WorldWideScience

Sample records for chemical stockpile emergency-planning

  1. Planning guidance for the Chemical Stockpile Emergency Preparedness Program

    Energy Technology Data Exchange (ETDEWEB)

    Shumpert, B.L.; Watson, A.P.; Sorensen, J.H. [and others

    1995-02-01

    This planning guide was developed under the direction of the U.S. Army and the Federal Emergency Management Agency (FEMA) which jointly coordinate and direct the development of the Chemical Stockpile Emergency Preparedness Program (CSEPP). It was produced to assist state, local, and Army installation planners in formulating and coordinating plans for chemical events that may occur at the chemical agent stockpile storage locations in the continental United States. This document provides broad planning guidance for use by both on-post and off-post agencies and organizations in the development of a coordinated plan for responding to chemical events. It contains checklists to assist in assuring that all important aspects are included in the plans and procedures developed at each Chemical Stockpile Disposal Program (CSDP) location. The checklists are supplemented by planning guidelines in the appendices which provide more detailed guidance regarding some issues. The planning guidance contained in this document will help ensure that adequate coordination between on-post and off-post planners occurs during the planning process. This planning guide broadly describes an adequate emergency planning base that assures that critical planning decisions will be made consistently at every chemical agent stockpile location. This planning guide includes material drawn from other documents developed by the FEMA, the Army, and other federal agencies with emergency preparedness program responsibilities. Some of this material has been developed specifically to meet the unique requirements of the CSEPP. In addition to this guidance, other location-specific documents, technical studies, and support studies should be used as needed to assist in the planning at each of the chemical agent stockpile locations to address the specific hazards and conditions at each location.

  2. Risk communications and the Chemical Stockpile Emergency-Planning Program

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, B.M.; Sorensen, J.H.

    1994-09-01

    The CSEPP (Chemical Stockpile Emergency Preparedness Program) was created to improve emergency planning and response capabilities at the eight sites around the country that store chemical weapons. These weapons are scheduled to be destroyed in the near future. In preparation of the Draft Programmatic Environmental Impact Statement (DPEIS) for the Chemical Stockpile Disposal Program (CSDP), it was proposed that the Army mitigate accidents through an enhanced community emergency preparedness program at the eight storage sites. In 1986, the Army initiated the development of an Emergency Response Concept Plan (ERCP) for the CSDP, one of 12 technical support studies conducted during preparation of the Final Programmatic Environmental Impact Statement (FPEIS). The purpose of this document is to provide a fairly comprehensive source book on risk, risk management, risk communication research and recommended risk communication practices. It does not merely summarize each publication in the risk communication literature, but attempts to synthesize them along the lines of a set of organizing principles. Furthermore, it is not intended to duplicate other guidance manuals (such as Covello et al.`s manual on risk comparison). The source book was developed for the CSEPP in support of the training module on risk communications. Although the examples provided are specific to CSEPP, its use goes beyond that of CSEPP as the findings apply to a broad spectrum of risk communication topics. While the emphasis is on communication in emergency preparedness and response specific to the CSEPP, the materials cover other non-emergency communication settings. 329 refs.

  3. From nuclides to nerve gas: The development of the Chemical Stockpile Emergency Preparedness Exercise Program

    International Nuclear Information System (INIS)

    Gant, K.S.; Adler, M.V.

    1991-01-01

    The Army and the Federal Emergency Management Agency established the Chemical Stockpile Emergency Preparedness Program (CSEPP), to improve emergency preparedness around each location storing the nation's aging stockpile of unitary chemical weapons. The CSEPP requires that a series of exercises be conducted at each location on a regular schedule. The CSEPP exercise program drew upon the existing Army and civilian exercises. Merging the exercise traditions of both the communities and installations into a joint exercise program acceptable to both sides and the particular nature of the hazard required a number of adjustments in the usual approaches. 14 refs., 1 fig

  4. A Conceptual Framework for Allocation of Federally Stockpiled Ventilators During Large-Scale Public Health Emergencies.

    Science.gov (United States)

    Zaza, Stephanie; Koonin, Lisa M; Ajao, Adebola; Nystrom, Scott V; Branson, Richard; Patel, Anita; Bray, Bruce; Iademarco, Michael F

    2016-01-01

    Some types of public health emergencies could result in large numbers of patients with respiratory failure who need mechanical ventilation. Federal public health planning has included needs assessment and stockpiling of ventilators. However, additional federal guidance is needed to assist states in further allocating federally supplied ventilators to individual hospitals to ensure that ventilators are shipped to facilities where they can best be used during an emergency. A major consideration in planning is a hospital's ability to absorb additional ventilators, based on available space and staff expertise. A simple pro rata plan that does not take these factors into account might result in suboptimal use or unused scarce resources. This article proposes a conceptual framework that identifies the steps in planning and an important gap in federal guidance regarding the distribution of stockpiled mechanical ventilators during an emergency.

  5. Chemical Stockpile Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Umatilla Depot Activity (UMDA) in Hermiston, Oregon. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the Umatilla Depot Activity and by recommending the scope and content of a more detailed site-specific study. This independent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at UMDA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources; seismicity; and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 7 refs., 1 fig.

  6. Recovery from a chemical weapons accident or incident: A concept paper on planning

    Energy Technology Data Exchange (ETDEWEB)

    Herzenberg, C.L.; Haffenden, R.; Lerner, K.; Meleski, S.A.; Tanzman, E.A. [Argonne National Lab., IL (United States); Lewis, L.M. [US Dept. of Agriculture (United States); Hemphill, R.C. [Niagara Mohawk Power Corporation (United States); Adams, J.D. [US Environmental Protection Agency (United States)

    1994-04-01

    Emergency planning for an unintended release of chemical agent from the nation`s chemical weapons stockpile should include preparation for. the period following implementation of immediate emergency response. That period -- the recovery, reentry, and restoration stage -- is the subject of this report. The report provides an overview of the role of recovery, reentry, and restoration planning in the Chemical Stockpile Emergency Preparedness Program (CSEPP), describes the transition from immediate emergency response to restoration, and analyzes the legal framework that would govern restoration activities. Social, economic, and administrative issues, as well as technical ones, need to be considered in the planning effort. Because of possible jurisdictional conflicts, appropriate federal, state, and local agencies need to be included in a coordinated planning process. Advance consideration should be given to the pertinent federal and state statutes and regulations. On the federal level, the principal statutes and regulations to be considered are those associated with the Comprehensive Environmental Response, Compensation, and Liability Act; the Resource Conservation and Recovery Act; and the National Environmental Policy Act. This report recommends that extensive preaccident planning be undertaken for the recovery, reentry, and restoration stage and outlines several key issues that should be considered in that planning. The need for interagency cooperation and coordination at all levels of the planning process is emphasized.

  7. Emergency planning and preparedness for the deliberate release of toxic industrial chemicals.

    Science.gov (United States)

    Russell, David; Simpson, John

    2010-03-01

    Society in developed and developing countries is hugely dependent upon chemicals for health, wealth, and economic prosperity, with the chemical industry contributing significantly to the global economy. Many chemicals are synthesized, stored, and transported in vast quantities and classified as high production volume chemicals; some are recognized as being toxic industrial chemicals (TICs). Chemical accidents involving chemical installations and transportation are well recognized. Such chemical accidents occur with relative frequency and may result in large numbers of casualties with acute and chronic health effects as well as fatalities. The large-scale production of TICs, the potential for widespread exposure and significant public health impact, together with their relative ease of acquisition, makes deliberate release an area of potential concern. The large numbers of chemicals, together with the large number of potential release scenarios means that the number of possible forms of chemical incident are almost infinite. Therefore, prior to undertaking emergency planning and preparedness, it is necessary to prioritize risk and subsequently mitigate. This is a multi-faceted process, including implementation of industrial protection layers, substitution of hazardous chemicals, and relocation away from communities. Residual risk provides the basis for subsequent planning. Risk-prioritized emergency planning is a tool for identifying gaps, enhancing communication and collaboration, and for policy development. It also serves to enhance preparedness, a necessary prelude to preventing or mitigating the public health risk to deliberate release. Planning is an iterative and on-going process that requires multi-disciplinary agency input, culminating in the formation of a chemical incident plan complimentary to major incident planning. Preparedness is closely related and reflects a state of readiness. It is comprised of several components, including training and exercising

  8. FY 2015 - Stockpile Stewardship and Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-04-01

    This Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) Fiscal Year Stockpile Stewardship and Management Plan (SSMP) is a key planning document for the nuclear security enterprise.

  9. FY 2016 - Stockpile Stewardship and Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    This Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) Fiscal Year Stockpile Stewardship and Management Plan (SSMP) is a key planning document for the nuclear security enterprise.

  10. FY 2014 - Stockpile and Stewardship and Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    This Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) Fiscal Year Stockpile Stewardship and Management Plan (SSMP) is a key planning document for the nuclear security enterprise.

  11. FY 2017 Stockpile Stewardship and Management Plan - Biennial Plan Summary

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-03-01

    This year’s summary report updates the Fiscal Year 2016 Stockpile Stewardship and Management Plan (FY 2016 SSMP), the 25-year strategic program of record that captures the plans developed across numerous NNSA programs and organizations to maintain and modernize the scientific tools, capabilities, and infrastructure necessary to ensure the success of NNSA’s nuclear weapons mission. The SSMP is a companion to the Prevent, Counter, and Respond: A Strategic Plan to Reduce Global Nuclear Threats (FY 2017-2021) report, the planning document for NNSA’s nuclear threat reduction mission. New versions of both reports are published each year in response to new requirements and challenges. Much was accomplished in FY 2015 as part of the program of record described in this year’s SSMP. The science-based Stockpile Stewardship Program allowed the Secretaries of Energy and Defense to certify for the twentieth time that the stockpile remains safe, secure, and effective without the need for underground nuclear explosive testing. The talented scientists, engineers, and technicians at the three national security laboratories, the four nuclear weapons production plants, and the national security site are primarily responsible for this continued success. Research, development, test, and evaluation programs have advanced NNSA’s understanding of weapons physics, component aging, and material properties through first-of-a-kind shock physics experiments, along with numerous other critical experiments conducted throughout the nuclear security enterprise. The multiple life extension programs (LEPs) that are under way made progress toward their first production unit dates. The W76-1 LEP is past the halfway point in total production, and the B61-12 completed three development flight tests. Critical to this success is the budget. The Administration’s budget request for NNSA’s Weapons Activities has increased for all but one of the past seven years, resulting in a total increase of

  12. Joint stockpiling and emergency sharing of oil: Arrangements for regional cooperation in East Asia

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eui-soon, E-mail: shine@yonsei.ac.k [School of Economics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Savage, Tim, E-mail: seoul@nautilus.or [Nautilus Institute, 58-14 Shinmun-ro 1-ga, Hangeul Hall Room 503, Jongro-gu, Seoul 110-061 (Korea, Republic of)

    2011-05-15

    The East Asia region includes three of the world's top five oil-importing nations-China, Japan, and the Republic of Korea. As a consequence, international oil supply disruptions and oil price spikes, and their effects on the economies of the region, have historically been of significant concern. Each of these three nations, as well as other nations in East Asia, has developed or is developing their own strategic oil stockpiles, but regional coordination in stockpiling arrangements and sharing of oil stocks in an emergency could provide significant benefits. This article describes the overall oil supply security situation in East Asia, reviews the attributes of different stockpiling arrangements to address energy supply security concerns, summarizes ongoing national approaches to stockpiling in East Asia, describes the development of joint oil stockpile initiatives in the region, and suggests the most attractive options for regional cooperation on oil stockpiling issues. - Highlights: {yields} Rising oil consumption will make East Asia more vulnerable to energy insecurity. {yields} There have been various dialogs on the need for a joint regional oil stockpile. {yields} No serious joint oil stockpiling efforts have been made in East Asia to date. {yields} Despite various impediments, diverse benefits justify oil stockpile cooperation.

  13. Joint stockpiling and emergency sharing of oil: Arrangements for regional cooperation in East Asia

    International Nuclear Information System (INIS)

    Shin, Eui-soon; Savage, Tim

    2011-01-01

    The East Asia region includes three of the world's top five oil-importing nations-China, Japan, and the Republic of Korea. As a consequence, international oil supply disruptions and oil price spikes, and their effects on the economies of the region, have historically been of significant concern. Each of these three nations, as well as other nations in East Asia, has developed or is developing their own strategic oil stockpiles, but regional coordination in stockpiling arrangements and sharing of oil stocks in an emergency could provide significant benefits. This article describes the overall oil supply security situation in East Asia, reviews the attributes of different stockpiling arrangements to address energy supply security concerns, summarizes ongoing national approaches to stockpiling in East Asia, describes the development of joint oil stockpile initiatives in the region, and suggests the most attractive options for regional cooperation on oil stockpiling issues. - Highlights: → Rising oil consumption will make East Asia more vulnerable to energy insecurity. → There have been various dialogs on the need for a joint regional oil stockpile. → No serious joint oil stockpiling efforts have been made in East Asia to date. → Despite various impediments, diverse benefits justify oil stockpile cooperation.

  14. Public Health, Law, and Local Control: Destruction of the US Chemical Weapons Stockpile

    Science.gov (United States)

    Greenberg, Michael R.

    2003-01-01

    Destruction of US chemical weapons has begun at one of the 8 sites in the continental United States, was completed on Johnston Island in the Pacific Ocean, and is scheduled to begin in at least 3 other locations during the upcoming year. About 25% of the stockpile and 38% of the munitions had been destroyed as of December 31, 2002. However, the program has become controversial with regard to choice of technology, emergency management, and cost. This controversy is in large part due to efforts by some state and local governments and activist groups to play a more central role in a decisionmaking process that was once fully controlled by the US Army. PMID:12893599

  15. The chemical stockpile intergovernmental consultation program: Lessons for HLW public involvement

    International Nuclear Information System (INIS)

    Feldman, D.L.

    1991-01-01

    This paper assesses the appropriateness of the US Army's Chemical Stockpile Disposal Program's (CSDP) Intergovernmental Consultation and Coordination Boards (ICCBs) as models for incorporating public concerns in the future siting of HLW repositories by DOE. ICCB structure, function, and implementation are examined, along with other issues relevant to the HLW context. 27 refs

  16. Optimal vaccine stockpile design for an eradicated disease: application to polio.

    Science.gov (United States)

    Tebbens, Radboud J Duintjer; Pallansch, Mark A; Alexander, James P; Thompson, Kimberly M

    2010-06-11

    Eradication of a disease promises significant health and financial benefits. Preserving those benefits, hopefully in perpetuity, requires preparing for the possibility that the causal agent could re-emerge (unintentionally or intentionally). In the case of a vaccine-preventable disease, creation and planning for the use of a vaccine stockpile becomes a primary concern. Doing so requires consideration of the dynamics at different levels, including the stockpile supply chain and transmission of the causal agent. This paper develops a mathematical framework for determining the optimal management of a vaccine stockpile over time. We apply the framework to the polio vaccine stockpile for the post-eradication era and present examples of solutions to one possible framing of the optimization problem. We use the framework to discuss issues relevant to the development and use of the polio vaccine stockpile, including capacity constraints, production and filling delays, risks associated with the stockpile, dynamics and uncertainty of vaccine needs, issues of funding, location, and serotype dependent behavior, and the implications of likely changes over time that might occur. This framework serves as a helpful context for discussions and analyses related to the process of designing and maintaining a stockpile for an eradicated disease. (c) 2010 Elsevier Ltd. All rights reserved.

  17. Chemical and nuclear emergencies: Interchanging lessons learned from planning and accident experience

    International Nuclear Information System (INIS)

    Adler, V.; Sorensen, J.H.; Rogers, G.O.

    1989-01-01

    Because the goal of emergency preparedness for both chemical and nuclear hazards is to reduce human exposure to hazardous materials, this paper examines the interchange of lessons learned from emergency planning and accident experience in both industries. While the concerns are slightly different, sufficient similarity is found for each to draw implications from the others experience. Principally the chemical industry can learn from the dominant planning experience associated with nuclear power plants, while the nuclear industry can chiefly learn from the chemical industry's accident experience. 23 refs

  18. Chemical Weapons: FEMA and Army Must Be Proactive in Preparing States for Emergencies

    National Research Council Canada - National Science Library

    2001-01-01

    .... Such an accident could affect people in 10 different states. The Army plans to destroy its entire chemical weapons stockpile by 2007 and is taking measures to protect the public before and during the demilitarization process...

  19. Stockpile strategy for China's emergency oil reserve: A dynamic programming approach

    International Nuclear Information System (INIS)

    Bai, Y.; Dahl, C.A.; Zhou, D.Q.; Zhou, P.

    2014-01-01

    China is currently accelerating construction of its strategic petroleum reserves. How should China fill the SPR in a cost-effective manner in the short-run? How might this affect world oil prices? Using a dynamic programming model to answer these questions, the objective of this paper is to minimize the stockpiling costs, including consumer surplus as well as crude acquisition and holding costs. The crude oil acquisition price in the model is determined by global equilibrium between supply and demand. Demand, in turn, depends on world market conditions including China's stockpile filling rate. Our empirical study under different market conditions shows that China's optimal stockpile acquisition rate varies from 9 to 19 million barrels per month, and the optimal stockpiling drives up the world oil price by 3–7%. The endogenous price increase accounts for 52% of total stockpiling costs in the base case. When the market is tighter or the demand function is more inelastic, the stockpiling affects the market more significantly and pushes prices even higher. Alternatively, in a disruption, drawdown from the stockpile can effectively dampen soaring prices, though the shortage is likely to leave the price higher than before the disruption. - Highlights: • China's SPR policies are examined by dynamic programming. • The optimal stockpile acquisition rate varies from 9 to 19 million barrels per month. • The optimal stockpiling drives up world oil price by 3–7%

  20. Emergency preparedness among people living near US army chemical weapons sites after September 11, 2001.

    Science.gov (United States)

    Williams, Bryan L; Magsumbol, Melina S

    2007-09-01

    We examined trust in the army and perceptions of emergency preparedness among residents living near the Anniston, Ala, and Richmond, Ky, US Army chemical weapons stockpile sites shortly after September 11, 2001. Residents (n = 655) living near the 2 sites who participated in a cross-sectional population were relatively unprepared in the event of a chemical emergency. The events of September 11 gave rise to concerns regarding the security of stored chemical weapons and the sites' vulnerability to terrorist attacks. Although residents expressed trust in the army to manage chemical weapons safely, only a few expressed a desire to actively participate in site decisions. Compliance with procedures during emergencies could be seriously limited, putting residents in these sites at higher levels of risk of exposure to chemical hazards than nonresidents.

  1. IEA Shows Concerns Over China's Oil Stockpiling

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Reportedly, China's oil imports accounted for nearly one third of the world's total oil supply in 2003. The country's oil imports are estimated at 110~120 million tons in 2004,equal to 2.2~2.4 million barrels per day, much higher than 91 million tons in 2003. International Energy Agency has helped the Chinese government with the country's strategic oil stockpiling plan by offering the training. The Paris-based IEA has urged China to take into consideration how to operate and maintain the national strategic oil stockpiling system and clarify the roles of the enterprises and the State in oil stockpiling.

  2. Federal Emergency Management Information System (FEMIS) Data Management Guide Version 1.3

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, R.A.; Downing, T.R.; Gaustad, K.L.; Hoza, M.; Johnson, S.M.; Loveall, R.M.; Millard, W.D.; Winters, C.; Wood, B.M.

    1996-12-01

    FEMIS is an emergency management planning and analysis tool that is being developed under the direction of the US Army Chemical and Biological Defense Command. FEMIS is designed to help civilian emergency management personnel to plan for and support their responses to a chemical-releasing event at a military chemical stockpile. This guide provides the background as well as the operations and procedures needed to generate and maintain the data resources in the system. Database administrators, system administrators, and general users can use this guide to manage the datafiles and database. This document provides a description of the relational and spatial information present in FEMIS. It describes how the data was assembled, loaded, and managed while the system is in operation.

  3. Summary statement on emergency planning for transportation

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S S

    1983-08-01

    Present federal policy relies mainly on market forces for assuring adequate energy supplies. In addition to national oil stockpiles, the federal government has developed, but not yet tested, an early warning system for energy shortages, in cooperation with the Department of Defense. Primary responsibility for detailed contingency planning rests with the states. Transportation systems are undergoing general change and adaptation, which government should promote while managing its own transportation resources optimally. Government planning for emergencies of all varieties should be inter-agency directed, but constrained by full recognition of extensive remedial action taken at the local level. Industry emergency planning encompasses measures by the manufacturing sector, including optimal fuel economy for vehicles and the possible use of alternative fuels. Railroad contingency planning requires some federal and regional government regulatory reforms. The federal fuel allocation program was detrimental to all transportation modes. The appropriate degree of fuel price stabilization during shortages remains highly controversial, partly on the grounds that controls lower GNP. The prevalent view was that priority allocations at any level are worse than price allocations. Equity issues should be addressed at the local level and transfers carried out in the form of money. Field evaluations, combined with quantitative modeling of the issues raised here, would be highly desirable.

  4. Is strategic stockpiling essential?

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    As mentioned by the European Commission, a consultant has surveyed stakeholders on the concept of setting up strategic stockpiles of natural gas, namely to boost the security of Europe's supply, much like the strategic stockpiling for petroleum products the OECD member countries carried out after the petroleum crisis. If strategic stockpiling consists in blocking off a quantity of gas in addition to the usable stockpile, the AFG believes it is necessary to assess the implications of such a measure and to examine the security gain it would actually offer compared to the measures that have already been implemented to secure supplies. (author)

  5. Applying radiological emergency planning experience to hazardous materials emergency planning within the nuclear industry

    International Nuclear Information System (INIS)

    Foltman, A.; Newsom, D.; Lerner, K.

    1988-01-01

    The nuclear industry has extensive radiological emergency planning (REP) experience that is directly applicable to hazardous materials emergency planning. Recently, the Feed Materials Production Center near Cincinnati, Ohio, successfully demonstrated such application. The REP experience includes conceptual bases and standards for developing plans that have been tested in hundreds of full-scale exercises. The exercise program itself is also well developed. Systematic consideration of the differences between chemical and radiological hazards shows that relatively minor changes to the REP bases and standards are necessary. Conduct of full-scale, REP-type exercises serves to test the plans, provide training, and engender confidence and credibility

  6. Antibiotic losses from unprotected manure stockpiles.

    Science.gov (United States)

    Dolliver, Holly A S; Gupta, Satish C

    2008-01-01

    Manure management is a major concern in livestock production systems. Although historically the primary concerns have been nutrients and pathogens, manure is also a source of emerging contaminants, such as antibiotics, to the environment. There is a growing concern that antibiotics in manure are reaching surface and ground waters and contributing to the development and spread of antibiotic resistance in the environment. One such pathway is through leaching and runoff from manure stockpiles. In this study, we quantified chlortetracycline, monensin, and tylosin losses in runoff from beef manure stockpiles during two separate but consecutive experiments representing different weather conditions (i.e., temperature and precipitation amount and form). Concentrations of chlortetracycline, monensin, and tylosin in runoff were positively correlated with initial concentrations of antibiotics in manure. The highest concentrations of chlortetracycline, monensin, and tylosin in runoff were 210, 3175, and 2544 microg L(-1), respectively. Relative antibiotic losses were primarily a function of water losses. In the experiment that had higher runoff water losses, antibiotic losses ranged from 1.2 to 1.8% of total extractable antibiotics in manure. In the experiment with lower runoff water losses, antibiotic losses varied from 0.2 to 0.6% of the total extractable antibiotics in manure. Manure analysis over time suggests that in situ degradation is an important mechanism for antibiotic losses. Degradation losses during manure stockpiling may exceed cumulative losses from runoff events. Storing manure in protected (i.e., covered) facilities could reduce the risk of aquatic contamination associated with manure stockpiling and other outdoor manure management practices.

  7. Analytical Characterization of the Thorium Nitrate Stockpile

    Energy Technology Data Exchange (ETDEWEB)

    Mattus, CH

    2003-12-30

    For several years, Oak Ridge National Laboratory (ORNL) has been supporting the Defense Logistics Agency-Defense National Stockpile Center with stewardship of a thorium nitrate (ThN) stockpile. The effort for fiscal year 2002 was to prepare a sampling and analysis plan and to use the activities developed in the plan to characterize the ThN stockpile. The sampling was performed in June and July 2002 by RWE NUKEM with oversight by ORNL personnel. The analysis was performed by Southwest Research Institute of San Antonio, Texas, and data validation was performed by NFT, Inc., of Oak Ridge, Tennessee. Of the {approx} 21,000 drums in the stockpile, 99 were sampled and 53 were analyzed for total metals composition, radiological constituents (using alpha and gamma spectrometry), and oxidizing characteristics. Each lot at the Curtis Bay Depot was sampled. Several of the samples were also analyzed for density. The average density of the domestic ThN was found to be 1.89 {+-} 0.08 g/cm{sup 3}. The oxidizer test was performed following procedures issued by the United Nations in 1999. Test results indicated that none of the samples tested was a Division 5.1 oxidizer per Department of Transportation definition. The samples were analyzed for total metals following the U.S. Environmental Protection Agency methods SW-846-6010B and 6020 (EPA 2003) using a combination of inductively coupled plasma--atomic emission spectroscopy and inductively coupled plasma--mass spectroscopy techniques. The results were used to compare the composition of the eight Resource Conservation and Recovery Act metals present in the sample (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) to regulatory limits. None of the samples was found to be hazardous for toxicity characteristics. The radiological analyses confirmed, when possible, the results obtained by the inductively coupled plasma analyses. These results--combined with the historical process knowledge acquired on the material

  8. Covering of milled peat stockpile with wood chips; Jyrsinturveauman peittaeminen hakkeella

    Energy Technology Data Exchange (ETDEWEB)

    Franssila, T.; Leinonen, A.

    1996-12-31

    The aim of this project is to research the applicability of wooden materials for protection of milled peat stockpile against losses during storaging. Water transmission features of sawdust, wastewood chip and whole tree chip were investigated in laboratory with raining experiments. The plan for raining experiments was made with experiment planning program and results were analysed with multivariate analysis. Freezing features were investigated thorough breaking tests with hydraulic piston vice. Laboratory experiments were completed with field tests in Laakasuo near Sotkamo. On the basis of results covering peat stockpiles with sawdust is fully competitive comparing to present covering methods. Chip materials are technically not as good covering materials as sawdust

  9. The Stockpile Monitor Program

    International Nuclear Information System (INIS)

    Buntain, G.A.; Fletcher, M.; Rabie, R.

    1994-07-01

    Recent political changes have led to drastic reductions in the number of nuclear warheads in stockpile, as well as increased expectations for warhead-service lives. In order to support and maintain a shrinking and aging nuclear stockpile, weapon scientists and engineers need detailed information describing the environments experienced by weapons in the field. Hence, the Stockpile Monitor Program was initiated in 1991 to develop a comprehensive and accurate database of temperature and humidity conditions experienced by nuclear warheads both in storage and on-alert

  10. Chemical Stockpile Disposal Program: Review and comment on the Phase 1 environmental report for the Pueblo Depot Activity, Pueblo, Colorado

    International Nuclear Information System (INIS)

    Olshansky, S.J.; Krummel, J.R.; Policastro, A.J.; McGinnis, L.D.

    1994-03-01

    As part of the Chemical Stockpile Disposal Program, an independent review is presented of the US Army Phase I environmental report for the disposal of chemical agents and munitions stored at the Pueblo Depot Activity (PUDA) in Pueblo, Colorado. The Phase I report addresses new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). These concerns are addressed by examining site-specific data for the PUDA. On the basis of our review of the Phase I report, we concluded that on-site meteorological data from December 1988 to June 1992 appear to be of insufficient quality to have been used instead of the off-site Pueblo airport data. No additional meteorological data have been collected since June 1992. The Phase I report briefly mentions problems with the air pollution control system. These problems will likely require the systems to be upgraded at the Johnston Atoll site and at each of the other depots in the continental United States. Without such improvements, the probability of accidents during start-up and shutdown would likely increase. The Army has a lessons-learned program to incorporate improvements into the design of future facilities. The Phase I report does not make any design change commitments. These issues need to be fully evaluated and resolved before any final conclusion concerning the adequacy of the decision in the FPEIS can be made with respect to the PUDA. With the exception of this issue, the inclusion of other more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at the PUDA). We recommend that site-specific data on water, ecological, socioeconomic, and cultural resources and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process

  11. Chemical Emergency Preparedness and Prevention Advisory: Ammonia

    Science.gov (United States)

    This advisory recommends ways Local Emergency Planning Committees (LEPCs) and chemical facilities can minimize risks from this extremely hazardous substance, especially when present in excess of its 500 pounds threshold planning quantity.

  12. Construction of a technique plan repository and evaluation system based on AHP group decision-making for emergency treatment and disposal in chemical pollution accidents

    International Nuclear Information System (INIS)

    Shi, Shenggang; Cao, Jingcan; Feng, Li; Liang, Wenyan; Zhang, Liqiu

    2014-01-01

    Highlights: • Different chemical pollution accidents were simplified using the event tree analysis. • Emergency disposal technique plan repository of chemicals accidents was constructed. • The technique evaluation index system of chemicals accidents disposal was developed. • A combination of group decision and analytical hierarchy process (AHP) was employed. • Group decision introducing similarity and diversity factor was used for data analysis. - Abstract: The environmental pollution resulting from chemical accidents has caused increasingly serious concerns. Therefore, it is very important to be able to determine in advance the appropriate emergency treatment and disposal technology for different types of chemical accidents. However, the formulation of an emergency plan for chemical pollution accidents is considerably difficult due to the substantial uncertainty and complexity of such accidents. This paper explains how the event tree method was used to create 54 different scenarios for chemical pollution accidents, based on the polluted medium, dangerous characteristics and properties of chemicals involved. For each type of chemical accident, feasible emergency treatment and disposal technology schemes were established, considering the areas of pollution source control, pollutant non-proliferation, contaminant elimination and waste disposal. Meanwhile, in order to obtain the optimum emergency disposal technology schemes as soon as the chemical pollution accident occurs from the plan repository, the technique evaluation index system was developed based on group decision-improved analytical hierarchy process (AHP), and has been tested by using a sudden aniline pollution accident that occurred in a river in December 2012

  13. Construction of a technique plan repository and evaluation system based on AHP group decision-making for emergency treatment and disposal in chemical pollution accidents

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Shenggang [College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 (China); College of Chemistry, Baotou Teachers’ College, Baotou 014030 (China); Cao, Jingcan; Feng, Li; Liang, Wenyan [College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 (China); Zhang, Liqiu, E-mail: zhangliqiu@163.com [College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 (China)

    2014-07-15

    Highlights: • Different chemical pollution accidents were simplified using the event tree analysis. • Emergency disposal technique plan repository of chemicals accidents was constructed. • The technique evaluation index system of chemicals accidents disposal was developed. • A combination of group decision and analytical hierarchy process (AHP) was employed. • Group decision introducing similarity and diversity factor was used for data analysis. - Abstract: The environmental pollution resulting from chemical accidents has caused increasingly serious concerns. Therefore, it is very important to be able to determine in advance the appropriate emergency treatment and disposal technology for different types of chemical accidents. However, the formulation of an emergency plan for chemical pollution accidents is considerably difficult due to the substantial uncertainty and complexity of such accidents. This paper explains how the event tree method was used to create 54 different scenarios for chemical pollution accidents, based on the polluted medium, dangerous characteristics and properties of chemicals involved. For each type of chemical accident, feasible emergency treatment and disposal technology schemes were established, considering the areas of pollution source control, pollutant non-proliferation, contaminant elimination and waste disposal. Meanwhile, in order to obtain the optimum emergency disposal technology schemes as soon as the chemical pollution accident occurs from the plan repository, the technique evaluation index system was developed based on group decision-improved analytical hierarchy process (AHP), and has been tested by using a sudden aniline pollution accident that occurred in a river in December 2012.

  14. The challenge of measuring emergency preparedness: integrating component metrics to build system-level measures for strategic national stockpile operations.

    Science.gov (United States)

    Jackson, Brian A; Faith, Kay Sullivan

    2013-02-01

    Although significant progress has been made in measuring public health emergency preparedness, system-level performance measures are lacking. This report examines a potential approach to such measures for Strategic National Stockpile (SNS) operations. We adapted an engineering analytic technique used to assess the reliability of technological systems-failure mode and effects analysis-to assess preparedness. That technique, which includes systematic mapping of the response system and identification of possible breakdowns that affect performance, provides a path to use data from existing SNS assessment tools to estimate likely future performance of the system overall. Systems models of SNS operations were constructed and failure mode analyses were performed for each component. Linking data from existing assessments, including the technical assistance review and functional drills, to reliability assessment was demonstrated using publicly available information. The use of failure mode and effects estimates to assess overall response system reliability was demonstrated with a simple simulation example. Reliability analysis appears an attractive way to integrate information from the substantial investment in detailed assessments for stockpile delivery and dispensing to provide a view of likely future response performance.

  15. THE BNL ASTD FIELD LAB - NEAR - REAL - TIME CHARACTERIZATION OF BNL STOCKPILED SOILS TO ACCELERATE COMPLETION OF THE EM CHEMICAL HOLES PROJECT

    International Nuclear Information System (INIS)

    BOWERMAN, B.S.; ADAMS, J.W.; HEISER, J.; KALB, P.D.; LOCKWOOD, A.

    2003-01-01

    As of October 2001, approximately 7,000 yd 3 of stockpiled soil remained at Brookhaven National Laboratory (BNL) after the remediation of the BNL Chemical/Animal/Glass Pits disposal area. The soils were originally contaminated with radioactive materials and heavy metals, depending on what materials had been interred in the pits, and how the pits were excavated. During the 1997 removal action, the more hazardous/radioactive materials were segregated, along with, chemical liquids and solids, animal carcasses, intact gas cylinders, and a large quantity of metal and glass debris. Nearly all of these materials have been disposed of. In order to ensure that all debris was removed and to characterize the large quantity of heterogeneous soil, BNL initiated an extended sorting, segregation, and characterization project directed at the remaining soil stockpiles. The project was co-funded by the Department of Energy Environmental Management Office (DOE EM) through the BNL Environmental Restoration program and through the DOE EM Office of Science and Technology Accelerated Site Technology Deployment (ASTD) program. The focus was to remove any non-conforming items, and to assure that mercury and radioactive contaminant levels were within acceptable limits for disposal as low-level radioactive waste. Soils with mercury concentrations above allowable levels would be separated for disposal as mixed waste. Sorting and segregation were conducted simultaneously. Large stockpiles (ranging from 150 to 1,200 yd 3 ) were subdivided into manageable 20 yd 3 units after powered vibratory screening. The 1/2-inch screen removed almost all non-conforming items (plus some gravel). Non-conforming items were separated for further characterization. Soil that passed through the screen was also visually inspected before being moved to a 20 yd 3 ''subpile.'' Eight samples from each subpile were collected after establishing a grid of four quadrants: north, east, south and west, and two layers: top and

  16. Stockpile Stewardship at Los Alamos(U)

    Energy Technology Data Exchange (ETDEWEB)

    Webster, Robert B. [Los Alamos National Laboratory

    2012-06-29

    Stockpile stewardship is the retention of nuclear weapons in the stockpile beyond their original design life. These older weapons have potential changes inconsistent with the original design intent and military specifications. The Stockpile Stewardship Program requires us to develop high-fidelity, physics-based capabilities to predict, assess, certify and design nuclear weapons without conducting a nuclear test. Each year, the Lab Directors are required to provide an assessment of the safety, security, and reliability our stockpile to the President of the United States. This includes assessing whether a need to return to testing exists. This is a talk to provide an overview of Stockpile Stewardship's scientific requirements and how stewardship has changed in the absence of nuclear testing. The talk is adapted from an HQ talk to the War college, and historical unclassified talks on weapon's physics.

  17. Temperature profiles of coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    Sensogut, C.; Ozdeniz, A.H.; Gundogdu, I.B. [Dumlupinar University, Kutahya (Turkey). Mining Engineering Department

    2008-07-01

    Excess of produced coals should be kept in the stockyards of the collieries. The longer the duration time for these coals, the greater possibility for spontaneous combustion to take place. Spontaneously burnt coals result in economical and environmental problems. Therefore, taking the necessary precautions before an outburst of the spontaneous combustion phenomenon is too important in terms of its severe results. In this study, a stockpile having industrial dimensions was formed in coal stockyard. The effective parameters on the stockpiles of coal such as temperature and humidity of the weather, time, and atmospheric pressure values were measured. The interior temperature variations of these stockpiles caused by the atmospheric conditions were also measured. The interior temperature distribution maps of the stockpile together with maximum and minimum temperature values were expressed visually and numerically by the assistance of obtained data.

  18. 2001 Toxic Chemical Release Inventory Emergency Planning and Community Right to Know Act SEC 313

    International Nuclear Information System (INIS)

    ZALOUDEK, D.E.

    2002-01-01

    Pursuant to section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 (EPCRA), and Executive Order 13148, Greening the Government Through Leadership in Environmental Management, the US Department of Energy has prepared and submitted a Toxic Chemical Release Inventory for the Hanford Site covering activities performed during calendar year 2001. EPCRA Section 313 requires facilities that manufacture, process, or otherwise use listed toxic chemicals in quantities exceeding established threshold levels to report total annual releases of those chemicals. During calendar year 2001, Hanford Site activities resulted in one chemical used in amounts exceeding an activity threshold. Accordingly, the Hanford Site 2001 Toxic Chemical Release Inventory, DOE/RL-2002-37, includes total annual amount of lead released to the environment, transferred to offsite locations, and otherwise managed as waste

  19. Piling Pills? Forward-Looking Behavior and Stockpiling of Prescription Drugs

    DEFF Research Database (Denmark)

    Simonsen, Marianne; Skipper, Lars; Skipper, Niels

    This paper provides evidence of forward-looking behavior in the demand for prescription drugs, while relying on registry-based, individual-level information about the universe of Danish prescription drug purchases from 1995–2014. We exploit a universal shift in policy in early 2000 from a flat......-rate to a non-linear insurance plan for prescription drugs that incentivizes stockpiling at the end of the coverage year. We extend the original framework of Keeler et al. (1977) and discuss how the institutional features of most health insurance contracts, at least theoretically, incentivize intertemporal...... immediately prior to the end-of-year reset in the non-linear plan using a difference-in-difference strategy. We provide evidence that consumers react to this reset by stockpiling toward the end of the coverage year: consumers buy what amounts to an additional 20%. We detect heterogeneity in the size...

  20. China to Establish Strategic Oil Stockpile Bases

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Based on the reports from China's State Development and Reform Committee, a new department of the State Council recently put into operation, the relevant departments have located a number of places as the country's strategic oil stockpile bases, such as Zhoushan and Zhenghai in Zhejiang Province, Huangdao in Shandong Province and Daya Bay in Guangdong Province. However, the plan still needs to be examined and approved by the State Council.

  1. Thorium Nitrate Stockpile--From Here to Eternity

    International Nuclear Information System (INIS)

    Hermes, W. H.; Hylton, T. D.; Mattus, C.H.; Storch, S. N.; Singley, P.S.; Terry, J. W.; Pecullan, M.; Reilly, F. K.

    2003-01-01

    The Defense National Stockpile Center (DNSC), a field level activity of the Defense Logistics Agency (DLA) has stewardship of a stockpile of thorium nitrate that has been in storage for decades. The stockpile is made up of approximately 3.2 million kg (7 million lb) of thorium nitrate crystals (hydrate form) stored at two depot locations in the United States. DNSC sought technical assistance from Oak Ridge National Laboratory (ORNL) to define and quantify the management options for the thorium nitrate stockpile. This paper describes methodologies and results comprising the work in Phase 1 and Phase 2. The results allow the DNSC to structure and schedule needed tasks to ensure continued safe long-term storage and/or phased disposal of the stockpile

  2. 1992 Toxic Chemical Release Inventory: Emergency Planning and Community Right-To-Know-Act of 1986 Section 313

    International Nuclear Information System (INIS)

    1993-07-01

    Section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 (EPCRA) requires the annual submittal of toxic chemical release information to the US Environmental Protection Agency (EPA). The following document is the July 1993 submittal of the EPCRA Toxic Chemical Release Inventory Report (Form R). Included is a Form R for chlorine and for lead, the two chemicals used in excess of the established regulatory thresholds at the Hanford Site by the US Department of Energy, Richland Operations Office and its contractors during calendar year 1992

  3. Household Chemical Emergencies

    Science.gov (United States)

    ... Content Home Be Informed Household Chemical Emergencies Household Chemical Emergencies Although the risk of a chemical accident ... reduce the risk of injury. Before a Household Chemical Emergency It is critical to store household chemicals ...

  4. Construction of a technique plan repository and evaluation system based on AHP group decision-making for emergency treatment and disposal in chemical pollution accidents.

    Science.gov (United States)

    Shi, Shenggang; Cao, Jingcan; Feng, Li; Liang, Wenyan; Zhang, Liqiu

    2014-07-15

    The environmental pollution resulting from chemical accidents has caused increasingly serious concerns. Therefore, it is very important to be able to determine in advance the appropriate emergency treatment and disposal technology for different types of chemical accidents. However, the formulation of an emergency plan for chemical pollution accidents is considerably difficult due to the substantial uncertainty and complexity of such accidents. This paper explains how the event tree method was used to create 54 different scenarios for chemical pollution accidents, based on the polluted medium, dangerous characteristics and properties of chemicals involved. For each type of chemical accident, feasible emergency treatment and disposal technology schemes were established, considering the areas of pollution source control, pollutant non-proliferation, contaminant elimination and waste disposal. Meanwhile, in order to obtain the optimum emergency disposal technology schemes as soon as the chemical pollution accident occurs from the plan repository, the technique evaluation index system was developed based on group decision-improved analytical hierarchy process (AHP), and has been tested by using a sudden aniline pollution accident that occurred in a river in December 2012. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Chemical Emergencies - Multiple Languages

    Science.gov (United States)

    ... Chemical Emergencies - bosanski (Bosnian) PDF Chemical Emergencies - English MP3 Chemical Emergencies - bosanski (Bosnian) MP3 Chemical Emergencies - English MP4 Chemical Emergencies - bosanski (Bosnian) ...

  6. Gaseous emissions from coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Stockpiled coal undergoes atmospheric oxidation and desorption processes during open air storage. These processes release gases to the environment which may effect health and safety by their toxicity and flammability. In extreme cases, this could lead to a fire. This report discusses gaseous emissions from coal stockpiles. It covers gas emission mechanisms, and gas sampling and testing methods, before examining in more detail the principal gases that have been emitted. It concludes that there is limited research in this area and more data are needed to evaluate the risks of gaseous emissions. Some methods used to prevent coal self-heating and spontaneous combustion can be applied to reduce emissions from coal stockpiles.

  7. Potassium iodide stockpiling

    International Nuclear Information System (INIS)

    Krimm, R.W.

    1983-01-01

    After examination by the Federal Emergency Management Agency (FEMA) and other federal agencies of federal policy on the use and distribution of potassium iodide (KI) as a thyroid-blocking agent for use in off-site preparedness around commercial nuclear powerplants, FEMA believes the present shelf life of KI is too short, that the minimum ordering quantities are an obstacle to efficient procurement, and that the packaging format offered by the drug industry does not meet the wishes of state and local government officials. FEMA has asked assistance from the Food and Drug Administration in making it possible for those states wishing to satisfy appropriate requirements to do so at the minimum cost to the public. Given an appropriate packaging and drug form, there appears to be no reason for the federal government to have further involvement in the stockpiling of KI

  8. Chemical Emergencies Overview

    Science.gov (United States)

    ... Address What's this? Submit What's this? Submit Button Chemical Emergencies Overview Recommend on Facebook Tweet Share Compartir ... themselves during and after such an event. What chemical emergencies are A chemical emergency occurs when a ...

  9. Uranium purchasing and stockpiling policies of European utilities

    International Nuclear Information System (INIS)

    Messer, K.P.

    1984-01-01

    Most European utilities almost entirely depend on uranium imports. Around 1970 there was a worldwide oversupply of uranium, and utilities concluded short and medium term supply contracts for initial power plant programs. A few years later the situation had changed, with uranium becoming scarce and expensive. Many European utilities decided to participate, directly or indirectly, in the exploration and development of uranium resources. In 1984 most utilities believed that long term contracts from each of the big producer regions should supply 20-25% of their demand. Some remaining demand was reserved for the spot market and reprocessed fuel. This buying policy has t be supplemented by uranium stockpiles corresponding to the demand for the coming two years. However, with the declining worldwide economy power demand has not grown as predicted, and supply contracts have obliged utilities to take delivery of more uranium than needed. Stockpiles have grown larger than planned. (L.L.) (7 figs.)

  10. 1995 Toxic chemical release inventory: Emergency Planning and Community Right-to-Know Act of 1986, Section 313

    International Nuclear Information System (INIS)

    Mincey, S.L.

    1996-08-01

    Section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) requires the annual submittal of toxic chemical release information to the U.S. Environmental Protection Agency.Executive Order 12856, 'Federal Compliance With Right-to-Know Laws and Pollution Prevention Requirements' extends the requirements of EPCRA to all Federal agencies. The following document is the August 1996 submittal of the Hanford Site Toxic Chemical Release Inventory report. Included is a Form R for ethylene glycol, the sole chemical used in excess of the established regulatory thresholds at the Hanford Site by the U.S. Department of Energy, Richland Operations Office and its contractors during Calendar Year 1995

  11. Hedging against antiviral resistance during the next influenza pandemic using small stockpiles of an alternative chemotherapy.

    Directory of Open Access Journals (Sweden)

    Joseph T Wu

    2009-05-01

    Full Text Available The effectiveness of single-drug antiviral interventions to reduce morbidity and mortality during the next influenza pandemic will be substantially weakened if transmissible strains emerge which are resistant to the stockpiled antiviral drugs. We developed a mathematical model to test the hypothesis that a small stockpile of a secondary antiviral drug could be used to mitigate the adverse consequences of the emergence of resistant strains.We used a multistrain stochastic transmission model of influenza to show that the spread of antiviral resistance can be significantly reduced by deploying a small stockpile (1% population coverage of a secondary drug during the early phase of local epidemics. We considered two strategies for the use of the secondary stockpile: early combination chemotherapy (ECC; individuals are treated with both drugs in combination while both are available; and sequential multidrug chemotherapy (SMC; individuals are treated only with the secondary drug until it is exhausted, then treated with the primary drug. We investigated all potentially important regions of unknown parameter space and found that both ECC and SMC reduced the cumulative attack rate (AR and the resistant attack rate (RAR unless the probability of emergence of resistance to the primary drug p(A was so low (less than 1 in 10,000 that resistance was unlikely to be a problem or so high (more than 1 in 20 that resistance emerged as soon as primary drug monotherapy began. For example, when the basic reproductive number was 1.8 and 40% of symptomatic individuals were treated with antivirals, AR and RAR were 67% and 38% under monotherapy if p(A = 0.01. If the probability of resistance emergence for the secondary drug was also 0.01, then SMC reduced AR and RAR to 57% and 2%. The effectiveness of ECC was similar if combination chemotherapy reduced the probabilities of resistance emergence by at least ten times. We extended our model using travel data between 105

  12. Research on evacuation planning as nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Yamamoto, Kazuya

    2007-10-01

    The International Atomic Energy Agency (IAEA) has introduced new concepts of precautionary action zone (PAZ) and urgent protective action planning zone (UPZ) in 'Preparedness and Response for a Nuclear or Radiological Emergency' (GS-R-2 (2002)), in order to reduce substantially the risk of severe deterministic health effects. Open literature based research was made to reveal problems on evacuation planning and the preparedness for nuclear emergency arising from introduction of PAZ into Japan that has applied the emergency planning zone (EPZ) concept currently. In regard to application of PAZ, it should be noted that the requirements for preparedness and response for a nuclear or radiological emergency are not only dimensional but also timely. The principal issue is implementation of evacuation of precautionary decided area within several hours. The logic of evacuation planning for a nuclear emergency and the methods of advance public education and information in the U.S. is effective for even prompt evacuation to the outside of the EPZ. As concerns evacuation planning for a nuclear emergency in Japan, several important issues to be considered were found, that is, selection of public reception centers which are outside area of the EPZ, an unique reception center assigned to each emergency response planning area, public education and information of practical details about the evacuation plan in advance, and necessity of the evacuation time estimates. To establish a practical evacuation planning guide for nuclear emergencies, further researches on application of traffic simulation technology to evacuation time estimates and on knowledge of actual evacuation experience in natural disasters and chemical plant accidents are required. (author)

  13. Modeling the filtration ability of stockpiled filtering facepiece

    Science.gov (United States)

    Rottach, Dana R.

    2016-03-01

    Filtering facepiece respirators (FFR) are often stockpiled for use during public health emergencies such as an infectious disease outbreak or pandemic. While many stockpile administrators are aware of shelf life limitations, environmental conditions can lead to premature degradation. Filtration performance of a set of FFR retrieved from a storage room with failed environmental controls was measured. Though within the expected shelf life, the filtration ability of several respirators was degraded, allowing twice the penetration of fresh samples. The traditional picture of small particle capture by fibrous filter media qualitatively separates the effect of inertial impaction, interception from the streamline, diffusion, settling, and electrostatic attraction. Most of these mechanisms depend upon stable conformational properties. However, common FFR rely on electrets to achieve their high performance, and over time heat and humidity can cause the electrostatic media to degrade. An extension of the Langevin model with correlations to classical filtration concepts will be presented. The new computational model will be used to predict the change in filter effectiveness as the filter media changes with time.

  14. Stockpiling Ventilators for Influenza Pandemics.

    Science.gov (United States)

    Huang, Hsin-Chan; Araz, Ozgur M; Morton, David P; Johnson, Gregory P; Damien, Paul; Clements, Bruce; Meyers, Lauren Ancel

    2017-06-01

    In preparing for influenza pandemics, public health agencies stockpile critical medical resources. Determining appropriate quantities and locations for such resources can be challenging, given the considerable uncertainty in the timing and severity of future pandemics. We introduce a method for optimizing stockpiles of mechanical ventilators, which are critical for treating hospitalized influenza patients in respiratory failure. As a case study, we consider the US state of Texas during mild, moderate, and severe pandemics. Optimal allocations prioritize local over central storage, even though the latter can be deployed adaptively, on the basis of real-time needs. This prioritization stems from high geographic correlations and the slightly lower treatment success assumed for centrally stockpiled ventilators. We developed our model and analysis in collaboration with academic researchers and a state public health agency and incorporated it into a Web-based decision-support tool for pandemic preparedness and response.

  15. Validated sampling strategy for assessing contaminants in soil stockpiles

    International Nuclear Information System (INIS)

    Lame, Frank; Honders, Ton; Derksen, Giljam; Gadella, Michiel

    2005-01-01

    Dutch legislation on the reuse of soil requires a sampling strategy to determine the degree of contamination. This sampling strategy was developed in three stages. Its main aim is to obtain a single analytical result, representative of the true mean concentration of the soil stockpile. The development process started with an investigation into how sample pre-treatment could be used to obtain representative results from composite samples of heterogeneous soil stockpiles. Combining a large number of random increments allows stockpile heterogeneity to be fully represented in the sample. The resulting pre-treatment method was then combined with a theoretical approach to determine the necessary number of increments per composite sample. At the second stage, the sampling strategy was evaluated using computerised models of contaminant heterogeneity in soil stockpiles. The now theoretically based sampling strategy was implemented by the Netherlands Centre for Soil Treatment in 1995. It was applied to all types of soil stockpiles, ranging from clean to heavily contaminated, over a period of four years. This resulted in a database containing the analytical results of 2570 soil stockpiles. At the final stage these results were used for a thorough validation of the sampling strategy. It was concluded that the model approach has indeed resulted in a sampling strategy that achieves analytical results representative of the mean concentration of soil stockpiles. - A sampling strategy that ensures analytical results representative of the mean concentration in soil stockpiles is presented and validated

  16. The nuclear emergency plans

    International Nuclear Information System (INIS)

    Fuertes Menendez, M. J.; Gasco Leonarte, L.; Granada Ferrero, M. J.

    2007-01-01

    Planning of the response to emergencies in nuclear plants is regulated by the Basic Nuclear Emergency Plan (PLABEN). This basic Plan is the guidelines for drawing up, implementing and maintaining the effectiveness of the nuclear power plant exterior nuclear emergency plans. The five exterior emergency plans approved as per PLABEN (PENGUA, PENCA, PENBU, PENTA and PENVA) place special emphasis on the preventive issues of emergency planning, such as implementation of advance information programs to the population, as well as on training exercises and drills. (Author)

  17. The Impact of the Quality of Coal Mine Stockpile Soils on Sustainable Vegetation Growth and Productivity

    Directory of Open Access Journals (Sweden)

    Nicky M Mushia

    2016-06-01

    Full Text Available Stockpiled soils are excavated from the ground during mining activities, and piled on the surface of the soil for rehabilitation purposes. These soils are often characterized by low organic matter (SOM content, low fertility, and poor physical, chemical, and biological properties, limiting their capability for sustainable vegetation growth. The aim of the study was to evaluate the impact of stockpile soils of differing depth and quality on vegetation growth and productivity. Soils were collected at three different depths (surface, mid, and deep as well as mixed (equal proportion of surface, mid and deep from two stockpiles (named Stockpile 1: aged 10 and Stockpile 2: 20 years at the coal mine near Witbank in the Mpumalanga province of South Africa. Soils were amended with different organic and inorganic fertilizer. A 2 × 4 × 5 factorial experiment in a completely randomized blocked design with four replications was established under greenhouse conditions. A grass species (Digiteria eriantha was planted in the pots with unamended and amended soils under greenhouse conditions at 26–28 °C during the day and 16.5–18.5 °C at night. Mean values of plant height, plant cover, total fresh biomass (roots, stems and leaves, and total dry biomass were found to be higher in Stockpile 1 than in Stockpile 2 soils. Plants grown on soils with no amendments had lower mean values for major plant parameters studied. Soil amended with poultry manure and lime was found to have higher growth rate compared with soils with other soil amendments. Mixed soils had better vegetation growth than soil from other depths. Stockpiled soils in the study area cannot support vegetation growth without being amended, as evidenced by low grass growth and productivity in this study.

  18. Final programmatic environmental impact statement for stockpile stewardship and management

    International Nuclear Information System (INIS)

    1996-09-01

    In response to the end of the Cold War and changes in the world's political regimes, the United States is not producing new-design nuclear weapons. Instead, the emphasis of the U.S. nuclear weapons program is on reducing the size of the Nation's nuclear stockpile by dismantling existing nuclear weapons. The Department of Energy (DOE) has been directed by the President and Congress to maintain the safety and reliability of the reduced nuclear weapons stockpile in the absence of underground nuclear testing. In order to fulfill that responsibility, DOE has developed a Stockpile Stewardship and Management Program to provide a single highly integrated technical program for maintaining the continued safety and reliability of the nuclear stockpile. The Stockpile Stewardship and Management PEIS describes and analyzes alternative ways to implement the proposed actions for the Stockpile Stewardship and Management Program

  19. Final Programmatic Environmental Impact Statement for stockpile stewardship and management

    International Nuclear Information System (INIS)

    1996-09-01

    The Department of Energy (DOE) has been directed by the President and Congress to maintain the safety and reliability of the reduced nuclear weapons stockpile in the absence of underground nuclear testing. In order to fulfill that responsibility, DOE has developed a Stockpile Stewardship and Management Program to provide a single highly integrated technical program for maintaining the continued safety and reliability of the nuclear stockpile. The Stockpile Stewardship and Management Programmatic Environmental Impact Statement (PEIS) describes and analyzes alternative ways to implement the proposed actions for the Stockpile Stewardship and Management Program. This document contains Volume II which consists of Appendices A through H

  20. Planning for chemical disasters at Point Lisas, Trinidad and Tobago

    International Nuclear Information System (INIS)

    Mathur, M.N.

