal preparations, excluding sex hormones and insulins; (7 anti-infectives for systemic use; (8 antineoplastic and immunomodulating agents; (9 musculoskeletal system; (10 nervous system; (11 antiparasitic products, insecticides and repellents; (12 respiratory system; (13 sensory organs; (14 various. Such a success rate is substantially higher than 7% by the random guess. It has not escaped our notice that the current method can be straightforwardly extended to identify the drugs for their 2(nd-level, 3(rd-level, 4(th-level, and 5(th-level ATC-classifications once the statistically significant benchmark data are available for these lower levels.

  9. Chemical composition and pH of the meat of broilers submitted to pre-slaughter heat stress

    Directory of Open Access Journals (Sweden)

    Raimunda Thyciana Vasconcelos Fernandes

    2016-09-01

    Full Text Available A fim de avaliar a composição química e pH da carne de frango submetidos ao estresse térmico durante o tempo de descanso pré-abate, um experimento foi conduzido em um matadouro. Vinte e cinco aves foram selecionados aleatoriamente e alojados em salas sem ar condicionado por um período de 3 horas, com uma temperatura média de 33 ° C e umidade relativa de 83%. Após o abate, as carcaças foram desossada e cortes nobres eram refrigerados (entre 0 e 4 ° C por 24 horas para análise dos níveis de umidade, proteína, gordura, cinzas e pH. Os valores de umidade foram 72,80, 71,47 e 70,30%, os valores de proteína foram 16,81, 14,90 e 15,10%, valores lipídicos foram 0,78, 3,30, e 5,80%, valores cinzas foram 0,81, 0,88, e 0,89%, e os valores de pH foram 5,30 , 6,10 e 6,54 para o peito, coxa e sobrecoxa, respectivamente. estresse por calor durante 3 horas antes do abate levou a mudanças na composição química e pH do frango, que estabelece uma anomalia na carne do tipo PSE (pálida, mole e exudativa. É evidente que manejo pré-abate é importante para garantir bem-estar animal e, consequentemente, de alta qualidade da carne.

  10. Measurement of Autolysosomal pH by Dual-Wavelength Ratio Imaging.

    Science.gov (United States)

    Saric, A; Grinstein, S; Freeman, S A

    2017-01-01

    Cellular components sequestered by autophagosomes during macroautophagy must be degraded and their components recycled in order to maintain homeostasis. To this end cells orchestrate the fusion of autophagosomes with lysosomes, degradative organelles that are rich in hydrolases. Most of the lysosomal enzymes function optimally at low pH, and products of macromolecular catabolism are cotransported with protons across the autolysosomal membrane. These functions are facilitated by the ability of lysosomes to pump protons inward, acidifying their lumen. Clearly, proper homeostasis of the luminal pH is crucial for autolysosomal function. We describe a method for the measurement of the absolute pH of individual autolysosomes in live cells. This technique involves measurement of the fluorescence of a pH-sensitive probe initially delivered to lysosomes and subsequently determined to have reached autolysosomes. By measuring the fluorescence at two separate wavelengths and calculating their ratio, potential artifacts introduced by photobleaching or by changes in autolysosome size, shape, or positioning are minimized. Combining such ratio determinations with an in situ calibration procedure enables absolute measurements of pH, which are superior to the qualitative estimates obtained with fluorescent weak bases such as LysoTracker.

  11. Synthesis and Characterization of Chemically Cross-Linked Acrylic Acid/Gelatin Hydrogels: Effect of pH and Composition on Swelling and Drug Release

    Directory of Open Access Journals (Sweden)

    Syed Majid Hanif Bukhari

    2015-01-01

    Full Text Available This present work was aimed at synthesizing pH-sensitive cross-linked AA/Gelatin hydrogels by free radical polymerization. Ammonium persulfate and ethylene glycol dimethacrylate (EGDMA were used as initiator and as cross-linking agent, respectively. Different feed ratios of acrylic acid, gelatin, and EGDMA were used to investigate the effect of monomer, polymer, and degree of cross-linking on swelling and release pattern of the model drug. The swelling behavior of the hydrogel samples was studied in 0.05 M USP phosphate buffer solutions of various pH values pH 1.2, pH 5.5, pH 6.5, and pH 7.5. The prepared samples were evaluated for porosity and sol-gel fraction analysis. Pheniramine maleate used for allergy treatment was loaded as model drug in selected samples. The release study of the drug was investigated in 0.05 M USP phosphate buffer of varying pH values (1.2, 5.5, and 7.5 for 12 hrs. The release data was fitted to various kinetic models to study the release mechanism. Hydrogels were characterized by Fourier transformed infrared (FTIR spectroscopy which confirmed formation of structure. Surface morphology of unloaded and loaded samples was studied by surface electron microscopy (SEM, which confirmed the distribution of model drug in the gel network.

  12. Effects of Electrolyte Anions and pH on Adsortpion of Sulfate by Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANGGANGYA; G.M.BRUEMMER; 等

    1996-01-01

    The effects of three electrolyte anions,ionic strength and pH on the adsorption of sulfate by two variable charge soils,with different surface charge properties were studied.Under the conditions of the same pH and ionic strength the effect of electrolyte anions on the adsorption of sulfate was in the order of Cl->NO3->ClO4-,indicating the difference of the nature among these three anions.For ferralsol in the same concentration of chloride and perchloride solutions,the two sulfate adsorption-pH curves could intersect at certain pH value.When pH was higher than the intersecting point.more sulfate was adsorbed in the perchloride solution,while when it was lower than the intersecting point,more sulfate was adsorbed in the chloride solution.In different concentratioins of electrolyte solution,the curves of the amount of oxy-acid anion adsorbed,which changed with pH,could intersect at a certain pH,which is termed point of zero salt effect(PZSE) on adsortpion.The nature of electrolyte anions influenced obviously the appearace of PZSE for sulfate adsorption.For ferralsol the curves of adsorption converged to about pH 7 in NaCl solution seemed to intersect in NaNO3 solution and to have a typical PZSE for sulfate adsorption in NaClO4 solution,For Acrisol the three curves of adsorption were nearly parallel in NaCl and NaNO3 solutions and converged to pH 6.5 in NaClO4 solution.

  13. Completing a PhD by Publication: A Review of Australian Policy and Implications for Practice

    Science.gov (United States)

    Jackson, Denise

    2013-01-01

    There is increasing impetus for higher-degree-by-research students to publish during candidature. Research performance, including higher degree completions and publication output, commonly determines university funding, and doctorates with publishing experience are better positioned for a career in softening academic labour markets. The PhD by…

  14. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    Directory of Open Access Journals (Sweden)

    Julie P M Viala

    Full Text Available During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i to survive an extreme acid shock, (ii to grow at mild acidic pH and (iii to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  15. Renal failure caused by chemicals, foods, plants, animal venoms, and misuse of drugs. An overview.

    Science.gov (United States)

    Abuelo, J G

    1990-03-01

    Nephrotoxicity caused by contrast media and drugs is a frequent cause of renal failure in medical practice. However, there are only sporadic cases of renal failure caused by chemicals, foods, plants, animal venoms, and misused or illegal drugs, and standard medical textbooks are limited in the coverage given to the subject. This review provides a referenced compilation of these lesser-known nephrotoxins and gives an overview of renal failure caused by substances other than properly used medications.

  16. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum.

    Science.gov (United States)

    Zhu, Ying; Yang, Shang-Tian

    2004-05-27

    The effect of pH (between 5.0 and 6.3) on butyric acid fermentation of xylose by Clostridium tyrobutyricum was studied. At pH 6.3, the fermentation gave a high butyrate production of 57.9 g l(-1) with a yield of 0.38-0.59 g g(-1) xylose and a reactor productivity up to 3.19 g l(-1)h(-1). However, at low pHs (<5.7), the fermentation produced more acetate and lactate as the main products, with only a small amount of butyric acid. The metabolic shift from butyrate formation to lactate and acetate formation in the fermentation was found to be associated with changes in the activities of several key enzymes. The activities of phosphotransbutyrylase (PTB), which is the key enzyme controlling butyrate formation, and NAD-independent lactate dehydrogenase (iLDH), which catalyzes the conversion of lactate to pyruvate, were higher in cells producing mainly butyrate at pH 6.3. In contrast, cells at pH 5.0 had higher activities of phosphotransacetylase (PTA), which is the key enzyme controlling acetate formation, and lactate dehydrogenase (LDH), which catalyzes the conversion of pyruvate to lactate. Also, PTA was very sensitive to the inhibition by butyric acid. Difference in the specific metabolic rate of xylose at different pHs suggests that the balance in NADH is a key in controlling the metabolic pathway used by the cells in the fermentation.

  17. Dynamin GTPase Regulation is Altered by PH Domain Mutations Found in Centronuclear Myopathy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Kenniston, J.; Lemmon, M

    2010-01-01

    The large GTPase dynamin has an important membrane scission function in receptor-mediated endocytosis and other cellular processes. Self-assembly on phosphoinositide-containing membranes stimulates dynamin GTPase activity, which is crucial for its function. Although the pleckstrin-homology (PH) domain is known to mediate phosphoinositide binding by dynamin, it remains unclear how this promotes activation. Here, we describe studies of dynamin PH domain mutations found in centronuclear myopathy (CNM) that increase dynamin's GTPase activity without altering phosphoinositide binding. CNM mutations in the PH domain C-terminal {alpha}-helix appear to cause conformational changes in dynamin that alter control of the GTP hydrolysis cycle. These mutations either 'sensitize' dynamin to lipid stimulation or elevate basal GTPase rates by promoting self-assembly and thus rendering dynamin no longer lipid responsive. We also describe a low-resolution structure of dimeric dynamin from small-angle X-ray scattering that reveals conformational changes induced by CNM mutations, and defines requirements for domain rearrangement upon dynamin self-assembly at membrane surfaces. Our data suggest that changes in the PH domain may couple lipid binding to dynamin GTPase activation at sites of vesicle invagination.

  18. Penetration studies of topically applied substances: Optical determination of the amount of stratum corneum removed by tape stripping.

    Science.gov (United States)

    Lademann, J; Ilgevicius, A; Zurbau, O; Liess, H D; Schanzer, S; Weigmann, H J; Antoniou, C; Pelchrzim, R V; Sterry, W

    2006-01-01

    Tape stripping is a standard measuring method for the investigation of the dermatopharmacokinetics of topically applied substances using adhesive films. These tape strips are successively applied and removed from the skin after application and penetration of topically applied substances. Thus, layers of corneocytes and some amount of topical applied substances are removed. The amount of substances and the amount of stratum corneum removed with a single tape strip has to be determined for the calculation of the penetration profile. The topically applied substances removed from the skin can be determined by classical analytical methods like high-pressure liquid chromatography, mass spectroscopy, and spectroscopic measurements. The amount of corneocytes on the tape strips can be easily detected by their pseudoabsorption. In the present paper, an easy and cheap corneocyte density analyzer is presented that is based on a slide projector. Comparing the results of the measurements obtained by the corneocyte density analyzer and by uv-visible spectrometry, identical results were obtained.

  19. Levels of Contamination by Perfluoroalkyl Substances in Honey from Selected European Countries.

    Science.gov (United States)

    Surma, Magdalena; Zieliński, Henryk; Piskuła, Mariusz

    2016-07-01

    Perfluoroalkyl substances (PFASs) are man-made chemicals manufactured for numerous applications. The aim of this study was to assess the levels of 10 PFASs in selected types of honey samples from selected eastern, northern and southern European countries. A total of 26 samples of honey were analyzed. PFCAs (perfluoroalkyl carboxylic acids) were detected in almost all (92 %) analyzed samples in the range of 0.124-0.798 ng g(-1) ww (wet weight). The average concentrations of particular PFCAs (ng g(-1) ww) in honey samples increased in the following order: perfluorononanoic acid (0.164) honey contained the highest total content of PFASs (0.878 ng g(-1) ww). Samples originating from an industrial region of Poland showed 20 % higher concentrations of PFCAs compared to those from non-industrial regions.

  20. Optimization of Cultural Conditions for Production of Extracellular Polymeric Substances (EPS by Serpentine Rhizobacterium Cupriavidus pauculus KPS 201

    Directory of Open Access Journals (Sweden)

    Arundhati Pal

    2013-01-01

    Full Text Available Extracellular polymeric substances (EPS are complex biopolymers produced by a wide array of microorganisms for protection against dessication, aggregation, adhesion, and expression of virulence. Growth associated production of EPS by Ni-resistant Cupriavidus pauculus KPS 201 was determined in batch culture using sodium gluconate as the sole carbon source. The optimum pH and temperature for EPS production were 6.5 and 25°C, respectively. Optimal EPS yield (118 μg/mL was attained at 0.35% Na-gluconate after 72 h of growth. Cupriavidus KPS 201 cells also utilized glutamate, acetate, pyruvate, fumarate, malate, malonate, formate, citrate, and succinate for EPS production. Although EPS production was positively influenced by the increase of nitrogen and phosphate in the growth medium, it was negatively influenced by nickel ions. Compositional analysis of the purified EPS showed that it is a homopolymer of rhamnose containing uronic acid, protein, and nucleic acid. Presence of lipids was also detected with spectroscopy. Non-destructive EPS mediated biofilm formation of KPS 201 was also visualized by epifluorescence microscopy.

  1. Quality-by-design-based ultra high performance liquid chromatography related substances method development by establishing the proficient design space for sumatriptan and naproxen combination.

    Science.gov (United States)

    Patel, Prinesh N; Karakam, Vijaya Saradhi; Samanthula, Gananadhamu; Ragampeta, Srinivas

    2015-10-01

    Quality-by-design-based methods hold greater level of confidence for variations and greater success in method transfer. A quality-by-design-based ultra high performance liquid chromatography method was developed for the simultaneous assay of sumatriptan and naproxen along with their related substances. The first screening was performed by fractional factorial design comprising 44 experiments for reversed-phase stationary phases, pH, and organic modifiers. The results of screening design experiments suggested phenyl hexyl column and acetonitrile were the best combination. The method was further optimized for flow rate, temperature, and gradient time by experimental design of 20 experiments and the knowledge space was generated for effect of variable on response (number of peaks ≥ 1.50 - resolution). Proficient design space was generated from knowledge space by applying Monte Carlo simulation to successfully integrate quantitative robustness metrics during optimization stage itself. The final method provided the robust performance which was verified and validated. Final conditions comprised Waters® Acquity phenyl hexyl column with gradient elution using ammonium acetate (pH 4.12, 0.02 M) buffer and acetonitrile at 0.355 mL/min flow rate and 30°C. The developed method separates all 13 analytes within a 15 min run time with fewer experiments compared to the traditional quality-by-testing approach.

  2. Zn Adsorption by Variable Charge Soils in Relation to pH

    Institute of Scientific and Technical Information of China (English)

    SUNHAN-YUAN

    1993-01-01

    Zn adsorption by pure oxides or in the presence of a high concentration of inner electrolyte has been extensively studied.But,in studies on Zn adsorption in the complicated soil system,especially in variable charge soils,profound knowledge about the absorption mechanism still lacks.In this paper,taking Zn ion adsorption by two typical variable charge soils as the object of the study,author discusses the relation between Zn adsorption and pH and possible adsorption mechanisms.The results showed that in the low pH range where the amount of Zn adsorbed did not exceed 50% of Zn added,the specific adsorption was the diminant mechanism.The species of Zn specifically adsorbed was free Zn2+ ion.In the middle and high pH ranges,the mechanisms of specific and electrostatic adsorptions co-existed,accounting for about 70% and 30%,respectively.Noteworthily,in the high pH range,the hydroxyl Zn ion (ZnOH+) from Zn2+ hydrolysis probably was a preferable species for specific absorption.

  3. Electrochemical remediation of copper contaminated kaolinite by conditioning anolyte and catholyte pH simultaneously

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This report examined electrochemical remediation of copper contaminated kaolinite by controlling electrolytes' pH for both of anolyte and catholyte simultaneously. Results showed that electrokinetic process and remediation efficiency varied obviously when different buffer systems, including citric acid (test 1), nitric acid + EDTA (test 2) and nitric acid (test 3), were used to control catholyte pH and Na2CO3 was used at the same time to control all anolyte one. It was found that under such pH condition soil's pH in soil column kept at 3.0-7.0 successfully, and correspondingly no copper precipitation and decrease of soil electroconductivity appeared, which are usually observed in electrokinetic process due to OH- introduction into soil column by electrochemical reaction occurred in cathode. Electroosmosis flow rates were almost equal for these three tests, indicating that these buffers did not affect Zeta-potential of kaolinite within the examined duration. More acid and basic solution was added into electrokinetic cell when nitric acid was used as buffer than when nitric acid + EDTA and then citric acid were used. Due to introduction of large amounts of ions into soil column, significant higher current was observed for test 3 than other two. Analysis of copper speciation and total quantity in kaolinite indicated that 55.65%, 22.5% and 23.74% Cu were removed from kaolinite for test 1, test 2 and test 3 respectively after only 10 days' electrokinetic remediation.

  4. Evaluation the anaerobic hydrolysis acidification stage of kitchen waste by pH regulation.

    Science.gov (United States)

    Wang, Yaya; Zang, Bing; Li, Guoxue; Liu, Yu

    2016-07-01

    This study analyzed the composition and characteristic of kitchen waste (KW) from closed cleaning station of Chaoyang District, Beijing. It was featured by high vegetables and peels contents. This study investigated effect of pH regulation and uncontrolled pH (CK) on the lab-scale anaerobic hydrolysis acidification stage of KW. The optimal adjusting mode by NaOH (including dosage and frequency) was evaluated according to indexes of pH, VFAs, NH4(+)-N, TS, VS, TS/VS, TS and VS removal rate. The treatment 4 as first two days adjusting per 16h and then one time per day at pH 7 was chosen as the optimal mode with high VFAs content(47.31g/L), TS and VS removal rate (42.95% and 54.01%, respectively), low adjusting frequency, fewer dosage and practical operability. Thus, adjusting mode of treatment 4 could be considered using in anaerobic hydrolysis acidification stage on engineering.

  5. Biodegradation of beet molasses vinasse by a mixed culture of micro organisms: Effect of aeration conditions and pH control

    Institute of Scientific and Technical Information of China (English)

    Krzysztof Lutoslawski; Agnieszka Ryznar-Luty; Edmund Cibis; Malgorzata Krzywonos; Tadeusz Mi(s)kiewicz

    2011-01-01

    The effect of aeration conditions and pH control on the progress and efficiency of beet molasses vinasse biodegradation was investigated during four batch processes at 38℃ with the mixed microbial culture composed of Bifidobacterium,Lactobacillus,Lactococcus,Streptococcus,Bacillus,Rhodopseudomonas,and Saccharomyces.The four processes were carried out in a shake flask with no pH control,an aerobic bioreactor without mixing with no pH control,and a stirred-tank reactor (STR) with aeration with and without pH control,respectively.All experiments were started with an initial pH 8.0.The highest efficiency of biodegradation was achieved through the processes conducted in the STR,where betaine (an organic pollutant occurring in beet molasses in very large quantities) was completely degraded by the microorganisms.The process with no pH control carried out in the STR produced the highest reduction in the following pollution measures:organic matter expressed as chemical oxygen demand determined by the dichromatic method + theoretical COD of betaine (CODsum,85.5%),total organic carbon (TOC,78.8%) and five-day biological oxygen demand (BOD5,98.6%).The process conditions applied in the shake flask experiments,as well as those used in the aerobic bioreactor without mixing,failed to provide complete betaine assimilation.As a consequence,reduction in CODwum,TOC and BOD5 was approximately half that obtained with STR.

  6. Kinetics of an acid-base catalyzed reaction (aspartame degradation) as affected by polyol-induced changes in buffer pH and pK values.

    Science.gov (United States)

    Chuy, S; Bell, L N

    2009-01-01

    The kinetics of an acid-base catalyzed reaction, aspartame degradation, were examined as affected by the changes in pH and pK(a) values caused by adding polyols (sucrose, glycerol) to phosphate buffer. Sucrose-containing phosphate buffer solutions had a lower pH than that of phosphate buffer alone, which contributed, in part, to reduced aspartame reactivity. A kinetic model was introduced for aspartame degradation that encompassed pH and buffer salt concentrations, both of which change with a shift in the apparent pK(a) value. Aspartame degradation rate constants in sucrose-containing solutions were successfully predicted using this model when corrections (that is, lower pH, lower apparent pK(a) value, buffer dilution from the polyol) were applied. The change in buffer properties (pH, pK(a)) from adding sucrose to phosphate buffer does impact food chemical stability. These effects can be successfully incorporated into predictive kinetic models. Therefore, pH and pK(a) changes from adding polyols to buffer should be considered during food product development.

  7. Production of Plant Growth-Regulating Substances by the Vesicular-Arbuscular Mycorrhizal Fungus Glomus mosseae

    OpenAIRE

    Barea, José M.; Azcón-Aguilar, Concepción

    1982-01-01

    Glomus mosseae, a representative species of Endogonaceae (Phycomycetes) able to form vesicular-arbuscular mycorrhiza, was investigated for phytohormone production. Spores of G. mosseae were axenically germinated in water, and the resultant mycelial growth was assayed by standard procedures for extracting plant hormones from microbial cultures. Paper partition chromatography and specific bioassays were used to separate and identify plant growth-regulating substances. The microorganism synthesi...

