WorldWideScience

Sample records for chemical stockpile disposal

  1. Chemical Stockpile Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Umatilla Depot Activity (UMDA) in Hermiston, Oregon. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the Umatilla Depot Activity and by recommending the scope and content of a more detailed site-specific study. This independent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at UMDA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources; seismicity; and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 7 refs., 1 fig.

  2. Planning guidance for the Chemical Stockpile Emergency Preparedness Program

    Energy Technology Data Exchange (ETDEWEB)

    Shumpert, B.L.; Watson, A.P.; Sorensen, J.H. [and others

    1995-02-01

    This planning guide was developed under the direction of the U.S. Army and the Federal Emergency Management Agency (FEMA) which jointly coordinate and direct the development of the Chemical Stockpile Emergency Preparedness Program (CSEPP). It was produced to assist state, local, and Army installation planners in formulating and coordinating plans for chemical events that may occur at the chemical agent stockpile storage locations in the continental United States. This document provides broad planning guidance for use by both on-post and off-post agencies and organizations in the development of a coordinated plan for responding to chemical events. It contains checklists to assist in assuring that all important aspects are included in the plans and procedures developed at each Chemical Stockpile Disposal Program (CSDP) location. The checklists are supplemented by planning guidelines in the appendices which provide more detailed guidance regarding some issues. The planning guidance contained in this document will help ensure that adequate coordination between on-post and off-post planners occurs during the planning process. This planning guide broadly describes an adequate emergency planning base that assures that critical planning decisions will be made consistently at every chemical agent stockpile location. This planning guide includes material drawn from other documents developed by the FEMA, the Army, and other federal agencies with emergency preparedness program responsibilities. Some of this material has been developed specifically to meet the unique requirements of the CSEPP. In addition to this guidance, other location-specific documents, technical studies, and support studies should be used as needed to assist in the planning at each of the chemical agent stockpile locations to address the specific hazards and conditions at each location.

  3. The chemical stockpile intergovernmental consultation program: Lessons for HLW public involvement

    International Nuclear Information System (INIS)

    Feldman, D.L.

    1991-01-01

    This paper assesses the appropriateness of the US Army's Chemical Stockpile Disposal Program's (CSDP) Intergovernmental Consultation and Coordination Boards (ICCBs) as models for incorporating public concerns in the future siting of HLW repositories by DOE. ICCB structure, function, and implementation are examined, along with other issues relevant to the HLW context. 27 refs

  4. Disposal of chemical agents and munitions stored at Umatilla Depot Activity, Hermiston, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, G.P.; Hillsman, E.L.; Johnson, R.O.; Miller, R.L.; Patton, T.G.; Schoepfle, G.M.; Tolbert, V.R.; Feldman, D.L.; Hunsaker, D.B. Jr.; Kroodsma, R.L.; Morrissey, J.; Rickert, L.W.; Staub, W.P.; West, D.C.

    1993-02-01

    The Umatilla Depot Activity (UMDA) near Hermiston, Oregon, is one of eight US Army installations in the continental United States where lethal unitary chemical agents and munitions are stored, and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at UMDA consists of 11.6%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts), using a method based on five measures of risk for potential human health and ecosystem/environmental effects; the effectiveness and adequacy of emergency preparedness capabilities also played a key role in the FPEIS selection methodology. In some instances, the FPEIS included generic data and assumptions that were developed to allow a consistent comparison of potential impacts among programmatic alternatives and did not include detailed conditions at each of the eight installations. The purpose of this Phase 1 report is to examine the proposed implementation of on-site disposal at UMDA in light of more recent and more detailed data than those included in the FPEIS. Specifically, this Phase 1 report is intended to either confirm or reject the validity of on-site disposal for the UMDA stockpile. Using the same computation methods as in the FPEIS, new population data were used to compute potential fatalities from hypothetical disposal accidents. Results indicate that onsite disposal is clearly preferable to either continued storage at UMDA or transportation of the UMDA stockpile to another depot for disposal.

  5. Disposal of chemical agents and munitions stored at Pueblo Depot Activity, Colorado. Final, Phase 1: Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.W.; Blasing, T.J.; Ensminger, J.T.; Johnson, R.O.; Schexnayder, S.M.; Shor, J.T.; Staub, W.P.; Tolbert, V.R.; Zimmerman, G.P.

    1995-04-01

    Under the Chemical Stockpile Disposal Program (CSDP), the US Army proposes to dispose of lethal chemical agents and munitions stored at eight existing Army installations in the continental United States. In 1988, the US Army issued the final programmatic environmental impact statement (FPEIS) for the CSDP. The FPEIS and the subsequent Record of Decision (ROD) identified an on-site disposal process as the preferred method for destruction of the stockpile. That is, the FPEIS determined the environmentally preferred alternative to be on-site disposal in high-temperature incinerators, while the ROD selected this alternative for implementation as the preferred method for destruction of the stockpile. In this Phase I report, the overall CSDP decision regarding disposal of the PUDA Stockpile is subjected to further analyses, and its validity at PUDA is reviewed with newer, more detailed data than those providing the basis for the conclusions in the FPEIS. The findings of this Phase I report will be factored into the scope of a site-specific environmental impact statement to be prepared for the destruction of the PUDA stockpile. The focus of this Phase I report is on those data identified as having the potential to alter the Army`s previous decision regarding disposal of the PUDA stockpile; however, several other factors beyond the scope of this Phase I report must also be acknowledged to have the potential to change or modify the Army`s decisions regarding PUDA.

  6. Disposal of chemical agents and munitions stored at Umatilla Depot Activity, Hermiston, Oregon. Final Phase 1 environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, G.P.; Hillsman, E.L.; Johnson, R.O.; Miller, R.L.; Patton, T.G.; Schoepfle, G.M.; Tolbert, V.R.; Feldman, D.L.; Hunsaker, D.B. Jr.; Kroodsma, R.L.; Morrissey, J.; Rickert, L.W.; Staub, W.P.; West, D.C.

    1993-02-01

    The Umatilla Depot Activity (UMDA) near Hermiston, Oregon, is one of eight US Army installations in the continental United States where lethal unitary chemical agents and munitions are stored, and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at UMDA consists of 11.6%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts), using a method based on five measures of risk for potential human health and ecosystem/environmental effects; the effectiveness and adequacy of emergency preparedness capabilities also played a key role in the FPEIS selection methodology. In some instances, the FPEIS included generic data and assumptions that were developed to allow a consistent comparison of potential impacts among programmatic alternatives and did not include detailed conditions at each of the eight installations. The purpose of this Phase 1 report is to examine the proposed implementation of on-site disposal at UMDA in light of more recent and more detailed data than those included in the FPEIS. Specifically, this Phase 1 report is intended to either confirm or reject the validity of on-site disposal for the UMDA stockpile. Using the same computation methods as in the FPEIS, new population data were used to compute potential fatalities from hypothetical disposal accidents. Results indicate that onsite disposal is clearly preferable to either continued storage at UMDA or transportation of the UMDA stockpile to another depot for disposal.

  7. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  8. Risk communications and the Chemical Stockpile Emergency-Planning Program

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, B.M.; Sorensen, J.H.

    1994-09-01

    The CSEPP (Chemical Stockpile Emergency Preparedness Program) was created to improve emergency planning and response capabilities at the eight sites around the country that store chemical weapons. These weapons are scheduled to be destroyed in the near future. In preparation of the Draft Programmatic Environmental Impact Statement (DPEIS) for the Chemical Stockpile Disposal Program (CSDP), it was proposed that the Army mitigate accidents through an enhanced community emergency preparedness program at the eight storage sites. In 1986, the Army initiated the development of an Emergency Response Concept Plan (ERCP) for the CSDP, one of 12 technical support studies conducted during preparation of the Final Programmatic Environmental Impact Statement (FPEIS). The purpose of this document is to provide a fairly comprehensive source book on risk, risk management, risk communication research and recommended risk communication practices. It does not merely summarize each publication in the risk communication literature, but attempts to synthesize them along the lines of a set of organizing principles. Furthermore, it is not intended to duplicate other guidance manuals (such as Covello et al.`s manual on risk comparison). The source book was developed for the CSEPP in support of the training module on risk communications. Although the examples provided are specific to CSEPP, its use goes beyond that of CSEPP as the findings apply to a broad spectrum of risk communication topics. While the emphasis is on communication in emergency preparedness and response specific to the CSEPP, the materials cover other non-emergency communication settings. 329 refs.

  9. Chemical Stockpile Disposal Program: Review and comment on the Phase 1 environmental report for the Pueblo Depot Activity, Pueblo, Colorado

    International Nuclear Information System (INIS)

    Olshansky, S.J.; Krummel, J.R.; Policastro, A.J.; McGinnis, L.D.

    1994-03-01

    As part of the Chemical Stockpile Disposal Program, an independent review is presented of the US Army Phase I environmental report for the disposal of chemical agents and munitions stored at the Pueblo Depot Activity (PUDA) in Pueblo, Colorado. The Phase I report addresses new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). These concerns are addressed by examining site-specific data for the PUDA. On the basis of our review of the Phase I report, we concluded that on-site meteorological data from December 1988 to June 1992 appear to be of insufficient quality to have been used instead of the off-site Pueblo airport data. No additional meteorological data have been collected since June 1992. The Phase I report briefly mentions problems with the air pollution control system. These problems will likely require the systems to be upgraded at the Johnston Atoll site and at each of the other depots in the continental United States. Without such improvements, the probability of accidents during start-up and shutdown would likely increase. The Army has a lessons-learned program to incorporate improvements into the design of future facilities. The Phase I report does not make any design change commitments. These issues need to be fully evaluated and resolved before any final conclusion concerning the adequacy of the decision in the FPEIS can be made with respect to the PUDA. With the exception of this issue, the inclusion of other more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at the PUDA). We recommend that site-specific data on water, ecological, socioeconomic, and cultural resources and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process

  10. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas. Final phase 1, Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  11. THE BNL ASTD FIELD LAB - NEAR - REAL - TIME CHARACTERIZATION OF BNL STOCKPILED SOILS TO ACCELERATE COMPLETION OF THE EM CHEMICAL HOLES PROJECT

    International Nuclear Information System (INIS)

    BOWERMAN, B.S.; ADAMS, J.W.; HEISER, J.; KALB, P.D.; LOCKWOOD, A.