    1995-01-01

    No major chemical disaster has taken place so far in Trinidad and Tobago. Even so, in view of the numerous hazards that the various chemical handling plants deal with at Point Lisas, the country has to be prepared to deal with chemical disasters. The country's emergency preparedness plan for chemical disasters aims to localize the emergency, if possible, eliminate it and minimize the effects of the accident on people and property. The hazards of ammonia, hydrogen, chlorine, hydrocarbons and methanol release can have devastating effects on the workers and the residents in the vicinity of the plants. The Emergency Plan identifies an Emergency Co-ordinating Officer who would take command of the off-site activities and coordinate the activities of Works Management, Local Authority, Police, Fire Services, Defence Force, Health Authority and Factory Inspectorate. Resources of fire fighting, medical treatment, telecommunications, waste management and public education have to be enhanced immediately. In the long term a new fire station and a new county hospital have to be built, some housing settlements have to be phased out and non-essential staff relocated

  1. 30 CFR 702.16 - Stockpiling of minerals.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Stockpiling of minerals. 702.16 Section 702.16 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR GENERAL EXEMPTION FOR COAL EXTRACTION INCIDENTAL TO THE EXTRACTION OF OTHER MINERALS § 702.16 Stockpiling of...

  2. Quantitative risk analysis as a basis for emergency planning

    Energy Technology Data Exchange (ETDEWEB)

    Yogui, Regiane Tiemi Teruya [Bureau Veritas do Brasil, Rio de Janeiro, RJ (Brazil); Macedo, Eduardo Soares de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    2009-07-01

    Several environmental accidents happened in Brazil and in the world during the 70's and 80's. This strongly motivated the preparation for emergencies in the chemical and petrochemical industries. Environmental accidents affect the environment and the communities that are neighbor to the industrial facilities. The present study aims at subsidizing and providing orientation to develop Emergency Planning from the data obtained on Quantitative Risk Analysis, elaborated according to the Technical Standard P4.261/03 from CETESB (Sao Paulo Environmental Agency). It was observed, during the development of the research, that the data generated on these studies need a complementation and a deeper analysis, so that it is possible to use them on the Emergency Plans. The main issues that were analyzed and discussed on this study were the reevaluation of hazard identification for the emergency plans, the consequences and vulnerability analysis for the response planning, the risk communication, and the preparation to respond to the emergencies of the communities exposed to manageable risks. As a result, the study intends to improve the interpretation and use of the data deriving from the Quantitative Risk Analysis to develop the emergency plans. (author)

  3. Emergency response planning in hospitals, United States: 2003-2004.

    Science.gov (United States)

    Niska, Richard W; Burt, Catharine W

    2007-08-20

    This study presents baseline data to determine which hospital characteristics are associated with preparedness for terrorism and natural disaster in the areas of emergency response planning and availability of equipment and specialized care units. Information from the Bioterrorism and Mass Casualty Preparedness Supplements to the 2003 and 2004 National Hospital Ambulatory Medical Care Surveys was used to provide national estimates of variations in hospital emergency response plans and resources by residency and medical school affiliation, hospital size, ownership, metropolitan statistical area status, and Joint Commission accreditation. Of 874 sampled hospitals with emergency or outpatient departments, 739 responded for an 84.6 percent response rate. Estimates are presented with 95 percent confidence intervals. About 92 percent of hospitals had revised their emergency response plans since September 11, 2001, but only about 63 percent had addressed natural disasters and biological, chemical, radiological, and explosive terrorism in those plans. Only about 9 percent of hospitals had provided for all 10 of the response plan components studied. Hospitals had a mean of about 14 personal protective suits, 21 critical care beds, 12 mechanical ventilators, 7 negative pressure isolation rooms, and 2 decontamination showers each. Hospital bed capacity was the factor most consistently associated with emergency response planning and availability of resources.

  4. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China

    Directory of Open Access Journals (Sweden)

    Weili Duan

    2015-07-01

    Full Text Available In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs is a significant issue in China. An emergency response system (ERS was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency.

  5. On-site emergency planning

    International Nuclear Information System (INIS)

    Kueffer, K.

    1980-01-01

    This lecture covers the Emergency Planning of the Operating organization and is based on the Code of Practice and Safety Guides of the IAEA as well as on arrangements in use at the Swiss Nuclear Power Station Beznau and - outlines the basis and content of an emergency plan - describes the emergencies postulated for emergency planning purposes - describes the responsibilities, the organization and the procedures of the operating organization to cope with emergency situations and the liaison between the operating organization, the regulatory body and public authorities - describes the facilities and equipment which should be available to cope with emergency sitauations - describes the measures and actions to be taken when an emergency arises in order to correct abnormal plant conditions and to protect the persons on-and off-site - describes the aid to be given to affected personnel - describes the aspects relevant to maintaining the emergency plan and organization in operational readiness. (orig./RW)

  6. Final Programmatic Environmental Impact Statement for stockpile stewardship and management: Volume 1

    International Nuclear Information System (INIS)

    1996-09-01

    The Department of Energy (DOE) has been directed by the President and Congress to maintain the safety and reliability of the reduced nuclear weapons stockpile in the absence of underground nuclear testing. In order to fulfill that responsibility, DOE has developed Stockpile Stewardship and Maintenance Program to provide a single highly integrated technical program for maintaining the continued safety and reliability of the nuclear stockpile. The Stockpile Stewardship and Management Program Programmatic Environmental Impact Statement (PEIS) describes and analyzes alternative ways to implement the proposed actions for the Stockpile Stewardship and Management Program. This document contains Volume I of the PEIS

  7. The impact of the quality of coal mine stockpile soils on sustainable vegetation growth and productivity

    CSIR Research Space (South Africa)

    Mushia, NM

    2016-06-01

    Full Text Available , chemical, and biological properties, limiting their capability for sustainable vegetation growth. The aim of the study was to evaluate the impact of stockpile soils of differing depth and quality on vegetation growth and productivity. Soils were collected...

  8. Biosolid stockpiles are a significant point source for greenhouse gas emissions.

    Science.gov (United States)

    Majumder, Ramaprasad; Livesley, Stephen J; Gregory, David; Arndt, Stefan K

    2014-10-01

    The wastewater treatment process generates large amounts of sewage sludge that are dried and then often stored in biosolid stockpiles in treatment plants. Because the biosolids are rich in decomposable organic matter they could be a significant source for greenhouse gas (GHG) emissions, yet there are no direct measurements of GHG from stockpiles. We therefore measured the direct emissions of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) on a monthly basis from three different age classes of biosolid stockpiles at the Western Treatment Plant (WTP), Melbourne, Australia, from December 2009 to November 2011 using manual static chambers. All biosolid stockpiles were a significant point source for CH4 and N2O emissions. The youngest biosolids (nitrate and ammonium concentration. We also modeled CH4 emissions based on a first order decay model and the model based estimated annual CH4 emissions were higher as compared to the direct field based estimated annual CH4 emissions. Our results indicate that labile organic material in stockpiles is decomposed over time and that nitrogen decomposition processes lead to significant N2O emissions. Carbon decomposition favors CO2 over CH4 production probably because of aerobic stockpile conditions or CH4 oxidation in the outer stockpile layers. Although the GHG emission rate decreased with biosolid age, managers of biosolid stockpiles should assess alternate storage or uses for biosolids to avoid nutrient losses and GHG emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Federal Emergency Management Information System (FEMIS) Data Management Guide for FEMIS Version 1.4.6

    Energy Technology Data Exchange (ETDEWEB)

    Angel, L.K.; Bower, J.C.; Burnett, R.A.; Downing, T.R.; Fangman, P.M.; Hoza, M.; Johnson, D.M.; Johnson, S.M.; Loveall, R.M.; Millard, W.D.; Schulze, S.A.; Wood, B.M.

    1999-06-29

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and response tool that was developed by the Pacific Northwest National Laboratory (PNNL) under the direction of the U.S. Army Chemical Biological Defense Command. The FEMIS System Administration Guide provides information necessary for the system administrator to maintain the FEMIS system. The FEMIS system is designed for a single Chemical Stockpile Emergency Preparedness Program (CSEPP) site that has multiple Emergency Operations Centers (EOCs). Each EOC has personal computers (PCs) that emergency planners and operations personnel use to do their jobs. These PCs are corrected via a local area network (LAN) to servers that provide EOC-wide services. Each EOC is interconnected to other EOCs via a Wide Area Network (WAN). Thus, FEMIS is an integrated software product that resides on client/server computer architecture. The main body of FEMIS software, referred to as the FEMIS Application Software, resides on the PC client(s) and is directly accessible to emergency management personnel. The remainder of the FEMIS software, referred to as the FEMIS Support Software, resides on the UNIX server. The Support Software provides the communication data distribution and notification functionality necessary to operate FEMIS in a networked, client/server environment.

  10. Federal Emergency Management Information System (FEMIS) System Administration Guide for FEMIS Version 1.4.6

    Energy Technology Data Exchange (ETDEWEB)

    Arp, J.A.; Bower, J.C.; Burnett, R.A.; Carter, R.J.; Downing, T.R.; Fangman, P.M.; Gerhardstein, L.H.; Homer, B.J.; Johnson, D.M.; Johnson, R.L.; Johnson, S.M.; Loveall, R.M.; Martin, T.J.; Millard, W.D.; Schulze, S.A.; Stoops, L.R.; Tzemos, S.; Wood, B.M.

    1999-06-29

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and response tool that was developed by the Pacific Northwest National Laboratory (PNNL) under the direction of the U.S. Army Chemical Biological Defense Command. The FEMIS System Administration Guide provides information necessary for the system administrator to maintain the FEMIS system. The FEMIS system is designed for a single Chemical Stockpile Emergency Preparedness Program (CSEPP) site that has multiple Emergency Operations Centers (EOCs). Each EOC has personal computers (PCs) that emergency planners and operations personnel use to do their jobs. These PCs are corrected via a local area network (LAN) to servers that provide EOC-wide services. Each EOC is interconnected to other EOCs via a Wide Area Network (WAN). Thus, FEMIS is an integrated software product that resides on client/server computer architecture. The main body of FEMIS software, referred to as the FEMIS Application Software, resides on the PC client(s) and is directly accessible to emergency management personnel. The remainder of the FEMIS software, referred to as the FEMIS Support Software, resides on the UNIX server. The Support Software provides the communication data distribution and notification functionality necessary to operate FEMIS in a networked, client/server environment.

  11. Emergency planning for industrial hazards

    International Nuclear Information System (INIS)

    Gow, H.B.F.; Kay, R.W.

    1988-01-01

    The European Communities have produced a Directive on the Major Accident Hazards of Certain Industrial Activities which sets out standards for the control and mitigation of the hazards presented by sites and storages which contain significant quantities of dangerous substances. An essential element of these controls is the provision of effective on-and off-site emergency plans. This conference explores the considerable research effort which is going on throughout the world in the improvement of systems for emergency planning. Attention was also drawn to areas where difficulties still exist, for example in predicting the consequences of an accident, the complexities of communication problems and the difficulties arising from involvement of the public. The proceedings are in six parts which deal with organizations implementing emergency planning: on- and off-site emergency planning and design; techniques for emergency plans; expenses and auditing of emergency plans; lessons learnt from the emergency management of major accidents; information to the public to and during emergencies. (author)

  12. Emergency planning, response and assessment: a concept for a center of excellence

    International Nuclear Information System (INIS)

    Dickerson, M.H.

    1986-01-01

    This paper discusses a general concept for a center of excellence devoted to emergency planning, response and assessment. A plan is presented to implement the concept, based on experience gained from emergency response as it relates to the nuclear and toxic chemical industries. The role of the World Laboratory in this endeavor would complement and enhance other organizations than are involved in related activities

  13. Radiological emergencies - planning and preparedness

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-12-31

    This information and training film in three parts deals with the technical background for emergency planning, emergency planning concepts and emergency preparedness. It describes the technical characteristics of radiological emergencies on which important emergency planning concepts are based and the purpose of those concepts. The film also demonstrates how emergency organizations must work together to ensure adequate preparedness. The programme reflects the standards, guidance and recommendations of the International Atomic Energy Agency

  14. Nuclear Stockpile Management: A Technical and Political Assessment

    International Nuclear Information System (INIS)

    Sitt, Bernard; Grand, Camille

    2009-10-01

    Stewardship strategies. In fact, its effective implementation has resulted in the actual freezing of nuclear States' capacities, while allowing for somewhat different situations in Nuclear Weapon States and de facto nuclear States. The second structuring element of nuclear stockpile management is the ban on the production of fissile materials for nuclear weapons (FMCT), which has been on the agenda of the international community for fourteen years. But its negotiation at the Conference on Disarmament still has not managed to get started because the CD is still in a stalemate even today after the adoption of its program of work last May. The Stockpile Stewardship concept emerged rather belatedly in the history of nuclear arsenals, since it was introduced by the USA in 1992, as well as by other nuclear powers. The concept itself gradually evolved, until 1995 when the US Science Based Stockpile Stewardship policy and the French one in particular found their full expression: managing potential problems due to aging stockpiles, refurbishing weapons and components as required, maintaining the science and the engineering agencies supporting the national deterrent. As a matter of fact, the maintenance in operational condition of nuclear weapons presents, contrary to classical weapon systems, specific and increased challenges, owing to the sophistication of the technologies involved and because of the aging processes of nuclear and other materials in the weapons. We then try to review briefly in this paper the Stockpile Stewardship and Simulation context and policies in the Nuclear Weapon States and in three other de facto nuclear States considered as such, although very little is known in certain cases. (authors)

  15. CHARACTERIZATION OF METAL GRADES IN A STOCKPILE OF AN IRON MINE (CASE STUDY- CHOGHART IRON MINE, IRAN

    Directory of Open Access Journals (Sweden)

    Francesco Tinti

    2018-01-01

    Full Text Available In any mining operation due to the cut-off grade (economic criteria, materials classify into the ore and waste. The material with grade equal to or higher than the cut-off grade is considered as ore and the material with grade less than the cut-off grade is transported as wastes to the waste dumps. However, because of increasing metal demand, depleting of in situ ore reserves and so the reduction of cut-off grades for many metals, the mentioned waste dumps were considered as valuable ore reserves named stockpiles. In this paper, multivariate geostatistics was used to estimate the iron grades of two stockpiles following the sequential of piling procedures from the main source - the ore deposit - to the piling field. One stockpile is characterized by phosphorous concentration ((P % > 0.6 %, while the other by iron concentration ((Fe %< 50%. Since economic and physical constraints made sampling physically and economically problematic, the grade distribution and variability were estimated on the basis of primary blast-hole data from the main ore body and the mine’s long-term planning policy. A geostatistical model was applied to the excavated part of the iron deposit and the stockpile, by reconstructing ore selection, haulage and piling method. Results were validated through spatial variability of iron and phosphorous concentrations by comparing grade variability (Fe and P with mining and pilling units. This methodology allows characterizing the iron grades within stockpiles without any extra sampling.

  16. Guide about petroleum strategic stockpiles in France

    International Nuclear Information System (INIS)

    2004-03-01

    The strategic character of petroleum products has been perceived since the first world war. It has led France to impose the petroleum operators to make stockpiles to provide against the consequences of a serious disruption of supplies. As a difference with some other industrialized countries like the USA or Japan, French stockpiles are made of finite products. A balanced geographical distribution of these stocks over the whole national territory increases their efficiency. Stockpiles of IEA member states must represent 90 days of net imports while those of European Union member states must represent 90 days of average domestic consumption. In France, each chartered operator contributes to the strategic storage and the stored volumes are defined by the law no 92-1443 from December 31, 1992. These stocks are permanently controlled and financial sanctions are applied in case of infraction. Particular dispositions are applied in overseas departments which are summarized in this paper. (J.S.)

  17. Final Programmatic Environmental Impact Statement for stockpile stewardship and management: Volume 3

    International Nuclear Information System (INIS)

    1996-09-01

    The Department of Energy (DOE) has been directed by the President and Congress to maintain the safety and reliability of the reduced nuclear weapons stockpile in the absence of underground nuclear testing. In order to fulfill that responsibility, DOE has developed a Stockpile Stewardship and Management Program to provide a single highly integrated technical program for maintaining the continued safety and reliability of the nuclear stockpile. The Stockpile Stewardship and Management Programmatic Environmental Impact Statement (PEIS) describes and analyzes alternative ways to implement the proposed actions for the Stockpile Stewardship and Management Program. This document consists of Volume III, Appendix I entitled ''National Ignition Facility Project-Specific Analysis,'' which investigates the environmental impacts resulting from constructing and operating the proposed National Ignition Facility

  18. Biological and chemical terrorism: strategic plan for preparedness and response. Recommendations of the CDC Strategic Planning Workgroup.

    Science.gov (United States)

    2000-04-21

    The U.S. national civilian vulnerability to the deliberate use of biological and chemical agents has been highlighted by recognition of substantial biological weapons development programs and arsenals in foreign countries, attempts to acquire or possess biological agents by militants, and high-profile terrorist attacks. Evaluation of this vulnerability has focused on the role public health will have detecting and managing the probable covert biological terrorist incident with the realization that the U.S. local, state, and federal infrastructure is already strained as a result of other important public health problems. In partnership with representatives for local and state health departments, other federal agencies, and medical and public health professional associations, CDC has developed a strategic plan to address the deliberate dissemination of biological or chemical agents. The plan contains recommendations to reduce U.S. vulnerability to biological and chemical terrorism--preparedness planning, detection and surveillance, laboratory analysis, emergency response, and communication systems. Training and research are integral components for achieving these recommendations. Success of the plan hinges on strengthening the relationships between medical and public health professionals and on building new partnerships with emergency management, the military, and law enforcement professionals.

  19. 2009 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    Energy Technology Data Exchange (ETDEWEB)

    Environmental Stewardship Group (ENV-ES)

    2010-11-01

    For reporting year 2009, Los Alamos National Laboratory (LANL) submitted a Form R report for lead as required under the Emergency Planning and Community Right-to- Know Act (EPCRA) Section 313. No other EPCRA Section 313 chemicals were used in 2009 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2009, as well as to provide background information about data included on the Form R reports.

  20. Educational program emergency planning.

    Science.gov (United States)

    Curtis, Tammy

    2009-01-01

    Tragic university shootings have prompted administrators of higher education institutions to re-evaluate their emergency preparedness plans and take appropriate measures for preventing and responding to emergencies. To review the literature and identify key components needed to prevent shootings at higher education institutions in the United States, and in particular, institutions housing radiologic science programs. Twenty-eight emergency preparedness plans were retrieved electronically and reviewed from a convenience sample of accredited radiologic science programs provided by the Joint Review Committee on Education in Radiologic Technology Web site. The review of the 28 emergency preparedness plans confirmed that most colleges are prepared for basic emergencies, but lack the key components needed to successfully address mass-casualty events. Only 5 (18%) of the 28 institutions addressed policies concerning school shootings.

  1. Preparedness of emergency departments in northwest England for managing chemical incidents: a structured interview survey

    Directory of Open Access Journals (Sweden)

    Walter Darren

    2007-12-01

    Full Text Available Abstract Background A number of significant chemical incidents occur in the UK each year and may require Emergency Departments (EDs to receive and manage contaminated casualties. Previously UK EDs have been found to be under-prepared for this, but since October 2005 acute hospital Trusts have had a statutory responsibility to maintain decontamination capacity. We aimed to evaluate the level of preparedness of Emergency Departments in North West England for managing chemical incidents. Methods A face-to-face semi-structured interview was carried out with the Nurse Manager or a nominated deputy in all 18 Emergency Departments in the Region. Results 16/18 departments had a written chemical incident plan but only 7 had the plan available at interview. All had a designated decontamination area but only 11 felt that they were adequately equipped. 12/18 had a current training programme for chemical incident management and 3 had no staff trained in decontamination. 13/18 could contain contaminated water from casualty decontamination and 6 could provide shelter for casualties before decontamination. Conclusion We have identified major inconsistencies in the preparedness of North West Emergency Departments for managing chemical incidents. Nationally recognized standards on incident planning, facilities, equipment and procedures need to be agreed and implemented with adequate resources. Issues of environmental safety and patient dignity and comfort should also be addressed.

  2. Emergency planning and preparedness for a nuclear accident

    International Nuclear Information System (INIS)

    Rahe, E.P.

    1985-01-01

    Based on current regulations, FEMA approves each site-specific plan of state and local governments for each power reactor site after 1) formal review offsite preparedness, 2) holding a public meeting at which the preparedness status has been reviewed, and 3) a satisfactory joint exercise has been conducted with both utility and local participation. Annually, each state, within any position of the 10-mile emergency planning zone, must conduct a joint exercise with the utility to demonstrate its preparedness for a nuclear accident. While it is unlikely that these extreme measures will be needed as a result of an accident at a nuclear power station, the fact that these plans have been well thought out and implemented have already proven their benefit to society. The preparedness for a nuclear accident can be of great advantage in other types of emergencies. For example, on December 11, 1982, a non-nuclear chemical storage tank exploded at a Union Carbide plant in Louisiana shortly after midnight. More than 20,000 people were evacuated from their homes. They were evacuated under the emergency response plan formulated for use in the event of a nuclear accident at the nearby Waterford Nuclear plants. Clearly, this illustrates how a plan conceived for one purpose is appropriate to handle other types of accidents that occur in a modern industrial society

  3. Emergencies and emergency planning in France

    International Nuclear Information System (INIS)

    Jammet, H.

    1986-01-01

    The organization for dealing with radiation emergencies in France is complex and centralized. It consists of the Radiation Security Council with participants from the Premier Ministre and the Ministers of Interior, Industry, Health, and Defense. A permanent general secretary for radiation security coordinates the work of the various departments. Planning for nuclear power emergencies is divided between on-site, in which organization and intervention are the responsibilities of the manager of the plant, and off-site, in which organization and intervention are the responsibility of the regional governor. Both on-site and off-site planning have models integrated into a special code of practice called the radiation emergency organization

  4. Disposal of chemical agents and munitions stored at Umatilla Depot Activity, Hermiston, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, G.P.; Hillsman, E.L.; Johnson, R.O.; Miller, R.L.; Patton, T.G.; Schoepfle, G.M.; Tolbert, V.R.; Feldman, D.L.; Hunsaker, D.B. Jr.; Kroodsma, R.L.; Morrissey, J.; Rickert, L.W.; Staub, W.P.; West, D.C.

    1993-02-01

    The Umatilla Depot Activity (UMDA) near Hermiston, Oregon, is one of eight US Army installations in the continental United States where lethal unitary chemical agents and munitions are stored, and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at UMDA consists of 11.6%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts), using a method based on five measures of risk for potential human health and ecosystem/environmental effects; the effectiveness and adequacy of emergency preparedness capabilities also played a key role in the FPEIS selection methodology. In some instances, the FPEIS included generic data and assumptions that were developed to allow a consistent comparison of potential impacts among programmatic alternatives and did not include detailed conditions at each of the eight installations. The purpose of this Phase 1 report is to examine the proposed implementation of on-site disposal at UMDA in light of more recent and more detailed data than those included in the FPEIS. Specifically, this Phase 1 report is intended to either confirm or reject the validity of on-site disposal for the UMDA stockpile. Using the same computation methods as in the FPEIS, new population data were used to compute potential fatalities from hypothetical disposal accidents. Results indicate that onsite disposal is clearly preferable to either continued storage at UMDA or transportation of the UMDA stockpile to another depot for disposal.

  5. Enzymes for Degradation of Energetic Materials and Demilitarization of Explosives Stockpiles - SERDP Annual (Interim) Report, 12/98

    Energy Technology Data Exchange (ETDEWEB)

    Shah, M.M.

    1999-01-18

    The current stockpile of energetic materials requiring disposal contains about half a million tons. Through 2001, over 2.1 million tons are expected to pass through the stockpile for disposal. Safe and environmentally acceptable methods for disposing of these materials are needed. This project is developing safe, economical, and environmentally sound processes using biocatalyst (enzymes) to degrade energetic materials and to convert them into economically valuable products. Alternative methods for destroying these materials are hazardous, environmentally unacceptable, and expensive. These methods include burning, detonation, land and sea burial, treatment at high temperature and pressure, and treatment with harsh chemicals. Enzyme treatment operates at room temperature and atmospheric pressure in a water solution.

  6. Stockpiling and Comprehensive Utilization of Red Mud Research Progress

    Science.gov (United States)

    Liu, Dong-Yan; Wu, Chuan-Sheng

    2012-01-01

    With increasing production of red mud, the environmental problems caused by it are increasingly serious, and thus the integrated treatment of red mud is imminent. This article provides an overview of the composition and the basic characteristics of red mud. The research progress of safe stockpiling and comprehensive utilization of red mud is summarized. The safe stockpiling of red mud can be divided into two aspects: the design and safe operation of the stocking yard. The comprehensive utilization of red mud can be further divided into three aspects: the effective recycling of components, resource utilization and application in the field of environmental protection. This paper points out that the main focus of previous studies on red mud stockpiling is cost reproduction and land tenure. The recovery of resources from red mud has a high value-added, but low level industrialization. The use of red mud as a building material and filler material is the most effective way to reduce the stockpiling of red mud. Red mud used for environmental remediation materials is a new hotspot and worth promoting for its simple processing and low cost.

  7. 1998 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III

    International Nuclear Information System (INIS)

    Stockton, Marjorie B.

    1999-01-01

    The Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986 [also known as the Superfund Amendment and Reauthorization Act (SARA), Title III], as modified by Executive Order 12856, requires that all federal facilities evaluate the need to submit an annual Toxic Chemical Release Inventory report as prescribed in Title III, Section 313 of this Act. This annual report is due every July for the preceding calendar year. Owners and operators who manufacture, process, or otherwise use certain toxic chemicals above listed threshold quantities are required to report their toxic chemical releases to all environmental mediums (air, water, soil, etc.). At Los Alamos National Laboratory (LANL), no EPCRA Section 313 chemicals were used in 1998 above the reportable threshold limits of 10,000 lb or 25,000 lb. Therefore LANL was not required to submit any Toxic Chemical Release Inventory reports (Form Rs) for 1998. This document was prepared to provide a detailed description of the evaluation on chemical usage and EPCRA Section 313 threshold determinations for LANL for 1998

  8. Fiber digestion kinetics and protein degradability characteristics of stockpiled Tifton 85 bermudagrass.

    Science.gov (United States)

    Sechler, S R; Mullenix, M K; Holland, C M; Muntifering, R B

    2017-09-01

    A 2-yr study was conducted to determine effects of N fertilization level on fiber digestion kinetics and protein degradability characteristics of stockpiled Tifton 85 bermudagrass (T85). Six 0.76-ha pastures of stockpiled T85 were cut to a 10-cm stubble height on August 1 of each yr and fertilized with 56 (56N), 112 (112N), or 168 (168N) kg N/ha (2 pastures/treatment). Fiber digestion kinetics included the 72-hr potential extent of NDF digestion (PED), rate of NDF digestion, and lag time. In yr 1 and 2, PED decreased over the stockpile season. Rates of NDF digestion did not differ ( > 0.05) among N fertilization treatments in either yr. In yr 1, rate of NDF digestion was greatest ( digestion decreased ( digestion rates were similar for November and January 21 sampling dates. Lag time was greater ( digestion ( = -0.60 and -0.25 in yr 1 and 2, respectively) was observed. There was a trend ( = 0.06) for lignin concentration to be positively correlated with lag time ( = 0.39) in yr 1, and a strong relationship was observed in yr 2 ( = 0.91; digestion in stockpiled T85 were influenced more by temporal changes over the stockpile season than by N fertilization level. Supplement formulations based on kinetic parameters of fiber digestion may require periodic adjustment to insure that energy-yielding components of NDF are sufficient to meet animal requirements throughout the stockpile season. The CP fraction in stockpiled T85 contains sufficient RDP to support fibrolytic activity and growth of ruminal microorganisms throughout the stockpile season. Toward the latter end of the season, supplementation with sources of digestible fiber and RDP could be expected to increase MP supply to the host animal.

  9. The Big Science of stockpile stewardship

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Victor H.; Hanrahan, Robert J.; Levedahl, W. Kirk

    2016-08-15

    In the quarter century since the US last exploded a nuclear weapon, an extensive research enterprise has maintained the resources and know-how needed to preserve confidence in the country’s stockpile.

  10. Instructions for the Tier I Emergency and Hazardous Chemical Inventory Form

    Science.gov (United States)

    The purpose of the Emergency Planning and Community Right-to-Know Act Tier I form is to provide State and local officials and the public with information on the general chemical hazard types and locations at your facility, if above reporting thresholds.

  11. Chemical Weapons Convention

    National Research Council Canada - National Science Library

    1997-01-01

    On April 29, 1997, the Convention on the Prohibition of the Development, Production, Stockpiling, and Use of Chemical Weapons and on Their Destruction, known as the Chemical Weapons Convention (CWC...

  12. Emergency plan belgian experience

    International Nuclear Information System (INIS)

    Clymans, A.

    1989-01-01

    The Chernobyl disaster prompted authorities in Belgium to carry out a comprehensive review of all emergency plans and, in particular, those designed specifically for nuclear accidents. This review was aimed at determining what type of plans existed and to what extent such plans were operational. This paper sets out to present a broad overview of different aspects of this problem: organization of public emergency plans, co-ordination of operations, merits and demerits of centralization as opposed to decentralization, planning zones, obligation to release information to the public and relations with the media, and finally the international dimension to the problem. The author expresses the hope that the latter area will inspire practical suggestions [fr

  13. Radiation Emergency Planning in Petroleum Industry

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.; El-Naggar, M.A.; Abdel-Fattah, A.T.; Gomaa, A.M.

    2001-01-01

    Similar to all industrial activities utilizing radiation sources, or dealing with radioactive materials in its operations, petroleum industry requires the organization of a Radiation Emergency Plan. This plan should be based on a comprehensive and subtle understanding of the extensive multidisciplinary operations involved in petroleum processing and the dangers that threaten human health, environment and property; both from ordinary emergency situations common to petroleum industry activities and also from radiation emergency events. Radiation emergencies include radiological source accidents involving occurrence of high dose exposures. Radioactive contamination or spill are also major problems that may cause low dose exposures and environmental radioactive contamination. The simultaneous occurrence of other industrial emergency events such as fires or structural collapses will add to the seriousness of the emergency situation. The essential aspects of Radiation Emergency Planning include notification, assessment of situation, foresight, definition of roles and responsibilities including health safety and environmental concepts. An important contribution to the Emergency Planning is the proper intelligent medical response. Another essential parameter is the training of personnel that will undertake the responsibility of executing the emergency procedures according to the various emergency situations. The main features of the radiation Emergency Plan in Petroleum industry is presented in the text

  14. A system simulation to enhance stockpile stewardship (ASSESS)

    International Nuclear Information System (INIS)

    Yoshimura, A.S.; Plantenga, T.D.; Napolitano, L.M.; Johnson, M.M.

    1997-01-01

    This paper describes the ASSESS project, whose goal is to construct a policy driven enterprise simulation of the DOE nuclear weapons complex (DOE/NWC). ASSESS encompasses the full range of stockpile stewardship activities by incorporating simulation component models that are developed and managed by local experts. ASSESS runs on a heterogeneous distributed computing environment and implements multi-layered user access capabilities. ASSESS allows the user to create hypothetical policies governing stockpile stewardship, simulate the resulting operation of the DOE/NWC, and analyze the relative impact of each policy

  15. 10 CFR 76.91 - Emergency planning.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Emergency planning. 76.91 Section 76.91 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.91 Emergency planning... Emergency Planning and Community Right-to-Know Act of 1986, Title III, Public Law 99-499, or other State or...

  16. Final programmatic environmental impact statement for stockpile stewardship and management. Comment response document. Volume 4

    International Nuclear Information System (INIS)

    1996-09-01

    In response to the end of the Cold War and changes in the world's political regimes, the United States is not producing new-design nuclear weapons. Instead, the emphasis on the U.S. nuclear weapons program is on reducing the size of the Nation's nuclear stockpile by dismantling existing nuclear weapons. The Department of Energy (DOE) has been directed by the President and Congress to maintain the safety and reliability of the reduced nuclear weapons stockpile in the absence of underground nuclear testing. In order to fulfill that responsibility, DOE has developed a Stockpile Stewardship and Management Program to provide a single highly integrated program for maintaining the continued safety and reliability of the nuclear stockpile. The Stockpile Stewardship and Management PEIS describes and analyzes alternative ways to implement the proposed actions for the Stockpile Stewardship and Management Program

  17. Critical evaluation of emergency stockpile ventilators in an in vitro model of pediatric lung injury.

    Science.gov (United States)

    Custer, Jason W; Watson, Christopher M; Dwyer, Joe; Kaczka, David W; Simon, Brett A; Easley, R Blaine

    2011-11-01

    Modern health care systems may be inadequately prepared for mass casualty respiratory failure requiring mechanical ventilation. Current health policy has focused on the "stockpiling" of emergency ventilators, though little is known about the performance of these ventilators under conditions of respiratory failure in adults and children. In this study, we seek to compare emergency ventilator performance characteristics using a test lung simulating pediatric lung injury. Evaluation of ventilator performance using a test lung. Laboratory. None. Six transport/emergency ventilators capable of adult/child application were chosen on the basis of manufacturer specifications, Autovent 3000, Eagle Univent 754, EPV 100, LP-10, LTV 1200, and Parapac 200D. Manufacturer specifications for each ventilator were reviewed and compared with known standards for alarms and functionality for surge capacity ventilators. The delivered tidal volume, gas flow characteristics, and airway pressure waveforms were evaluated in vitro using a mechanical test lung to model pediatric lung injury and integrated software. Test lung and flow meter recordings were analyzed over a range of ventilator settings. Of the six ventilators assessed, only two had the minimum recommended alarm capability. Four of the six ventilators tested were capable of being set to deliver a tidal volume of less than 200 mL. The delivered tidal volume for all ventilators was within 8% of the nominal setting at a positive end expiratory pressure of zero but was reduced significantly with the addition of positive end expiratory pressure (range, ±10% to 30%; p ventilators tested performed comparably at higher set tidal volumes; however, only three of the ventilators tested delivered a tidal volume across the range of ventilator settings that was comparable to that of a standard intensive care unit ventilator. Multiple ventilators are available for the provision of ventilation to children with respiratory failure in a mass

  18. Emergency planning for fuel cycle facilities

    International Nuclear Information System (INIS)

    Lacey, L.R.

    1991-01-01

    In April 1989, NRC published new emergency planning regulations which apply to certain by-product, source, and special nuclear materials licensees including most fuel cycle facilities. In addition to these NRC regulations, other regulatory agencies such as EPA, OSHA, and DOT have regulations concerning emergency planning or notification that may apply to fuel cycle facilities. Emergency planning requirements address such areas as emergency classification, organization, notification and activation, assessment, corrective and protective measures, emergency facilities and equipment, maintaining preparedness, records and reports, and recovery. This article reviews applicable regulatory requirements and guidance, then concentrates on implementation strategies to produce an effective emergency response capability

  19. Emergency planning zone reduction

    International Nuclear Information System (INIS)

    Edwards, C.

    2002-01-01

    This paper describes the process used by a large industrial Department of Energy (DOE) site to communicate changing hazards to its stakeholders and install the confidence necessary to implement the resulting emergency planning changes. Over the last decade as the sites missions have shifted from full-scale production to a greater emphasis on environmental restoration and waste management, the off-site threat from its operations has substantially decreased. The challenge was to clearly communicate the reduced hazards, install confidence in the technical analysis that documented the hazard reduction, and obtain stakeholder buy-in on the path forward to change the emergency management program. The most significant change to the emergency management program was the proposed reduction of the sites Emergency Planning Zone (EPZ). As the EPZ is defined as an area for which planning is needed to protect the public in the event of an accident, the process became politically challenging. An overview of how the site initially approached this problem and then learned to more substantially involve the state and local emergency preparedness agencies and the local Citizens Advisory Board will be presented. (author)

  20. Planning and training in emergency preparedness

    International Nuclear Information System (INIS)

    Perkins, T.G.

    1985-01-01

    Link Simulation Systems Division of the Singer Company is combining its tactical simulation and display system with state-of-the-art decision and control technology to provide a combined operations, planning, and training (COPAT) system. This system provides for the total integration of the three primary responsibilities of emergency managers: planning and training for and decision and control of an emergency. The system is intended to be a complete operations center for emergency management personnel. In the event of a natural disaster or man-made emergency, the national, state, county, and city emergency managers require a secure and reliable operations center. The COPAT system combines the decision and control capabilities with proven simulation techniques allowing for integrated planning and training. The hardware system, software, data bases, and maps used during planning and training are the same as those used during actual emergencies

  1. Building a year 2000 emergency response plan

    International Nuclear Information System (INIS)

    Riopel, P.

    1998-01-01

    This presentation emphasized the importance of developing an emergency plan to minimize any impacts in the event that something may go wrong when the clock changes over at midnight on December 31, 1999. It is usually impossible to anticipate what kinds of emergencies will happen. Planning for emergencies does not have to be an intimidating task. Hazard analysis is a subjective way to investigate what can go wrong, the likelihood of it happening relative to some other potential emergency, and the seriousness of the event. In general, emergency planning for Y2K should not be significantly different from planning for any other type of emergency. Y2K is not the emergency. The events that occur as a consequence of Y2K are. It is these events that should be the focus of a Year 2000 emergency plan

  2. OntoEmergePlan: variability of emergency plans supported by a domain ontology

    NARCIS (Netherlands)

    Ferreira, Maria I.G.B; Moreira, João; Campos, Maria Luiza M.; Braga, Bernardo F.B; Sales, Tiago P.; de Cordeiro, Kelli F.; Borges, Marcos R.S.

    2015-01-01

    The preparation of high quality emergency plans to guide operational decisions is an approach to mitigate the emergency management complexity. In such multidisciplinary scenario, teams with different perspectives need to collaborate towards a common goal and interact within a common understanding.

  3. Without Testing: Stockpile Stewardship in the Second Nuclear Age

    Energy Technology Data Exchange (ETDEWEB)

    Martz, Joseph C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-07

    Stockpile stewardship is a topic dear to my heart. I’ve been fascinated by it, and I’ve lived it—mostly on the technical side but also on the policy side from 2009 to 2010 at Stanford University as a visiting scholar and the inaugural William J. Perry Fellow. At Stanford I worked with Perry, former secretary of defense, and Sig Hecker, former Los Alamos Lab director (1986–1997), looking at nuclear deterrence, nuclear policy, and stockpile stewardship and at where all this was headed.

  4. Disposal of chemical agents and munitions stored at Umatilla Depot Activity, Hermiston, Oregon. Final Phase 1 environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, G.P.; Hillsman, E.L.; Johnson, R.O.; Miller, R.L.; Patton, T.G.; Schoepfle, G.M.; Tolbert, V.R.; Feldman, D.L.; Hunsaker, D.B. Jr.; Kroodsma, R.L.; Morrissey, J.; Rickert, L.W.; Staub, W.P.; West, D.C.

    1993-02-01

    The Umatilla Depot Activity (UMDA) near Hermiston, Oregon, is one of eight US Army installations in the continental United States where lethal unitary chemical agents and munitions are stored, and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at UMDA consists of 11.6%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts), using a method based on five measures of risk for potential human health and ecosystem/environmental effects; the effectiveness and adequacy of emergency preparedness capabilities also played a key role in the FPEIS selection methodology. In some instances, the FPEIS included generic data and assumptions that were developed to allow a consistent comparison of potential impacts among programmatic alternatives and did not include detailed conditions at each of the eight installations. The purpose of this Phase 1 report is to examine the proposed implementation of on-site disposal at UMDA in light of more recent and more detailed data than those included in the FPEIS. Specifically, this Phase 1 report is intended to either confirm or reject the validity of on-site disposal for the UMDA stockpile. Using the same computation methods as in the FPEIS, new population data were used to compute potential fatalities from hypothetical disposal accidents. Results indicate that onsite disposal is clearly preferable to either continued storage at UMDA or transportation of the UMDA stockpile to another depot for disposal.

  5. Strategies for antiviral stockpiling for future influenza pandemics: a global epidemic-economic perspective.

    Science.gov (United States)

    Carrasco, Luis R; Lee, Vernon J; Chen, Mark I; Matchar, David B; Thompson, James P; Cook, Alex R

    2011-09-07

    Influenza pandemics present a global threat owing to their potential mortality and substantial economic impacts. Stockpiling antiviral drugs to manage a pandemic is an effective strategy to offset their negative impacts; however, little is known about the long-term optimal size of the stockpile under uncertainty and the characteristics of different countries. Using an epidemic-economic model we studied the effect on total mortality and costs of antiviral stockpile sizes for Brazil, China, Guatemala, India, Indonesia, New Zealand, Singapore, the UK, the USA and Zimbabwe. In the model, antivirals stockpiling considerably reduced mortality. There was greater potential avoidance of expected costs in the higher resourced countries (e.g. from $55 billion to $27 billion over a 30 year time horizon for the USA) and large avoidance of fatalities in those less resourced (e.g. from 11.4 to 2.3 million in Indonesia). Under perfect allocation, higher resourced countries should aim to store antiviral stockpiles able to cover at least 15 per cent of their population, rising to 25 per cent with 30 per cent misallocation, to minimize fatalities and economic costs. Stockpiling is estimated not to be cost-effective for two-thirds of the world's population under current antivirals pricing. Lower prices and international cooperation are necessary to make the life-saving potential of antivirals cost-effective in resource-limited countries.

  6. 30 CFR 77.211 - Draw-off tunnels; stockpiling and reclaiming operations; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Draw-off tunnels; stockpiling and reclaiming operations; general. 77.211 Section 77.211 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... WORK AREAS OF UNDERGROUND COAL MINES Surface Installations § 77.211 Draw-off tunnels; stockpiling and...

  7. Using principles from emergency management to improve emergency response plans for research animals.

    Science.gov (United States)

    Vogelweid, Catherine M

    2013-10-01

    Animal research regulatory agencies have issued updated requirements for emergency response planning by regulated research institutions. A thorough emergency response plan is an essential component of an institution's animal care and use program, but developing an effective plan can be a daunting task. The author provides basic information drawn from the field of emergency management about best practices for developing emergency response plans. Planners should use the basic principles of emergency management to develop a common-sense approach to managing emergencies in their facilities.

  8. Province of Ontario nuclear emergency plan. Pt. 1

    International Nuclear Information System (INIS)

    1986-06-01

    The Province of Ontario Nuclear Emergency Plan has been developed pursuant to Section 8 of the Emergency Plans Act, 1983. This plan replaces the Province of Ontario Nuclear Contingency Off-Site Plan (June 1980) which is no longer applicable. The wastes plan includes planning, preparation, emergency organization and operational responsibilities and policy

  9. Overview of the US Strategic National Stockpile

    International Nuclear Information System (INIS)

    Adams, S.

    2009-01-01

    The CBMTS community last received an overview of the United States Strategic National Stockpile in Dubrovnik during the Spring of 2001. The events that occurred later that year and the ensuing response have resulted in a dramatic expansion of both the scope and complexity of the Strategic National Stockpile. These changes are seen not only in the scope of the Materiel holdings which have grown by several orders of magnitude, but in the increasingly complex operational designs which can rapidly bring the materiel to bear in a clinically relevant time frame. Mr. Adams, Deputy Director of the program from the time of its 1999 inception, will provide a detailed overview of the current program highlighting many of the changes and evolutions which have occurred during the past 8 years.(author)

  10. Ontario tire recycling and economic development (OnTRED) plan : a market approach to eliminating tire stockpiles and promoting recycled rubber product manufacturing in Ontario

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-05-15

    Details of the Ontario Tire Recycling and Economic Development (OnTRED) plan were presented. The plan was developed to address deficiencies in the Ontario Tire Stewardship's (OTS) Scrap Tire Diversion Program plan. The OTS promotes the burning of scrap tires contrary to the Waste Diversion Act, and transfers the financial responsibility for scrap tire management from manufacturers to retailers. The OnTRED plan will attempt to improve the current 87 per cent recovery rate for passenger scrap tires in Ontario, and prevent the formation of any new tire stockpiles. The aim of the OnTRED plan is to ensure reuse and recycling consistent with provisions in the Waste Diversion Act and enhance the existing workings of the tire and scrap tire market through the promotion of reuse and recycling. In addition, the plan aims to minimize administration and compliance costs. A program summary of the OnTRED plan was presented, as well as details of market development plans and buy-recycled rebates. Issues concerning collector registration and transaction tracking were presented, as well as details of brand-owner and first importer pay-in models. Stakeholder roles and responsibilities were reviewed. A budget scenario was presented, as well as a rebate and diversion scenario. It was concluded that Ontario's 87 per cent scrap tire diversion rate can be improved through a focus on patterns of reuse and recycling. 3 tabs., 7 figs.

  11. Transport accident emergency response plan

    International Nuclear Information System (INIS)

    Vallette-Fontaine, M.; Frantz, P.

    1998-01-01

    To comply with the IAEA recommendations for the implementation of an Emergency Response Plan as described in Safety Series 87, Transnucleaire, a company deeply involved in the road and rail transports of the fuel cycle, masters means of Emergency Response in the event of a transport accident. This paper aims at analyzing the solutions adopted for the implementation of an Emergency Response Plan and the development of a technical support and adapted means for the recovery of heavy packagings. (authors)

  12. Emergency Planning and Preparedness in Belgium

    International Nuclear Information System (INIS)

    Degueldre, D.; Maris, M.

    1998-01-01

    The present Belgian nuclear emergency planning and preparedness is based on experience cumulated since the early eighties. This paper describes the organisation, actuation process, the emergency planning zones and the applicable intervention guidance levels. The role of AVN as on-site inspector, nuclear emergency adviser and emergency assessor is explained as well as its human and technical resources. Finally the paper presents briefly the experience feedback on emergency exercises and training in Belgium as well as AVN's views on some debatable topics. (author)

  13. An Introduction to Risk with a Focus on Design Diversity in the Stockpile

    Energy Technology Data Exchange (ETDEWEB)

    Noone, Bailey C [Los Alamos National Laboratory

    2012-08-13

    The maintenance and security of nuclear weapons in the stockpile involves decisions based on risk analysis and quantitative measures of risk. Risk is a factor in all decisions, a particularly important factor in decisions of a large scale. One example of high-risk decisions we will discuss is the risk involved in design diversity within the stockpile of nuclear weapons arsenal. Risk is defined as 'possibility of loss or injury' and the 'degree of probability of such loss' (Kaplan and Garrick 12). To introduce the risk involved with maintaining the weapons stockpile we will draw a parallel to the design and maintenance of Southwest Airlines fleet of Boeing 737 planes. The clear benefits for cost savings in maintenance of having a uniform fleet are what historically drove Southwest to have only Boeing 737s in their fleet. Less money and resources are need for maintenance, training, and materials. Naturally, risk accompanies those benefits. A defect in a part of the plane indicates a potential defect in that same part in all the planes of the fleet. As a result, safety, business, and credibility are at risk. How much variety or diversity does the fleet need to mitigate that risk? With that question in mind, a balance is needed to accommodate the different risks and benefits of the situation. In a similar way, risk is analyzed for the design and maintenance of nuclear weapons in the stockpile. In conclusion, risk must be as low as possible when it comes to the nuclear weapons stockpile. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk, and to help balance options in stockpile stewardship.

  14. Nuclear emergency planning in Norway

    International Nuclear Information System (INIS)

    Baarli, J.

    1986-01-01

    The nuclear emergency planning in Norway is forming a part of the Search and Rescue Service of the country. Due to the fact that Norway do not have any nucleat power reactor, the nuclear emergency planning has not been given high priority. The problems however are a part of the activity of the National Institute of Radiation Hygiene, and the emergency preparedness is at the present time to a large extent based on the availability of professional health physicists and their knowledge, rather than established practices

  15. 29 CFR 1910.38 - Emergency action plans.

    Science.gov (United States)

    2010-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Means of Egress § 1910.38 Emergency action plans. (a) Application. An... plans. An emergency action plan must be in writing, kept in the workplace, and available to employees... information about the plan or an explanation of their duties under the plan. (d) Employee alarm system. An...

  16. Using Direct Sub-Level Entity Access to Improve Nuclear Stockpile Simulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Robert Y. [Brigham Young Univ., Provo, UT (United States)

    1999-08-01

    Direct sub-level entity access is a seldom-used technique in discrete-event simulation modeling that addresses the accessibility of sub-level entity information. The technique has significant advantages over more common, alternative modeling methods--especially where hierarchical entity structures are modeled. As such, direct sub-level entity access is often preferable in modeling nuclear stockpile, life-extension issues, an area to which it has not been previously applied. Current nuclear stockpile, life-extension models were demonstrated to benefit greatly from the advantages of direct sub-level entity access. In specific cases, the application of the technique resulted in models that were up to 10 times faster than functionally equivalent models where alternative techniques were applied. Furthermore, specific implementations of direct sub-level entity access were observed to be more flexible, efficient, functional, and scalable than corresponding implementations using common modeling techniques. Common modeling techniques (''unbatch/batch'' and ''attribute-copying'') proved inefficient and cumbersome in handling many nuclear stockpile modeling complexities, including multiple weapon sites, true defect analysis, and large numbers of weapon and subsystem types. While significant effort was required to enable direct sub-level entity access in the nuclear stockpile simulation models, the enhancements were worth the effort--resulting in more efficient, more capable, and more informative models that effectively addressed the complexities of the nuclear stockpile.

  17. Treating exposure to chemical warfare agents: implications for health care providers and community emergency planning.

    Science.gov (United States)

    Munro, N B; Watson, A P; Ambrose, K R; Griffin, G D

    1990-01-01

    Current treatment protocols for exposure to nerve and vesicant agents found in the U.S. stockpile of unitary chemical weapons are summarized, and the toxicities of available antidotes are evaluated. The status of the most promising of the new nerve agent antidotes is reviewed. In the U.S. atropine and pralidoxime compose the only approved antidote regimen for organophosphate nerve agent poisoning. Diazepam may also be used if necessary to control convulsions. To avoid death, administration must occur within minutes of substantial exposure together with immediate decontamination. Continuous observation and repeated administration of antidotes are necessary as symptoms warrant. Available antidotes do not necessarily prevent respiratory failure or incapacitation. The toxicity of the antidotes themselves and the individualized nature of medical care preclude recommending that autoinjectors be distributed to the general public. In addition, precautionary administration of protective drugs to the general population would not be feasible or desirable. No antidote exists for poisoning by the vesicant sulfur mustard (H, HD, HT); effective intervention can only be accomplished by rapid decontamination followed by palliative treatment of symptoms. British anti-Lewisite (BAL) (2,3-dimercapto-1-propanolol) is the antidote of choice for treatment of exposure to Lewisite, another potent vesicant. Experimental water-soluble BAL analogues have been developed that are less toxic than BAL. Treatment protocols for each antidote are summarized in tabular form for use by health care providers. PMID:2088748

  18. Hanford Emergency Response Plan

    International Nuclear Information System (INIS)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures

  19. Hanford Emergency Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures.

  20. 2004 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    Energy Technology Data Exchange (ETDEWEB)

    M. Stockton

    2006-01-15

    Section 313 of Emergency Planning and Community Right-to-Know Act (EPCRA) specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. For reporting year 2004, Los Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead compounds, nitric acid, and nitrate compounds as required under the EPCRA Section 313. No other EPCRA Section 313 chemicals were used in 2004 above the reportable thresholds. This document provides a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2004, as well as background information about data included on the Form R reports.

  1. Identification of chemicals related to the chemical weapons convention during an interlaboratory proficiency test

    NARCIS (Netherlands)

    Hooijschuur, E.W.J.; Hulst, A.G.; Jong, A.L. de; Reuver, L.P. de; Krimpen, S.H. van; Baar, B.L.M. van; Wils, E.R.J.; Kientz, C.E.; Brinkman, U.A.Th

    2002-01-01

    In order to test the ability of laboratories to detect and identify chemicals related to the Chemical Weapons Convention (CWC), which prohibits the development, production, stockpiling and use of chemical weapons, and to designate laboratories for this task, the Technical Secretariat of the

  2. E-commerce as a Stockpiling Technology - Implications for Consumer Savings

    OpenAIRE

    Andrea Pozzi

    2013-01-01

    Shopping on the Internet spares customers the discomfort of carrying around heavy and bulky baskets of goods, since the service usually includes home de- livery. This makes e-commerce a technology well suited to helping consumers to buy in bulk or to stockpile items on discount. I use grocery scanner data provided by a supermarket chain selling both online and through traditional stores to show that the introduction of e-commerce leads to an increase in bulk purchase and stockpiling behavior ...

  3. Radiation emergency planning for medical organizations

    International Nuclear Information System (INIS)

    Jerez Vergueria, Sergio F.; Jerez Vergueria, Pablo F.

    1997-01-01

    The possible occurrence of accidents involving sources of ionizing radiation demands response plans to mitigate the consequences of radiological accidents. This paper offers orientations in order to elaborate emergency planning for institutions with medical applications of ionizing radiation. Taking into account that the prevention of accidents is of prime importance in dealing with radioactive materials and others sources of ionizing radiation, such as X-rays, it is recommended that one include in emergency instructions and procedures several aspects relative to causes which originate these radiological events. Topics such as identification of radiological events in these practices and their consequences, protective measures, planning for and emergency response and maintenance of emergency capacity, are considered in this article. (author)

  4. Chemical Hygiene and Safety Plan

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, K.

    1992-08-01

    The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

  5. Danish emergency plan for Barsebaeck Power Plant

    International Nuclear Information System (INIS)

    1981-01-01

    A revised edition of the Danish emergency plan for the Swedish Power Plant Barsebaeck (about 20 km from the Danish Territory) is prepared at the request of Environmental Council in cooperation with police management and civil defense organisations. The plan is valid from October 1981. The emergency plan defines the emergency organization and the provisions to be taken quickly to protect the population if it is exposed to ionizing radiation from release of radioactive effluents as a result of an accident in the Barsebaeck power plant. The emergency plan is based upon Regulation no. 278, June 27, 1963 and Regulation no. 502, October 1, 1974. (EG)

  6. Influence of Stockpile Angle in Natural Drying of Laterite Ore

    Directory of Open Access Journals (Sweden)

    Yoalbys Retirado-Mediaceja

    2016-10-01

    Full Text Available Natural drying is performed at Cuban nickel plants by depositing bulk ore in the open. The ore is currently being stockpiled without much consideration for the impact of the drying surface angle on the process power behavior. Simulations were carried out in this investigation, which prove that an increased triangular stockpile angle considerably reduces natural drying efficiency. A 45 sexagesimal degree angle to the horizontal plane results in exposure of a large volume of ore to natural drying and guarantees adequate energy performance.

  7. Emergency response planning in Pennsylvania

    International Nuclear Information System (INIS)

    Reilly, M.A.

    1988-01-01

    In the decade since the accident at Three Mile Island, emergency planning for response to these events has undergone a significant change in Pennsylvania, as elsewhere. Changes respond to federal guidance and to state agency initiatives. The most singular change is the practice of implementing a protective action throughout the entire emergency planning zone (EPZ). Due to Pennsylvania agency experiences during the accident, the decision was made soon after to develop a staff of nuclear engineers, each giving special day-to-day attention to a specific nuclear power station in the state. Changes in communications capabilities are significant, these being dedicated phone lines between the Commonwealth and each power station, and the reorientation of the Department of Environmental Resources radio network to accommodate direction of field monitoring teams from Harrisburg. Changes that are being or will be implemented in the near future include assessing the emergency response data system for electronic delivery of plant parameter data form facilities during accidents, increased participation in exercises, emergency medical planning, and training, the inclusion of all 67 counties in Pennsylvania in an ingestion EPZ, and the gradual severance of dependence on land-line emergency communication systems

  8. Emergency planning and emergency drill for a 5 MW district heating reactor

    International Nuclear Information System (INIS)

    Shi Zhongqi; Wu Zhongwang; Hu Jingzhong; Feng Yuying; Li Zhongsan; Dong Shiyuan

    1991-01-01

    The authors describes the main contents of the emergency planning for a 5 MW nuclear district heating reactor and some considerations for the planning's making, and presents the situation on implementing emergency preparedness and an emergency drill that has been carried out

  9. Effective nuclear and radiation emergency planning

    International Nuclear Information System (INIS)

    Grlicarev, I.