  8. Chemical state speciation by resonant Raman scattering

    CERN Document Server

    Karydas, A G; Zarkadas, C; Paradelis, T; Kallithrakas-Kontos, N

    2002-01-01

    In the resonant Raman scattering (RRS) process the emitted photon exhibits a continuous energy distribution with a high energy cutoff limit. This cutoff energy depends on the chemical state of the element under examination. In the present work, the possibility of identifying the chemical state of V atoms by employing RRS spectroscopy with a semiconductor Si(Li) detector is investigated. A proton induced Cr K alpha x-ray beam was used as the incident radiation, having a fixed energy lower than the V K-absorption edge. The net RRS distributions extracted from the energy dispersive spectra of metallic V and its compound targets were simulated by an appropriate theoretical model. The results showed the possibility of employing RRS spectroscopy with a semiconductor detector for chemical speciation studies.

  9. Analyzing radiation absorption difference of dental substance by using Dual CT

    Science.gov (United States)

    Yu, H.; Lee, H. K.; Cho, J. H.; Yang, H. J.; Ju, Y. S.

    2015-07-01

    The purpose of this study was to evaluate the changes of noise and computer tomography (CT) number in each dental substance, by using the metal artefact reduction algorithm; we used dual CT for this study. For the study, we produced resin, titanium, gypsum, and wax that are widely used by dentists. In addition, we made nickel to increase the artefact. While making the study materials, we made sure that there is no difficulty when inserting the substances inside phantom. In order to study, we scanned before and after using the metal artefact reduction algorithm. We conducted an average analysis of CT number and noise, before and after using the metal artefact reduction algorithm. As a result, there was no difference in CT number and noise before and after using the metal artefact reduction algorithm. However, when it comes to the noise value in each substance, wax's noise value was the lowest whereas titanium's noise value was the highest, after applying the metal artefact reduction algorithm. In nickel, CT number and noise value from artefact area showed a decreased noise value when applying the metal artefact reduction algorithm. In conclusion, we assumed that we could increase the effectiveness of CT examination by applying dual energy's metal artefact reduction algorithm.

  10. Identification and characterization of related substances in pomalidomide by hyphenated LC-MS techniques.

    Science.gov (United States)

    Lu, Ping; Wang, Lei; Song, Min; Hang, Tai-Jun

    2015-10-10

    The current study dealt with the separation, identification and characterization of related substances in pomalidomide by hyphenated techniques. Complete separation was obtained with an Inertsil ODS-SP column (250 mm × 4.6 mm, 5 μm) by linear gradient elution using a mobile phase consisting of 0.1% formic acid solution and acetonitrile. They were characterized by hyphenated chromatographic techniques with the accurate mass determination using high resolution LC-TOF-MS methods as well as the product MS spectra determination and elucidation. The degradation behaviors of pomalidomide under ICH prescribed stress conditions were also conducted. Pomalidomide was found to be labile to degrade under acid, alkaline, oxidative and thermal stress conditions, while it was relatively stable to photolytic stress. 13 related substances were detected and identified to be 10 degradation products and three process related substances. The hyphenated LC-MS method with high resolution accurate mass determination facilitated the qualitative analysis of the unknown compounds than that of the conventional HPLC-UV. The related compounds identified are valuable for pomalidomide manufacturing process optimization and quality control.

  11. High acidity tolerance in lichens with fumarprotocetraric, perlatolic or thamnolic acids is correlated with low pKa1 values of these lichen substances.

    Science.gov (United States)

    Hauck, Markus; Jürgens, Sascha-René; Huneck, Siegfried; Leuschner, Christoph

    2009-10-01

    The depsidone fumarprotocetraric acid as well as the depsides perlatolic and thamnolic acids are lichen secondary metabolites. Their first dissociation constants (pK(a1)) in methanol were determined to be 2.7 for perlatolic acid and 2.8 for fumarprotocetraric and thamnolic acids by UV spectroscopy. Lower pK(a1) values are, so far, not known from lichen substances. Several lichens producing at least one of these compounds are known for their outstanding tolerance to acidic air pollution. This is demonstrated by evaluating published pH preferences for central European lichens. The low pK(a1) values suggest that strong dissociation of the studied lichen substances is a prerequisite for the occurrence of lichens with these compounds on very acidic substrata, as protonated lichen substances of different chemical groups, but not their conjugated bases, are known to shuttle protons into the cytoplasm and thereby apparently damage lichens.

  12. Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk

    Directory of Open Access Journals (Sweden)

    M. Gehlen

    2014-06-01

    Full Text Available This study aims at evaluating the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCP. Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully-coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding −0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environment. We report major potential consequences of pH reductions for deep-sea biodiversity hotspots, such as seamounts and canyons. By 2100 and under the high CO2 scenario RCP8.5 pH reductions exceeding −0.2, (respectively −0.3 units are projected in close to 23% (~ 15% of North Atlantic deep-sea canyons and ~ 8% (3% of seamounts – including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.

  13. Extracellular mercury sequestration by exopolymeric substances produced by Yarrowia spp.: Thermodynamics, equilibria, and kinetics studies.

    Science.gov (United States)

    Oyetibo, Ganiyu Oladunjoye; Miyauchi, Keisuke; Suzuki, Hitoshi; Ishikawa, Satoru; Endo, Ginro

    2016-12-01

    Exopolymeric substances (EPS) produced by highly mercury-resistant strains of the yeast Yarrowia spp. (Idd1 and Idd2) were isolated and studied for their mercury binding potential. Excellent yield (approximately 0.3 g EPS per gram biomass) of soluble EPS in medium with 3% glucose was observed in the Yarrowia cultures 7 day post-inoculation. A gram dry weight of the EPS consists mainly of carbohydrates (0.4 g), protein (0.3-0.4 g), uronic acid (0.02 g), and nucleic acids (0.002 g). Mercury interactions with the biopolymer were measured as uptake kinetics from a simulated aquatic system and modelled with thermodynamics and calculated mass action equilibria. The EPS forms a complex with Hg(2+) in water with small activation energy (≤2 kJ mol(-1)), achieving about 30 mg Hg(2+) adsorption per gram dry weight of EPS. The adsorption models confirmed complexation of Hg(2+) by the EPS via heterogeneous multilayer adsorption that obey second-order kinetics at constant rate of 4.0 and 8.1 mg g(-1) min(-1). The EPS used chemisorption as rate-limiting step that controls the uptake of Hg(2+) from aquatic systems during micro-precipitation as bio-removal strategy. The EPS are promising biotechnological tools to design bioreactors for treatment of mercury-rich industrial wastewater.

  14. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants.

    Science.gov (United States)

    Muhammad, Iqbal; Puschenreiter, Markus; Wenzel, Walter W

    2012-02-01

    Manipulation of soil pH by soil additives and / or rhizosphere processes may enhance the efficiency of metal phytoextraction. Here we report on the effect of nitric acid additions to four polluted soils on Cd and Zn concentrations in soil solution (C(soln)) and 0.005M Ca(NO(3))(2) extracts, and related changes in the diffusive fluxes and resupply of the metals as assessed by diffusive gradients in thin films (DGT). The responses of these chemical indicators of bioavailability were compared to metal uptake in two indicator plant species, common dandelion (Taraxacum officinale F.H. Wigg) and narrow leaf plantain (Plantago lanceolata L.) grown for 75days in a pot experiment. Lowering soil pH increased C(soln), the 0.005M Ca(NO(3))(2)-soluble fractions and the DGT-measured Cd and Zn concentrations (C(DGT)) in the experimental soils. This was associated with enhanced uptake of Cd and Zn on soils acidified to pH 4.5 whereas plants did not survive at pH 3.5. Toxicity along with decreased kinetics of metal resupply (calculated by the 2D DIFS model) in the strong acidification treatment suggests that moderate acidification is more appropriate to enhance the phytoextraction process. Each of the chemical indicators of bioavailability predicted well (R(2)>0.70) the Cd and Zn concentrations in plantain shoots but due to metal toxicity not for dandelion. Concentration factors, i.e. the ratio between metal concentrations in shoots and in soil solution (CF) indicate that Cd and Zn uptake in plantain was not limited by diffusion which may explain that DGT did not perform better than C(soln). However, DGT is expected to predict plant uptake better in diffusion-limited conditions such as in the rhizosphere of metal-accumulating phytoextraction crops.

  15. Substance use disorder symptoms: evidence of differential item functioning by age.

    Science.gov (United States)

    Conrad, Kendon J; Dennis, Michael L; Bezruczko, Nikolaus; Funk, Rodney R; Riley, Barth B

    2007-01-01

    This study examined the applicability of substance abuse diagnostic criteria for adolescents, young adults, and adults using the Global Appraisal of Individual Need's Substance Problems Scale (SPS) from 7,408 clients. Rasch analysis was used to: 1) evaluate whether the SPS operationalized a single reliable dimension, and 2) examine the extent to which the severity of each symptom and the overall test functioned the same or differently by age. Rasch analysis indicated that the SPS was unidimensional with a person reliability of .84. Eight symptoms were significantly different between adolescents and adults. Young adult calibrations tended to fall between adolescents and adults. Differential test functioning was clinically negligible for adolescents but resulted in about 7% more adults being classified as high need. These findings have theoretical implications for screening and treatment of adolescents vs. adults. SPS can be used across age groups though age-specific calibrations enable greater precision of measurement.

  16. Determination of related substances in lisinopril and amlodipine tablets by HPLC

    Institute of Scientific and Technical Information of China (English)

    Dao-Rui Yu; Gui-Fang Yang; Wen-Li Xiao; Jun Wang; Qi-Bing Liu

    2016-01-01

    Objective:To establish an HPLC method for determining the related substances in lisinopril and amlodipine tablets.Methods:An Inertsil Thermo BDS HYPERSIL C18 (4.6 mmí250 mm, 5 μm) column was used with the Acetonitrile-water-phosphoric acid (10:90:0.1) as mobile phase A and Acetonitrile-water-phosphoric acid (90:10:0.1) as mobile phase B by gradient elution at the detection wavelength of 215 nm. The flow rate was 1.0 mL/min and the column temperature was 30℃.Results: The separation of the impurity peak and peak was good. Besides, all the impurities could be detected effectively.Conclusions:The method is sensitive, accurate and selective. It is suitable for control the related substances in lisinopril and Amlodipine tablets.

  17. Chemical transport reactions

    CERN Document Server

    Schäfer, Harald

    2013-01-01

    Chemical Transport Reactions focuses on the processes and reactions involved in the transport of solid or liquid substances to form vapor phase reaction products. The publication first offers information on experimental and theoretical principles and the transport of solid substances and its special applications. Discussions focus on calculation of the transport effect of heterogeneous equilibria for a gas motion between equilibrium spaces; transport effect and the thermodynamic quantities of the transport reaction; separation and purification of substances by means of material transport; and

  18. Urinary reducing substances in neonatal intrahepatic cholestasis caused by citrin deficiency

    Directory of Open Access Journals (Sweden)

    Ajmal Kader

    2014-06-01

    Full Text Available Neonatal cholestasis due to citrin deficiency is an autosomal recessive metabolic disorder caused by mutations in SLC25A13 gene. Mutations in this gene have a relatively high prevalence in East-Asian races compared to European or Afro-Caribbean races. Mutations in both sets of chromosomes often lead to self-limiting early onset cholestasis and growth retardation referred as neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD. It is associated with a wide range of metabolic derangements including galactosemia and aminoacidemia, which can be detected on the newborn blood spot screening. Galactose, being a reducing sugar, can also be detected using Clinitest® (Clinitest® Reagent Tablets, Bayer Corporation, Diagnostics Division, Elkhart, IN, USA, a common screening test used in the work up of metabolic and hepatic diseases. In the western population classical galactosemia is often suspected when non glucose reducing substances are detected in the urine of infants with cholestasis. However in East-Asian races the prevalence of classical galactosemia is very low whilst galactosemia due to altered uridine diphosphate-galactose epimerase activity in NICCD is more common. We present a case of NICCD in an East-Asian infant with cholestasis and persistently positive urine reducing substance. Conclusion: NICCD deficiency should be considered as a differential diagnosis in any infant with cholestasis and persistently positive urinary reducing substances.

  19. Influence of ph on corrosion control of carbon steel by peroxide injection in sour water

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Martins Magda; Baptista, Walmar; Joia, Carlos Jose Bandeira de Mello [PROTEMP - PETROBRAS/CENPES, Cidade Universitaria, Quadra 7, Rio de Janeiro, CEP 21949-900 (Brazil); Ponciano, Gomes Jose Antonio da Cunha [Departamento de Engenharia Metalurgica e de Materiais-COPPE/UFRJ, Cidade Universitaria, Rio de Janeiro (Brazil)

    2004-07-01

    Sour hydrogen damage is considered the most important corrosive process in the light-ends recovery section of Fluid Catalytic Cracking Units (FCCU). Corrosion in this condition is due to heavy gas oil that originates great amount of contaminants, such as H{sub 2}S, NH{sub 3} and HCN. Hydrogen absorption is promoted by the presence of free cyanides in the environment. The attenuation of this process requires the use of some inhibitors, such as oxygen, hydrogen peroxide (H{sub 2}O{sub 2}) or commercial polysulfides. The effect of these compounds is to neutralize free cyanides (CN{sup -}) into thio-sulfides (SCN{sup -}). When peroxide injection is selected, cyanide concentration in sour water has been used as key parameter to start the peroxide introduction. However, the importance of pH in this system has been pointed out by many authors. The aim of this work is to investigate the influence of pH when peroxide injection is carried out in less alkaline conditions of sour water. Electrochemical techniques - like anodic polarization and hydrogen permeation tests - and weight loss measurements were used to evaluate the effectiveness of corrosion control of carbon steel. It was concluded that at pH 7.5 peroxide injection can drive to an increment of the corrosion rate. Besides that, it was concluded that hydrogen permeation into the metal is promoted. Both detrimental effects were due to elemental sulfur generation in this pH range. The adoption of pH as a key parameter for peroxide injection is then suggested. (authors)

  20. Improvement of physicomechanical properties of carbamazepine by recrystallization at different pH values.

    Science.gov (United States)

    Javadzadeh, Yousef; Mohammadi, Ameneh; Khoei, Nazaninossadat Seyed; Nokhodchi, Ali

    2009-06-01

    The morphology of crystals has an appreciable impact role on the physicochemical properties of drugs. Drug properties such as flowability, dissolution, hardness and bioavailability may be affected by crystallinity behaviours of drugs. The objective of this study was to achieve an improved physicomechanical property of carbamazepine powder through recrystallization from aqueous solutions at different pH values. For this purpose, carbamazapine was recrystallized from aqueous solutions at different pH values (1, 7, 11). The morphology of crystals was investigated using scanning electron microscopy; X-ray powder diffraction (XRPD) was used to identify polymorphism; thermodynamic properties were analyzed using differential scanning calorimetery (DSC). Dissolution rate was determined using USP dissolution apparatus. Mechanical behavior of recrystallized carbamazepine powders was investigated by making tablets under different compaction pressure and measuring their hardness. SEM studies showed that the carbamazepine crystallization in different media affected the morphology and size of carbamazepine crystals. The shape of carbamazepine crystals changed from flaky or thin plate-like to needle shape. XRPD and DSC results ruled out any crystallinity changes occurring due to the temperature during recrystallization procedure or pH of crystallization media. The crushing strength of tablets indicated that all of the recrystallized carbamazepine samples had better compactiblity than the original carbamazepine powder. In vitro dissolution studies of carbamazepine samples showed a higher dissolution rate for carbamazepine crystals obtained from media with pH 11 and 1. Carbamazepine particles recrystallized from aqueous solutions of different pH values (all media) appeared to have superior mechanical properties to those of the original carbamazepine sample.

  1. In vitro biodegradation of chrysotile fibres by alveolar macrophages and mesothelial cells in culture: comparison with a pH effect.

    Science.gov (United States)

    Jaurand, M C; Gaudichet, A; Halpern, S; Bignon, J

    1984-08-01

    The modification of the chemistry of asbestos chrysotile fibres (Mg3(Si2O5)(OH)4) after their ingestion by cultured cells has been studied. Two types of cells involved in asbestos related pulmonary disease were used, rabbit alveolar macrophages (AM), recovered by bronchoalveolar lavage, and pleural mesothelial cells (PMC) obtained from the rat parietal pleura. Chemical characterisation of intracellular fibres was performed on unstained ultrathin sections by electron probe microanalysis. The results showed a progressive leaching of Mg, characterised by a time dependent decrease of Mg/Si. AM were more efficient than PMC at leaching intracellular chrysotile fibres since it took longer to obtain the same proportion of leached fibres with PMC than with AM. As in vitro Mg-leaching can be obtained by acid treatment, chrysotile fibres were incubated, either untreated or pretreated with cell membranes, at pH 4 or 7 for various times. The data show that the kinetic of leaching by AM was comparable with leaching at pH 4. The leaching by PMC was of the same order as leaching at pH 7. When membranes were adsorbed on to the fibres, a delayed leaching was observed. The results indicate that the solubilisation of chrysotile by AM could be an intraphagolysosomal event due to a pH effect. With PMC, however, it is not possible to draw this conclusion since nothing is known about the intracellular pH.

  2. Prevention of siderophore- mediated gut-derived sepsis due to P. aeruginosa can be achieved without iron provision by maintaining local phosphate abundance: role of pH

    Directory of Open Access Journals (Sweden)

    Gerdes Svetlana

    2011-09-01

    Full Text Available Abstract Background During extreme physiological stress, the intestinal tract can be transformed into a harsh environment characterized by regio- spatial alterations in oxygen, pH, and phosphate concentration. When the human intestine is exposed to extreme medical interventions, the normal flora becomes replaced by pathogenic species whose virulence can be triggered by various physico-chemical cues leading to lethal sepsis. We previously demonstrated that phosphate depletion develops in the mouse intestine following surgical injury and triggers intestinal P. aeruginosa to express a lethal phenotype that can be prevented by oral phosphate ([Pi] supplementation. Results In this study we examined the role of pH in the protective effect of [Pi] supplementation as it has been shown to be increased in the distal gut following surgical injury. Surgically injured mice drinking 25 mM [Pi] at pH 7.5 and intestinally inoculated with P. aeruginosa had increased mortality compared to mice drinking 25 mM [Pi] at pH 6.0 (p C. elegans. Transcriptional analysis of P. aeruginosa demonstrated enhanced expression of various genes involved in media alkalization at pH 6.0 and a global increase in the expression of all iron-related genes at pH 7.5. Maintaining the pH at 6.0 via phosphate supplementation led to significant attenuation of iron-related genes as demonstrated by microarray and confirmed by QRT-PCR analyses. Conclusion Taken together, these data demonstrate that increase in pH in distal intestine of physiologically stressed host colonized by P. aeruginosa can lead to the expression of siderophore-related virulence in bacteria that can be prevented without providing iron by maintaining local phosphate abundance at pH 6.0. This finding is particularly important as provision of exogenous iron has been shown to have untoward effects when administered to critically ill and septic patients. Given that phosphate, pH, and iron are near universal cues that dictate

  3. Autonomous Chemical Vapour Detection by Micro UAV

    Directory of Open Access Journals (Sweden)

    Kent Rosser

    2015-12-01

    Full Text Available The ability to remotely detect and map chemical vapour clouds in open air environments is a topic of significant interest to both defence and civilian communities. In this study, we integrate a prototype miniature colorimetric chemical sensor developed for methyl salicylate (MeS, as a model chemical vapour, into a micro unmanned aerial vehicle (UAV, and perform flights through a raised MeS vapour cloud. Our results show that that the system is capable of detecting MeS vapours at low ppm concentration in real-time flight and rapidly sending this information to users by on-board telemetry. Further, the results also indicate that the sensor is capable of distinguishing “clean” air from “dirty”, multiple times per flight, allowing us to look towards autonomous cloud mapping and source localization applications. Further development will focus on a broader range of integrated sensors, increased autonomy of detection and improved engineering of the system.

  4. Determination of electroless deposition by chemical nickeling

    Directory of Open Access Journals (Sweden)

    M. Badida

    2013-07-01

    Full Text Available Increasing of technical level and reliability of machine products in compliance with the economical and ecological terms belongs to the main trends of the industrial development. During the utilisation of these products there arise their each other contacts and the interaction with the environment. That is the reason for their surface degradation by wear effect, corrosion and other influences. The chemical nickel-plating allows autocatalytic deposition of nickel from water solutions in the form of coherent, technically very profitable coating without usage of external source of electric current. The research was aimed at evaluating the surface changes after chemical nickel-plating at various changes of technological parameters.

  5. Biodegradation of trace pharmaceutical substances in wastewater by a membrane bioreactor

    Institute of Scientific and Technical Information of China (English)

    Longli BO; Taro URASE; Xiaochang WANG

    2009-01-01

    The biodegradation of selected pharmaceutical micropollutants, including two pharmaceuticals with argued biodegradation, was studied by a lab-scale membrane bioreactor. The reaction kinetics and affecting factors were also investigated in this paper. Clofibric acid (CA) with contradictive biodegradation reported was degraded almost completely at different hydraulic retention times (HRTs) after adaptation to microorganisms. The biodegradation of CA was disturbed at low pH operation,while the activity of microorganisms recovered again after pH adjustment to neutral condition. Ibuprofen (IBP)degraded under neutral and acidic conditions. Removals of IBP and CA were zero-order and first-order reactions under high and low initial concentrations, respectively. Carbamazepine and diclofenac were not degraded regardless of HRTs and pH.

  6. A (Bio-Chemical Field-Effect Sensor with Macroporous Si as Substrate Material and a SiO2 / LPCVD-Si3N4 Double Layer as pH Transducer

    Directory of Open Access Journals (Sweden)

    Hans Lüth

    2002-01-01

    Full Text Available Macroporous silicon has been etched from n-type Si, using a vertical etching cell where no rear side contact on the silicon wafer is necessary. The resulting macropores have been characterised by means of Scanning Electron Microscopy (SEM. After etching, SiO2 was thermally grown on the top of the porous silicon as an insulating layer and Si3N4 was deposited by means of Low Pressure Chemical Vapour Deposition (LPCVD as transducer material to fabricate a capacitive pH sensor. In order to prepare porous biosensors, the enzyme penicillinase has been additionally immobilised inside the porous structure. Electrochemical measurements of the pH sensor and the biosensor with an Electrolyte/Insulator/Semiconductor (EIS structure have been performed in the Capacitance/Voltage (C/V and Constant capacitance (ConCap mode.