    2003-01-01

    As of October 2001, approximately 7,000 yd 3 of stockpiled soil remained at Brookhaven National Laboratory (BNL) after the remediation of the BNL Chemical/Animal/Glass Pits disposal area. The soils were originally contaminated with radioactive materials and heavy metals, depending on what materials had been interred in the pits, and how the pits were excavated. During the 1997 removal action, the more hazardous/radioactive materials were segregated, along with, chemical liquids and solids, animal carcasses, intact gas cylinders, and a large quantity of metal and glass debris. Nearly all of these materials have been disposed of. In order to ensure that all debris was removed and to characterize the large quantity of heterogeneous soil, BNL initiated an extended sorting, segregation, and characterization project directed at the remaining soil stockpiles. The project was co-funded by the Department of Energy Environmental Management Office (DOE EM) through the BNL Environmental Restoration program and through the DOE EM Office of Science and Technology Accelerated Site Technology Deployment (ASTD) program. The focus was to remove any non-conforming items, and to assure that mercury and radioactive contaminant levels were within acceptable limits for disposal as low-level radioactive waste. Soils with mercury concentrations above allowable levels would be separated for disposal as mixed waste. Sorting and segregation were conducted simultaneously. Large stockpiles (ranging from 150 to 1,200 yd 3 ) were subdivided into manageable 20 yd 3 units after powered vibratory screening. The 1/2-inch screen removed almost all non-conforming items (plus some gravel). Non-conforming items were separated for further characterization. Soil that passed through the screen was also visually inspected before being moved to a 20 yd 3 ''subpile.'' Eight samples from each subpile were collected after establishing a grid of four quadrants: north, east, south and west, and two layers: top and

  12. Destruction and waste treatment methods used in a chemical agent disposal project. Memorandum report

    Energy Technology Data Exchange (ETDEWEB)

    McAndless, J.; Fedor, V.; Kinderwater, T.

    1992-10-01

    This report describes the equipment and methods used to thermally decontaminate scrap metal and destroy stockpiles of nerve agents, mustard and lewisite chemical warfare agents. Mustard was destroyed by direct incineration whereas the nerve agents and lewisite were chemically neutralized. The arsenic waste from the lewisite neutralization process was chemically-fixated in concrete for final disposal by landfilling. The scrap metal was incinerated and rendered suitable for recycling into metal feedstock.

  13. Enzymes for Degradation of Energetic Materials and Demilitarization of Explosives Stockpiles - SERDP Annual (Interim) Report, 12/98

    Energy Technology Data Exchange (ETDEWEB)

    Shah, M.M.

    1999-01-18

    The current stockpile of energetic materials requiring disposal contains about half a million tons. Through 2001, over 2.1 million tons are expected to pass through the stockpile for disposal. Safe and environmentally acceptable methods for disposing of these materials are needed. This project is developing safe, economical, and environmentally sound processes using biocatalyst (enzymes) to degrade energetic materials and to convert them into economically valuable products. Alternative methods for destroying these materials are hazardous, environmentally unacceptable, and expensive. These methods include burning, detonation, land and sea burial, treatment at high temperature and pressure, and treatment with harsh chemicals. Enzyme treatment operates at room temperature and atmospheric pressure in a water solution.

  14. Thorium Nitrate Stockpile--From Here to Eternity

    International Nuclear Information System (INIS)

    Hermes, W. H.; Hylton, T. D.; Mattus, C.H.; Storch, S. N.; Singley, P.S.; Terry, J. W.; Pecullan, M.; Reilly, F. K.

    2003-01-01

    The Defense National Stockpile Center (DNSC), a field level activity of the Defense Logistics Agency (DLA) has stewardship of a stockpile of thorium nitrate that has been in storage for decades. The stockpile is made up of approximately 3.2 million kg (7 million lb) of thorium nitrate crystals (hydrate form) stored at two depot locations in the United States. DNSC sought technical assistance from Oak Ridge National Laboratory (ORNL) to define and quantify the management options for the thorium nitrate stockpile. This paper describes methodologies and results comprising the work in Phase 1 and Phase 2. The results allow the DNSC to structure and schedule needed tasks to ensure continued safe long-term storage and/or phased disposal of the stockpile

  15. From nuclides to nerve gas: The development of the Chemical Stockpile Emergency Preparedness Exercise Program

    International Nuclear Information System (INIS)

    Gant, K.S.; Adler, M.V.

    1991-01-01

    The Army and the Federal Emergency Management Agency established the Chemical Stockpile Emergency Preparedness Program (CSEPP), to improve emergency preparedness around each location storing the nation's aging stockpile of unitary chemical weapons. The CSEPP requires that a series of exercises be conducted at each location on a regular schedule. The CSEPP exercise program drew upon the existing Army and civilian exercises. Merging the exercise traditions of both the communities and installations into a joint exercise program acceptable to both sides and the particular nature of the hazard required a number of adjustments in the usual approaches. 14 refs., 1 fig

  16. Chemical Waste Management and Disposal.

    Science.gov (United States)

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  17. Management of chemical disposal in BARC

    International Nuclear Information System (INIS)

    Shenoy, K.T.; Deolekar, Shailesh

    2017-01-01

    Most of the activities in BARC are of radiological in nature and are regulated as per Atomic Energy Act 1962. The radioactive waste generated is managed safely as per Atomic Energy (Safe Disposal of Radioactive Waste) Rules, 1987. However, many developmental activities related to nuclear fuel cycle and laboratories, which support the quality control aspects, generate inactive chemical waste. In addition, being multidisciplinary in nature, BARC carries out research in frontiers of chemical science for societal benefit and academic interest. All these scientific activities over the decades have resulted in accumulation of many partially used/surplus laboratory chemicals. These chemicals are in large varieties though small in terms of quantity. Although these chemicals do not have any further utility and commercial value, can add to potential hazards and hence require safe disposal. Considering this, BARC Safety Council(BSC) has re-constituted the 'Advisory Committee for Chemical Disposal (ACCD)' on March 18, 2016

  18. Is strategic stockpiling essential?

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    As mentioned by the European Commission, a consultant has surveyed stakeholders on the concept of setting up strategic stockpiles of natural gas, namely to boost the security of Europe's supply, much like the strategic stockpiling for petroleum products the OECD member countries carried out after the petroleum crisis. If strategic stockpiling consists in blocking off a quantity of gas in addition to the usable stockpile, the AFG believes it is necessary to assess the implications of such a measure and to examine the security gain it would actually offer compared to the measures that have already been implemented to secure supplies. (author)

  19. Analytical Characterization of the Thorium Nitrate Stockpile

    Energy Technology Data Exchange (ETDEWEB)

    Mattus, CH

    2003-12-30

    and the results of previous tests--classified the ThN as low-level radioactive waste for disposal purposes. This characterization was necessary to continue the efforts associated with disposition of the material at the Nevada Test Site, Mercury, Nevada. With the current work presented in this report, the analytical characterization phase is completed for this source material stockpile.

  20. Public Health, Law, and Local Control: Destruction of the US Chemical Weapons Stockpile

    Science.gov (United States)

    Greenberg, Michael R.

    2003-01-01

    Destruction of US chemical weapons has begun at one of the 8 sites in the continental United States, was completed on Johnston Island in the Pacific Ocean, and is scheduled to begin in at least 3 other locations during the upcoming year. About 25% of the stockpile and 38% of the munitions had been destroyed as of December 31, 2002. However, the program has become controversial with regard to choice of technology, emergency management, and cost. This controversy is in large part due to efforts by some state and local governments and activist groups to play a more central role in a decisionmaking process that was once fully controlled by the US Army. PMID:12893599

  1. The Stockpile Monitor Program

    International Nuclear Information System (INIS)

    Buntain, G.A.; Fletcher, M.; Rabie, R.

    1994-07-01

    Recent political changes have led to drastic reductions in the number of nuclear warheads in stockpile, as well as increased expectations for warhead-service lives. In order to support and maintain a shrinking and aging nuclear stockpile, weapon scientists and engineers need detailed information describing the environments experienced by weapons in the field. Hence, the Stockpile Monitor Program was initiated in 1991 to develop a comprehensive and accurate database of temperature and humidity conditions experienced by nuclear warheads both in storage and on-alert

  2. Chemical technology of the systems, partitioning and separation, disposal

    International Nuclear Information System (INIS)

    Volk, V.I.