    2000-01-01

    The paper describes how to develop a balanced emergency plan, which realistically reflect the interfaces with various emergency organizations. The use of resources should be optimized with focusing on the most likely accidents. The pitfalls of writing an emergency plan without ''big picture'' in mind should be avoided. It is absolutely essential to have a clear definition of responsibilities and to have proper understanding of the tasks in between all counterparts in the emergency preparedness. Special attention should be paid to off-site part of the nuclear emergency preparedness, because the people involved in it usually receive less training than the on-site personnel and they are not specialized for nuclear emergencies but deal with all sorts of emergencies. (author)

  10. Selected approaches to determining the purpose of emergency planning zones

    Science.gov (United States)

    Dobeš, Pavel; Baudišová, Barbora; Sluka, Vilém; Skřínský, Jan; Danihelka, Pavel; Dlabka, Jakub; Řeháček, Jakub

    2013-04-01

    One of the major accident hazards (hereinafter referred to as "MAH") tools to determine the range of effects of a major accident and consequent protection of the public is the determination of the emergency planning zone (hereinafter referred to as "zone"). In the Czech Republic, the determination of the zone is regulated by the Decree No. 103/2006 Coll. laying down the principles for determination of the emergency planning zone and the extent and manner of elaborating the external emergency plan (hereinafter referred to as "Decree") 3. The Decree is based on the principles of the IAEA-TECDOC-727 method - Manual for the Classification and Prioritization of Risks Due to Major Accidents in Process and Related Industries (hereinafter referred to as "method" and "manual", respectively)3. In the manual, it is pointed out that the method used is not suitable for making emergency plans for special situations (industrial activities in an inhabited area). Nonetheless, its principles and procedures are still used for such purposes in the Czech Republic. The expert scientific community dealing with MAH issues in the Czech Republic, however, realizes that the procedure of the zone boundary delineation should be modified to reflect up-to-date knowledge in protection of the public and its enhancement. Therefore, the OPTIZON Project (Optimization of the Emergency Planning Zone Designation and Elaboration of Emergency Plans Based on Threatening Effects of Dangerous Chemical Substances at Operational Accidents with Respect to Inhabitant Protection Enhancement) was developed and approved for the Program of Security Research of the Czech Republic 2010 - 2015 (BV II/2-VS). One of the main project's objectives is to define clearly the purpose of the zone because at present it is not quite apparent. From the general view, this step may seem insignificant or trivial, but the reverse is true. It represents one of the most important stages in seeking the approach to the zone designation as

  11. An empirical analysis of the dynamic programming model of stockpile acquisition strategies for China's strategic petroleum reserve

    International Nuclear Information System (INIS)

    Wu, Gang; Fan, Ying; Wei, Yi-Ming; Liu, Lan-Cui

    2008-01-01

    The world's future oil price is affected by many factors. The challenge, therefore, is how to select optimal stockpile acquisition strategies to minimize the cost of maintaining a reserve. This paper provides a new method for analyzing this problem using an uncertain dynamic programming model to analyze stockpile acquisition strategies for strategic petroleum reserve. Using this model, we quantify the impact of uncertain world oil price on optimal stockpile acquisition strategies of China's strategic petroleum reserve for the period 2007-2010 and 2011-2020. Our results show that the future stockpile acquisition is related to oil prices and their probability and, if not considering the occurrence of oil supply shortage, China should at least purchase 25 million barrels when world oil price is at an optimal level. The optimal price of stockpile acquisition of every year has a stronger relationship with the probability of high price; and the optimal expected price and size of stockpile acquisition is different in each year. (author)

  12. A model national emergency plan for radiological accidents

    International Nuclear Information System (INIS)

    2000-07-01

    The IAEA has supported several projects for the development of a national response plan for radiological emergencies. As a result, the IAEA has developed a model National Emergency Response Plan for Radiological Accidents (RAD PLAN), particularly for countries that have no nuclear power plants. This plan can be adapted for use by countries interested in developing their own national radiological emergency response plan, and the IAEA will supply the latest version of the RAD PLAN on computer diskette upon request

  13. On some problems concerning the national emergency planning

    Energy Technology Data Exchange (ETDEWEB)

    Angelov, V [Civil Defence Administration, Sofia (Bulgaria); Bonchev, Ts [Sofia Univ. (Bulgaria). Fizicheski Fakultet; Andonov, S [Civil Defence Administration, Sofia (Bulgaria); Semova, T [Sofia Univ. (Bulgaria). Fizicheski Fakultet; Ganchev, N [Committee on the Use of Atomic Energy for Peaceful Purposes, Sofia (Bulgaria); Georgiev, V [Energoproekt, Sofia (Bulgaria)

    1996-12-31

    The basic principles of national emergency planning and preparedness in case of severe nuclear accident are discussed. Recommendations concerning the participating authorities in Bulgaria and their cooperation are given. The need to synchronize the plan with the NPP Kozloduy emergency plan is pointed out. The introduction of new legislation outlining the necessity of national emergency planning is stressed. 13 refs.

  14. On some problems concerning the national emergency planning

    International Nuclear Information System (INIS)

    Angelov, V.; Bonchev, Ts.; Semova, T.; Georgiev, V.

    1995-01-01

    The basic principles of national emergency planning and preparedness in case of severe nuclear accident are discussed. Recommendations concerning the participating authorities in Bulgaria and their cooperation are given. The need to synchronize the plan with the NPP Kozloduy emergency plan is pointed out. The introduction of new legislation outlining the necessity of national emergency planning is stressed. 13 refs

  15. CMSMAP : oil, chemical, search and rescue, and marine emergency response crisis management system

    International Nuclear Information System (INIS)

    Anderson, E.L.; Howlett, E.; Galagan, C.; Giguere, T.; Wee, F.; Chong, J.

    2002-01-01

    This paper describes a newly developed Crisis Management System (CMS) which makes it possible to view oil and chemical spills on the seafloor. The CMS is designed to run in a network environment, so that multiple stations can be used cooperatively to respond to a spill incident. It was developed by the Maritime and Port Authority in Singapore and represents a singular integration of a ship's bridge simulator hardware and software. It incorporates numerical models and emergency response software. The CMS is installed in a specifically designed building at the Singapore Polytechnic University, and is integrated with two shipping bridge simulators. One user interface has access to models dealing with oil spills, chemical spills, search and rescues, marine emergencies, and nuclear disasters. The interface is linked to a response management system. The entire system is used to train response personnel to marine emergencies. The histories and costs of planned response activities are described and logged for reference purposes. Estimates of damages associated with spills can be obtained. Alternative response plans can also be determined. Further research in 2002 will focus on developing real time response. 3 refs., 6 figs

  16. Regional cooperation for emergency plan

    International Nuclear Information System (INIS)

    Chu, D.S.L.; Liu, P.C.

    1981-01-01

    It has become increasingly evident since the Three Mile Island (TMI) accident that a sound emergency plan is indispensable to the overall nuclear power generation program. In some developing countries in Eastern Aisa, the availability of manpower resources and facilities to handle a nuclear power plant accident are rather limited. Therefore, the establishment of a regional mutual emergency plan is deemed necessary. A preliminary idea concerning this establishment is presented for deliberation by this Conference

  17. State of emergency preparedness for US health insurance plans.

    Science.gov (United States)

    Merchant, Raina M; Finne, Kristen; Lardy, Barbara; Veselovskiy, German; Korba, Caey; Margolis, Gregg S; Lurie, Nicole

    2015-01-01

    Health insurance plans serve a critical role in public health emergencies, yet little has been published about their collective emergency preparedness practices and policies. We evaluated, on a national scale, the state of health insurance plans' emergency preparedness and policies. A survey of health insurance plans. We queried members of America's Health Insurance Plans, the national trade association representing the health insurance industry, about issues related to emergency preparedness issues: infrastructure, adaptability, connectedness, and best practices. Of 137 health insurance plans queried, 63% responded, representing 190.6 million members and 81% of US plan enrollment. All respondents had emergency plans for business continuity, and most (85%) had infrastructure for emergency teams. Some health plans also have established benchmarks for preparedness (eg, response time). Regarding adaptability, 85% had protocols to extend claim filing time and 71% could temporarily suspend prior medical authorization rules. Regarding connectedness, many plans shared their contingency plans with health officials, but often cited challenges in identifying regulatory agency contacts. Some health insurance plans had specific policies for assisting individuals dependent on durable medical equipment or home healthcare. Many plans (60%) expressed interest in sharing best practices. Health insurance plans are prioritizing emergency preparedness. We identified 6 policy modifications that health insurance plans could undertake to potentially improve healthcare system preparedness: establishing metrics and benchmarks for emergency preparedness; identifying disaster-specific policy modifications, enhancing stakeholder connectedness, considering digital strategies to enhance communication, improving support and access for special-needs individuals, and developing regular forums for knowledge exchange about emergency preparedness.

  18. Off-site emergency planning

    International Nuclear Information System (INIS)

    Narrog, J.

    1980-01-01

    In the event of a nuclear accident, the actions taken to protect the public from off-site consequences must be effective. An effective organization of emergency actions is based on two components: the actions of the operator of the nuclear facility and the actions of the competent authorities. The measures of the operator are of special importance in the first hours after the beginning of the nuclear accident, because there is no other help. Therefore the operator of a nuclear facility shall be obliged under the nuclear licensing procedure to make provisions of his own and carry out protective measures which should be compiled in a so-called 'alarm-plan'. On the other hand the means of the operator are too small in many cases and there is a need for actions by the responsible authorities. The actions of the authorities should be compiled in a so-called 'emergency response plan'. The emergency response plan shall apply to all cases in which, as a result of occurrences in or at a nuclear facility, a damaging impact on the environment is expected or has occurred requiring the authorities in charge to intervene for its prevention or limitation. (orig./RW)

  19. RTSTEP regional transportation simulation tool for emergency planning - final report.

    Energy Technology Data Exchange (ETDEWEB)

    Ley, H.; Sokolov, V.; Hope, M.; Auld, J.; Zhang, K.; Park, Y.; Kang, X. (Energy Systems)

    2012-01-20

    Large-scale evacuations from major cities during no-notice events - such as chemical or radiological attacks, hazardous material spills, or earthquakes - have an obvious impact on large regions rather than on just the directly affected area. The scope of impact includes the accommodation of emergency evacuation traffic throughout a very large area; the planning of resources to respond appropriately to the needs of the affected population; the placement of medical supplies and decontamination equipment; and the assessment and determination of primary escape routes, as well as routes for incoming emergency responders. Compared to events with advance notice, such as evacuations based on hurricanes approaching an affected area, the response to no-notice events relies exclusively on pre-planning and general regional emergency preparedness. Another unique issue is the lack of a full and immediate understanding of the underlying threats to the population, making it even more essential to gain extensive knowledge of the available resources, the chain of command, and established procedures. Given the size of the area affected, an advanced understanding of the regional transportation systems is essential to help with the planning for such events. The objectives of the work described here (carried out by Argonne National Laboratory) is the development of a multi-modal regional transportation model that allows for the analysis of different evacuation scenarios and emergency response strategies to build a wealth of knowledge that can be used to develop appropriate regional emergency response plans. The focus of this work is on the effects of no-notice evacuations on the regional transportation network, as well as the response of the transportation network to the sudden and unusual demand. The effects are dynamic in nature, with scenarios changing potentially from minute to minute. The response to a radiological or chemical hazard will be based on the time-delayed dispersion of

  20. Industrial emerging chemicals in the environment

    Directory of Open Access Journals (Sweden)

    Vojinović-Miloradov Mirjana B.

    2014-01-01

    Full Text Available In the recent time, considerable interest has grown concerning the presence of the emerging industrial chemicals, EmIC. They are contaminants that have possible pathway to enter to the environment and they are dominantly released by industrial and anthropogenic activities. EmIC are applied in different fields using as industrial chemicals (new and recently recognized, global organic contaminants (flame retardant chemicals, pharmaceuticals (for both human and animal uses, endocrine-modulating compounds, biological metabolites, personal care products, household chemicals, nanomaterial (energy storage products, lubricants, anticorrosive and agriculture chemicals and others that are applied to a wide variety of everyday items such as clothing, upholstery, electronics and automobile interiors. NORMAN (Network of reference laboratories for monitoring of emerging environmental pollutants has established an open, dynamic, list of emerging substances and pollutants. EmIC have been recently detected in the environment due to their long-term presence, pseudo-persistence and increased use. Improvements in sophisticated analytical methods and time integrative passive sampling have enabled the identification and quantification of EmIC, in very low concentrations (ppb, ppt and lower, which likely have been present in all environmental mediums for decades. Passive technology is an innovative technique for the time-integrated measurement of emerging contaminants in water, sediment, soil and air. Passive samplers are simple handling cost-effective tool that could be used in environmental monitoring programmes. These devices are now being considered as a part of an emerging strategy for monitoring a range of emerging industrial chemicals and priority pollutants in the aquatic environment. EmIC are substances that are not included in the routine monitoring programmes and whose fate, behaviour and (ecotoxicological effects are still not well understood. Emerging

  1. Emergency preparedness: a comprehensive plan

    International Nuclear Information System (INIS)

    Wilson, R.H.

    1975-01-01

    The Atlantic Richfield Hanford Company (ARHCO) has developed comprehensive plans for coping with emergencies ranging from criticality to civil disturbance. A unique notification system provides for immediate contact with key personnel by using a central communications center, crash alarm warning networks, and a continuing telephone cascade notification system. There is also the capability of immediately contacting other contractor key personnel. Certain jobs have been predetermined as necessary for coping with an emergency. An emergency staff consisting of responsible management, with alternates, has been preselected to automatically fill these jobs when notified. Control centers for headquarters and ''field'' are established with telephone and radio communication capabilities and are also supplied with some source materials to assist initiating plans for containing an emergency for recovery. A comprehensive emergency procedures manual has been developed, which contains information of company-wide application and procedures for specific facilities covering almost all accident situations

  2. Post-Chernobyl emergency planning

    International Nuclear Information System (INIS)

    1986-01-01

    This report is the result of a study ordered by the Swedish Nuclear Power Inspectorate and the National Swedish Institute of Radiation Protection to evaluate the measurements taken in Sweden in response to the Chernobyl accident. The enquiry was also given the task of suggesting improvements of the nuclear accidents emergency planning and other activities relevant to nuclear accidents. Detailed accounts are given of the course of events in Sweden at the Chernobyl accident and the steps taken by central or local authorities are discussed. Several alterations of the emergency planning are proposed and a better coordination of the affected organizations is suggested. (L.E.)

  3. Plan for radiological emergencies situations

    International Nuclear Information System (INIS)

    Estrada Figueroa, E.R.

    1998-01-01

    The objective for the Emergencies plan it is to reestablish the stock that they should be executed by the regulatory Entity in Guatemala during a real potential radiological emergency situation in the national territory

  4. Usage of solar aggregate stockpiles in the production of hot mix asphalt

    International Nuclear Information System (INIS)

    Androjić, Ivica; Kaluđer, Gordana

    2016-01-01

    Highlights: • Low energy storage mineral mixtures. • The impact of models thermal insulation on the temperature of aggregate. • Effect of periods with no solar radiation on the aggregate accumulated heat. • Low energy storage saves energy for preheating mineral mixtures. - Abstract: The production process of hot mix asphalt (HMA) requires a considerable demand for thermal energy which is fed into the process of drying and heating of mineral mixture. An overview of solar aggregate stockpiles designed in order to reduce energy consumption is given. Solar stockpiles were designed with the primary goal of achieving as much accumulation of thermal energy obtained from solar radiation as possible during the exposure period. Models of solar stockpiles were made with a constant volume capacity, variable thermal insulation thickness in the range of 2, 5 and 10 cm, and a glass ceiling surface to allow the realisation of high solar transmission into the interior of a stockpile. Temperature measurement of the mineral mixture deposited in the solar models and of those exposed to external environmental conditions was conducted during the period from May to November, 2015. The results achieved indicate to the facts that there comes to the constant growth in warmth of mineral mixtures in insulated stockpiles for the duration of their exposure to solar radiation, that an increase in thermal insulation thickness leads to the quadratic functional dependence between the referred thickness and mixture temperature and, ultimately, that there comes to the exponential loss of an accumulated thermal energy in insulated models in the period with no effect of solar radiation.

  5. Hedge math: Theoretical limits on minimum stockpile size across nuclear hedging strategies

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, Jarret Marshall [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Roesler, Alexander W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    In June 2013, the Department of Defense published a congressionally mandated, unclassified update on the U.S. Nuclear Employment Strategy. Among the many updates in this document are three key ground rules for guiding the sizing of the non-deployed U.S. nuclear stockpile. Furthermore, these ground rules form an important and objective set of criteria against which potential future stockpile hedging strategies can be evaluated.

  6. Nuclear emergencies and protective actions

    International Nuclear Information System (INIS)

    Sjoeblom, Klaus

    1995-01-01

    Although technical improvements have increased the safety of new and old nuclear power plants, many simultaneous component failures and/or human errors are improbable but possible. Both the plant (on-site) and the nearby area (off-site) have emergency plans. Rescue service authorities are responsible of the off-site. The main protective actions are sheltering, evacuation and iodine ingestion. The Loviisa off-site emergency plan assumes that a major part of this population takes care of their own protective actions; Rescue service authorities can then concentrate on the coordination activities and to those people who need help. To be able to carry out the protective actions timely and effectively the people should have information on radiation risk and emergency planning. In case of a potential accident the local population should follow the rescue service information and know how to shelter and how to evacuate themselves. Though there are many stockpiles of iodine pellets in the area the rescue service authorities recommend that each household should purchase iodine pellets for their own need. The utility and the rescue service authorities have distributed information brochures to all homes within 30 km from Loviisa NPP since 1990. This brochure gives information on radiation and protective actions in case of an accident. Because the brochures might not stay available and so also the local telephone book contains this information

  7. Opportunities in SMR Emergency Planning

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Reactor Technologies Program

    2014-10-01

    Using year 2014 cost information gathered from twenty different locations within the current commercial nuclear power station fleet, an assessment was performed concerning compliance costs associated with the offsite emergency Planning Standards contained in 10 CFR 50.47(b). The study was conducted to quantitatively determine the potential cost benefits realized if an emergency planning zone (EPZ) were reduced in size according to the lowered risks expected to accompany small modular reactors (SMR). Licensees are required to provide a technical basis when proposing to reduce the surrounding EPZ size to less than the 10 mile plume exposure and 50 mile ingestion pathway distances currently being used. To assist licensees in assessing the savings that might be associated with such an action, this study established offsite emergency planning costs in connection with four discrete EPZ boundary distances, i.e., site boundary, 2 miles, 5 miles and 10 miles. The boundary selected by the licensee would be based on where EPA Protective Action Guidelines are no longer likely to be exceeded. Additional consideration was directed towards costs associated with reducing the 50 mile ingestion pathway EPZ. The assessment methodology consisted of gathering actual capital costs and annual operating and maintenance costs for offsite emergency planning programs at the surveyed sites, partitioning them according to key predictive factors, and allocating those portions to individual emergency Planning Standards as a function of EPZ size. Two techniques, an offsite population-based approach and an area-based approach, were then employed to calculate the scaling factors which enabled cost projections as a function of EPZ size. Site-specific factors that influenced source data costs, such as the effects of supplemental funding to external state and local agencies for offsite response organization activities, were incorporated into the analysis to the extent those factors could be

  8. Environmental emergency response plans (EERPs): A single plan approach to satisfy multiple regulations

    International Nuclear Information System (INIS)

    Muzyka, L.

    1995-01-01

    Conrail is a freight railroad operating in twelve northeast and midwestern states transporting goods and materials over 11,700 miles of railroad. To repair, maintain, rebuild, and manufacture locomotives and rail cars, and to maintain the track, right of way, bridges, tunnels and other structures, Conrail uses petroleum products, solvents and cleaners. These products are stored in hundreds of storage tanks in and around the yards and right of way. To power the trains, locomotives are fueled with diesel fuel. With large volumes of fuel, lubricants, solvents and cleaners, safe and efficient handling of petroleum and chemicals is crucial to avoid negative impacts on the environment. Conrail recently revisited the issue of environmental emergency response planning. In an attempt to assure full compliance with a myriad of federal, state, and local regulation, a ''single plan approach'' was chosen. Single plans for each facility, coined EERPs, were decided on after careful review of the regulations, and evaluation of the company's operational and organizational needs

  9. External plans for radiological emergency

    International Nuclear Information System (INIS)

    Suarez, G.; Vizuet G, J.; Benitez S, J.A.

    1999-01-01

    Since 1989, the National Institute of Nuclear Research in Mexico shares in the task of Food and Water Control corresponding to the FT-86 task force of External Plans for Radiological Emergency (PERE), in charge of the Veracruz Health Services. In the PERE preparation stage previous actions are necessary developed for the preparation and updating of this plan and the task organization with the purpose to maintaining standing and operable in any time and circumstance, the capability to response in the face of an emergency. This stage englobes activities which must be realized before to carry out the Plan as they are the specialized training of personnel which participates and the execution of exercises and simulacrums. Until 1998, training and exercises for this task had been realized under diverse possible sceneries but in conditions that simulated the presence of radioactive material. For this reason, it should be emphasized the training realized during the days 6th, 7th, 8th July, 1999, in the emergency planning zone of the Plan, which to carry out using radioactive material. The National Institute of Nuclear Research had in charge of the training. This work describes all the activities for the realization of this training. (Author)

  10. Recent emergency planning trends in Canada

    International Nuclear Information System (INIS)

    Howieson, J.Q.; Ali, F.B.

    1988-01-01

    Two significant reviews have recently been completed which have affected the approach to emergency planning in Canada. The two reviews have occurred in the province of Ontario where 21 of Canada's 23 reactors are located. Both reviews (one dealing with safety in general, and the other specifically with emergency planning) were performed for the Government of Ontario and were primarily motivated by the severe consequences of the accident at Chernobyl. It was determined that two tiers of emergency planning are needed: (i) the first tier (termed the Maximum Planning Accident or MPA) provides for detailed planning for accidents which can be quantitatively determined to be as low as once in 10 5 station-years. (about once in 10 6 reactor-years for Ontario Hydro's multi-unit sites). For this tier, planning assures public exposure to radioactive doses is kept less than the Protective Action Levels. (ii) the second tier (termed the Worst Credible Radiation Emission or WCRE) provides for planning for accidents which are lower in frequency or whose frequency cannot be quantified (e.g., gross human error or hostile action). For this tier, planning protects against the onset of early morbidity (sickness) and the onset of early mortality (death) in a member of the public

  11. Major issues on establishing an emergency plan in nuclear facilities

    International Nuclear Information System (INIS)

    Chen, Zhu-zhou

    1988-03-01

    Several major issues on emergency planning and preparation in nuclear facilities were discussed -- such as the importance of emergency planning and preparation, basic principles of intervention and implementation of emergency plan and emergency training and drills to insure the effectiveness of the emergency plan. It is emphasized that the major key point of emergency planning and response is to avoid the occurrence of serious nonrandom effect. 12 refs., 3 tabs

  12. Emergency planning and operating experience

    International Nuclear Information System (INIS)

    Halpern, O.; Breniere, J.

    1984-01-01

    The purpose of this paper is to derive lessons from operating experience for the planning of emergency measures. This operating experience has two facets: it is obtained not only from the various incidents and accidents which have occurred in countries with nuclear power programmes and from the resulting application of emergency plans but also from the different exercises and simulations carried out in France and in other countries. Experience generally confirms the main approaches selected for emergency plans. The lessons to be derived are of three types: first, it appears necessary to set forth precisely the responsibilities of each person involved in order to prevent a watering-down of decisions in the event of an accident; secondly, considerable improvements need to be made in the different communication networks to be used; and thirdly, small accidents with minor radiological consequences deserve as systematic and thorough an approach as large and more improbable accidents. (author)

  13. NIF Operations Management Plan, August 2011

    Energy Technology Data Exchange (ETDEWEB)

    Van Wonterghem, Bruno M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility (NIF)

    2014-01-30

    Lawrence Livermore National Laboratory’s (LLNL) National Ignition Facility (NIF) is a key component of the National Nuclear Security Administration’s (NNSA) Stockpile Stewardship Program, whose purpose is to maintain the safety, reliability, and effectiveness of our nation’s nuclear stockpile without underground nuclear testing. The NIF is crucial to the Stockpile Stewardship Program because it is the only facility that can create the conditions of extreme temperature and pressure—conditions that exist only in stars or in exploding nuclear weapons—that are relevant to understanding how our modern nuclear weapons operate. As such, the NIF’s primary mission is to attain fusion ignition in the laboratory. Fusion ignition not only supports Stockpile Stewardship needs, but also provides the basis for future decisions about fusion’s potential as a long-term energy source. Additionally, NIF provides scientists with access to high-energy-density regimes that can yield new insight and understanding in the areas of astrophysics, hydrodynamics, material properties, plasma physics, and radiative properties. The use of the NIF to support the Stockpile Stewardship Program and the advancement of basic high-energy-density science understanding is planned and managed through program-level execution plans and NIF directorate-level management teams. An example of a plan is the National Ignition Campaign Execution Plan. The NIF Operations Management Plan provides an overview of the NIF Operations organization and describes how the NIF is supported by the LLNL infrastructure and how it is safely and responsibly managed and operated. Detailed information on NIF management of the organization is found in a series of supporting plans, policies, and procedures. A list of related acronyms can be found in Appendix A of this document. The purpose of this document is to provide a roadmap of how the NIF Operations organization functions. It provides a guide to understanding the

  14. Roles and contributions of pharmacists in regulatory affairs at the Centers for Disease Control and Prevention for public health emergency preparedness and response.

    Science.gov (United States)

    Bhavsar, Tina R; Kim, Hye-Joo; Yu, Yon

    To provide a general description of the roles and contributions of three pharmacists from the Regulatory Affairs program (RA) at the Centers for Disease Control and Prevention (CDC) who are involved in emergency preparedness and response activities, including the 2009 pandemic influenza A (H1N1) public health emergency. Atlanta, GA. RA consists of a staff of nine members, three of whom are pharmacists. The mission of RA is to support CDC's preparedness and emergency response activities and to ensure regulatory compliance for critical medical countermeasures against potential threats from natural, chemical, biological, radiological, or nuclear events. RA was well involved in the response to the H1N1 outbreak through numerous activities, such as submitting multiple Emergency Use Authorization (EUA) requests to the Food and Drug Administration, including those for medical countermeasures to be deployed from the Strategic National Stockpile, and developing the CDC EUA website (www.cdc.gov/h1n1flu/eua). RA will continue to support current and future preparedness and emergency response activities by ensuring that the appropriate regulatory mechanisms are in place for the deployment of critical medical countermeasures from the Strategic National Stockpile against threats to public health.

  15. Federal Emergency Management Information System (FEMIS) system administration guide, version 1.4.5

    Energy Technology Data Exchange (ETDEWEB)

    Arp, J.A.; Burnett, R.A.; Carter, R.J. [and others

    1998-06-26

    The Federal Emergency Management Information Systems (FEMIS) is an emergency management planning and response tool that was developed by the Pacific Northwest National Laboratory (PNNL) under the direction of the US Army Chemical Biological Defense Command. The FEMIS System Administration Guide provides information necessary for the system administrator to maintain the FEMIS system. The FEMIS system is designed for a single Chemical Stockpile Emergency Preparedness Program (CSEPP) site that has multiple Emergency Operations Centers (EOCs). Each EOC has personal computers (PCs) that emergency planners and operations personnel use to do their jobs. These PCs are connected via a local area network (LAN) to servers that provide EOC-wide services. Each EOC is interconnected to other EOCs via a Wide Area Network (WAN). Thus, FEMIS is an integrated software product that resides on client/server computer architecture. The main body of FEMIS software, referred to as the FEMIS Application Software, resides on the PC client(s) and is directly accessible to emergency management personnel. The remainder of the FEMIS software, referred to as the FEMIS Support Software, resides on the UNIX server. The Support Software provides the communication, data distribution, and notification functionality necessary to operate FEMIS in a networked, client/server environment. The UNIX server provides an Oracle relational database management system (RDBMS) services, ARC/INFO GIS (optional) capabilities, and basic file management services. PNNL developed utilities that reside on the server include the Notification Service, the Command Service that executes the evacuation model, and AutoRecovery. To operate FEMIS, the Application Software must have access to a site specific FEMIS emergency management database. Data that pertains to an individual EOC`s jurisdiction is stored on the EOC`s local server. Information that needs to be accessible to all EOCs is automatically distributed by the FEMIS

  16. Comparison of nuclear plant emergency plans of PBNCC members

    International Nuclear Information System (INIS)

    Kato, W.Y.; Hopwood, J.M.

    1987-01-01

    The Nuclear Safety Working Group (NSWG) of the Pacific Basin Nuclear Cooperation Committee initiated cooperation among Pacific Basin areas based primarily around emergency planning. The NSWG conducted a review of the emergency response plans of members. This paper briefly reviews and makes a comparison of the emergency response plans, with particular attention on the response organization, the planning zone, and the protective action guidelines for emergencies. Although all areas have adopted the same basic elements of emergency planning and are similar, there are also variances due to different governmental structures, population densities, and available resources. It is found that the most significant difference is in the size of the emergency planning zone. The paper concludes with a discussion on possible future cooperative activities of the working group. (author)

  17. Safety in times of crises - the importance of industrial emergency plans

    International Nuclear Information System (INIS)

    Rademacher, H.; Schulten, R.

    1989-01-01

    Technical and organizational precautions cannot always avoid everyday risks such as accidents, fire, explosions, and other critical situations which without appropriate countermeasures can easily develop into emergencies. While in recent years considerable efforts have been going into improving the technical safety of industrial plants particularly susceptible to accidents (e.g. the nuclear and chemical industry), organizational safety seems to have been neglected. An analysis of different accidents reveals human fallibility rather than technical failures to be causing damage in many cases. Industrial emergency plans are considered to be contributing to the improvement of organizational safety. (orig.) [de

  18. Standard review plan for the review and evaluation of emergency plans for research and test reactors

    International Nuclear Information System (INIS)

    1983-10-01

    This document provides a Standard Review Plan to assure that complete and uniform reviews are made of research and test reactor radiological emergency plans. The report is organized under ten planning standards which correspond to the guidance criteria in American National Standard ANSI/ANS 15.16 - 1982 as endorsed by Revision 1 to Regulatory Guide 2.6. The applicability of the items under each planning standard is indicated by subdivisions of the steady-state thermal power levels at which the reactors are licensed to operate. Standard emergency classes and example action levels for research and test reactors which should initiate these classes are given in an Appendix. The content of the emergency plan is as follows: the emergency plan addresses the necessary provisions for coping with radiological emergencies. Activation of the emergency plan is in response to the emergency action levels. In addition to addressing those severe emergencies that will fall within one of the standard emergency classes, the plan also discusses the necessary provisions to deal with radiological emergencies of lesser severity that can occur within the operations boundary. The emergency plan allows for emergency personnel to deviate from actions described in the plan for unusual or unanticipated conditions

  19. Los Alamos National Laboratory emergency management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, G.F.

    1998-07-15

    The Laboratory has developed this Emergency Management Plan (EMP) to assist in emergency planning, preparedness, and response to anticipated and actual emergencies. The Plan establishes guidance for ensuring safe Laboratory operation, protection of the environment, and safeguarding Department of Energy (DOE) property. Detailed information and specific instructions required by emergency response personnel to implement the EMP are contained in the Emergency Management Plan Implementing Procedure (EMPIP) document, which consists of individual EMPIPs. The EMP and EMPIPs may be used to assist in resolving emergencies including but not limited to fires, high-energy accidents, hazardous material releases (radioactive and nonradioactive), security incidents, transportation accidents, electrical accidents, and natural disasters.

  20. A model national emergency response plan for radiological accidents

    International Nuclear Information System (INIS)

    1993-09-01

    The IAEA has supported several projects for the development of a national response plan for radiological emergencies. As a results, the IAEA has developed a model National Emergency Response Plan for Radiological Accidents (RAD PLAN), particularly for countries that have no nuclear power plants. This plan can be adapted for use by countries interested in developing their own national radiological emergency response plan, and the IAEA will supply the latest version of the RAD PLAN on computer diskette upon request. 2 tabs

  1. Stockpiling anti-viral drugs for a pandemic: the role of Manufacturer Reserve Programs.

    Science.gov (United States)

    Harrington, Joseph E; Hsu, Edbert B

    2010-05-01

    To promote stockpiling of anti-viral drugs by non-government organizations such as hospitals, drug manufacturers have introduced Manufacturer Reserve Programs which, for an annual fee, provide the right to buy in the event of a severe outbreak of influenza. We show that these programs enhance drug manufacturer profits but could either increase or decrease the amount of pre-pandemic stockpiling of anti-viral drugs.

  2. Planning for nuclear emergencies

    International Nuclear Information System (INIS)

    Lakey, J.R.A.

    1989-01-01

    This paper aims to stimulate discussions between nuclear engineers and the radiological protection professions in order to facilitate planning for nuclear emergencies. A brief review is given of the response to nuclear accidents. Studying accidents can lead to prevention, but some effort must be put into emergency response. Such issues as decontamination and decommissioning, socio-economic consequences, education and training for nuclear personnel and exercises and drills, are raised. (UK)

  3. AEA Technology, Harwell site emergency plan

    International Nuclear Information System (INIS)

    1993-01-01

    This plan, describes the site arrangements and facilities for dealing with an emergency at Harwell. These arrangements consist of amongst other things provision of suitably qualified, experienced and trained staff to take up posts, provision of suitable facilities and equipment, arrangements to alert and protect persons on and off the site, liaison and contact arrangements with external agencies and organisations and supply of information before and during any emergency. Other organisations have their own arrangements for dealing with an emergency at AEA Technology Harwell. The arrangements for dealing with any off-site consequences are drawn together in the ''Oxfordshire County Council Essential Services Emergency Plan (Off-Site) for AEA Technology, Harwell''. Prior information for members of the public who may be affected in the event of an emergency at Harwell is issued in the form of leaflets. (author)

  4. 40 CFR 264.227 - Emergency repairs; contingency plans.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Emergency repairs; contingency plans... FACILITIES Surface Impoundments § 264.227 Emergency repairs; contingency plans. (a) A surface impoundment... days after detecting the problem. (c) As part of the contingency plan required in subpart D of this...

  5. National emergency plan for nuclear accidents

    International Nuclear Information System (INIS)

    1992-10-01

    The national emergency plan for nuclear accidents is a plan of action designed to provide a response to accidents involving the release or potential release of radioactive substances into the environment, which could give rise to radiation exposure to the public. The plan outlines the measures which are in place to assess and mitigate the effects of nuclear accidents which might pose a radiological hazard in ireland. It shows how accident management will operate, how technical information and monitoring data will be collected, how public information will be provided and what measures may be taken for the protection of the public in the short and long term. The plan can be integrated with the Department of Defence arrangements for wartime emergencies

  6. Emergency planning and response - role nad responsibilities of the regulatory body

    International Nuclear Information System (INIS)

    Nizamska, M.

    1999-01-01

    The development of a emergency plan and organisation of adequate emergency preparedness in case of radiological accident in NPP cannot be effective without the appropriate preparatory work. In most countries, also in Republic of Bulgaria, several organisations are identified to have a potential role to play in a radiological emergency. For these reason is very important to have a national organisation, with a mandate to organise, inspect and co-ordinate the possibility of ministries and institution to react in case of radiological emergency, i.e. to quarantine the possibility for implementation of adequate counter measure for protection of the population and environment in case of radiological emergency in NPP. For the purposes of the emergency planning and response the NPP operator, ministries and the institutions developed an Emergency plan - NPP Emergency Plan and National Emergency Plan. The development of the emergency plans will be impossible without the good co-operation of the organisations which have a responsibilities in a radiological emergency. Once emergency plans are adopted, each individual organisation, also the NPP operator, must ensure that in can carry out its role effectively in accordance with the emergency plan and can develop the appropriate organisation for action and implementation of protection counter measures. For testing the emergency plans a regular exercise must be organised. Periodic reviews of the plan and modifications, based on actual events and exercise experience must be performed. The main aim of these report is to present the Bulgarian emergency planning organisation and response by explaining the national emergency panning and response legislation, implementation of IAEA recommendations and exercise experience

  7. Chemical systems, chemical contiguity and the emergence of life

    Directory of Open Access Journals (Sweden)

    Terrence P. Kee

    2017-08-01

    Full Text Available Charting the emergence of living cells from inanimate matter remains an intensely challenging scientific problem. The complexity of the biochemical machinery of cells with its exquisite intricacies hints at cells being the product of a long evolutionary process. Research on the emergence of life has long been focusing on specific, well-defined problems related to one aspect of cellular make-up, such as the formation of membranes or the build-up of information/catalytic apparatus. This approach is being gradually replaced by a more “systemic” approach that privileges processes inherent to complex chemical systems over specific isolated functional apparatuses. We will summarize the recent advances in system chemistry and show that chemical systems in the geochemical context imply a form of chemical contiguity in the syntheses of the various molecules that precede modern biomolecules.

  8. Regulatory aspects of emergency planning

    International Nuclear Information System (INIS)

    Jamgochian, M.T.

    1986-01-01

    The paper discusses the advances that have been made in the USA in the field of emergency planning over the past several years and considers regulatory changes that may be on the horizon. The paper examines the importance of severe accident source terms and their relationship to emergency preparedness, recent research results of work on source terms, and the experience gained from evaluation of licensee performance during annual emergency preparedness exercises. (author)

  9. Evidence synthesis and decision modelling to support complex decisions: stockpiling neuraminidase inhibitors for pandemic influenza usage [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Samuel I. Watson

    2017-03-01

    Full Text Available Objectives: The stockpiling of neuraminidase inhibitor (NAI antivirals as a defence against pandemic influenza is a significant public health policy decision that must be made despite a lack of conclusive evidence from randomised controlled trials regarding the effectiveness of NAIs on important clinical end points such as mortality. The objective of this study was to determine whether NAIs should be stockpiled for treatment of pandemic influenza on the basis of current evidence. Methods: A decision model for stockpiling was designed. Data on previous pandemic influenza epidemiology was combined with data on the effectiveness of NAIs in reducing mortality obtained from a recent individual participant meta-analysis using observational data. Evidence synthesis techniques and a bias modelling method for observational data were used to incorporate the evidence into the model. The stockpiling decision was modelled for adults (≥16 years old and the United Kingdom was used as an example. The main outcome was the expected net benefits of stockpiling in monetary terms. Health benefits were estimated from deaths averted through stockpiling. Results: After adjusting for biases in the estimated effectiveness of NAIs, the expected net benefit of stockpiling in the baseline analysis was £444 million, assuming a willingness to pay of £20,000/QALY ($31,000/QALY. The decision would therefore be to stockpile NAIs. There was a greater probability that the stockpile would not be utilised than utilised. However, the rare but catastrophic losses from a severe pandemic justified the decision to stockpile. Conclusions: Taking into account the available epidemiological data and evidence of effectiveness of NAIs in reducing mortality, including potential biases, a decision maker should stockpile anti-influenza medication in keeping with the postulated decision rule.

  10. External plans for radiological emergency; Plan de emergencia radiologica externo

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, G; Vizuet G, J; Benitez S, J A [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    Since 1989, the National Institute of Nuclear Research in Mexico shares in the task of Food and Water Control corresponding to the FT-86 task force of External Plans for Radiological Emergency (PERE), in charge of the Veracruz Health Services. In the PERE preparation stage previous actions are necessary developed for the preparation and updating of this plan and the task organization with the purpose to maintaining standing and operable in any time and circumstance, the capability to response in the face of an emergency. This stage englobes activities which must be realized before to carry out the Plan as they are the specialized training of personnel which participates and the execution of exercises and simulacrums. Until 1998, training and exercises for this task had been realized under diverse possible sceneries but in conditions that simulated the presence of radioactive material. For this reason, it should be emphasized the training realized during the days 6th, 7th, 8th July, 1999, in the emergency planning zone of the Plan, which to carry out using radioactive material. The National Institute of Nuclear Research had in charge of the training. This work describes all the activities for the realization of this training. (Author)

  11. Idaho National Laboratory Emergency Readiness Assurance Plan - Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Carl J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Department of Energy Order 151.1C, Comprehensive Emergency Management System requires that each Department of Energy field element documents readiness assurance activities, addressing emergency response planning and preparedness. Battelle Energy Alliance, LLC, as prime contractor at the Idaho National Laboratory (INL), has compiled this Emergency Readiness Assurance Plan to provide this assurance to the Department of Energy Idaho Operations Office. Stated emergency capabilities at the INL are sufficient to implement emergency plans. Summary tables augment descriptive paragraphs to provide easy access to data. Additionally, the plan furnishes budgeting, personnel, and planning forecasts for the next 5 years.

  12. The emergency plan implementing procedures for HANARO facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Tai; Khang, Byung Oui; Lee, Goan Yup; Lee, Moon [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-04-01

    The radiological emergency plan implementing procedures of HANARO (High-flux Advanced Neutron Application Reactor) facility is prepared based on the Korea Atomic Law, the Civil Defence Law, Disaster Protection Law and the emergency related regulatory guides such as Guidance for Evolution of Radiation Emergency Plans in Nuclear Research Facilities (KAERI/TR-956/98, Feb.1998) and the emergency plan of HANARO. These procedures is also prepared to ensure adequate response activities to the rediological events which would cause a significant risk to the KAERI staffs and the public nea to the site. Periodic trainning and exercise for the reactor operators and emergency staffs will reduce accident risks and the release of radioactivities to the environment. 61 refs., 81 tabs. (Author)

  13. Emergency planning and preparedness of the Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Luong, B.V.

    2001-01-01

    The effectiveness of measures taken in case of accident or emergency to protect the site personnel, the general public and the environment will depend heavily on the adequacy of the emergency plan prepared in advance. For this reason, an emergency plan of the operating organization shall cover all activities planned to be carried out in the event of an emergency, allow for determining the level of the emergency and corresponding level of response according to the severity of the accident condition, and be based on the accidents analysed in the SAR as well as those additionally postulated for emergency planning purposes. The purpose of this paper is to present the practice of the emergency planning and preparedness in the Dalat Nuclear Research Institute (DNRI) for responding to accidents/incidents that may occur at the DNRI. The DNRI emergency plan and emergency procedures developed by the DNRI will be discussed. The information in the DNRI emergency plan such as the emergency organization, classification and identification of emergencies; intervention measures; the co-ordination with off-site organizations; and emergency training and drills will be described in detail. The emergency procedures in the form of documents and instructions for responding to accidents/incidents such as accidents in the reactor, accidents out of the reactor but with significant radioactive contamination, and fire and explosion accidents will be mentioned briefly. As analysed in the Safety Analysis Report for the DNRI, only the in-site actions are presented in the paper and no off-site emergency measures are required. (author)

  14. Chemical hygiene plan

    International Nuclear Information System (INIS)

    1994-09-01

    This plan was written to administer and monitor safety measures and chemical hygiene principles in the TAC Uranium Mill Tailing Remedial Action Project sample preparation facility in Albuquerque, New Mexico. It applies to toxic and/or hazardous materials to radioactive materials

  15. Chapter No.9. Emergency planning

    International Nuclear Information System (INIS)

    2002-01-01

    Emergency preparedness is a set of measures the aim of which is to mitigate possible impacts of events during the operation of nuclear facilities, transport of nuclear materials and radioactive waste as well as to reduce consequences to environment and population. An emergency planning of UJD is understood as an establishment of technical and organisational means determined for prognosis of development of events having radiation consequences together with capability to suggest the countermeasures needed to minimise the impact to population. Emergency Response Centre (ERC) of UJD is a technical support tool of UJD and at the same time it fulfils the role of advisory body for the National Emergency Commission for Radiation Accidents (NECRA) In 2001 UJD continued in further increase of equipment quality in the ERC by completion of facilities necessary to transmit necessary data from nuclear facilities, for communication and other HW and SW means. That it is why the application of geographic information systems (GIS), higher quality of data transmission from nuclear facilities and installation of new database platform could be enabled. Also the documentation of ERC has been completed by the emergency procedures of NPP Mochovce and guides of the RODOS system were finished. In the area of emergency preparedness UJD activities in 2001 were focused on preparation and realisation of emergency exercises and execution of inspections. In accordance with the inspection plan inspectors executed several inspections which were targeted to control the course of exercises at nuclear facilities, documentation and the way of training of members of the UJD headquarters. The function of systems of notification and warning, communication, monitoring and technical support means of both NPP Bohunice and NPP Mochovce has been verified and checked as well. The ultimate attention, however, was paid to the preparation of UJD emergency headquarters. The preparation was realised in a form of

  16. Site Study Plan for soils, Deaf Smith County site, Texas: Environmental Field Program: Preliminary draft

    International Nuclear Information System (INIS)

    1987-06-01

    The Soils Site Study Plan describes a field program consisting of a soil characterization survey, impact monitoring of soils, predisturbance soil salinity survey, and a reclamation suitability study. This information will be used to plan for soil stripping, stockpiling, and replacement; reclamation of soils; determining predisturbance chemical and physical characteristics of the soils; including salinity levels; and monitoring for changes in chemical and physical characteristics of the soil. The SSP describes for each study the need for the study, the study design, data management and use, schedule of proposed activities, and the quality assurance program. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Project Requirements Document. 75 refs., 10 figs., 5 tabs

  17. Radiological emergency response planning in Pennsylvania

    International Nuclear Information System (INIS)

    Henderson, O.K.

    1981-01-01

    The most important aspect of emergency preparedness is to recognize and accept the fact that there exists a potential for a problem or a condition and that it requires some attention. Emergency plans should be sufficiently flexible so as to accommodate the emergency situation as it unfolds. Of the several emergency responses that may be taken following a nuclear power plant accident evacuation evokes the greatest attention and discussion as to whether it is truly a feasible option. Movements of people confined to mass care facilities or on life support systems involve special requirements. The Three Mile Island accident has been the most studied nuclear incident in the history of the nuclear power reactor industry. The findings of these reports will have a major influence on nuclear power issues as they are addressed in the future. The question remains as to whether the political leadership will be willing to provide the resources required by the emergency plan. Future safety and emergency response to nuclear accidents depend upon Government and industry acting responsibly and not merely responding to regulations. The Three Mile Island accident has had some beneficial side effects for the emergency management community. It has: increased the level of awareness and importance of emergency planning; served as a catalyst for the sharing of experiences and information; encouraged standardization of procedures; and emphasized the need for identifying and assigning responsibilities. The Emergency Management Organization in responding to a disaster situation does not enjoy the luxury of time. It needs to act decisively and correctly. It does not often get a second chance. Governments, at all levels, and the nuclear power industry have been put on notice as a result of Three Mile Island. The future of nuclear energy may well hang in the balance, based upon the public's perception of the adequacy of preparedness and safety measures being taken. (author)

  18. Emergency response planning in Saskatchewan

    International Nuclear Information System (INIS)

    Irwin, R.W.

    1998-01-01

    Release reporting and spill clean-up requirements by Saskatchewan Energy and Mines were reviewed. Wascana's experience in response planning was discussed. It was suggested that the key to prevention was up-front due diligence, including facility and oil well analysis. Details of Wascana's emergency plan, and details of Saskatchewan Energy and Mines release reporting procedures were also provided

  19. Stockpile tritium production from fusion

    International Nuclear Information System (INIS)

    Lokke, W.A.; Fowler, T.K.

    1986-01-01

    A fusion breeder holds the promise of a new capability - ''dialable'' reserve capacity at little additional cost - that offers stockpile planners a new way to deal with today's uncertainties in forecasting long range needs. Though still in the research stage, fusion can be developed in time to meet future military requirements. Much of the necessary technology will be developed by the ongoing magnetic fusion energy program. However, a specific program to develop the nuclear technology required for materials production is needed if fusion is to become a viable option for a new production complex around the turn of the century

  20. 30 CFR 823.12 - Soil removal and stockpiling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Soil removal and stockpiling. 823.12 Section 823.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS SPECIAL PERMANENT PROGRAM PERFORMANCE STANDARDS-OPERATIONS ON PRIME FARMLAND § 823.12 Soil removal and...

  1. 77 FR 16205 - National Defense Stockpile Market Impact Committee Request for Public Comments on the Potential...

    Science.gov (United States)

    2012-03-20

    .... The Committee is seeking public comments on the potential market impact of the material research and... Defense Stockpile Market Impact Committee Request for Public Comments on the Potential Market Impact of... National Defense Stockpile Market Impact Committee, co-chaired by the Departments of Commerce and State, is...

  2. 77 FR 42271 - National Defense Stockpile Market Impact Committee Request for Public Comments on the Potential...

    Science.gov (United States)

    2012-07-18

    ... comments on the potential market impact associated with the two material research and development projects... Defense Stockpile Market Impact Committee Request for Public Comments on the Potential Market Impact of... National Defense Stockpile Market Impact Committee, co-chaired by the Departments of Commerce and State, is...

  3. Idaho National Laboratory Emergency Readiness Assurance Plan — Fiscal Year 2016

    International Nuclear Information System (INIS)

    None, None

    2016-01-01

    Battelle Energy Alliance, LLC, the prime contractor for Idaho National Laboratory (INL), provides this Emergency Readiness Assurance Plan (ERAP) for Fiscal Year 2016 in accordance with DOE O 151.1C, “Comprehensive Emergency Management System.” The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for Fiscal Year 2017. Specifically, the ERAP assures the Department of Energy Idaho Operations Office that stated emergency capabilities at INL are sufficient to implement PLN 114, “INL Emergency Plan/RCRA Contingency Plan.”

  4. Idaho National Laboratory Emergency Readiness Assurance Plan — Fiscal Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Shane [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Battelle Energy Alliance, LLC, the prime contractor for Idaho National Laboratory (INL), provides this Emergency Readiness Assurance Plan (ERAP) for Fiscal Year 2014 in accordance with DOE O 151.1C, “Comprehensive Emergency Management System.” The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for Fiscal Year 2015. Specifically, the ERAP assures the Department of Energy Idaho Operations Office that stated emergency capabilities at INL are sufficient to implement PLN-114, “INL Emergency Plan/RCRA Contingency Plan.”

  5. Idaho National Laboratory Emergency Readiness Assurance Plan — Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-09-13

    Battelle Energy Alliance, LLC, the prime contractor for Idaho National Laboratory (INL), provides this Emergency Readiness Assurance Plan (ERAP) for Fiscal Year 2016 in accordance with DOE O 151.1C, “Comprehensive Emergency Management System.” The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for Fiscal Year 2017. Specifically, the ERAP assures the Department of Energy Idaho Operations Office that stated emergency capabilities at INL are sufficient to implement PLN 114, “INL Emergency Plan/RCRA Contingency Plan.”

  6. Federal Emergency Management Information System (FEMIS) data management guide, version 1.4.5

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, R.A.; Downing, T.R.; Gaustad, K.L. [and others

    1998-06-26

    The Federal Emergency Management Information System (FEMIS) information resources are described in this FEMIS Data Management Guide. To comprehend what types of data are present, where the data is located, and how it is managed during the life span of the system, a basic understanding of the FEMIS architecture is necessary. The system is being developed by Pacific Northwest National Laboratory (PNNL) and is designed for a single Chemical Stockpile Emergency Preparedness Program (CSEPP) site that has multiple Emergency Operations Centers (EOCs). The capability to connect to remote CSEPP sites and share information will be present in a future release. Each EOC has personal computers (PCs) that emergency planners and operations personnel use to do their jobs. These PCs are connected via a local area network (LAN) to servers that provide efficient EOC-wide services. Each EOC is interconnected to other EOCs via telecommunications links. FEMIS is a client/server system where much of the application software is located in the client PC. This client software integrates the FEMIS application, government furnished dispersion and evacuation models, and Commercial-Off-The-Shelf (COTS) software tools such as the ArcView geographic information system (GIS) and Microsoft Project (electron planning). A UNIX server provides data management services, ARC/INFO GIS capabilities, evacuation (Evac) modeling, electron main (E-mail), and meteorological (Met) input processing. A PC communication utility is available to interface with external subsystems. At this time, the weather collection system (Handar Met System) is the only external subsystem.

  7. Handling of emergency situations: organization and plans

    International Nuclear Information System (INIS)

    Swindell, G.E.

    1975-01-01

    Sources of exposure and foreseeable types of accidents; responsibilities for the prevention and control of accidents; organization for controlling emergency situations; emergency control plans. (HP) [de

  8. Pharmaceutical lobbying and pandemic stockpiling of Tamiflu: a qualitative study of arguments and tactics.

    Science.gov (United States)

    Vilhelmsson, Andreas; Mulinari, Shai

    2017-08-09

    Little is known about how pharmaceutical companies lobby authorities or experts regarding procurement or the use of vaccines and antivirals. This paper investigates how members of Denmark's pandemic planning committee experienced lobbying efforts by Roche, manufacturer of Tamiflu, the antiviral that was stockpiled before the 2009 A(H1N1) pandemic. Analysis of interviews with six of seven members of the Danish core pandemic committee, supplemented with documentary analysis. We sought to identify (1) arguments and (2) tactics used in lobbying, and to characterize interviewees' views on the impact of (3) lobbying and (4) scientific evidence on the decision to stockpile Tamiflu. Roche lobbied directly (in its own name) and through a seemingly independent third party. Roche used two arguments: (1) the procurement agreement had to be signed quickly because the drug would be delivered on a first-come, first-served basis and (2) Denmark was especially vulnerable to an influenza crisis because it had smaller Tamiflu stocks than other countries. Most interviewees suspected that lobbying had an impact on Tamiflu procurement. Our study highlights risks posed by pharmaceutical lobbying. Arguments and tactics deployed by Roche are likely to be repeated whenever many countries are negotiating drug procurements in a monopolistic market. © The Author 2017. Published by Oxford University Press on behalf of Faculty of Public Health.

  9. Advanced Simulation and Computing Fiscal Year 2016 Implementation Plan, Version 0

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hendrickson, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-27

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The purpose of this IP is to outline key work requirements to be performed and to control individual work activities within the scope of work. Contractors may not deviate from this plan without a revised WA or subsequent IP.

  10. 2002 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    International Nuclear Information System (INIS)

    Stockton, M.

    2003-01-01

    For reporting year 2002, Los Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead compounds and mercury as required under the Emergency Planning and Community Right-to-Know Act (EPCRA), Section 313. No other EPCRA Section 313 chemicals were used in 2002 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical usage and threshold determinations for LANL for calendar year 2002 as well as provide background information about the data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventory report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999 EPA promulgated a final rule on Persistent Bioaccumulative Toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable under EPCRA Section 313. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R

  11. 2006 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    Energy Technology Data Exchange (ETDEWEB)

    Ecology and Air Quality Group (ENV-EAQ)

    2007-12-12

    For reporting year 2006, Los Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead as required under the Emergency Planning and Community Right-to-Know Act (EPCRA) Section 313. No other EPCRA Section 313 chemicals were used in 2006 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2006, as well as to provide background information about data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999, EPA promulgated a final rule on persistent bioaccumulative toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R.