  7. Target and suspect screening of psychoactive substances in sewage-based samples by UHPLC-QTOF.

    Science.gov (United States)

    Baz-Lomba, J A; Reid, Malcolm J; Thomas, Kevin V

    2016-03-31

    The quantification of illicit drug and pharmaceutical residues in sewage has been shown to be a valuable tool that complements existing approaches in monitoring the patterns and trends of drug use. The present work delineates the development of a novel analytical tool and dynamic workflow for the analysis of a wide range of substances in sewage-based samples. The validated method can simultaneously quantify 51 target psychoactive substances and pharmaceuticals in sewage-based samples using an off-line automated solid phase extraction (SPE-DEX) method, using Oasis HLB disks, followed by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF) in MS(e). Quantification and matrix effect corrections were overcome with the use of 25 isotopic labeled internal standards (ILIS). Recoveries were generally greater than 60% and the limits of quantification were in the low nanogram-per-liter range (0.4-187 ng L(-1)). The emergence of new psychoactive substances (NPS) on the drug scene poses a specific analytical challenge since their market is highly dynamic with new compounds continuously entering the market. Suspect screening using high-resolution mass spectrometry (HRMS) simultaneously allowed the unequivocal identification of NPS based on a mass accuracy criteria of 5 ppm (of the molecular ion and at least two fragments) and retention time (2.5% tolerance) using the UNIFI screening platform. Applying MS(e) data against a suspect screening database of over 1000 drugs and metabolites, this method becomes a broad and reliable tool to detect and confirm NPS occurrence. This was demonstrated through the HRMS analysis of three different sewage-based sample types; influent wastewater, passive sampler extracts and pooled urine samples resulting in the concurrent quantification of known psychoactive substances and the identification of NPS and pharmaceuticals.

  8. Inhibition of food-related bacteria by antibacterial substances produced by Pseudomonas sp. strains isolated from pasteurized milk

    Directory of Open Access Journals (Sweden)

    Ana Beatriz Ferreira Rangel

    2013-12-01

    Full Text Available In this work, the production of antimicrobial substances by strains of Pseudomonas sp. isolated from pasteurized milk and their potential action against food-related bacteria were investigated. Samples of pasteurized milk were purchased from arbitrarily chosen commercial establishments in the city of Rio de Janeiro, Brazil. Of the four samples analyzed, three presented several typical colonies of Pseudomonas. About 100 colonies were chosen and subjected to biochemical tests for confirmation of their identity. Eighteen strains of the Pseudomonas genus were identified and submitted to tests for the production of antimicrobial substances. Twelve strains (66.7% were identified as Pseudomonas fluorescens, four (22.2% as P. aeruginosa, one (5.5% as P. mendocina and one (5.5% as P. pseudoalcaligenes. Only two P. fluorescens strains were unable to produce any antimicrobial substance against any of the indicator strains tested. Most of the strains presented a broad spectrum of action, inhibiting reference and food-related strains such as Proteus vulgaris, Proteus mirabilis, Hafnia alvei, Yersinia enterocolitica, Escherichia coli and Salmonella typhi. Five antimicrobial substance-producing strains, which presented the broadest spectrum of action, were also tested against Staphylococcus aureus reference strains and 26 Staphylococcus sp. strains isolated from foods, some of which were resistant to antibiotics. The producer strains 8.1 and 8.3, both P. aeruginosa, were able to inhibit all the staphylococcal strains tested. The antimicrobial substances produced by strains 8.1 and 8.3 did not seem to be typical bacteriocins, since they were resistant to the three proteolytic enzymes tested. Experiments involving the characterization of these substances are being carried out in order to evaluate their biotechnological application.

  9. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique.

    Science.gov (United States)

    Martínez Gil, Pablo; Laguarda-Miro, Nicolas; Camino, Juan Soto; Peris, Rafael Masot

    2013-10-15

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in countryside water bodies where organic substances and fertilizers (commonly based on ammonium nitrate) may also be present. Glyphosate also forms complexes with humic acids so these compounds have also been taken into consideration. The objective of this research is to study the interference of these common pollutants in glyphosate measurements by pulsed voltammetry. The statistical treatment of the voltammetric data obtained lets us discriminate glyphosate from the other studied compounds and a mathematical model has been built to quantify glyphosate concentrations in a buffer despite the presence of humic substances and ammonium nitrate. In this model, the coefficient of determination (R(2)) is 0.977 and the RMSEP value is 2.96 × 10(-5) so the model is considered statistically valid.

  10. Comments on the paper astro-ph/0103335 by C Rubano and P Scudellaro

    CERN Document Server

    Cardenas, R; Quirós, I; Cardenas, Rolando; Martin, Osmel; Quiros, Israel

    2002-01-01

    We briefly comment on a paper by Rubano and Scudellaro [astro-ph/0103335] where they found general exact solutions for two classes of exponential potentials in a scalar field model for quintessence. In that paper the authors were led to some interesting conclusions after a proper choice of the integration constants. By using dimensionless variables we show that the integration constants can be found explicitly without additional assumptions. In consequence we revise some results and conclusions in that paper.

  11. Lability of heavy metal species in aquatic humic substances characterized by ion exchange with cellulose phosphate.

    Science.gov (United States)

    Rocha, J C; Toscano, I A; Burba, P

    1997-01-01

    Labile metal species in aquatic humic substances (HSs) were characterized by ion exchange on cellulose phosphate (CellPhos) by applying an optimized batch procedure. The HSs investigated were pre-extracted from humic-rich waters by ultrafiltration and a resin XAD 8 procedure. The HS-metal species studied were formed by complexation with Cd(II), Ni(II), Cu(II), Mn(II) and Pb(II) as a function of time and the ratio ions to HSs. The kinetics and reaction order of this exchange process were studied. At the beginning ( Pb > Mn > Ni > Cd. The required metal determinations were carried out by atomic absorption spectrometry.

  12. Separation of Ofloxacin and Its Six Related Substances Enantiomers by Chiral Ligand-Exchange Chromatography.

    Science.gov (United States)

    Liang, Xinlei; Zhao, Longshan; Deng, Miaoduo; Liu, Lijie; Ma, Yongfu; Guo, Xingjie

    2015-11-01

    A chiral ligand-exchange high-performance liquid chromatography method was developed for the enantioseparation of ofloxacin and its six related substances termed impurities A, B, C, D, E, and F. The separation was performed on a conventional C18 column. Different organic modifiers, copper salts, amino acids, the ratio of Cu(2+) to amino acid, pH of aqueous phase, and column temperature were optimized. The optimal mobile phase conditions were methanol-water systems consisting of 5 mmol/L copper sulfate and 10 mmol/L L-isoleucine (L-Ile). Under such conditions, good enantioseparation of ofloxacin and impurities A, C, E, and F could be observed with resolutions (RS ) of 3.54, 1.97, 3.21, 3.50, and 2.12, respectively. On the relationship between the thermodynamic parameters and structures of analytes, the mechanism of chiral recognition was investigated. It was concluded that ofloxacin and impurities A, C, E, and F were all enthalpically driven enantioseparation and that low column temperature was beneficial to enantioseparation. Furthermore, the structure-separation relationship of these analytes is also discussed.

  13. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    Science.gov (United States)

    Hoch, A.R.; Reddy, M.M.; Aiken, G.R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (?? = 4.5), P(CO2) (10-3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not. Copyright (C) 1999 Elsevier Science Ltd.

  14. Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): understanding the role of HMTA in ZnO nanowire growth.

    Science.gov (United States)

    McPeak, Kevin M; Le, Thinh P; Britton, Nathan G; Nickolov, Zhorro S; Elabd, Yossef A; Baxter, Jason B

    2011-04-05

    Chemical bath deposition (CBD) is an inexpensive and reproducible method for depositing ZnO nanowire arrays over large areas. The aqueous Zn(NO(3))(2)-hexamethylenetetramine (HMTA) chemistry is one of the most common CBD chemistries for ZnO nanowire synthesis, but some details of the reaction mechanism are still not well-understood. Here, we report the use of in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy to study HMTA adsorption from aqueous solutions onto ZnO nanoparticle films and show that HMTA does not adsorb on ZnO. This result refutes earlier claims that the anisotropic morphology arises from HMTA adsorbing onto and capping the ZnO {10 1 0} faces. We conclude that the role of HMTA in the CBD of ZnO nanowires is only to control the saturation index of ZnO. Furthermore, we demonstrate the first deposition of ZnO nanowire arrays at 90 °C and near-neutral pH conditions without HMTA. Nanowires were grown using the pH buffer 2-(N-morpholino)ethanesulfonic acid (MES) and continuous titratation with KOH to maintain the same pH conditions where growth with HMTA occurs. This semi-batch synthetic method opens many new opportunities to tailor the ZnO morphology and properties by independently controlling temperature and pH.

  15. Fabrication of Graphene by Cleaving Graphite Chemically

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shu-hua; ZHAO Xiao-ting; FAN Hou-gang; YANG Li-li; ZHANG Yong-jun; YANG Jing-hai

    2011-01-01

    Graphite was chemically cleaved to graphene by Billups Reaction,and the morphologies and microstructures of graphene were characterized by SEM,Raman and AFM.The results show that the graphite was first functionalized by l-iodododecane,which led to the cleavage of the graphene layer in the graphite.The second decoration cleaved the graphite further and graphene was obtained.The heights of the graphene layer were larger than 1 nm due to the organic decoration.

  16. Six rapid assessments of alcohol and other substance use in populations displaced by conflict

    Directory of Open Access Journals (Sweden)

    Adelekan Moruf

    2011-02-01

    Full Text Available Abstract Background Substance use among populations displaced by conflict is a neglected area of public health. Alcohol, khat, benzodiazepine, opiate, and other substance use have been documented among a range of displaced populations, with wide-reaching health and social impacts. Changing agendas in humanitarian response-including increased prominence of mental health and chronic illness-have so far failed to be translated into meaningful interventions for substance use. Methods Studies were conducted from 2006 to 2008 in six different settings of protracted displacement, three in Africa (Kenya, Liberia, northern Uganda and three in Asia (Iran, Pakistan, and Thailand. We used intervention-oriented qualitative Rapid Assessment and Response methods, adapted from two decades of experience among non-displaced populations. The main sources of data were individual and group interviews conducted with a culturally representative (non-probabilistic sample of community members and service providers. Results Widespread use of alcohol, particularly artisanally-produced alcohol, in Kenya, Liberia, Uganda, and Thailand, and opiates in Iran and Pakistan was believed by participants to be linked to a range of health, social and protection problems, including illness, injury (intentional and unintentional, gender-based violence, risky behaviour for HIV and other sexually transmitted infection and blood-borne virus transmission, as well as detrimental effects to household economy. Displacement experiences, including dispossession, livelihood restriction, hopelessness and uncertain future may make communities particularly vulnerable to substance use and its impact, and changing social norms and networks (including the surrounding population may result in changed - and potentially more harmful-patterns of use. Limited access to services, including health services, and exclusion from relevant host population programmes, may exacerbate the harmful consequences

  17. Nanoscale chemical imaging by photoinduced force microscopy

    Science.gov (United States)

    Nowak, Derek; Morrison, William; Wickramasinghe, H. Kumar; Jahng, Junghoon; Potma, Eric; Wan, Lei; Ruiz, Ricardo; Albrecht, Thomas R.; Schmidt, Kristin; Frommer, Jane; Sanders, Daniel P.; Park, Sung

    2016-01-01

    Correlating spatial chemical information with the morphology of closely packed nanostructures remains a challenge for the scientific community. For example, supramolecular self-assembly, which provides a powerful and low-cost way to create nanoscale patterns and engineered nanostructures, is not easily interrogated in real space via existing nondestructive techniques based on optics or electrons. A novel scanning probe technique called infrared photoinduced force microscopy (IR PiFM) directly measures the photoinduced polarizability of the sample in the near field by detecting the time-integrated force between the tip and the sample. By imaging at multiple IR wavelengths corresponding to absorption peaks of different chemical species, PiFM has demonstrated the ability to spatially map nm-scale patterns of the individual chemical components of two different types of self-assembled block copolymer films. With chemical-specific nanometer-scale imaging, PiFM provides a powerful new analytical method for deepening our understanding of nanomaterials. PMID:27051870

  18. A new fluorescent particle prepared by chemical stabilized phycobilisome

    Institute of Scientific and Technical Information of China (English)

    Min Chen; Guo Ping Ma; Li Sun

    2009-01-01

    Natural phycobilisomes (PBSs) were isolated and purified from a red macroalga, Polysiphonia urceolata, by multi-step of sucrose gradient centrifugation, and were chemically stabilized by small molecule cross-linker formaldehyde. The stabilized PBSs showed similar absorption and fluorescent properties at room temperature compared to natural PBSs and kept a steady F672/F580 value during more than 3 months of storage in 0.45 mol/L phosphate buffer (pH 6.8) or at low temperature at 77 K. The stabilized PBS migrated as a single band at mild PAGE and in 14-18 h of sucrose gradient centdfiagation. All these characters indicated that the stabilized PBSs were stable, soluble, homogenous fluorescent particles with favorable spectroscopic features prepared under present conditions.

  19. Chitosan nanoparticles crosslinked by glycidoxypropyltrimethoxysilane for pH triggered release of protein

    Institute of Scientific and Technical Information of China (English)

    Ai Wu Pan; Bei Bei Wu; Jian Min Wu

    2009-01-01

    pH-responsive-chitosan nanoparticles for the control release of protein drug were prepared by combining two-step crosslinking method, in which chitosan was subsequently crosslinked by sodium tripolyphosphate (TPP) and glycidoxypropyltrimethoxysilane (GPTMS). Compared with TPP crosslinked chitosan particles, the two-step crosslinked nanoparticles were not only pH-responsive but also more stable in wide pH range. Fluorescein isothiocyanate (FITC) labeled anti-human-IgG antibody was used as a model protein drug for evaluating the control release profile of the nano-carrier. The amount of released antibody increased from 5.6% to 50% when the pH of solution shifted from 7.4 m 6.0. The results suggest the possible application of the nanoparticles as pH-responsive drug delivery materials.

  20. Rapid, sensitive and simultaneous determination of fluorescence-labeled designated substances controlled by the Pharmaceutical Affairs Law in Japan by ultra-performance liquid chromatography coupled with electrospray-ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Min, Jun Zhe; Hatanaka, Suguru; Toyo'oka, Toshimasa; Inagaki, Shinsuke; Kikura-Hanajiri, Ruri; Goda, Yukihiro

    2009-11-01

    A simultaneous determination method based on ultra-performance liquid chromatography (UPLC) with fluorescence (FL) detection and electrospray-ionization time-of-flight mass spectrometry (ESI-TOF-MS) was developed for 16 "designated substances" (Shitei-Yakubutsu) controlled by the Pharmaceutical Affairs Law in Japan. These substances were first labeled with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole at 60 degrees C for 2 h in 0.1 M borax (pH 9.3). The resulting fluorophores were well separated by reversed-phase chromatography using an Acquity UPLC BEH C(18) column (1.7 microm, 100 mm x 2.1 mm i.d.) by isocratic elution with a mixture of water and acetonitrile-methanol (20:80) containing 0.1% formic acid. The separated derivatives were sensitively detected by both FL and TOF-MS. However, the determination of several designated substances by FL detection showed interference from endogenous substances in biological samples. Therefore, the determination in real samples was carried out by a combination of UPLC separation and ESI-TOF-MS detection. The structures of the designated substances were identified from the protonated-molecular ions [M+H](+) obtained from the TOF-MS measurement. The calibration curves obtained from the peak area ratios of the internal standard (I.S.), i.e., 3-phenyl-1-propylamine, and the designated substances versus the injection amounts showed good linearity. The limits of detection (S/N = 3) and the limits of quantification (S/N = 10) in 0.1 mL of human plasma and urine for the present method were 0.30-150 pmol and 1.0-500 pmol, respectively. Good accuracy and precision (according to intraday and interday assays) were also obtained with the present procedure. This method was applied to analyses of human plasma, urine and real products.

  1. Analyses of the Erosive Effect of Dietary Substances and Medications on Deciduous Teeth.

    Directory of Open Access Journals (Sweden)

    Adrian Lussi

    Full Text Available This study aimed at analysing the erosive potential of 30 substances (drinks, candies, and medicaments on deciduous enamel, and analyse the associated chemical factors with enamel dissolution. We analysed the initial pH, titratable acidity (TA to pH 5.5, calcium (Ca, inorganic phosphate (Pi, and fluoride (F concentration, and degree of saturation ((pK -pIHAP, (pK -pIFAP, and (pK-pICaF2 of all substances. Then, we randomly distributed 300 specimens of human deciduous enamel into 30 groups (n = 10 for each of the substances tested. We also prepared 20 specimens of permanent enamel for the sake of comparison between the two types of teeth, and we tested them in mineral water and Coca-Cola®. In all specimens, we measured surface hardness (VHN: Vickers hardness numbers and surface reflection intensity (SRI at baseline (SH baseline and SRI baseline, after a total of 2 min (SH2 min and after 4 min (SH4 min and SRI4 min erosive challenges (60 ml of substance for 6 enamel samples; 30°C, under constant agitation at 95 rpm. There was no significant difference in SH baseline between deciduous and permanent enamel. Comparing both teeth, we observed that after the first erosive challenge with Coca-Cola®, a significantly greater hardness loss was seen in deciduous (-90.2 ± 11.3 VHN than in permanent enamel (-44.3 ± 12.2 VHN; p = 0.007, but no differences between the two types of teeth were observed after two challenges (SH4 min. After both erosive challenges, all substances except for mineral water caused a significant loss in relative surface reflectivity intensity, and most substances caused a significant loss in surface hardness. Multiple regression analyses showed that pH, TA and Ca concentration play a significant role in initial erosion of deciduous enamel. We conclude that drinks, foodstuffs and medications commonly consumed by children can cause erosion of deciduous teeth and erosion is mainly associated with pH, titratable acidity and calcium

  2. Differences in the unfolding of procerain induced by pH, guanidine hydrochloride, urea, and temperature.

    Science.gov (United States)

    Dubey, Vikash Kumar; Jagannadham, M V

    2003-10-28

    The structural and functional aspects along with equilibrium unfolding of procerain, a cysteine protease from Calotropis procera, were studied in solution. The energetic parameters and conformational stability of procerain in different states were also estimated and interpreted. Procerain belongs to the alpha + beta class of proteins. At pH 2.0, procerain exists in a partially unfolded state with characteristics of a molten globule-like state, and the protein is predominantly a beta-sheet conformation and exhibits strong ANS binding. GuHCl and temperature denaturation of procerain in the molten globule-like state is noncooperative, contrary to the cooperativity seen with the native protein, suggesting the presence of two parts in the molecular structure of procerain, possibly domains, with different stability that unfolds in steps. Moreover, tryptophan quenching studies suggested the exposure of aromatic residues to solvent in this state. At lower pH, procerain unfolds to the acid-unfolded state, and a further decrease in the pH drives the protein to the A state. The presence of 0.5 M salt in the solvent composition directs the transition to the A state while bypassing the acid-unfolded state. GuHCl-induced unfolding of procerain at pH 3.0 seen by various methods is cooperative, but the transitions are noncoincidental. Besides, a strong ANS binding to the protein is observed at low concentrations of GuHCl, indicating the presence of an intermediate in the unfolding pathway. On the other hand, even in the presence of urea (8 M), procerain retains all the activity as well as structural parameters at neutral pH. However, the protein is susceptible to unfolding by urea at lower pH, and the transitions are cooperative and coincidental. Further, the properties of the molten globule-like state and the intermediate state are different, but both states have the same conformational stability. This indicates that these intermediates may be located on parallel folding routes

  3. Sensitive chemical compass assisted by quantum criticality

    Science.gov (United States)

    Cai, C. Y.; Ai, Qing; Quan, H. T.; Sun, C. P.

    2012-02-01

    A radical-pair-based chemical reaction might be used by birds for navigation via the geomagnetic direction. The inherent physical mechanism is that the quantum coherent transition from a singlet state to triplet states of the radical pair could respond to a weak magnetic field and be sensitive to the direction of such a field; this then results in different photopigments to be sensed by the avian eyes. Here, we propose a quantum bionic setup, inspired by the avian compass, as an ultrasensitive probe of a weak magnetic field based on the quantum phase transition of the environments of the two electrons in the radical pair. We prove that the yield of the chemical products via recombination from the singlet state is determined by the Loschmidt echo of the environments with interacting nuclear spins. Thus quantum criticality of environments could enhance the sensitivity of detection of weak magnetic fields.