    1997-01-01

    A reactor-accelerator reprocessing complex is described. The complex comprises an electronuclear transmutation installation and chemical and technological support units for maintenance of the steady-state of the blanket, separation of short-lived transmutation products to be disposed of from other components of the blanket, chemical conversion to relevant stable species of products to be disposed of for interim storage and disposal

  3. Stockpile Stewardship at Los Alamos(U)

    Energy Technology Data Exchange (ETDEWEB)

    Webster, Robert B. [Los Alamos National Laboratory

    2012-06-29

    Stockpile stewardship is the retention of nuclear weapons in the stockpile beyond their original design life. These older weapons have potential changes inconsistent with the original design intent and military specifications. The Stockpile Stewardship Program requires us to develop high-fidelity, physics-based capabilities to predict, assess, certify and design nuclear weapons without conducting a nuclear test. Each year, the Lab Directors are required to provide an assessment of the safety, security, and reliability our stockpile to the President of the United States. This includes assessing whether a need to return to testing exists. This is a talk to provide an overview of Stockpile Stewardship's scientific requirements and how stewardship has changed in the absence of nuclear testing. The talk is adapted from an HQ talk to the War college, and historical unclassified talks on weapon's physics.

  4. Temperature profiles of coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    Sensogut, C.; Ozdeniz, A.H.; Gundogdu, I.B. [Dumlupinar University, Kutahya (Turkey). Mining Engineering Department

    2008-07-01

    Excess of produced coals should be kept in the stockyards of the collieries. The longer the duration time for these coals, the greater possibility for spontaneous combustion to take place. Spontaneously burnt coals result in economical and environmental problems. Therefore, taking the necessary precautions before an outburst of the spontaneous combustion phenomenon is too important in terms of its severe results. In this study, a stockpile having industrial dimensions was formed in coal stockyard. The effective parameters on the stockpiles of coal such as temperature and humidity of the weather, time, and atmospheric pressure values were measured. The interior temperature variations of these stockpiles caused by the atmospheric conditions were also measured. The interior temperature distribution maps of the stockpile together with maximum and minimum temperature values were expressed visually and numerically by the assistance of obtained data.

  5. Gaseous emissions from coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Stockpiled coal undergoes atmospheric oxidation and desorption processes during open air storage. These processes release gases to the environment which may effect health and safety by their toxicity and flammability. In extreme cases, this could lead to a fire. This report discusses gaseous emissions from coal stockpiles. It covers gas emission mechanisms, and gas sampling and testing methods, before examining in more detail the principal gases that have been emitted. It concludes that there is limited research in this area and more data are needed to evaluate the risks of gaseous emissions. Some methods used to prevent coal self-heating and spontaneous combustion can be applied to reduce emissions from coal stockpiles.

  6. Operation of chemical incinerator for disposal of legacy chemicals

    International Nuclear Information System (INIS)

    Singhal, R.K.; Basu, H.; Saha, S.; Pimple, M.V.; Naik, P.D.

    2017-01-01

    For safe disposal of age-old legacy and unused chemicals in BARC, Trombay, oil-fired chemical incinerator with a capacity of 20 kg h"-"1 for solid and liquid chemical is installed adjacent to trash incinerator near RSMS, Gamma Field. The Incinerator was supplied by M/s B. L. Engineering Works, Ahmedabad. Commission of the same at Trombay site was carried out, under the supervision of Civil Engineering (CED), Technical Services Division (TSD) and Analytical Chemistry Division (custodian of the facility)

  7. The AMES Laboratory chemical disposal site removal action: Source removal, processing, and disposal

    International Nuclear Information System (INIS)

    Shirley, R.S.

    1996-01-01

    The Ames Laboratory has historically supported the U.S. Department of Energy (USDOE) and its predecessor agencies by providing research into the purification and manufacturing of high purity uranium, thorium, and yttrium metals. Much of this work was accomplished in the late 1950s and early 1960s prior to the legislation of strict rules and regulations covering the disposal of radioactive and chemical wastes. As a result, approximately 800 cubic meters of low-level radioactive wastes, chemical wastes, and contaminated debris were disposed in nine near surface cells located in a 0.75 hectare plot of land owned by Iowa State University in Ames, Iowa. Under a national contract with the U.S. Army Corps of Engineers (USACE), OHM Remediation Services Corp (OHM) was tasked with providing turnkey environmental services to remove, process, package, transport, and coordinate the disposal of the waste materials and contaminated environmental media

  8. Stockpiling Ventilators for Influenza Pandemics.

    Science.gov (United States)

    Huang, Hsin-Chan; Araz, Ozgur M; Morton, David P; Johnson, Gregory P; Damien, Paul; Clements, Bruce; Meyers, Lauren Ancel

    2017-06-01

    In preparing for influenza pandemics, public health agencies stockpile critical medical resources. Determining appropriate quantities and locations for such resources can be challenging, given the considerable uncertainty in the timing and severity of future pandemics. We introduce a method for optimizing stockpiles of mechanical ventilators, which are critical for treating hospitalized influenza patients in respiratory failure. As a case study, we consider the US state of Texas during mild, moderate, and severe pandemics. Optimal allocations prioritize local over central storage, even though the latter can be deployed adaptively, on the basis of real-time needs. This prioritization stems from high geographic correlations and the slightly lower treatment success assumed for centrally stockpiled ventilators. We developed our model and analysis in collaboration with academic researchers and a state public health agency and incorporated it into a Web-based decision-support tool for pandemic preparedness and response.

  9. Validated sampling strategy for assessing contaminants in soil stockpiles

    International Nuclear Information System (INIS)

    Lame, Frank; Honders, Ton; Derksen, Giljam; Gadella, Michiel

    2005-01-01

    Dutch legislation on the reuse of soil requires a sampling strategy to determine the degree of contamination. This sampling strategy was developed in three stages. Its main aim is to obtain a single analytical result, representative of the true mean concentration of the soil stockpile. The development process started with an investigation into how sample pre-treatment could be used to obtain representative results from composite samples of heterogeneous soil stockpiles. Combining a large number of random increments allows stockpile heterogeneity to be fully represented in the sample. The resulting pre-treatment method was then combined with a theoretical approach to determine the necessary number of increments per composite sample. At the second stage, the sampling strategy was evaluated using computerised models of contaminant heterogeneity in soil stockpiles. The now theoretically based sampling strategy was implemented by the Netherlands Centre for Soil Treatment in 1995. It was applied to all types of soil stockpiles, ranging from clean to heavily contaminated, over a period of four years. This resulted in a database containing the analytical results of 2570 soil stockpiles. At the final stage these results were used for a thorough validation of the sampling strategy. It was concluded that the model approach has indeed resulted in a sampling strategy that achieves analytical results representative of the mean concentration of soil stockpiles. - A sampling strategy that ensures analytical results representative of the mean concentration in soil stockpiles is presented and validated

  10. The Impact of the Quality of Coal Mine Stockpile Soils on Sustainable Vegetation Growth and Productivity

    Directory of Open Access Journals (Sweden)

    Nicky M Mushia

    2016-06-01

    Full Text Available Stockpiled soils are excavated from the ground during mining activities, and piled on the surface of the soil for rehabilitation purposes. These soils are often characterized by low organic matter (SOM content, low fertility, and poor physical, chemical, and biological properties, limiting their capability for sustainable vegetation growth. The aim of the study was to evaluate the impact of stockpile soils of differing depth and quality on vegetation growth and productivity. Soils were collected at three different depths (surface, mid, and deep as well as mixed (equal proportion of surface, mid and deep from two stockpiles (named Stockpile 1: aged 10 and Stockpile 2: 20 years at the coal mine near Witbank in the Mpumalanga province of South Africa. Soils were amended with different organic and inorganic fertilizer. A 2 × 4 × 5 factorial experiment in a completely randomized blocked design with four replications was established under greenhouse conditions. A grass species (Digiteria eriantha was planted in the pots with unamended and amended soils under greenhouse conditions at 26–28 °C during the day and 16.5–18.5 °C at night. Mean values of plant height, plant cover, total fresh biomass (roots, stems and leaves, and total dry biomass were found to be higher in Stockpile 1 than in Stockpile 2 soils. Plants grown on soils with no amendments had lower mean values for major plant parameters studied. Soil amended with poultry manure and lime was found to have higher growth rate compared with soils with other soil amendments. Mixed soils had better vegetation growth than soil from other depths. Stockpiled soils in the study area cannot support vegetation growth without being amended, as evidenced by low grass growth and productivity in this study.

  11. Nuclear Stockpile Management: A Technical and Political Assessment

    International Nuclear Information System (INIS)

    Sitt, Bernard; Grand, Camille

    2009-10-01

    Managing the nuclear arsenals (whether strategic or non-strategic ones) belonging to States that possess nuclear weapons is quintessentially based on the objective of maintaining security, safety and the reliability of their weapons. Since the early stages of military nuclear armaments, it has hinged on an approach that has been altogether scientific, technical and industrial, where nuclear tests have played a key role in acquiring and checking knowledge, while advancing the research and development of new weapons. It has experienced important evolutions, particularly linked to the interruption of nuclear tests since the early 1990's, and to the gradual multilateral evolution towards the total banning of such tests, enforced thanks to moratorium agreements and later by the rounds of talks leading to the Comprehensive Test Ban Treaty (CTBT), its adoption and opening for signature in September 1996. The situation of de facto nuclear states is a different one, in that their strategic posture and the development of their arsenals are placed in specific regional contexts; yet, compared with the five nuclear weapons States according to the definition of the Non-Proliferation Treaty (NPT), their objectives in terms of reliability, safety and security are, of necessity, of the same nature, even though the technological capabilities placed at their disposal to meet their goals may vary considerably from one country to the next. One determining context is the ban on nuclear weapon tests. As decades went by, four successive treaties were signed: PTBT (1963), TTBT (1974), PNET (1976), CTBT (1996). Even though a complete, legally binding test ban still remains to be fully implemented, for more than ten years, there has existed a political norm of renunciation of testing, and a quasi-universal one too. Indeed the CTBT has had, and will continue to have, more remarkable results than the previous treaties, and it is bound to impose further serious constraints on the Stockpile

  12. Views on chemical safety information and influences on chemical disposal behaviour in the UK

    International Nuclear Information System (INIS)

    Hinks, J.; Bush, J.; Andras, P.; Garratt, J.; Pigott, G.; Kennedy, A.; Pless-Mulloli, T.