  12. Using stockpile delegation to improve China's strategic oil policy: A multi-dimension stochastic dynamic programming approach

    International Nuclear Information System (INIS)

    Chen, Xin; Mu, Hailin; Li, Huanan; Gui, Shusen

    2014-01-01

    There has been much attention paid to oil security in China in recent years. Although China has begun to establish its own strategic petroleum reserve (SPR) to prevent potential losses caused by oil supply interruptions, the system aiming to ensure China's oil security is still incomplete. This paper describes and provides evidence for the benefits of an auxiliary strategic oil policy choice, which aims to strengthen China's oil supply security and offer a solution for strategic oil operations with different holding costs. In this paper, we develop a multi-dimension stochastic dynamic programming model to analyze the oil stockpile delegation policy, which is an intermediate policy between public and private oil stockpiles and is appropriate for the Chinese immature private oil stockpile sector. The model examines the effects of the oil stockpile delegation policy in the context of several distinct situations, including normal world oil market conditions, slight oil supply interruption, and serious oil supply interruption. Operating strategies that respond to different oil supply situations for both the SPR and the delegated oil stockpile were obtained. Different time horizons, interruption times and holding costs of delegated oil stockpiles were examined. The construction process of China's SPR was also taken into account. - Highlights: • We provided an auxiliary strategic oil policy rooted in Chinese local conditions. • The policy strengthen China's capability for preventing oil supply interruption. • We model to obtain the managing strategies for China's strategic petroleum reserve. • Both of the public and delegated oil stockpile were taken into consideration. • The three phase's construction process of China's SPR was taken into account

  13. The emergency plan of a firm

    OpenAIRE

    Lonk, David

    2008-01-01

    The aim of this bachelor thesis is to describe an emergency plan for a firm in area of a preventing riskiness and usability of the plan in time of crisis situation. The thesis also analyzes methods and approaches to a creation of the plan. It examines in detail the formation from an identification of possible hazards through a suggestion of solutions to testing and updating of the plan. Last but not least, my thesis describes the most suitable structure of the plan with respects to its utiliz...

  14. Chemical toxicity approach for emergency response

    International Nuclear Information System (INIS)

    Bauer, T.

    2009-01-01

    In the event of an airborne release of chemical agent or toxic industrial chemical by accidental or intentional means, emergency responders must have a reasonable estimate of the location and size of the resulting hazard area. Emergency responders are responsible for warning persons downwind of the hazard to evacuate or shelter-in-place and must know where to look for casualties after the hazard has passed or dissipated. Given the same source characterization, modern hazard assessment models provide comparable concentration versus location and time estimates. Even urban hazard assessment models often provide similar predictions. There is a major shortcoming, though, in applying model output to estimating human toxicity effects. There exist a variety of toxicity values for non-lethal effects ranging from short-term to occupational to lifetime exposures. For health and safety purposes, these estimates are all safe-sided in converting animal data to human effects and in addressing the most sensitive subset of the population. In addition, these values are usually based on an assumed 1 hour exposure duration at constant concentration and do not reflect either a passing clouds concentration profile or duration. Emergency responders need expected value toxicity parameters rather than the existing safe-sided ones. This presentation will specify the types of toxicity values needed to provide appropriate chemical hazard estimates to emergency responders and will demonstrate how dramatically their use changes the hazard area.(author)

  15. 40 CFR 52.274 - California air pollution emergency plan.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false California air pollution emergency plan. 52.274 Section 52.274 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.274 California air pollution emergency plan. (a) Since the...

  16. Double shell tanks emergency pumping plan

    International Nuclear Information System (INIS)

    Tangen, M.J.

    1994-01-01

    At the request of the Department of Energy (DOE), a formal plan for the emergency transfer of waste from a leaking double shell tank to a designated receiver tank has been developed. This plan is in response to the priority 2 safety issue ''Response to a leaking double-shell tank'' in the DOE Report to Congress, 1991. The plan includes the tanks in four of the east tank farms and one of the west farms. The background information and supporting calculations used for the creation of the emergency plan are discussed in this document. The scope of this document is all of the double shell tanks in the AN, AP, AW, AY, and SY farms. The transfer lines, flush pits, and valve pits involved in the transfer of waste between these farms are also included in the scope. Due to the storage of high heat waste, AZ farm is excluded at this time

  17. Survey of Canadian hospitals radiation emergency plans

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C [Social Data Research Ltd./The Flett Consulting Group, Inc., Ottawa, ON (Canada)

    1996-02-01

    This report documents the findings of a survey of Canadian hospitals conducted by Social Data Research Ltd. during the Spring and Summer, 1995. The main objective of the survey was to determine the state of readiness of Canadian hospitals in respect of radiation emergency planning. In addition, the AECB was interested in knowing the extent to which a report by the Group of Medical Advisors, `GMA-3: Guidelines on Hospital Emergency Plans for the Management of Minor Radiation Accidents`, which was sponsored and distributed in 1993, was received and was useful to hospital administrators and emergency personnel. A self-administered questionnaire was distributed to 598 acute care hospitals, and 274 responses were received. The main conclusion of this study is that, with the exception of a few large institutions, hospitals generally do not have specific action plans to handle minor radiation accidents. (author).

  18. Survey of Canadian hospitals radiation emergency plans

    International Nuclear Information System (INIS)

    Davis, C.

    1996-02-01

    This report documents the findings of a survey of Canadian hospitals conducted by Social Data Research Ltd. during the Spring and Summer, 1995. The main objective of the survey was to determine the state of readiness of Canadian hospitals in respect of radiation emergency planning. In addition, the AECB was interested in knowing the extent to which a report by the Group of Medical Advisors, 'GMA-3: Guidelines on Hospital Emergency Plans for the Management of Minor Radiation Accidents', which was sponsored and distributed in 1993, was received and was useful to hospital administrators and emergency personnel. A self-administered questionnaire was distributed to 598 acute care hospitals, and 274 responses were received. The main conclusion of this study is that, with the exception of a few large institutions, hospitals generally do not have specific action plans to handle minor radiation accidents. (author)

  19. 40 CFR 52.1477 - Nevada air pollution emergency plan.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Nevada air pollution emergency plan. 52.1477 Section 52.1477 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Nevada § 52.1477 Nevada air pollution emergency plan. Section 6.1.5 of...

  20. Emergency response planning for transport accidents involving radioactive materials

    International Nuclear Information System (INIS)

    1982-03-01

    The document presents a basic discussion of the various aspects and philosophies of emergency planning and preparedness along with a consideration of the problems which might be encountered in a transportation accident involving a release of radioactive materials. Readers who are responsible for preparing emergency plans and procedures will have to decide on how best to apply this guidance to their own organizational structures and will also have to decide on an emergency planning and preparedness philosophy suitable to their own situations

  1. 29 CFR 1926.35 - Employee emergency action plans.

    Science.gov (United States)

    2010-07-01

    ... Provisions § 1926.35 Employee emergency action plans. (a) Scope and application. This section applies to all...) Names or regular job titles of persons or departments who can be contacted for further information or... the employee in the event of an emergency. The written plan shall be kept at the workplace and made...

  2. Planning for a radiological emergency in health care institutions

    International Nuclear Information System (INIS)

    Jerez Vegueria, S.F.; Jerez Vegueria, P.F.

    1998-01-01

    The possible occurrence of accidents involving sources of ionizing radiation calls for response plans to mitigate the consequences of radiological accidents. An emergency planning framework is suggested for institutions which use medical applications of ionizing radiation. Bearing in mind that the prevention of accidents is of prime importance in dealing with radioactive materials and other sources of ionizing radiation, it is recommended that emergency instructions and procedures address certain aspects of the causes of these radiological events. Issues such as identification of radiological events in medical practices and their consequences, protective measures, planning for an emergency response and maintenance of emergency capacity are considered. (author)

  3. 7 CFR 1730.28 - Emergency Restoration Plan (ERP).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Emergency Restoration Plan (ERP). 1730.28 Section... § 1730.28 Emergency Restoration Plan (ERP). (a) Each borrower with an approved RUS electric program loan as of October 12, 2004 shall have a written ERP no later than January 12, 2006. The ERP should be...

  4. What Chernobyl has taught us about emergency planning

    International Nuclear Information System (INIS)

    Orchard, H.C.

    1988-01-01

    The author discusses the U.K. government review of existing emergency plans in the light of experience of the Chernobyl accident, together with the nuclear industry review of the causes and consequences of the accident. Aspects of emergency planning covered by this outline review include the need for information, pressures brought to bear on site emergency organisation by public and news media, evacuation, the need for national inventories of equipment, protective clothing, health physics instruments, road transport vehicles etc. (U.K.)

  5. Training to the Nuclear emergency plans

    International Nuclear Information System (INIS)

    Vera Navascues, I.

    2003-01-01

    In 1994 the Civil Protection Directorate outlined a formation plan related to the Nuclear emergency plans with the purpose of guaranteeing for the communities involved in this material a basic and homogeneous formation. In the preparation of this Plan the following phases had been developed: 1. Study of formative needs of the different participant communities involved in nuclear plans. This has been done throw the information collected by: nuclear emergency plans and procedures that develop them, questionnaires, observation list, exercise, drills, etc. 2. With all the needs detected and in function of them was designed the objectives to teach in relation with the knowledge and the abilities that the formation can give to the participants. 3. Definition of thematic areas related with the different matters to teach, derived from the different objectives. 4. Organization: The development of the formative activities through a specific material with orientations for the professors (content of material to impart, didactic resources, etc.) and a short summary of the Didactic Units imparted to the students. The methodology is based in short theoretical classes and in the active implication through practice activities exercises and drills to train its functions and the coordination of the different implied organizations. 5. Evaluation: the implantation of the formation plan contributes new formative needs. (Author)

  6. Responsibility modelling for civil emergency planning

    OpenAIRE

    Sommerville, Ian; Storer, Timothy; Lock, Russell

    2009-01-01

    This paper presents a new approach to analysing and understanding civil emergency planning based on the notion of responsibility modelling combined with HAZOPS-style analysis of information requirements. Our goal is to represent complex contingency plans so that they can be more readily understood, so that inconsistencies can be highlighted and vulnerabilities discovered. In this paper, we outline the framework for contingency planning in the United Kingdom and introduce the notion of respons...

  7. Remedial action work plan for the Colonie site. Revision 1

    International Nuclear Information System (INIS)

    1985-08-01

    The Colonie site is a DOE Formerly Utilized Sites Remedial Action Program (FUSRAP) site located in the Town of Colonie, New York, and consisting of an interim storage site and several vicinity properties. The Colonie Interim Storage Site (CISS) is the former National Lead (NL) Industries plant located at 1130 Central Avenue. There are 11 vicinity properties that received remedial action in 1984: 7 located south of the site on Yardboro and Palmer Avenues just across the Colonie-Albany town limits in Albany, and 4 located northwest of the site along Central Avenue in Colonie. Of these properties, nine are residences and two are commercial properties. This document describes the engineering design, construction, and associated plans for remedial action on the vicinity properties and the interim storage site. These plans include both radiological and chemical work. Radiological work includes: excavating the above-guideline radioactive wastes on the vicinity properties; designing required facilities for the interim storage site; preparing the interim storage site to receive these contaminated materials; transporting the contaminated materials to the interim waste storage stockpile; and preparing necessary schedules for accomplishing the remedial actions. Chemical work involves: developing the Resource Conservation and Recovery Act (RCRA) closure plans; neutralizing chemical hazards associated with plating solutions; inventorying on-site chemicals; and disposal of chemicals and/or residues. 17 refs., 5 figs., 1 tab

  8. Nuclear emergency planning in Spain. The PLABEN review project

    International Nuclear Information System (INIS)

    Lentijo Lentijo, J. C.; Vila Pena, M.

    2002-01-01

    The international rules and recommendations for nuclear emergency planning and the Spanish experience gained in the management of event with radiological risk have noticed that is necessary to review the planning radiological bases for emergencies in nuclear power plants and to define the planning radiological bases for radiological emergencies that could happen in radioactive facilities or in activities out of the regulatory framework. The paper focuses on CSN actions concerning the Plaben review project related to define the new radiological principles taking into account the current international recommendations for interventions, make a proposal about the organisation and operation of the provincial radiological action group and the national support level for radiological emergency response. (Author) 7 refs

  9. Recent Canadian experience in chemical warfare agent destruction: An overview. Suffield report No. 626

    Energy Technology Data Exchange (ETDEWEB)

    McAndless, J.M.

    1995-12-31

    This paper reviews a project in which stockpiles of aged mustard (bis-2-chloroethyl sulfide), lewisite (2-chlorovinyl-dichloro arsine), nerve agents, and contaminated scrap metal were incinerated or chemically neutralized in a safe, environmentally responsible manner. Sections of the paper describe the public consultation program conducted prior to destruction operations, the environmental assessment of the destruction projects, the environmental protection plan implemented to eliminate or mitigate risks with respect to the installation and operation of the destruction equipment, the environmental monitoring procedures, the agent destruction operations, and the destruction process performance, including incinerator emissions.

  10. On-site emergency planning

    International Nuclear Information System (INIS)

    Kueffer, K.

    1981-01-01

    This lecture covers the Emergency Planning of the Operating Organization and does not describe the functions and responsibilities of the Regulatory Body and public authorities. The lecture is based on the Codes of Practice and Safety Guides of the International Atomic Energy Agency (IAEA) and arrangements as in use in the Swiss Nuclear Power Station Beznau. (orig.)

  11. Evaluation criteria for emergency response plans in radiological transportation

    International Nuclear Information System (INIS)

    Lindell, M.K.; Perry, R.W.

    1980-01-01

    This paper identifies a set of general criteria which can be used as guides for evaluating emergency response plans prepared in connection with the transportation of radiological materials. The development of criteria takes the form of examining the meaning and role of emergency plans in general, reviewing the process as it is used in connection with natural disasters and other nonnuclear disasters, and explicitly considering unique aspects of the radiological transportation setting. Eight areas of critical importance for such response plans are isolated: notification procedures; accident assessment; public information; protection of the public at risk; other protective responses; radiological exposure control; responsibility for planning and operations; and emergency response training and exercises. (Auth.)

  12. Nuclear emergency plans in France. Strengths and weaknesses. Report 2016

    International Nuclear Information System (INIS)

    Boilley, David; Josset, Mylene

    2016-01-01

    This report first presents nuclear emergency plans in France (specific intervention plans, action at the municipal level, creation of a national plan, planning of the post-accidental phase, integration of the international and cross-border dimension. Then, it analyses strengths and weaknesses of these plans. It outlines the necessity to take the most severe accident scenarios into account (issue of selection of reference accidents, necessity of reviewing emergency planning areas, and assessment of the number of inhabitants about French nuclear installations). It proposes a review of measures of protection of populations (information, sheltering, iodine-based prophylaxis, evacuation, food control and restrictions, protection of human resources, cross-border problems). It discusses how to put an end to the emergency situation, and the assessment and collaboration on emergency plans. The next part proposes an analysis of noticed strengths and weaknesses in some PPIs (specific intervention plans) in terms of text accessibility, of description of the site and of its environment, of intervention area, of operational measures, and of preparation to the post-accidental phase

  13. The technical bases for government emergency plans

    International Nuclear Information System (INIS)

    Champion, D.; Herviou, K.

    2006-01-01

    Despite technical and organisational existing arrangements to prevent human and equipment failures, the occurrence of a severe accident inducing an important release of radioactive or toxic products could not be totally excluded. Public authorities are responsible for the development of emergency plans which main objective is the protection of the population in case of accident. The efficiency of emergency plans assumes they have been established before the occurrence of any accident, taking into account specificities of the installation and its environment. On the basis of the list of possible events likely to induce releases into the environment, some 'envelope' scenarios are selected and their consequences are assessed- The comparison of the consequences to reference levels for which protective actions are recommended gives the area where actions may be required. This approach is applied for the different nuclear facilities in France. Examples are given in the article on the definition of emergency plans technical basis for nuclear power plants, other nuclear facilities and transportation of radioactive materials. (authors)

  14. Uranium purchasing and stockpiling policies of European utilities

    International Nuclear Information System (INIS)

    Messer, K.P.

    1984-01-01

    When preparing my little presentation I was wondering whether a title like 'Policies of European utilities to minimise the inflow of uranium not needed and to reduce excessive stockpiles' would not be more appropriate. But I hop that I shall be able to convince you that we European utilities are not that short-sighted and that we do have a more far-sighted policy regarding uranium supplies

  15. Spinoffs from radiological emergency preparedness programmes to generic emergency management

    International Nuclear Information System (INIS)

    Sanders, M.E.

    1986-01-01

    In the USA, the radiological emergency preparedness (REP) programme for nuclear power plants is being used to enhance emergency management programmes for other types of emergencies. The REP programme is particularly useful in developing plans and preparedness measures for chemical accidents. The Integrated Emergency Management System (IEMS) approach provides a means for maximizing relationships between the REP programme and other programmes. IEMS essentially involves applying common elements of planning and preparedness to all types of emergencies, while recognizing that unique characteristics of specific natural and man-made emergencies require special planning and preparedness considerations. Features of the REP programme that make it compatible with the IEMS approach and useful in coping with other types of emergencies are: (1) the close co-operation between the national nuclear regulatory and emergency management organizations; (2) the programme integration among all levels of government, the nuclear power industry, public interest groups and the general public and (3) the comprehensiveness and sophistication of the programme. The REP programme in the USA represents a state-of-the-art emergency management capability. Some of its elements are readily transferrable to most other types of emergency preparedness programmes, while other elements can be adapted more readily to other hazard-specific programmes. The Bhopal accident has been a catalyst for this adaptation to chemical accidents, in such areas as furnishing hazard-specific information to the public, alert and notification systems, definition of the hazards and risks involved, establishing planning zones and developing close working relationships among the industry, the public and government

  16. Institutional planning for radiation emergencies

    International Nuclear Information System (INIS)

    Keil, E.R.

    1986-01-01

    Persons providing health care pride themselves on their ability to handle emergencies. This pride is born of the daily experience of caring for the sick and injured. Emergencies include traumatic injuries, sudden changes in health status, and various minor disturbances in the physical environment inside the hospital. The effectiveness of this ability is unquestioned in limited-scale problems. However, survey experience of the Joint Commission on the Accreditation of Hospitals (JCAH) reveals weaknesses when health care organizations are faced with larger scale problems such as earthquakes and plane crashes. One may speculate that a massive emergency such as occurred at Chernobyl would overwhelm this ability. Based on the same survey experience, JCAH believes that health care organizations can plan and train to prepare for large-scale emergencies in a careful and systematic manner. Through such study and practice, their existing confidence and ability to deal with limited emergencies can be explained

  17. Assessment of Evacuation Protective Action Strategies For Emergency Preparedness Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joomyung; Jae, Moosung [Hanyang Univ., Seoul (Korea, Republic of); Ahn, Kwangil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    This report which studies about evacuation formation suggests some considerable factors to reduce damage of radiological accidents. Additional details would be required to study in depth and more elements should be considered for updating emergency preparedness. However, this methodology with sensitivity analysis could adapt to specific plant which has total information such as geological data, weather data and population data. In this point of view the evacuation study could be contribute to set up emergency preparedness plan and propose the direction to enhance protective action strategies. In radiological emergency, residents nearby nuclear power plant should perform protective action that is suggested by emergency preparedness plan. The objective of emergency preparedness plan is that damages, such as casualties and environmental damages, due to radioactive accident should be minimized. The recent PAR study includes a number of subjects to improve the quality of protective action strategies. For enhancing protective action strategies, researches that evaluate many factors related with emergency response scenario are essential parts to update emergency preparedness plan. Evacuation is very important response action as protective action strategy.

  18. Assessment of Evacuation Protective Action Strategies For Emergency Preparedness Plan

    International Nuclear Information System (INIS)

    Lee, Joomyung; Jae, Moosung; Ahn, Kwangil

    2013-01-01

    This report which studies about evacuation formation suggests some considerable factors to reduce damage of radiological accidents. Additional details would be required to study in depth and more elements should be considered for updating emergency preparedness. However, this methodology with sensitivity analysis could adapt to specific plant which has total information such as geological data, weather data and population data. In this point of view the evacuation study could be contribute to set up emergency preparedness plan and propose the direction to enhance protective action strategies. In radiological emergency, residents nearby nuclear power plant should perform protective action that is suggested by emergency preparedness plan. The objective of emergency preparedness plan is that damages, such as casualties and environmental damages, due to radioactive accident should be minimized. The recent PAR study includes a number of subjects to improve the quality of protective action strategies. For enhancing protective action strategies, researches that evaluate many factors related with emergency response scenario are essential parts to update emergency preparedness plan. Evacuation is very important response action as protective action strategy

  19. Radiation emergency planning for medical organizations; Plan de emergencia radiologica en entidades de salud

    Energy Technology Data Exchange (ETDEWEB)

    Jerez Vergueria, Sergio F. [Instituto de Medicina del Trabajo, La Habana (Cuba); Jerez Vergueria, Pablo F. [Centro Nacional de Seguridad Nuclear, La Habana (Cuba)

    1997-12-31

    The possible occurrence of accidents involving sources of ionizing radiation demands response plans to mitigate the consequences of radiological accidents. This paper offers orientations in order to elaborate emergency planning for institutions with medical applications of ionizing radiation. Taking into account that the prevention of accidents is of prime importance in dealing with radioactive materials and others sources of ionizing radiation, such as X-rays, it is recommended that one include in emergency instructions and procedures several aspects relative to causes which originate these radiological events. Topics such as identification of radiological events in these practices and their consequences, protective measures, planning for and emergency response and maintenance of emergency capacity, are considered in this article. (author) 16 refs., 1 tab.; e-mail: sfjerez at rdc.puc-rio.br

  20. Nuclear accident/radiological emergency assistance plan. NAREAP - edition 2000. Emergency preparedness and response

    International Nuclear Information System (INIS)

    2000-01-01

    The purpose of the Nuclear Accident/Radiological Emergency Assistance Plan (NAREAP) is to describe the framework for systematic, integrated, co-ordinated, and effective preparedness and response for a nuclear accident or radiological emergency involving facilities or practices that may give rise to a threat to health, the environment or property. The purpose of the NAREAP is: to define the emergency response objectives of the Agency's staff in a nuclear accident or a radiological emergency; to assign responsibilities for performing the tasks and authorities for making the decisions that comprise the Agency staff's response to a nuclear accident or radiological emergency; to guide the Agency managers who must ensure that all necessary tasks are given the necessary support in discharging the Agency staff responsibilities and fulfilling its obligations in response to an emergency; to ensure that the development and maintenance of detailed and coherent response procedures are well founded; to act as a point of reference for individual Agency staff members on their responsibilities (as an individual or a team member) throughout a response; to identify interrelationships with other international intergovernmental Organizations; and to serve as a training aid to maintain readiness of personnel. The NAREAP refers to the arrangements of the International Atomic Energy Agency and of the United Nations Security and Safety Section at the Vienna International Centre (UNSSS-VIC) that may be necessary for the IAEA to respond to a nuclear accident or radiological emergency, as defined in the Early Notification and Assistance Conventions. It covers response arrangements for any situation that may have actual, potential or perceived radiological consequences and that could require a response from the IAEA, as well as the arrangements for developing, maintaining and exercising preparedness. The implementing procedures themselves are not included in the NAREAP, but they are required

  1. Employee Perceptions of Their Organization's Level of Emergency Preparedness Following a Brief Workplace Emergency Planning Educational Presentation

    Directory of Open Access Journals (Sweden)

    Lauren A. Renschler

    2016-06-01

    Full Text Available A brief emergency planning educational presentation was taught during work hours to a convenience sample of employees of various workplaces in Northern Missouri, USA. Participants were familiarized with details about how an emergency plan is prepared by management and implemented by management-employee crisis management teams – focusing on both employee and management roles. They then applied the presentation information to assess their own organization’s emergency preparedness level. Participants possessed significantly (p < 0.05 higher perceptions of their organization’s level of emergency preparedness than non-participants. It is recommended that an assessment of organizational preparedness level supplement emergency planning educational presentations in order to immediately apply the material covered and encourage employees to become more involved in their organization’s emergency planning and response. Educational strategies that involve management-employee collaboration in activities tailored to each workplace’s operations and risk level for emergencies should be implemented.

  2. Evaluation of environmental effect of coal stockpile in Muara Telang, Banyuasin, Indonesia

    Science.gov (United States)

    Rusdianasari; Arita, Susila; Ibrahim, Eddy; Ngudiantoro

    2013-04-01

    Stockpile commonly serves as a temporary dump before the coal is transported through the waterways. This study investigated the effects of coal stockpiles on the surrounding environment: air, water, and soil. The location of the study is in the estuary of Telang, South-Sumatra, Indonesia, which is located at the edge of the river of Telang and close to the residential community. The monitoring of the environmental impact from the stockpile is intended to conduct an environmental assessment owing the existence and operations of coal accumulation. Enviromental impact analysis was conducted based on the value of the effluent, air pollution (dust), soil and water by determining the parameters of the coal wastewater pH, total suspended solid, ferrous dan ferrous metals contents. The results indicate that the total suspended particulate, total suspended solids, noise level, ferrous metal and manganese metal were 10-14 μg/Nm3 249-355 mg/L, 41.3 to 50.3 dBA, 6.074 to7.579 mg/L, and 1.987 to 2.678 mg/L, respectively. Meanwhile the pH of water and soil were 3 to 4 and 2.83 to 4.02 respectively. It is concluded that the pH value are beyond the threshold standard.

  3. Evaluation of environmental effect of coal stockpile in Muara Telang, Banyuasin, Indonesia

    International Nuclear Information System (INIS)

    Rusdianasari; Arita, Susila; Ibrahim, Eddy; Ngudiantoro

    2013-01-01

    Stockpile commonly serves as a temporary dump before the coal is transported through the waterways. This study investigated the effects of coal stockpiles on the surrounding environment: air, water, and soil. The location of the study is in the estuary of Telang, South-Sumatra, Indonesia, which is located at the edge of the river of Telang and close to the residential community. The monitoring of the environmental impact from the stockpile is intended to conduct an environmental assessment owing the existence and operations of coal accumulation. Enviromental impact analysis was conducted based on the value of the effluent, air pollution (dust), soil and water by determining the parameters of the coal wastewater pH, total suspended solid, ferrous dan ferrous metals contents. The results indicate that the total suspended particulate, total suspended solids, noise level, ferrous metal and manganese metal were 10-14 μg/Nm 3 249-355 mg/L, 41.3 to 50.3 dBA, 6.074 to7.579 mg/L, and 1.987 to 2.678 mg/L, respectively. Meanwhile the pH of water and soil were 3 to 4 and 2.83 to 4.02 respectively. It is concluded that the pH value are beyond the threshold standard.

  4. 77 FR 64311 - Potential Market Impact of the Proposed Fiscal Year 2014 Annual Materials Plan; National Defense...

    Science.gov (United States)

    2012-10-19

    ... actually be associated with the two material research and development projects will depend on the market... Market Impact of the Proposed Fiscal Year 2014 Annual Materials Plan; National Defense Stockpile Market... Stockpile Market Impact Committee, co-chaired by the Departments of Commerce and State, is seeking public...

  5. Family emergency preparedness plans in severe tornadoes.

    Science.gov (United States)

    Cong, Zhen; Liang, Daan; Luo, Jianjun

    2014-01-01

    Tornadoes, with warnings usually issued just minutes before their touchdowns, pose great threats to properties and people's physical and mental health. Few studies have empirically investigated the association of family emergency preparedness planning and observed protective behaviors in the context of tornadoes. The purpose of this study was to examine predictors for the action of taking shelter at the time of tornadoes. Specifically, this study investigated whether having a family emergency preparedness plan was associated with higher likelihood of taking shelter upon receiving tornado warnings. This study also examined the effects of socioeconomic status and functional limitations on taking such actions. A telephone survey based on random sampling was conducted in 2012 with residents in Tuscaloosa AL and Joplin MO. Each city experienced considerable damages, injuries, and casualties after severe tornadoes (EF-4 and EF-5) in 2011. The working sample included 892 respondents. Analysis was conducted in early 2013. Logistic regression identified emergency preparedness planning as the only shared factor that increased the likelihood of taking shelter in both cities and the only significant factor in Joplin. In Tuscaloosa, being female and white also increased the likelihood of taking shelter. Disability was not found to have an effect. This study provided empirical evidence on the importance of having a family emergency preparedness plan in mitigating the risk of tornadoes. The findings could be applied to other rapid-onset disasters. © 2013 American Journal of Preventive Medicine Published by American Journal of Preventive Medicine All rights reserved.

  6. Emergency Planning and Community Right-To-Know Act, Section 311

    International Nuclear Information System (INIS)

    Evans, R.A.; Martin, K.J.

    1996-03-01

    The following information reflects changes in the lists of hazardous chemicals present at this facility in amounts equal to or greater than 10,000 pounds and extremely hazardous substances present in amounts equal to or greater than 500 pounds or its Threshold Planning Quantity, whichever was lowest. These lists represent the following: list of materials last reported in February 1995; materials to be deleted from list; materials to be added to list; and revised list of materials. The revised list of materials is a composite of the Y-12 Plant Emergency Planing and Community Right-to-Know Act Section 312 report prepared and submitted for calendar year 1995

  7. Release mitigation spray safety systems for chemical demilitarization applications.

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  8. Planning of emergency medical treatment in nuclear power plant

    International Nuclear Information System (INIS)

    Kusama, Tomoko

    1989-01-01

    Medical staffs and health physicists have shown deep concerning at the emergency plans of nuclear power plants after the TMI nuclear accident. The most important and basic countermeasure for accidents was preparing appropriate and concrete organization and plans for treatment. We have planed emergency medical treatment for radiation workers in a nuclear power plant institute. The emergency medical treatment at institute consisted of two stages, that is on-site emergency treatment at facility medical service. In first step of planning in each stage, we selected and treatment at facility medical service. In first step of planning in each stage, we selected and analyzed all possible accidents in the institute and discussed on practical treatments for some possible accidents. The manuals of concrete procedure of emergency treatment for some accidents were prepared following discussion and facilities and equipment for medical treatment and decontamination were provided. All workers in the institute had periodical training and drilling of on-site emergency treatment and mastered technique of first aid. Decontamination and operation rooms were provided in the facillity medical service. The main functions at the facility medical service have been carried out by industrial nurses. Industrial nurses have been in close co-operation with radiation safety officers and medical doctors in regional hospital. (author)

  9. The emergency plan of the ININ

    International Nuclear Information System (INIS)

    Ruiz C, M.A.

    1991-01-01

    The emergency plan of the ININ, it was elaborated in 1988 and revised by the National Commission of Nuclear Safety and Safeguards (CNSNS) in 1989. At the beginning of 1990 and with the support of the IAEA it was practiced the first revision to the text of this plan, for what the proposal revision is what constitutes the development of this report

  10. Contingency planning and emergency response in construction activities: Training the construction worker

    International Nuclear Information System (INIS)

    Jones, E.

    1987-01-01

    Construction activities have the potential for environmental and/or health impacts at Oak Ridge National Laboratory (ORNL) particularly as site cleanup and restoration plans are initiated. ORNL has instituted special training for all construction workers and related contractors. Individuals learn how construction activities at ORNL can potentially have adverse effects on the environment and their health, and to learn how to respond to potential chemical and radiation hazards. Workers are given a review of basic information on radiation and chemicals in a framework that emphasizes the situations in which workers or the environment may be exposed to potential risk. Specific instructions are presented on what to do when contamination is suspected, with identification of emergency procedures and response personnel. 5 refs., 1 fig

  11. A model national emergency plan for radiological accidents; Plan modelo nacional de respuesta de emergencia para accidentes radiologicos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The IAEA has supported several projects for the development of a national response plan for radiological emergencies. As a result, the IAEA has developed a model National Emergency Response Plan for Radiological Accidents (RAD PLAN), particularly for countries that have no nuclear power plants. This plan can be adapted for use by countries interested in developing their own national radiological emergency response plan, and the IAEA will supply the latest version of the RAD PLAN on computer diskette upon request.

  12. 1992 Tier Two emergency and hazardous chemical inventory

    International Nuclear Information System (INIS)

    1993-03-01

    This report is a compilation of data on emergency and hazardous chemicals stored at the Hanford Reservation. The report lists name or chemical description, physical and health hazards, inventories and storage location

  13. DEM Simulation of Particle Stratification and Segregation in Stockpile Formation

    Directory of Open Access Journals (Sweden)

    Zhang Dizhe

    2017-01-01

    Full Text Available Granular stockpiles are commonly observed in nature and industry, and their formation has been extensively investigated experimentally and mathematically in the literature. One of the striking features affecting properties of stockpiles are the internal patterns formed by the stratification and segregation processes. In this work, we conduct a numerical study based on DEM (discrete element method model to study the influencing factors and triggering mechanisms of these two phenomena. With the use of a previously developed mixing index, the effects of parameters including size ratio, injection height and mass ratio are investigated. We found that it is a void-filling mechanism that differentiates the motions of particles with different sizes. This mechanism drives the large particles to flow over the pile surface and segregate at the pile bottom, while it also pushes small particles to fill the voids between large particles, giving rise to separate layers. Consequently, this difference in motion will result in the observed stratification and segregation phenomena.

  14. CEGB nuclear power stations basic emergency plan

    International Nuclear Information System (INIS)

    1978-03-01

    The introduction states that this is a typical emergency plan for a nuclear power station employing about 500 people, having two reactors and a total electrical output of 500 Megawatts in an intensively farmed rural area. The document has the following headings: definitions ('site incident', etc); functions of the site emergency organization; conditions for taking emergency action; persons empowered to declare or cancel a site incident or an emergency; emergency actions by staff; control centres; communication; collaboration with other bodies; warnings; transport; house rules; public information centre. (U.K.)

  15. An innovative approach to capability-based emergency operations planning.

    Science.gov (United States)

    Keim, Mark E

    2013-01-01

    This paper describes the innovative use information technology for assisting disaster planners with an easily-accessible method for writing and improving evidence-based emergency operations plans. This process is used to identify all key objectives of the emergency response according to capabilities of the institution, community or society. The approach then uses a standardized, objective-based format, along with a consensus-based method for drafting capability-based operational-level plans. This information is then integrated within a relational database to allow for ease of access and enhanced functionality to search, sort and filter and emergency operations plan according to user need and technological capacity. This integrated approach is offered as an effective option for integrating best practices of planning with the efficiency, scalability and flexibility of modern information and communication technology.

  16. Employee Perceptions of Their Organization's Level of Emergency Preparedness Following a Brief Workplace Emergency Planning Educational Presentation.

    Science.gov (United States)

    Renschler, Lauren A; Terrigino, Elizabeth A; Azim, Sabiya; Snider, Elsa; Rhodes, Darson L; Cox, Carol C

    2016-06-01

    A brief emergency planning educational presentation was taught during work hours to a convenience sample of employees of various workplaces in Northern Missouri, USA. Participants were familiarized with details about how an emergency plan is prepared by management and implemented by management-employee crisis management teams - focusing on both employee and management roles. They then applied the presentation information to assess their own organization's emergency preparedness level. Participants possessed significantly (p employees to become more involved in their organization's emergency planning and response. Educational strategies that involve management-employee collaboration in activities tailored to each workplace's operations and risk level for emergencies should be implemented.

  17. Prototyping and validating requirements of radiation and nuclear emergency plan simulator

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, AHA., E-mail: amyhamijah@nm.gov.my [Malaysian Nuclear Agency (NM), Bangi, 43000 Kajang, Selangor (Malaysia); Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor (Malaysia); Rozan, MZA.; Ibrahim, R.; Deris, S.; Selamat, A. [Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor (Malaysia)

    2015-04-29

    Organizational incapability in developing unrealistic, impractical, inadequate and ambiguous mechanisms of radiological and nuclear emergency preparedness and response plan (EPR) causing emergency plan disorder and severe disasters. These situations resulting from 65.6% of poor definition and unidentified roles and duties of the disaster coordinator. Those unexpected conditions brought huge aftermath to the first responders, operators, workers, patients and community at large. Hence, in this report, we discuss prototyping and validating of Malaysia radiation and nuclear emergency preparedness and response plan simulation model (EPRM). A prototyping technique was required to formalize the simulation model requirements. Prototyping as systems requirements validation was carried on to endorse the correctness of the model itself against the stakeholder’s intensions in resolving those organizational incapability. We have made assumptions for the proposed emergency preparedness and response model (EPRM) through the simulation software. Those assumptions provided a twofold of expected mechanisms, planning and handling of the respective emergency plan as well as in bringing off the hazard involved. This model called RANEPF (Radiation and Nuclear Emergency Planning Framework) simulator demonstrated the training emergency response perquisites rather than the intervention principles alone. The demonstrations involved the determination of the casualties’ absorbed dose range screening and the coordination of the capacity planning of the expected trauma triage. Through user-centred design and sociotechnical approach, RANEPF simulator was strategized and simplified, though certainly it is equally complex.

  18. Prototyping and validating requirements of radiation and nuclear emergency plan simulator

    Science.gov (United States)

    Hamid, AHA.; Rozan, MZA.; Ibrahim, R.; Deris, S.; Selamat, A.

    2015-04-01

    Organizational incapability in developing unrealistic, impractical, inadequate and ambiguous mechanisms of radiological and nuclear emergency preparedness and response plan (EPR) causing emergency plan disorder and severe disasters. These situations resulting from 65.6% of poor definition and unidentified roles and duties of the disaster coordinator. Those unexpected conditions brought huge aftermath to the first responders, operators, workers, patients and community at large. Hence, in this report, we discuss prototyping and validating of Malaysia radiation and nuclear emergency preparedness and response plan simulation model (EPRM). A prototyping technique was required to formalize the simulation model requirements. Prototyping as systems requirements validation was carried on to endorse the correctness of the model itself against the stakeholder's intensions in resolving those organizational incapability. We have made assumptions for the proposed emergency preparedness and response model (EPRM) through the simulation software. Those assumptions provided a twofold of expected mechanisms, planning and handling of the respective emergency plan as well as in bringing off the hazard involved. This model called RANEPF (Radiation and Nuclear Emergency Planning Framework) simulator demonstrated the training emergency response perquisites rather than the intervention principles alone. The demonstrations involved the determination of the casualties' absorbed dose range screening and the coordination of the capacity planning of the expected trauma triage. Through user-centred design and sociotechnical approach, RANEPF simulator was strategized and simplified, though certainly it is equally complex.

  19. Prototyping and validating requirements of radiation and nuclear emergency plan simulator

    International Nuclear Information System (INIS)

    Hamid, AHA.; Rozan, MZA.; Ibrahim, R.; Deris, S.; Selamat, A.

    2015-01-01

    Organizational incapability in developing unrealistic, impractical, inadequate and ambiguous mechanisms of radiological and nuclear emergency preparedness and response plan (EPR) causing emergency plan disorder and severe disasters. These situations resulting from 65.6% of poor definition and unidentified roles and duties of the disaster coordinator. Those unexpected conditions brought huge aftermath to the first responders, operators, workers, patients and community at large. Hence, in this report, we discuss prototyping and validating of Malaysia radiation and nuclear emergency preparedness and response plan simulation model (EPRM). A prototyping technique was required to formalize the simulation model requirements. Prototyping as systems requirements validation was carried on to endorse the correctness of the model itself against the stakeholder’s intensions in resolving those organizational incapability. We have made assumptions for the proposed emergency preparedness and response model (EPRM) through the simulation software. Those assumptions provided a twofold of expected mechanisms, planning and handling of the respective emergency plan as well as in bringing off the hazard involved. This model called RANEPF (Radiation and Nuclear Emergency Planning Framework) simulator demonstrated the training emergency response perquisites rather than the intervention principles alone. The demonstrations involved the determination of the casualties’ absorbed dose range screening and the coordination of the capacity planning of the expected trauma triage. Through user-centred design and sociotechnical approach, RANEPF simulator was strategized and simplified, though certainly it is equally complex

  20. Where is the evidence for emergency planning: a scoping review.

    Science.gov (United States)

    Challen, Kirsty; Lee, Andrew C K; Booth, Andrew; Gardois, Paolo; Woods, Helen Buckley; Goodacre, Steve W

    2012-07-23

    Recent terrorist attacks and natural disasters have led to an increased awareness of the importance of emergency planning. However, the extent to which emergency planners can access or use evidence remains unclear. The aim of this study was to identify, analyse and assess the location, source and quality of emergency planning publications in the academic and UK grey literature. We conducted a scoping review, using as data sources for academic literature Embase, Medline, Medline in Process, Psychinfo, Biosis, Science Citation Index, Cinahl, Cochrane library and Clinicaltrials.gov. For grey literature identification we used databases at the Health Protection Agency, NHS Evidence, British Association of Immediate Care Schemes, Emergency Planning College and the Health and Safety Executive, and the websites of UK Department of Health Emergency Planning Division and UK Resilience.Aggregative synthesis was used to analyse papers and documents against a framework based on a modified FEMA Emergency Planning cycle. Of 2736 titles identified from the academic literature, 1603 were relevant. 45% were from North America, 27% were commentaries or editorials and 22% were event reports.Of 192 documents from the grey literature, 97 were relevant. 76% of these were event reports.The majority of documents addressed emergency planning and response. Very few documents related to hazard analysis, mitigation or capability assessment. Although a large body of literature exists, its validity and generalisability is unclear There is little evidence that this potential evidence base has been exploited through synthesis to inform policy and practice. The type and structure of evidence that would be of most value of emergency planners and policymakers has yet to be identified.

  1. Where is the evidence for emergency planning: a scoping review

    Directory of Open Access Journals (Sweden)

    Challen Kirsty

    2012-07-01

    Full Text Available Abstract Background Recent terrorist attacks and natural disasters have led to an increased awareness of the importance of emergency planning. However, the extent to which emergency planners can access or use evidence remains unclear. The aim of this study was to identify, analyse and assess the location, source and quality of emergency planning publications in the academic and UK grey literature. Methods We conducted a scoping review, using as data sources for academic literature Embase, Medline, Medline in Process, Psychinfo, Biosis, Science Citation Index, Cinahl, Cochrane library and Clinicaltrials.gov. For grey literature identification we used databases at the Health Protection Agency, NHS Evidence, British Association of Immediate Care Schemes, Emergency Planning College and the Health and Safety Executive, and the websites of UK Department of Health Emergency Planning Division and UK Resilience. Aggregative synthesis was used to analyse papers and documents against a framework based on a modified FEMA Emergency Planning cycle. Results Of 2736 titles identified from the academic literature, 1603 were relevant. 45% were from North America, 27% were commentaries or editorials and 22% were event reports. Of 192 documents from the grey literature, 97 were relevant. 76% of these were event reports. The majority of documents addressed emergency planning and response. Very few documents related to hazard analysis, mitigation or capability assessment. Conclusions Although a large body of literature exists, its validity and generalisability is unclear There is little evidence that this potential evidence base has been exploited through synthesis to inform policy and practice. The type and structure of evidence that would be of most value of emergency planners and policymakers has yet to be identified.

  2. Development of emergency response plans for community water ...

    African Journals Online (AJOL)

    All water services systems, irrespective of size, location etc., should have emergency response plans (ERPs) to guide officials, stakeholders and consumers through emergencies, as part of managing risks in the water supply system. Emergencies in the water supply system may result from, among other causes, natural ...

  3. Emergency plans for civil nuclear installations in the United Kingdom

    International Nuclear Information System (INIS)

    Gronow, W.S.

    1984-01-01

    The operators of nuclear installations in the United Kingdom have plans to deal with accidents or emergencies at their nuclear sites. These plans provide for any necessary action, both on and off the nuclear site, to protect members of the public and are regularly exercised. The off-site actions involve the emergency services and other authorities which may be called upon to implement measures to protect the public in any civil emergency. In a recent review of these plans by Government Departments and agencies and the nuclear site operators, a number of possible improvements were identified. These improvements are concerned mainly with the provisions made for liaison with local and national authorities and for public information and have been incorporated into existing plans. An outline is given of the most likely consequences of an accidental release of radioactive material and the scope of emergency plans. Details are also provided on the responsibilities and functions of the operator and other organizations with duties under the plans and the arrangements made for public information. (author)

  4. ALWR utility requirements - A technical basis for updated emergency planning

    International Nuclear Information System (INIS)

    Leaver, David E.W.; DeVine, John C. Jr.; Santucci, Joseph

    2004-01-01

    U.S. utilities, with substantial support from international utilities, are developing a comprehensive set of design requirements in the form of a Utility Requirements Document (URD) as part of an industry wide effort to establish a technical foundation for the next generation of light water reactors. A key aspect of the URD is a set of severe accident-related design requirements which have been developed to provide a technical basis for updated emergency planning for the ALWR. The technical basis includes design criteria for containment performance and offsite dose during severe accident conditions. An ALWR emergency planning concept is being developed which reflects this severe accident capability. The main conclusion from this work is that the likelihood and consequences of a severe accident for an ALWR are fundamentally different from that assumed in the technical basis for existing emergency planning requirements, at least in the U.S. The current technical understanding of severe accident risk is greatly improved compared to that available when the existing U.S. emergency planning requirements were established nearly 15 years ago, and the emerging ALWR designs have superior core damage prevention and severe accident mitigation capability. Thus, it is reasonable and prudent to reflect this design capability in the emergency planning requirements for the ALWR. (author)

  5. Emergency planning and preparedness for nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    In order to review the advances made over the past seven years in the area of emergency planning and preparedness supporting nuclear facilities and consider developments which are on the horizon, the IAEA at the invitation of the Government of Italy, organized this International Symposium in co-operation with the Italian Commission for Nuclear and Alternative Energy Sources, Directorate of Nuclear Safety and Health Protection (ENEA-DISP). There were over 250 designated participants and some 70 observers from 37 Member States and four international organizations in attendance at the Symposium. The Symposium presentations were divided into sessions devoted to the following topics: emergency planning (20 papers), accident assessment (30 papers), protective measures and recovery operations (10 papers) and emergency preparedness (16 papers). A separate abstract was prepared for each of these papers

  6. Mass casualty events: blood transfusion emergency preparedness across the continuum of care.

    Science.gov (United States)

    Doughty, Heidi; Glasgow, Simon; Kristoffersen, Einar

    2016-04-01

    Transfusion support is a key enabler to the response to mass casualty events (MCEs). Transfusion demand and capability planning should be an integrated part of the medical planning process for emergency system preparedness. Historical reviews have recently supported demand planning for MCEs and mass gatherings; however, computer modeling offers greater insights for resource management. The challenge remains balancing demand and supply especially the demand for universal components such as group O red blood cells. The current prehospital and hospital capability has benefited from investment in the management of massive hemorrhage. The management of massive hemorrhage should address both hemorrhage control and hemostatic support. Labile blood components cannot be stockpiled and a large surge in demand is a challenge for transfusion providers. The use of blood components may need to be triaged and demand managed. Two contrasting models of transfusion planning for MCEs are described. Both illustrate an integrated approach to preparedness where blood transfusion services work closely with health care providers and the donor community. Preparedness includes appropriate stock management and resupply from other centers. However, the introduction of alternative transfusion products, transfusion triage, and the greater use of an emergency donor panel to provide whole blood may permit greater resilience. © 2016 AABB.

  7. Local Emergency Planning Committee (LEPC) Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The LEPC data set contains over 3000 listings, as of 2008, for name and location data identifying Local Emergency Planning Committees (LEPCs). LEPCs are people...

  8. Guide about petroleum strategic stockpiles in France; Repere sur les stocks strategiques petroliers en France

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    The strategic character of petroleum products has been perceived since the first world war. It has led France to impose the petroleum operators to make stockpiles to provide against the consequences of a serious disruption of supplies. As a difference with some other industrialized countries like the USA or Japan, French stockpiles are made of finite products. A balanced geographical distribution of these stocks over the whole national territory increases their efficiency. Stockpiles of IEA member states must represent 90 days of net imports while those of European Union member states must represent 90 days of average domestic consumption. In France, each chartered operator contributes to the strategic storage and the stored volumes are defined by the law no 92-1443 from December 31, 1992. These stocks are permanently controlled and financial sanctions are applied in case of infraction. Particular dispositions are applied in overseas departments which are summarized in this paper. (J.S.)

  9. Emergency planning and preparedness: pre- and post-Three Mile Island

    International Nuclear Information System (INIS)

    Collins, H.E.

    1980-01-01

    The problems of radiological emergency response planning revealed by the Three-Mile Island nuclear power plant accident, are discussed. The most pressing problems are the need for an adequate planning basis, the improvement of accident assessment, the improvement and development of training programs, the need for adequate fundina and the development of emergency planning auidance. (H.K.)

  10. 45 CFR 673.5 - Emergency response plan.

    Science.gov (United States)

    2010-10-01

    ... ensure that: (a) The vessel owner's or operator's shipboard oil pollution emergency plan, prepared and... Pollution from Ships, 1973, as modified by the Protocol of 1978 relating thereto (MARPOL 73/78), has provisions for prompt and effective response action to such emergencies as might arise in the performance of...

  11. Technical basis for PWR emergency plans forming

    International Nuclear Information System (INIS)

    L'Homme, A.; Manesse, D.; Gauvain, J.; Crabol, B.

    1989-10-01

    Our speech first summarizes the french approach concerning the management of severe accidents which could occur on PWR stations. Then it defines the source-term which is being used as a general support for elaborating the emergency plans devoted to the protection of the population. It describes next the consequences of this source-term on the site and in the environment, which constitute the technical bases for defining actions of utilities and concerned authorities. It gives lastly information on the present status of the different emergency plans and the complementary work undertaken to improve them [fr

  12. Disposal of chemical agents and munitions stored at Pueblo Depot Activity, Colorado. Final, Phase 1: Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.W.; Blasing, T.J.; Ensminger, J.T.; Johnson, R.O.; Schexnayder, S.M.; Shor, J.T.; Staub, W.P.; Tolbert, V.R.; Zimmerman, G.P.

    1995-04-01

    Under the Chemical Stockpile Disposal Program (CSDP), the US Army proposes to dispose of lethal chemical agents and munitions stored at eight existing Army installations in the continental United States. In 1988, the US Army issued the final programmatic environmental impact statement (FPEIS) for the CSDP. The FPEIS and the subsequent Record of Decision (ROD) identified an on-site disposal process as the preferred method for destruction of the stockpile. That is, the FPEIS determined the environmentally preferred alternative to be on-site disposal in high-temperature incinerators, while the ROD selected this alternative for implementation as the preferred method for destruction of the stockpile. In this Phase I report, the overall CSDP decision regarding disposal of the PUDA Stockpile is subjected to further analyses, and its validity at PUDA is reviewed with newer, more detailed data than those providing the basis for the conclusions in the FPEIS. The findings of this Phase I report will be factored into the scope of a site-specific environmental impact statement to be prepared for the destruction of the PUDA stockpile. The focus of this Phase I report is on those data identified as having the potential to alter the Army`s previous decision regarding disposal of the PUDA stockpile; however, several other factors beyond the scope of this Phase I report must also be acknowledged to have the potential to change or modify the Army`s decisions regarding PUDA.

  13. [The Hospital Emergency Plan: Important Tool for Disaster Preparedness].

    Science.gov (United States)

    Wurmb, Thomas; Scholtes, Katja; Kolibay, Felix; Rechenbach, Peer; Vogel, Ulrich; Kowalzik, Barbara

    2017-09-01

    Hospitals need to be prepared for any kind of disaster. The terrorist attacks and mass shootings that took place in Europe in recent years impressively demonstrated the capability of hospitals to manage such challenging and disastrous events. To be adequately prepared, the hospital emergency plan is a very important tool. In this article we describe the entire process of drafting the emergency plan. We discuss the theoretical background as well as different models of disaster planning and we give important practical hints and tips for those in charge of the hospital disaster planning. Georg Thieme Verlag KG Stuttgart · New York.

  14. Planning of elimination of emergency consequences

    Directory of Open Access Journals (Sweden)

    S. Kovalenko

    2015-05-01

    Full Text Available Introduction. The volume of useful information in the planning of elimination of emergency consequences process is reasonable to assess with calculatory problems and mathematical models. Materials and methods. The expert survey method is used to calculate quantitative values of probability and to determine the optimal solution before the information in condition is received. Results. It is determined that the quality of the solution of elimination emergency consequences depends primarily on the number of factors that are taken into account in particular circumstances of the situation; on the level of information readiness of control bodies to take decision to eliminate emergency consequences as soon as possible and to consider several options for achieving reasonableness and concreteness of a particular decision. The ratio between volume of useful information collected and processed during operation planning which is required for identifying optimal solution is calculated. This ratio allows to construct a graph of probability of identifying a solution in existing environment and probability value of identifying optimal solution before information in P*condition is obtained. This graph also shows the ratio volume of useful information collected and processed during operation planning and necessary volume of information for identifying optimal solution. Conclusion. The results of this research can be used for improving control bodies decisions to ensure safe working conditions for employees of food industry.

  15. Emergency response planning and preparedness for transport accidents involving radioactive material

    International Nuclear Information System (INIS)

    1988-01-01

    The purpose of this Guide is to provide assistance to public authorities and others (including consignors and carriers of radioactive materials) who are responsible for ensuring safety in establishing and developing emergency response arrangements for responding effectively to transport accidents involving radioactive materials. This Guide is concerned mainly with the preparation of emergency response plans. It provides information which will assist those countries whose involvement with radioactive materials is just beginning and those which have already developed their industries involving radioactive materials and attendant emergency plans, but may need to review and improve these plans. The need for emergency response plans and the ways in which they are implemented vary from country to country. In each country, the responsible authorities must decide how best to apply this Guide, taking into account the actual shipments and associated hazards. In this Guide the emergency response planning and response philosophy are outlined, including identification of emergency response organizations and emergency services that would be required during a transport accident. General consequences which could prevail during an accident are described taking into account the IAEA Regulations for the Safe Transport of Radioactive Material. 43 refs, figs and tabs

  16. Open-pit coal mine production sequencing incorporating grade blending and stockpiling options: An application from an Indian mine

    Science.gov (United States)

    Kumar, Ashish; Chatterjee, Snehamoy

    2017-05-01

    Production scheduling is a crucial aspect of the mining industry. An optimal and efficient production schedule can increase the profits manifold and reduce the amount of waste to be handled. Production scheduling for coal mines is necessary to maintain consistency in the quality and quantity parameters of coal supplied to power plants. Irregularity in the quality parameters of the coal can lead to heavy losses in coal-fired power plants. Moreover, the stockpiling of coal poses environmental and fire problems owing to low incubation periods. This article proposes a production scheduling formulation for open-pit coal mines including stockpiling and blending opportunities, which play a major role in maintaining the quality and quantity of supplied coal. The proposed formulation was applied to a large open-pit coal mine in India. This contribution provides an efficient production scheduling formulation for coal mines after utilizing the stockpile coal within the incubation periods with the maximization of discounted cash flows. At the same time, consistency is maintained in the quality and quantity of coal to power plants through blending and stockpiling options to ensure smooth functioning.

  17. China's optimal stockpiling policies in the context of new oil price trend

    International Nuclear Information System (INIS)

    Xie, Nan; Yan, Zhijun; Zhou, Yi; Huang, Wenjun

    2017-01-01

    Optimizing the size of oil stockpiling plays a fundamental role in the process of making national strategic petroleum reserve (SPR) policies. There have been extensive studies on the operating strategies of SPR. However, previous literatures have paid more attention to a booming or stable international oil market, while few studies analyzed the impact of a long-term low oil price on SPR policy. As a supplement, this paper extends a static model to study China's optimal stockpiling policy under different oil price trends, and in response to different current oil prices. A new variable “FC”, which demonstrates the appreciation and depreciation of the reserved oil economic value, has been taken into account to assess the optimal size of SPR. In this paper, a more multi-perspective of view is provided to consider the policies of China's SPR, especially under the different trend of international oil price fluctuations. - Highlights: • We extended a static model to study optimal stockpiling size of China's SPR. • A new variable “FC” was applied to illustrate the shifting financial value of SPR. • We analyzed how current oil price and varied prediction influence optimal size. • Operational measures could be adjusted at the end of each decision-making period. • A more multifaceted of view might be provided for China's SPR policy-making.

  18. Planning and preparedness for radiological emergencies at nuclear power stations

    International Nuclear Information System (INIS)

    Thomson, R.; Muzzarelli, J.