  4. Inactivation of adenovirus, reovirus and bacteriophages in fecal sludge by pH and ammonia.

    Science.gov (United States)

    Magri, Maria Elisa; Fidjeland, Jørgen; Jönsson, Håkan; Albihn, Ann; Vinnerås, Björn

    2015-07-01

    The aim of this study was to evaluate the inactivation of adenovirus, reovirus and bacteriophages (MS2, ΦX174, 28B) in a fecal sludge. We conducted two experiments. In the first, we tested different compositions of the fecal sludge by mixing different amounts of water, feces and urine, totaling nine combinations which were kept at temperatures between 10 and 28°C. In the second study, urea was added to the mixtures, which were kept at temperatures from 5 to 33°C. The inactivation was based on a combination of temperature, pH and uncharged ammonia concentration. The increase in pH and ammonia was provided mainly by urine content (Experiment 1) and by urine and added urea (Experiment 2). The inactivation of bacteriophages was slower than the AdV and ReV. At 23°C and 28°, reasonable treatment times were obtained when pH was higher than 8.9 and NH3 concentrations were higher than 35 and 55 mM respectively. With those conditions, the maximum time for a 3 log reduction in viruses, according to this study, would be 35 days (23°C) and 21 days (28°C). However, in most applications where helminth eggs are present, the treatment time and NH3 for sanitization will be the scaling criteria, as they are more persistent. Concerning the sanitization of effluents from latrines, vacuum toilets or dry toilets in developing countries with tropical and sub-tropical climates, the use of intrinsic ammonia combined with high pH can be effective in producing a safe and highly valuable liquid that can be used as a fertilizer. In the case of the fecal sludge with very intrinsic ammonia concentration (<20 mM), sanitization could still be achieved by the addition of urea.

  5. Monosilicate adsorption by ferrihydrite and goethite at pH 3-6

    DEFF Research Database (Denmark)

    Hansen, Hans Christian Bruun; Raben-Lange, B.; Raulund-Rasmussen, Karsten

    1994-01-01

    ) is the protolytic surface constant and K(Si) is the stability constant for the Fe oxide-silicate surface complex; -logK(a1) = 6.40-0.54(8-pH) and logK(Si) = 3.85 for ferrihydrite and goethite. Good agreement was found between calculated Si adsorption and the amount actually found to be adsorbed by synthetic...

  6. Subtype-specific, bi-component inhibition of SK channels by low internal pH

    DEFF Research Database (Denmark)

    Peitersen, Torben; Jespersen, Thomas; Jorgensen, Nanna K;

    2006-01-01

    The effects of low intracellular pH (pH(i) 6.4) on cloned small-conductance Ca2+-activated K+ channel currents of all three subtypes (SK1, SK2, and SK3) were investigated in HEK293 cells using the patch-clamp technique. In 400 nM internal Ca2+ [Ca2+]i, all subtypes were inhibited by pH(i) 6...

  7. The role of environmental factors and medium composition on bacteriocin-like inhibitory substances (BLIS) production by Enterococcus mundtii strains.

    Science.gov (United States)

    Settanni, Luca; Valmorri, Sara; Suzzi, Giovanna; Corsetti, Aldo

    2008-08-01

    Bacteriocin-like inhibitory substances (BLIS)-producers Enterococcus mundtii WGWT1-1A, WGW11.2, WGJ20.1, WGJ40.2 and WGK53 from raw material origin were subjected to a study for the characterization of antimicrobial compound production under several growth conditions, including different cultivation media, growth temperatures, pHs, different concentrations and sources of nitrogen compounds, carbohydrates and other nutritional factors, and in the presence of different percentages of ethanol and NaCl. The five E. mundtii strains showed different behaviors. However, in all cases, MRS and sour dough bacteria (SDB) were found as the optimal media for BLIS production. In general, the higher BLIS production was observed with pH in the range 6.0-8.0 and, except 45 degrees C, the temperature did not show a defining effect. Low or no BLIS activity was detected after growth without nitrogen sources and carbohydrates. Absence of Tween 80, triammoniun citrate, K2HPO4, MgSO4 and MnSO4 did not affect BLIS activity levels. Except for a strain (WGWT1-1A), ethanol did not play a negative role in BLIS expression, while NaCl determined decrease of BLIS activity, proportional with concentration. The above strains did not contain plasmids, hence, BLIS expression is encoded by chromosomal DNA.

  8. Evaluating filterability of different types of sludge by statistical analysis: The role of key organic compounds in extracellular polymeric substances.

    Science.gov (United States)

    Xiao, Keke; Chen, Yun; Jiang, Xie; Zhou, Yan

    2017-03-01

    An investigation was conducted for 20 different types of sludge in order to identify the key organic compounds in extracellular polymeric substances (EPS) that are important in assessing variations of sludge filterability. The different types of sludge varied in initial total solids (TS) content, organic composition and pre-treatment methods. For instance, some of the sludges were pre-treated by acid, ultrasonic, thermal, alkaline, or advanced oxidation technique. The Pearson's correlation results showed significant correlations between sludge filterability and zeta potential, pH, dissolved organic carbon, protein and polysaccharide in soluble EPS (SB EPS), loosely bound EPS (LB EPS) and tightly bound EPS (TB EPS). The principal component analysis (PCA) method was used to further explore correlations between variables and similarities among EPS fractions of different types of sludge. Two principal components were extracted: principal component 1 accounted for 59.24% of total EPS variations, while principal component 2 accounted for 25.46% of total EPS variations. Dissolved organic carbon, protein and polysaccharide in LB EPS showed higher eigenvector projection values than the corresponding compounds in SB EPS and TB EPS in principal component 1. Further characterization of fractionized key organic compounds in LB EPS was conducted with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND). A numerical multiple linear regression model was established to describe relationship between organic compounds in LB EPS and sludge filterability.

  9. Evaluation of electrical conductivity, pH and refractive index as physico-chemical parameters for quality control of Aveloz homeopathic solutions

    Directory of Open Access Journals (Sweden)

    Sheila Garcia

    2011-09-01

    Full Text Available Euphorbia tirucalli Lineu (Aveloz belongs to the family Euphorbiaceae and is used in the treatment of cancer and warts. Some studies have reported that phorbol esters are the active principles responsible for the antitumor activity of Aveloz. The production of these molecules occurs in greater quantity in May, during the morning. This study aimed to evaluate whether the physico-chemical parameters of Aveloz homeopathic aqueous solutions such as pH, electrical conductivity and refractive index change due to storage time. Such parameters were measured regularly for 180 days. All solutions were prepared according to the method of grinding with lactose and subsequent dissolution in aqueous medium, as described in the Brazilian Homeopathic Pharmacopoeia, using as starting point the Aveloz latex collected in May. Homeopathic aqueous solutions containing only lactose were also prepared and evaluated as a control group. The potencies that were analyzed for electrical conductivity, pH and refractive index were: 4cH, 7cH, 9cH, 12cH, 14cH, 15cH, 29cH, 30cH. As a result, we found out that there was only statistical difference (p=0.035 in electrical conductivity between the homeopathic solutions containing Aveloz and the homeopathic solutions without Aveloz, when 15cH potency was compared. We also observed that the electrical conductivity increased with the aging of the solutions but is not directly related to the pH or the refractive index of the solutions, indicating that the aging process may alter the electrical conductivity of the homeopathic medicines. The presence of gas inside the glass that stores these solutions may affect the electrical conductivity measurements. Finally, no statistically significant difference was observed (p> 0.05 in the pH and refractive index.

  10. Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature

    Institute of Scientific and Technical Information of China (English)

    Alejandro MéNDEZ; Catalina PéREZ; Julio Cesar MONTEZ; Gabriela MARTíNEZ; Cristóbal Noé AGUILAR

    2011-01-01

    The combined effects of pH and temperature on red pigment production and fungal morphology were evaluated in a submerged culture of Penicillium purpurogenum GH2,using Czapek-Dox media with D-xylose as a carbon source.An experimental design with a factorial fix was used: three pH values (5,7,and 9) and two temperature levels (24 and 34 ℃) were evaluated.The highest production of red pigment (2.46 g/L) was reached with a pH value of 5 and a temperature of 24 ℃.Biomass and red pigment production were not directly associated.This study demonstrates that P.purpurogenum GH2 produces a pigment of potential interest to the food industry.It also shows the feasibility of producing and obtaining natural water-soluble pigments for potential use in food industries.A strong combined effect ((p)<0.05) of pH and temperature was associated with maximal red pigment production (2.46 g/L).

  11. Disruption of bovine oocytes and preimplantation embryos by urea and acidic pH.

    Science.gov (United States)

    Ocon, O M; Hansen, P J

    2003-04-01

    Feeding cattle diets high in degradable crude protein (CP) or in excess of requirements can reduce fertility and lower uterine pH. Objectives were to determine direct effects of urea and acidic pH during oocyte maturation and embryonic development. For experiment 1, oocytes were matured in medium containing 0, 5, 7.5, or 10 mM urea (0, 14, 21, or 28 mg/dl urea nitrogen, respectively). Cleavage rate was not reduced by any concentration of urea. However, the proportion of oocytes developing to the blastocyst stage at d 8 after insemination was reduced by 7.5 mM urea. In addition, the proportion of cleaved oocytes becoming blastocysts was decreased by 5 and 7.5 mM urea. For experiment 2, putative zygotes were collected -9 h after insemination and cultured in modified Potassium Simplex Optimized Medium (KSOM). Urea did not reduce the proportion of oocytes developing to the blastocyst stage, although 10 mM urea reduced cleavage rate slightly. For experiment 3, dimethadione (DMD), a weak nonmetabolizable acid, was used to decrease culture medium pH. Putative zygotes were cultured in modified KSOM containing 0, 10, 15, or 20 mM DMD for 8 d. DMD reduced cleavage rate at 15 and 20 mM and development to the blastocyst stage at all concentrations. Results support the idea that feeding diets rich in highly degradable CP compromises fertility through direct actions of urea on the oocyte and through diet-induced alterations in uterine pH.

  12. REGULATION OF THE SYNTHESIS OF POLYPHENOLIC SUBSTANCES BY SOME BASIDIOMYCETES STRAINS

    Directory of Open Access Journals (Sweden)

    O. V. Fedotov

    2014-03-01

    Full Text Available The effect of specific carbon-containing compounds as additional components glucose-peptone medium (GPM, the intensity of the polyphenolic substances and carotenoids synthesis by some strains was investigated by surface cultivating basidiomycetes. The total content of polyphenolic substances set out in alcoholic extracts of the modified procedure by Folin-Chokalteu and in acetone carotenoids extracts of mycological material by spectrophotometric method and calculated by Vetshteyn formula. In GPM we used 13 carbonaceous components compounds belonging to mono-, oligo- and polysaccharides and carboxylic acids The effect of the 13 carbon-containing compounds on the accumulation of biomass, carotenoids and polyphenols Basidiomycetes strains L. sulphureus Ls-08, F. fomentarius Ff-1201 and F. hepatica Fh-18 was identified. For the purpose of inducing the synthesis of carotenoids by strains Ls-08 and Fh-18 may recommend changes in the standard GPS by fructose, and for strain Ff-1201 by sucrose. In order to induce synthesis of polyphenols strains Ff-1201 and Fh-18 to make appropriate standard GPS by mannose and for strain Ls-08 by sucrose. Keywords: Basidiomycetes, mycelium, culture filtrate, polyphenols, carotenoids

  13. REGULATION OF THE SYNTHESIS OF POLYPHENOLIC SUBSTANCES BY SOME BASIDIOMYCETES STRAINS

    Directory of Open Access Journals (Sweden)

    Fedotov O. V.

    2014-04-01

    Full Text Available The effect of specific carbon-containing compounds as additional components glucose-peptone medium (GPM, the intensity of the polyphenolic substances and carotenoids synthesis by some strains was investigated by surface cultivating basidiomycetes. The total content of polyphenolic substances set out in alcoholic extracts of the modified procedure by Folin-Chokalteu and in acetone carotenoids extracts of mycological material by spectrophotometric method and calculated by Vetshteyn formula. In GPM we used 13 carbonaceous components compounds belonging to mono-, oligo- and polysaccharides and carboxylic acids The effect of the 13 carbon-containing compounds on the accumulation of biomass, carotenoids and polyphenols Basidiomycetes strains L. sulphureus Ls-08, F. fomentarius Ff-1201 and F. hepatica Fh-18 was identified. For the purpose of inducing the synthesis of carotenoids by strains Ls-08 and Fh-18 may recommend changes in the standard GPS by fructose, and for strain Ff-1201 by sucrose. In order to induce synthesis of polyphenols strains Ff-1201 and Fh-18 to make appropriate standard GPS by mannose and for strain Ls-08 by sucrose.

  14. Toys contaminated by toxic substances; Estudo de metais e de substancias toxicas em brinquedos

    Energy Technology Data Exchange (ETDEWEB)

    Zini, Josiane; Ferreira, Joao C.; Carvalho, Fatima M. S. de; Bustillos, Jose O.W.V.; Scapin, Marcos A.; Salvador, Vera L.R.; Abrao, Alcidio [Instituto de Pesquisas Energeticas Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente], e-mail: jcferrei@ipen.br

    2009-07-01

    The main goal of the present study is the analysis of toxic elements in plastic toys commercialized in Brazil. Metals like cadmium, lead, chromium, zinc, and aluminum, along with organic substances, such as phthalates, were identified in different toys by quantitative analytical techniques. Traces of thorium were detected in one of the studied samples. Although the measured radioactive dose was rather low, the presence of such a radioactive contaminant is against to the International Agency of Atomic Energy regulations. Similar toys manufactured in Brazil were analyzed and found to observe the standards defined by the National Institute of Metrology (INMETRO). (author)

  15. [Consumption of licit and illicit substances by police officers in the city of Rio de Janeiro].

    Science.gov (United States)

    de Souza, Edinilsa Ramos; Schenker, Miriam; Constantino, Patrícia; Correia, Bruna Soares Chaves

    2013-03-01

    The consumption of psychoactive substances by civil and military police of the city of Rio de Janeiro was investigated. Data was gathered from two cross-sectional studies on a questionnaire on work and health conditions given to a sample from the two corporations. The results show higher frequencies of regular consumption of tobacco (23.3% by civil police and 19.1% by military police), daily use of alcohol (12% by civil police and 11% by military police) and tranquilizers in the past year (13.3% by civil police and 10.1% by military police). The consumption of marijuana among officers was 0.1% by civil police and 1.1% by military police, and cocaine use among the military police was 1.1%. Alcohol consumption proved to be intense and causes problems at work and in the social and family relationships of these officers. The need for preventive policies for addiction and the possible underestimation of information on illicit substances is emphasized.

  16. TVOntario's Substance Abuse Series: Dealing with Drugs and Chemical Solutions. A Summative Evaluation. Report No. 19-1991-1992.

    Science.gov (United States)

    Filson, Gerald W.

    A summative evaluation of the two TVOntario series, Dealing with Drugs and Chemical Solutions was carried out in the April-to-June 1991 period. Classes (N=23) were recruited for the intermediate and senior grade level study, which included more than 550 students. The intermediate series, Dealing with Drugs, designed for grade 7 and 8 students,…

  17. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties.

    Science.gov (United States)

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  18. Sensitive Chemical Compass Assisted by Quantum Criticality

    CERN Document Server

    Cai, C Y; Quan, H T; Sun, C P

    2011-01-01

    The radical-pair-based chemical reaction could be used by birds for the navigation via the geomagnetic direction. An inherent physical mechanism is that the quantum coherent transition from a singlet state to triplet states of the radical pair could response to the weak magnetic field and be sensitive to the direction of such a field and then results in different photopigments in the avian eyes to be sensed. Here, we propose a quantum bionic setup for the ultra-sensitive probe of a weak magnetic field based on the quantum phase transition of the environments of the two electrons in the radical pair. We prove that the yield of the chemical products via the recombination from the singlet state is determined by the Loschmidt echo of the environments with interacting nuclear spins. Thus quantum criticality of environments could enhance the sensitivity of the detection of the weak magnetic field.

  19. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH.

    Science.gov (United States)

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-07

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.

  20. Characterization of glycoconjugates of extracellular polymeric substances in tufa-associated biofilms by using fluorescence lectin-binding analysis.

    Science.gov (United States)

    Zippel, B; Neu, T R

    2011-01-01

    Freshwater tufa deposits are the result of calcification associated with biofilms dominated by cyanobacteria. Recent investigations highlighted the fact that the formation of microbial calcium carbonates is mainly dependent on the saturation index, which is determined by pH, the ion activity of Ca(2+) and CO(3)(2-), and the occurrence of extracellular polymeric substances (EPS) produced by microorganisms. EPS, which contain carboxyl and/or hydroxyl groups, can strongly bind cations. This may result in inhibition of CaCO(3) precipitation. In contrast, the formation of templates for crystal nucleation was reported by many previous investigations. The purposes of this study were (i) to characterize the in situ distribution of EPS glycoconjugates in tufa-associated biofilms of two German hard-water creeks by employing fluorescence lectin-binding analysis (FLBA), (ii) to verify the specific lectin-binding pattern by competitive-inhibition assays, and (iii) to assess whether carbonates are associated with structural EPS domains. Three major in situ EPS domains (cyanobacterial, network-like, and cloud-like structures) were detected by FLBA in combination with laser scanning microscopy (LSM). Based on lectin specificity, the EPS glycoconjugates produced by cyanobacteria contained mainly fucose, amino sugars (N-acetyl-glucosamine and N-acetyl-galactosamine), and sialic acid. Tufa deposits were irregularly covered by network-like EPS structures, which may originate from cyanobacterial EPS secretions. Cloud-like EPS glycoconjugates were dominated by sialic acid, amino sugars, and galactose. In some cases calcium carbonate crystals were associated with cyanobacterial EPS glycoconjugates. The detection of amino sugars and calcium carbonate in close association with decaying sheath material indicated that microbially mediated processes might be important for calcium carbonate precipitation in freshwater tufa systems.

  1. Utilization of dating apps by men who have sex with men for persuading other men toward substance use

    Directory of Open Access Journals (Sweden)

    Boonchutima S

    2017-01-01

    Full Text Available Smith Boonchutima, Watsayut Kongchan Department of Public Relations, Faculty of Communication Arts, Chulalongkorn University, Bangkok, Thailand Background: Dating apps play a major role in connecting men who are interested in meeting other men for sex. Besides finding a partner, these tools are also exploited for other activities such as encouraging people to get involved in the habit of illicit drug consumption (substance use. Methods: This study evaluated the overall usage of dating apps among Thai men who have sex with men (MSMs, with an emphasis on abusing these apps to convey messages encouraging substance use. A well-structured Survey Monkey questionnaire posted on specialized websites and social sites used by MSMs was used to collect the data. Data were analyzed using regression and correlation analysis in order to establish the relationship between variables. Results: A substantial proportion (73% of the Thai MSM community is using dating apps to find their partners as well as for inviting others into illicit drug practice. Unfortunately, persuasion through dating significantly influenced people toward accepting a substance use invitation, with a 77% invitation success rate. Substance use was also linked with unprotected sex, potentially enhancing the transmission of sexually transmitted infections. Conclusion: Dating apps significantly increased motivational substance use through messaging from their counterparts. One of the major concerns revealed in this study is that Thai MSMs who reported being involved in substance use also reported avoiding use of condoms during intercourse. Keywords: homosexual, mobile apps, social media, substance, Thailand

  2. Suppression of Ostwald Ripening by Chemical Reactions

    Science.gov (United States)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-03-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable and coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Ostwald ripening must thus be suppressed to stabilize emulsions, e.g. to control the properties of pharmaceuticals, food, or cosmetics. Suppression of Ostwald ripening is also important in biological cells, which contain stable liquid-like compartments, e.g. germ granules, Cajal-bodies, and centrosomes. Such systems are often driven away from equilibrium by chemical reactions and can thus be called active emulsions. Here, we show that non-equilibrium chemical reactions can suppress Ostwald Ripening, leading to stable, monodisperse emulsions. We derive analytical approximations of the typical droplet size, droplet count, and time scale of the dynamics from a coarse-grained description of the droplet dynamics. We also compare these results to numerical simulations of the continuous concentration fields. Generally, we thus show how chemical reactions can be used to stabilize emulsions and to control their properties in technology and nature.

  3. A Whole City Response to the Use of Novel Psychoactive Substances (NPS) by Young People in Newcastle-upon-Tyne

    OpenAIRE

    2015-01-01

    In recent years, Novel Psychoactive Substances (NPS) (otherwise known as ‘legal highs’) have posed an increasingly significant problem for practitioners and policy makers due to their widespread availability, largely unknown chemical composition and negative effects on health and wellbeing. Young people (aged 10-25) seem to be at particular risk of using NPS and experiencing the associated harms. As such, the Department of Social Sciences and Languages at Northumbria University were commissio...

  4. Regulatory authority on environmental pollution caused by radioactive substances - Especially on changes after the Great East Japan Earthquake of 2011-

    OpenAIRE

    西久保, 裕彦

    2014-01-01

    Regulatory authority on environmental pollution caused by radioactive substances has been changing especially after the Great East Japan Earthquake of March 11, 2011. In this article, I tried to summarize the changes on regulatory system before and after the Great East Japan Earthquake of 2011, starting from the enactment of the Basic Law on Environmental Pollution in 1967, and including the enactment of the law on Special Measures concerning the Handling of Pollution by Radioactive substance...

  5. Neuronal pH regulation

    DEFF Research Database (Denmark)

    Vorstrup, S; Jensen, K E; Thomsen, C

    1989-01-01

    The intracellular pH in the brain was studied in six healthy volunteers before and immediately after the administration of 2 g of acetazolamide. Phosphorus-31 nuclear magnetic resonance spectroscopy by a 1.5 tesla whole-body scanner was used. The chemical shift between the inorganic phosphate...... and the phosphocreatine resonance frequencies was used for indirect assessment of the intracellular pH. The mean baseline intracellular pH was 7.05 +/- 0.04 (SD). The mean pH changes obtained at 15-min intervals within the first hour of acetazolamide administration were -0.03 +/- 0.04 (SD), -0.02 +/- 0.03 (SD), and 0.......00 +/- 0.04 (SD), i.e., no statistically significant pH decrease was observed during the period where extracellular pH is known to drop markedly. Although several factors contribute to the lack of change of the intraneuronal pH, we will discuss that this observation in addition might suggest a direct...