    2009-01-01

    This study examined how groups representing four tiers in the chemical supply chain (manufacturers, vendors, workers and consumers) understood safety information, and the factors that influenced disposal behaviour. Data from seven, semi-structured, focus groups was analysed both qualitatively (textual analysis) and quantitatively (network analysis). Such combined analytical methods enabled us to achieve both detailed insights into perceptions and behaviour and an objective understanding of the prevailing opinions that occurred within and between the focus group discussions. We found issues around awareness, trust, access and disposal behaviours differed between groups within the supply chain. Participants from the lower tiers perceived chemical safety information to be largely inaccessible. Labels were the main source of information on chemical risks for the middle and bottom tiers of the supply chain. Almost all of the participants were aware of the St Andrew's Cross and skull and crossbones symbols but few were familiar with the Volatile Organic Compound logo or the fish and tree symbol. Both the network and thematic analysis demonstrated that whilst frequent references to health risks associated with chemicals were made environmental risks were usually only articulated after prompting. It is clear that the issues surrounding public understanding of chemical safety labels are highly complex and this is compounded by inconsistencies in the cognitive profiles of chemical users. Substantially different cognitive profiles are likely to contribute towards communication difficulties between different tiers of the supply chain. Further research is needed to examine the most effective ways of communicating chemical hazards information to the public. The findings demonstrate a need to improve and simplify disposal guidance to members of the public, to raise public awareness of the graphic symbols in the CHIP 3.1, 2005 regulations and to improve access to disposal guidance

  13. Final programmatic environmental impact statement for stockpile stewardship and management

    International Nuclear Information System (INIS)

    1996-09-01

    In response to the end of the Cold War and changes in the world's political regimes, the United States is not producing new-design nuclear weapons. Instead, the emphasis of the U.S. nuclear weapons program is on reducing the size of the Nation's nuclear stockpile by dismantling existing nuclear weapons. The Department of Energy (DOE) has been directed by the President and Congress to maintain the safety and reliability of the reduced nuclear weapons stockpile in the absence of underground nuclear testing. In order to fulfill that responsibility, DOE has developed a Stockpile Stewardship and Management Program to provide a single highly integrated technical program for maintaining the continued safety and reliability of the nuclear stockpile. The Stockpile Stewardship and Management PEIS describes and analyzes alternative ways to implement the proposed actions for the Stockpile Stewardship and Management Program

  14. Final Programmatic Environmental Impact Statement for stockpile stewardship and management

    International Nuclear Information System (INIS)

    1996-09-01

    The Department of Energy (DOE) has been directed by the President and Congress to maintain the safety and reliability of the reduced nuclear weapons stockpile in the absence of underground nuclear testing. In order to fulfill that responsibility, DOE has developed a Stockpile Stewardship and Management Program to provide a single highly integrated technical program for maintaining the continued safety and reliability of the nuclear stockpile. The Stockpile Stewardship and Management Programmatic Environmental Impact Statement (PEIS) describes and analyzes alternative ways to implement the proposed actions for the Stockpile Stewardship and Management Program. This document contains Volume II which consists of Appendices A through H

  15. 30 CFR 702.16 - Stockpiling of minerals.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Stockpiling of minerals. 702.16 Section 702.16 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR GENERAL EXEMPTION FOR COAL EXTRACTION INCIDENTAL TO THE EXTRACTION OF OTHER MINERALS § 702.16 Stockpiling of...

  16. Chemical Agents: Personal Cleaning and Disposal of Contaminated Clothing

    Science.gov (United States)

    ... What CDC is Doing Blog: Public Health Matters Chemical Agents: Facts About Personal Cleaning and Disposal of ... on Facebook Tweet Share Compartir Some kinds of chemical accidents or attacks may cause you to come ...

  17. Safety in the Chemical Laboratory: Tested Disposal Methods for Chemical Wastes from Academic Laboratories.

    Science.gov (United States)

    Armour, M. A.; And Others

    1985-01-01

    Describes procedures for disposing of dichromate cleaning solution, picric acid, organic azides, oxalic acid, chemical spills, and hydroperoxides in ethers and alkenes. These methods have been tested under laboratory conditions and are specific for individual chemicals rather than for groups of chemicals. (JN)

  18. IEA Shows Concerns Over China's Oil Stockpiling

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Reportedly, China's oil imports accounted for nearly one third of the world's total oil supply in 2003. The country's oil imports are estimated at 110~120 million tons in 2004,equal to 2.2~2.4 million barrels per day, much higher than 91 million tons in 2003. International Energy Agency has helped the Chinese government with the country's strategic oil stockpiling plan by offering the training. The Paris-based IEA has urged China to take into consideration how to operate and maintain the national strategic oil stockpiling system and clarify the roles of the enterprises and the State in oil stockpiling.

  19. Large scale disposal of waste sulfur: From sulfide fuels to sulfate sequestration

    International Nuclear Information System (INIS)

    Rappold, T.A.; Lackner, K.S.

    2010-01-01

    Petroleum industries produce more byproduct sulfur than the market can absorb. As a consequence, most sulfur mines around the world have closed down, large stocks of yellow sulfur have piled up near remote operations, and growing amounts of toxic H 2 S are disposed of in the subsurface. Unless sulfur demand drastically increases or thorough disposal practices are developed, byproduct sulfur will persist as a chemical waste problem on the scale of 10 7 tons per year. We review industrial practices, salient sulfur chemistry, and the geochemical cycle to develop sulfur management concepts at the appropriate scale. We contend that the environmentally responsible disposal of sulfur would involve conversion to sulfuric acid followed by chemical neutralization with equivalent amounts of base, which common alkaline rocks can supply cheaply. The resulting sulfate salts are benign and suitable for brine injection underground or release to the ocean, where they would cause minimal disturbance to ecosystems. Sequestration costs can be recouped by taking advantage of the fuel-grade thermal energy released in the process of oxidizing reduced compounds and sequestering the products. Sulfate sequestration can eliminate stockpiles and avert the proliferation of enriched H 2 S stores underground while providing plenty of carbon-free energy to hydrocarbon processing.

  20. The Role of Symbolic Capital in Stakeholder Disputes

    DEFF Research Database (Denmark)

    Benn, Suzanne; Jones, Richard

    2009-01-01

    This paper examines almost 30 years of disputation concerning the disposal of the world's largest stockpile of the toxic organochlorine, hexachlorbenzene. It describes the study of a chemicals company in its attempt to manage the disposal of the toxic waste in a collaborative fashion with governm......This paper examines almost 30 years of disputation concerning the disposal of the world's largest stockpile of the toxic organochlorine, hexachlorbenzene. It describes the study of a chemicals company in its attempt to manage the disposal of the toxic waste in a collaborative fashion...... and identity. The events of the study highlight the challenges faced by contemporary technoscientific corporations such as chemicals companies as they must deliver on requirements of transparency and openness, while maintaining technoscientific capacity and strong internal identity. We conclude that the study...

  1. Final Programmatic Environmental Impact Statement for stockpile stewardship and management: Volume 1

    International Nuclear Information System (INIS)

    1996-09-01

    The Department of Energy (DOE) has been directed by the President and Congress to maintain the safety and reliability of the reduced nuclear weapons stockpile in the absence of underground nuclear testing. In order to fulfill that responsibility, DOE has developed Stockpile Stewardship and Maintenance Program to provide a single highly integrated technical program for maintaining the continued safety and reliability of the nuclear stockpile. The Stockpile Stewardship and Management Program Programmatic Environmental Impact Statement (PEIS) describes and analyzes alternative ways to implement the proposed actions for the Stockpile Stewardship and Management Program. This document contains Volume I of the PEIS

  2. The impact of the quality of coal mine stockpile soils on sustainable vegetation growth and productivity

    CSIR Research Space (South Africa)

    Mushia, NM

    2016-06-01

    Full Text Available , chemical, and biological properties, limiting their capability for sustainable vegetation growth. The aim of the study was to evaluate the impact of stockpile soils of differing depth and quality on vegetation growth and productivity. Soils were collected...

  3. Biosolid stockpiles are a significant point source for greenhouse gas emissions.

    Science.gov (United States)

    Majumder, Ramaprasad; Livesley, Stephen J; Gregory, David; Arndt, Stefan K

    2014-10-01

    The wastewater treatment process generates large amounts of sewage sludge that are dried and then often stored in biosolid stockpiles in treatment plants. Because the biosolids are rich in decomposable organic matter they could be a significant source for greenhouse gas (GHG) emissions, yet there are no direct measurements of GHG from stockpiles. We therefore measured the direct emissions of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) on a monthly basis from three different age classes of biosolid stockpiles at the Western Treatment Plant (WTP), Melbourne, Australia, from December 2009 to November 2011 using manual static chambers. All biosolid stockpiles were a significant point source for CH4 and N2O emissions. The youngest biosolids (nitrate and ammonium concentration. We also modeled CH4 emissions based on a first order decay model and the model based estimated annual CH4 emissions were higher as compared to the direct field based estimated annual CH4 emissions. Our results indicate that labile organic material in stockpiles is decomposed over time and that nitrogen decomposition processes lead to significant N2O emissions. Carbon decomposition favors CO2 over CH4 production probably because of aerobic stockpile conditions or CH4 oxidation in the outer stockpile layers. Although the GHG emission rate decreased with biosolid age, managers of biosolid stockpiles should assess alternate storage or uses for biosolids to avoid nutrient losses and GHG emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Optimal vaccine stockpile design for an eradicated disease: application to polio.