    1996-01-01

    The Radiological Emergency Preparedness (REP) Program was created after the March 1979 accident at the Three Mile Island nuclear power station. The Federal Emergency Management Agency (FEMA) assists state and local governments in reviewing and evaluating state and local REP plans and preparedness for accidents at nuclear power plants, in partnership with the US Nuclear Regulatory Commission (NRC), which evaluates safety and emergency preparedness at the power stations themselves. Argonne National Laboratory provides support and technical assistance to FEMA in evaluating nuclear power plant emergency response exercises, radiological emergency plans, and preparedness

  19. A review of national gas emergency plans in the European Union

    International Nuclear Information System (INIS)

    Zeniewski, Peter; Bolado-Lavin, Ricardo

    2012-01-01

    The purpose of this paper is to document and review existing national gas emergency plans in the European Union, following the guidelines and requirements set out by the EU's Regulation 994/2010 concerning measures to safeguard security of gas supply. Despite the great deal of attention paid to questions of natural gas security in an increasingly import-dependent European Union, the contingency plans of most of its member states have not been widely published or scrutinized. By reviewing TSO network codes and national legal and regulatory acts, this paper teases out the key similarities and differences between member states' emergency planning frameworks, tools and methods. A gas emergency operational template is subsequently proposed that conforms to EU legislation. This is followed by a discussion of emergency planning in the context of regional cooperation and the liberalizing European gas market. The paper concludes by advocating gas emergency measures which are proportionate to the crisis level, sensitive to the gas demand profile, aware of the regional context, inconsequential to normal market operation, transparent and non-discriminatory during implementation and verifiable during emergencies as well as under normal conditions. - Highlights: ► National gas emergency plans in the EU comprehensively assessed. ► Template for gas emergencies is created to measure conformity to Regulation 994/2010. ► Gas emergency measures are related to regional cooperation and liberal markets.

  20. Biologics industry challenges for developing diagnostic tests for the National Veterinary Stockpile.

    Science.gov (United States)

    Hardham, J M; Lamichhane, C M

    2013-01-01

    Veterinary diagnostic products generated ~$3 billion US dollars in global sales in 2010. This industry is poised to undergo tremendous changes in the next decade as technological advances move diagnostic products from the traditional laboratory-based and handheld immunologic assays towards highly technical, point of care devices with increased sensitivity, specificity, and complexity. Despite these opportunities for advancing diagnostic products, the industry continues to face numerous challenges in developing diagnostic products for emerging and foreign animal diseases. Because of the need to deliver a return on the investment, research and development dollars continue to be focused on infectious diseases that have a negative impact on current domestic herd health, production systems, or companion animal health. Overcoming the administrative, legal, fiscal, and technological barriers to provide veterinary diagnostic products for the National Veterinary Stockpile will reduce the threat of natural or intentional spread of foreign diseases and increase the security of the food supply in the US.

  1. ANS-8.23: Criticality accident emergency planning and response

    International Nuclear Information System (INIS)

    Pruvost, N.L.

    1991-01-01

    A study group has been formed under the auspices of ANS-8 to examine the need for a standard on nuclear criticality accident emergency planning and response. This standard would be ANS-8.23. ANSI/ANS-8.19-1984, Administrative Practices for Nuclear Criticality Safety, provides some guidance on the subject in Section 10 titled -- Planned Response to Nuclear Criticality Accidents. However, the study group has formed a consensus that Section 10 is inadequate in that technical guidance in addition to administrative guidance is needed. The group believes that a new standard which specifically addresses emergency planning and response to a perceived criticality accident is needed. Plans for underway to request the study group be designated a writing group to create a draft of such a new standard. The proposed standard will divide responsibility between management and technical staff. Generally, management will be charged with providing the necessary elements of emergency planning such as a criticality detection and alarm system, training, safe evacuation routes and assembly areas, a system for timely accountability of personnel, and an effective emergency response organization. The technical staff, on the other hand, will be made responsible for establishing specific items such as safe and clearly posted evacuation evacuation routes and dose criteria for personnel assembly areas. The key to the question of responsibilities is that management must provide the resources for the technical staff to establish the elements of an emergency response effort

  2. 29 CFR 1918.100 - Emergency action plans.

    Science.gov (United States)

    2010-07-01

    ... action plans. (a) Scope and application. This section requires all employers to develop and implement an... departments that can be contacted for further information or explanation of duties under the plan. (c) Alarm... emergency action or for reaction time for safe escape of employees from the workplace or the immediate work...

  3. Dungeness Power Station off-site emergency plan

    International Nuclear Information System (INIS)

    1993-01-01

    This off-site Emergency Plan in the event of an accidental release of radioactivity at the Dungeness Nuclear power station sets out the necessary management and coordination processes between Nuclear Electric, operators of the site, the emergency services and relevant local authorities. The objectives promoting the aim are identified and the activities which will be undertaken to protect the public and the environment in the event of an emergency are outlined. (UK)

  4. Preparation of site emergency preparedness plans for nuclear installations

    International Nuclear Information System (INIS)

    1999-10-01

    Safety of public, occupational workers and the protection of environment should be assured while activities for economic and social progress are pursued. These activities include the establishment and utilisation of nuclear facilities and use of radioactive sources. This safety guidelines is issued as a lead document to facilitate preparation of specific site manuals by the responsible organisation for emergency response plans at each site to ensure their preparedness to meet any eventuality due to site emergency in order to mitigate its consequences on the health and safety of site personnel. It takes cognizance of an earlier AERB publications on the subject: Safety manual on site emergency plan on nuclear installations. AERB/SM/NISD-1, 1986 and also takes into consideration the urgent need for promoting public awareness and drawing up revised emergency response plans, which has come about in a significant manner after the accidents at Chernobyl and Bhopal

  5. Application of Electrocoagulation Process for Continuous Coal Stockpile Wastewater Treatment System

    Directory of Open Access Journals (Sweden)

    Rusdianasari Rusdianasari

    2017-02-01

    Full Text Available Coal wastewater is characterized by high total suspended solid (TSS, heavy metals, and low acidity (pH. The purpose of this study was to research the effects of the operating parameters such as applied voltage, the number of electrodes, and reaction time on a real coal stockpile wastewater in the continuous electrocoagulation process. For this purpose, aluminum electrodes were used in the presence of potassium chloride as an electrolyte. It has been shown that the removal efficiency of TSS and heavy metals content increased with increasing the applied voltage and reaction time. The results indicate that the electrocoagulation process is efficient and able to achieve 88.67% TSS removal, 95.65% ferrous removal, 99.11% manganesse removal, and pH increased until 7.1 at 24 volts during 120 min, respectively. The experiments demonstrated the effectiveness of electrocoagulation methods for the treatment of coal stockpile wastewater.

  6. Highly enriched uranium (HEU) storage and disposition program plan

    International Nuclear Information System (INIS)

    Arms, W.M.; Everitt, D.A.; O'Dell, C.L.

    1995-01-01

    Recent changes in international relations and other changes in national priorities have profoundly affected the management of weapons-usable fissile materials within the United States (US). The nuclear weapon stockpile reductions agreed to by the US and Russia have reduced the national security requirements for these fissile materials. National policies outlined by the US President seek to prevent the accumulation of nuclear weapon stockpiles of plutonium (Pu) and HEU, and to ensure that these materials are subjected to the highest standards of safety, security and international accountability. The purpose of the Highly Enriched Uranium (HEU) Storage and Disposition Program Plan is to define and establish a planned approach for storage of all HEU and disposition of surplus HEU in support of the US Department of Energy (DOE) Fissile Material Disposition Program. Elements Of this Plan, which are specific to HEU storage and disposition, include program requirements, roles and responsibilities, program activities (action plans), milestone schedules, and deliverables

  7. Biodegradation of HT Agent from an Assembled Chemical Weapons Assessment (ACWA) Projectile Washout Study

    National Research Council Canada - National Science Library

    Guelta, Mark A

    2006-01-01

    In this study, HT agent, removed from a chemical round similar to the current stockpile stored at Pueblo Chemical Depot, was neutralized and the hydrolysate treated in a laboratory scale Immobilized Cell Bioreactor (ICB...

  8. 1998 Tier two emergency and hazardous chemical inventory - emergency planning and community right-to-know act section 312

    International Nuclear Information System (INIS)

    ZALOUDEK, D.E.

    1999-01-01

    The Hanford Site covers approximately 1,450 square kilometers (560 square miles) of land that is owned by the U.S, Government and managed by the U.S. Department of Energy, Richland Operations Office (DOE-RL). The Hanford Site is located northwest of the city of Richland, Washington. The city of Richland adjoins the southeastern portion of the Hanford Site boundary and is the nearest population center. Activities on the Hanford Site are centralized in numerically designated areas. The 100 Areas, located along the Columbia River, contain deactivated reactors. The processing units are in the 200 Areas, which are on a plateau approximately 11 kilometers (7 miles) from the Columbia River. The 300 Area, located adjacent to and north of Richland, contains research and development laboratories. The 400 Area, 8 kilometers (5 miles) northwest of the 300 Area, contains the Fast Flux Test Facility previously used for testing liquid metal reactor systems. Adjacent to the north of Richland, the 1100 Area contains offices associated with administration, maintenance, transportation, and materials procurement and distribution. The 600 Area covers all locations not specifically given an area designation. This Tier Two Emergency and Hazardous Chemical Inventory report contains information pertaining to hazardous chemicals managed by DOE-RL and its contractors on the Hanford Site. It does not include chemicals maintained in support of activities conducted by others on lands covered by leases, use permits, easements, and other agreements whereby land is used by parties other than DOE-RL. For example, this report does not include chemicals stored on state owned or leased lands (including the burial ground operated by US Ecology, Inc.), lands owned or used by the Bonneville Power Administration (including the Midway Substation and the Ashe Substation), lands used by the National Science Foundation (the Laser Interferometer Gravitational-Wave Observatory), lands leased to the Washington

  9. An emergency response plan for transportation

    International Nuclear Information System (INIS)

    Fontaine, M.V.; Guerel, E.

    2000-01-01

    Transnucleaire is involved in road and rail transport of nuclear fuel cycle materials. To comply with IAEA recommendations, Transnucleaire has to master methods of emergency response in the event of a transport accident. Considering the utmost severe situations, Transnucleaire has studied several cases and focused especially on an accident involving a heavy cask. In France, the sub-prefect of each department is in charge of the organisation of the emergency teams. The sub-prefect may request Transnucleaire to supply experts, organisation, equipment and technical support. The Transnucleaire Emergency Response Plan covers all possible scenarios of land transport accidents and relies on: (i) an organisation ready for emergency situations, (ii) equipment dedicated to intervention, and (iii) training of its own experts and specialised companies. (author)

  10. Water Utility Planning for an Emergency Drinking Water Supply

    Science.gov (United States)

    Reviews roles and responsibilities among various levels of government regarding emergency water supplies and seeks to encourage collaboration and partnership regarding emergency water supply planning.

  11. A Universal Anaphylaxis Emergency Care Plan: Introducing the New Allergy and Anaphylaxis Care Plan From the American Academy of Pediatrics.

    Science.gov (United States)

    Pistiner, Michael; Mattey, Beth

    2017-09-01

    Anaphylaxis is a life-threatening emergency. In the school setting, school nurses prepare plans to prevent an emergency, educating staff and students on life-threatening allergies. A critical component of any emergency plan is a plan of care in the event of accidental ingestion or exposure to an antigen to prevent the sequelae of untreated anaphylaxis. A universal anaphylaxis emergency care plan developed by the American Academy of Pediatrics and reviewed by NASN offers an opportunity for schools, family, and health care providers to use one standard plan and avoid confusion. The plan and benefits of use are described in this article.

  12. Book Abstract: How to Write an Emergency Plan by David Alexander; Reproduced by Permission

    Directory of Open Access Journals (Sweden)

    David Alexander

    2016-07-01

    Contents: Foreword. 1. Introduction. Scope and objectives of this book; 2. What are emergencies? 3. What is an emergency plan? 4. The emergency planning process; 5. First step: background research; 6. Second step: scenario building; 7. Third Step: from scenarios to actions; 8. A note on the structure of the plan; 9. Fourth step: using the plan; 10. Planning to maintain the continuity of normal activities; 11. Specialized emergency planning; 12. Conclusion: the future of emergency planning. Afterword. Appendix 1: Glossary of working definitions by key terms. Appendix 2: Bibliography of selected references. Index.

  13. Guidance for emergency planning in nuclear power plants

    International Nuclear Information System (INIS)

    Magnusson, Tommy; Ekdahl, Maria

    2008-06-01

    Ringhals has been a model for this study, but the purpose has been to make the report applicable at all nuclear power plants in Sweden. The work has been done in close co-operation with the Swedish nuclear power plants and Rescue Services in the nuclear power municipalities Oesthammar, Oskarshamn, and Varberg. The internal fire brigade at the nuclear power plants has also been involved. A document will also be published as a further guidance at efforts of the type fires, which are mentioned in the enclosed document. After a fire in a switchgear room in 2005 the need of making the existing effort planning more effective at nuclear power plants was observed. The idea with the planning is to plan the effort in order to give the operational and emergency staff a good and actual support to come to a decision and to start the mission without delay. The risk information is showed by planning layouts, symbols and drawings as basis, give risk information and effort information. The effort information shows outer arrangements, manual action points, fire installations, passive fire safety etc. The risk information is shown by risk symbols. Their purpose is to give a fast overview of the existing risks. Reactor safety effects is the ruling influence if an effort has to be done in order to secure safety for a third person. In order to make an effort in an area personal risks for rescue staff, such as electricity risks, radiological risks, chemicals and gas bottles with compressed gases, has to be eliminated. For complicated missions detailed instructions are needed in order to handle specific risks. In a group discussion different people with pertinent knowledge has to value which problematic efforts need detailed instruction. Missions that have to be analyzed in a work group as above are: fire may affect the reactor safety, fire that may threaten the structural integrity, chemical discharge with big consequence on environment/third person and handling of gas system (compressed

  14. An Assessment for Emergency Preparedness Plan in Hanul Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sunghyun; Jae, Moosung [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    The purpose of emergency preparedness aims to protect the accident and mitigate the radiation damage of public by setting emergency preparedness plan. In order to perform successfully the emergency preparedness plan, it should be optimized through a quantitative analysis. There are so many variables to analyze it quantitatively. It is mission to classify a realistic and suitable variables among these variables. The realistic variables is converted to the decision node in decision tree which is helpful to decide what evacuation or sheltering is effective to mitigate public damage. Base on it, it's idealistic method to analyze offsite consequences for each end points in the decision tree. In this study, we selected the reference plant which already has the emergency preparedness plan. Among the plan, we implemented offsite consequence analysis for a specific plan by using MACCS 2 code. In this study, target group is people who gathered in place 1 have sheltered and evacuated along the pathway. the offsite consequences analysis result of the group are 1.17·10-9 (early fatality), 1.77·10-7 (late fatality). Various cases need to be quantified for make an optimized decision. In the future, we will perform the verification and modification of decision node. After The assessment of emergency preparedness plan for Hanul nuclear power plant unit 5, 6 might be contribute to establish the optimized decision making of emergency prepared plan.

  15. Recent canadian experience in chemical warfare agent destruction. An overview

    Energy Technology Data Exchange (ETDEWEB)

    McAndless, J.M.

    1995-09-01

    A Canadian chemical warfare agent destruction project (Swiftsure) was recently completed in which stockpiles of aged mustard, lewisite, nerve agents and contaminated scrap metal were incinerated or chemically neutralized in a safe, environmentally-responsible manner. The project scope, destruction technologies, environmental monitoring and public consultation programs are described.

  16. Regulatory Information by Topic: Emergency Management

    Science.gov (United States)

    Regulatory information about emergencies, including chemical accident prevention, risk management plans (RMPs), chemical reporting, community right to know, and oil spills and hazardous substances releases.

  17. AMATCHMETHOD BASED ON LATENT SEMANTIC ANALYSIS FOR EARTHQUAKEHAZARD EMERGENCY PLAN

    Directory of Open Access Journals (Sweden)

    D. Sun

    2017-09-01

    Full Text Available The structure of the emergency plan on earthquake is complex, and it’s difficult for decision maker to make a decision in a short time. To solve the problem, this paper presents a match method based on Latent Semantic Analysis (LSA. After the word segmentation preprocessing of emergency plan, we carry out keywords extraction according to the part-of-speech and the frequency of words. Then through LSA, we map the documents and query information to the semantic space, and calculate the correlation of documents and queries by the relation between vectors. The experiments results indicate that the LSA can improve the accuracy of emergency plan retrieval efficiently.

  18. Amatchmethod Based on Latent Semantic Analysis for Earthquakehazard Emergency Plan

    Science.gov (United States)

    Sun, D.; Zhao, S.; Zhang, Z.; Shi, X.

    2017-09-01

    The structure of the emergency plan on earthquake is complex, and it's difficult for decision maker to make a decision in a short time. To solve the problem, this paper presents a match method based on Latent Semantic Analysis (LSA). After the word segmentation preprocessing of emergency plan, we carry out keywords extraction according to the part-of-speech and the frequency of words. Then through LSA, we map the documents and query information to the semantic space, and calculate the correlation of documents and queries by the relation between vectors. The experiments results indicate that the LSA can improve the accuracy of emergency plan retrieval efficiently.

  19. Relation between source term and emergency planning for nuclear power plants

    International Nuclear Information System (INIS)

    Shi Zhongqi; Yang Ling

    1992-01-01

    Some background information of the severe accidents and source terms related to the nuclear power plant emergency planning are presented. The new source term information in NUREG-0956 and NUREG-1150, and possible changes in emergency planning requirements in U.S.A. are briefly provided. It is suggested that a principle is used in selecting source terms for establishing the emergency planning policy and a method is used in determining the Emergency Planning Zone (EPZ) size in China. Based on the research results of (1) EPZ size of PWR nuclear power plants being built in China, and (2) impact of reactor size and selected source terms on the EPZ size, it is concluded that the suggested principle and the method are suitable and feasible for PWR nuclear power plants in China

  20. Brief on nuclear emergency planning and preparedness in Ontario

    International Nuclear Information System (INIS)

    1987-01-01

    Ontario has an excellent conceptual plan to ensure the safety of its inhabitants in the event of a nuclear accident anywhere in the world. This plan still needs to be translated into tangible preparedness to deal with such an emergency. The province is confident that, with the assistance of Ontario Hydro, a high level of nuclear emergency preparedness will soon be established for the people of the province

  1. Energy emergency planning guide: Winter 1977-78

    Energy Technology Data Exchange (ETDEWEB)

    1977-11-01

    This Energy Emergency Planning Guide for Winter, 1977-78 has been prepared in order to: identify and evaluate actions available to deal with energy emergencies this winter; provide an advance indication to the public of those actions considered most likely to be taken by the government, and provide industry, state, and local governments with suggestions about actions which they can take to deal with energy emergencies. The Guide contains specifications for over 50 standby programs and procedures, recommended implementation guidelines for using these programs keyed to a pre-emergency phase and three phases of shortfalls, and a design for an Energy Emergency Center. Flexible implementation guidelines are proposed for natural gas, petroleum, electricity/coal, and propane shortages. (MCW)

  2. Critical Infrastructure Awareness Required by Civil Emergency Planning

    NARCIS (Netherlands)

    Luiijf, H.A.M.; Klaver, M.H.A.

    2005-01-01

    Modern societies are increasingly dependent on a set of critical products and services which comprise the Critical Infrastructure (CI). This makes Critical infrastructures increasingly important as a planning factor in case of emergencies. For that reason, we studied a number of emergencies and a

  3. Emergency preparedness planning: A process to insure effectiveness and efficiency

    International Nuclear Information System (INIS)

    Schroeder, A.J. Jr.

    1994-01-01

    Prevention is undoubtedly the preferred policy regarding emergency response. Unfortunately, despite best intentions, emergencies do occur. It is the prudent operator that has well written and exercised plans in place to respond to the full suite of possible situations. This paper presents a planning process to help personnel develop and/or maintain emergency management capability. It is equally applicable at the field location, the district/regional office, or the corporate headquarters. It is not limited in scope and can be useful for planners addressing incidents ranging from fires, explosions, spills/releases, computer system failure, terrorist threats and natural disasters. By following the steps in the process diagram, the planner will document emergency management capability in a logical and efficient manner which should result in effective emergency response and recovery plans. The astute planner will immediately see that the process presented is a continuing one, fully compatible with the principles of continuous improvement

  4. Hanford emergency management plan - release 15

    Energy Technology Data Exchange (ETDEWEB)

    CARPENTER, G.A.

    1999-07-19

    The Hanford emergency management plan for the US Department of Energy Richland, WA and Office of River Protection. The program was developed in accordance with DOE Orders as well as Federal and State regulations to protect workers and public health and safety.

  5. Hanford emergency management plan - release 15

    International Nuclear Information System (INIS)

    CARPENTER, G.A.

    1999-01-01

    The Hanford emergency management plan for the US Department of Energy Richland, WA and Office of River Protection. The program was developed in accordance with DOE Orders as well as Federal and State regulations to protect workers and public health and safety

  6. Emergency preparedness and response plan for nuclear facilities in Indonesia

    International Nuclear Information System (INIS)

    Nur Rahmah Hidayati; Pande Made Udiyani

    2009-01-01

    All nuclear facilities in Indonesia are owned and operated by the National Nuclear Energy Agency (BATAN). The programs and activities of emergency planning and preparedness in Indonesia are based on the existing nuclear facilities, i.e. research reactors, research reactor fuel fabrication plant, radioactive waste treatment installation and radioisotopes production installation. The assessment is conducted to learn of status of emergency preparedness and response plan for nuclear facilities in Indonesia and to support the preparation of future Nuclear Power Plant. The assessment is conducted by comparing the emergency preparedness and response system in Indonesia to the system in other countries such as Japan and Republic of Korea, since the countries have many Nuclear Power Plants and other nuclear facilities. As a result, emergency preparedness response plan for existing nuclear facility in Indonesia has been implemented in many activities such as environmental monitoring program, facility monitoring equipment, and the continuous exercise of emergency preparedness and response. However, the implementation need law enforcement for imposing the responsibility of the coordinators in National Emergency Preparedness Plan. It also needs some additional technical support systems which refer to the system in Japan or Republic of Korea. The systems must be completed with some real time monitors which will support the emergency preparedness and response organization. The system should be built in NPP site before the first NPP will be operated. The system should be connected to an Off Site Emergency Center under coordination of BAPETEN as the regulatory body which has responsibility to control of nuclear energy in Indonesia. (Author)

  7. Runaway chemical reaction exposes community to highly toxic chemicals

    International Nuclear Information System (INIS)

    Kaszniak, Mark; Vorderbrueggen, John

    2008-01-01

    The U.S. Chemical Safety and Hazard Investigation Board (CSB) conducted a comprehensive investigation of a runaway chemical reaction at MFG Chemical (MFG) in Dalton, Georgia on April 12, 2004 that resulted in the uncontrolled release of a large quantity of highly toxic and flammable allyl alcohol and allyl chloride into the community. Five people were hospitalized and 154 people required decontamination and treatment for exposure to the chemicals. This included police officers attempting to evacuate the community and ambulance personnel who responded to 911 calls from residents exposed to the chemicals. This paper presents the findings of the CSB report (U.S. Chemical Safety and Hazard Investigation Board (CSB), Investigation Report: Toxic Chemical Vapor Cloud Release, Report No. 2004-09-I-GA, Washington DC, April 2006) including a discussion on tolling practices; scale-up of batch reaction processes; Process Safety Management (PSM) and Risk Management Plan (RMP) implementation; emergency planning by the company, county and the city; and emergency response and mitigation actions taken during the incident. The reactive chemical testing and atmospheric dispersion modeling conducted by CSB after the incident and recommendations adopted by the Board are also discussed

  8. Regulation of chemical safety at fuel cycle facilities by the United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Ramsey, Kevin M.

    2013-01-01

    When the U.S. Nuclear Regulatory Commission (NRC) was established in 1975, its regulations were based on radiation dose limits. Chemical hazards rarely influenced NRC regulations. After the Three Mile Island reactor accident in 1979, the NRC staff was directed to address emergency planning at non-reactor facilities. Several fuel cycle facilities were ordered to submit emergency plans consistent with reactor emergency plans because no other guidance was available. NRC published a notice that it was writing regulations to codify the requirements in the Orders and upgrade the emergency plans to address all hazards, including chemical hazards. The legal authority of NRC to regulate chemical safety was questioned. In 1986, an overfilled uranium hexafluoride cylinder ruptured and killed a worker. The NRC staff was directed to address emergency planning for hazardous chemicals in its regulations. The final rule included a requirement for fuel cycle facilities to certify compliance with legislation requiring local authorities to establish emergency plans for hazardous chemicals. As with emergency planning, NRC's authority to regulate chemical safety during routine operations was limited. NRC established memoranda of understanding (MOUs) with other regulatory agencies to encourage exchange of information between the agencies regarding occupational hazards. In 2000, NRC published new, performance-based, regulations for fuel cycle facilities. The new regulations required an integrated safety analysis (ISA) which used quantitative standards to assess chemical exposures. Some unique chemical exposure cases were addressed while implementing the new regulations. In addition, some gaps remain in the regulation of hazardous chemicals at fuel cycle facilities. The status of ongoing efforts to improve regulation of chemical safety at fuel cycle facilities is discussed. (authors)

  9. Applying soil science for restoration of post mining degraded landscapes in semi-arid Australia: challenges and opportunities

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Martini, Dylan; Erickson, Todd; Merritt, David; Dixon, Kingsley

    2015-04-01

    Introduction Current challenges in ecological restoration of post mining environments include the deficit of original topsoil which is frequently lost or damaged, and the lack of soil forming materials. A comprehensive knowledge of soil properties and processes and an adequate management of soil resources are critical to improve the restoration success of these degraded areas. In particular, understanding soil physical, chemical and biological parameters is decisive in environments where water is a limiting factor for seedling establishment and plant survival. To improve the restoration success of biodiverse semi-arid areas disturbed by mining activities (Pilbara region, Western Australia), we conducted experiments to (i) analyse changes in soil physico-chemical properties and soil microbial activity of topsoil stockpiles to optimise its handling and minimise deterioration of nutrients and soil biota, (ii) test climate effects on seedling emergence of native plant species and (iii) assess the potential of mine waste materials as a suitable growth medium for seedling emergence of native plant species under various water regimes. Methods The experimental studies were conducted in controlled environment facilities where air temperature, relative humidity and soil moisture were monitored routinely. Watering regimes were selected to represent rainfall patterns of the area. As a growth media we used material obtained from topsoil stockpiles and waste materials from an active mine site, which were mixed at different ratios. Samples were collected from different parts of the topsoil stockpiles and analysed to determine physical, chemical and biological properties. Results No large discrepancies in physical and chemical values were detected at different positions of the stockpiles. However, microbial activity was highly variable, particularly inside the stockpiles. Seedling emergence on topsoil growth media was highly dependent on climate factors with emergence rates

  10. Special event planning for the emergency manager.

    Science.gov (United States)

    Gaynor, Peter T

    2009-11-01

    In the domain of emergency management and homeland security there is a lack of a formal planning process at the local level when it comes to special event planning. The unique nature of special event planning demands an understanding of the planning process for both traditional and non-traditional planning partners. This understanding will make certain that local governments apply due diligence when planning for the safety of the public. This paper offers a practical roadmap for planning at the local level. It will address those 'special events' that are beyond routine local events but not of a sufficient scale to be granted National Special Security Event status. Due to the infrequency of 'special events' in most communities, it is imperative that deliberate planning takes place. Upon conclusion, the reader will be able to construct a planning process tailored to the needs of their community, guide both traditional and non-traditional planning partners through the planning process, determine priorities, explore alternatives, plan for contingencies, conduct a confirmation brief, facilitate operations and assemble an after-action report and improvement plan.

  11. Province of Ontario nuclear emergency plan part V - Chalk River

    International Nuclear Information System (INIS)

    1991-10-01

    The aim of Part 5 of the Provincial Nuclear Emergency Plan is to describe the measures that shall be undertaken to deal with a nuclear emergency caused by the Chalk River Laboratories. This plan deals mainly with actions at the Provincial level and shall by supplemented by the appropriate Municipal Plan. The Townships of Rolph, Buchanan, Wylie, and McKay, the Town of Deep River and the Village of Chalk River are the designated municipalities with respect to CRL. 2 tabs., 5 figs

  12. Province of Ontario nuclear emergency plan part V - Chalk River

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-10-01

    The aim of Part 5 of the Provincial Nuclear Emergency Plan is to describe the measures that shall be undertaken to deal with a nuclear emergency caused by the Chalk River Laboratories. This plan deals mainly with actions at the Provincial level and shall by supplemented by the appropriate Municipal Plan. The Townships of Rolph, Buchanan, Wylie, and McKay, the Town of Deep River and the Village of Chalk River are the designated municipalities with respect to CRL. 2 tabs., 5 figs.

  13. Brazilian emergency planning for radiological accidents

    International Nuclear Information System (INIS)

    Mendonca, A.H.

    1986-01-01

    Brazilian emergency planning for radiological accidents is organized to respond promptly to any emergency at nuclear power plants or other installations utilizing nuclear fuel. It consists of several committees: a general coordination committee with representatives from several federal departments, with final decision with the Brazilian Nuclear Energy Commission (CNEN), and the Federal Environmental Protection Agency (SEMA). Some committees conduct support activities. For example, the Operational Coordination Committee supervises the tasks undertaken by the Army, Navy, and Air Force in response to the needs and decisions of the general coordination committee

  14. Institutional plan FY 1999--FY 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    Los Alamos has a well-defined and nationally important mission: to reduce the global nuclear danger. This central national security mission consists of four main elements: stockpile stewardship, nuclear materials management, nonproliferation and arms control, and cleanup of the environmental legacy of nuclear weapons activities. The Laboratory provides support for and ensures confidence in the nation`s nuclear stockpile without nuclear testing. This challenge requires the Laboratory to continually hone its scientific acumen and technological capabilities to perform this task reliably using an interdisciplinary approach and advanced experimental and modeling techniques. In the last two National Defense Authorization Acts, Congress identified the need to protect the nation from the proliferation of weapons of mass destruction, which includes nuclear, chemical, and biological weapons, and their potential use by terrorists. Los Alamos is applying multidisciplinary science and engineering skills to address these problems. In addition, the Laboratory`s critical programmatic roles in stockpile stewardship and threat reduction are complemented by its waste management operations and environmental restoration work. Information on specific programs is available in Section 2 of this document.

  15. Off-site relations and emergency planning or the importance of being earnest

    International Nuclear Information System (INIS)

    Dunkle, M.K.

    1987-01-01

    Emergency planning is and will continue to be a vulnerable spot for the nuclear industry. Emergency planning issues can be reopened at any time during the life of the plant and this represents a threat that continues for the life of the plant. The area of planning in which utilities find themselves most vulnerable is off-site relations with the state and local government officials, the public, and even the news media. Utilities face two very basic challenges in developing and maintaining good off-site relations for emergency preparedness: (1) utility managers must understand and be capable of working with the myriad of personalities and dynamics in the emergency preparedness arena. (2) Emergency preparedness is an emotional issue and a technical subject not well understood by the average citizen. The public looks to well-founded emergency plans and strong leaders to effect them. With these, a sound communications strategy, and a good plant record, a utility stands a chance of achieving the real key to success, credibility

  16. Collaborative Decision Model on Stockpile Material of a Traditional Market Infrastructure using Value-Based HBU

    Science.gov (United States)

    Utomo, C.; Rahmawati, Y.; Pararta, D. L.; Ariesta, A.

    2017-11-01

    Readiness of infrastructure establishment is needed in the early phase of real estate development. To meet the needs of retail property in the form of traditional markets, the Government prepares to build a new 1300 units. Traditional market development requires infrastructure development. One of it is the preparation of sand material embankment as much as ± 200,000 m3. With a distance of 30 km, sand material can be delivered to the project site by dump trucks that can only be operated by 2 trip per day. The material is managed by using stockpile method. Decision of stockpile location requires multi person and multi criteria in a collaborative environment. The highest and the best use (HBU) criteria was used to construct a value-based decision hierarchy. Decision makers from five stakeholders analyzed the best of three locations by giving their own preference of development cost and HBU function. Analytical Hierarchy Process (AHP) based on satisfying options and cooperative game was applied for agreement options and coalition formation on collaborative decision. The result indicates that not all solutions become a possible location for the stockpile material. It shows the ‘best fit’ options process for all decision makers.

  17. Identification of training and emergency-planning needs through job-safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Veltrie, J.

    1987-01-01

    Training and emergency-planning needs within the photovoltaic industry may be more accurately determined through the performance of detailed job-safety analysis. This paper outlines the four major components of such an analysis, namely operational review, hazards evaluation, personnel review and resources evaluation. It then shows how these may be developed into coherent training and planning recommendations, for both emergency and non-emergency situations.

  18. Preparation of off-site emergency preparedness plans for nuclear installations

    International Nuclear Information System (INIS)

    1999-10-01

    Safety of public, occupational workers and the protection of environment should be assured while activities for economic and social progress are pursued. These activities include the establishment and utilisation of nuclear facilities and use of radioactive sources. This document is issued as a lead document to facilitate preparation of specific site manuals by the Responsible Organisation for emergency response plans at each site to ensure their preparedness to meet any eventuality due to site emergency in order to mitigate its consequences on the health and safety of site personnel. It takes cognizance of an earlier AERB publication on the subject: Safety Manual on Off-Site Emergency Plan for Nuclear Installations, AERB/SM/NISD-2, 1988 and also takes into consideration the urgent need for promoting public awareness and drawing up revised emergency response plans, which has come out in a significant manner after the accidents at Chernobyl and Bhopal

  19. The emergency plan of the ININ; El plan de emergencia del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz C, M A [ININ, Salazar, Estado de Mexico (Mexico)

    1991-07-01

    The emergency plan of the ININ, it was elaborated in 1988 and revised by the National Commission of Nuclear Safety and Safeguards (CNSNS) in 1989. At the beginning of 1990 and with the support of the IAEA it was practiced the first revision to the text of this plan, for what the proposal revision is what constitutes the development of this report.

  20. NPP accident scenario. Which emergency measures are planned in Switzerland?

    International Nuclear Information System (INIS)

    Flury, Christoph

    2016-01-01

    As a consequence of the reactor accident in Fukushima the Swiss government has ordered an extensive analysis of emergency planning in case of a NPP accident Switzerland. A special working group has analyzed the possible improvements of Swiss emergency planning based on the experiences in Japan. Under the special direction of the Bundesamt fuer Bevoelkerungsschutz (BABS) the agreed improvements were integrated into the emergency concept. The reference scenarios have been re-assessed and the zone concept adapted. The emergency measures include shelter-type rooms (basement or window-less rooms), the preventive distribution of iodine pills, measures concerning agriculture, aquatic systems, preventive evacuation, traffic regulations, and delayed evacuation.

  1. Hanford 1999 Tier 2 Emergency and Hazardous Chemical Inventory Emergency Planning and Community Right-to-Know Act Section 312

    International Nuclear Information System (INIS)

    ZALOUDEK, D.E.

    2000-01-01

    The Hanford Site covers approximately 1,450 square kilometers (560 square miles) of land that is owned by the U.S. Government and managed by the U.S. Department of Energy, Richland Operations Office (DOE-RL). The Hanford Site is located northwest of the city of Richland, Washington. The city of Richland adjoins the southeastern portion of the Hanford Site boundary and is the nearest population center. Activities on the Hanford Site are centralized in numerically designated areas. The 100 Areas, located along the Columbia River, contain deactivated reactors. The processing units are in the 200 Areas, which are on a plateau approximately 11 kilometers (7 miles) from the Columbia River. The 300 Area, located adjacent to and north of Richland, contains research and development laboratories. The 400 Area, 8 kilometers (5 miles) northwest of the 300 Area, contains the Fast Flux Test Facility previously used for testing liquid metal reactor systems. Adjacent to the north of Richland, the 1100 Area contains offices associated with administration, maintenance, transportation, and materials procurement and distribution. The 600 Area covers all locations not specifically given an area designation. This Tier Two Emergency and Hazardous Chemical Inventory report contains information pertaining to hazardous chemicals managed by DOE-RL and its contractors on the Hanford Site. It does not include chemicals maintained in support of activities conducted by others on lands covered by leases, use permits, easements, and other agreements whereby land is used by parties other than DOE-RL. For example, this report does not include chemicals stored on state owned or leased lands (including the burial ground operated by US Ecology, Inc.), lands owned or used by the Bonneville Power Administration (including the Midway Substation and the Ashe Substation), lands used by the National Science Foundation (the Laser Interferometer Gravitational-Wave Observatory), lands leased to the Washington

  2. System model for evaluation of an emergency response plan for a nuclear power plant based on an assessment of nuclear emergency exercises

    International Nuclear Information System (INIS)

    Silva, Marcos Vinicius C.; Medeiros, Jose A.C.C.

    2011-01-01

    Nuclear power plants are designed and built with systems dedicated to provide a high degree of protection to its workers, the population living in their neighborhoods and the environment. Among the requirements for ensuring safety there are the existence of the nuclear emergency plan. Due to the relationship between the actions contemplated in the emergency plan and the nuclear emergency exercise, it becomes possible to assess the quality of the nuclear emergency plan, by means of emergency exercise evaluation, The techniques used in this work aim at improving the evaluation method of a nuclear emergency exercise through the use of performance indicators in the evaluation of the structures, actions and procedures involved. The proposed model enables comparisons between different moments of an emergency plan directed to a nuclear power plant as well as comparisons between plans dedicated to different facilities. (author)

  3. System model for evaluation of an emergency response plan for a nuclear power plant based on an assessment of nuclear emergency exercises

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcos Vinicius C.; Medeiros, Jose A.C.C. [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear

    2011-07-01

    Nuclear power plants are designed and built with systems dedicated to provide a high degree of protection to its workers, the population living in their neighborhoods and the environment. Among the requirements for ensuring safety there are the existence of the nuclear emergency plan. Due to the relationship between the actions contemplated in the emergency plan and the nuclear emergency exercise, it becomes possible to assess the quality of the nuclear emergency plan, by means of emergency exercise evaluation, The techniques used in this work aim at improving the evaluation method of a nuclear emergency exercise through the use of performance indicators in the evaluation of the structures, actions and procedures involved. The proposed model enables comparisons between different moments of an emergency plan directed to a nuclear power plant as well as comparisons between plans dedicated to different facilities. (author)

  4. The development and revision of the Federal Radiological Emergency Response Plan

    International Nuclear Information System (INIS)

    Gant, K.S.; Adler, M.V.; Wolff, W.F.

    1989-01-01

    Since 1985, federal agencies have been using the Federal Radiological Emergency Response Plan (FRERP) in exercises and real events. This experience and the development of other emergency response guidance (e.g., National System for Emergency Coordination) are fueling current efforts to review and revise the FRERP to reflect what the agencies have learned since the FRERP was published. Revision efforts are concentrating on clarifying the plan and addressing deficiencies. No major changes are expected in the general structure of the federal response nor should states need to revise their plans because of these modifications. 5 refs

  5. Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hickey, Eva E.; Strom, Daniel J.

    2005-08-01

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

  6. Standard format and content for emergency plans for fuel cycle and materials facilities

    International Nuclear Information System (INIS)

    1990-09-01

    This regulatory guides is being developed to provide guidance acceptable to the NRC staff on the information to be included in emergency plans and to establish a format for presenting the information. Use of a standard format will help ensure uniformity and completeness in the preparation of emergency plans. An acceptable emergency plan should describe the licensed activities conducted at the facility and the types of accidents that might occur. It should provide information on classifying postulated accidents and the licensee's procedures for notifying and coordinating with offsite authorities. The plan should provide information on emergency response measures that might be necessary, the equipment and facilities available to respond to an emergency, and how the licensee will maintain emergency preparedness capability. It should describe the records and reports that will be maintained. There should also be a section on recovery after an accident and plans for restoring the facility to a safe condition. 4 refs

  7. Critical examination of emergency plans for nuclear accidents

    International Nuclear Information System (INIS)

    Catsaros, Nicolas.

    1986-08-01

    An analysis of emergency plans of various countries for nuclear installations on- and off-site emergency preparedness is presented. The analysis is focused on the off-site organization and countermeasures to protect public health and safety. A critical examination of the different approaches is performed and recommendations for effectiveness improvement and optimization are formulated. (author)

  8. Closed-Loop Supply Chain Planning Model of Rare Metals

    Directory of Open Access Journals (Sweden)

    Dongmin Son

    2018-04-01

    Full Text Available Rare metals (RMs are becoming increasingly important in high-tech industries associated with the Fourth Industrial Revolution, such as the electric vehicle (EV and 3D printer industries. As the growth of these industries accelerates in the near future, manufacturers will also face greater RM supply risks. For this reason, many countries are putting considerable effort into securing the RM supply. For example, countries including Japan, Korea, and the USA have adopted two major policies: the stockpile system and Extended Producer Responsibility (EPR. Therefore, it is necessary for the manufacturers with RMs to establish a suitable supply chain plan that reflects this situation. In this study, the RM classification matrix is created based on the stockpile and recycling level in Korea. Accordingly, three different types of supply chain are designed in order to develop the closed-loop supply chain (CLSC planning model of RM, and the CLSC planning models of RM are validated through experimental analysis. The results show that the stockpiling and the EPR recycling obligation increase the amount of recycled flow and reduce the total cost of the part manufacturing, which means that these two factors are significant for obtaining sustainability of the RMs’ CLSC. In addition, the government needs to set an appropriate sharing cost for promoting the manufacturer’s recycling. Also, from the manufacturer’s perspective, it is better to increase the return rate by making a contract with the collectors to guarantee the collection of used products.

  9. Development and verification for review plan of emergency action level (EAL)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Emergency action levels (EALs) are used as the trigger in order to implement the precautionary protective actions at the nuclear emergency. In this study the framework for applying the EAL in Japan and the process for developing the review plan, such as procedures to review the basis of EAL submitted by the licensee, have been investigated based on the survey for EAL review executed in the United States. In addition, issues to reflect the EAL framework in enhancement of the local government emergency planning and emergency response support system have been investigated. (author)

  10. Exercising the federal radiological emergency response plan

    International Nuclear Information System (INIS)

    Gant, K.S.; Adler, M.V.; Wolff, W.F.

    1986-01-01

    Multiagency exercises were an important part of the development of the Federal Radiological Emergency Response Plan. This paper concentrates on two of these exercises, the Federal Field Exercise in March 1984 and the Relocation Tabletop Exercise in December 1985. The Federal Field Exercise demonstrated the viability and usefulness of the draft plan; lessons learned from the exercise were incorporated into the published plan. The Relocation Tabletop Exercise examined the federal response in the postemergency phase. This exercise highlighted the change over time in the roles of some agencies and suggested response procedures that should be developed or revised. 8 refs

  11. 40 CFR 355.12 - What quantities of extremely hazardous substances trigger emergency planning requirements?

    Science.gov (United States)

    2010-07-01

    ... EMERGENCY PLANNING AND NOTIFICATION Emergency Planning Who Must Comply § 355.12 What quantities of extremely... 40 Protection of Environment 27 2010-07-01 2010-07-01 false What quantities of extremely hazardous substances trigger emergency planning requirements? 355.12 Section 355.12 Protection of Environment...

  12. Methane, nitrous oxide and ammonia emissions from pigs housed on litter and from stockpiling of spent litter

    KAUST Repository

    Phillips, F. A.; Wiedemann, S. G.; Naylor, T. A.; McGahan, E. J.; Warren, B. R.; Murphy, C. M.; Parkes, Stephen; Wilson, J.

    2016-01-01

    Mitigation of agricultural greenhouse gas emissions is a target area for the Australian Government and the pork industry. The present study measured methane (CH4), nitrous oxide (N2O) and ammonia (NH3) from a deep-litter piggery and litter stockpile over two trials in southern New South Wales, to compare emissions from housing pigs on deep litter with those of pigs from conventional housing with uncovered anaerobic effluent-treatment ponds. Emissions were measured using open-path Fourier transform infrared spectrometry, in conjunction with a backward Lagrangian stochastic model. Manure excretion was determined by mass balance and emission factors (EFs) were developed to report emissions relative to volatile solids and nitrogen (N) input. Nitrous oxide emissions per animal unit (1 AU ≤ 500 kg liveweight) from deep-litter sheds were negligible in winter, and 8.4 g/AU.day in summer. Ammonia emissions were 39.1 in winter and 52.2 g/AU.day in summer, while CH4 emissions were 16.1 and 21.6 g/AU.day in winter and summer respectively. Emission factors averaged from summer and winter emissions showed a CH4 conversion factor of 3.6%, an NH3-N EF of 10% and a N2O-N EF of 0.01 kg N2O-N/kg N excreted. For the litter stockpile, the simple average of summer and winter showed an EF for NH3-N of 14%, and a N2O-N EF of 0.02 kg N2O-N/kg-N of spent litter added to the stockpile. We observed a 66% and 80% decrease in emissions from the manure excreted in litter-based housing with litter stockpiling or without litter stockpiling, compared with conventional housing with an uncovered anaerobic effluent-treatment pond. This provides a sound basis for mitigation strategies that utilise litter-based housing as an alternative to conventional housing with uncovered anaerobic effluent-treatment ponds. © CSIRO 2016.

  13. Methane, nitrous oxide and ammonia emissions from pigs housed on litter and from stockpiling of spent litter

    KAUST Repository

    Phillips, F. A.

    2016-05-05

    Mitigation of agricultural greenhouse gas emissions is a target area for the Australian Government and the pork industry. The present study measured methane (CH4), nitrous oxide (N2O) and ammonia (NH3) from a deep-litter piggery and litter stockpile over two trials in southern New South Wales, to compare emissions from housing pigs on deep litter with those of pigs from conventional housing with uncovered anaerobic effluent-treatment ponds. Emissions were measured using open-path Fourier transform infrared spectrometry, in conjunction with a backward Lagrangian stochastic model. Manure excretion was determined by mass balance and emission factors (EFs) were developed to report emissions relative to volatile solids and nitrogen (N) input. Nitrous oxide emissions per animal unit (1 AU ≤ 500 kg liveweight) from deep-litter sheds were negligible in winter, and 8.4 g/AU.day in summer. Ammonia emissions were 39.1 in winter and 52.2 g/AU.day in summer, while CH4 emissions were 16.1 and 21.6 g/AU.day in winter and summer respectively. Emission factors averaged from summer and winter emissions showed a CH4 conversion factor of 3.6%, an NH3-N EF of 10% and a N2O-N EF of 0.01 kg N2O-N/kg N excreted. For the litter stockpile, the simple average of summer and winter showed an EF for NH3-N of 14%, and a N2O-N EF of 0.02 kg N2O-N/kg-N of spent litter added to the stockpile. We observed a 66% and 80% decrease in emissions from the manure excreted in litter-based housing with litter stockpiling or without litter stockpiling, compared with conventional housing with an uncovered anaerobic effluent-treatment pond. This provides a sound basis for mitigation strategies that utilise litter-based housing as an alternative to conventional housing with uncovered anaerobic effluent-treatment ponds. © CSIRO 2016.

  14. Off-site emergency planning in Czech Republic

    International Nuclear Information System (INIS)

    Prouza, Z.; Drabova, D.

    1996-01-01

    In the Czech Republic, the NPP Dukovany - PWR 440/213-type (4 blocks) is currently in operation (from 1985) and NPP Temelin - PWR 1000 (2 blocks) is under construction. Radiation accident on the NPP is defined as an unexpected or unintentional event in a facility with a potential of off-site consequences. The principles of emergency planning in Czech Republic now are based on the philosophy and principles described in the ICRP Publication 40 and the IAEA Safety Series No. 55, 72, and includes already the post Chernobyl experiences. Nevertheless, Czech Republic legislation experiences an extensive reconstruction. The Atomic Act, which will be based from point of view the structure, philosophy and principles on new International Basic Safety Standards, already being elaborated. That acts and related laws should solve our legislative problems on field of emergency planning and preparedness

  15. Report to Congress on status of emergency response planning for nuclear power plants

    International Nuclear Information System (INIS)

    1981-03-01

    This report responds to a request (Public Law 96-295, Section 109) for the Nuclear Regulatory Commission (NRC) to report to Congress on the status of emergency response planning in support of nuclear power reactors. The report includes information on the status of this planning as well as on the Commission actions relating to emergency preparedness. These actions include a summary of the new regulatory requirements and the preliminary results of two comprehensive Evacuation Time Estimate studies; one requested by the NRC including 50 nuclear power plant sites and one conducted by the Federal Emergency Management Agency (FEMA) for 12 high population density sites. FEMA provided the information in this report on the status of State and local planning, including projected schedules for joint State/county/licensee emergency preparedness exercises. Included as Appendicies are the NRC Emergency Planning Final Regulations, 10 CFR Part 50 (45 FR 55402), the FEMA Proposed Rule, 'Review and Approval of State and Local Radiological Emergency Plans and Preparedness', 44 CFR Part 350 (45 FR 42341) and the NRC/FEMA Memorandums of Understanding

  16. Draft Programmatic Environmental Impact Statement for Stockpile Stewardship and Management: Volume 3, Appendix I, Appendix J, Appendix K

    International Nuclear Information System (INIS)

    1996-02-01

    In response to the end of the Cold War and changes in the world's political regimes, United States is no longer producing new nuclear weapons. Instead, the US nuclear weapons program is reducing the size of the nuclear stockpile by dismantling existing weapons. DOE has been directed to maintain the safety and reliability of the reduced nuclear weapons stockpile in the absence of underground testing. Therefore, DOE has developed a stewardship and management program to provide a single highly integrated technical program. The stockpile stewardship portion of the PEIS evaluates the potential impacts of three proposed facilities: the National Ignition Facility, the Contained Firing facility, and the Atlas Facility. This volume contains appendices for these 3 facilities; alternatives affecting LANL, LLNL, SNL, and NTS are addressed. Impacts on land resources, site infrastructure, air qualaity, water resources, geology and soils, biotic resources, cultural resources, etc., are evaluated. This PEIS presents unclassified information only

  17. Emergency team and action plan; Brigada de emergencia y plan de accion de emergencia

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Gorgerino, Ruben Dario [Central Hidroelectrica Itaipu, Hernandarias (Paraguay)]. E-mail: jimenez@itaipu.gov.br

    1998-07-01

    This work reports the various activities developed by a commission designated for the investigation of the fire occurred in the excitation panel of the generator unit 16, for the execution of two tasks: short term creation of plant emergency team, and a long term implementation of emergency action plan.

  18. The One Plan Project: A cooperative effort of the National Response Team and the Region 6 Regional Response Team to simplify facility emergency response planning

    International Nuclear Information System (INIS)

    Staves, J.; McCormick, K.

    1997-01-01

    The National Response Team (NRT) in coordination with the Region 6 Response Team (RRT) have developed a facility contingency plan format which would integrate all existing regulatory requirements for contingency planning. This format was developed by a multi-agency team, chaired by the USEPA Region 6, in conjunction with various industry, labor, and public interest groups. The impetus for this project came through the USEPA Office of Chemical Emergency Preparedness and Prevention (CEPPO). The current national oil and hazardous material emergency preparedness and response system is an amalgam of federal, state, local, and industrial programs which are often poorly coordinated. In a cooperative effort with the NRT, the CEPPO conducted a Presidential Review of federal agency authorities and coordination responsibilities regarding release prevention, mitigation, and response. Review recommendations led to a Pilot Project in USEPA Region 6. The Region 6 Pilot Project targeted end users in the intensely industrialized Houston Ship Channel (HSC) area, which is comprised of petroleum and petrochemical companies

  19. Reentry planning: The technical basis for offsite recovery following warfare agent contamination

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.P.; Munro, N.B.

    1990-04-01

    In the event on an unplanned release of chemical agent during any stage of Chemical Stockpile Disposal Program (CSDP), the potential exists for contamination of drinking water, forage crops, grains, garden produce and livestock. Persistent agents, such as VX or sulfur mustard, pose the greatest human health concern for reentry. The purpose of this technical support study is to provide information and analyses that can be used by federal, state and local emergency planners in determining the safety or reentry to, as well as the potential for recovery of, contaminated or suspect areas beyond the installation boundary. Guidelines for disposition of livestock, agricultural crops and personal/real property are summarized. Advisories for ingestion of food crops, water, meat and milk from the affected zones are proposed. This document does not address potential adverse effects to, or agent contamination of, wild species of plants or animals. 80 refs., 4 figs., 29 tabs.

  20. Emergency planning practices and criteria in the OECD countries after the Chernobyl accident

    International Nuclear Information System (INIS)

    Boeri, G.; Wiktorsson, C.

    1988-09-01

    This critical review has been prepared at the request of the Committee on Radiation Protection and Public Health (CRPPH), on the basis of information collected from Member countries on their emergency planning practices and criteria, and on changes being considered as a consequence of the Chernobyl accident. This information was officially provided to the Secretariat in response to a questionnaire. Other material has also been used, such as official papers describing national practices and reports presented at meetings organised by the NEA. In these cases the sources are given in the list of references. The information in this report reflects the situation in the Member countries at the end of 1987 and it might well be that additional changes were introduced in the emergency planning practices and criteria of several countries after the answers were sent to the Secretariat. It should also be noted that several of the questions were mainly relevant to nuclear power reactor operations. However, the basic philosophy for emergency planning is general, i.e. radiological criteria, emergency organisation, medical assistance, information to the public, etc., and applies in similar ways to different emergencies. Therefore, the information in the report should be valid for different types of radiological emergencies, although emphasis is placed in the report is on nuclear power reactor emergencies. For non-nuclear power Member countries the information refers mainly to plans to cope with other types of radiation emergencies, and to emergencies of a transboundary origin. Finally, the information covers only the off-site part of emergency planning, apart from some reflections in Chapter 1 on on-site emergency planning and the measures taken at nuclear facilities to prevent an accident or mitigate its consequences

  1. Emergency preparedness 1995 site support plan WBS 6.7.2.3

    International Nuclear Information System (INIS)

    Faulk, S.M.

    1994-09-01

    The Emergency Preparedness Program provides an emergency management system including occurrence notification; development, coordination, and direction of planning, preparedness, and readiness assurance for response to emergency events on the Hanford Site; and emergency management support to Department of Energy, Richland Operations Office (RL)

  2. Hydroxocobalamin as a Cyanide Antidote: Empirical use , Safety, Efficacy, and Considerations for Stockpiling

    International Nuclear Information System (INIS)

    Hall, A. H.

    2007-01-01

    Cyanide is a well-known toxic terrorism agent and is a major cause of mortality and morbidity in smoke inhalation victims. Terrorist attacks could start enclosed-space fires with cyanide-poisoned victims, even if cyanide itself was not utilized. Cyanide poisoning cannot be emergent confirmed by laboratory analysis and treatment with safe and efficacious antidotes must be administered empirically. Hydroxocobalamin has been recently approved by the US FDA and is a safe and efficacious antidote. Its efficacy is comparable to that of other, more toxic, cyanide antidotes. Its mechanism of action involves both direct cyanide chelation (forming non-toxic cyanocobalamin which is excreted in the urine) and nitric oxide scavenging. Adverse effects are usually limited to transient dark red-brown discoloration of urine, skin, sclera, and mucous membranes. Antidotal doses have not caused allergic reactions in cyanide-poisoned patients and only minor and easily-treated allergic reactions occurred in 2 of 136 normal volunteers. Transient, asymptomatic hypertension and reflex bradycardia have occurred in some normal volunteers, but not in seriously ill smoke inhalation victims not having significant cyanide poisoning. Hydroxocobalamin is a safe and efficacious antidote and can be empirically administered in pre-hospital or emergency department settings. It is therefore suitable for inclusion in national or multinational medication stockpiles and is already included in some national programs in the European Union.(author)

  3. Guide for the elaboration of plans to control emergencies

    International Nuclear Information System (INIS)

    1990-01-01

    This Venezuelan standard establishes the lines for the elaboration of plans to control emergencies. It includes general aspects for the control of any emergency originated by operational flaws, for the nature or for acts of third, in any industrial installation, working center, public or private building [es

  4. Family emergency plan and preparedness among medical practitioners in Zaria, Nigeria.

    Science.gov (United States)

    Makama, Jerry Godfrey; Joshua, Istifanus Anekoson; Makama, Elizabeth Jerry

    There has been an increase in the incidence of disasters in many parts of the world. Similarly, Nigeria has witnessed a recent increase of man-made disaster events such as plane crash, fire incidents, flood, and building collapse, including bomb blast orchestrated by terrorists that often create emergency situations. Therefore, the aim of the study was to evaluate family emergency plan and preparedness among medical practitioners in Zaria. This was a cross-sectional descriptive study (May-July, 2013) of medical practitioners in Zaria, Nigeria. The structured questionnaire sought the socio-demographic features of the respondents, the availability of emergency gate(s) in the house, education of safety measures within and outside the house, well-known located shut-off devices for gases, electricity, and water in the house, and written document/policy in the event of disaster. Also, planned orientations/drills/sensitizations, whether there is contact information of family members and supporting agencies. Majority of the respondents were male 56 (80.0 percent) and fall within the age group of 46-50 years (20.0 percent). Only 8.6 percent admitted having an unwritten policy on emergency management in their houses. Similarly, only 8.6 percent do create time to teach their family members on emergency management. Only 27 (38.6 percent) had emergency supplies kits and among this group, water appears to be the most essential component that the respondents had paid attention to, leaving out special items. The communication plans of respondents to likely supportive services/agencies during disaster showed that majority had contact address or have affirmative plans for hospital and ambulance services than for radio and television stations. Family emergency plans and preparedness among medical practitioners in Zaria are extremely low. There is a gap between knowledge of what need to be done to enhance preparedness and internalizing preparedness recommendations in the study area.