  6. Speciation of Aquatic Heavy Metals in Humic Substances by$^{111m}$Cd/$^{199m}$Hg-TDPAC

    CERN Multimedia

    2002-01-01

    Humic substances are ubiquitous in waters and soils and act as complexing agents for different heavy metals, e.g. Cd, Hg. Toxicity, reactivity, fixation and migration are therefore strongly influenced by the interactions between heavy metals and humic substances. Humic substances derive from postmortal materials such as rotten plants, have dark colours and usually a molecular weight between 500 and 10~000 Dalton. Complex formation studies with different heavy metal ions indicate at least two different kinds of metal sites. Usually, these studies are restricted to heavy metal concentrations 2 to 3 orders of magnitude higher than the natural heavy metal abundance (i.e. 10$^{-10}$ molar). This serious limitation can be overcome by the use of suitable radiosotope techniques capable of metal speciation at extreme sensitivity levels such as TDPAC (Time Differential Perturbed Angular Correlation of~$\\gamma$-rays). Thus, we studied the interaction of heavy metals with humic substances by monitoring the nuclear quadru...

  7. One-Directional Fluidic Flow Induced by Chemical Wave Propagation in a Microchannel.

    Science.gov (United States)

    Arai, Miyu; Takahashi, Kazuhiro; Hattori, Mika; Hasegawa, Takahiko; Sato, Mami; Unoura, Kei; Nabika, Hideki

    2016-05-26

    A one-directional flow induced by chemical wave propagation was investigated to understand the origin of its dynamic flow. A cylindrical injection port was connected with a straight propagation channel; the chemical wave was initiated at the injection port. Chemical waves propagated with a constant velocity irrespective of the channel width, indicating that the dynamics of the chemical waves were governed by a geometry-independent interplay between the chemical reaction and diffusion. In contrast, the velocity of the one-directional flow was dependent on the channel width. Furthermore, enlargement of the injection port volume increased the flow velocity and volume flux. These results imply that the one-directional flow in the microchannel is due to a hydrodynamic effect induced in the injection port. Spectroscopic analysis of a pH indicator revealed the simultaneous behavior between the pH increase near the injection port and the one-directional flow. Hence, we can conclude that the one-directional flow in the microchannel with chemical wave propagation was caused by a proton consumption reaction in the injection port, probably through liquid volume expansion by the reaction products and the reaction heat. It is a characteristic feature of the present system that the hydrodynamic flow started from the chemical wave initiation point and not the propagation wavefront, as observed for previous systems.

  8. Metal accumulation by stream bryophytes, related to chemical speciation

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)], E-mail: et@ceh.ac.uk; Vincent, C.D.; Lawlor, A.J.; Lofts, S. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2008-12-15

    Metal accumulation by aquatic bryophytes was investigated using data for headwater streams of differing chemistry. The Windermere Humic Aqueous Model (WHAM) was applied to calculate chemical speciation, including competitive proton and metal interactions with external binding sites on the plants. The speciation modelling approach gives smaller deviations between observed and predicted bryophyte contents of Cu, Zn, Cd and Pb than regressions based on total filtered metal concentrations. If all four metals, and Ni, are considered together, the WHAM predictions are superior at the 1% level. Optimised constants for bryophyte binding by the trace metals are similar to those for humic substances and simple carboxylate ligands. Bryophyte contents of Na, Mg and Ca are approximately explained by binding at external sites, while most of the K is intracellular. Oxide phases account for some of the Al, and most of the Mn, Fe and Co. - Speciation modelling can be used to interpret the accumulation of Ni, Cu, Zn, Cd and Pb by bryophytes, supporting its use to quantify trace metal bioavailability in the field.

  9. Cervical necrotizing fasciitis of odontogenic origin in a diabetic patient complicated by substance abuse.

    Science.gov (United States)

    Camino Junior, Rubens; Naclerio-Homem, Maria G; Cabral, Lecy Marcondes; Luz, João Gualberto C

    2014-01-01

    Cervical necrotizing fasciitis (CNF) is an uncommon, potentially fatal soft tissue infection with rapid progression characterized by necrosis in the subcutaneous tissue and fascia. A case of CNF of odontogenic origin in a diabetic patient, complicated by alcohol dependence and tobacco abuse, is presented with a literature review. The emergency procedure comprised hydration, colloid administration, glycemic control and broad spectrum antibiotic therapy, followed by aggressive surgical debridement. Necrosis in the platysma muscle was verified by histopathologic analysis. Reconstructive surgery was performed after suppressing the infection, and the wound was closed with an autologous skin graft. The patient had a long hospital stay, in part because the substance abuse led to a difficult recovery. The principles of early diagnosis, aggressive surgical debridement, broad-spectrum antibiotic therapy and intensive supportive care in the treatment of CNF were confirmed in the present case. It was concluded that given the occurrence of CNF in the presence of diabetes mellitus and abuse of substances such as alcohol and tobacco, the health care professional should consider a stronger response to treatment and longer hospitalization.

  10. Removal of Unpleasant Odorous Substances from Smoke Produced by Smoke Curing Houses

    Directory of Open Access Journals (Sweden)

    Zygmunt Kowalski

    2010-01-01

    Full Text Available Problem statement: For purification of smoke in PPHU Duda-Bis Plant water washers, placed in the outlet channel of smoke chamber, have been applied, but the amount of the substances remaining in the air after passing through the washer were not acceptable by the standards and caused repulsive odor emitted into the atmosphere. Approach: To eliminate discomfort, caused by smoke emission unto the environment, PPHU Duda-Bis has been introduced a simple and effective method of thermal utilization of post-curing smoke by using heated with natural gas boiler. Before the smoke enters the boiler, water vapors undergo condensation and the water drops obtained are separated in steam drier. The smoke introduced into the boiler brings some excess of air. Results: After the new method of curing smoke after-burning had been put into practice in PPHU Duda-Bis, the unpleasant odorous and harmful to the environment compounds were eliminated. The content of the emitted components per year, after thermal utilization of the smoke, was 100 times lower in comparison to the wet-method. Conclusion: The thermal methods belong to the most efficient BAT techniques enabling removal of the unpleasant odorous substances from the gases generated by meat industry.

  11. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Iqbal; Puschenreiter, Markus, E-mail: markus.puschenreiter@boku.ac.at; Wenzel, Walter W.

    2012-02-01

    Manipulation of soil pH by soil additives and / or rhizosphere processes may enhance the efficiency of metal phytoextraction. Here we report on the effect of nitric acid additions to four polluted soils on Cd and Zn concentrations in soil solution (C{sub soln}) and 0.005 M Ca(NO{sub 3}){sub 2} extracts, and related changes in the diffusive fluxes and resupply of the metals as assessed by diffusive gradients in thin films (DGT). The responses of these chemical indicators of bioavailability were compared to metal uptake in two indicator plant species, common dandelion (Taraxacum officinale F.H. Wigg) and narrow leaf plantain (Plantago lanceolata L.) grown for 75 days in a pot experiment. Lowering soil pH increased C{sub soln}, the 0.005 M Ca(NO{sub 3}){sub 2}-soluble fractions and the DGT-measured Cd and Zn concentrations (C{sub DGT}) in the experimental soils. This was associated with enhanced uptake of Cd and Zn on soils acidified to pH 4.5 whereas plants did not survive at pH 3.5. Toxicity along with decreased kinetics of metal resupply (calculated by the 2D DIFS model) in the strong acidification treatment suggests that moderate acidification is more appropriate to enhance the phytoextraction process. Each of the chemical indicators of bioavailability predicted well (R{sup 2} > 0.70) the Cd and Zn concentrations in plantain shoots but due to metal toxicity not for dandelion. Concentration factors, i.e. the ratio between metal concentrations in shoots and in soil solution (CF) indicate that Cd and Zn uptake in plantain was not limited by diffusion which may explain that DGT did not perform better than C{sub soln}. However, DGT is expected to predict plant uptake better in diffusion-limited conditions such as in the rhizosphere of metal-accumulating phytoextraction crops. - Highlights: Black-Right-Pointing-Pointer The effect of soil acidification was assessed for four Zn and Cd polluted soils. Black-Right-Pointing-Pointer For some soils moderate acidification could

  12. Target and suspect screening of psychoactive substances in sewage-based samples by UHPLC-QTOF

    Energy Technology Data Exchange (ETDEWEB)

    Baz-Lomba, J.A., E-mail: jba@niva.no [Norwegian Institute for Water Research, Gaustadalléen 21, NO-0349, Oslo (Norway); Faculty of Medicine, University of Oslo, PO box 1078 Blindern, 0316, Oslo (Norway); Reid, Malcolm J.; Thomas, Kevin V. [Norwegian Institute for Water Research, Gaustadalléen 21, NO-0349, Oslo (Norway)

    2016-03-31

    The quantification of illicit drug and pharmaceutical residues in sewage has been shown to be a valuable tool that complements existing approaches in monitoring the patterns and trends of drug use. The present work delineates the development of a novel analytical tool and dynamic workflow for the analysis of a wide range of substances in sewage-based samples. The validated method can simultaneously quantify 51 target psychoactive substances and pharmaceuticals in sewage-based samples using an off-line automated solid phase extraction (SPE-DEX) method, using Oasis HLB disks, followed by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF) in MS{sup e}. Quantification and matrix effect corrections were overcome with the use of 25 isotopic labeled internal standards (ILIS). Recoveries were generally greater than 60% and the limits of quantification were in the low nanogram-per-liter range (0.4–187 ng L{sup −1}). The emergence of new psychoactive substances (NPS) on the drug scene poses a specific analytical challenge since their market is highly dynamic with new compounds continuously entering the market. Suspect screening using high-resolution mass spectrometry (HRMS) simultaneously allowed the unequivocal identification of NPS based on a mass accuracy criteria of 5 ppm (of the molecular ion and at least two fragments) and retention time (2.5% tolerance) using the UNIFI screening platform. Applying MS{sup e} data against a suspect screening database of over 1000 drugs and metabolites, this method becomes a broad and reliable tool to detect and confirm NPS occurrence. This was demonstrated through the HRMS analysis of three different sewage-based sample types; influent wastewater, passive sampler extracts and pooled urine samples resulting in the concurrent quantification of known psychoactive substances and the identification of NPS and pharmaceuticals. - Highlights: • A novel reiterative workflow

  13. Too frightened to care? Accounts by district nurses working with clients who misuse substances.

    Science.gov (United States)

    Peckover, Sue; Chidlaw, Robert G

    2007-05-01

    Drug misusers have complex health and social care needs, and experience considerable difficulties in accessing the assessment, care and treatment that they require. Despite the development of specialist services in many parts of the UK, substance misuse is often marginalised within mainstream general healthcare, and many practitioners are unprepared for the challenges of working with this client group. The present paper reports findings from a qualitative study that aimed to explore district nurses' understandings and practices in relation to discrimination and inequalities issues. The research took place during 2003 in two city-based primary care trusts in the North of England. Semistructured interviews were undertaken with 18 'G' grade district nurses. The authors present findings that highlight some of the challenges and tensions district nurses encounter when providing care to clients who misuse substances. The discourses of 'prejudice' and 'risk' were intertwined throughout the data, and served to shape service provision for clients who misuse substances. This was reflected in the district nurses' accounts of their own practice and that of other services, suggesting that these clients receive suboptimal care. The discourse of 'risk' was also used by district nurses to construct themselves as 'vulnerable', and this helped to explain some of their own practices of care provision. Many participants acknowledged their limited knowledge and experience of working with this client group. There is an urgent need for district nurses and other health professionals to develop their practice with these clients, who may present as both vulnerable and dangerous, in order to ensure that care is provided equitably and safely.

  14. Quantifying chemical reactions by using mixing analysis.

    Science.gov (United States)

    Jurado, Anna; Vázquez-Suñé, Enric; Carrera, Jesús; Tubau, Isabel; Pujades, Estanislao

    2015-01-01

    This work is motivated by a sound understanding of the chemical processes that affect the organic pollutants in an urban aquifer. We propose an approach to quantify such processes using mixing calculations. The methodology consists of the following steps: (1) identification of the recharge sources (end-members) and selection of the species (conservative and non-conservative) to be used, (2) identification of the chemical processes and (3) evaluation of mixing ratios including the chemical processes. This methodology has been applied in the Besòs River Delta (NE Barcelona, Spain), where the River Besòs is the main aquifer recharge source. A total number of 51 groundwater samples were collected from July 2007 to May 2010 during four field campaigns. Three river end-members were necessary to explain the temporal variability of the River Besòs: one river end-member is from the wet periods (W1) and two are from dry periods (D1 and D2). This methodology has proved to be useful not only to compute the mixing ratios but also to quantify processes such as calcite and magnesite dissolution, aerobic respiration and denitrification undergone at each observation point.

  15. Molecular Rearrangement of an Aza-Scorpiand Macrocycle Induced by pH: A Computational Study

    Directory of Open Access Journals (Sweden)

    Jesus Vicente De Julián-Ortiz

    2016-07-01

    Full Text Available Rearrangements and their control are a hot topic in supramolecular chemistry due to the possibilities that these phenomena open in the design of synthetic receptors and molecular machines. Macrocycle aza-scorpiands constitute an interesting system that can reorganize their spatial structure depending on pH variations or the presence of metal cations. In this study, the relative stabilities of these conformations were predicted computationally by semi-empirical and density functional theory approximations, and the reorganization from closed to open conformations was simulated by using the Monte Carlo multiple minimum method.

  16. Toward a comprehensive approach to the collection and analysis of pica substances, with emphasis on geophagic materials.

    Directory of Open Access Journals (Sweden)

    Sera L Young

    Full Text Available BACKGROUND: Pica, the craving and subsequent consumption of non-food substances such as earth, charcoal, and raw starch, has been an enigma for more than 2000 years. Currently, there are little available data for testing major hypotheses about pica because of methodological limitations and lack of attention to the problem. METHODOLOGY: In this paper we critically review procedures and guidelines for interviews and sample collection that are appropriate for a wide variety of pica substances. In addition, we outline methodologies for the physical, mineralogical, and chemical characterization of these substances, with particular focus on geophagic soils and clays. Many of these methods are standard procedures in anthropological, soil, or nutritional sciences, but have rarely or never been applied to the study of pica. PRINCIPAL FINDINGS: Physical properties of geophagic materials including color, particle size distribution, consistency and dispersion/flocculation (coagulation should be assessed by appropriate methods. Quantitative mineralogical analyses by X-ray diffraction should be made on bulk material as well as on separated clay fractions, and the various clay minerals should be characterized by a variety of supplementary tests. Concentrations of minerals should be determined using X-ray fluorescence for non-food substances and inductively coupled plasma-atomic emission spectroscopy for food-like substances. pH, salt content, cation exchange capacity, organic carbon content and labile forms of iron oxide should also be determined. Finally, analyses relating to biological interactions are recommended, including determination of the bioavailability of nutrients and other bioactive components from pica substances, as well as their detoxification capacities and parasitological profiles. SIGNIFICANCE: This is the first review of appropriate methodologies for the study of human pica. The comprehensive and multi-disciplinary approach to the

  17. Characterization of hydroxyphenol-terminated alkanethiol self-assembled monolayers: interactions with phosphates by chemical force spectrometry.

    Science.gov (United States)

    Azmi, Alyza A; Ebralidze, Iraklii I; Dickson, Steven E; Horton, J Hugh

    2013-03-01

    Tannins and humic substances, commonly referred to as natural organic matter (NOM), constitute an important component of natural water and soil systems. These species contain numerous hydroxyl and carboxyl functional groups whose reactivity is strongly dependent on both the quantity and location of these moieties on the aromatic ring. In the present study, self-assembled monolayers (SAMs) of 4-(12-mercaptododecyl)benzene-1,2-diol (o-hydroxyphenol-terminated); 5-(12-mercaptododecyl)benzene-1,3-diol (m-hydroxyphenol-terminated); bis(11-thioundecyl) hydrogen phosphate (monoprotic phosphate); and 11-thioundecyl dihydrogen phosphate (diprotic phosphate) were prepared and characterized using X-ray photoelectron spectroscopy (XPS), attenuated total reflectance infrared spectroscopy (ATR-IR), and water contact angle measurements. The interactions between phenolic groups with phosphates were examined as a function of pH using the chemical force spectrometry (CFS) technique. The observations are discussed in the context of hydrogen bonding and electrostatic repulsion interaction between corresponding species. Adhesion force profiles of hydroxyphenol isomers interacting with monoprotic phosphate are dominated by ionic H-bonding; however the strength of o-hydroxyphenol interactions is significantly higher. The difference in location of hydroxyl groups on the interface also results in significantly different force-distance profiles for the isomeric hydroxyphenols when interacting with diprotic phosphate.

  18. Crz1p regulates pH homeostasis in Candida glabrata by altering membrane lipid composition.

    Science.gov (United States)

    Yan, Dongni; Lin, Xiaobao; Qi, Yanli; Liu, Hui; Chen, Xiulai; Liu, Liming; Chen, Jian

    2016-09-23

    The asexual facultative aerobic haploid yeast Candida glabrata is widely used in the industrial production of various organic acids. To elucidate the physiological function of the transcription factor CgCrz1p and its role in tolerance to acid stress we deleted or overexpressed the corresponding gene CgCRZ1 Deletion of CgCRZ1 resulted in a 60% decrease in dry cell weight (DCW) and a 50% drop in cell viability compared to the wild type at pH 2.0. Expression of lipid metabolism-associated genes was also significantly down-regulated. Consequently, the proportion of C18:1 fatty acids, ratio of unsaturated to saturated fatty acids, and ergosterol content decreased by 30%, 46%, and 30%, respectively. Additionally, membrane integrity, fluidity, and H(+)-ATPase activity were reduced by 45%, 9%, and 50%, respectively. In contrast, overexpression of CgCrz1p increased C18:1 and ergosterol content by 16% and 40%, respectively. Overexpression also enhanced membrane integrity, fluidity, and H(+)-ATPase activity by 31%, 6%, and 20%, respectively. Moreover, in the absence of pH buffering, DCW and pyruvate titer increased by 48% and 60%, respectively, compared to the wild type. Together, these results suggest that CgCrz1p regulates tolerance to acidic conditions by altering membrane lipid composition in C. glabrata IMPORTANCE: The present study provides an insight into the metabolism of Candida glabrata under acidic conditions, such as those encountered during industrial production of organic acids. We found that overexpression of the transcription factor CgCrz1p improved viability, biomass, and pyruvate yields at low pH. Analysis of plasma membrane lipid composition indicated that CgCrz1p might play an important role in its integrity and fluidity, and enhanced the pumping of protons in acidic environments. We propose that altering the structure of the cell membrane may provide a successful strategy for increasing C glabrata productivity at low pH.

  19. 基于低沸点化学物质的无源轿车轮胎温度监测系统%A Passive Car Tire Temperature Monitoring System Using Low-boiling Point Chemical Substance

    Institute of Scientific and Technical Information of China (English)

    张健伟; 董群; 王鉴; 胡林杰

    2014-01-01

    利用低沸点化学物质具有较高的饱和蒸汽压的特性,设计了一种无源轿车轮胎温度监测系统。系统中的胎温传感器将温度变化通过低沸点化学物质的饱和蒸汽压的相应变化转变为磁铁的位移信号,再利用线性霍尔传感器转变为电压信号,最后通过信号检测系统对信号进行处理和转换,实现对轮胎温度的实时监测和高温报警。通过静态实验,选定了满足胎温传感器要求的感温物质;通过动态实验,考察了报警系统的检测精确度。结果表明,系统检测相对误差绝对值≤6%,测温精度为1℃。%By utilizing the property of higher saturated vapor pressure of low-boiling point chemical sub-stances, a passive car tire temperature monitoring system is designed, in which the change of temperature in tire temperature sensor is transformed into the displacement signal of magnet through the corresponding change in satu-rated vapor pressure of chemical substance. Then the displacement signal of magnet is transformed into voltage sig-nal by linear Hall sensor, and through certain signal processing and transform, the real time monitoring and high temperature alarm of tire temperature are realized. The temperature sensing chemical substance meeting the require-ments of tire temperature sensor are selected by static test, while the detection accuracy of warning system is investi-gated by dynamic test. The results show that the system achieves a relative error no more than 6% and a temperature measuring accuracy of 1℃.

  20. Genotoxic potential evaluation of a cosmetic insoluble substance by the micronuclei assay.

    Science.gov (United States)

    Dayan, N; Shah, V; Minko, T

    2011-01-01

    An optical brightener (OB) powder (INCI: sodium silicoaluminate (and) glycidoxypropyl trimethyloxysilane/PEI-250 cross fluorescent brightener 230 salt (and) polyvinylalcohol crosspolymer) that is used in cosmetic facial products was tested for its genotoxic potential using the micronuclei test (MNT). It is a solid dry powder with an average size of 5 microns that is insoluble but dispersible in water. This study describes the exposure of cell culture to positive controls with and without enzymatic activation and to the test compound in different concentrations. We evaluated three end points: microscopic observation and quantification of micronuclei formation, and cell viability and proliferation. Both positive controls induced significant changes that were observed under the microscope and quantified. Based on its chemical nature, it was not anticipated that the test substance will degrade under the conditions of the experiments. However, the test is required to make sure that when solublized, impurities that may be present, even at trace levels, will not induce a genotoxic effect. The test compound did not promote micronuclei formation or change the viability or proliferation rate of cells. During this study we faced challenges such as solubilization and correlating viability data to genotoxicity data. These are described in the body of the paper. We believe that with the emergence of the 7(th) European amendment that bans animal testing, sharing these data and the study protocol serves as a key in building the understanding of the utilization of in vitro studies in the safety assessment of cosmetic ingredients.