    Science.gov (United States)

    Tebbens, Radboud J Duintjer; Pallansch, Mark A; Alexander, James P; Thompson, Kimberly M

    2010-06-11

    Eradication of a disease promises significant health and financial benefits. Preserving those benefits, hopefully in perpetuity, requires preparing for the possibility that the causal agent could re-emerge (unintentionally or intentionally). In the case of a vaccine-preventable disease, creation and planning for the use of a vaccine stockpile becomes a primary concern. Doing so requires consideration of the dynamics at different levels, including the stockpile supply chain and transmission of the causal agent. This paper develops a mathematical framework for determining the optimal management of a vaccine stockpile over time. We apply the framework to the polio vaccine stockpile for the post-eradication era and present examples of solutions to one possible framing of the optimization problem. We use the framework to discuss issues relevant to the development and use of the polio vaccine stockpile, including capacity constraints, production and filling delays, risks associated with the stockpile, dynamics and uncertainty of vaccine needs, issues of funding, location, and serotype dependent behavior, and the implications of likely changes over time that might occur. This framework serves as a helpful context for discussions and analyses related to the process of designing and maintaining a stockpile for an eradicated disease. (c) 2010 Elsevier Ltd. All rights reserved.

  5. The Ames Laboratory Chemical Disposal Site removal action: Source removal, processing, and disposal

    International Nuclear Information System (INIS)

    Shirley, R.S.

    1995-01-01

    The Ames Laboratory has historically supported the US Department of Energy (USDOE) and its predecessor agencies by providing research into the purification and manufacturing of high purity uranium, thorium, and yttrium metals. Much of this work was accomplished in the late 1950s and early 1960s prior to the legislation of strict rules and regulations covering the disposal of radioactive and chemical wastes. As a result, approximately 800 cubic meters of low-level radioactive wastes, mixed wastes, and contaminated debris were disposed in nine near surface cells located in a 0.75 hectare plot of land owned by Iowa State University in Ames, Iowa. Under a national contract with the US Army Corps of Engineers (USACE), OHM Remediation Services Corp. (OHM) was tasked with providing turnkey environmental services to remove, process, package, transport, and coordinate the disposal of the waste materials and contaminated environmental media

  6. Antibiotic losses from unprotected manure stockpiles.

    Science.gov (United States)

    Dolliver, Holly A S; Gupta, Satish C

    2008-01-01

    Manure management is a major concern in livestock production systems. Although historically the primary concerns have been nutrients and pathogens, manure is also a source of emerging contaminants, such as antibiotics, to the environment. There is a growing concern that antibiotics in manure are reaching surface and ground waters and contributing to the development and spread of antibiotic resistance in the environment. One such pathway is through leaching and runoff from manure stockpiles. In this study, we quantified chlortetracycline, monensin, and tylosin losses in runoff from beef manure stockpiles during two separate but consecutive experiments representing different weather conditions (i.e., temperature and precipitation amount and form). Concentrations of chlortetracycline, monensin, and tylosin in runoff were positively correlated with initial concentrations of antibiotics in manure. The highest concentrations of chlortetracycline, monensin, and tylosin in runoff were 210, 3175, and 2544 microg L(-1), respectively. Relative antibiotic losses were primarily a function of water losses. In the experiment that had higher runoff water losses, antibiotic losses ranged from 1.2 to 1.8% of total extractable antibiotics in manure. In the experiment with lower runoff water losses, antibiotic losses varied from 0.2 to 0.6% of the total extractable antibiotics in manure. Manure analysis over time suggests that in situ degradation is an important mechanism for antibiotic losses. Degradation losses during manure stockpiling may exceed cumulative losses from runoff events. Storing manure in protected (i.e., covered) facilities could reduce the risk of aquatic contamination associated with manure stockpiling and other outdoor manure management practices.

  7. Low-level radioactive waste disposal operations at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stanford, A.R.

    1997-01-01

    Los Alamos National Laboratory (LANL) generates Low-Level Radioactive Waste (LLW) from various activities: research and development, sampling and storage of TRU wastes, decommissioning and decontamination of facilities, and from LANL's major role in stockpile stewardship. The Laboratory has its own active LLW disposal facility located at Technical Area 54, Area G. This paper will identify the current operations of the facility and the issues pertaining to operating a disposal facility in today's compliance and cost-effective environment

  8. Effects of a chemical weapons incineration plant on red-tailed tropicbirds

    Science.gov (United States)

    Schreiber, E.A.; Doherty, P.F.; Schenk, G.A.

    2001-01-01

    From 1990 to 2000, the Johnston Atoll Chemical Agent Disposal System (JACADS) incinerated part of the U.S. stockpile of chemical weapons on Johnston Atoll, central Pacific Ocean, which also is a National Wildlife Refuge and home to approximately a half-million breeding seabirds. The effect on wildlife of incineration of these weapons is unknown. Using a multi-strata mark-recapture analysis, we investigated the effects of JACADS on reproductive success, survival, and movement probabilities of red-tailed tropicbirds (Phaethon rubricauda) nesting both downwind and upwind of the incineration site. We found no effect of chemical incineration on these tropicbird demographic parameters over the 8 years of our study. An additional 3 years of monitoring tropicbird demography will take place, post-incineration.

  9. Disposal - practical problems

    International Nuclear Information System (INIS)

    Hycnar, J.; Pinko, L.

    1995-01-01

    Most Polish power plants have stockyards for storage of fly ash and slag. This paper describes the: methods of fly ash and slag storage used, methods of conveying the waste to the stockpiles (by railway cars, trucks, belt conveyors or hydraulically); construction of wet stockyards and dry stockyards and comparison of the ash dumped, development of methods of ash disposal in mine workings; composition and properties of fly ash and slag from hard coal; and the effects of ash storage yards on the environment (by leaching of trace elements, dust, effect on soils, and noise of machinery). 16 refs., 3 figs., 6 tabs

  10. Guide about petroleum strategic stockpiles in France

    International Nuclear Information System (INIS)

    2004-03-01

    The strategic character of petroleum products has been perceived since the first world war. It has led France to impose the petroleum operators to make stockpiles to provide against the consequences of a serious disruption of supplies. As a difference with some other industrialized countries like the USA or Japan, French stockpiles are made of finite products. A balanced geographical distribution of these stocks over the whole national territory increases their efficiency. Stockpiles of IEA member states must represent 90 days of net imports while those of European Union member states must represent 90 days of average domestic consumption. In France, each chartered operator contributes to the strategic storage and the stored volumes are defined by the law no 92-1443 from December 31, 1992. These stocks are permanently controlled and financial sanctions are applied in case of infraction. Particular dispositions are applied in overseas departments which are summarized in this paper. (J.S.)

  11. Final Programmatic Environmental Impact Statement for stockpile stewardship and management: Volume 3

    International Nuclear Information System (INIS)

    1996-09-01

    The Department of Energy (DOE) has been directed by the President and Congress to maintain the safety and reliability of the reduced nuclear weapons stockpile in the absence of underground nuclear testing. In order to fulfill that responsibility, DOE has developed a Stockpile Stewardship and Management Program to provide a single highly integrated technical program for maintaining the continued safety and reliability of the nuclear stockpile. The Stockpile Stewardship and Management Programmatic Environmental Impact Statement (PEIS) describes and analyzes alternative ways to implement the proposed actions for the Stockpile Stewardship and Management Program. This document consists of Volume III, Appendix I entitled ''National Ignition Facility Project-Specific Analysis,'' which investigates the environmental impacts resulting from constructing and operating the proposed National Ignition Facility

  12. Stockpile strategy for China's emergency oil reserve: A dynamic programming approach

    International Nuclear Information System (INIS)

    Bai, Y.; Dahl, C.A.; Zhou, D.Q.; Zhou, P.

    2014-01-01

    China is currently accelerating construction of its strategic petroleum reserves. How should China fill the SPR in a cost-effective manner in the short-run? How might this affect world oil prices? Using a dynamic programming model to answer these questions, the objective of this paper is to minimize the stockpiling costs, including consumer surplus as well as crude acquisition and holding costs. The crude oil acquisition price in the model is determined by global equilibrium between supply and demand. Demand, in turn, depends on world market conditions including China's stockpile filling rate. Our empirical study under different market conditions shows that China's optimal stockpile acquisition rate varies from 9 to 19 million barrels per month, and the optimal stockpiling drives up the world oil price by 3–7%. The endogenous price increase accounts for 52% of total stockpiling costs in the base case. When the market is tighter or the demand function is more inelastic, the stockpiling affects the market more significantly and pushes prices even higher. Alternatively, in a disruption, drawdown from the stockpile can effectively dampen soaring prices, though the shortage is likely to leave the price higher than before the disruption. - Highlights: • China's SPR policies are examined by dynamic programming. • The optimal stockpile acquisition rate varies from 9 to 19 million barrels per month. • The optimal stockpiling drives up world oil price by 3–7%

  13. Chemical hazard evaluation of material disposal area (MDA) B closure project

    Energy Technology Data Exchange (ETDEWEB)

    Laul, Jagdish C [Los Alamos National Laboratory

    2010-04-19

    TA-21, MDA-B (NES) is the 'contaminated dump,' landfill with radionuclides and chemicals from process waste disposed in 1940s. This paper focuses on chemical hazard categorization and hazard evaluation of chemicals of concern (e.g., peroxide, beryllium). About 170 chemicals were disposed in the landfill. Chemicals included products, unused and residual chemicals, spent, waste chemicals, non-flammable oils, mineral oil, etc. MDA-B was considered a High hazard site. However, based on historical records and best engineering judgment, the chemical contents are probably at best 5% of the chemical inventory. Many chemicals probably have oxidized, degraded or evaporated for volatile elements due to some fire and limited shelf-life over 60 yrs, which made it possible to downgrade from High to Low chemical hazard site. Knowing the site history and physical and chemical properties are very important in characterizing a NES site. Public site boundary is only 20 m, which is a major concern. Chemicals of concern during remediation are peroxide that can cause potential explosion and beryllium exposure due to chronic beryllium disease (CBD). These can be prevented or mitigated using engineering control (EC) and safety management program (SMP) to protect the involved workers and public.