  5. Innovations in emergency response plans : making the useful application of the 2007 CDA guidelines for emergency response plans

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, A.J. [Columbia Power Corp., Castlegar, BC (Canada)

    2008-07-01

    Columbia Power Corporation (CPC) changed its perspective and approach to emergency response plans (ERP) between 2002 and 2007 from one of administrative necessity to one of important functional reference. The new 2007 Canadian Dam Association Guidelines helped facilitate that transition for both CPC and all dam owners. As part of the licensing requirements for its new facility, CPC had an ERP commissioned and developed in 2002. A potential dam safety event occurred in 2004, which necessitated the need for the ERP to be put to use. However, at the time, it was found to be lacking in functionality for field personnel. As a result, CPC recognized the significance of having a functional ERP for field staff and undertook a substantial redraft between 2005 and 2007. This paper discussed the development of the ERP with particular reference to assessing the top potential emergency scenarios for the facility; development of response plans for the identified scenarios; a flow chart to guide personnel through the required actions; response checklist; detailed inspection checklists and any required forms, photos or specific information. It was concluded that the new ERP has been well received and has improved facility awareness and emergency preparedness. 1 ref., 2 figs.

  6. Verification of Chemical Weapons Destruction

    International Nuclear Information System (INIS)

    Lodding, J.

    2010-01-01

    The Chemical Weapons Convention is the only multilateral treaty that bans completely an entire category of weapons of mass destruction under international verification arrangements. Possessor States, i.e. those that have chemical weapons stockpiles at the time of becoming party to the CWC, commit to destroying these. All States undertake never to acquire chemical weapons and not to help other States acquire such weapons. The CWC foresees time-bound chemical disarmament. The deadlines for destruction for early entrants to the CWC are provided in the treaty. For late entrants, the Conference of States Parties intervenes to set destruction deadlines. One of the unique features of the CWC is thus the regime for verifying destruction of chemical weapons. But how can you design a system for verification at military sites, while protecting military restricted information? What degree of assurance is considered sufficient in such circumstances? How do you divide the verification costs? How do you deal with production capability and initial declarations of existing stockpiles? The founders of the CWC had to address these and other challenges in designing the treaty. Further refinement of the verification system has followed since the treaty opened for signature in 1993 and since inspection work was initiated following entry-into-force of the treaty in 1997. Most of this work concerns destruction at the two large possessor States, Russia and the United States. Perhaps some of the lessons learned from the OPCW experience may be instructive in a future verification regime for nuclear weapons. (author)

  7. U.S. assistance in the destruction of Russia's chemical weapons

    OpenAIRE

    Mostoller, Eric Charles

    2000-01-01

    The thesis examines the present status of Russia's chemical weapons destruction program, which is to be implemented according to the 1993 Chemical Weapons Convention (CWC). It assesses the magnitude of the challenges in destroying the world's largest chemical weapons stockpile, which is located at seven sites in western Russia. It also evaluates the environmental and international security concerns posed by the conditions at these sites and the disastrous implications of a failure of this che...

  8. Civil-Military Emergency Planning Council Denver Conference Proceedings

    National Research Council Canada - National Science Library

    Lidy, A

    2000-01-01

    ...) program formed by the North Atlantic Treaty Organization (NATO) since 1990. One small but important element of this engagement program is the use of the Civil-Military Emergency Planning (CMEP...

  9. Planning for spontaneous evacuation during a radiological emergency

    International Nuclear Information System (INIS)

    Johnson, J.H. Jr.

    1984-01-01

    The Federal Emergency Management Agency's (FEMA's) radiological emergency preparedness program ignores the potential problem of spontaneous evacuation during a nuclear reactor accident. To show the importance of incorporating the emergency spatial behaviors of the population at risk in radiological emergency preparedness and response plans, this article presents empirical evidence that demonstrates the potential magnitude and geographic extent of spontaneous evacuation in the event of an accident at the Long Island Lighting Company's Shoreham Nuclear Power Station. The results indicate that, on the average, 39% of the population of Long Island is likely to evacuate spontaneously and thus to cast an evacuation shadow extending at least 25 miles beyond the plant. On the basis of these findings, necessary revisions to FEMA's radiological emergency preparedness program are outlined

  10. Survey of emergency medicine resident debt status and financial planning preparedness.

    Science.gov (United States)

    Glaspy, Jeffrey N; Ma, O John; Steele, Mark T; Hall, Jacqueline

    2005-01-01

    Most resident physicians accrue significant financial debt throughout their medical and graduate medical education. The objective of this study was to analyze emergency medicine resident debt status, financial planning actions, and educational experiences for financial planning and debt management. A 22-item questionnaire was sent to all 123 Accreditation Council on Graduate Medical Education-accredited emergency medicine residency programs in July 2001. Two follow-up mailings were made to increase the response rate. The survey addressed four areas of resident debt and financial planning: 1) accrued debt, 2) moonlighting activity, 3) financial planning/debt management education, and 4) financial planning actions. Descriptive statistics were used to analyze the data. Survey responses were obtained from 67.4% (1,707/2,532) of emergency medicine residents in 89 of 123 (72.4%) residency programs. Nearly one half (768/1,707) of respondents have accrued more than 100,000 dollars of debt. Fifty-eight percent (990/1,707) of all residents reported that moonlighting would be necessary to meet their financial needs, and more than 33% (640/1,707) presently moonlight to supplement their income. Nearly one half (832/1,707) of residents actively invested money, of which online trading was the most common method (23.3%). Most residents reported that they received no debt management education during residency (82.1%) or medical school (63.7%). Furthermore, 79.1% (1,351/1,707) of residents reported that they received no financial planning lectures during residency, although 84.2% (1,438/1,707) reported that debt management and financial planning education should be available during residency. Most emergency medicine residency programs do not provide their residents with financial planning education. Most residents have accrued significant debt and believe that more financial planning and debt management education is needed during residency.

  11. Emergency planning and long-term care: least paid, least powerful, most responsible.

    Science.gov (United States)

    Covan, Eleanor Krassen; Fugate-Whitlock, Elizabeth

    2010-11-01

    As disasters can occur anywhere, planning to avoid emergencies is an international concern. Our research specifically addresses planning for the needs and safety of a vulnerable population, long-term care residents. Our initial purposes in this evaluation research were to assess the utility of a template to gather emergency management information for individual long-term care communities, to report on how prepared they are to cope with emergencies that have occurred elsewhere in areas like ours, and to assess the effectiveness of employing gerontology students in the planning process. As we began analyzing our data, we realized that it is imperative to consider whether it is possible for long-term care communities to respond effectively to disasters. In our findings we focus on the impact of gender in the planning process, the importance of size with regard to template utility, the positive and negative consequences of student aid, and the fact that gathering plans for individual long-term care communities may have detracted from collaborative community planning.

  12. Demand and capacity planning in the emergency department: how to do it.

    Science.gov (United States)

    Higginson, I; Whyatt, J; Silvester, K

    2011-02-01

    Unless emergency departments have adequate capacity to meet demand, they will fail to meet clinical and performance standards and will be operating in the 'coping zone'. This carries risks both for staff and patients. As part of a quality improvement programme, the authors undertook an in-depth analysis of demand and capacity for an emergency department in the UK. The paper describes this rigorous approach to capacity planning, which draws on techniques from other industries. Proper capacity planning is vital, but is often poorly done. Planning using aggregated data will lead to inadequate capacity. Understanding demand, and particularly the variation in that demand, is critical to success. Analysis of emergency department demand and capacity is the first step towards effective workforce planning and process redesign.

  13. Multiscale science for science-based stockpile stewardship

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, L.; Sharp, D.

    2000-12-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project has been to develop and apply the methods of multi scale science to the problems of fluid and material mixing due to instability and turbulence, and of materials characterization. Our specific focus has been on the SBSS (science-based stockpile stewardship) issue of assessing the performance of a weapons with off-design, aged, or remanufactured components in the absence of full-scale testing. Our products are physics models, based on microphysical principles and parameters, and suitable for implementation in the large scale design and assessment codes used in the nuclear weapons program.

  14. Radioactive materials transportation emergency response plan

    International Nuclear Information System (INIS)

    Karmali, N.

    1987-05-01

    Ontario Hydro transports radioactive material between its nuclear facilities, Atomic Energy of Canada Limited at Chalk River Laboratories and Radiochemical Company in Kanata, on a regular basis. Ontario Hydro also occasionally transports to Whiteshell Laboratories, Hydro-Quebec and New Brunswick Electric Power Commission. Although there are stringent packaging and procedural requirements for these shipments, Ontario Hydro has developed a Radioactive Materials Transportation Emergency Response Plan in the event that there is an accident. The Transportation Emergency Response plan is based on six concepts: 1) the Province id divided into three response areas with each station (Pickering, Darlington, Bruce) having identified response areas; 2) response is activated via a toll-free number. A shift supervisor at Pickering will answer the call, determine the hazards involved from the central shipment log and provide on-line advice to the emergency worker. At the same time he will notify the nearest Ontario Hydro area office to provide initial corporate response, and will request the nearest nuclear station to provide response assistance; 3) all stations have capability in terms of trained personnel and equipment to respond to an accident; 4) all Ontario Hydro shipments are logged with Pickering NGS. Present capability is based on computerized logging with the computer located in the shift office at Pickering to allow quick access to information on the shipment; 5) there is a three tier structure for emergency public information. The local Area Manager is the first Ontario Hydro person at the scene of the accident. The responding facility technical spokesperson is the second line of Corporate presence and the Ontario Hydro Corporate spokesperson is notified in case the accident is a media event; and 6) Ontario Hydro will respond to non-Hydro shipments of radioactive materials in terms of providing assistance, guidance and capability. However, the shipper is responsible

  15. Business continuity, emergency planning and special needs: How to protect the vulnerable.

    Science.gov (United States)

    Reilly, Daniel

    2015-01-01

    Emergencies and disasters affect all segments of the population. Some segments are more at risk during the emergency response and recovery efforts owing to vulnerabilities that increase the risk of harm. These vulnerabilities are due to individuals' disabilities, which must be incorporated into emergency and business continuity planning. Some disabilities are obvious, such as impaired vision, hearing or mobility, while other are less evident, but equally disabling, such as cognitive disorders, geographical or language isolation, and numerous age-related factors. Taken together when creating emergency or business continuity plans, the issues identified as disabilities can be grouped by functionality and termed as special needs. This paper will detail the identification of special needs populations, explain how these persons are vulnerable during the emergency or disaster response and recovery process, and provide examples of how to partner with individuals within identified special needs populations to improve the planning process.

  16. Information technology and emergency management: preparedness and planning in US states.

    Science.gov (United States)

    Reddick, Christopher

    2011-01-01

    The purpose of this paper is to examine the impact of information technology (IT) on emergency preparedness and planning by analysing a survey of US state government departments of emergency management. The research results show that there has been a significant impact of IT on emergency planning. IT has proven to be effective for all phases of emergency management, but especially for the response phase. There are numerous technologies used in emergency management, ranging from the internet, Geographic Information Systems and wireless technologies to more advanced hazard analysis models. All were generally viewed as being effective. Lack of financial resources and support from elected officials is a perennial problem in public administration, and was found to be prevalent in this study of IT and emergency management. There was evidence that state governments rating high on a performance index were more likely to use IT for emergency management. © 2011 The Author(s). Disasters © Overseas Development Institute, 2011.

  17. Prevention of spontaneous combustion in coal stockpiles : Experimental results in coal storage yard

    NARCIS (Netherlands)

    Fierro, V.; Miranda, J.L.; Romero, C.; Andrés, J.M.; Arriaga, A.; Schmal, D.; Visser, G.H.

    1999-01-01

    The spontaneous ignition of coal stockpiles is a serious economic and safety problem. This paper deals with oxidation and spontaneous combustion of coal piles laid in coal storage yard and the measures to avoid the heat losses produced. Investigations on self heating were carried out with five test

  18. Utilising the emergency planning cycle for the transport of radioactive material

    International Nuclear Information System (INIS)

    Fox, M.

    2004-01-01

    As a world leader in the transport of radioactive material (RAM) British Nuclear Fuels plc (BNFL) and its subsidiary Pacific Nuclear Transport Limited (PNTL) recognise the importance of adopting the emergency planning cycle. The emergency response arrangements prepared and maintained in support of the International Transport business have been developed through this cycle to ensure that their emergency response section may achieve its aim and that the business unit is able to respond to any International Transport related incident in a swift, combined and co-ordinated manner. This paper outlines the eight key stages of the planning cycle and the experience that BNFL has gained in respect of its emergency response activities

  19. State planning for winter energy emergencies: workshop materials

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    Workshops were conducted in 5 cities to improve communications between the states and the Federal government so that both might be better prepared to avoid or mitigate the impacts of energy emergencies during the winter; to provide a forum for the exchange of technical information regarding selected energy demand restraint measures which could be implemented by individual states or regions in an energy emergency; and to promote the concept of pre-crisis contingency planning and strategy development, with particuliar emphasis on the need for interstate coordination of emergency plans. The major topics addressed by the discussion guide involved net energy use impact, implementation procedures and problems, and social and economic effects. The Task Force performed extensive research into the technical considerations and prior experience in implementing each of the demand restraint measures selected for discussion. Results and conclusions are summarized for reduction of thermostat setting for space conditioning and water heating; reduction in hours of operation and lighting in commercial establishments; reduction in hours of operation in school, and industrial fuel substitution. (MCW)

  20. Selective hedging strategies for oil stockpiling

    International Nuclear Information System (INIS)

    Yun, Won-Cheol

    2006-01-01

    As a feasible option for improving the economics and operational efficiency of stockpiling by public agency, this study suggests simple selective hedging strategies using forward contracts. The main advantage of these selective hedging strategies over the previous ones is not to predict future spot prices, but to utilize the sign and magnitude of basis easily available to the public. Using the weekly spot and forward prices of West Texas Intermediate for the period of October 1997-August 2002, this study adopts an ex ante out-of-sample analysis to examine selective hedging performances compared to no-hedge and minimum-variance routine hedging strategies. To some extent, selective hedging strategies dominate the traditional routine hedging strategy, but do not improve upon the expected returns of no-hedge case, which is mainly due to the data characteristics of out-of-sample period used in this analysis

  1. 76 FR 47055 - Emergency Restoration Plan (ERP)

    Science.gov (United States)

    2011-08-04

    ... (ERP) AGENCY: Rural Utilities Service, USDA. ACTION: Final rule. SUMMARY: The Rural Utilities Service... 12, 2004, at 69 FR 60541 requiring all borrowers to maintain an Emergency Response Plan (ERP) that... major natural or manmade disaster or other causes. This ERP requirement was not entirely new to the...

  2. Nuclear emergency planning and response in the Netherlands after Chernobyl

    International Nuclear Information System (INIS)

    Bergman, L.J.W.M.; Kerkhoven, I.P.

    1989-01-01

    After Chernobyl an extensive project on nuclear emergency planning and response was started in the Netherlands. The objective of this project was to develop a (governmental) structure to cope with accidents with radioactive materials, that can threaten the Dutch community and neighbouring countries. The project has resulted in a new organizational structure for nuclear emergency response, that differs on major points from the existing plans and procedures. In this paper an outline of the new structure is given. Emphasis is placed on accidents with nuclear power plants

  3. 1990 Tier Two emergency and hazardous chemical inventory

    International Nuclear Information System (INIS)

    1991-03-01

    This document contains the 1990 Two Tier Emergency and Hazardous Chemical Inventory. Submission of this Tier Two form (when requested) is required by Title 3 of the Superfund Amendments and Reauthorization Act of 1986, Section 312, Public Law 99--499, codified at 42 U.S.C. Section 11022. The purpose of this Tier Two form is to provide State and local officials and the public with specific information on hazardous chemicals present at your facility during the past year

  4. Medical Managment of the Acute Radiation Syndrome: Recommendations of the Strategic National Stockpile Radiation Working Group

    National Research Council Canada - National Science Library

    Waselenka, Jamie K; MacVittie, Thomas J; Blakely, William F; Pesik, Nicki; Wiley, Albert L; Dickerson, William E; Tsu, Horace; Confer, Dennis L; Coleman, Norman; Seed, Thomas

    2004-01-01

    .... This consensus document was developed by the Strategic National Stockpile Radiation Working Group to provide a framework for physicians in internal medicine and the medical subspecialties to evaluate...

  5. DEVELOPMENT OF PASSIVE DETOXIFICATION TECHNOLOGY FOR GOLD HEAP LEACH STOCKPILED WASTES

    OpenAIRE

    M.P. Belykh; A.Yu. Chikin; S.V. Petrov; N.L. Belkova

    2017-01-01

    Purpose. The processes of biopassive detoxication are of special interest for the solution of environmental issues of detoxification of gold heap leach cyanide-bearing wastes whose detoxification period is unlimited. These processes are based on spontaneous degradation of cyanides under the influence of natural factors including the action of autochthonous bacterial community. The purpose of the work is to develop a biopassive detoxification technology of heap leach stockpiled wastes. Methods...

  6. 20 Years of Success: Science, Technology, and the Nuclear Weapons Stockpile

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-10-22

    On Oct. 22, 2015, NNSA celebrated the proven success of the Stockpile Stewardship Program at a half-day public event featuring remarks by Secretary of Energy Ernest Moniz, Secretary of State John Kerry, and Under Secretary for Nuclear Security and NNSA Administrator Lt. Gen. (retired) Frank G. Klotz. The event also featured remarks by Deputy Secretary of Energy Elizabeth Sherwood-Randall and NNSA Principal Deputy Administrator Madelyn Creedon.

  7. Media and public relation. Part of emergency planning

    International Nuclear Information System (INIS)

    Jurkovic, I.A.; Debrecin, N.; Feretic, D.; Skanata, D.

    2000-01-01

    In the event of an emergency, media relation should be considered as one of the most important functions in emergency management. Individuals should be trained to be able to provide factual information to the media and the citizens during nuclear emergencies. Media can be also acquainted with the scope, ways and means of providing information related to nuclear emergencies during the predefined and regular media training or workshops, or as a part of regular training routine of involved organizations and institutions. This paper is through various approaches trying to present one of the possible ways that media and public relation can be treated during the emergencies and inside the developed emergency plans and procedures. It also represents an idea, based on the authors' experience, on a way in which things can be organized in the Croatian Technical Support Center when it comes to the media/public relation issue. (author)

  8. 29 CFR 1917.30 - Emergency action plans.

    Science.gov (United States)

    2010-07-01

    ... action plans—(1) Scope and application. This paragraph (a) requires all employers to develop and... departments that can be contacted for further information or explanation of duties under the plan. (3) Alarm... emergency action and for reaction time for safe escape of employees from the workplace or the immediate work...

  9. Chemical Emergencies

    Science.gov (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  10. On-site emergency intervention plan for nuclear accident situation at SCN-Pitesti TRIGA Reactor

    International Nuclear Information System (INIS)

    Margeanu, S.; Oprea, I.

    2008-01-01

    A 14 MW TRIGA research reactor is operated on the Institute for Nuclear Research site. In the event of a nuclear accident or radiological emergency that may affect the public the effectiveness of protective actions depends on the adequacy of intervention plans prepared in advance. Considerable planning is necessary to reduce to manageable levels the types of decisions leading to effective responses to protect the public in such an event. The essential structures of our on-site, off-site and county emergency intervention plan and the correlation between emergency intervention plans are presented. (authors)

  11. Plan for national nuclear emergency preparedness

    International Nuclear Information System (INIS)

    1992-06-01

    The responsibility for Denmark's preparedness for nuclear emergencies lies with the Ministry of the Interior and the Civil Defense administration. The latter is particularly responsible for the presented plan which clarifies the organization and the measures to be taken in order to protect the public where, in the event of such an emergency, it could be in danger of radiation from radioactive materials. The main specifications of the plan, the activation of which covers the whole country, are that daily monitoring should be carried out so that warnings of nuclear accidents can be immediately conveyed to the relevant parties and that immediate action can be taken. These actions should result in the best possible protection against nuclear radiation so that acute and chronic damage to the health of members of the public can be restricted. The public, and relevant authorities should be informed of the situation and it should be attempted to regulate the reactions of individuals and of the society in general in such a way that damage to health, or social and economical conditions, can be restricted as much as possible. Denmark has not itself any atomic power plants, but some are located in neighbour countries and there are other sources such as nuclear research reactors, passing nuclear-driven ships etc. The detailed plan also covers possible sources of radiation, the nature of related damage to health, international cooperation, legal aspects, and a very detailed description of the overall administration and of the responsibilities of the organizations involved. (AB)

  12. A decision support framework for characterizing and managing dermal exposures to chemicals during Emergency Management and Operations.

    Science.gov (United States)

    Dotson, G Scott; Hudson, Naomi L; Maier, Andrew

    2015-01-01

    Emergency Management and Operations (EMO) personnel are in need of resources and tools to assist in understanding the health risks associated with dermal exposures during chemical incidents. This article reviews available resources and presents a conceptual framework for a decision support system (DSS) that assists in characterizing and managing risk during chemical emergencies involving dermal exposures. The framework merges principles of three decision-making techniques: 1) scenario planning, 2) risk analysis, and 3) multicriteria decision analysis (MCDA). This DSS facilitates dynamic decision making during each of the distinct life cycle phases of an emergency incident (ie, preparedness, response, or recovery) and identifies EMO needs. A checklist tool provides key questions intended to guide users through the complexities of conducting a dermal risk assessment. The questions define the scope of the framework for resource identification and application to support decision-making needs. The framework consists of three primary modules: 1) resource compilation, 2) prioritization, and 3) decision. The modules systematically identify, organize, and rank relevant information resources relating to the hazards of dermal exposures to chemicals and risk management strategies. Each module is subdivided into critical elements designed to further delineate the resources based on relevant incident phase and type of information. The DSS framework provides a much needed structure based on contemporary decision analysis principles for 1) documenting key questions for EMO problem formulation and 2) a method for systematically organizing, screening, and prioritizing information resources on dermal hazards, exposures, risk characterization, and management.

  13. Management and training aspects of the emergency plan

    International Nuclear Information System (INIS)

    Lakey, J.R.A.

    1996-01-01

    The main objectives of an emergency management system are to prevent or reduce the likelihood of consequential loss in the event of an emergency occurring. In the event of a nuclear accident the effectiveness of measures for the protection of the public will depend on the advance preparation especially in education and training. This paper reviews two recent initiatives and concludes with comments on the future development of this subject. There is an increasing requirement in legal and moral terms for industry to inform the population of health hazards to which they are exposed. In a report published by the Nuclear Energy Agency (NEA/OECD) radiation protection was described as a subject which is impenetrable to the layman and as wide as it is complex. For this and other reasons radiation hazards are perceived to exceed all others and the public appear to have a poor image of the radiation protection specialists. Communication with the public and the media is widely recognized as a key pan of an emergency plan. This view is supported in the European Union which has sponsored the book on 'Radiation and Radiation Protection - a course for primary and secondary schools' which is described in this paper. The training of emergency teams includes the use of drills and exercises to maintain skills and can also be used to test the adequacy of plans. Every effort should be made to simulate the pressure on time and resources which would occur in a real event. Radiation emergencies are fortunately rare and so there is little practical experience of these events. The emergency worker must gain some radiation protection skills and must be able to use some technical language when communicating with specialist advisors. For this reason the European Union has sponsored the book 'Radiation Protection for Emergency Workers' which is also described in this paper. (author)

  14. Work-Family Planning Attitudes among Emerging Adults

    Science.gov (United States)

    Basuil, Dynah A.; Casper, Wendy J.

    2012-01-01

    Using social learning theory as a framework, we explore two sets of antecedents to work and family role planning attitudes among emerging adults: their work-family balance self-efficacy and their perceptions of their parents' work-to-family conflict. A total of 187 college students completed a questionnaire concerning their work-family balance…

  15. 76 FR 41273 - National Emergency Communications Plan (NECP) Tribal Report

    Science.gov (United States)

    2011-07-13

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2011-0025] National Emergency Communications Plan... Communications (CS&C), Office of Emergency Communications (OEC), will submit the following information collection request (ICR) to the Office of Management and Budget (OMB) for review and clearance in accordance with the...

  16. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 2

    International Nuclear Information System (INIS)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. To address the facility-specific and site-specific vulnerabilities, responsible DOE and site-contractor line organizations have developed initial site response plans. These plans, presented as Volume 2 of this Management Response Plan, describe the actions needed to mitigate or eliminate the facility- and site-specific vulnerabilities identified by the CSV Working Group field verification teams. Initial site response plans are described for: Brookhaven National Lab., Hanford Site, Idaho National Engineering Lab., Lawrence Livermore National Lab., Los Alamos National Lab., Oak Ridge Reservation, Rocky Flats Plant, Sandia National Laboratories, and Savannah River Site

  17. Emergency Evacuation of Hazardous Chemical Accidents Based on Diffusion Simulation

    OpenAIRE

    Jiang-Hua Zhang; Hai-Yue Liu; Rui Zhu; Yang Liu

    2017-01-01

    The recent rapid development of information technology, such as sensing technology, communications technology, and database, allows us to use simulation experiments for analyzing serious accidents caused by hazardous chemicals. Due to the toxicity and diffusion of hazardous chemicals, these accidents often lead to not only severe consequences and economic losses, but also traffic jams at the same time. Emergency evacuation after hazardous chemical accidents is an effective means to reduce the...

  18. Knowledge-based emergency planning for storage tank farms

    Czech Academy of Sciences Publication Activity Database

    Nevrlý, Václav; Bitala, P.; Nevrlá, P.; Střižík, Michal

    2008-01-01

    Roč. 10, č. 1 (2008), s. 10-15 ISSN 1335-4205 Institutional research plan: CEZ:AV0Z20760514 Keywords : emergency * preparedness * modeling tank fire boilover Subject RIV: AQ - Safety, Health Protection, Human - Machine http://www.utc.sk/komunikacie

  19. Inspection of licensee activities in emergency planning

    International Nuclear Information System (INIS)

    Van Binnebeek, J.J.; Gutierrez Ruiz, Luis Miguel; Bouvrie, E. des; Aro, Ilari; Gil, J.; Balloffet, Yves; Forsberg, Staffan; Klonk, H.; Lang, Hans-Guenter; Fichtinger, G.; Warren, T.; Manzella, P.; Gallo, R.; Koizumi, Hiroyoshi; Johnson, M.; Pittermann, P.

    1998-01-01

    The CNRA believes that safety inspections are a major element in the regulatory authority's efforts to ensure the safe operation of nuclear facilities. Considering the importance of these issues, the Committee has established a special Working Group on Inspection Practices (WGIP). The purpose of WGIP, is to facilitate the exchange of information and experience related to regulatory safety inspections between CNRA Member countries Following discussions at several meetings on the topic of what is expected by the regulatory body regarding inspection criteria, WGIP proposed putting together a compilation of Member countries practices on regulatory inspection practices with respect to licensee emergency planning. CNRA approved this task and this report. Information was collected from a questionnaire which was issued in 1996. The report presents information on regulatory inspection activities with respect to emergency planning in NEA Member countries. The focus of the report is on the third section. It reviews the similarities and differences in inspection practices to evaluate compliance with the requirements over which the regulatory body (RB) has jurisdiction

  20. Standard review plan for the review and evaluation of emergency plans for research and test reactors. Technical report

    International Nuclear Information System (INIS)

    Bates, E.F.; Grimes, B.K.; Ramos, S.L.

    1982-05-01

    This document provides a Standard Review Plan for the guidance of the NRC staff to assure that complete and uniform reviews are made of research and test reactor emergency plans. The report is organized under ten planning standards which correspond to the guidance criteria in Draft II of ANSI/ANS 15.16 as endorsed by Revision 1 to Regulatory Guide 2.6. The applicability of the items under each planning standard is indicated by subdivisions of the steady state thermal power levels at which the reactors are licensed to operate. Standard emergency classes and example action levels for research and test reactors which should initiate these classes are given in an Appendix

  1. Decision fundamentals for emergencies in fuel fabrication plants

    International Nuclear Information System (INIS)

    Thomas, W.; Pfeffer, W.; Wiesemes, J.

    1995-01-01

    This report is a compilation of fundamental physical and chemical data for emergencies in fuel element fabrication facilities. The release of uranium and plutonium and a criticality accident constitute the main hazards to be considered. In addition information related to the chemical risk of a release of toxic uranium hexafluoride is included in the report. This fundamental information is to be applied in planning emergency measures and could be useful as advisory material for the emergency staff. (orig.) [de

  2. Access to In-Network Emergency Physicians and Emergency Departments Within Federally Qualified Health Plans in 2015

    Directory of Open Access Journals (Sweden)

    Stephen C. Dorner, MSc

    2016-01-01

    Full Text Available Introduction: Under regulations established by the Affordable Care Act, insurance plans must meet minimum standards in order to be sold through the federal Marketplace. These standards to become a qualified health plan (QHP include maintaining a provider network sufficient to assure access to services. However, the complexity of emergency physician (EP employment practices – in which the EPs frequently serve as independent contractors of emergency departments, independently establish insurance contracts, etc... – and regulations governing insurance repayment may hinder the application of network adequacy standards to emergency medicine. As such, we hypothesized the existence of QHPs without in-network access to EPs. The objective is to identify whether there are QHPs without in-network access to EPs using information available through the federal Marketplace and publicly available provider directories. Results: In a national sample of Marketplace plans, we found that one in five provider networks lacks identifiable in-network EPs. QHPs lacking EPs spanned nearly half (44% of the 34 states using the federal Marketplace. Conclusion: Our data suggest that the present regulatory framework governing network adequacy is not generalizable to emergency care, representing a missed opportunity to protect patient access to in-network physicians. These findings and the current regulations governing insurance payment to EPs dis-incentivize the creation of adequate physician networks, incentivize the practice of balance billing, and shift the cost burden to patients.

  3. Non-nuclear radiological emergencies. Special plan for radiological risk of the Valencian Community

    International Nuclear Information System (INIS)

    Rodríguez Rodrigo, I.; Piles Alepuz, I.; Peiró Juan, J.; Calvet Rodríguez, D.

    2015-01-01

    After the publication of the Radiological Hazard Basic Directive, Generalitat (the regional government in Valencian Community) initiated the edition of the pertinent Special Plan, with the objective to assemble the response of all the Security and Emergency Agencies, including the Armed Forces, in a radiological emergency affecting the territory of the Valencian Community, under a single hierarchy command. Being approved and homologated the Radiological Hazard Special Plan, Generalitat has undertaken the implementation process planned to finish in June 2015. Following the same process as other Plans, implementation is organized in a first informative stage, followed of a formative and training stage, and finishing with an activation exercise of the Plan. At the end of the process, is expected that every Agency will know their functions, the structure and organization in which the intervention takes place, the resources needed, and adapt their protocols to the Plan requirements. From the beginning, it has been essential working together with the Nuclear Safety Council, as is established in the agreement signed in order to collaborate in Planning, Preparedness and Response in Radiological Emergencies. [es

  4. Selection of bioaccumulation criteria for environmental emergency (E2) planning

    International Nuclear Information System (INIS)

    Ketcheson, K.; Hradecky, K.; Gagne, M.; St-Amant-Verret, M.

    2006-01-01

    Environment Canada's Environmental Emergency regulations require the evaluation of a substance by a Risk Evaluation Framework (REF). Bioaccumulation criteria are used within the environmental hazard ratings section of the REF to determine the risk of a substance to organisms and are obtained from 3 types of measurements depending on data reliability: (1) bioaccumulation factors (BAF); (2) bioconcentration factors (BCF); and (3) an octanol-water partition coefficient (log K ow ). This paper presented details of a study of international and regional bioaccumulation criteria conducted to aid in determining appropriate criteria for E2 regulations and plans, with specific reference to substances toxic to aquatic organisms. An E2 plan is required if a substance has a bioconcentration factor of more than 500 in conjunction with aquatic toxicity. Bioaccumulation criteria from several sources for 745 substances were obtained to aid in choosing the most important parameters. Various international and regional criteria were examined and corresponding sources were summarized, and different source criteria was compared with empirical chemical data. The criteria chosen included both log K ow values and BCF values, although it was suggested that BCF and BAF are more realistic measures of bioaccumulation than log K ow , as they are derived from animal studies. The chosen values agreed with the virtual elimination criteria set out by the Canadian Environmental Protection Act (CEPA) 1999 as well as United States Environmental Protection Agency (EPA) criteria. It was concluded that the bioaccumulation criteria for E2 planning will help Environment Canada ensure the protection of the environment from hazardous substances. 11 refs., 3 tabs., 5 figs

  5. An investigation on technical bases of emergency plan zone determination of Qinshan Nuclear Power Base

    International Nuclear Information System (INIS)

    Duan Xuyi

    2000-01-01

    According to the general principal and the basic method of determination of emergency zone and safety criteria and in the light of the environmental and accidental release characteristic of Qinshan Nuclear Power Base, the expectation dose of assumed accident of each plant was compared and analyzed. In consideration of the impact factor of the size of emergency plan zone and referring to the information of emergency plan zone determination of other country in the world, the suggestions of determination method of emergency plan zone are proposed

  6. Chemical Spill Prevention, Control, and Countermeasures Plan: 100 Areas

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Y.M.

    1989-06-01

    The purpose of this Chemical Spill Prevention, Control, and Countermeasures (SPCC) Plan is to identify the chemical spill control practices, procedures, and containment devices Westinghouse Hanford Company (Westinghouse Hanford) employs to prevent a reportable quantity (RQ) of a hazardous substance (as defined in 40 CFR Part 302) from being released to the environment. The chemical systems and chemical storage facilities in the 100 Areas are described. This document traces the ultimate fate of accidental chemical spills at the 100 Areas. Also included in the document destinations, spill containment devices, and systems surveillance frequencies. 2 tabs.

  7. Chemical Spill Prevention, Control, and Countermeasures Plan: 100 Areas

    International Nuclear Information System (INIS)

    Chien, Y.M.

    1989-06-01

    The purpose of this Chemical Spill Prevention, Control, and Countermeasures (SPCC) Plan is to identify the chemical spill control practices, procedures, and containment devices Westinghouse Hanford Company (Westinghouse Hanford) employs to prevent a reportable quantity (RQ) of a hazardous substance (as defined in 40 CFR Part 302) from being released to the environment. The chemical systems and chemical storage facilities in the 100 Areas are described. This document traces the ultimate fate of accidental chemical spills at the 100 Areas. Also included in the document destinations, spill containment devices, and systems surveillance frequencies. 2 tabs

  8. 40 CFR 355.11 - To what substances do the emergency planning requirements of this subpart apply?

    Science.gov (United States)

    2010-07-01

    ... PLANNING AND NOTIFICATION Emergency Planning Who Must Comply § 355.11 To what substances do the emergency... 40 Protection of Environment 27 2010-07-01 2010-07-01 false To what substances do the emergency planning requirements of this subpart apply? 355.11 Section 355.11 Protection of Environment ENVIRONMENTAL...

  9. The Emergency Action Plan of the Spanish Nuclear Safety Council (CSN)

    International Nuclear Information System (INIS)

    Calvin Cuarteto, M.; Camarma, J. R.; Martin Calvarro, J. M

    2007-01-01

    The Spanish Nuclear safety Council (CSN) has assigned by law among others the function to coordinate the measures of support and answer to nuclear emergency situations for all the aspects related with nuclear safety and radiological protection. Integrating and coordinating the different organisations public and private companies whose aid is necessary for the fulfilment of the functions attributed to the Regulatory Body. In order to suitable perform this function, CSN has equipped itself with an Emergency Action Plan that structures the response organization, establishes responsibility levels, incorporates basic performance procedures and includes capabilities to face the nuclear and radiological emergencies considering the external supports, resulting from the collaboration agreements with public institutions and private companies. To accomplish the above mentioned Emergency Action Plan, CSN has established and implanted a formation and training and re-training program for the organization response for emergencies and has update an operative centre (Emergency Room called Salem), equipped with infrastructures, tools and communication and operative systems that incorporate the more advanced technologies available to date. (Author)

  10. Emergency Evacuation of Hazardous Chemical Accidents Based on Diffusion Simulation

    Directory of Open Access Journals (Sweden)

    Jiang-Hua Zhang

    2017-01-01

    Full Text Available The recent rapid development of information technology, such as sensing technology, communications technology, and database, allows us to use simulation experiments for analyzing serious accidents caused by hazardous chemicals. Due to the toxicity and diffusion of hazardous chemicals, these accidents often lead to not only severe consequences and economic losses, but also traffic jams at the same time. Emergency evacuation after hazardous chemical accidents is an effective means to reduce the loss of life and property and to smoothly resume the transport network as soon as possible. This paper considers the dynamic changes of the hazardous chemicals’ concentration after their leakage and simulates the diffusion process. Based on the characteristics of emergency evacuation of hazardous chemical accidents, we build a mixed-integer programming model and design a heuristic algorithm using network optimization and diffusion simulation (hereafter NODS. We then verify the validity and feasibility of the algorithm using Jinan, China, as a computational example. In the end, we compare the results from different scenarios to explore the key factors affecting the effectiveness of the evacuation process.

  11. Land use planning and chemical sites. Summary report

    DEFF Research Database (Denmark)

    Grønberg, Carsten D.

    2000-01-01

    A methodology for land-use planning involving chemical sites has been developed for making decisions in local and regional administrations. The methodology treats land-use planning as a multi criteria decision and structures the planning process in sevensteps, where one can loop through the steps...... several times. Essential for the methodology is the specification of objectives setting the frame in which the alternatives are assessed and compared. The complete list of objectives includes the followingitems: safety and accidents, public distortion and health, environmental impact, cultural and natural...

  12. High-risk facilities. Emergency management in nuclear, chemical and hazardous waste facilities

    International Nuclear Information System (INIS)

    Kloepfer, Michael

    2012-01-01

    The book on emergency management in high-risk facilities covers the following topics: Change in the nuclear policy, risk management of high-risk facilities as a constitutional problem - emergency management in nuclear facilities, operational mechanisms of risk control in nuclear facilities, regulatory surveillance responsibilities for nuclear facilities, operational mechanism of the risk control in chemical plants, regulatory surveillance responsibilities for chemical facilities, operational mechanisms of the risk control in hazardous waste facilities, regulatory surveillance responsibilities for hazardous waste facilities, civil law consequences in case of accidents in high-risk facilities, criminal prosecution in case of accidents in high-risk facilities, safety margins as site risk for emission protection facilities, national emergency management - strategic emergency management structures, warning and self-protection of the public in case of CBRN hazards including aspects of the psych-social emergency management.

  13. The Army and chemical weapons destruction: Implementation in a changing context

    International Nuclear Information System (INIS)

    Lambright, W.H.; Gereben, A.; Cerveny, L.

    1998-01-01

    In 1985, Congress directed the Army to destroy the nation's stockpile of chemical weapons. The estimate was that this task could be accomplished by 1994 at a cost of $1.7 billion. By 1998, only a portion of the stockpile has been destroyed, the deadline extended to 2007 and the estimated cost had risen to approximately $16 billion. This paper discusses the factors underlying cost escalation and missed deadlines. It examines the diffusion of control over the implementation process surrounding the chemical weapons demilitarization (Chem Demil) program in the US. Focusing on the role of the Army and its difficulties in adjusting strategies in the face of political change from the Cold War to the post-Cold War setting, it analyzes the course of implementation through three converging streams of political activity. What differentiates the federal, intergovernmental, and international streams are the nature and number of actors, and the type of pressures with which the Army must deal

  14. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  15. Planned change or emergent change implementation approach and nurses' professional clinical autonomy.

    Science.gov (United States)

    Luiking, Marie-Louise; Aarts, Leon; Bras, Leo; Grypdonck, Maria; van Linge, Roland

    2017-11-01

    Nurses' clinical autonomy is considered important for patients' outcome and influenced by the implementation approach of innovations. Emergent change approach with participation in the implementation process is thought to increase clinical autonomy. Planned change approach without this participation is thought not to increase clinical autonomy. Evidence of these effects on clinical autonomy is however limited. To examine the changes in clinical autonomy and in personal norms and values for a planned change and emergent change implementation of an innovation, e.g. intensive insulin therapy. Prospective comparative study with two geographically separated nurses' teams on one intensive care unit (ICU), randomly assigned to the experimental conditions. Data were collected from March 2008 to January 2009. Pre-existing differences in perception of team and innovation characteristics were excluded using instruments based on the innovation contingency model. The Nursing Activity Scale was used to measure clinical autonomy. The Personal Values and Norms instrument was used to assess orientation towards nursing activities and the Team Learning Processes instrument to assess learning as a team. Pre-implementation the measurements did not differ. Post-implementation, clinical autonomy was increased in the emergent change team and decreased in the planned change team. The Personal Values and Norms instrument showed in the emergent change team a decreased hierarchic score and increased developmental and rational scores. In the planned change team the hierarchical and group scores were increased. Learning as a team did not differ between the teams. In both teams there was a change in clinical autonomy and orientation towards nursing activities, in line with the experimental conditions. Emergent change implementation resulted in more clinical autonomy than planned change implementation. If an innovation requires the nurses to make their own clinical decisions, an emergent change

  16. Medical emergency planning in case of severe nuclear power plant accidents

    International Nuclear Information System (INIS)

    Ohlenschlaeger, L.

    1980-01-01

    This paper is an attempt to discuss a three-step-plan on medical emergency planning in case of severe accidents at nuclear power plants on the basis of own experiences in the regional area as well as on the basis of recommendations of the Federal Minister of the Interior. The medical considerations take account of the severity and extension of an accident whereby the current definitions used in nuclear engineering for accident situations are taken as basis. A comparison between obligatory and actual state is made on the possibilities of medical emergency planning, taking all capacities of staff, facilities, and equipment available in the Federal Republic of Germany into account. To assure a useful and quick utilization of the existing infra-structure as well as nation-wide uniform training of physicians and medical assistants in the field of medical emergency in case of a nuclear catastrophe, a federal law for health protection is regarded urgently necessary. (orig.) [de

  17. Destruction and waste treatment methods used in a chemical agent disposal project. Memorandum report

    Energy Technology Data Exchange (ETDEWEB)

    McAndless, J.; Fedor, V.; Kinderwater, T.

    1992-10-01

    This report describes the equipment and methods used to thermally decontaminate scrap metal and destroy stockpiles of nerve agents, mustard and lewisite chemical warfare agents. Mustard was destroyed by direct incineration whereas the nerve agents and lewisite were chemically neutralized. The arsenic waste from the lewisite neutralization process was chemically-fixated in concrete for final disposal by landfilling. The scrap metal was incinerated and rendered suitable for recycling into metal feedstock.

  18. Thermal desorption-gas chromatography-mass spectrometry methods and strategy for screening of chemical warfare agents, their precursors and degradation products in environmental, industrial and waste samples

    NARCIS (Netherlands)

    Terzic, O.

    2016-01-01

    The Organisation for the Prohibition of Chemical Weapons (OPCW) is the international organisation set to oversee the implementation of the Chemical Weapons Convention treaty that prohibits the development, production, acquisition, stockpiling, retention, transfer or use of chemical weapons by States

  19. Studies of planning behavior of aircraft pilots in normal, abnormal, and emergency situations

    Science.gov (United States)

    Johannsen, G.; Rouse, W. B.; Hillmann, K.

    1981-01-01

    A methodology for the study of human planning behavior in complex dynamic systems is presented and applied to the study of aircraft pilot behavior in normal, abnormal and emergency situations. The method measures the depth of planning, that is the level of detail employed with respect to a specific task, according to responses to a verbal questionnaire, and compares planning depth with variables relating to time, task criticality and the probability of increased task difficulty. In two series of experiments, depth of planning was measured on a five- or ten-point scale during various phases of flight in a HFB-320 simulator under normal flight conditions, abnormal scenarios involving temporary runway closure due to snow removal or temporary CAT-III conditions due to a dense fog, and emergency scenarios involving engine shut-down or hydraulic pressure loss. Results reveal a dichotomy between event-driven and time-driven planning, different effects of automation in abnormal and emergency scenarios and a low correlation between depth of planning and workload or flight performance.

  20. Quality Control of Meteorological Data for the Chemical Stockpile Emergency Preparedness Program

    Science.gov (United States)

    2009-03-01

    Time constant 10 s — Solar radiation Eppley 8–48 pyranometer Resolution 10 W m22 10 W m22 Accuracy 65% 65% Time constant 5 s 5 s Spectral response 285...sensor above 90% RH. c 22 W m22 allows for the potential negative offset produced by radiative cooling of the dome of the pyranometer on clear nights...and the winds are light, which suggests that frost may be forming on the pyranometer dome during the night. (The pyranometers are not equipped with

  1. Assessing the capacity of the healthcare system to use additional mechanical ventilators during a large-scale public health emergency (PHE)

    Science.gov (United States)

    Ajao, Adebola; Nystrom, Scott V.; Koonin, Lisa M.; Patel, Anita; Howell, David R.; Baccam, Prasith; Lant, Tim; Malatino, Eileen; Chamberlin, Margaret; Meltzer, Martin I.

    2015-01-01

    A large-scale Public Health Emergency (PHE), like a severe influenza pandemic can generate large numbers of critically ill patients in a short time. We modeled the number of mechanical ventilators that could be used in addition to the number of hospital-based ventilators currently in use. We identified key components of the healthcare system needed to deliver ventilation therapy, quantified the maximum number of additional ventilators that each key component could support at various capacity levels (i.e. conventional, contingency and crisis) and determined the constraining key component at each capacity level. Our study results showed that U.S. hospitals could absorb between 26,200 and 56,300 additional ventilators at the peak of a national influenza pandemic outbreak with robust pre-pandemic planning. This methodology could be adapted by emergency planners to determine stockpiling goals for critical resources or identify alternatives to manage overwhelming critical care need. PMID:26450633

  2. Report on the emergency evacuation review team on emergency response plans for the Perry and Davis-Besse nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This book is a report by Ohio's Emergency Evacuation Review Team, at the request of Governor Richard Celeste. The Team concludes that the current emergency response plan for Ohio's reactors is inadequate to protect the public and recommends changes in the current emergency plant requirements. The report also includes a summary of the litigation that has occurred since Celeste withdrew his support for the plans, a list of experts consulted, and sources used to prepare the report. An important document, and a study which every state should undertake

  3. Digital Radiography and Computed Tomography (DRCT) Product Improvement Plan (PIP)

    Energy Technology Data Exchange (ETDEWEB)

    Tim Roney; Bob Pink; Karen Wendt; Robert Seifert; Mike Smith

    2010-12-01

    The Idaho National Laboratory (INL) has been developing and deploying x-ray inspection systems for chemical weapons containers for the past 12 years under the direction of the Project Manager for Non-Stockpile Chemical Materiel (PMNSCM). In FY-10 funding was provided to advance the capabilities of these systems through the DRCT (Digital Radiography and Computed Tomography) Product Improvement Plan (PIP), funded by the PMNSCM. The DRCT PIP identified three research tasks; end user study, detector evaluation and DRCT/PINS integration. Work commenced in February, 2010. Due to the late start and the schedule for field inspection of munitions at various sites, it was not possible to spend sufficient field time with operators to develop a complete end user study. We were able to interact with several operators, principally Mr. Mike Rowan who provided substantial useful input through several discussions and development of a set of field notes from the Pueblo, CO field mission. We will be pursuing ongoing interactions with field personnel as opportunities arise in FY-11.

  4. Emergency planning and the Control of Major Accident Hazards (COMAH/Seveso II) Directive: An approach to determine the public safety zone for toxic cloud releases

    International Nuclear Information System (INIS)

    O'Mahony, Mary T.; Doolan, Donal; O'Sullivan, Alice; Hession, Michael

    2008-01-01

    The EU Control of Major Accidents Hazards Directive (Seveso II) requires an external emergency plan for each top tier site. This paper sets out a method to build the protection of public health into emergency planning for Seveso sites in the EU. The method involves the review of Seveso site details prescribed under the directive. The site safety report sets out the potential accident scenarios. The safety report's worst-case scenario, and chemical involved, is used as the basis for the external emergency plan. A decision was needed on the appropriate threshold value to use as the level of concern to protect public health. The definitions of the regulatory standards (air quality standards and occupational standards) in use were studied, how they are derived and for what purpose. The 10 min acute exposure guideline level (AEGL) for a chemical is recommended as the threshold value to inform decisions taken to protect public health from toxic cloud releases. The area delimited by AEGL 1 defines the population who may be concerned about being exposed. They need information based on comprehensive risk assessment. The area delimited by AEGL 2 defines the population for long-term surveillance when indicated and may include first responders. The area delimited by AEGL 3 defines the population who may present acutely to the medical services. It ensures that the emergency responders site themselves safely. A standard methodology facilitates discussions with plant operators and concerned public. Examples show how the methodology can be adapted to suit explosive risk and response to fire

  5. 10 CFR 63.161 - Emergency plan for the geologic repository operations area through permanent closure.

    Science.gov (United States)

    2010-01-01

    ... Planning Criteria § 63.161 Emergency plan for the geologic repository operations area through permanent... 10 Energy 2 2010-01-01 2010-01-01 false Emergency plan for the geologic repository operations area... may occur at the geologic repository operations area, at any time before permanent closure and...

  6. Strategic Planning for Emergencies: Lessons Learned from Katrina

    International Nuclear Information System (INIS)

    Hamilton, M. G.; Mashhadi, H.; Habeck, D.

    2007-01-01

    The tragedy that was unleashed when hurricane Katrina hit the United States southern coast and most particularly New Orleans is still being examined. Regardless of the allocation of blame for the response, or lack thereof, several very important components of what needs to be included in effective strategic, management, and response plans were revealed in the aftermath. The first tenet is to be sure not to make the problem worse. In other words, the goal is to prevent emergencies from becoming a disaster that subsequently grows to a catastrophe. Essential components that need to be addressed start with protection and rescue of affected people. Several characteristics of an effective strategic plan that will address saving lives include leadership, continuity of government and business, effective communications, adequate evacuation plans and security of electronic infrastructure. Katrina analysis confirms that the process to integrate all the components is too complex to be accomplished ad hoc. This presentation will outline objective methodology to successfully integrate the various facets that comprise an effective strategic plan, management plan, and tactical plans.(author)

  7. Integrated surgical emergency training plan in the internship: A step toward improving the quality of training and emergency center management.

    Science.gov (United States)

    Akhlaghi, Mohammad Reza; Vafamehr, Vajiheh; Dadgostarnia, Mohammad; Dehghani, Alireza

    2013-01-01

    In this study, by using a problem-oriented approach in the needs assessment, identifying the defects and deficiencies in emergency health training centers has been determined as the basis for the requirements. The main objective of the study was the implementation of surgical emergencies integration of the five surgical groups (general surgery, urology, orthopedics, neurosurgery, and ENT) to meet the needs and determining its efficacy. THIS INTERVENTIONAL STUDY WAS CONDUCTED IN THREE PHASES: (1) Phase I (design and planning): Needs assessment, recognition of implementation barriers and providing the objectives and training program for integrated emergencies. (2) Phase II (implementation): Justification of the main stakeholders of the project, preparation of students' duties in the emergency department, preparation of on-duty plans, supervising the implementation of the program, and reviewing the plan in parallel with the implementation based on the problems. (3) Phase III (evaluation): Reviewing the evidences based on the amount of efficiency of the plan and justification for its continuation. In the first and the second phase, the data were collected through holding focus group meetings and interviews. In the third phase, the opened-reply and closed-reply researcher-made questionnaires were used. The questionnaire face and content validity were confirmed by experts and the reliability was assessed by calculating the Cronbach's alpha. ACCORDING TO THE VIEWS OF THE INTERNS, ASSISTANTS, TEACHERS, AND EMERGENCY PERSONNEL, THE POSITIVE FEATURES OF THE PLAN INCLUDED THE FOLLOWING: Increasing the patients' satisfaction, reducing the patients' stay in the Emergency Department, increasing the speed of handling the patients, balancing the workloads of the interns, direct training of interns by young teachers of emergency medicine, giving the direct responsibility of the patient to the intern, practical and operational training of emergency issues, increasing the teamwork

  8. Involvement of the Public Health Authority in emergency planning and preparedness for nuclear facilities in Hungary

    International Nuclear Information System (INIS)

    Sztanyik, L.B.

    1986-01-01

    It is required by the Hungarian Atomic Energy Act and its enacting clause of 1980 that facilities established for the application of atomic energy be designed, constructed and operated in such a manner that abnormal operational occurrences can be avoided and unplanned exposures to radiation and radioactive substances can be prevented. The primary responsibility for planning and implementing emergency actions rests with the management of the operating organization. Thus one of the prerequisites of licensing the first nuclear power plant in Hungary was the preparation and submission for approval of an emergency plan by the operating organization. In addition to this, the council of the county where the power plant is located has also been obliged to prepare a complementary emergency plan, in co-operation with other regional and national authorities, for the prevention of consequences from an emergency that may extend beyond the site boundary of the plant. In preparing the complementary plan, the emergency plan of the facility had to be taken into account. Unlike most national authorities involved in nuclear matters, the Public Health Authority is involved in the preparation of plans for every kind of emergency in a nuclear facility, including even those whose consequences can probably be confined to the plant site. The paper discusses in detail the role and responsibility of the Public Health Authority in emergency planning and preparedness for nuclear facilities. (author)

  9. Guide for prepare the plan for radiological emergency by the users of ionizing radiation sources

    International Nuclear Information System (INIS)

    1992-01-01

    The Radiological Emergency Plan foresees all the possible radiological accidents with the ionizing sources the entity is using. The measures should be adopted by every factor is supped to take part in the emergencies created. The effectiveness of the guaranteed. THis guide establishes the model for elaborating the radiological Emergency Plans

  10. Chemical Disarmament: Current Problems in Implementing the Chemical Weapons Convention

    Directory of Open Access Journals (Sweden)

    Matoušek, J.

    2006-03-01

    Full Text Available The Chemical Weapons Convention (CWC is briefly characterised by stressing its main pillars, such as verified destruction ofCWstockpiles and destruction/conversion ofCWproduction facilities (CWPFs, verified non-production of CW by the chemical industries, assistance and protection, and international cooperation. The CWC´s leading principle in defining theCW(protecting it generally against scientific and technological development, i. e. so called General Purpose Criterion is thoroughly elucidated showing its relation to the CWC´s sophisticated verification system. Status of implementation (as of August 2005 shows main data obligatory declared by the States Parties (SP, among them 6 possessors of CW stockpiles (Russia, USA, India, South Korea, Albania and Libya. From the declared 71 373 agent-tons, 12 889 have been destroyed, from the declared 8 679 M items of munitions (containers, 2 420 have been destroyed, which means that the anticipated 10 years deadline for CW destruction (after entry into force – EIF will be not managed. For Russia and USA the allowed extension by another 5 years has been already agreed. From the 64 CWPFs (operational after 1946, declared by 12 SPs, 53 have been certified as destroyed/converted. The Organisation for the Prohibition of Chemical Weapons (OPCW is briefly presented and main results of the First Review Conference (2003 analysed on the base of the adopted principal documents. Future problems of implementing the CWC are connected in the first line with its universality, because among 16 non-SPs, several countries (located mainly in the Near East and on the Korean peninsula are presumed to be CW-possessors. Special emphasis is laid on both, threats and benefits of the scientific and technological development for current implementing the CWC as well as of its implementation in future after all CW stockpiles have been destroyed.