  1. Inorganic chemical composition and chemical reactivity of settled dust generated by the World Trade Center building collapse

    Science.gov (United States)

    Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.

    2009-01-01

    Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.

  2. Presence by radioimmunoassay of a calcitonin-like substance in porcine pituitary glands

    Energy Technology Data Exchange (ETDEWEB)

    Catherwood, B.D.; Deftos, L.J.

    1980-06-01

    We studied acidic acetone extracts of whole porcine pituitary glands for the presence of immunoreactive calcitonin (CT) using a porcine CT (pCT) RIA which did not react with other known pituitary hormones. Four preparations of porcine pituitary extract contained immunoreactive CT. Three of these displayed inhibition of binding parallel to that of authentic pCT in the pCT RIA and contained a single peak of immunoreactivity similar to pCT when studied by two different gel filtration chromatography systems. One preparation of porcine pituitary extract showed nonparallelism in RIA dose-dilution experiments and multiple immunoreactive species both similar to and larger than pCT on gel filtration in 6 M guanidine HCl. The effect of the reduction of disulfide bonds, followed by carboxymethylation of sulfhydryl groups, on immunoreactivity and apparent molecular size was similar for the CT-like substance in porcine pituitary extract and for authentic pCT. Preliminary immunohistological studies showed cytoplasmic staining in cells of the porcine adenohypophysis. These results demonstrate that the porcine pituitary gland contains a substance which has some of the immunochemical and biochemical properties of thyroidal pCT.

  3. Chemical Reactivity as Described by Quantum Chemical Methods

    Directory of Open Access Journals (Sweden)

    F. De Proft

    2002-04-01

    Full Text Available Abstract: Density Functional Theory is situated within the evolution of Quantum Chemistry as a facilitator of computations and a provider of new, chemical insights. The importance of the latter branch of DFT, conceptual DFT is highlighted following Parr's dictum "to calculate a molecule is not to understand it". An overview is given of the most important reactivity descriptors and the principles they are couched in. Examples are given on the evolution of the structure-property-wave function triangle which can be considered as the central paradigm of molecular quantum chemistry to (for many purposes a structure-property-density triangle. Both kinetic as well as thermodynamic aspects can be included when further linking reactivity to the property vertex. In the field of organic chemistry, the ab initio calculation of functional group properties and their use in studies on acidity and basicity is discussed together with the use of DFT descriptors to study the kinetics of SN2 reactions and the regioselectivity in Diels Alder reactions. Similarity in reactivity is illustrated via a study on peptide isosteres. In the field of inorganic chemistry non empirical studies of adsorption of small molecules in zeolite cages are discussed providing Henry constants and separation constants, the latter in remarkable good agreement with experiments. Possible refinements in a conceptual DFT context are presented. Finally an example from biochemistry is discussed : the influence of point mutations on the catalytic activity of subtilisin.

  4. The effects of polymer characteristics on nano particle separation in humic substances removal by cationic polymer coagulation.

    Science.gov (United States)

    Kvinnesland, T; Odegaard, H

    2004-01-01

    Removal of humic substances by coagulation involves nano- and microparticle transport processes. The objective of this paper has been to describe the effects of polymer characteristics on the initial coagulation of nano-sized humic substances and on the aggregates' ability to form larger flocs. The study offers a direct comparison of four different low molecular weight polycations, with charge densities ranging from 4.0 to 7.0 meq/g, as well as of a low and medium molecular weight cationic polyacrylamide with practically equal charge densities. The extent of coagulation of humic substances, determined as the percentage removal of humic substances after filtration through 0.1 microm, could, regardless of the polymer type, be explained by the amount of cationic charge equivalents added per mg TOC of humic substances. The optimal polymer dosage with respect to the extent of flocculation, determined as the percentage removal after filtration through 11 microm could not be explained by this, but the maximum extent of flocculation obtained with each polymer type increased with increasing polyelectrolyte charge density. However, the weak polycation chitosan showed a significantly higher maximum extent of flocculation than would be predicted from its charge density. Polyelectrolyte molecular weight did not show any significant effect on the coagulation of humic substances, nor did it increase the extent of floc separability at 11 microm.

  5. Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation.

    Science.gov (United States)

    Shi, Kan; Song, Da; Chen, Gong; Pistolozzi, Marco; Wu, Zhenqiang; Quan, Lei

    2015-08-01

    Submerged fermentations of Monascus anka were performed with different nitrogen sources at different pH in 3 L bioreactors. The results revealed that the Monascus pigments dominated by different color components (yellow pigments, orange pigments or red pigments) could be selectively produced through pH control and nitrogen source selection. A large amount of intracellular pigments dominated by orange pigments and a small amount of water-soluble extracellular yellow pigments were produced at low pH (pH 2.5 and 4.0), independently of the nitrogen source employed. At higher pH (pH 6.5), the role of the nitrogen source became more significant. In particular, when ammonium sulfate was used as nitrogen source, the intracellular pigments were dominated by red pigments with a small amount of yellow pigments. Conversely, when peptone was used, intracellular pigments were dominated by yellow pigments with a few red pigments derivatives. Neither the presence of peptone nor ammonium sulfate promoted the production of intracellular orange pigments while extracellular pigments with an orangish red color were observed in both cases, with a higher yield when peptone was used. Two-stage pH control fermentation was then performed to improve desirable pigments yield and further investigate the effect of pH and nitrogen sources on pigments composition. These results provide a useful strategy to produce Monascus pigments with different composition and different color characteristics.

  6. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    Science.gov (United States)

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production.

  7. Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes

    Science.gov (United States)

    Johannes, E.; Collings, D. A.; Rink, J. C.; Allen, N. S.; Brown, C. S. (Principal Investigator)

    2001-01-01

    In maize (Zea mays) and other grasses, changes in orientation of stems are perceived by pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. The amyloplast-containing bundle sheath cells are the sites of gravity perception, although the initial steps of gravity perception and transmission remain unclear. In columella cells of Arabidopsis roots, we previously found that cytoplasmic pH (pH(c)) is a mediator in early gravitropic signaling (A.C. Scott, N.S. Allen [1999] Plant Physiol 121: 1291-1298). The question arises whether pH(c) has a more general role in signaling gravity vector changes. Using confocal ratiometric imaging and the fluorescent pH indicator carboxy seminaphtorhodafluor acetoxymethyl ester acetate, we measured pH(c) in the cells composing the maize pulvinus. When stem slices were gravistimulated and imaged on a horizontally mounted confocal microscope, pH(c) changes were only apparent within the bundle sheath cells, and not in the parenchyma cells. After turning, cytoplasmic acidification was observed at the sides of the cells, whereas the cytoplasm at the base of the cells where plastids slowly accumulated became more basic. These changes were most apparent in cells exhibiting net amyloplast sedimentation. Parenchyma cells and isolated bundle sheath cells did not show any gravity-induced pH(c) changes although all cell types responded to external stimuli in the predicted way: Propionic acid and auxin treatments induced acidification, whereas raising the external pH caused alkalinization. The results suggest that pH(c) has an important role in the early signaling pathways of maize stem gravitropism.

  8. Root growth of tomato seedlings intensified by humic substances from peat bogs

    Directory of Open Access Journals (Sweden)

    Alexandre Christofaro Silva

    2011-10-01

    Full Text Available Peats are an important reserve of humified carbon in terrestrial ecosystems. The interest in the use of humic substances as plant growth promoters is continuously increasing. The objective of this study was to evaluate the bioactivity of alkaline soluble humic substances (HS, humic (HA and fulvic acids (FA isolated from peats with different decomposition stages of organic matter (sapric, fibric and hemic in the Serra do Espinhaço Meridional, state of Minas Gerais. Dose-response curves were established for the number of lateral roots growing from the main plant axis of tomato seedlings. The bioactivity of HA was greatest (highest response in lateral roots at lowest concentration while FA did not intensify root growth. Both HS and HA stimulated root hair formation. At low concentrations, HS and HA induced root hair formation near the root cap, a typical hormonal imbalance effect in plants. Transgenic tomato with reporter gene DR5::GUS allowed the observation that the auxin-related signalling pathway was involved in root growth promotion by HA.

  9. A measure of endosomal pH by flow cytometry in Dictyostelium

    Directory of Open Access Journals (Sweden)

    Cosson Pierre

    2009-01-01

    Full Text Available Abstract Background Dictyostelium amoebae are frequently used to study the organization and function of the endocytic pathway, and specific protocols are essential to measure the dynamics of endocytic compartments and their internal pH. Findings We have revisited these classical protocols to measure more accurately endosomal pH, making use of a fluorescent probe (Oregon green more adequate for very acidic pH values. This pH-sensitive probe was combined with a pH-insensitive marker, in order to visualize simultaneously endosome dynamics and pH changes. Finally, a flow cytometer was used to measure endosomal pH in individual cells. Conclusion Using these simple protocols the endosomal pH of endocytic compartments can be assessed accurately, revealing the extreme acidity of Dictyostelium lysosomes (pH

  10. Maternal Concentrations of Perfluoroalkyl Substances and Fetal Markers of Metabolic Function and Birth Weight: The Maternal-Infant Research on Environmental Chemicals (MIREC) Study.

    Science.gov (United States)

    Ashley-Martin, Jillian; Dodds, Linda; Arbuckle, Tye E; Bouchard, Maryse F; Fisher, Mandy; Morriset, Anne-Sophie; Monnier, Patricia; Shapiro, Gabriel D; Ettinger, Adrienne S; Dallaire, Renee; Taback, Shayne; Fraser, William; Platt, Robert W

    2017-01-09

    Perfluoroalkyl substances (PFAS) are ubiquitous, persistent chemicals that have been widely used in the production of common household and consumer goods for their nonflammable, lipophobic, and hydrophobic properties. Inverse associations between maternal or umbilical cord blood concentrations of perfluorooctanoic acid and perfluorooctanesulfonate and birth weight have been identified. This literature has primarily examined each PFAS individually without consideration of the potential influence of correlated exposures. Further, the association between PFAS exposures and indicators of metabolic function (i.e., leptin and adiponectin) has received limited attention. We examined associations between first-trimester maternal plasma PFAS concentrations and birth weight and cord blood concentrations of leptin and adiponectin using data on 1,705 mother-infant pairs from the Maternal Infant Research on Environmental Chemicals (MIREC) Study, a trans-Canada birth cohort study that recruited women between 2008 and 2011. Bayesian hierarchical models were used to quantify associations and calculate credible intervals. Maternal perfluorooctanoic acid concentrations were inversely associated with birth weight z score, though the null value was included in all credible intervals (log10 β = -0.10, 95% credible interval: -0.34, 0.13). All associations between maternal PFAS concentrations and cord blood adipocytokine concentrations were of small magnitude and centered around the null value. Follow-up in a cohort of children is required to determine how the observed associations manifest in childhood.

  11. Inactivation of murine norovirus by chemical biocides on stainless steel

    Directory of Open Access Journals (Sweden)

    Steinmann Jörg

    2009-07-01

    Full Text Available Abstract Background Human norovirus (NoV causes more than 80% of nonbacterial gastroenteritis in Europe and the United States. NoV transmission via contaminated surfaces may be significant for the spread of viruses. Therefore, measures for prevention and control, such as surface disinfection, are necessary to interrupt the dissemination of human NoV. Murine norovirus (MNV as a surrogate for human NoV was used to study the efficacy of active ingredients of chemical disinfectants for virus inactivation on inanimate surfaces. Methods The inactivating properties of different chemical biocides were tested in a quantitative carrier test with stainless steel discs without mechanical action. Vacuum-dried MNV was exposed to different concentrations of alcohols, peracetic acid (PAA or glutaraldehyde (GDA for 5 minutes exposure time. Detection of residual virus was determined by endpoint-titration on RAW 264.7 cells. Results PAA [1000 ppm], GDA [2500 ppm], ethanol [50% (v/v] and 1-propanol [30% (v/v] were able to inactivate MNV under clean conditions (0.03% BSA on the carriers by ≥ 4 log10 within 5 minutes exposure time, whereas 2-propanol showed a reduced effectiveness even at 60% (v/v. Furthermore, there were no significant differences in virus reduction whatever interfering substances were used. When testing with ethanol, 1- and 2-propanol, results under clean conditions were nearly the same as in the presence of dirty conditions (0.3% BSA plus 0.3% erythrocytes. Conclusion Products based upon PAA, GDA, ethanol and 1-propanol should be used for NoV inactivation on inanimate surfaces. Our data provide valuable information for the development of strategies to control NoV transmission via surfaces.

  12. Influence of pH on the growth, laccase activity and RBBR decolorization by tropical basidiomycetes

    Directory of Open Access Journals (Sweden)

    Sérgio Luiz Moreira Neto

    2009-10-01

    Full Text Available The basidiomycete fungi Lentinus crinitus and Psilocybe castanella are being evaluated in a bioremediation process of soils contaminated with organochlorine industrial residues in the Baixada Santista, São Paulo. The aim of the present study was to determine the influence of pH on the fungal growth, in vitro decolorization of anthraquinonic dye Remazol Brilliant Blue R (RBBR and laccase activity. The pH of the culture medium influenced the growth of L. crinitus and P. castanella, which presented less growth at pH 5.9 and pH 2.7, respectively. The fungi were able to modify the pH of the culture medium, adjusting it to the optimum pH for growth which was close to 4.5. Decolorization of the RBBR was maximal at a pH of 2.5 to 3.5. Higher laccase activity was observed at pH 3.5 and pH 4.5 for L. crinitus and P. castanella, respectively. pH was found to be an important parameter for both the growth of these fungi and the enzymatic system involved in RBBR decolorization.Os fungos basidiomicetos Lentinus crinitus e Psilocybe castanella estão sendo avaliados em processo de biorremediação de solos contaminados com resíduos industriais organoclorados, na Baixada Santista, SP. O presente estudo avaliou a influência do pH no crescimento, na descoloração in vitro do corante Azul Brilhante de Remazol R (RBBR e na atividade de lacase durante cultivo destes fungos, de forma a subsidiar a otimização do processo. O pH do meio influenciou o crescimento de L. crinitus e de P. castanella, com menor biomassa em pH 5,9 e pH 2,7, respectivamente. Os fungos foram capazes de modificar o pH inicial do meio de cultura, de modo a ajustá-lo ao valor ótimo de crescimento, próximo a 4,5. Descoloração in vitro do RBBR foi máxima em pH 2,5 e 3,5. Maiores atividades de lacase foram obtidas em pH 3,5 e em pH 4,5 para L. crinitus e P. castanella, respectivamente. Evidenciou-se que o pH é um parâmetro importante para o crescimento destes fungos, atividade de lacase

  13. Inhibition of food-related bacteria by antibacterial substances produced by Pseudomonas sp. strains isolated from pasteurized milk

    OpenAIRE

    Ana Beatriz Ferreira Rangel; Jean Thiago Alves Soares; Mariana Maciel Pereira; Bruna Rachel de Britto Peçanha; Leonardo Emanuel de Oliveira Costa; Janaína dos Santos Nascimento

    2013-01-01

    In this work, the production of antimicrobial substances by strains of Pseudomonas sp. isolated from pasteurized milk and their potential action against food-related bacteria were investigated. Samples of pasteurized milk were purchased from arbitrarily chosen commercial establishments in the city of Rio de Janeiro, Brazil. Of the four samples analyzed, three presented several typical colonies of Pseudomonas. About 100 colonies were chosen and subjected to biochemical tests for confirmation o...

  14. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  15. Biophysical analysis of phaseolin denaturation induced by urea, guanidinium chloride, pH, and temperature.

    Science.gov (United States)

    Dyer, J M; Nelson, J W; Murai, N

    1992-06-01

    The structural stability of phaseolin was determined by using absorbance, circular dichroism (CD), fluorescence emission, and fluorescence polarization anisotropy to monitor denaturation induced by urea, guanidinium chloride (GdmCl), pH changes, increasing temperature, or a combination thereof. Initial results indicated that phaseolin remained folded to a similar extent in the presence or absence of 6.0 M urea or GdmCl at room temperature. In 6.0 M GdmCl, phaseolin denatures at approximately 65 degrees C when probed with absorbance, CD, and fluorescence polarization anisotropy. The transition occurs at lower temperatures by decreasing pH. Kinetic measurements of denaturation using CD indicated that the denaturation is slow below 55 degrees C and is associated with an activation energy of 52 kcal/mol in 6.0 M GdmCl. In addition, kinetic measurement using fluorescence emission indicated that the single tryptophan residue was sensitive to at least two steps of the denaturation process. The fluorescence emission appeared to reflect some other structural perturbation than protein denaturation, as fluorescence inflection occurred approximately 5 degrees C prior to the changes observed in absorbance, CD, and fluorescence polarization anisotropy.

  16. Floret-shaped solid domains on giant fluid lipid vesicles induced by pH

    Science.gov (United States)

    Sofou, Stavroula; Bandekar, Amey

    2012-02-01

    Lateral lipid phase separation and domain formation induced by changes in pH is significant in liposome-based drug delivery: environmentally responsive lipid heterogeneities can be tuned to alter collective membrane properties such as drug release and drug carrier reactivity impacting, therefore, the therapeutic outcomes. At the micron-meter scale, fluorescence microscopy on Giant Unilamellar fluid Vesicles (GUVs) shows that lowering pH (from 7.0 to 5.0) promotes the condensation of titratable PS or PA lipids into beautiful floret-shaped solid domains in which lipids are tightly packed via H-bonding and VdWs interactions. Solid domains phenomenologically comprise a circular ``core'' cap beyond which interfacial instabilities emerge resembling leaf-like stripes of almost vanishing Gaussian curvature independent of GUVs' preparation path and in agreement with a general condensation mechanism. Increasing incompressibility of domains is strongly correlated with larger number of thinner stripes per domain, and increasing relative rigidity of domains with smaller core cap areas. Line tension drives domain ripening, however the final domain shape is a result of enhanced incompressibility and rigidity maximized by domain coupling across the bilayer. Introduction of a transmembrane osmotic gradient (hyperosmotic on the outer lipid leaflet) allows the domain condensation process to reach its maximum extent which, however, is limited by the minimal expansivity of the continuous fluid membrane.

  17. Extracellular ATP hydrolysis inhibits synaptic transmission by increasing ph buffering in the synaptic cleft.

    Directory of Open Access Journals (Sweden)

    Rozan Vroman

    2014-05-01

    Full Text Available Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms, highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca²⁺ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form

  18. Isolation and biochemical characterisation of a bacteriocin-like substance produced by Bacillus amyloliquefaciens An6.

    Science.gov (United States)

    Ayed, Hanen Ben; Maalej, Hana; Hmidet, Noomen; Nasri, Moncef

    2015-12-01

    This study focuses on the isolation and characterisation of a peptide with bacteriocin-like properties from Bacillus amyloliquefaciens An6. Incubation conditions were optimised, and the effects of the incubation period and of carbon and nitrogen sources were investigated. The produced bacteriocin was partially purified with ammonium sulphate precipitation, dialysis and ultrafiltration and was then biochemically characterised. Maximum bacteriocin production was achieved after 48h of incubation in a culture medium containing 20g/L starch and 10g/L yeast extract, with an initial pH 8.0 at 30°C under continuous agitation at 200rpm. The bacteriocin was sequentially purified and its molecular weight was determined to be 11kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The bacteriocin was relatively heat-resistant and was not sensitive to acid and alkaline conditions (pH 4.0-10.0). Its inhibitory activity was sensitive to proteinase K but was resistant to the proteolytic action of alcalase, trypsin, chymotrypsin and pepsin. In conclusion, bacteriocin An6, owing its wide spectrum of activity as well as its high tolerance to acidic and alkaline pH values, temperature and proteases shows great potential for use as a food biopreservative.

  19. The Utility of the SASSI-3 in Early Detection of Substance Use Disorders in Not Guilty by Reason of Insanity Acquittees: An Exploratory Study

    Science.gov (United States)

    Wright, Ervin E., II; Piazza, Nick J.; Laux, John M.

    2008-01-01

    Previous studies have shown the Substance Abuse Subtle Screening Inventory-3 (G. Miller, 1999) to be valid in classifying substance use disorders in forensic and mentally ill populations. The authors found that it also correctly classified substance use disorders in the understudied not guilty by reason of insanity population. (Contains 3 tables.)

  20. Enhancement of dewatering performance of digested paper mill sludge by chemical pretreatment

    Science.gov (United States)

    Lin, Y. Q.; Zeng, C.; Wu, H. H.; Zeng, B. X.

    2016-08-01

    The wide application of anaerobic digestion (AD) for waste sludge results in a huge amount of digested sludge, while the appropriate reuse of digested sludge depends on effective solid-liquid separation. Thus, chemical (acid/alkali) pretreatment effects on dewaterability of digested paper mill sludge (DPMS) for better downstream reuse based on enhanced solid- liquid separation were investigated in this research. The dewatering properties of paper mill sludge (PMS) were also investigated to elucidate the impact of AD on sludge dewaterability. The results indicated that a higher DPMS dewaterability was noted with acid pretreatment (pH5). A 41.37% moisture content and 74.41% dewatering efficiency were determined for DPMS after acid (pH5) pretreatment within 25 min. In addition, a 7.13 mg•g-1 VSS of extracellular polymeric substances (EPS) and 101.50 μm of average particle size were observed. It was also observed that both EPS concentrations and particle sizes were key parameters influencing DPMS dewaterability. Lower EPS concentrations with larger average particle sizes contributed to enhanced sludge dewaterability. Moreover, dewaterability of PMS was higher than that of DPMS, which illustrated that AD would decrease the sludge dewaterability.