  14. Joint stockpiling and emergency sharing of oil: Arrangements for regional cooperation in East Asia

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eui-soon, E-mail: shine@yonsei.ac.k [School of Economics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Savage, Tim, E-mail: seoul@nautilus.or [Nautilus Institute, 58-14 Shinmun-ro 1-ga, Hangeul Hall Room 503, Jongro-gu, Seoul 110-061 (Korea, Republic of)

    2011-05-15

    The East Asia region includes three of the world's top five oil-importing nations-China, Japan, and the Republic of Korea. As a consequence, international oil supply disruptions and oil price spikes, and their effects on the economies of the region, have historically been of significant concern. Each of these three nations, as well as other nations in East Asia, has developed or is developing their own strategic oil stockpiles, but regional coordination in stockpiling arrangements and sharing of oil stocks in an emergency could provide significant benefits. This article describes the overall oil supply security situation in East Asia, reviews the attributes of different stockpiling arrangements to address energy supply security concerns, summarizes ongoing national approaches to stockpiling in East Asia, describes the development of joint oil stockpile initiatives in the region, and suggests the most attractive options for regional cooperation on oil stockpiling issues. - Highlights: {yields} Rising oil consumption will make East Asia more vulnerable to energy insecurity. {yields} There have been various dialogs on the need for a joint regional oil stockpile. {yields} No serious joint oil stockpiling efforts have been made in East Asia to date. {yields} Despite various impediments, diverse benefits justify oil stockpile cooperation.

  15. Joint stockpiling and emergency sharing of oil: Arrangements for regional cooperation in East Asia

    International Nuclear Information System (INIS)

    Shin, Eui-soon; Savage, Tim

    2011-01-01

    The East Asia region includes three of the world's top five oil-importing nations-China, Japan, and the Republic of Korea. As a consequence, international oil supply disruptions and oil price spikes, and their effects on the economies of the region, have historically been of significant concern. Each of these three nations, as well as other nations in East Asia, has developed or is developing their own strategic oil stockpiles, but regional coordination in stockpiling arrangements and sharing of oil stocks in an emergency could provide significant benefits. This article describes the overall oil supply security situation in East Asia, reviews the attributes of different stockpiling arrangements to address energy supply security concerns, summarizes ongoing national approaches to stockpiling in East Asia, describes the development of joint oil stockpile initiatives in the region, and suggests the most attractive options for regional cooperation on oil stockpiling issues. - Highlights: → Rising oil consumption will make East Asia more vulnerable to energy insecurity. → There have been various dialogs on the need for a joint regional oil stockpile. → No serious joint oil stockpiling efforts have been made in East Asia to date. → Despite various impediments, diverse benefits justify oil stockpile cooperation.

  16. Stockpiling and Comprehensive Utilization of Red Mud Research Progress

    Science.gov (United States)

    Liu, Dong-Yan; Wu, Chuan-Sheng

    2012-01-01

    With increasing production of red mud, the environmental problems caused by it are increasingly serious, and thus the integrated treatment of red mud is imminent. This article provides an overview of the composition and the basic characteristics of red mud. The research progress of safe stockpiling and comprehensive utilization of red mud is summarized. The safe stockpiling of red mud can be divided into two aspects: the design and safe operation of the stocking yard. The comprehensive utilization of red mud can be further divided into three aspects: the effective recycling of components, resource utilization and application in the field of environmental protection. This paper points out that the main focus of previous studies on red mud stockpiling is cost reproduction and land tenure. The recovery of resources from red mud has a high value-added, but low level industrialization. The use of red mud as a building material and filler material is the most effective way to reduce the stockpiling of red mud. Red mud used for environmental remediation materials is a new hotspot and worth promoting for its simple processing and low cost.

  17. Nonlinear chemical sorption isotherms in the assessment of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Walker, J.R.; LeNeveu, D.M.

    1987-01-01

    Radionuclides emplaced in an underground disposal vault can possibly migrate from the vault, and through the geosphere, to enter Man's environment. Chemical sorption is a primary mechanism for retarding this migration. The effects of nonlinear chemical sorption isotherms on radionuclide transport are discussed. A method is given by which nonlinear isotherms can be approximated by the linear sorption isotherm used in the vault submodel. The relevance of nonlinear isotherms to transport in the geosphere is discussed, and it is shown that the linear isotherm model is conservative for deep geologic disposal. 22 refs

  18. Fiber digestion kinetics and protein degradability characteristics of stockpiled Tifton 85 bermudagrass.

    Science.gov (United States)

    Sechler, S R; Mullenix, M K; Holland, C M; Muntifering, R B

    2017-09-01

    A 2-yr study was conducted to determine effects of N fertilization level on fiber digestion kinetics and protein degradability characteristics of stockpiled Tifton 85 bermudagrass (T85). Six 0.76-ha pastures of stockpiled T85 were cut to a 10-cm stubble height on August 1 of each yr and fertilized with 56 (56N), 112 (112N), or 168 (168N) kg N/ha (2 pastures/treatment). Fiber digestion kinetics included the 72-hr potential extent of NDF digestion (PED), rate of NDF digestion, and lag time. In yr 1 and 2, PED decreased over the stockpile season. Rates of NDF digestion did not differ ( > 0.05) among N fertilization treatments in either yr. In yr 1, rate of NDF digestion was greatest ( digestion decreased ( digestion rates were similar for November and January 21 sampling dates. Lag time was greater ( digestion ( = -0.60 and -0.25 in yr 1 and 2, respectively) was observed. There was a trend ( = 0.06) for lignin concentration to be positively correlated with lag time ( = 0.39) in yr 1, and a strong relationship was observed in yr 2 ( = 0.91; digestion in stockpiled T85 were influenced more by temporal changes over the stockpile season than by N fertilization level. Supplement formulations based on kinetic parameters of fiber digestion may require periodic adjustment to insure that energy-yielding components of NDF are sufficient to meet animal requirements throughout the stockpile season. The CP fraction in stockpiled T85 contains sufficient RDP to support fibrolytic activity and growth of ruminal microorganisms throughout the stockpile season. Toward the latter end of the season, supplementation with sources of digestible fiber and RDP could be expected to increase MP supply to the host animal.

  19. Exploiting the plutonium stockpiles in PWRs by using inert matrix fuel

    International Nuclear Information System (INIS)

    Lombardi, C.; Mazzola, A.

    1996-01-01

    The plutonium coming from dismantled warheads and that already stockpiled coming from spent fuel reprocessing have raised many concerns related to proliferation resistance, environmental safety and economy. The option of disposing of plutonium by fission is one of the most widely discussed and many proposals for plutonium burning in a safe and economical manner have been put forward. Due to their diffusion, PWRs appear to be the main candidates for the reduction of the plutonium stockpiles. In order to achieve a high plutonium consumption rate, a uranium-free fuel may be conceived, based on the dilution of PuO 2 within a carrier matrix made of inert oxide. In this paper, a partial loading of inert matrix fuel in a current technology PWR was investigated with 3-D calculations. The results indicated that this solution has good plutonium elimination capabilities: commercial PWRs operating in a once-through cycle scheme can transmute more than 98% of the loaded Pu-239 and 73 or 81% of the overall initially loaded reactor grade or weapons grade plutonium, respectively. The plutonium still let in the spent fuel was of poor quality and then offered a better proliferation resistance. Power peaking problems could be faced with the adoption of burnable absorbers: IFBA seemed to be particularly suitable. In spite of a reduction of the overall plutonium loaded mass by a factor 3.7 or 5.4 depending on its quality, there was no evidence of an increase of the minor actinides radiotoxicity after a time period of about 25 years. (author)

  20. The Big Science of stockpile stewardship

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Victor H.; Hanrahan, Robert J.; Levedahl, W. Kirk

    2016-08-15

    In the quarter century since the US last exploded a nuclear weapon, an extensive research enterprise has maintained the resources and know-how needed to preserve confidence in the country’s stockpile.

  1. Chemical Weapons Convention

    National Research Council Canada - National Science Library

    1997-01-01

    On April 29, 1997, the Convention on the Prohibition of the Development, Production, Stockpiling, and Use of Chemical Weapons and on Their Destruction, known as the Chemical Weapons Convention (CWC...

  2. Principles for disposal of radioactive and chemical hazardous wastes

    International Nuclear Information System (INIS)

    Merz, E. R.