  11. The national radiological emergency preparedness and response plan in the Philippines

    International Nuclear Information System (INIS)

    Valdezco, Eulinia Mendoza

    2007-01-01

    The use of radiation sources of various types and activities is now widespread in the fields of industry, medicine, research and education in the Philippines. These radiation sources have been under the regulatory control of the Philippine Nuclear Research Institute (PNRI) to ensure that these materials are used in a safe manner and stored in a safe and secure location, and that those which have exceeded their useful life are appropriately disposed of. And while the safety record of the nuclear industry remains admirable compared to other industries, the occurrence of an accident affecting members of the public is always a possibility but with very low probability. In 2001, the National Disaster Coordinating Council (NDCC) approved the revised National Radiological Emergency Preparedness and Response Plan (RADPLAN). This plan outlines the activities and organizations necessary to mitigate the effects of nuclear emergencies or radiation related accidents. An important component of this plan is the education of the public as well as the emergency responders such as the police authorities fire emergency personnel, medical responders, community leaders and the general public. The threat of nuclear terrorism as an aftermath of the September 11 incident in the United States has also been considered in the latest revision of this document. (author)

  12. 29 July 1991-Royal Order setting up a Higher Institute for Emergency Planning

    International Nuclear Information System (INIS)

    1991-01-01

    This Institute was set up in accordance with national legislation on protection against major industrial risks and Directive 89/618 Euratom on informing the general public about health protection measures to be applied and steps to be taken in the event of a radiological emergency. The Institute's duties include: organizing training for emergency planning and assistance; promoting the exchange of ideas on emergency planning between the authorities and operators of installations which could generate major risks, including nuclear installations; and disseminating adequate and regularly updated information to persons involved in emergency assistance on the risks they incur and the protection measures to be taken. (NEA)

  13. Chemical stability of reactive skin decontamination lotion (RSDL®).

    Science.gov (United States)

    Bogan, R; Maas, H J; Zimmermann, T

    2018-09-01

    Reactive Skin Decontamination Lotion (RSDL ® ) is used for the decontamination of Chemical Warfare Agents and Toxic Industrial Compounds after dermal exposure. It has to be stockpiled over a long period and is handled in all climatic zones. Therefore stability is an essential matter of concern. In this work we describe a study to the chemical stability of RSDL ® as basis for an estimation of shelf life. We analysed RSDL ® for the active ingredient 2,3-butandione monoxime (diacetylmonooxime, DAM), the putative degradation product dimethylglyoxime (DMG) and unknown degradation products by means of a reversed phase high pressure liquid chromatography (HPLC). Calculations were done according to the Arrhenius equation. Based on the temperature dependent rate constants, the time span was calculated, until defined threshold values for DAM and DMG subject to specification and valid regulations were exceeded. The calculated data were compared to the ones gathered from stockpiled samples and samples exposed during foreign mission. The decline of DAM followed first order kinetics, while formation of DMG could be described by zero order kinetics. The rate constants were distinctively temperature dependent. Calculated data were in good accordance to the measured ones from stockpile and mission. Based on a specified acceptable DAM-content of 90% and a valid threshold value of 0.1% (w/w) for the degradation product DMG, RSDL ® proved to be stable for at least four years if stored at the recommended conditions of 15°C-30°C. If continuously stored at higher temperatures shelf life will decrease markedly. Therefore RSDL ® is an object for risk orientated quality monitoring during storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Learning, innovation and communication: evolving dynamics of a nuclear emergency plan

    International Nuclear Information System (INIS)

    Quadros, Andre Luiz Lopes

    2014-01-01

    The technological development inherent to modern societies has placed human beings in situations of choice from a wide variety of possible risks. As a way to protect people and the environment, actions need to be developed in order to reduce possible consequences of the materialisation of these risks. The thermonuclear power generation demand planning in order to prepare answers to possible emergency situations, as even being considered of low probability of occurrence, when they happen have a significant impact on populations and regions of its surroundings. Considering the relevance of this issue, this thesis aimed to identify and analyze the dynamics of preparedness and response to emergency situations in a Nuclear Power Plant, trying to understand its evolution over the time and systematizing it, considering the actors involved, processes of organizational learning, innovation and risk communication, considered as crucial for the development and improvement of emergency plans. Concerning preparedness and response to possible emergency situations in this nuclear plant, it was possible not only to confirm the importance of the three processes studied, but also observe that they can be treated and evaluated in an integrated and systematic way. So, it was presented a model that aims to facilitate the understanding of this perspective and enhance the importance of participation and cooperation between all stakeholders (organizations and the local population) within a socio-participatory perspective. To this end, this exploratory research sought for evidences in documents, participation in planning meetings, direct observation of the general exercises of the CNAAA External Emergency Plan of 2013, interviews with some of the actors involved and through the application of a questionnaire among the population of the Praia Vermelha, in Angra dos Reis, Rio de Janeiro. (author)

  15. New fire and security rules change USA nuclear power plant emergency plans

    International Nuclear Information System (INIS)

    Garrou, A.L.

    1978-01-01

    New safety and security rules for nuclear power plants have resulted from the Energy Reorganisation Act and also from a review following the Browns Ferry fire. The content of the emergency plan which covers personnel, plant, site, as well as a general emergency, is outlined. New fire protection rules, the plan for security, local and state government assistance are also discussed, with a brief reference to the impact of the new rules on continuity of operations. (author)

  16. Ordinance of the Government No. 11/1999 of 9 December 1998 on the Emergency Planning Zone

    International Nuclear Information System (INIS)

    Stary, J.

    1999-01-01

    The Ordinance consists of the following Articles: (1) Proposal for setting up an emergency planning zone; (2) Licensee's engagement in ensuring operation of the national radiation monitoring network within the emergency planning zone; (3) Licensee's engagement in providing population within the emergency planning zone with antidotes; (4) Licensee's contribution to the press and information campaign to ensure preparedness of population within the emergency planning zone in case of radiation accident; (5) Licensee's engagement in ensuring the system of notifying relevant bodies; and (6) Licensee's engagement in ensuring the public warning system. Annexes include two tables: Monitoring of the components of the environment and food chain links within the emergency planning zone during normal radiological situation (Table 1) and during emergency radiological situation (Table 2). The Ordinance is reproduced in the form of facsimile of the relevant pages of the official Collection of Laws of the Czech Republic. The accompanying article highlights the Ordinance proper as well as the background situation including all the related Czech legislative documents and international recommendations. (P.A.)

  17. Emergence of life from multicomponent mixtures of chemicals: the case for experiments with cycling physicochemical gradients.

    Science.gov (United States)

    Spitzer, Jan

    2013-04-01

    The emergence of life from planetary multicomponent mixtures of chemicals is arguably the most complicated and least understood natural phenomenon. The fact that living cells are non-equilibrium systems suggests that life can emerge only from non-equilibrium chemical systems. From an astrobiological standpoint, non-equilibrium chemical systems arise naturally when solar irradiation strikes rotating surfaces of habitable planets: the resulting cycling physicochemical gradients persistently drive planetary chemistries toward "embryonic" living systems and an eventual emergence of life. To better understand the factors that lead to the emergence of life, I argue for cycling non-equilibrium experiments with multicomponent chemical systems designed to represent the evolving chemistry of Hadean Earth ("prebiotic soups"). Specifically, I suggest experimentation with chemical engineering simulators of Hadean Earth to observe and analyze (i) the appearances and phase separations of surface active and polymeric materials as precursors of the first "cell envelopes" (membranes) and (ii) the accumulations, commingling, and co-reactivity of chemicals from atmospheric, oceanic, and terrestrial locations.

  18. Planning and Preparing for Emergency Response to Transport Accidents Involving Radioactive Material. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide provides guidance on various aspects of emergency planning and preparedness for dealing effectively and safely with transport accidents involving radioactive material, including the assignment of responsibilities. It reflects the requirements specified in Safety Standards Series No. TS-R-1, Regulations for the Safe Transport of Radioactive Material, and those of Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Framework for planning and preparing for response to accidents in the transport of radioactive material; 3. Responsibilities for planning and preparing for response to accidents in the transport of radioactive material; 4. Planning for response to accidents in the transport of radioactive material; 5. Preparing for response to accidents in the transport of radioactive material; Appendix I: Features of the transport regulations influencing emergency response to transport accidents; Appendix II: Preliminary emergency response reference matrix; Appendix III: Guide to suitable instrumentation; Appendix IV: Overview of emergency management for a transport accident involving radioactive material; Appendix V: Examples of response to transport accidents; Appendix VI: Example equipment kit for a radiation protection team; Annex I: Example of guidance on emergency response to carriers; Annex II: Emergency response guide.

  19. Should remaining stockpiles of smallpox virus (variola) be destroyed?

    Science.gov (United States)

    Weinstein, Raymond S

    2011-04-01

    In 2011, the World Health Organization will recommend the fate of existing smallpox stockpiles, but circumstances have changed since the complete destruction of these cultures was first proposed. Recent studies suggest that variola and its experimental surrogate, vaccinia, have a remarkable ability to modify the human immune response through complex mechanisms that scientists are only just beginning to unravel. Further study that might require intact virus is essential. Moreover, modern science now has the capability to recreate smallpox or a smallpox-like organism in the laboratory in addition to the risk of nature re-creating it as it did once before. These factors strongly suggest that relegating smallpox to the autoclave of extinction would be ill advised.

  20. Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass.

    Science.gov (United States)

    Roberts, David A; Cole, Andrew J; Paul, Nicholas A; de Nys, Rocky

    2015-09-15

    In most countries the mining industry is required to rehabilitate disturbed land with native vegetation. A typical approach is to stockpile soils during mining and then use this soil to recreate landforms after mining. Soil that has been stockpiled for an extended period typically contains little or no organic matter and nutrient, making soil rehabilitation a slow and difficult process. Here, we take freshwater macroalgae (Oedogonium) cultivated in waste water at a coal-fired power station and use it as a feedstock for the production of biochar, then use this biochar to enhance the rehabilitation of two types of stockpiled soil - a ferrosol and a sodosol - from the adjacent coal mine. While the biomass had relatively high concentrations of some metals, due to its cultivation in waste water, the resulting biochar did not leach metals into the pore water of soil-biochar mixtures. The biochar did, however, contribute essential trace elements (particularly K) to soil pore water. The biochar had very strong positive effects on the establishment and growth of a native plant (Kangaroo grass, Themeda australis) in both of the soils. The addition of the algal biochar to both soils at 10 t ha(-1) reduced the time to germination by the grass and increased the growth and production of plant biomass. Somewhat surprisingly, there was no beneficial effect of a higher application rate (25 t ha(-1)) of the biochar in the ferrosol, which highlights the importance of matching biochar application rates to the requirements of different types of soil. Nevertheless, we demonstrate that algal biochar can be produced from biomass cultivated in waste water and used at low application rates to improve the rehabilitation of a variety of soils typical of coal mines. This novel process links biomass production in waste water to end use of the biomass in land rehabilitation, simultaneously addressing two environmental issues associated with coal-mining and processing. Copyright © 2015

  1. Joint radiation emergency management plan of the international organizations. Emergency preparedness and response. Date effective: 1 January 2007

    International Nuclear Information System (INIS)

    2007-01-01

    binding treaties and have directives and regulations that bear on emergency response arrangements among some States. There are also bilateral agreements between some international organizations that also have relevance to preparedness and response arrangements. In March 2002, the IAEA issued Safety Requirements, entitled 'Preparedness and Response for a Nuclear or Radiological Emergency' (GS-R-2), jointly sponsored by the FAO, IAEA, the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the United Nations Office for the Coordination of Humanitarian Affairs (OCHA), the Pan American Health Organization (PAHO) and WHO. These safety standards imply additional expectations with regard to operational emergency response arrangements. It is recognized by the participating organizations, and reflected in the above requirements, that good planning in advance of an emergency can substantially improve the response. With this in mind, the IAEA, the organizations party to the Conventions, and some other international organizations that participate in the activities of the IACRNA develop and maintain this 'Joint Radiation Emergency Management Plan of the International Organizations' (the Joint Plan), which describes: the objectives of response; the organizations involved in response, their roles and responsibilities, and the interfaces among them and between them and States; operational concepts; and preparedness arrangements. The various organizations reflect these arrangements in their own emergency plans. The IAEA is the main co-ordinating body for development and maintenance of the Joint Plan. All States irrespective whether they are party to one or other of the two Conventions are invited to adopt arrangements that are compatible with those described here when providing relevant information about nuclear or radiological emergencies to relevant international organizations, in order to minimize the radiological consequences and to facilitate the

  2. Ectopic Pregnancy After Plan B Emergency Contraceptive Use.

    Science.gov (United States)

    Steele, Brianne Jo; Layman, Kerri

    2016-04-01

    Pregnancy outcomes after emergency contraceptive use has been debated over time, but review of the literature includes mechanisms by which these medications may increase the chance of an ectopic pregnancy. Such cases are infrequently reported, and many emergency providers may not readily consider this possibility when treating patients. This is a case presentation of ectopic pregnancy in a patient who had recently used Plan B (levonorgestrel) emergency contraceptive. She presented with abdominal pain and vaginal spotting, and was evaluated by serum testing and pelvic ultrasound. She was discovered to have a right adnexal pregnancy. She was treated initially with methotrexate, though she ultimately required surgery for definitive treatment. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: This case report aims to bring a unique clinical case to the attention of emergency providers. The goal is to review research on the topic of levonorgestrel use and the incidence of ectopic pregnancies. The mechanism of action of this emergency contraceptive is addressed, and though no definite causal relationship is known between levonorgestrel and ectopic pregnancies, there is a pharmacologic explanation for how this event may occur after use of this medication. Ultimately, the emergency provider will be reminded of the importance of educating the patient on the possible outcomes after its use, including failure of an emergency contraceptive and the potential of ectopic pregnancy. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Joint radiation emergency management plan of the international organizations. Emergency preparedness and response. Date effective: 1 December 2002

    International Nuclear Information System (INIS)

    2002-11-01

    directives and regulations that bear on emergency response arrangements among some States. There are also bilateral agreements between some international organizations that also have relevance to preparedness and response arrangements. In March 2002, the IAEA Board of Governors approved a Safety Requirements document to be issued according to the IAEA's statutory function 'to establish ... standards of safety for protection of health and minimization of danger to life and property'. These Safety Requirements, entitled 'Preparedness and Response for a Nuclear or Radiological Emergency' (GS-R-2), are being jointly sponsored by the FAO, IAEA, the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (NEA/OECD), the United Nations Office for the Co-ordination of Humanitarian Affairs (OCHA), the Pan American Health Organization (PAHO) and WHO. These safety standards imply additional expectations with regard to operational emergency response arrangements. It has been recognized by the organizations responsible for emergency response, and reflected in the above requirements, that good planning in advance of an emergency can substantially improve the response. Moreover, one of the most important features of emergency response plans is to have clear lines of responsibility and authority. With this in mind, the IAEA, the organizations party to the Conventions, and some other international organizations that participate in the activities of the IACRNA develop and maintain this 'Joint Radiation Emergency Management Plan of the International Organizations' (the Joint Plan), which describes: the objectives of response; the organizations involved in response, their roles and responsibilities, and the interfaces among them and between them and States; operational concepts; and preparedness arrangements. These practical arrangements are reflected in the various organizations own emergency plans. The IAEA is the main co-ordinating body for development and maintenance of the

  4. Siberian Chemical Combine laboratory project work plan, fiscal year 1999

    International Nuclear Information System (INIS)

    Morgado, R.E.; Acobyan, R.; Shropsire, R.

    1998-01-01

    The Siberian Chemical Combine (SKhK), Laboratory Project Work Plan (Plan) is intended to assist the US Laboratory Project Team, and Department of Energy (DOE) staff with the management of the FY99 joint material protection control and accounting program (MPC and A) for enhancing nuclear material safeguards within the Siberian Chemical Combine. The DOE/Russian/Newly Independent States, Nuclear Material Task Force, uses a project work plan document for higher-level program management. The SKhK Plan is a component of the Russian Defense related Sites' input to that document. In addition, it contains task descriptions and a Gantt Chart covering the FY99 time-period. This FY99 window is part of a comprehensive, Project Status Gantt Chart for tasking and goal setting that extends to the year 2003. Secondary and tertiary levels of detail are incorporated therein and are for the use of laboratory project management. The SKhK Plan is a working document, and additions and modifications will be incorporated as the MPC and A project for SKhK evolves

  5. Campus Capability Plan

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Arsenlis, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bailey, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bergman, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brase, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brenner, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Camara, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carlton, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cheng, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chrzanowski, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Colson, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); East, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Farrell, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferranti, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gursahani, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hansen, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Helms, L. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hernandez, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jeffries, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Larson, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lu, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNabb, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mercer, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Skeate, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sueksdorf, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zucca, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Le, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ancria, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scott, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Leininger, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gagliardi, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gash, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bronson, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chung, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hobson, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meeker, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanchez, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zagar, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Quivey, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sommer, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Atherton, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-06

    Lawrence Livermore National Laboratory Campus Capability Plan for 2018-2028. Lawrence Livermore National Laboratory (LLNL) is one of three national laboratories that are part of the National Nuclear Security Administration. LLNL provides critical expertise to strengthen U.S. security through development and application of world-class science and technology that: Ensures the safety, reliability, and performance of the U.S. nuclear weapons stockpile; Promotes international nuclear safety and nonproliferation; Reduces global danger from weapons of mass destruction; Supports U.S. leadership in science and technology. Essential to the execution and continued advancement of these mission areas are responsive infrastructure capabilities. This report showcases each LLNL capability area and describes the mission, science, and technology efforts enabled by LLNL infrastructure, as well as future infrastructure plans.

  6. Development of a statewide hospital plan for radiologic emergencies

    International Nuclear Information System (INIS)

    Dainiak, Nicholas; Delli Carpini, Domenico; Bohan, Michael; Werdmann, Michael; Wilds, Edward; Barlow, Agnus; Beck, Charles; Cheng, David; Daly, Nancy; Glazer, Peter; Mas, Peter; Nath, Ravinder; Piontek, Gregory; Price, Kenneth; Albanese, Joseph; Roberts, Kenneth; Salner, Andrew L.; Rockwell, Sara

    2006-01-01

    Although general guidelines have been developed for triage of victims in the field and for hospitals to plan for a radiologic event, specific information for clinicians and administrators is not available for guidance in efficient management of radiation victims during their early encounter in the hospital. A consensus document was developed by staff members of four Connecticut hospitals, two institutions of higher learning, and the State of Connecticut Department of Environmental Protection and Office of Emergency Preparedness, with assistance of the American Society for Therapeutic Radiology and Oncology. The objective was to write a practical manual for clinicians (including radiation oncologists, emergency room physicians, and nursing staff), hospital administrators, radiation safety officers, and other individuals knowledgeable in radiation monitoring that would be useful for evaluation and management of radiation injury. The rationale for and process by which the radiation response plan was developed and implemented in the State of Connecticut are reviewed. Hospital admission pathways are described, based on classification of victims as exposed, contaminated, and/or physically injured. This manual will be of value to those involved in planning the health care response to a radiologic event

  7. Incorporation of IAEA recommendations in the Spanish nuclear emergency plan

    International Nuclear Information System (INIS)

    Carrillo, D.; Diaz de la Cruz, F.; Murtra, J.; Ruiz del Arbol, E.

    1986-01-01

    This paper describes the way in which the Spanish authorities have incorporated the IAEA recommendations on the planning of action to be taken in the event of a nuclear accident, taking into account the national organization's own approach to the problem of dealing with a radiation emergency. First, the criteria and principles applied in devising the emergency plans are described. The criteria are concerned with the radiation problem as such and the principles take into account the sum total of problems associated with an emergency. Organizational and operational aspects of the plan are then discussed. The extent to which these arrangements are brought into play is determined by the type of abnormal event which occurs in the facility; since the evolution of this event cannot be exactly predicted, there must be enough flexibility in the operational plan so that it can be adapted rapidly and effectively to the circumstances. Another section deals with protection measures as a function of intervention (or reference) levels. Although non-radiological considerations may affect the measures adopted, a knowledge of the risks associated with the various intervention levels gives the authority a better understanding of the situation. The Nuclear Safety Board has had to inform the civil protection authorities of the distances at which specific protection measures should be taken. Considerations and hypotheses are described which, when applied, lead to general evacuation for distances of up to 3 km from the plant, partial evacuation for up to 5 km, containment and prophylactic measures up to 10 km and water and food monitoring up to 30 km. Finally, details are given of the Training and Information Plan which is being applied at present in Spain. (author)

  8. Development and use of consolidated criteria for evaluation of emergency preparedness plans for DOE facilities

    International Nuclear Information System (INIS)

    Lerner, K.; Kier, P.H.; Baldwin, T.E.

    1995-01-01

    Emergency preparedness at US Department of Energy (DOE) facilities is promoted by development and quality control of response plans. To promote quality control efforts, DOE has developed a review document that consolidates requirements and guidance pertaining to emergency response planning from various DOE and regulatory sources. The Criteria for Evaluation of Operational Emergency Plans (herein referred to as the Criteria document) has been constructed and arranged to maximize ease of use in reviewing DOE response plans. Although developed as a review instrument, the document also serves as a de facto guide for plan development, and could potentially be useful outside the scope of its original intended DOE clientele. As regulatory and DOE requirements are revised and added in the future, the document will be updated to stay current

  9. When are stockpiled products consumed faster? A convenience-salience framework of postpurchase consumption incidence and quantity

    NARCIS (Netherlands)

    Chandon, P.; Wansink, B.

    2002-01-01

    When people stockpile products, how do they decide when and how much they will consume? To answer this question, the authors develop a framework that shows how the salience and convenience of products influence postpurchase consumption incidence and quantity. Multiple research methods¿including

  10. Protecting your business: from emergency planning to crisis management

    International Nuclear Information System (INIS)

    Ramsay, C.G.

    1999-01-01

    The forthcoming UK Control of Major Accident Hazards (COMAH) regulations under the European Community's Seveso II Directive will impose a new formal requirement to test emergency plans. This might be approached as an added burden on industry to demonstrate safe operation, or can be viewed alternatively as an opportunity to improve crisis management systems and thereby decrease the risks to the business. Crisis is by nature an ambiguous and complex environment, demanding endless initiative, inventiveness, communication, co-ordination and learning. Because large-scale crises threatening the entire business are not frequent, learning from experience must be replaced by competence-assurance based on systems thinking, on risk assessment, on wide scenario simulations and on rigorous training. This paper discusses the benefits from various types of testing of emergency plans and from a business approach to continuous improvement in crisis management capability. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Certainty in Stockpile Computing: Recommending a Verification and Validation Program for Scientific Software

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.

    1998-11-01

    As computing assumes a more central role in managing the nuclear stockpile, the consequences of an erroneous computer simulation could be severe. Computational failures are common in other endeavors and have caused project failures, significant economic loss, and loss of life. This report examines the causes of software failure and proposes steps to mitigate them. A formal verification and validation program for scientific software is recommended and described.

  12. Worldwide governmental efforts to locate and destroy chemical weapons and weapons materials: minimizing risk in transport and destruction.

    Science.gov (United States)

    Trapp, Ralf

    2006-09-01

    The article gives an overview on worldwide efforts to eliminate chemical weapons and facilities for their production in the context of the implementation of the 1997 Chemical Weapons Convention (CWC). It highlights the objectives of the Organisation for the Prohibition of Chemical Weapons (OPCW), the international agency set up in The Hague to implement the CWC, and provides an overview of the present status of implementation of the CWC requirements with respect to chemical weapons (CW) destruction under strict international verification. It addresses new requirements that result from an increased threat that terrorists might attempt to acquire or manufacture CW or related materials. The article provides an overview of risks associated with CW and their elimination, from storage or recovery to destruction. It differentiates between CW in stockpile and old/abandoned CW, and gives an overview on the factors and key processes that risk assessment, management, and communication need to address. This discussion is set in the overall context of the CWC that requires the completion of the destruction of all declared CW stockpiles by 2012 at the latest.

  13. ASC FY17 Implementation Plan, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, P. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-14

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resources, including technical staff, hardware, simulation software, and computer science solutions.

  14. Antimicrobial resistance, infection control and planning for pandemics: the importance of knowledge transfer in healthcare resilience and emergency planning.

    Science.gov (United States)

    Cole, Jennifer

    Over the last 70 years, the efficacy, ready availability and relatively low cost of antimicrobial drugs - medicines that kill microorganisms such as bacteria and viruses or inhibit their multiplication, growth and pathogenic action - has led to their considerable overuse. It is estimated that nearly 50 per cent of all antimicrobial use in hospitals is unnecessary or inappropriate1 while in neonatal care, the figure is even higher, with infection confirmed in only five per cent of neonates treated with antibiotics.2 The more antimicrobials are used, the faster the microorganisms they target evolve into new, resistant strains, a natural process of evolution that threatens to undermine the tremendous life-saving potential of these drugs. Antimicrobial resistance (AMR) is a growing concern not only for the healthcare sector3 but also, increasingly, for security and resilience. Pandemic influenza, comparable only to 'Catastrophic terrorist attacks' at the top of the UK's National Risk Register4 may well result from the emergence of a strain that cannot be treated effectively with currently available drugs or from one that quickly develops resistance to the stockpiled countermeasures. Multidrug-resistant tuberculosis impacts on immigration policy, methicillin-resistant Staphylococcus aureus (MRSA), a major cause of hospital-acquired infections is an ongoing challenge for the health sector and the increase in drug-resistant strains of malaria is problematic both in its own right and as an additional consequence of climate change. AMR places a significant burden on international governments and tackling it requires changes to thinking across a number of government departments. In 2011, the Transatlantic Taskforce on Antimicrobial Resistance (TATFAR) published Recommendations for future collaboration between the US and EU1 and both the EU and the UK's Department of Health have recently developed new AMR strategies and Action Plans. This paper will explore the cross

  15. Healthcare logistics in disaster planning and emergency management: A perspective.

    Science.gov (United States)

    VanVactor, Jerry D

    2017-12-01

    This paper discusses the role of healthcare supply chain management in disaster mitigation and management. While there is an abundance of literature examining emergency management and disaster preparedness efforts across an array of industries, little information has been directed specifically toward the emergency interface, interoperability and unconventional relationships among civilian institutions and the US Department of Defense (US DoD) or supply chain operations involved therein. To address this imbalance, this paper provides US DoD healthcare supply chain managers with concepts related to communicating and planning more effectively. It is worth remembering, however, that all disasters are local - under the auspice of tiered response involving federal agencies, the principal responsibility for responding to domestic disasters and emergencies rests with the lowest level of government equipped and able to deal with the incident effectively. As such, the findings are equally applicable to institutions outside the military. It also bears repeating that every crisis is unique: there is no such thing as a uniform response for every incident. The role of the US DoD in emergency preparedness and disaster planning is changing and will continue to do so as the need for roles in support of a larger effort also continues to change.

  16. The public transportation system security and emergency preparedness planning guide

    Science.gov (United States)

    2003-01-01

    Recent events have focused renewed attention on the vulnerability of the nation's critical infrastructure to major events, including terrorism. The Public Transportation System Security and Emergency Preparedness Planning Guide has been prepared to s...

  17. Evaluation of semi-generic PBTK modeling for emergency risk assessment after acute inhalation exposure to volatile hazardous chemicals.

    Science.gov (United States)

    Olie, J Daniël N; Bessems, Jos G; Clewell, Harvey J; Meulenbelt, Jan; Hunault, Claudine C

    2015-08-01

    Physiologically Based Toxicokinetic Models (PBTK) may facilitate emergency risk assessment after chemical incidents with inhalation exposure, but they are rarely used due to their relative complexity and skill requirements. We aimed to tackle this problem by evaluating a semi-generic PBTK model built in MS Excel for nine chemicals that are widely-used and often released in a chemical incident. The semi-generic PBTK model was used to predict blood concentration-time curves using inhalation exposure scenarios from human volunteer studies, case reports and hypothetical exposures at Emergency Response Planning Guideline, Level 3 (ERPG-3) levels.(2) Predictions using this model were compared with measured blood concentrations from volunteer studies or case reports, as well as blood concentrations predicted by chemical-specific models. The performances of the semi-generic model were evaluated on biological rationale, accuracy, and ease of use and range of application. Our results indicate that the semi-generic model can be easily used to predict blood levels for eight out of nine parent chemicals (dichloromethane, benzene, xylene, styrene, toluene, isopropanol trichloroethylene and tetrachloroethylene). However, for methanol, 2-propanol and dichloromethane the semi-generic model could not cope with the endogenous production of methanol and of acetone (being a metabolite of 2-propanol) nor could it simulate the formation of HbCO, which is one of the toxic end-points of dichloromethane. The model is easy and intuitive to use by people who are not so familiar with toxicokinetic models. A semi-generic PBTK modeling approach can be used as a 'quick-and-dirty' method to get a crude estimate of the exposure dose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Planning and exercise experiences related to an off-site nuclear emergency in Canada: the federal component

    International Nuclear Information System (INIS)

    Eaton, R.S.

    1986-01-01

    The Canadian Government's Federal Nuclear Emergency Response Plan (off-site) (FNERP) was issued in 1984. In this plan, a nuclear emergency is defined as an emergency involving the release of radionuclides but does not include the use of nuclear weapons against North America. Because of the federal nature of Canada and its large area, special considerations are required for the plan to cover both the response to nuclear emergencies where the national government has primary responsibility and to provincial requests for assistance where the federal response becomes secondary to the provincial. The nuclear emergencies requiring the implementation of this plan are: (a) an accident in the nuclear energy cycle in Canada with off-site implications; (b) an accident in the nuclear energy cycle in another country which may affect Canada; (c) nuclear weapons testing with off-site implications which may affect Canada; and (d) nuclear-powered devices impacting on Canadian territory. Each emergency requires a separate sub-plan and usually requires different organizations to respond. Some scenarios are described. The Department of National Health and Welfare has established a Federal Nuclear Emergency Control Centre (FNECC). The FNECC participated in September 1985 in an exercise involving a nuclear reactor facility in the Province of Ontario and the experience gained from this activity is presented. The FNECC co-operates with its counterparts in the United States of America through a nuclear emergency information system and this network is also described. (author)

  19. Chemical sensors technology development planning workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bastiaans, G.J.; Haas, W.J. Jr.; Junk, G.A. [eds.

    1993-03-01

    The workshop participants were asked to: (1) Assess the current capabilities of chemical sensor technologies for addressing US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) needs; (2) Estimate potential near term (one to two years) and intermediate term (three to five years) capabilities for addressing those needs; and (3) Generate a ranked list of specific recommendations on what research and development (R&D) should be funded to provide the necessary capabilities. The needs were described in terms of two pervasive EM problems, the in situ determination of chlorinated volatile organic compounds (VOCs), and selected metals in various matrices at DOE sites. The R&D recommendations were to be ranked according to the estimated likelihood that the product technology will be ready for application within the time frame it is needed and the estimated return on investment. The principal conclusions and recommendations of the workshop are as follows: Chemical sensors capable of in situ determinations can significantly reduce analytical costs; Chemical sensors have been developed for certain VOCs in gases and water but none are currently capable of in situ determination of VOCs in soils; The DOE need for in situ determination of metals in soils cannot be addressed with existing chemical sensors and the prospects for their availability in three to five years are uncertain; Adaptation, if necessary, and field application of laboratory analytical instruments and those few chemical sensors that are already in field testing is the best approach for the near term; The chemical sensor technology development plan should include balanced support for near- and intermediate-term efforts.

  20. Addressing the gap between public health emergency planning and incident response

    Science.gov (United States)

    Freedman, Ariela M; Mindlin, Michele; Morley, Christopher; Griffin, Meghan; Wooten, Wilma; Miner, Kathleen

    2013-01-01

    Objectives: Since 9/11, Incident Command System (ICS) and Emergency Operations Center (EOC) are relatively new concepts to public health, which typically operates using less hierarchical and more collaborative approaches to organizing staff. This paper describes the 2009 H1N1 influenza outbreak in San Diego County to explore the use of ICS and EOC in public health emergency response. Methods: This study was conducted using critical case study methodology consisting of document review and 18 key-informant interviews with individuals who played key roles in planning and response. Thematic analysis was used to analyze data. Results: Several broad elements emerged as key to ensuring effective and efficient public health response: 1) developing a plan for emergency response; 2) establishing the framework for an ICS; 3) creating the infrastructure to support response; 4) supporting a workforce trained on emergency response roles, responsibilities, and equipment; and 5) conducting regular preparedness exercises. Conclusions: This research demonstrates the value of investments made and that effective emergency preparedness requires sustained efforts to maintain personnel and material resources. By having the infrastructure and experience based on ICS and EOC, the public health system had the capability to surge-up: to expand its day-to-day operation in a systematic and prolonged manner. None of these critical actions are possible without sustained funding for the public health infrastructure. Ultimately, this case study illustrates the importance of public health as a key leader in emergency response. PMID:28228983

  1. Planning and preparing for emergency response to transport accidents involving radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of this Safety Guide is to provide guidance to the public authorities and others (including consignors, carriers and emergency response authorities) who are responsible for developing and establishing emergency arrangements for dealing effectively and safely with transport accidents involving radioactive material. It may assist those concerned with establishing the capability to respond to such transport emergencies. It provides guidance for those Member States whose involvement with radioactive material is just beginning. It also provides guidance for those Member States that have already developed their radioactive material industries and the attendant emergency plans but that may need to review and improve these plans

  2. Upgrading France's emergency plans

    International Nuclear Information System (INIS)

    Moures, Y.

    1991-01-01

    In France as elsewhere, the Chernobyl accident spurred a new stage in the development of nuclear safety. In the months following the accident, France's Minister of Industry launched a campaign to strengthen research and safety measures to: prevent reactor accidents; reinforce the concept of quality in operations; train staff, in areas such as crisis management; systematically review plans, installations and techniques related to crisis management; study accident containment procedures. There was also a systematic review of communication links with authorities and outside emergency organizations during the critical phase of an accident. On the operational level regulatory monitoring procedures were reorganized and reinforced. France has not opted for the permanent presence of on-site inspectors, but rather for the total, continuous responsibility of the power plant operator, with the safety authority intervening at frequent intervals. A major programme was also established to increase capabilities for investigation and intervention in a radioactive environment in nuclear installations. (author)

  3. Emergency planning requirements and short-term countermeasures for commercial nuclear power plants in the United States

    International Nuclear Information System (INIS)

    Kantor, F.; Hogan, R.; Mohseni, A.

    1995-01-01

    Since the accident at the Three Mile Island Unit, the United States Nuclear Regulatory's Commission (NRC's) emergency planning regulations are now considered and an important part of the regulatory framework for protecting the public health and safety. Many aspects of the countermeasures are presented: Emergency Planning Zones (EPZ), off-Site emergency planning and preparedness, responsibilities of nuclear power plants operators and states and local government. Finally, protective action recommendations are given as well as the federal response to an emergency. The authors noted that the use of potassium iodide is not considered as an effective countermeasure for the public protection in the US. (TEC). 1 fig

  4. Exploiting the plutonium stockpiles in PWRs by using inert matrix fuel

    International Nuclear Information System (INIS)

    Lombardi, C.; Mazzola, A.

    1996-01-01

    The plutonium coming from dismantled warheads and that already stockpiled coming from spent fuel reprocessing have raised many concerns related to proliferation resistance, environmental safety and economy. The option of disposing of plutonium by fission is one of the most widely discussed and many proposals for plutonium burning in a safe and economical manner have been put forward. Due to their diffusion, PWRs appear to be the main candidates for the reduction of the plutonium stockpiles. In order to achieve a high plutonium consumption rate, a uranium-free fuel may be conceived, based on the dilution of PuO 2 within a carrier matrix made of inert oxide. In this paper, a partial loading of inert matrix fuel in a current technology PWR was investigated with 3-D calculations. The results indicated that this solution has good plutonium elimination capabilities: commercial PWRs operating in a once-through cycle scheme can transmute more than 98% of the loaded Pu-239 and 73 or 81% of the overall initially loaded reactor grade or weapons grade plutonium, respectively. The plutonium still let in the spent fuel was of poor quality and then offered a better proliferation resistance. Power peaking problems could be faced with the adoption of burnable absorbers: IFBA seemed to be particularly suitable. In spite of a reduction of the overall plutonium loaded mass by a factor 3.7 or 5.4 depending on its quality, there was no evidence of an increase of the minor actinides radiotoxicity after a time period of about 25 years. (author)

  5. Cutaneous reactions in nuclear, biological and chemical warfare

    Directory of Open Access Journals (Sweden)

    Arora Sandeep

    2005-03-01

    Full Text Available Nuclear, biological and chemical warfare have in recent times been responsible for an increasing number of otherwise rare dermatoses. Many nations are now maintaining overt and clandestine stockpiles of such arsenal. With increasing terrorist threats, these agents of mass destruction pose a risk to the civilian population. Nuclear and chemical attacks manifest immediately while biological attacks manifest later. Chemical and biological attacks pose a significant risk to the attending medical personnel. The large scale of anticipated casualties in the event of such an occurrence would need the expertise of all physicians, including dermatologists, both military and civilian. Dermatologists are uniquely qualified in this respect. This article aims at presenting a review of the cutaneous manifestations in nuclear, chemical and biological warfare and their management.

  6. The Reference Scenarios for the Swiss Emergency Planning

    International Nuclear Information System (INIS)

    Hanspeter Isaak; Navert, Stephan B.; Ralph Schulz

    2006-01-01

    For the purpose of emergency planning and preparedness, realistic reference scenarios and corresponding accident source terms have been defined on the basis of common plant features. Three types of representative reference scenarios encompass the accident sequences expected to be the most probable. Accident source terms are assumed to be identical for all Swiss nuclear power plants, although the plants differ in reactor type and power. Plant-specific probabilistic safety analyses were used to justify the reference scenarios and the postulated accident source terms. From the full spectrum of release categories available, those categories were selected which would be covered by the releases and time frames assumed in the reference scenarios. For each nuclear power plant, the cumulative frequency of accident sequences not covered by the reference scenarios was determined. It was found that the cumulative frequency for such accident sequences does not exceed about 1 x 10 -6 per year. The Swiss Federal Nuclear Safety Inspectorate concludes that the postulated accident source terms for the reference scenarios are consistent with the current international approach in emergency planning, where one should concentrate on the most probable accident sequences. (N.C.)

  7. Technical basis for the preparation of emergency plans relating to pressurized water reactors

    International Nuclear Information System (INIS)

    L'Homme, A.; Manesse, D.; Gauvain, J.; Crabol, B.

    1989-01-01

    The paper begins by summarizing the standard French approach to management of severe accidents at PWR plants. It goes on to define the source term used as a general basis for emergency plans for protection of the civil population. The paper describes the impact this source term has on both the site and the environment, which is subsequently used as a technical basis for determining the response of the utility and the public authorities concerned. The discussion concludes with a brief outline of the current status of various emergency plans and a description of additional work currently in progress and aimed at improving these plans [fr

  8. Assessing the Capacity of the US Health Care System to Use Additional Mechanical Ventilators During a Large-Scale Public Health Emergency.

    Science.gov (United States)

    Ajao, Adebola; Nystrom, Scott V; Koonin, Lisa M; Patel, Anita; Howell, David R; Baccam, Prasith; Lant, Tim; Malatino, Eileen; Chamberlin, Margaret; Meltzer, Martin I

    2015-12-01

    A large-scale public health emergency, such as a severe influenza pandemic, can generate large numbers of critically ill patients in a short time. We modeled the number of mechanical ventilators that could be used in addition to the number of hospital-based ventilators currently in use. We identified key components of the health care system needed to deliver ventilation therapy, quantified the maximum number of additional ventilators that each key component could support at various capacity levels (ie, conventional, contingency, and crisis), and determined the constraining key component at each capacity level. Our study results showed that US hospitals could absorb between 26,200 and 56,300 additional ventilators at the peak of a national influenza pandemic outbreak with robust pre-pandemic planning. The current US health care system may have limited capacity to use additional mechanical ventilators during a large-scale public health emergency. Emergency planners need to understand their health care systems' capability to absorb additional resources and expand care. This methodology could be adapted by emergency planners to determine stockpiling goals for critical resources or to identify alternatives to manage overwhelming critical care need.

  9. Do we need an emergency planning for contamination with alpha or beta emitting materials and how should this be?

    International Nuclear Information System (INIS)

    Gellermann, Rainer; Kueppers, Christian; Urbach, Michael; Schnadt, Horst; Lange, Florentin

    2016-01-01

    The emergency planning up to now was geared to the consequences of accidents in nuclear facilities. There were no planning guidelines like the recommendations for emergency planning in the vicinity of nuclear facilities for other radiological incidents. According to article 98 of the new European radiation protection standards the member states have to take care for the preparation of emergency plans fir the case of emergency exposure scenarios. The study discusses several scenarios that might induce alpha or beta contamination, existing approaches for guiding contamination values, intervention benchmarks, protection strategies including continuing public information, selected radionuclides that might be involved, exposure paths, guidance benchmarks for person decontamination, and recommendations for new emergency plans.

  10. Guidance Manual for preparing Nuclear and Radiological Emergency Preparedness and Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Muhammed, Kabiru [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Seung-Young [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    The Nuclear and Radiological Emergency Preparedness and Response Plan(NREPRP) describes the capabilities, responsibilities and authorities of government agencies and a conceptual basis for integrating the activities of these agencies to protect public health and safety. The NREPRP addresses issues related to actual or perceived radiation hazard requiring a national response in order to: i. Provide co-ordination of a response involving multi-jurisdictions or significant national responsibilities; or ii. Provide national support to state and local governments. The objective of this research is to establish Guidance Manual for preparing a timely, organized and coordinated emergency response plan for Authorities/agencies to promptly and adequately determine and take actions to protect members of the public and emergency workers. The manual will not provide sufficient details for an adequate response. This level of details is contained in standard operating procedures that are being developed based on the plan developed. Base on the data obtain from integrated planning levels and responsibility sharing, the legal document of major government agencies participating in NREPRP form the legal basis for the response plan. Also the following documents should be some international legal binding documents. Base on the international safety requirement and some countries well developed NREPRP, we have drafted a guidance manual for new comer countries for easy development of their countries NREPRP. Also we have taken in to consideration lessons learn from most accident especially Fukushima accident.

  11. Guidance Manual for preparing Nuclear and Radiological Emergency Preparedness and Response Plan

    International Nuclear Information System (INIS)

    Muhammed, Kabiru; Jeong, Seung-Young

    2014-01-01

    The Nuclear and Radiological Emergency Preparedness and Response Plan(NREPRP) describes the capabilities, responsibilities and authorities of government agencies and a conceptual basis for integrating the activities of these agencies to protect public health and safety. The NREPRP addresses issues related to actual or perceived radiation hazard requiring a national response in order to: i. Provide co-ordination of a response involving multi-jurisdictions or significant national responsibilities; or ii. Provide national support to state and local governments. The objective of this research is to establish Guidance Manual for preparing a timely, organized and coordinated emergency response plan for Authorities/agencies to promptly and adequately determine and take actions to protect members of the public and emergency workers. The manual will not provide sufficient details for an adequate response. This level of details is contained in standard operating procedures that are being developed based on the plan developed. Base on the data obtain from integrated planning levels and responsibility sharing, the legal document of major government agencies participating in NREPRP form the legal basis for the response plan. Also the following documents should be some international legal binding documents. Base on the international safety requirement and some countries well developed NREPRP, we have drafted a guidance manual for new comer countries for easy development of their countries NREPRP. Also we have taken in to consideration lessons learn from most accident especially Fukushima accident

  12. Planning and implementing nuclear emergency response facilities

    International Nuclear Information System (INIS)

    Williams, D.H.

    1983-01-01

    After Three Mile Island, Arkansas Nuclear One produced a planning document called TMI-2 Response Program. Phase I of the program defined action plans in nine areas: safety assessment, training, organization, public information, communication, security, fiscal-governmental, technical and logistical support. Under safety assessment, the staff was made even better prepared to handle radioactive material. Under training, on site simulators for each unit at ANO were installed. The other seven topics interface closely with each other. An emergency control center is diagrammed. A habitable technical support system was created. A media center, with a large media area, and an auditorium, was built. Electric door strike systems increased security. Phone networks independently run via microwave were installed. Until Three Mile Island, logistical problems were guesswork. That incident afforded an opportunity to better identify and prepare for these problems

  13. Guide for Developing High-Quality School Emergency Operations Plans

    Science.gov (United States)

    Office of Safe and Healthy Students, US Department of Education, 2013

    2013-01-01

    Each school day, our nation's schools are entrusted to provide a safe and healthy learning environment for approximately 55 million elementary and secondary school students in public and nonpublic schools. In collaboration with their local government and community partners, schools can take steps to plan for these potential emergencies through the…

  14. Experience Report: Constraint-Based Modelling and Simulation of Railway Emergency Response Plans

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Sandberg, Lene

    2016-01-01

    ways to proceed, including ways not necessarily anticipated in the paper-based emergency response plans. The case study was undertaken as part of a short research, ProSec, project funded by the Danish Defence Agency, with the aim of applying and developing methods for collaborative mapping of emergency...

  15. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas. Final phase 1, Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  16. Chemical sensors technology development planning workshop

    International Nuclear Information System (INIS)

    Bastiaans, G.J.; Haas, W.J. Jr.; Junk, G.A.

    1993-03-01

    The workshop participants were asked to: (1) Assess the current capabilities of chemical sensor technologies for addressing US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) needs; (2) Estimate potential near term (one to two years) and intermediate term (three to five years) capabilities for addressing those needs; and (3) Generate a ranked list of specific recommendations on what research and development (R ampersand D) should be funded to provide the necessary capabilities. The needs were described in terms of two pervasive EM problems, the in situ determination of chlorinated volatile organic compounds (VOCs), and selected metals in various matrices at DOE sites. The R ampersand D recommendations were to be ranked according to the estimated likelihood that the product technology will be ready for application within the time frame it is needed and the estimated return on investment. The principal conclusions and recommendations of the workshop are as follows: Chemical sensors capable of in situ determinations can significantly reduce analytical costs; Chemical sensors have been developed for certain VOCs in gases and water but none are currently capable of in situ determination of VOCs in soils; The DOE need for in situ determination of metals in soils cannot be addressed with existing chemical sensors and the prospects for their availability in three to five years are uncertain; Adaptation, if necessary, and field application of laboratory analytical instruments and those few chemical sensors that are already in field testing is the best approach for the near term; The chemical sensor technology development plan should include balanced support for near- and intermediate-term efforts

  17. Change in perception of people towards a nuclear emergency plan for a nuclear power station after being presented

    International Nuclear Information System (INIS)

    Kouzen, Hideharu

    2017-01-01

    We conducted a group interview survey for 24 persons living in urban areas of the Kansai region to understand the change in their perception of information about nuclear emergency plans for nuclear power stations. The participants were given descriptions about a nuclear emergency plan based on plans that had been prepared by the national government and local government. Before hearing the explanation about the nuclear emergency plan, we found that only a few participants were concerned about it, but no one knew the detailed contents. For the question 'Do you think the nuclear emergency plan is being improved after the Fukushima Daiichi Nuclear Power Plant accident?', we found 6 persons among the 24 held opinions saying that the plan was 'improved' or 'somewhat improved'. However, after hearing the explanation and a brief Q and A session about it, 18 persons held opinions saying the plan was 'improved' or 'somewhat improved'. As the reason for such answers, the most common opinion shared by 13 persons was that 'a nuclear emergency plan is being made'. There is a possibility that urban residents had not known the facts about specific disaster prevention plans for each nuclear power station that have been formulated. (author)

  18. Integrating hospitals into community emergency preparedness planning.

    Science.gov (United States)

    Braun, Barbara I; Wineman, Nicole V; Finn, Nicole L; Barbera, Joseph A; Schmaltz, Stephen P; Loeb, Jerod M

    2006-06-06

    Strong community linkages are essential to a health care organization's overall preparedness for emergencies. To assess community emergency preparedness linkages among hospitals, public health officials, and first responders and to investigate the influence of community hazards, previous preparation for an event requiring national security oversight, and experience responding to actual disasters. With expert advice from an advisory panel, a mailed questionnaire was used to assess linkage issues related to training and drills, equipment, surveillance, laboratory testing, surge capacity, incident management, and communication. A simple random sample of 1750 U.S. medical-surgical hospitals. Of 678 hospital representatives that agreed to participate, 575 (33%) completed the questionnaire in early 2004. Respondents were hospital personnel responsible for environmental safety, emergency management, infection control, administration, emergency services, and security. Prevalence and breadth of participation in community-wide planning; examination of 17 basic elements in a weighted analysis. In a weighted analysis, most hospitals (88.2% [95% CI, 84.1% to 92.3%]) engaged in community-wide drills and exercises, and most (82.2% [CI, 77.8% to 86.5%]) conducted a collaborative threat and vulnerability analysis with community responders. Of all respondents, 57.3% (CI, 52.1% to 62.5%) reported that their community plans addressed the hospital's need for additional supplies and equipment, and 73.0% (CI, 68.1% to 77.9%) reported that decontamination capacity needs were addressed. Fewer reported a direct link to the Health Alert Network (54.4% [CI, 49.3% to 59.5%]) and around-the-clock access to a live voice from a public health department (40.0% [CI, 35.0% to 45.0%]). Performance on many of 17 basic elements was better in large and urban hospitals and was associated with a high number of perceived hazards, previous national security event preparation, and experience in actual

  19. On Utilization and Stockpiling of Prescription Drugs when Co-payments Increase: Heterogeneity across Types of Drugs

    DEFF Research Database (Denmark)

    Skipper, Niels

    by stockpiling on their medications. This has implications for other papers in the literature that use variation in subsidy rates over time to estimate the price elasticity of demand. This is not the case for penicillin however, where price elasticities are estimated to be in the -.18 – -.35 range. Further, I...

  20. Hinkley Point 'C' power station public inquiry: proof of evidence on emergency planning

    International Nuclear Information System (INIS)

    Western, D.J.

    1988-09-01

    A public inquiry has been set up to examine the planning application made by the Central Electricity Generating Board (CEGB) for the construction of a 1200 MW Pressurized Water Reactor power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom, adjacent to an existing nuclear power station incorporating Magnox and Advanced Gas Cooled reactors. The CEGB evidence to the Inquiry presented here introduces the concept of the Reference Accident as the basis for emergency arrangements. The description which follows of the emergency arrangements at the Hinkley Point site include: the respective responsibilities and their co-ordination of bodies such as the CEGB, external emergency services and government departments; the site emergency organization; practical aspects of the emergency arrangements; and consideration of the extension of the arrangements to a PWR on the same site. Recent developments in emergency planning, such as those arising out of post Chernobyl reviews and the Sizewell ''B'' PWR Inquiry, are taken into account. The conclusion is reached that soundly based emergency arrangements already exist at Hinkley Point which would require relatively minor changes should the proposed PWR be constructed. (UK)

  1. CFD simulations of the effect of wind on the spontaneous heating of coal stockpiles

    Czech Academy of Sciences Publication Activity Database

    Taraba, B.; Michalec, Zdeněk; Michalcová, V.; Blejchař, T.; Bojko, M.; Kozubková, M.

    2014-01-01

    Roč. 118, č. 1 (2014), s. 107-112 ISSN 0016-2361 Grant - others:GA ČR GA105/08/1414; TA ČR(CZ) TA01020351; GA MŠk(CZ) ED2.1.00/03.0100 Institutional support: RVO:68145535 Keywords : coal oxidation * spontaneous heating * CFD modelling * coal stockpile Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.520, year: 2014 http://www.sciencedirect.com/science/article/pii/S0016236113010053#

  2. Emergency Planning and Community Right-To-Know Act, Section 311

    International Nuclear Information System (INIS)

    Evans, R.A.

    1997-05-01

    Included in this report is a list of hazardous and extremely hazardous chemicals at the Oak Ridge Y-12 Plant. The information reflects changes in the lists of hazardous chemicals present at this facility in amounts equal to or greater than 10,000 pounds and extremely hazardous chemicals present in amounts equal to or greater than 500 pounds or its Threshold Planning Quantity, whichever was less. These lists represent the following: List of materials last reported in March 1996 (reference Y/TS-1482); Materials to be deleted from list; Materials to be added to list; and Revised lists of materials

  3. Joint Radiation Emergency Management Plan of the International Organizations. Date Effective: 1 July 2013

    International Nuclear Information System (INIS)

    2013-01-01

    European Commission) are party to legally binding treaties and have directives and regulations which have a bearing on the emergency response arrangements in their Member States. There are also bilateral agreements between some international organizations that also have relevance to preparedness and response arrangements. In 2002, the IAEA issued Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), jointly sponsored by the FAO, the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO), the United Nations Office for the Co-ordination of Humanitarian Affairs (OCHA) and WHO. The requirements established therein imply additional expectations with regard to operational emergency preparedness and response arrangements. It is recognized by the participating organizations, and reflected in the above requirements, that good planning in advance of an emergency can substantially improve the response. With this in mind, international organizations that participate in the IACRNE develop, maintain and co-sponsor this Joint Radiation Emergency Management Plan of the International Organizations (the 'Joint Plan'). The IAEA is the main coordinating body for the development and maintenance of the Joint Plan. The Joint Plan does not prescribe arrangements between the participating organizations, but describes a common understanding of how each organization acts during a response and in making preparedness arrangements. Nothing in the Joint Plan should be construed as superseding the arrangements in place in the international organizations (or States). However, all international organizations (and States), irrespective of whether they are members of IACRNE, are invited to consider these arrangements in their own emergency management plans. This publication is the sixth edition of the Joint Plan. It includes new arrangements/initiatives which were introduced after

  4. Joint Radiation Emergency Management Plan of the International Organizations. Date Effective: 1 July 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    European Commission) are party to legally binding treaties and have directives and regulations which have a bearing on the emergency response arrangements in their Member States. There are also bilateral agreements between some international organizations that also have relevance to preparedness and response arrangements. In 2002, the IAEA issued Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), jointly sponsored by the FAO, the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO), the United Nations Office for the Co-ordination of Humanitarian Affairs (OCHA) and WHO. The requirements established therein imply additional expectations with regard to operational emergency preparedness and response arrangements. It is recognized by the participating organizations, and reflected in the above requirements, that good planning in advance of an emergency can substantially improve the response. With this in mind, international organizations that participate in the IACRNE develop, maintain and co-sponsor this Joint Radiation Emergency Management Plan of the International Organizations (the 'Joint Plan'). The IAEA is the main coordinating body for the development and maintenance of the Joint Plan. The Joint Plan does not prescribe arrangements between the participating organizations, but describes a common understanding of how each organization acts during a response and in making preparedness arrangements. Nothing in the Joint Plan should be construed as superseding the arrangements in place in the international organizations (or States). However, all international organizations (and States), irrespective of whether they are members of IACRNE, are invited to consider these arrangements in their own emergency management plans. This publication is the sixth edition of the Joint Plan. It includes new arrangements/initiatives which were introduced after

  5. Decree no 88-622 of 6 May 1988 on emergency plans, in implementation of Act no 87-565 of 22 July 1987 on the organisation of public safety, forestry protection against fires and prevention of major risks

    International Nuclear Information System (INIS)

    1988-01-01

    This Decree contains provisions concerning special action plans (plans particuliers d'intervention - PPI) which are a type of emergency plan dealing in particular with sites which have at least one large nuclear installation in the following categories: a nuclear reactor with a thermal power greater than ten megawatts; plants for the processing of irradiated nuclear fuels, isotopic separation, chemical conversion of nuclear fuels and their fabrication. The PPI includes the description of the installation concerned, the list of communes on whose territory the emergency plan applies, the measures for protecting and informing the population, the diagrams for its evacuation, as well as information on shelters. Also listed are the emergency measures for neighbouring populations to be taken by the operator before the police authorities intervene or on their behalf [fr

  6. 76 FR 75771 - Emergency Planning Guidance for Nuclear Power Plants

    Science.gov (United States)

    2011-12-05

    ... Guidance for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Issuance of NUREG... Support of Nuclear Power Plants;'' NSIR/DPR-ISG-01, ``Interim Staff Guidance Emergency Planning for Nuclear Power Plants;'' and NUREG/CR-7002, ``Criteria for Development of Evacuation Time Estimate Studies...