  1. Chemical leukoderma induced by dimethyl sulfate*

    Science.gov (United States)

    Gozali, Maya Valeska; Zhang, Jia-an; Yi, Fei; Zhou, Bing-rong; Luo, Dan

    2016-01-01

    Chemical leukoderma occurs due to the toxic effect of a variety of chemical agents. Mechanisms include either destruction or inhibition of melanocytes. We report two male patients (36 and 51 years old) who presented with multiple hypopigmented macules and patches on the neck, wrist, and legs after exposure to dimethyl sulfate in a chemical industry. Physical examination revealed irregular depigmentation macules with sharp edges and clear hyperpigmentation around the lesions. History of repeated exposure to a chemical agent can help the clinical diagnosis of chemical leukoderma. This diagnosis is very important for prognosis and therapeutic management of the disease.

  2. Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism

    Directory of Open Access Journals (Sweden)

    Serenella Nardi

    2016-02-01

    Full Text Available ABSTRACT In recent years, the use of biostimulants in sustainable agriculture has been growing. Biostimulants can be obtained from different organic materials and include humic substances (HS, complex organic materials, beneficial chemical elements, peptides and amino acids, inorganic salts, seaweed extracts, chitin and chitosan derivatives, antitranspirants, amino acids and other N-containing substances. The application of biostimulants to plants leads to higher content of nutrients in their tissue and positive metabolic changes. For these reasons, the development of new biostimulants has become a focus of scientific interest. Among their different functions, biostimulants influence plant growth and nitrogen metabolism, especially because of their content in hormones and other signalling molecules. A significant increase in root hair length and density is often observed in plants treated with biostimulants, suggesting that these substances induce a “nutrient acquisition response” that favors nutrient uptake in plants via an increase in the absorptive surface area. Furthermore, biostimulants positively influence the activity and gene expression of enzymes functioning in the primary and secondary plant metabolism. This article reviews the current literature on two main classes of biostimulants: humic substances and protein-based biostimulants. The characteristic of these biostimulants and their effects on plants are thoroughly described.

  3. Statistical properties of an algorithm used for illicit substance detection by fast-neutron transmission

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Sagalovsky, L.; Micklich, B.J.; Harper, M.K.; Novick, A.H.

    1994-06-01

    A least-squares algorithm developed for analysis of fast-neutron transmission data resulting from non-destructive interrogation of sealed luggage and containers is subjected to a probabilistic interpretation. The approach is to convert knowledge of uncertainties in the derived areal elemental densities, as provided by this algorithm, into probability information that can be used to judge whether an interrogated object is either benign or potentially contains an illicit substance that should be investigated further. Two approaches are considered in this paper. One involves integration of a normalized probability density function associated with the least-squares solution. The other tests this solution against a hypothesis that the interrogated object indeed contains illicit material. This is accomplished by an application of the F-distribution from statistics. These two methods of data interpretation are applied to specific sets of neutron transmission results produced by Monte Carlo simulation.

  4. Fermentative production of ribonucleotides from whey by Kluyveromyces marxianus: effect of temperature and pH.

    Science.gov (United States)

    Húngaro, Humberto Moreira; Calil, Natalia Oliveira; Ferreira, Aline Siqueira; Chandel, Anuj Kumar; da Silva, Silvio Silvério

    2013-10-01

    Ribonucleotides have shown many promising applications in food and pharmaceutical industries. The aim of the present study was to produce ribonucleotides (RNA) by Kluyveromyces marxianus ATCC 8,554 utilizing cheese whey, a dairy industry waste, as a main substrate under batch fermentation conditions. The effects of temperature, pH, aeration rate, agitation and initial cellular concentration were studied simultaneously through factorial design for RNA, biomass production and lactose consumption. The maximum RNA production (28.66 mg/g of dry biomass) was observed at temperature 30°C, pH 5.0 and 1 g/l of initial cellular concentration after 2 h of fermentation. Agitation and aeration rate did not influence on RNA concentration (p > 0.05). Maximum lactose consumption (98.7%) and biomass production (6.0 g/l) was observed after 12 h of incubation. This study proves that cheese whey can be used as an adequate medium for RNA production by K. marxianus under the optimized conditions at industrial scale.

  5. Sorption, desorption, and speciation of Cd, Ni, and Fe by four calcareous soils as affected by pH.

    Science.gov (United States)

    Tahervand, Samaneh; Jalali, Mohsen

    2016-06-01

    The sorption, desorption, and speciation of cadmium (Cd), nickel (Ni), and iron (Fe) in four calcareous soils were investigated at the pH range of 2-9. The results indicated that sorption of Fe by four soils was higher than 80 % at pH 2, while in the case of Cd and Ni was less than 30 %. The most common sequence of metal sorption at pH 2-9 for four soils was in the order of Fe ≫ Ni > Cd. Cadmium and Ni sorption as a function of pH showed the predictable trend of increasing metal sorption with increase in equilibrium pH, while the Fe sorption trend was different and characterized by three phases. With regard to the order of Cd, Ni, and Fe sorption on soils, Cd and Ni showed high affinity for organic matter (OM), whereas Fe had high tendency for calcium carbonate (CaCO3). Results of metal desorption using 0.01 M NaCl demonstrated that metal sorption on soils containing high amounts of CaCO3 was less reversible in comparison to soils containing high OM. In general, Cd and Ni desorption curves were characterized by three phases; (1) the greatest desorption at pH 2, (2) the low desorption at pH 3-7, and (3) the least desorption at pH > 7. The MINTEQ speciation solubility program showed that the percentage of free metals declined markedly with increase of pH, while the percentage of carbonate and hydroxyl species increased. Furthermore, MINTEQ predicted that saturation index (SI) of metals increased with increasing pH.

  6. Effect of temperature, water activity, and pH on growth and production of ochratoxin A by Aspergillus niger and Aspergillus carbonarius from Brazilian grapes.

    Science.gov (United States)

    Passamani, Fabiana Reinis Franca; Hernandes, Thais; Lopes, Noelly Alves; Bastos, Sabrina Carvalho; Santiago, Wilder Douglas; Cardoso, Maria das Graças; Batista, Luís Roberto

    2014-11-01

    The growth of ochratoxigenic fungus and the presence of ochratoxin A (OTA) in grapes and their derivatives can be caused by a wide range of physical, chemical, and biological factors. The determination of interactions between these factors and fungal species from different climatic regions is important in designing models for minimizing the risk of OTA in wine and grape juice. This study evaluated the influence of temperature, water activity (aw), and pH on the development and production of OTA in a semisynthetic grape culture medium by Aspergillus carbonarius and Aspergillus niger strains. To analyze the growth conditions and production of OTA, an experimental design was conducted using response surface methodology as a tool to assess the effects of these abiotic variables on fungal behavior. A. carbonarius showed the highest growth at temperatures from 20 to 33°C, aw between 0.95 and 0.98, and pH levels between 5 and 6.5. Similarly, for A. niger, temperatures between 24 and 37°C, aw greater than 0.95, and pH levels between 4 and 6.5 were optimal. The greatest toxin concentrations for A. carbonarius and A. niger (10 μg/g and 7.0 μg/g, respectively) were found at 15°C, aw 0.99, and pH 5.35. The lowest pH was found to contribute to greater OTA production. These results show that the evaluated fungi are able to grow and produce OTA in a wide range of temperature, aw, and pH. However, the optimal conditions for toxin production are generally different from those optimal for fungal growth. The knowledge of optimal conditions for fungal growth and production of OTA, and of the stages of cultivation in which these conditions are optimal, allows a more precise assessment of the potential risk to health from consumption of products derived from grapes.

  7. Determination of optimum pH and temperature for pasteurization of citrus juices by response surface methodology.

    Science.gov (United States)

    Ulgen, N; Ozilgen, M

    1993-01-01

    Optimization of microbial death, enzyme inactivation and vitamin C retention during pasteurization of pH-adjusted orange juice is discussed free of equipment-dependent parameters such as the heating lag. The pH-temperature optimum was determined by response surface methodology in the range of 65 degrees C-75 degrees C and pH 2.5-4.0. The results implied that there was no pectinesterase activity below pH 3.5. Leuconostoc mesenteroides had its maximum and minimum thermal resistance at pH 3.5 and pH 2.7, respectively. For an ideal theoretical process requiring four log cycles of microbial reduction the optimum pasteurization conditions were 12 min at 75 degrees C and pH 2.7.

  8. Release of relaxin-like gonad-stimulating substance from starfish radial nerves by lonomycin.

    Science.gov (United States)

    Mita, Masatoshi

    2013-07-01

    In starfish, the peptide hormone gonad-stimulating substance (GSS) secreted from nervous tissue stimulates oocyte maturation to induce 1-methyladenine (1-MeAde) production by ovarian follicle cells. Recently, GSS was purified from radial nerves of the starfish Asterina pectinifera and identified as a relaxin-like peptide. This study examines the mechanism of GSS secretion from radial nerves. When radial nerves isolated from A. pectinifera were incubated in artificial seawater containing ionomycin as a calcium ionophore, GSS release increased in a dose-dependent manner; 50% activity of GSS release was obtained with approximately 10 µM ionomycin. Another calcium ionophore, A23187, also stimulated GSS release from radial nerves. In contrast, membrane permeable cyclic AMP and cyclic GMP analogs failed to induce GSS release. These results suggest that GSS secretion is induced by intracellular Ca(2+) as a second messenger.

  9. Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates.

    Science.gov (United States)

    Matejczyk, Marek; Płaza, Grażyna A; Nałęcz-Jawecki, Grzegorz; Ulfig, Krzysztof; Markowska-Szczupak, Agata

    2011-02-01

    The leachates from 22 municipal solid waste (MSW) landfill sites in Southern Poland were characterized by evaluation of chemical, microbiological and ecotoxicological parameters. Chemical analyses were mainly focused on the identification of the priority hazardous substances according to Directive on Priority Substances, 2008/105/EC (a daughter directive of the WFD) in leachates. As showed, only five substances (Cd, Hg, hexachlorobutadiene, pentachlorobenzene and PAHs) were detected in the leachates. The compounds tested were absent or present at very low concentrations. Among them, only PAHs were found in all samples in the range from 0.057 to 77.2 μg L⁻¹. The leachates were contaminated with bacteria, including aerobic, psychrophilic and mesophilic bacteria, coliform and fecal coliforms, and spore-forming-bacteria, including Clostridium perfringens, and with filamentous fungi. From the analysis of specific microorganism groups (indicators of environmental pollution by pathogenic or opportunistic pathogenic organisms) it can be concluded that the landfill leachates showed sanitary and epidemiological hazard. In the ecotoxicological study, a battery of tests comprised of 5 bioassays, i.e. Microtox(®), Spirotox, Rotoxkit F™, Thamnotoxkit F™ and Daphtoxkit F™ magna was applied. The leachate samples were classified as toxic in 13.6%, highly toxic in 54.6% and very highly toxic in 31.8%. The Spirotox test was the most sensitive bioassay used. The percentage of class weight score was very high - above 60%; these samples could definitely be considered seriously hazardous and acutely toxic to the fauna and microflora. No correlations were found between the toxicity values and chemical parameters. The toxicity of leachate samples cannot be explained by low levels of the priority pollutants. It seems that other kinds of xenobiotics present in the samples at subacute levels gave the high aggregate toxic effect. The chemical, ecotoxicological and microbiological

  10. Prediction of intimate partner violence by type of substance use disorder

    NARCIS (Netherlands)

    F.L. Kraanen; E. Vedel; A. Scholing; P.M.G. Emmelkamp

    2013-01-01

    The present study investigated whether (combinations of) specific substance use disorders predicted any and severe perpetration and victimization in males and females entering substance abuse treatment. All patients (N = 1799) were screened for IPV perpetration and victimization; almost one third of

  11. Competitive immobilization of Pb in an aqueous ternary-metals system by soluble phosphates with varying pH.

    Science.gov (United States)

    Zhang, Zhuo; Ren, Jie; Wang, Mei; Song, Xinlai; Zhang, Chao; Chen, Jiayu; Li, Fasheng; Guo, Guanlin

    2016-09-01

    Chemical immobilization by phosphates has been widely and successfully applied to treat Pb in wastewater and contaminated soils. Pb in wastewaters and soils, however, always coexists with other heavy metals and their competitive reactions with phosphates have not been quantitatively and systematically studied. In this approach, immobilization of Pb, Zn, and Cd by mono-, di-, and tripotassium phosphate (KH2PO4, K2HPO4, and K3PO4) was observed in the single- and ternary-metals solutions. The immobilization rates of the three metals were determined by the residual concentration. The mineral composition and structure of the precipitates were characterized by powder X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The results indicated that competitive reaction occurred in Pb-Zn-Cd ternary system, with immobilization rates decrease of phosphates exhibited intense competitiveness and the phosphates had a stronger affinity for Pb when Cl(-) was added. Pb-phosphate minerals formed by KH2PO4 with the better crystalline characteristics and largest size were very stable with a low dissolution rate (phosphates in multi-metal solutions containing Pb, Zn and Cd. Moreover, the research provided the insight of the importance of phosphate with low pH (e.g. KH2PO4) and the presence of Cl(-) for more efficient immobilization of Pb in the multi-metals pollution system.

  12. Substance use

    Science.gov (United States)

    Substance abuse; Illicit drug abuse; Narcotic abuse; Hallucinogen abuse ... Arlington, VA: American Psychiatric Publishing. 2013. Weiss RD. Drugs of abuse. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  13. Psychoactive substances use experience and addiction or risk of addiction among by Polish adolescents living in rural and urban areas

    Directory of Open Access Journals (Sweden)

    Beata Pawłowska

    2014-11-01

    Full Text Available The objective of the study was to determine the similarities and differences between adolescents with psychoactive substances use experience living in urban and rural areas as regards the intensity of Internet addiction symptoms as well as the evaluation of prevalence of psychoactive substances use among adolescents depending on the place of residence. The examined group consisted of 1 860 people (1 320 girls and 540 boys their average age being 17 years. In the study the following research methods were used: the Sociodemographic Questionnaire designed by the authors, the Internet Addiction Questionnaire by Potembska, the Internet Addiction test by Young, the Internet Addiction Questionnaire (KBUI designed by Pawłowska and Potembska. Statistically significant differences were found as regards the prevalence of psychoactive substances use by the adolescents living in urban and rural areas and as regards the intensity of Internet addiction symptoms in adolescents, both from the urban and rural areas, who use and do not use illegal drugs. Significantly more adolescents living in urban areas as compared to their peers living in rural areas use psychoactive substances, mainly marihuana. The adolescents who use psychoactive substances, as compared to the adolescents with no experience using illegal drugs, living both in urban and rural areas significantly more often play online violent games and use web pornography. The adolescents living in rural areas who use psychoactive substances significantly more often as compared to the adolescents who do not use these substances claim that it is only thanks to the interactions established on the Internet that they can get acceptance, understanding and appreciation.

  14. Psychoactive substances use experience and addiction or risk of addiction among by Polish adolescents living in rural and urban areas.

    Science.gov (United States)

    Pawłowska, Beata; Zygo, Maciej; Potembska, Emilia; Kapka-Skrzypczak, Lucyna; Dreher, Piotr; Kędzierski, Zbigniew

    2014-01-01

    The objective of the study was to determine the similarities and differences between adolescents with psychoactive substances use experience living in urban and rural areas as regards the intensity of Internet addiction symptoms as well as the evaluation of prevalence of psychoactive substances use among adolescents depending on the place of residence. The examined group consisted of 1 860 people (1 320 girls and 540 boys) their average age being 17 years. In the study the following research methods were used: the Sociodemographic Questionnaire designed by the authors, the Internet Addiction Questionnaire by Potembska, the Internet Addiction test by Young, the Internet Addiction Questionnaire (KBUI) designed by Pawłowska and Potembska. Statistically significant differences were found as regards the prevalence of psychoactive substances use by the adolescents living in urban and rural areas and as regards the intensity of Internet addiction symptoms in adolescents, both from the urban and rural areas, who use and do not use illegal drugs. Significantly more adolescents living in urban areas as compared to their peers living in rural areas use psychoactive substances, mainly marihuana. The adolescents who use psychoactive substances, as compared to the adolescents with no experience using illegal drugs, living both in urban and rural areas significantly more often play online violent games and use web pornography. The adolescents living in rural areas who use psychoactive substances significantly more often as compared to the adolescents who do not use these substances claim that it is only thanks to the interactions established on the Internet that they can get acceptance, understanding and appreciation.

  15. Depression, Abuse, Relationship Power and Condom Use by Pregnant and Postpartum Women with Substance Abuse History.

    Science.gov (United States)

    Dévieux, Jessy G; Jean-Gilles, Michèle; Rosenberg, Rhonda; Beck-Sagué, Consuelo; Attonito, Jennifer M; Saxena, Anshul; Stein, Judith A

    2016-02-01

    Substance-abusing pregnant and postpartum women are less likely to maintain consistent condom use and drug and alcohol abstinence, which is particularly concerning in high HIV-prevalence areas. Data from 224 pregnant and postpartum women in substance abuse treatment were analyzed to examine effects of history of substance use, child abuse, and mental health problems on current substance use and condom-use barriers. Mediators were depression, relationship power and social support. Most participants (72.9 %) evidenced current depression. Less social support (-0.17, p power (-0.48, p power (0.15, p power limit highest-risk women's ability to negotiate condom use and abstain from substance use, increasing their risk of acute HIV infection and vertical transmission.

  16. Per and polyfluorinated substances in the Nordic Countries

    DEFF Research Database (Denmark)

    Posner, Stefan; Roos, Sandra; Brunn Poulsen, Pia;

    prioritized in 2) There is a lack of physical chemical data, analystical reference substances, human and environmental occurrence and toxicology data, as well as market information regarding PFCs other than PFOA and PFOS and the current legislation cannot enforce disclosure of specific PFC substance......This Tema Nord report presents a study based on open information and custom market research to review the most common perfluorinated substances (PFC) with less focus on PFOS and PFOA. The study includes three major parts: 1) Identification of relevant per-and polyfluorinated substances...... and their use in various industrial sectors in the Nordic market by interviews with major players and database information 2) Emissions to and occurence in the Nordic environment of the substances described in 1) 3) A summary of knowledge of the toxic effects on humans and the environment of substances...

  17. pH controlled gating of toxic protein pores by dendrimers

    Science.gov (United States)

    Mandal, Taraknath; Kanchi, Subbarao; Ayappa, K. G.; Maiti, Prabal K.

    2016-06-01

    Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent bacterial strains, on a target cell membrane is a challenging and active area of research. Here we demonstrate that PAMAM dendrimers can act as effective pH controlled gating devices once the pore has been formed. We have used fully atomistic molecular dynamics (MD) simulations to characterize the cytolysin A (ClyA) protein pores modified with fifth generation (G5) PAMAM dendrimers. Our results show that the PAMAM dendrimer, in either its protonated (P) or non-protonated (NP) states can spontaneously enter the protein lumen. Protonated dendrimers interact strongly with the negatively charged protein pore lumen. As a consequence, P dendrimers assume a more expanded configuration efficiently blocking the pore when compared with the more compact configuration adopted by the neutral NP dendrimers creating a greater void space for the passage of water and ions. To quantify the effective blockage of the protein pore, we have calculated the pore conductance as well as the residence times by applying a weak force on the ions/water. Ionic currents are reduced by 91% for the P dendrimers and 31% for the NP dendrimers. The preferential binding of Cl- counter ions to the P dendrimer creates a zone of high Cl- concentration in the vicinity of the internalized dendrimer and a high concentration of K+ ions in the transmembrane region of the pore lumen. In addition to steric effects, this induced charge segregation for the P dendrimer effectively blocks ionic transport through the pore. Our investigation shows that the bio-compatible PAMAM dendrimers can potentially be used to develop therapeutic protocols based on the pH sensitive gating of pores formed by pore forming toxins to mitigate bacterial infections.Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent

  18. Best practice in workplace hazardous substances management.

    Science.gov (United States)

    Winder, C

    1995-09-01

    Chemical-induced injury and disease remains a significant problem in workers in industry. As a result of this problem, a number of national and international initiatives have recommended the development of conventions, regulations, and codes of practice to attempt to deal with the problems of hazardous substances at work. Within Australia, workplace hazardous substances regulations are in development which will impose legal obligations and responsibilities on the suppliers of hazardous substances and on the employers who use them. At the same time, internationally consistent ISO standards are in use, or are being developed, for quality systems, environmental management, and occupational health and safety. These standards outline a model for the management of quality, environment, or safety, and the processes involved are applicable to the management of hazardous substances. This process includes: obtaining commitment from senior management; instituting consultative mechanisms; developing a hazardous substances policy; identifying components of the hazardous substances management program; resourcing, implementing, and reviewing the program; and integrating the program into the organisation's strategic plan. Only by blending in a specific management program for hazardous substances into the overall planning of an organization will they be managed effectively and efficiently.

  19. Mechanism of enhancement of prochymosin renaturation by solubilization of inclusion bodies at alkaline pH

    Institute of Scientific and Technical Information of China (English)

    张治洲; 张渝英; 杨开宇

    1997-01-01

    The renaturation efficiency of recombinant prochymosin depends on not only the renaturation condi-tions but also the solubilization (denaturation) conditions. Compared with pH 8, solubilization of prochymosin-contain-ing inclusion bodies at pH 11 (8 mol/L urea) results in onefold increase of renaturation efficiency ( ~ 40% vs. ~ 20 % ). Alkaline pH facilitates the solubilization of inclusion bodies via the breakage of intermolecular disulfide bonds. Moreover, alkaline pH renders prochymosin molecules to be in a more reduced and more unfolded state which undergoes refolding readily.