    1991-01-01

    The double hazard of mixed wastes is characterized by several criteria: radioactivity on the one hand, and chemical toxicity, flammability, corrosiveness as well as chemical reactivity on the other hand. Chemotoxic waste normally has a much more complex composition than radioactive waste and appears in much larger quantities. However, the two types of waste have some properties in common when it comes to their long-term impact on health and the environment. In order to minimize the risk associated with mixed waste management, the material assigned for ultimate disposal should be thoroughly detoxified, inertized, or mineralized prior to conditioning and packaging. Good control over the environmental consequence of waste disposal requires that detailed criteria for tolerable contamination should be established, and that compliance with these criteria can be demonstrated. For radioactive waste, there has been an extensive international development of criteria to protect human health. For non-radioactive waste, derived criteria exist only for a limited number of substances

  3. Voluntary cleanup of the Ames chemical disposal site

    International Nuclear Information System (INIS)

    Taboas, A.L.; Freeman, R.; Peterson, J.

    2003-01-01

    The U.S. Department of Energy completed a voluntary removal action at the Ames chemical disposal site, a site associated with the early days of the Manhattan Project. It contained chemical and low-level radioactive wastes from development of the technology to extract uranium from uranium oxide. The process included the preparation of a Remedial Investigation, Feasibility Study, Baseline Risk Assessment, and, ultimately, issuance of a Record of Decision. Various stakeholder groups were involved, including members of the regulatory community, the general public, and the landowner, Iowa State University. The site was restored and returned to the landowner for unrestricted use.

  4. A system simulation to enhance stockpile stewardship (ASSESS)

    International Nuclear Information System (INIS)

    Yoshimura, A.S.; Plantenga, T.D.; Napolitano, L.M.; Johnson, M.M.

    1997-01-01

    This paper describes the ASSESS project, whose goal is to construct a policy driven enterprise simulation of the DOE nuclear weapons complex (DOE/NWC). ASSESS encompasses the full range of stockpile stewardship activities by incorporating simulation component models that are developed and managed by local experts. ASSESS runs on a heterogeneous distributed computing environment and implements multi-layered user access capabilities. ASSESS allows the user to create hypothetical policies governing stockpile stewardship, simulate the resulting operation of the DOE/NWC, and analyze the relative impact of each policy

  5. Packaging radioactive wastes for geologic disposal

    International Nuclear Information System (INIS)

    Benton, H.A.

    1996-01-01

    The M ampersand O contractor for the DOE Office of Civilian Radioactive Waste Management is developing designs of waste packages that will contain the spent nuclear fuel assemblies from commercial and Navy reactor plants and various civilian and government research reactor plants, as well as high-level wastes vitrified in glass. The safe and cost effective disposal of the large and growing stockpile of nuclear waste is of national concern and has generated political and technical debate. This paper addresses the technical aspects of disposing of these wastes in large and robust waste packages. The paper discusses the evolution of waste package design and describes the current concepts. In addition, the engineering and regulatory issues that have governed the development are summarized and the expected performance in meeting the requirements are discussed

  6. Final programmatic environmental impact statement for stockpile stewardship and management. Comment response document. Volume 4

    International Nuclear Information System (INIS)

    1996-09-01

    In response to the end of the Cold War and changes in the world's political regimes, the United States is not producing new-design nuclear weapons. Instead, the emphasis on the U.S. nuclear weapons program is on reducing the size of the Nation's nuclear stockpile by dismantling existing nuclear weapons. The Department of Energy (DOE) has been directed by the President and Congress to maintain the safety and reliability of the reduced nuclear weapons stockpile in the absence of underground nuclear testing. In order to fulfill that responsibility, DOE has developed a Stockpile Stewardship and Management Program to provide a single highly integrated program for maintaining the continued safety and reliability of the nuclear stockpile. The Stockpile Stewardship and Management PEIS describes and analyzes alternative ways to implement the proposed actions for the Stockpile Stewardship and Management Program

  7. FY 2015 - Stockpile Stewardship and Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-04-01

    This Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) Fiscal Year Stockpile Stewardship and Management Plan (SSMP) is a key planning document for the nuclear security enterprise.

  8. FY 2016 - Stockpile Stewardship and Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    This Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) Fiscal Year Stockpile Stewardship and Management Plan (SSMP) is a key planning document for the nuclear security enterprise.

  9. Disposal of mixed radioactive and chemical waste

    International Nuclear Information System (INIS)

    Moghissi, A.A.

    1986-01-01

    The treatment of waste by dilution was practiced as long as nature provided sufficient unpolluted air, water, and land. The necessity for treatment, including containment and disposal of wastes is, however, relatively new. Initially, waste products from manufacturing processes were looked upon as a potential resource. The industries of Western Europe, short of raw materials, tried to recover as many chemical compounds as possible from industrial waste. However, the availability of abundant and cheap petroleum during the fifties changes this practice, at least for a short period

  10. Without Testing: Stockpile Stewardship in the Second Nuclear Age

    Energy Technology Data Exchange (ETDEWEB)

    Martz, Joseph C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-07

    Stockpile stewardship is a topic dear to my heart. I’ve been fascinated by it, and I’ve lived it—mostly on the technical side but also on the policy side from 2009 to 2010 at Stanford University as a visiting scholar and the inaugural William J. Perry Fellow. At Stanford I worked with Perry, former secretary of defense, and Sig Hecker, former Los Alamos Lab director (1986–1997), looking at nuclear deterrence, nuclear policy, and stockpile stewardship and at where all this was headed.

  11. When is a medicine unwanted, how is it disposed, and how might safe disposal be promoted? Insights from the Australian population.

    Science.gov (United States)

    Bettington, Emilie; Spinks, Jean; Kelly, Fiona; Gallardo-Godoy, Alejandra; Nghiem, Son; Wheeler, Amanda J

    2017-12-19

    Objective The aim of the present study was to explore disposal practices of unwanted medicines in a representative sample of Australian adults, compare this with previous household waste surveys and explore awareness of the National Return and Disposal of Unwanted Medicines (RUM) Project. Methods A 10-min online survey was developed, piloted and conducted with an existing research panel of adult individuals. Survey questions recorded demographics, the presence of unwanted medicines in the home, medicine disposal practices and concerns about unwanted medicines. Descriptive statistical analyses and rank-ordered logit regression were conducted. Results Sixty per cent of 4302 respondents reported having unwanted medicines in their household. Medicines were primarily kept just in case they were needed again and one-third of these medicines were expired. Two-thirds of respondents disposed of medicines with the household garbage and approximately one-quarter poured medicines down the drain. Only 17.6% of respondents had heard of the RUM Project, although, once informed, 91.7% stated that they would use it. Respondents ranked the risk of unintended ingestion as the most important public health message for future social marketing campaigns. Conclusions Respondents were largely unaware of the RUM Project, yet were willing to use it once informed. Limited awareness could lead to environmental or public health risks, and targeted information campaigns are needed. What is known about the topic? There is a growing international evidence base on how people dispose of unwanted medicines and the negative consequences, particularly the environmental effects of inappropriate disposal. Although insight into variation in disposal methods is increasing, knowledge of how people perceive risks and awareness of inappropriate disposal methods is more limited. What does this paper add? This study provides evidence of inappropriate medicines disposal and potential stockpiling of medicines in

  12. Strategies for antiviral stockpiling for future influenza pandemics: a global epidemic-economic perspective.

    Science.gov (United States)

    Carrasco, Luis R; Lee, Vernon J; Chen, Mark I; Matchar, David B; Thompson, James P; Cook, Alex R

    2011-09-07

    Influenza pandemics present a global threat owing to their potential mortality and substantial economic impacts. Stockpiling antiviral drugs to manage a pandemic is an effective strategy to offset their negative impacts; however, little is known about the long-term optimal size of the stockpile under uncertainty and the characteristics of different countries. Using an epidemic-economic model we studied the effect on total mortality and costs of antiviral stockpile sizes for Brazil, China, Guatemala, India, Indonesia, New Zealand, Singapore, the UK, the USA and Zimbabwe. In the model, antivirals stockpiling considerably reduced mortality. There was greater potential avoidance of expected costs in the higher resourced countries (e.g. from $55 billion to $27 billion over a 30 year time horizon for the USA) and large avoidance of fatalities in those less resourced (e.g. from 11.4 to 2.3 million in Indonesia). Under perfect allocation, higher resourced countries should aim to store antiviral stockpiles able to cover at least 15 per cent of their population, rising to 25 per cent with 30 per cent misallocation, to minimize fatalities and economic costs. Stockpiling is estimated not to be cost-effective for two-thirds of the world's population under current antivirals pricing. Lower prices and international cooperation are necessary to make the life-saving potential of antivirals cost-effective in resource-limited countries.

  13. Audit Report. Johnston Atoll Chemical Agent Disposal System Preparation for Year 2000

    National Research Council Canada - National Science Library

    1998-01-01

    .... The overall audit objective was to determine whether the Johnston Atoll Chemical Agent Disposal System was adequately preparing its information technology systems to resolve date-processing issues...

  14. 30 CFR 77.211 - Draw-off tunnels; stockpiling and reclaiming operations; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Draw-off tunnels; stockpiling and reclaiming operations; general. 77.211 Section 77.211 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... WORK AREAS OF UNDERGROUND COAL MINES Surface Installations § 77.211 Draw-off tunnels; stockpiling and...

  15. Overview of the US Strategic National Stockpile

    International Nuclear Information System (INIS)

    Adams, S.