  7. Evaluation of models of particulate suspension for a thorium ore stockpile

    International Nuclear Information System (INIS)

    Smith, W.J.

    1983-01-01

    Fifteen mathematical models of particle saltation, suspension, and resuspension were reviewed and categorized. Appropriate models were applied to the estimation of particulate releases from a hypothetical thorium ore storage pile. An assumed location (near Lemhi Pass, Montana) was used to permit the development of site specific information on ore characteristics and environmental influences. The available models were characterized in terms of suitability for representing aspects of the ore pile, such as rough surface features, wide particle size range, and site specific climate. Five models were selected for detailed study. A computer code for each of these is given. Site specific data for the assumed ore stockpile location were prepared. These data were manipulated to provide the input values required for each of the five models. Representative values and ranges for model variables are tabulated. The response of each model to input data for selected variables was determined. Each model was evaluated in terms of the physical realism of its response of each model to input data for selected variables was determined. Each model was evaluated in terms of the physical realism of its responses and its overall ability to represent the features of an ore stockpile. The two models providing the best representation were a modified version of the dust suspension subroutine TAILPS from the computer code MILDOS, and the dust suspension formulation from the computer code REDIST. Their responses are physically reasonable, although different from each other for two parameters: ore moisture and surface roughness. With the input values judged most representative of an ore pile near Lemhi Pass, the estimate of the release of suspended particulates is on the order of 1 g/m 2 -yr

  8. New Structure of Emergency Response Plan in Croatia

    International Nuclear Information System (INIS)

    Valcic, I.; Subasic, D.; Cavlina, N.

    1998-01-01

    The new structure of a national emergency response plan in the case of nuclear accident is based on general requirements of modernization according to international recommendations, with a new Technical Support Center as a so-called lead technical agency, with the plan adapted to the organization of the Civil Protection, with all necessary elements of preparedness for the event of a nuclear accident in Krsko NPP and Paks NPP and with such a plan of procedures that will, to greatest possible extent, be compatible with the existing plan in neighboring countries Slovenia and Hungary. The main requirement that direct s a new organization scheme for taking protective actions in the event of a nuclear accident, is the requirement of introducing a Technical Support Center. The basic role of TSC is collecting data and information on nuclear accident, analyzing and estimating development of an accident, and preparing proposals for taking protective actions and for informing the public. TSC is required to forward those proposals to the Civil Protection, which on the basis of evaluation of proposals makes decisions on implementation and surveillance of implementation of protective measures. (author)

  9. Method for Developing a Communication Strategy and Plan for a Nuclear or Radiological Emergency. Emergency Preparedness and Response. Publication Date: July 2015

    International Nuclear Information System (INIS)

    2015-08-01

    The aim of this publication is to provide a practical resource for emergency planning in the area of public communication in the development of a radiation emergency communication plan (RECP). The term 'public communication' is defined as any activity that communicates information to the public and the media during a nuclear or radiological emergency. To avoid confusion, the term public communication has been used in this publication rather than public information, which may be used in other IAEA publications and documents to ensure consistency with the terminology used in describing the command and control system. This publication also aims to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(11) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research with regard to the response to nuclear or radiological emergencies. This publication is intended to provide guidance to national and local authorities on developing an RECP which incorporates the specific functions, arrangements and capabilities that will be required for public communication during a nuclear or radiological emergency. The two main features of this publication are the template provided to develop an RECP and detailed guidance on developing a communication strategy for emergency preparedness and response to nuclear or radiological emergencies. The template is consistent with the outline of the national radiation emergency plan proposed in Method for Developing Arrangements for Response to a Nuclear or Radiological Emergency (EPR-Method 2003). This publication is part of the IAEA

  10. LANL continuity of operations plan

    Energy Technology Data Exchange (ETDEWEB)

    Senutovitch, Diane M [Los Alamos National Laboratory

    2010-12-22

    The Los Alamos National Laboratory (LANL) is a premier national security research institution, delivering scientific and engineering solutions for the nation's most crucial and complex problems. Our primary responsibility is to ensure the safety, security, and reliability of the nation's nuclear stockpile. LANL emphasizes worker safety, effective operational safeguards and security, and environmental stewardship, outstanding science remains the foundation of work at the Laboratory. In addition to supporting the Laboratory's core national security mission, our work advances bioscience, chemistry, computer science, earth and environmental sciences, materials science, and physics disciplines. To accomplish LANL's mission, we must ensure that the Laboratory EFs continue to be performed during a continuity event, including localized acts of nature, accidents, technological or attack-related emergencies, and pandemic or epidemic events. The LANL Continuity of Operations (COOP) Plan documents the overall LANL COOP Program and provides the operational framework to implement continuity policies, requirements, and responsibilities at LANL, as required by DOE 0 150.1, Continuity Programs, May 2008. LANL must maintain its ability to perform the nation's PMEFs, which are: (1) maintain the safety and security of nuclear materials in the DOE Complex at fixed sites and in transit; (2) respond to a nuclear incident, both domestically and internationally, caused by terrorist activity, natural disaster, or accident, including mobilizing the resources to support these efforts; and (3) support the nation's energy infrastructure. This plan supports Continuity of Operations for Los Alamos National Laboratory (LANL). This plan issues LANL policy as directed by the DOE 0 150.1, Continuity Programs, and provides direction for the orderly continuation of LANL EFs for 30 days of closure or 60 days for a pandemic/epidemic event. Initiation of COOP operations may

  11. Joint Radiation Emergency Management Plan of the International Organizations of the International Organizations. Date Effective: 1 March 2017

    International Nuclear Information System (INIS)

    2017-01-01

    This Joint Emergency Management Plan of the International Organizations (Joint Plan) describes the interagency framework of preparedness for and response to an actual, potential or perceived nuclear or radiological emergency independent of whether it arises from an accident, natural disaster, negligence, nuclear security event or any other cause. The IAEA is the main coordinating body for development and maintenance of the Joint Plan. The Joint Plan is intended to support and underpin the efforts of national governments and seeks to ensure a coordinated and harmonized international response to nuclear or radiological emergencies. It is not intended to interfere with or replace the emergency preparedness and response arrangements of international organizations (or States).

  12. New aspects in the radiological emergency plan outside the Nuclear power plant of Laguna Verde

    International Nuclear Information System (INIS)

    Alva L, S.

    1991-01-01

    The Mexican government through the National Commission of Nuclear Safety and Safeguards has imposed to the Federal Commission of Electricity to fulfill the requirement of having a functional Emergency Plan and under the limits that the regulator organisms in the world have proposed. The PERE (Plan of External Radiological Emergency) it has been created for the Nuclear Power station of Laguna Verde, Mexico

  13. A study on possible use of Urtica dioica (common nettle) plants as uranium (234U, 238U) contamination bioindicator near phosphogypsum stockpile.

    Science.gov (United States)

    Olszewski, Grzegorz; Boryło, Alicja; Skwarzec, Bogdan

    The aim of this study was to determine uranium concentrations in common nettle ( Urtica dioica ) plants and corresponding soils samples which were collected from the area of phosphogypsum stockpile in Wiślinka (northern Poland). The uranium concentrations in roots depended on its concentrations in soils. Calculated BCF and TF values showed that soils characteristics and air deposition affect uranium absorption and that different uranium species have different affinities to U . dioica plants. The values of 234 U/ 238 U activity ratio indicate natural origin of these radioisotopes in analyzed plants. Uranium concentration in plants roots is negatively weakly correlated with distance from phosphogypsum stockpile.

  14. A study on possible use of Urtica dioica (common nettle) plants as uranium (234U, 238U) contamination bioindicator near phosphogypsum stockpile

    International Nuclear Information System (INIS)

    Olszewski, Grzegorz; Borylo, Alicja; Skwarzec, Bogdan

    2016-01-01

    The aim of this study was to determine uranium concentrations in common nettle (Urtica dioica) plants and corresponding soils samples which were collected from the area of phosphogypsum stockpile in Wislinka (northern Poland). The uranium concentrations in roots depended on its concentrations in soils. Calculated BCF and TF values showed that soils characteristics and air deposition affect uranium absorption and that different uranium species have different affinities to U. dioica plants. The values of 234 U/ 238 U activity ratio indicate natural origin of these radioisotopes in analyzed plants. Uranium concentration in plants roots is negatively weakly correlated with distance from phosphogypsum stockpile. (author)

  15. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 1

    International Nuclear Information System (INIS)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains a discussion of the chemical safety improvements planned or already underway at DOE sites to correct facility or site-specific vulnerabilities. The main part of the report is a discussion of each of the programmatic deficiencies; a description of the tasks to be accomplished; the specific actions to be taken; and the organizational responsibilities for implementation

  16. Manual for national implementation of the Chemical Weapons Convention

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, B. [DePaul Univ., Chicago, IL (United States); Tanzman, E.A.; Gualtieri, D.S.; Grimes, S.W. [Argonne National Lab., IL (United States)

    1993-12-01

    The Convention on the Prohibition on the Development, Production, Stockpiling and Use of Chemical Weapons and on their Destruction, opened for signature, January 13, 1993, in Paris, France (CWC), is an unprecedented multilateral effort to eradicate an entire category of weapons of mass destruction and assure their continued absence through international verification. The CWC has been signed by over 150 nations, and is expected to enter into force in 1995. With its far-reaching system to verify compliance, the CWC presages a new foundation for international security based neither on fear nor on trust, but on the rule of law. A central feature of the CWC is that it requires each State Party to take implementing measures to make the Convention operative. The CWC goes beyond all prior arms control treaties in this regard. For this approach to succeed, and to inspire the eradication of other categories of mass destruction weaponry, coordination and planning are vital to harmonize CWC national implementation among States Parties. This Manual for National Implementation of the Chemical Weapons Convention is designed to assist States Parties, duly taking into account the distinctive aspects of their legal systems, in maximizing CWC enforcement consistent with their national legal obligations.

  17. Internal Controls and Compliance with Laws and Regulations for the National Defense Stockpile Transaction Fund Financial Statements for FY 1996

    National Research Council Canada - National Science Library

    Lane, F

    1997-01-01

    The Chief Financial Officers Act of 1990, as amended by the Federal Financial Management Act of 1994, requires an annual audit of revolving funds such as the National Defense Stockpile Transaction Fund...

  18. Method for Developing a Communication Strategy and Plan for a Nuclear or Radiological Emergency

    International Nuclear Information System (INIS)

    2016-01-01

    The aim of this publication is to provide a practical resource for emergency planning in the area of public communication in the development of a radiation emergency communication plan (RECP). The term 'public communication' is defined as any activity that communicates information to the public and the media during a nuclear or radiological emergency. To avoid confusion, the term public communication has been used in this publication rather than public information, which may be used in other IAEA publications and documents to ensure consistency with the terminology used in describing the command and control system. This publication also aims to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(11) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research with regard to the response to nuclear or radiological emergencies. This publication is intended to provide guidance to national and local authorities on developing an RECP which incorporates the specific functions, arrangements and capabilities that will be required for public communication during a nuclear or radiological emergency. The two main features of this publication are the template provided to develop an RECP and detailed guidance on developing a communication strategy for emergency preparedness and response to nuclear or radiological emergencies. The template is consistent with the outline of the national radiation emergency plan proposed in Method for Developing Arrangements for Response to a Nuclear or Radiological Emergency (EPR-Method 2003). This publication is part of the IAEA

  19. Assessment of emergency response planning and implementation in the aftermath of major natural disasters and technological accidents

    International Nuclear Information System (INIS)

    Milligan, Patricia A.; Jones, Joseph; Walton, F.; Smith, J.D.

    2008-01-01

    Emergency planning around nuclear power plants represents some of the most mature and well developed emergency planning in the United States. Since the implementation of NUREG-0654 / FEMA-REP-1, Rev. 1, A Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants (NRC, 1980a) the licensees, local, and State agencies have developed detailed Radiological Emergency Response Programs. An important component of these plans is the evacuation of the population in the event of a general emergency condition at the plant. In January 2005, the U.S. Nuclear Regulatory Commission (NRC) published the landmark report, 'Identification and Analysis of Factors Affecting Emergency Evacuations' (NUREG/CR 6864/), which represented the most comprehensive investigation of public evacuations in the United States in more than 15 years. Since the completion of this research, several high profile evacuations have occurred, including Hurricane Katrina in New Orleans, Hurricane Rita in Houston, as well as major wildfires across the western U.S. The NRC commissioned an update to its 2005 evacuation case study publication to evaluate the evacuation experience of the selected communities (e.g., timeliness, related injuries, hazard avoidance); the level of preplanning that was in place for the affected areas and extent that the pre planned requirements were implemented during the emergency response; the critical factors contributing to the efficiency of or impediments to the evacuations (e.g., training, drills, preparedness, experience, resources, facilities, and organizational structure); and additional factors that may have contributed to less than satisfactory public response (i.e., availability of personal transportation, use of public transportation, lack of availability of shelters, etc.). The comprehensive report will be published in fall of 2008 as NUREG/CR-6981, Assessment of Emergency Response Planning and

  20. Joint Radiation Emergency Management Plan of the International Organizations. Date Effective: 1 January 2010

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of this Plan is to describe the inter-agency framework for preparedness for and response to a radiation5 incident or emergency irrespective of its cause. In particular, its objectives are: 1. To provide a common understanding of the emergency preparedness and response roles and responsibilities, objectives, authorities, capabilities and arrangements of each participating international organization, and any relevant inter-agency arrangements; 2. To provide an overall concept of operations between the international organizations based on the emergency response objectives, responsibilities, authorities, capabilities and arrangements of each participating international organization, and any existing inter-agency arrangements, in order to facilitate a timely, effective and co-ordinated response; 3. To facilitate development of agreements among the participating international organizations on practical issues, if appropriate; 4. To provide a common understanding of the process for improving and changing the inter-agency response arrangements; 5. To provide a common understanding of roles and responsibilities of the participating international organizations with respect to: international standards, supporting national capabilities through provision of guidance and training, relevant research, emergency exercises and other preparedness considerations; 6. To guide the managers in each participating organization who need to ensure that all appropriate arrangements are given the necessary support within their organization; 7. To facilitate the well founded development, maintenance and training of plans and procedures for each organization; 8. To draw the attention of personnel in States and international organizations6 to these arrangements and to facilitate the development of compatible arrangements, if appropriate. The Joint Plan describes the arrangements of the participating international organizations7 for responding to a radiation incident or emergency

  1. Developing a highway emergency response plan for incidents involving hazardous materials, second edition, March 1992

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This provides minimum guidelines for developing an emergency response plan for incidents involving hazardous liquid hydrocarbons, such as gasoline and crude oil, transported in MC 306/DOT 406 and MC 307/DOT 407 aluminum cargo tanks and for coordinating and cooperating with local, state, and federal officials. This publication covers response plan priorities, personnel training, special equipment, media relations, environmental relations, and post-response activities. The apprendixes to this recommended practice outline a highway emergency response plan and suggest a procedure for removing liquid hydrocarbons from overturned cargo tanks and righting the tank vehicles

  2. LLNL Site 200 Risk Management Plan

    International Nuclear Information System (INIS)

    Pinkston, D.; Johnson, M.

    2008-01-01

    It is the Lawrence Livermore National Laboratory's (LLNL) policy to perform work in a manner that protects the health and safety of employees and the public, preserves the quality of the environment, and prevents property damage using the Integrated Safety Management System. The environment, safety, and health are to take priority in the planning and execution of work activities at the Laboratory. Furthermore, it is the policy of LLNL to comply with applicable ES and H laws, regulations, and requirements (LLNL Environment, Safety and Health Manual, Document 1.2, ES and H Policies of LLNL). The program and policies that improve LLNL's ability to prevent or mitigate accidental releases are described in the LLNL Environment, Health, and Safety Manual that is available to the public. The laboratory uses an emergency management system known as the Incident Command System, in accordance with the California Standardized Emergency Management System (SEMS) to respond to Operational Emergencies and to mitigate consequences resulting from them. Operational Emergencies are defined as unplanned, significant events or conditions that require time-urgent response from outside the immediate area of the incident that could seriously impact the safety or security of the public, LLNL's employees, its facilities, or the environment. The Emergency Plan contains LLNL's Operational Emergency response policies, commitments, and institutional responsibilities for managing and recovering from emergencies. It is not possible to list in the Emergency Plan all events that could occur during any given emergency situation. However, a combination of hazard assessments, an effective Emergency Plan, and Emergency Plan Implementing Procedures (EPIPs) can provide the framework for responses to postulated emergency situations. Revision 7, 2004 of the above mentioned LLNL Emergency Plan is available to the public. The most recent revision of the LLNL Emergency Plan LLNL-AM-402556, Revision 11, March

  3. Emergency planning and management in health care: priority research topics.

    Science.gov (United States)

    Boyd, Alan; Chambers, Naomi; French, Simon; Shaw, Duncan; King, Russell; Whitehead, Alison

    2014-06-01

    Many major incidents have significant impacts on people's health, placing additional demands on health-care organisations. The main aim of this paper is to suggest a prioritised agenda for organisational and management research on emergency planning and management relevant to U.K. health care, based on a scoping study. A secondary aim is to enhance knowledge and understanding of health-care emergency planning among the wider research community, by highlighting key issues and perspectives on the subject and presenting a conceptual model. The study findings have much in common with those of previous U.S.-focused scoping reviews, and with a recent U.K.-based review, confirming the relative paucity of U.K.-based research. No individual research topic scored highly on all of the key measures identified, with communities and organisations appearing to differ about which topics are the most important. Four broad research priorities are suggested: the affected public; inter- and intra-organisational collaboration; preparing responders and their organisations; and prioritisation and decision making.

  4. Institutional Plan, FY 1995--2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    Sandia recently completed an updated strategic plan, the essence of which is presented in chapter 4. Sandia`s Strategic Plan 1994 takes its direction from DOE`s Fueling a Competitive Economy: Strategic Plan and provides tangible guidance for Sandia`s programs and operations. Although it is impossible to foresee precisely what activities Sandia will pursue many years from now, the strategic plan makes one point clear: the application of our scientific and engineering skills to the stewardship of the nation`s nuclear deterrent will be central to our service to the nation. We will provide the necessary institutional memory and continuity, experience base, and technical expertise to ensure the continued safety, security, and reliability of the nuclear weapons stockpile. As a multiprogram laboratory, Sandia will also continue to focus maximum effort on a broad spectrum of other topics consistent with DOE`s enduring core mission responsibilities: Defense (related to nuclear weapons), Energy, Environment (related to waste management and environmental remediation), and Basic Science.

  5. Is there a business continuity plan for emergencies like an Ebola outbreak or other pandemics?

    Science.gov (United States)

    Kandel, Nirmal

    2015-01-01

    During emergencies, the health system will be overwhelmed and challenged by various factors like staff absenteeism and other limited resources. More than half of the workforce in Liberia has been out of work since the start of the Ebola outbreak. It is vital to continue essential services like maternal and child health care, emergency care and others while responding to emergencies like an Ebola outbreak other pandemic or disaster. Having a business continuity plan (BCP) and involving various sectors during planning and implementing the plan during a crisis will assist in providing essential services to the public. An established BCP will not only help the continuity of services, it also assists in maintaining achievements of sustainable development. This applies to all sectors other than health, for instance, energy sectors, communication, transportation, education, production and agriculture.

  6. Chemical warfare agent simulants for human volunteer trials of emergency decontamination: A systematic review.

    Science.gov (United States)

    James, Thomas; Wyke, Stacey; Marczylo, Tim; Collins, Samuel; Gaulton, Tom; Foxall, Kerry; Amlôt, Richard; Duarte-Davidson, Raquel

    2018-01-01

    Incidents involving the release of chemical agents can pose significant risks to public health. In such an event, emergency decontamination of affected casualties may need to be undertaken to reduce injury and possible loss of life. To ensure these methods are effective, human volunteer trials (HVTs) of decontamination protocols, using simulant contaminants, have been conducted. Simulants must be used to mimic the physicochemical properties of more harmful chemicals, while remaining non-toxic at the dose applied. This review focuses on studies that employed chemical warfare agent simulants in decontamination contexts, to identify those simulants most suitable for use in HVTs of emergency decontamination. Twenty-two simulants were identified, of which 17 were determined unsuitable for use in HVTs. The remaining simulants (n = 5) were further scrutinized for potential suitability according to toxicity, physicochemical properties and similarities to their equivalent toxic counterparts. Three suitable simulants, for use in HVTs were identified; methyl salicylate (simulant for sulphur mustard), diethyl malonate (simulant for soman) and malathion (simulant for VX or toxic industrial chemicals). All have been safely used in previous HVTs, and have a range of physicochemical properties that would allow useful inference to more toxic chemicals when employed in future studies of emergency decontamination systems. © 2017 Crown Copyright. Journal of Applied Toxicology published by John Wiley & Sons, Ltd.

  7. Building the strategic national stockpile through the NIAID Radiation Nuclear Countermeasures Program.

    Science.gov (United States)

    Rios, Carmen I; Cassatt, David R; Dicarlo, Andrea L; Macchiarini, Francesca; Ramakrishnan, Narayani; Norman, Mai-Kim; Maidment, Bert W

    2014-02-01

    The possibility of a public health radiological or nuclear emergency in the United States remains a concern. Media attention focused on lost radioactive sources and international nuclear threats, as well as the potential for accidents in nuclear power facilities (e.g., Windscale, Three Mile Island, Chernobyl, and Fukushima) highlight the need to address this critical national security issue. To date, no drugs have been licensed to mitigate/treat the acute and long-term radiation injuries that would result in the event of large-scale, radiation, or nuclear public health emergency. However, recent evaluation of several candidate radiation medical countermeasures (MCMs) has provided initial proof-of-concept of efficacy. The goal of the Radiation Nuclear Countermeasures Program (RNCP) of the National Institute of Allergy and Infectious Diseases (National Institutes of Health) is to help ensure the government stockpiling of safe and efficacious MCMs to treat radiation injuries, including, but not limited to, hematopoietic, gastrointestinal, pulmonary, cutaneous, renal, cardiovascular, and central nervous systems. In addition to supporting research in these areas, the RNCP continues to fund research and development of decorporation agents targeting internal radionuclide contamination, and biodosimetry platforms (e.g., biomarkers and devices) to assess the levels of an individual's radiation exposure, capabilities that would be critical in a mass casualty scenario. New areas of research within the program include a focus on special populations, especially pediatric and geriatric civilians, as well as combination studies, in which drugs are tested within the context of expected medical care management (e.g., antibiotics and growth factors). Moving forward, challenges facing the RNCP, as well as the entire radiation research field, include further advancement and qualification of animal models, dose conversion from animal models to humans, biomarker identification, and

  8. The case for using vessel-based systems to apply oil-spill dispersants

    International Nuclear Information System (INIS)

    Ross, S.

    1998-01-01

    Most emergency plans for dealing with marine oil spills include the use of chemical dispersants. This paper presents a comparison between the capabilities of aircraft-based dispersant application systems and vessel-based systems. The comparison was presented in terms of the logistics of treating offshore spills. Vessel-based systems have certain advantages in terms of their availability and cost. They have better spray control and accuracy and can dose thick slicks in one pass. However, this advantage is lost if the dispersant payload on the vessel is relatively small and the spill is located very far from the base of operations. Under certain conditions, vessel-based dispersant application systems can treat spills as quickly as aircraft-based systems. Most marine spills tend to occur in restricted waters near ports where dispersant stockpiles could be stored for ready use by vessels in the area. Development of a modern vessel-based, fire-monitor system for applying chemical dispersant onto marine oil spills was one of the recommendations emerging from the study. 32 refs., 6 tabs., 1 fig

  9. Chemical Hygiene Plan for Onsite Measurement and Sample Shipping Facility Activities

    International Nuclear Information System (INIS)

    Price, W.H.

    1998-01-01

    This chemical hygiene plan presents the requirements established to ensure the protection of employee health while performing work in mobile laboratories, the sample shipping facility, and at the onsite radiological counting facility. This document presents the measures to be taken to promote safe work practices and to minimize worker exposure to hazardous chemicals. Specific hazardous chemicals present in the mobile laboratories, the sample shipping facility, and in the radiological counting facility are presented in Appendices A through G

  10. National Certification Methodology for the Nuclear Weapons Stockpile

    International Nuclear Information System (INIS)

    Goodwin, B T; Juzaitis, R J

    2006-01-01

    and December of 2001 and continued in 2002 have proven useful in developing the methodology, and future workshops should prove useful in further refining this framework. Each laboratory developed an approach to certification with some differences in detailed implementation. The general methodology introduces specific quantitative indicators for assessing confidence in our nuclear weapon stockpile. The quantitative indicators are based upon performance margins for key operating characteristics and components of the system, and these are compared to uncertainties in these factors. These criteria can be summarized in a quantitative metric (for each such characteristic) expressed as: (i.e., confidence in warhead performance depends upon CR significantly exceeding unity for all these characteristics). These Confidence Ratios are proposed as a basis for guiding technical and programmatic decisions on stockpile actions. This methodology already has been deployed in certifying weapons undergoing current life extension programs or component remanufacture. The overall approach is an adaptation of standard engineering practice and lends itself to rigorous, quantitative, and explicit criteria for judging the robustness of weapon system and component performance at a detailed level. There are, of course, a number of approaches for assessing these Confidence Ratios. The general certification methodology was publicly presented for the first time to a meeting of Strategic Command SAG in January 2002 and met with general approval. At that meeting, the Laboratories committed to further refine and develop the methodology through the implementation process. This paper reflects the refinement and additional development to date. There will be even further refinement at a joint laboratory workshop later in FY03. A common certification methodology enables us to engage in peer reviews and evaluate nuclear weapon systems on the basis of explicit and objective metrics. The clarity provided by

  11. Dispatching Plan Based on Route Optimization Model Considering Random Wind for Aviation Emergency Rescue

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2016-01-01

    Full Text Available Aviation emergency rescue is an effective means of nature disaster relief that is widely used in many countries. The dispatching plan of aviation emergency rescue guarantees the efficient implementation of this relief measure. The conventional dispatching plan that does not consider random wind factors leads to a nonprecise quick-responsive scheme and serious safety issues. In this study, an aviation emergency rescue framework that considers the influence of random wind at flight trajectory is proposed. In this framework, the predicted wind information for a disaster area is updated by using unscented Kalman filtering technology. Then, considering the practical scheduling problem of aircraft emergency rescue at present, a multiobjective model is established in this study. An optimization model aimed at maximizing the relief supply satisfaction, rescue priority satisfaction, and minimizing total rescue flight distance is formulated. Finally, the transport times of aircraft with and without the influence of random wind are analyzed on the basis of the data of an earthquake disaster area. Results show that the proposed dispatching plan that considers the constraints of updated wind speed and direction is highly applicable in real operations.

  12. Legislative framework on establishing emergency response plan in the case of a nuclear accident

    International Nuclear Information System (INIS)

    Novosel, N.; Valcic, I.; Biscan, R.

    2000-01-01

    To give an overview of the legislative framework, which defined emergency planning in Croatia in the case of a nuclear accident, it's necessary to look at all international recommendations and obligations and the national legislation, acts and regulations. It has to be emphasized that Croatia signed three international conventions in this field, and by that took over some responsibilities and obligations. Beside that, it is also in Croatian interest to follow the recommendations of international institutions such as International Atomic Energy Agency (IAEA standards and technical documents). On the other hand, national legislation in this field consists of several laws, which cover nuclear safety measures, governmental organization, natural disasters and acts (decree, decisions) of responsible authority for emergency planning in the case of a nuclear accident (Ministry of Economy). This paper presents an overview of the international and Croatian legislation which influenced the emergency planning in the case of a nuclear accident. (author)

  13. Participation of the ININ in the external radiological emergency plan of the Laguna Verde power plant

    International Nuclear Information System (INIS)

    Martinez S, R.; Cervini L, A.

    1991-01-01

    The planning of performances in radiological emergencies, with the object of reducing the consequences as much as possible on the population to accidental liberations of radioactive material coming from Nuclear power plant, it has been of main interest in the nuclear community in the world. In Mexico it has not been the exception, since with the setting in march of the Laguna Verde nuclear power plant exists an executive program of planning for emergencies that it outlines the activities to follow trending to mitigate the consequences that are derived of this emergency. As integral part of this program this the External Plan of Radiological Emergency (PERE) that covers the emergencies that could leave the frontiers of the Laguna Verde power plant. In the PERE it settles down the planning, address and control of the preparation activities, response and recovery in emergencies, as well as the organization and coordination of the institutions that participate. The National Institute of Nuclear Research (ININ), like integral part of these institutions in the PERE, has an infrastructure that it allows to participate in the plan in a direct way in the activities of 'Control of the radiological exhibition the response personnel and control of water and foods' and of support way and consultant ship in the activities of 'Monitoring, Classification and decontamination of having evaluated' and 'Specialized medical radiological attention'. At the moment the ININ has a radiological mobile unit and this conditioning a second mobile unit to carry out part of the activities before mentioned; also accounts with 48 properly qualified people that directly intervene in the plan. In order to guarantee an adequate response in the PERE an organization it has been structured like that of the annex as for the personnel, transport, team, procedures and communication system, with the objective always of guaranteeing the security and the population's health in emergency situations in the

  14. Environmental management and emergency preparedness plan for Tsunami disaster along Indian coast

    Directory of Open Access Journals (Sweden)

    P Chandramohan

    2017-12-01

    Full Text Available The 26 December 2004 Tsunami generated by the submarine earthquake in Andaman Sea with the magnitude of 9.2 Richter scale triggered the worst destruction, widespread inundation and extensive damage in terms of life and property along the Tamil Nadu coast and Andaman Nicobar Group of Islands. The shoreline features like dunes, vegetation and steepness of beaches played vital role in attenuating the impact of Tsunami from destruction. While the low-level Marina beach experienced minimum inundation, the coast between Adyar and Cooum was inundated heavily. As the present generation of India was not aware of Tsunami, the emergency plan and preparedness were zero and so the loss of human life was huge. In this article, the authors describe the Tsunami occurred in India on 26 December 2004 and its impacts on morphology. The appropriate Emergency Preparedness plan and the Disaster Management Plan in case of reoccurrence of such natural disaster are discussed.

  15. Community Alert: Using Text Messaging and Social Media to Improve Campus Emergency Planning

    Science.gov (United States)

    Connolly, Maureen

    2014-01-01

    This article describes emergency management and the part that social media technologies and mobile messaging have made when they are included as part of the campus emergency plan. Administrators have found that ample notification and preparedness must be built into campus communication systems. Social media platforms such as Twitter and Facebook…

  16. 76 FR 2700 - National Protection and Programs Directorate; National Emergency Communications Plan (NECP) Goal...

    Science.gov (United States)

    2011-01-14

    ... Programs Directorate (NPPD)/Office of Cybersecurity and Communications (CS&C)/Office of Emergency Communications (OEC) will submit the following Information Collection Request to the Office of Management and... Directorate; National Emergency Communications Plan (NECP) Goal 2 Performance Report AGENCY: National...

  17. Guidance for emergency planning in nuclear power plants; Vaegledning foer insatsplanering i kaerntekniska anlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Tommy; Ekdahl, Maria (Ringhals AB, Vaeroebacka (Sweden))

    2008-06-15

    Ringhals has been a model for this study, but the purpose has been to make the report applicable at all nuclear power plants in Sweden. The work has been done in close co-operation with the Swedish nuclear power plants and Rescue Services in the nuclear power municipalities Oesthammar, Oskarshamn, and Varberg. The internal fire brigade at the nuclear power plants has also been involved. A document will also be published as a further guidance at efforts of the type fires, which are mentioned in the enclosed document. After a fire in a switchgear room in 2005 the need of making the existing effort planning more effective at nuclear power plants was observed. The idea with the planning is to plan the effort in order to give the operational and emergency staff a good and actual support to come to a decision and to start the mission without delay. The risk information is showed by planning layouts, symbols and drawings as basis, give risk information and effort information. The effort information shows outer arrangements, manual action points, fire installations, passive fire safety etc. The risk information is shown by risk symbols. Their purpose is to give a fast overview of the existing risks. Reactor safety effects is the ruling influence if an effort has to be done in order to secure safety for a third person. In order to make an effort in an area personal risks for rescue staff, such as electricity risks, radiological risks, chemicals and gas bottles with compressed gases, has to be eliminated. For complicated missions detailed instructions are needed in order to handle specific risks. In a group discussion different people with pertinent knowledge has to value which problematic efforts need detailed instruction. Missions that have to be analyzed in a work group as above are: fire may affect the reactor safety, fire that may threaten the structural integrity, chemical discharge with big consequence on environment/third person and handling of gas system (compressed

  18. Science-based stockpile stewardship at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Immele, J.

    1995-01-01

    I would like to start by working from Vic Reis's total quality management diagram in which he began with the strategy and then worked through the customer requirements-what the Department of Defense (DoD) is hoping for from the science-based stockpile stewardship program. Maybe our customer's requirements will help guide some of the issues that we should be working on. ONe quick answer to open-quotes why have we adopted a science-based strategyclose quotes is that nuclear weapons are a 50-year responsibility, not just a 5-year responsibility, and stewardship without testing is a grand challenge. While we can do engineering maintenance and turn over and remake a few things on the short time scale, without nuclear testing, without new weapons development, and without much of the manufacturing base that we had in the past, we need to learn better just how these weapons are actually working

  19. Emergency response plan for accidents in Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Solaiman, K.M.; Al-Arfaj, A.M.; Farouk, M.A.

    2000-01-01

    This paper presents a brief description of the general emergency plan for accidents involving radioactive materials in the Kingdom of Saudi Arabia. Uses of radioactive materials and radiation sources and their associated potential accident are specified. Most general accident scenarios of various levels have been determined. Protective measures have been specified to reduce individual and collective doses arising during accident situations. Intervention levels for temporary exposure situations, as established in the IAEA's basic safety standards for protection against ionising radiation and for the safety of radiation sources, are adopted as national intervention levels. General procedures for implementation of the response plan, including notification and radiological monitoring instrumentation and equipment, are described and radiation monitoring teams are nominated. Training programs for the different parties which may be called upon to respond are studied and will be started. (author)

  20. Fumigant Management Plan Templates - Phase 2 Files Listed by Chemical

    Science.gov (United States)

    FMP templates are in PDF and Word formats for each type of soil fumigant pesticide, with samples of filled out plans. Types are by active ingredient chemical: Chloropicrin, dazomet, dimethyl disulfide, metam sodium/potassium, and methyl bromide.

  1. Savannah River Site management response plan for chemical safety vulnerability field assessment. Revision 1

    International Nuclear Information System (INIS)

    Kahal, E.J.; Murphy, S.L.; Salaymeh, S.R.

    1994-09-01

    As part of the U.S. Department of Energy's (DOE) initiative to identify potential chemical safety vulnerabilities in the DOE complex, the Chemical Safety Vulnerability Core Working Group issued a field verification assessment report. While the report concluded that Savannah River Site (SRS) is moving in a positive direction, the report also identified five chemical safety vulnerabilities with broad programmatic impact that are not easily nor quickly remedied. The May 1994 SRS Management Response Plan addressed the five SRS vulnerabilities identified in the field assessment report. The SRS response plan listed observations supporting the vulnerabilities and any actions taken or planned toward resolution. Many of the observations were resolved by simple explanations, such as the existence of implementation plans for Safety Analysis Report updates. Recognizing that correcting individual observations does not suffice in remedying the vulnerabilities, a task team was assembled to address the broader programmatic issues and to recommend corrective actions

  2. Biomaterials for mediation of chemical and biological warfare agents.

    Science.gov (United States)

    Russell, Alan J; Berberich, Jason A; Drevon, Geraldine F; Koepsel, Richard R

    2003-01-01

    Recent events have emphasized the threat from chemical and biological warfare agents. Within the efforts to counter this threat, the biocatalytic destruction and sensing of chemical and biological weapons has become an important area of focus. The specificity and high catalytic rates of biological catalysts make them appropriate for decommissioning nerve agent stockpiles, counteracting nerve agent attacks, and remediation of organophosphate spills. A number of materials have been prepared containing enzymes for the destruction of and protection against organophosphate nerve agents and biological warfare agents. This review discusses the major chemical and biological warfare agents, decontamination methods, and biomaterials that have potential for the preparation of decontamination wipes, gas filters, column packings, protective wear, and self-decontaminating paints and coatings.

  3. Inadequacies of Belgium nuclear emergency plans: lessons from the Fukushima catastrophe have not been learned

    International Nuclear Information System (INIS)

    Boilley, David; Josset, Mylene

    2015-01-01

    After having outlined that some Belgium regional authorities made some statements showing that they did not learn lessons neither from the Chernobyl catastrophe, nor from the Fukushima accident, this report aims at examining whether Belgium is well prepared to face a severe nuclear accident occurring within its borders or in neighbouring countries, whether all hypotheses have actually been taken into account, and whether existing emergency plans are realistic. After a presentation of Belgium's situation regarding nuclear plants (Belgium plants and neighbouring French plants), the report presents the content and organisation of the nuclear emergency plan for the Belgium territory at the national, provincial and municipal levels. While outlining inadequacies and weaknesses of the Belgium plan regarding the addressed issues, it discusses the main lessons learned from the Fukushima accident in terms of emergency planning areas, of population sheltering, of iodine-based prophylaxis, of population evacuation, of food supply, of tools (measurement instruments) and human resources, and of public information. In the next parts, the report addresses and discusses trans-border issues, and the commitment of stakeholders

  4. Development of a novel scoring system for identifying emerging chemical risks in the food chain.

    Science.gov (United States)

    Oltmanns, J; Licht, O; Bitsch, A; Bohlen, M-L; Escher, S E; Silano, V; MacLeod, M; Serafimova, R; Kass, G E N; Merten, C

    2018-02-21

    The European Food Safety Authority (EFSA) is responsible for risk assessment of all aspects of food safety, including the establishment of procedures aimed at the identification of emerging risks to food safety. Here, a scoring system was developed for identifying chemicals registered under the European REACH Regulation that could be of potential concern in the food chain using the following parameters: (i) environmental release based on maximum aggregated tonnages and environmental release categories; (ii) biodegradation in the environment; (iii) bioaccumulation and in vivo and in vitro toxicity. The screening approach was tested on 100 data-rich chemicals registered under the REACH Regulation at aggregated volumes of at least 1000 tonnes per annum. The results show that substance-specific data generated under the REACH Regulation can be used to identify potential emerging risks in the food chain. After application of the screening procedure, priority chemicals can be identified as potentially emerging risk chemicals through the integration of exposure, environmental fate and toxicity. The default approach is to generate a single total score for each substance using a predefined weighting scenario. However, it is also possible to use a pivot table approach to combine the individual scores in different ways that reflect user-defined priorities, which enables a very flexible, iterative definition of screening criteria. Possible applications of the approaches are discussed using illustrative examples. Either approach can then be followed by in-depth evaluation of priority substances to ensure the identification of substances that present a real emerging chemical risk in the food chain.

  5. NNSA?s Computing Strategy, Acquisition Plan, and Basis for Computing Time Allocation

    Energy Technology Data Exchange (ETDEWEB)

    Nikkel, D J

    2009-07-21

    This report is in response to the Omnibus Appropriations Act, 2009 (H.R. 1105; Public Law 111-8) in its funding of the National Nuclear Security Administration's (NNSA) Advanced Simulation and Computing (ASC) Program. This bill called for a report on ASC's plans for computing and platform acquisition strategy in support of stockpile stewardship. Computer simulation is essential to the stewardship of the nation's nuclear stockpile. Annual certification of the country's stockpile systems, Significant Finding Investigations (SFIs), and execution of Life Extension Programs (LEPs) are dependent on simulations employing the advanced ASC tools developed over the past decade plus; indeed, without these tools, certification would not be possible without a return to nuclear testing. ASC is an integrated program involving investments in computer hardware (platforms and computing centers), software environments, integrated design codes and physical models for these codes, and validation methodologies. The significant progress ASC has made in the past derives from its focus on mission and from its strategy of balancing support across the key investment areas necessary for success. All these investment areas must be sustained for ASC to adequately support current stockpile stewardship mission needs and to meet ever more difficult challenges as the weapons continue to age or undergo refurbishment. The appropriations bill called for this report to address three specific issues, which are responded to briefly here but are expanded upon in the subsequent document: (1) Identify how computing capability at each of the labs will specifically contribute to stockpile stewardship goals, and on what basis computing time will be allocated to achieve the goal of a balanced program among the labs. (2) Explain the NNSA's acquisition strategy for capacity and capability of machines at each of the labs and how it will fit within the existing budget constraints. (3

  6. ANSI/ANS-8.23-1997: nuclear criticality accident emergency planning and response

    International Nuclear Information System (INIS)

    Baker, J.S.

    2004-01-01

    American National Standard ANSUANS-8.23 was developed to expand upon the basic emergency response guidance given in American National Standard, 'Administrative Practices for Nuclear Criticality Safety' ANSI/ANS-8.19-1996 (Ref. 1). This standard provides guidance for minimizing risks to personnel during emergency response to a nuclear criticality accident outside reactors. This standard is intended to apply to those facilities for which a criticality accident alarm system, as specified in American National Standard, 'Criticality Accident Alarm System', ANSI/ANS-8.3-1997 (Ref. 2) is in use. The Working Group was established in 1990, with Norman L. Pruvost as chairman. The Working Group had up to twenty-three members representing a broad range of the nuclear industry, and has included members from Canada, Japan and the United Kingdom. The initial edition of ANSI/ANS-8.23 was approved by the American National Standards Institute on December 30, 1997. It provides guidance for the following topics: (1) Management and technical staff responsibilities; (2) Evaluation of a potential criticality accident; (3) Emergency plan provisions; (4) Evacuation; (5) Re-entry, rescue and stabilization; and (6) Classroom training, exercises and evacuation drills. This guidance is not for generic emergency planning issues, but is specific to nuclear criticality accidents. For example, it assumes that an Emergency Plan is already established at facilities that implement the standard. During the development of the initial edition of ANSI/ANS-8.23, each Working Group member evaluated potential use of the standard at a facility with which the member was familiar. This revealed areas where a facility could have difficulty complying with the standard. These reviews helped identify and eliminate many potential problems and ambiguities with the guidance. The Working Group has received very limited feedback from the user community since the first edition of the standard was published. Suggestions

  7. Emergency Planning and Community Right-To-Know Act Section 312 Tier Two report forms

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.A.

    2000-02-01

    The report contains forms for the chemical description, physical and health hazards, inventory volumes, and storage codes and locations for all hazardous chemicals located at the Y-12 Plant. These can be used by local emergency response teams in case of an accident.

  8. Emergency Planning and Community Right-to-Know Act Section 312 Tier Two Report Forms

    International Nuclear Information System (INIS)

    Evans, R.A.

    2000-01-01

    The report contains forms for the chemical description, physical and health hazards, inventory volumes, and storage codes and locations for all hazardous chemicals located at the Y-12 Plant. These can be used by local emergency response teams in case of an accident

  9. Emergency Planning and Community Right-To-Know Act Section 312 Tier Two Report Forms

    International Nuclear Information System (INIS)

    Evans, R.A.

    2000-01-01

    The report contains forms for the chemical description, physical and health hazards, inventory volumes, and storage codes and locations for all hazardous chemicals located at the Y-12 Plant. These can be used by local emergency response teams in case of an accident

  10. Coastal pollution emergency plan. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Semanov, G.; Volkov, V.; Somkin, V.; Iljushenko-Krylov, D.

    1997-12-31

    A higher degree of ecological safety in ship traffic depends on onboard measures as well as reception facilities on shore, treatment of ship generated wastes and preparedness for combating emergency oil spills. The problem is particularly acute in the North Sea Route (NSR) due to high vulnerability of the Arctic ecosystems, low rates of natural degradation of oil, absence of forward coastal infrastructure, low efficiency of oil combating means in ice conditions and severe climatic conditions. Oil spills in the NSR are likely to occur as the offshore production and transportation of oil increase. Therefore a regional Oil Spill Contingency Plan (OSCP) is being constructed and developed on 3 levels: 1) Development of concept, definition of response organisations and their technical ability (Part I). 2) Collection and analysis of information, development of scenarios of probable oil spills, clearing of the funding mechanism and basis for additional outside co-operation from other Russian regions and circumpolar countries (part II). 3) Development of NSR OSCP (part III). The present report (part I) provides the plan concept, rescue organisations and data on types and amounts of the oil spill combating technical means and of the floating facilities available in the NSR or it`s vicinity. The concept takes into account subdivision of the Route, interaction and links between responsible organisations, realities of the Russian Arctic such as transport, communications, energy, labour resources etc. and requirements of the IMO and of the International Convention OPRC 90. According to Russian legislation implementation of combating operations at sea is the responsibility of the Maritime Pollution Control and Salvage Administration that consists of a Central Administration and basin emergency divisions situated in Murmansk and Nahodka. The body is responsible for carrying out cleaning operations at sea from installations and may be assisted by resources and means of the co

  11. [Investigation of emergency capacities for occupational hazard accidents in silicon solar cell producing enterprises].

    Science.gov (United States)

    Yang, D D; Xu, J N; Zhu, B L

    2016-11-20

    Objective: To investigate and analyze the influential factors of occupational hazard acci-dents, emergency facilities and emergency management in Silicon solar cell producing enterprises, then to pro-vide scientific strategies. Methods: The methods of occupationally healthy field investigating, inspecting of ven-tilation effectiveness, setup of emergency program and wearing chemical suit were used. Results: The mainly occupational hazard accidents factors in the process of Silicon solar cell producing included poisoning chemi-cals, high temperature, onizing radiation and some workplaces. The poisoning chemicals included nitric acid, hydrofluoric acid, sulfuric acid, hydrochloric acid, sodium hydroxide, potassium hydroxide, chlorine, phos-phorus oxychloride, phosphorus pentoxide, nitrogen dioxide, ammonia, silane, and so on; the workplaces in-cluded the area of producing battery slides and auxiliary producing area. Among the nine enterprises, gas detec-tors were installed in special gas supplying stations and sites, but the height, location and alarmvalues of gas detectors in six enterprises were not according with standard criteria; emergency shower and eyewash equip-ment were installed in workplaces with strong corrosive chemicals, but the issues of waste water were not solved; ventilation systems were set in the workplaces with ammonia and silane, but not qualified with part lo-cations and parameters in two enterprises; warehouses with materials of acid, alkali, chemical ammonia and phosphorus oxychloride were equipped with positive - pressure air respirator resuscitator and emergency cabi-nets, but with insufficient quantity in seven enterprises and expiration in part of products. The error rate of set-up emergency program and wearing chemical cloth were 30%~100% and 10%~30%, respectively. Among the nine enterprises, there were emergency rescue plans for dangerous chemical accidents, but without profession-al heatstroke and irradiation accident emergency plans

  12. Review of off-site emergency preparedness and response plan of Indian NPPs based on experience of Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Singh, Hukum; Dash, M.; Shukla, Vikas; Vijayan, P.; Krishnamurthy, P.R.

    2012-01-01

    Nuclear power plants in India are designed, constructed and operated based on the principle of the highest priority to nuclear safety. To deal with any unlikely situation of radiological emergency, the emergency preparedness and response plans are ensured to be in place at all NPPs prior to their commissioning. These plans are periodically reviewed and tested by conducting emergency exercise with the participation of various agencies such as Nuclear Power Corporation of India Limited, NDMA, district authorities, regulatory body and general public. On March 11, 2011 an earthquake of magnitude 9.0 hit the Fukushima Dai-ichi and Dai-ni followed by tsunami waves of height 15 meters above reference sea level. This resulted in large scale release of radioactive material from Fukushima Dai-ichi NPS. This led to the evacuation of a large number of people from the areas surrounding the affected nuclear power plants. The event was rated as level 7 event in International Nuclear Event Scale (INES). The event also revealed the challenges in handling radiological emergency situation in adverse environmental conditions, The experience of managing radiological emergency situation during Fukushima nuclear accident provides opportunities to review and improve emergency preparedness and response programme. The present paper presents the chronology of the emergency situation, challenges faced and handled in Fukushima. Even though the possibility of a Fukushima type nuclear accident in India is very remote due to the low probability of a high intensity earthquake followed by tsunami at NPP sites, the efforts needs to be initiated from the regulatory point of view for an effective Nuclear and Radiological Emergency Preparedness and Response Plans. The Emergency Preparedness and Response Plans of NPP sites were reviewed in the light of unique challenges of accident at Fukushima. It is realized that multi unit events are the realities that must be addressed as part of Emergency

  13. Review of off-site emergency preparedness and response plan of Indian NPPs based on experience of Fukushima nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hukum; Dash, M.; Shukla, Vikas; Vijayan, P.; Krishnamurthy, P.R., E-mail: vshukla@aerb.gov.in [Operating Plants Safety Division, Atomic Energy Regulatory Board, Mumbai (India)

    2012-07-01

    Nuclear power plants in India are designed, constructed and operated based on the principle of the highest priority to nuclear safety. To deal with any unlikely situation of radiological emergency, the emergency preparedness and response plans are ensured to be in place at all NPPs prior to their commissioning. These plans are periodically reviewed and tested by conducting emergency exercise with the participation of various agencies such as Nuclear Power Corporation of India Limited, NDMA, district authorities, regulatory body and general public. On March 11, 2011 an earthquake of magnitude 9.0 hit the Fukushima Dai-ichi and Dai-ni followed by tsunami waves of height 15 meters above reference sea level. This resulted in large scale release of radioactive material from Fukushima Dai-ichi NPS. This led to the evacuation of a large number of people from the areas surrounding the affected nuclear power plants. The event was rated as level 7 event in International Nuclear Event Scale (INES). The event also revealed the challenges in handling radiological emergency situation in adverse environmental conditions, The experience of managing radiological emergency situation during Fukushima nuclear accident provides opportunities to review and improve emergency preparedness and response programme. The present paper presents the chronology of the emergency situation, challenges faced and handled in Fukushima. Even though the possibility of a Fukushima type nuclear accident in India is very remote due to the low probability of a high intensity earthquake followed by tsunami at NPP sites, the efforts needs to be initiated from the regulatory point of view for an effective Nuclear and Radiological Emergency Preparedness and Response Plans. The Emergency Preparedness and Response Plans of NPP sites were reviewed in the light of unique challenges of accident at Fukushima. It is realized that multi unit events are the realities that must be addressed as part of Emergency

  14. Topical Backgrounder: Chemical Safety in Your Community: EPA's New Risk Management Program

    Science.gov (United States)

    This May 1999 document is part of a series of publications on the RMP and issues related to chemical emergency management. Explains how the RMP requirements pick up where the Emergency Planning and Community Right-to-Know Act left off.

  15. Emergency material allocation with time-varying supply-demand based on dynamic optimization method for river chemical spills.

    Science.gov (United States)

    Liu, Jie; Guo, Liang; Jiang, Jiping; Jiang, Dexun; Wang, Peng

    2018-04-13

    Aiming to minimize the damage caused by river chemical spills, efficient emergency material allocation is critical for an actual emergency rescue decision-making in a quick response. In this study, an emergency material allocation framework based on time-varying supply-demand constraint is developed to allocate emergency material, minimize the emergency response time, and satisfy the dynamic emergency material requirements in post-accident phases dealing with river chemical spills. In this study, the theoretically critical emergency response time is firstly obtained for the emergency material allocation system to select a series of appropriate emergency material warehouses as potential supportive centers. Then, an enumeration method is applied to identify the practically critical emergency response time, the optimum emergency material allocation and replenishment scheme. Finally, the developed framework is applied to a computational experiment based on south-to-north water transfer project in China. The results illustrate that the proposed methodology is a simple and flexible tool for appropriately allocating emergency material to satisfy time-dynamic demands during emergency decision-making. Therefore, the decision-makers can identify an appropriate emergency material allocation scheme in a balance between time-effective and cost-effective objectives under the different emergency pollution conditions.

  16. Emergency planning and preparedness for nuclear facilities

    International Nuclear Information System (INIS)

    Koelzer, W.

    1988-01-01

    Nuclear installations are designed, constructed and operated in such a way that the probability for an incident or accident is very low and the probability for a severe accident with catastrophic consequences is extremely small. These accidents represent the residual risk of the nuclear installation, and this residual risk can be decreased on one hand by a better design, construction and operation and on the other hand by planning and taking emergency measures inside the facility and in the environment of the facility. By way of introduction and definition it may be indicated to define some terms pertaining to the subject in order to make for more uniform understanding. (orig./DG)

  17. Proposed energy conservation contingency plan: emergency restrictions on advertising lighting. Authorities, need, rationale, and operation

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    The emergency restrictions on advertising lighting proposed in Energy Conservation Contingency Plan No. 5 of 1977 are presented. A statement is given on the need for rationale and operation of the Contingency Plan.

  18. New Basic Nuclear Emergency Plan (Plaben)

    International Nuclear Information System (INIS)

    Calvin, M.; Gil, E.; Martin, M.; Ramon, J.; Serrano, I.

    2004-01-01

    Ever since Plaben came into force in 1989, the national civil protection system has experienced a large evolution among other reasons due to the Autonomous Community governments assuming authority in this matter. In parallel, the regulation and international practice in matters of planning and nuclear emergency response has evolved as a consequence of the lessons learned following the long-term Chernobyl accident. Both circumstance recommended that Plaben be revised in order to adopt it to this new environment. The New Plaben was approved in June of this year and from that moment implantation has begun. Described in the article is the New Plaben, the modifications that respect the former the role that the CSN played in is revision and the main activities required to put it into practice. (Author)

  19. Chemical and radiological vulnerability assessment in urban areas

    Directory of Open Access Journals (Sweden)

    Stojanović Božidar

    2006-01-01

    Full Text Available Cities and towns are faced with various types of threat from the extraordinary events involving chemical and radiological materials as exemplified by major chemical accidents, radiological incidents, fires, explosions, traffic accidents, terrorist attacks, etc. On the other hand, many sensitive or vulnerable assets exist within cities, such as: settlements, infrastructures, hospitals, schools, churches, businesses, government, and others. Besides emergency planning, the land use planning also represents an important tool for prevention or reduction of damages on people and other assets due to unwanted events. This paper considers development of method for inclusion vulnerability assessment in land use planning with objective to assess and limit the consequences in cities of likely accidents involving hazardous materials. We made preliminary assessment of criticality and vulnerability of the assets within Belgrade city area in respect to chemical sites and transportation roads that can be exposed to chemical accidents, or terrorist attacks.

  20. Compliance with federal and state regulations regarding the emergency response plan and physical security plan at the Oregon State TRIGA reactor

    International Nuclear Information System (INIS)

    Johnson, A.G.; Ringle, J.C.; Anderson, T.V.

    1976-01-01

    Recent legislative actions within the State of Oregon have had a significant impact upon the OSU TRIGA Emergency Response Plan, and to a lesser extent upon the Physical Security Plan. These state imposed changes will be reviewed in light of existing federal requirements. With the upcoming acquisition of FLIP fuel in August 1976, NRC required several major changes to the existing Physical Security Plan. Within the limitations of public disclosure, these changes will be contrasted to the present plan. (author)