  20. Determination of related substances in Zolmitriptan by HPLC%HPLC测定佐米曲普坦中的有关物质

    Institute of Scientific and Technical Information of China (English)

    张姮婕; 江燕; 袁军; 张丹

    2012-01-01

    OBJECTIVE To establish an HPLC method for determination of related substances of Zolmitriptan. METHODS The Waters Symmetry shieldTM C18 column( 250 mm × 4. 6 mm ,5 μm) was adopted. The mobile phase consisted of phosphate buffer( containing 6. 8 g of potassium dihydrogen phosphate and 1. 01 g of sodium heptanesulfonate in 1 litre of water,adjusted to pH6 with triethyl-amine) - acetonitrile (82 : 18). The flow rate was 1.0 mL·min-1.The related substances of Zolmitriptan could be determined by the self contrast method with no correction factors by UV detection at 224 nm. RESULTS The limit of detection of Zolmitriptan was 0. 109 ng( S/N = 3 ) . Zolmitriptan could be separated from all related substances completely. The contents of all related substance was lower than 0. 5% . CONCLUSION The method is specific,accurate,simple and quick for determination of related substances of Zolmitriptan.%目的 采用HPLC法测定佐米曲普坦中的有关物质.方法 采用Waters Symmetry shieldTM C18色谱柱(250 mm×4.6mm,5μm),流动相为磷酸二氢钾缓冲溶液(取6.8g磷酸二氢钾、1.01 g庚烷磺酸钠,加水溶解并稀释至1L,用三乙胺调pH6)-乙腈(82∶18),流速1.0 mL·min-1,在波长224 nm处采用不加校正因子的主成分自身对照法对其有关物质进行检查.结果 佐米曲普坦的检测限为0.109 ng(S/N =3),杂质与主成分能完全分离,有关物质的限量控制在0.5%以下.结论 所用方法专属性强、准确、简便、快速,适用于佐米曲普坦中有关物质的检查.

  1. Deletion of pH Regulator pac-3 Affects Cellulase and Xylanase Activity during Sugarcane Bagasse Degradation by Neurospora crassa.

    Science.gov (United States)

    Campos Antoniêto, Amanda Cristina; Ramos Pedersoli, Wellington; Dos Santos Castro, Lílian; da Silva Santos, Rodrigo; Cruz, Aline Helena da Silva; Nogueira, Karoline Maria Vieira; Silva-Rocha, Rafael; Rossi, Antonio; Silva, Roberto Nascimento

    2017-01-01

    Microorganisms play a vital role in bioethanol production whose usage as fuel energy is increasing worldwide. The filamentous fungus Neurospora crassa synthesize and secrete the major enzymes involved in plant cell wall deconstruction. The production of cellulases and hemicellulases is known to be affected by the environmental pH; however, the regulatory mechanisms of this process are still poorly understood. In this study, we investigated the role of the pH regulator PAC-3 in N. crassa during their growth on sugarcane bagasse at different pH conditions. Our data indicate that secretion of cellulolytic enzymes is reduced in the mutant Δpac-3 at alkaline pH, whereas xylanases are positively regulated by PAC-3 in acidic (pH 5.0), neutral (pH 7.0), and alkaline (pH 10.0) medium. Gene expression profiles, evaluated by real-time qPCR, revealed that genes encoding cellulases and hemicellulases are also subject to PAC-3 control. Moreover, deletion of pac-3 affects the expression of transcription factor-encoding genes. Together, the results suggest that the regulation of holocellulase genes by PAC-3 can occur as directly as in indirect manner. Our study helps improve the understanding of holocellulolytic performance in response to PAC-3 and should thereby contribute to the better use of N. crassa in the biotechnology industry.

  2. Deletion of pH Regulator pac-3 Affects Cellulase and Xylanase Activity during Sugarcane Bagasse Degradation by Neurospora crassa

    Science.gov (United States)

    Campos Antoniêto, Amanda Cristina; Ramos Pedersoli, Wellington; dos Santos Castro, Lílian; da Silva Santos, Rodrigo; Cruz, Aline Helena da Silva; Nogueira, Karoline Maria Vieira; Silva-Rocha, Rafael; Rossi, Antonio

    2017-01-01

    Microorganisms play a vital role in bioethanol production whose usage as fuel energy is increasing worldwide. The filamentous fungus Neurospora crassa synthesize and secrete the major enzymes involved in plant cell wall deconstruction. The production of cellulases and hemicellulases is known to be affected by the environmental pH; however, the regulatory mechanisms of this process are still poorly understood. In this study, we investigated the role of the pH regulator PAC-3 in N. crassa during their growth on sugarcane bagasse at different pH conditions. Our data indicate that secretion of cellulolytic enzymes is reduced in the mutant Δpac-3 at alkaline pH, whereas xylanases are positively regulated by PAC-3 in acidic (pH 5.0), neutral (pH 7.0), and alkaline (pH 10.0) medium. Gene expression profiles, evaluated by real-time qPCR, revealed that genes encoding cellulases and hemicellulases are also subject to PAC-3 control. Moreover, deletion of pac-3 affects the expression of transcription factor-encoding genes. Together, the results suggest that the regulation of holocellulase genes by PAC-3 can occur as directly as in indirect manner. Our study helps improve the understanding of holocellulolytic performance in response to PAC-3 and should thereby contribute to the better use of N. crassa in the biotechnology industry. PMID:28107376

  3. Humic substance-mediated Fe(III) reduction by a fermenting Bacillus strain from the alkaline gut of a humus-feeding scarab beetle larva.

    Science.gov (United States)

    Hobbie, Sven N; Li, Xiangzhen; Basen, Mirko; Stingl, Ulrich; Brune, Andreas

    2012-06-01

    Humus-feeding macroinvertebrates play an important role in the transformation of soil organic matter. Their diet contains significant amounts of redox-active components such as iron minerals and humic substances. In soil-feeding termites, acid-soluble Fe(III) and humic acids are almost completely reduced during gut passage. Here, we show that the reduction of Fe(III) and humic acids takes place also in the alkaline guts of scarab beetle larvae. Sterilized gut homogenates of Pachnoda ephippiata no longer converted Fe(III) to Fe(II), indicating an essential role of the gut microbiota in the process. From Fe(III)-reducing enrichment cultures inoculated with highly diluted gut homogenates, we isolated several facultatively anaerobic, alkali-tolerant bacteria that were closely related to metal-reducing isolates in the Bacillus thioparans group. Strain PeC11 showed a remarkable capacity for dissimilatory Fe(III) reduction, both at pH 7 and 10. Rates were strongly stimulated by the addition of the redox mediator 2,6-antraquinone disulfonate and by redox-active components in the fulvic-acid fraction of humus. Although the contribution of strain PeC11 to intestinal Fe(III) reduction in P. ephippiata remains to be further elucidated, our results corroborate the hypothesis that the lack of oxygen and the solubilization of humic substances in the extremely alkaline guts of humivorous soil fauna provide favorable conditions for the efficient reduction of Fe(III) and humic substances by a primarily fermentative microbiota.

  4. ASYMMETRIC SULFOXIDATION OF ALBENDAZOLE TO RICOBENDAZOLE BY FUNGI: EFFECT OF pH

    Directory of Open Access Journals (Sweden)

    Thiago Barth

    2015-08-01

    Full Text Available Albendazole (ABZ is an anthelmintic drug used for the treatment of infectious diseases in veterinary and human medicine. This drug is a prochiral drug that after administration, is rapidly oxidized in the pharmacologically active sulfoxide metabolite, which is also known as ricobendazole (ABZSOX. ABZSOX has a stereogenic center and possibly two enantiomers, (+-ABZSOX and (--ABZSOX. In the present work, we investigate the pH effect on the asymmetric stereoselective sulfoxidation of ABZ into ABZSOX by employing the fungi Nigrospora sphaerica, Papulaspora immera Hotson, and Mucor rouxii. The results show a possibility of obtaining the pure enantiomers of the ricobendazole drug using fungi as biocatalytic agents. The three fungi showed a high degree of enantioselectivity expressed by enantiomeric excess. In addition, M. rouxii can be used as an alternative to obtain the (+-ABZSOX enantiomer (ee 89.8%.

  5. Selective synthesis of clinoatacamite Cu2(OH)3Cl and tenorite CuO nanoparticles by pH control

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Malcho, Phillip; Andersen, Jonas;

    2014-01-01

    Copper nanomaterials play a role as catalysts in sustainable energy technology and sensor devices. We present a one-pot synthesis for the selective preparation of phase-pure clinoatacamite (Cu2(OH)3Cl) and cupric oxide (CuO) nanoparticles by controlling the pH of the solution. The effect of pH...... on the phase of the product was systematically investigated utilizing 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Here, the MES buffer was crucial for the synthesis. It not only allowed for selective synthesis by controlling pH but also guided the morphology of the CuO nanoparticles. In addition...

  6. Experiences of Kraft Lignin Functionalization by Enzymatic and Chemical Oxidation

    Directory of Open Access Journals (Sweden)

    Anna Kalliola

    2014-10-01

    Full Text Available Linear hydrophilic derivatives are expected to soften lignin and improve its utilization in composite applications. Oxidation by means of laccase in the presence of oxygen was employed in an attempt to functionalize commercial kraft lignin by vanillic acid-PEG ester and ether derivatives. Thielavia arenaria and Melanocarpus albomyces laccases at pH 6 and 8 were used. According to O2 consumption and the increase in molar mass, the tested laccases were active toward the lignin and the vanillic acid derivatives and also formed corresponding phenoxyl radicals. However, homogenous polymerization instead of cross-coupling and functionalization took place. As an alternative, lignin functionalization by the ester derivative by chemical oxidation under alkali-O2 conditions was also tested. Efficient lignin polymerization was observed. However, functionalization was not detected. Interestingly, a clear decrease in lignin glass transition temperature was obtained by an isolation procedure that included freeze-drying. This suggests that functionalization may not be necessary to induce the desired softening effect.

  7. Determination of related substance in hydrochloride fluoxetine capsules by HPLC%测定盐酸氟西汀胶囊有关物质的HPLC法

    Institute of Scientific and Technical Information of China (English)

    郝桂彤; 孔令钰; 王倩

    2013-01-01

    [Objective] To establish the method for determination of related substance in hydrochloride fluoxetine capsules by HPLC.[Methods] C-18 column was used,mobile phase was methanol:tetrahydrofuran:triethylamine phosphate buffer (pH 6.0)(32 ∶ 15 ∶ 53),the flow rate was 1.0 ml/min,detection wavelength was 215 nm,and column temperature was 25 ℃.[Results]In this chromatography condition,hydrochloride fluoxetine had a good separation from intermediates and impurity substance(R > 1.5),besides,excipients didn't interfere the results of related substance.The linear range of hydrochloride fluoxetine was 0.235 5-23.55 μg/ml (r =0.999 98),and the detection limit was 23.55 ng/ml.[Conclusion] The method for the determination of related substance in hydrochloride fluoxetine capsules is sensitive and reliable.%目的 建立用反相高效液相色谱法测定盐酸氟西汀胶囊的有关物质的方法.方法 采用C18色谱柱,以甲醇-四氢呋喃-三乙胺缓冲液(pH 6.0) (32∶15∶53)为流动相,流速1.0 ml/min,检测波长为215 nm,柱温为25℃.结果 在该色谱条件下,盐酸氟西汀与各中间体、杂质分离良好(R>1.5),辅料对有关物质检测无干扰.盐酸氟西汀在0.235 5~23.55μg/ml范围内浓度与峰面积线性关系良好(r=0.999 98).盐酸氟西汀的检测限为23.55 ng/ml.结论 所建立用反相高效液相色谱法测定盐酸氟西汀胶囊的有关物质的方法灵敏,可靠.

  8. Expression pattern and action analysis of genes associated with the responses to chemical stimuli during rat liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Shao-Wei Qin; Li-Feng Zhao; Xiao-Guang Chen; Cun-Shuan Xu

    2006-01-01

    AIM: To study the genes associated with the responses to chemokines, nutrients, inorganic substances, organic substances and xenobiotics after rat partial hepatectomy (PH) at transcriptional level.METHODS: The associated genes involved in the five kinds of responses were obtained from database and literature, and the gene expression changes during liver regeneration in rats were checked by the Rat Genome 230 2.0 array.RESULTS: It was found that 60, 10, 9, 6, 26 genes respectively participating in the above five kinds of responses were associated with liver regeneration. The numbers of initially and totally expressed genes occurring in the initial phase of liver regeneration (0.5-4 h after PH), G0/G1 transition (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-functional reconstruction (66-168 h after PH) were 51,19, 52, 6 and 51, 43, 98, 68 respectively, illustrating that the associated genes were mainly triggered in the initiation and transition stages, and functioned at different phases. According to their expression similarity,these genes were classified into 5 groups: only upregulated (47), predominantly up-regulated (18), only down-regulated (24), predominantly down-regulated (10), and up- and down-regulated (8). The total times of their up-regulated and down-regulated expression were 441 and 221, demonstrating that the number of up-regulated genes is more than that of the down-regulated genes. Their time relevance and gene expression patterns were classified into 14 and 26 groups, showing that the cell physiological and biochemical activities were staggered, diversified and complicated during liver regeneration in rats.CONCLUSION: The chemotaxis was enhanced mainly in the forepart and metaphase of LR. The response of regenerating liver to nutrients and chemical substances was increased, whereas that to xenobiotics was not strong. One hundred and seven genes associated with LR play important roles in the responses to

  9. Assessment of Substances Abuse in Burn Patients by Using Drug Abuse Screening Test

    Directory of Open Access Journals (Sweden)

    Kobra Gaseminegad

    2012-04-01

    Full Text Available There has been an increase in the frequency of substance abuse among hospitalized burn injury patients. However, few studies have investigated substance abuse among burn patients. This study was aimed to identify the incidence of substance abuse in burn injury patients using the "Drug Abuse Screening Test" (DAST-20. We determined the validity of DAST-20 in spring 2010. Subsequently, this descriptive study was performed on 203 burn injury patients who fit the study's inclusion criteria. We chose a score of 6 as the cutoff and thus achieved a sensitivity of 89% and a specificity of 85% for the DAST-20. During the study, we gathered demographic data, burn features and DAST-20 results for all patients. Patients with scores of 6 or more were considered to be substances abusers. A statistical analysis was conducted using SPSS v16 software. According to the DAST-20 results, 33% of the patients were in the user group. The mean score of DAST-20 was significantly higher among users than it was among nonusers (P<0.05. The level of substance abuse was severe in 77% of users. No significant differences were found among the substances, with the exception of alcohol. Substance abuse is an important risk factor for burn patients. In addition, this study showed that DAST-20 is a valid screening measure for studies on burn patients.

  10. Testing the limits of rational design by engineering pH sensitivity into membrane active peptides

    Science.gov (United States)

    Wiedman, Gregory

    2015-01-01

    In this work, we sought to rationally design membrane active peptides that are triggered by low pH to form macromolecular-sized pores in lipid bilayers. Such peptides could have broad utility in biotechnology and in nanomedicine as cancer therapeutics or drug delivery vehicles that promote release of macromolecules from endosomes. Our approach to rational design was to combine the properties of a pH-independent peptide, MelP5, which forms large pores allowing passage of macromolecules, with the properties of two pH-dependent membrane active peptides, pHlip and GALA. We created two hybrid sequences, MelP5_Δ4 and MelP5_Δ6 by using the distribution of acidic residues on pHlip and GALA as a guide to insert acidic amino acids into the amphipathic helix of MelP5. We show that the new peptides bind to lipid bilayers and acquire secondary structure in a pH-dependent manner. The peptides also destabilize bilayers in a pH-dependent manner, such that lipid vesicles release the small molecules ANTS/DPX at low pH only. Thus, we were successful in designing pH-triggered pore-forming peptides. However, no macro-molecular release was observed under any conditions. Therefore, we abolished the unique macromolecular poration properties of MelP5 by introducing pH-sensitivity into its sequence. We conclude that the properties of pHlip, GALA and MelP5 are additive, but only partially so. We propose that this lack of additivity is a limitation in the rational design of novel membrane active peptides, and that high-throughput approaches to discovery will be critical for continued progress in the field. PMID:25572997

  11. Influence of pH on the Property of Apatite-type Lanthanum Silicates Prepared by Sol-gel Process

    Institute of Scientific and Technical Information of China (English)

    SHI Qingle; LU Lihua; ZENG Yanwei; ZHANG Hua

    2012-01-01

    The apatite-type lanthanum silicates with formula La9.33Si6O26 are prepared by sol-gel process.The homogeneity of the sol affected by pH value of the solution is investigated.The viscosity of the sols slightly increases first and then increases abruptly because the predominant reaction mechanism changes from hydrolysis reaction to condensation reaction.In addition,the onset time of the increase for the viscosity shortens from pH1 to pH 4.The gelation time decreases with increasing pH of the solution.Therefore,the pH of the sols should be less than 4 to form gel.The sol with initial pH 2 shows maximum value of zeta potential and maximum stability.For the sample with initial pH 2,pure apatite-type lanthanum silicates La9.33Si6O26 have been successfully prepared after the dried gel is calcined at 1 000 ℃.In addition,this sample sintered at 1 550 ℃exhibits the highest ionic conductivity.The activation energies are all less than 0.90 eV.

  12. Ammonium improves iron nutrition by decreasing leaf apoplastic pH of sunflower plants (Helianthus annuus L. cv. Frankasol)

    Institute of Scientific and Technical Information of China (English)

    ZOU Chunqin; ZHANG Fusuo

    2003-01-01

    The effect of nitrogen form on pH and concentration of soluble iron (Fe) in leaf apoplast was investigated in hydrophonically grown sunflower plants (Helianthus annuus L. cv. Frankasol), and the mechanism underlying the improved Fe nutrition by ammonium (NH4) supply was also elucidated. Ammonium supply ameliorated Fe nutrition of plants grown without Fe through decreasing apoplastic pH and increasing soluble Fe concentration in apoplastic fluid of young leaves. The soluble Fe concentration in apoplastic fluid and cell sap of young leaves, and xylem exudates of NH4 fed-plants was higher than that of nitrate (NO3) fed-plants, and no typical Fe-deficiency chlorosis in young leaves was observed in NH4 fed plant without Fe supply. The apoplastic pH was 6.15 and 5.94 in young leaves of Fe-deficient plants fed respectively with NO3 and NH4, while in Fe-sufficient plants, the apoplastic pH was 6.43 with NO3, and 5.50 with NH4 supply. In primary leaves, the apoplastic pH was around 6.25 irrespective of nitrogen form and Fe supply. The pH of xylem exudate was 5.72 in Fe-deficient plants fed with NO3 and 5.49 with NH4. Iron nutrition increased the pH of xylem exudate by 0.27 and 0.16 unit under NO3 and NH4 supply respectively.

  13. pH Dependence of microbe sterilization by cationic antimicrobial peptides.

    Science.gov (United States)

    Walkenhorst, William F; Klein, J Wolfgang; Vo, Phuong; Wimley, William C

    2013-07-01

    We recently described a family of cationic antimicrobial peptides (CAMPs) selected from a combinatorial library that exhibited potent, broad-spectrum activity at neutral pH and low ionic strength. To further delimit the utility and activity profiles of these peptides, we investigated the effects of solution conditions, such as pH and ionic strength, on the efficacy of the peptide antimicrobials against a panel of microorganisms. Peptide minimum sterilizing concentrations (MSCs) varied linearly with pH for each subtype within our family of CAMPs for all organisms tested. The peptides were much less effective against Gram-negative bacteria at high pH, consistent with a decrease in net positive charge on the peptides. A similar trend was observed for the fungus Candida albicans. Surprisingly, the opposite pH trend was observed with the Gram-positive Staphylococcus aureus. In addition, an additive ionic strength effect was observed with increasing buffer strengths at identical pH values. The extreme difference in the observed pH behavior between Gram-negative and Gram-positive organisms is attributed to the presence of native charged molecules in the much thicker peptidoglycan layer of the Gram-positive organism. The novel species-specific effects of pH observed here have important implications for applications using CAMPs and for the design of novel CAMPs.

  14. 烤烟品种间烟叶化学成分含量对海拔高度的响应%Different Response of Chemical Substances to Altitude in Leaves of Different Flue-cured Tobacco Cultivars

    Institute of Scientific and Technical Information of China (English)

    李军营; 方敦煌; 宋春满; 李向阳; 逄涛; 邓建华; 刘腾飞

    2012-01-01

    altitude, respectively. Therefore, the change of chemical substances in flue-cured tobacco leaves with tobacco planting area altitude is greatly affected by genotypes.

  15. Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival.

    Science.gov (United States)

    Perreten Lambert, Hélène; Zenger, Manuel; Azarias, Guillaume; Chatton, Jean-Yves; Magistretti, Pierre J; Lengacher, Sylvain

    2014-11-07

    Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival.

  16. Control of Mitochondrial pH by Uncoupling Protein 4 in Astrocytes Promotes Neuronal Survival*

    Science.gov (United States)

    Perreten Lambert, Hélène; Zenger, Manuel; Azarias, Guillaume; Chatton, Jean-Yves; Magistretti, Pierre J.; Lengacher, Sylvain

    2014-01-01

    Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival. PMID:25237189

  17. Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival

    KAUST Repository

    Lambert, Hélène Perreten

    2014-09-18

    Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival.

  18. Regulation of the voltage-insensitive step of HERG activation by extracellular pH.

    Science.gov (United States)

    Zhou, Qinlian; Bett, Glenna C L

    2010-06-01

    Human ether-à-go-go-related gene (HERG, Kv11.1, KCNH2) voltage-gated K(+) channels dominate cardiac action potential repolarization. In addition, HERG channels play a role in neuronal and smooth cell excitability as well as cancer pathology. Extracellular pH (pH(o)) is modified during myocardial ischemia, inflammation, and respiratory alkalosis, so understanding the response of HERG channels to changes in pH