    2009-01-01

    The CBMTS community last received an overview of the United States Strategic National Stockpile in Dubrovnik during the Spring of 2001. The events that occurred later that year and the ensuing response have resulted in a dramatic expansion of both the scope and complexity of the Strategic National Stockpile. These changes are seen not only in the scope of the Materiel holdings which have grown by several orders of magnitude, but in the increasingly complex operational designs which can rapidly bring the materiel to bear in a clinically relevant time frame. Mr. Adams, Deputy Director of the program from the time of its 1999 inception, will provide a detailed overview of the current program highlighting many of the changes and evolutions which have occurred during the past 8 years.(author)

  16. An Introduction to Risk with a Focus on Design Diversity in the Stockpile

    Energy Technology Data Exchange (ETDEWEB)

    Noone, Bailey C [Los Alamos National Laboratory

    2012-08-13

    The maintenance and security of nuclear weapons in the stockpile involves decisions based on risk analysis and quantitative measures of risk. Risk is a factor in all decisions, a particularly important factor in decisions of a large scale. One example of high-risk decisions we will discuss is the risk involved in design diversity within the stockpile of nuclear weapons arsenal. Risk is defined as 'possibility of loss or injury' and the 'degree of probability of such loss' (Kaplan and Garrick 12). To introduce the risk involved with maintaining the weapons stockpile we will draw a parallel to the design and maintenance of Southwest Airlines fleet of Boeing 737 planes. The clear benefits for cost savings in maintenance of having a uniform fleet are what historically drove Southwest to have only Boeing 737s in their fleet. Less money and resources are need for maintenance, training, and materials. Naturally, risk accompanies those benefits. A defect in a part of the plane indicates a potential defect in that same part in all the planes of the fleet. As a result, safety, business, and credibility are at risk. How much variety or diversity does the fleet need to mitigate that risk? With that question in mind, a balance is needed to accommodate the different risks and benefits of the situation. In a similar way, risk is analyzed for the design and maintenance of nuclear weapons in the stockpile. In conclusion, risk must be as low as possible when it comes to the nuclear weapons stockpile. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk, and to help balance options in stockpile stewardship.

  17. Effects of waste-disposal practices on ground-water quality at five poultry (broiler) farms in north-central Florida, 1992-93

    Science.gov (United States)

    Hatzell, H.H.

    1995-01-01

    Waste-disposal areas such as chicken-house floors, litter stockpiles, fields that receive applications of litter, and dead-chicken pits are potential sources of nitrates and other chemical constituents in downward-percolating recharge water. Broiler- farms in north-central Florida are concentrated in a region where the Upper Floridan aquifer is unconfined and susceptible to contamination. Eighteen monitoring wells installed at five sites were sampled quarterly from March 1992 through January 1993. Increases in median concentrations of constituents relative to an upgradient well were used to determine the source of the nitrate at two sites. At these sites, increases in the median concentrations of nitrate as nitrogen in ground water in the vicinity of waste-disposal areas at these sites were: 5.4 mg/L for one chicken house; 9.0 mg/L for a second chicken house; 2.0 mg/L for a fallow field that received an application of litter; and, 2.0 mg/L for a dead-chicken pit. At the three remaining sites where the direction of local ground-water flow could not be ascertained, the sources of concentrations of nitrate and other constituents could not be determined. However, median nitrate concentrations in the vicinity of waste-disposal areas at these sites were: 45.5 mg/L for a set of two chicken houses; 3.0 mg/L for a stockpile area; and 2.1 mg/L for a hayfield that received an application of litter. The nitrate concentration in ground water in the vicinity of a field that had previously received heavy applications of litter increased from 3.0 mg/L to 105 mg/L approximately 4 months after receiving an application of commercial fertilizer. Increases in concentrations of organic nitrogen in ground water in the vicinity of waste-disposal areas may be related to the decomposition of litter and subsequent movement with downward percolating recharge water.(USGS)

  18. Using Direct Sub-Level Entity Access to Improve Nuclear Stockpile Simulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Robert Y. [Brigham Young Univ., Provo, UT (United States)

    1999-08-01

    Direct sub-level entity access is a seldom-used technique in discrete-event simulation modeling that addresses the accessibility of sub-level entity information. The technique has significant advantages over more common, alternative modeling methods--especially where hierarchical entity structures are modeled. As such, direct sub-level entity access is often preferable in modeling nuclear stockpile, life-extension issues, an area to which it has not been previously applied. Current nuclear stockpile, life-extension models were demonstrated to benefit greatly from the advantages of direct sub-level entity access. In specific cases, the application of the technique resulted in models that were up to 10 times faster than functionally equivalent models where alternative techniques were applied. Furthermore, specific implementations of direct sub-level entity access were observed to be more flexible, efficient, functional, and scalable than corresponding implementations using common modeling techniques. Common modeling techniques (''unbatch/batch'' and ''attribute-copying'') proved inefficient and cumbersome in handling many nuclear stockpile modeling complexities, including multiple weapon sites, true defect analysis, and large numbers of weapon and subsystem types. While significant effort was required to enable direct sub-level entity access in the nuclear stockpile simulation models, the enhancements were worth the effort--resulting in more efficient, more capable, and more informative models that effectively addressed the complexities of the nuclear stockpile.

  19. Identification of chemicals related to the chemical weapons convention during an interlaboratory proficiency test

    NARCIS (Netherlands)

    Hooijschuur, E.W.J.; Hulst, A.G.; Jong, A.L. de; Reuver, L.P. de; Krimpen, S.H. van; Baar, B.L.M. van; Wils, E.R.J.; Kientz, C.E.; Brinkman, U.A.Th

    2002-01-01

    In order to test the ability of laboratories to detect and identify chemicals related to the Chemical Weapons Convention (CWC), which prohibits the development, production, stockpiling and use of chemical weapons, and to designate laboratories for this task, the Technical Secretariat of the

  20. E-commerce as a Stockpiling Technology - Implications for Consumer Savings

    OpenAIRE

    Andrea Pozzi

    2013-01-01

    Shopping on the Internet spares customers the discomfort of carrying around heavy and bulky baskets of goods, since the service usually includes home de- livery. This makes e-commerce a technology well suited to helping consumers to buy in bulk or to stockpile items on discount. I use grocery scanner data provided by a supermarket chain selling both online and through traditional stores to show that the introduction of e-commerce leads to an increase in bulk purchase and stockpiling behavior ...

  1. Greening academia: Use and disposal of mobile phones among university students

    International Nuclear Information System (INIS)

    Ongondo, F.O.; Williams, I.D.

    2011-01-01

    Research highlights: → Students use/disposal of mobile phones was assessed via a large-scale survey and a takeback trial. → We estimate 3.7 m phones stockpiled by UK students; 29.3 and 28.1 m stockpiled for Europe and USA. → Many students replace phones at least once a year; only a small number have used a takeback service. → Monetary incentives have greatest influence over willingness to utilise takeback services. → Universities should partner with established operators to conduct targeted takeback services. - Abstract: Mobile phones have relatively short lifecycles and are rapidly seen as obsolete by many users within little over a year. However, the reusability of these devices as well as their material composition means that in terms of mass and volume, mobile phones represent the most valuable electronic products that are currently found in large numbers in waste streams. End-of-life mobile phones are a high value (from a reuse and resource perspective), high volume (quantity), low cost (residual monetary value) and transient (short lifecycle) electronic product. There are very large numbers of higher education (mainly university) students in the world - there are >2.4 million in the UK alone, 19 million in Europe and 18.2 million in the USA - and they often replace their mobile phones several times before graduation. Thus, because of the potentially significant environmental and economic impacts, a large scale survey of students at 5 UK universities was conducted to assess the behaviour of students with regard to their use and disposal of mobile phones. Additionally, a small scale trial mobile phone takeback service at one of the universities was carried out. The findings indicate that many students replace their phones at least once a year; replacing broken phones, getting upgrades from network operators, remaining 'fashionable' and a desire to have a handset with a longer battery life are the main reasons for such rapid replacement. Almost 60% of

  2. FY 2014 - Stockpile and Stewardship and Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    This Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) Fiscal Year Stockpile Stewardship and Management Plan (SSMP) is a key planning document for the nuclear security enterprise.

  3. Influence of Stockpile Angle in Natural Drying of Laterite Ore

    Directory of Open Access Journals (Sweden)

    Yoalbys Retirado-Mediaceja

    2016-10-01

    Full Text Available Natural drying is performed at Cuban nickel plants by depositing bulk ore in the open. The ore is currently being stockpiled without much consideration for the impact of the drying surface angle on the process power behavior. Simulations were carried out in this investigation, which prove that an increased triangular stockpile angle considerably reduces natural drying efficiency. A 45 sexagesimal degree angle to the horizontal plane results in exposure of a large volume of ore to natural drying and guarantees adequate energy performance.

  4. Subseabed Disposal Project chemical response studies. Annual report, October 1982-September 1983

    International Nuclear Information System (INIS)

    Brush, L.H.

    1985-10-01

    Studies of the chemical response of deep-sea sediments to a subseabed repository for high-level radioactive waste continued during Fiscal Year 1983. Chemical Response Studies comprise Waste Package, Near-Field, and Far-Field Studies. This year, as in the past, investigators in the US Subseabed Disposal Project (SDP) carried out most of these chemical response experiments with red clay from the MPG 1 study location 1500 km north of Hawaii. The results of all studies carried out to date imply that oxidized red clay would form a highly effective barrier to radionuclides that form cationic species, but that anionic radionuclides would begin to escape from the sediment to the overlying water column on the order of thousands of years after emplacement. In Fiscal Year 1984, investigators in the US SDP will initiate chemical response studies with mildly reduced Atlantic clay- and carbonate-rich sediments in cooperation with the Sediment Barrier Task Group of the Organization for Economic Cooperation and Development - Nuclear Energy Agency Coordinated Program on the Assessment of the Subseabed Disposal of Radioactive Waste (Seabed Working Group). The objective of these US studies will be to quantify the chemical response of Atlantic sediments to a subseabed repository with a level of confidence similar to that for Pacific red clay

  5. An empirical analysis of the dynamic programming model of stockpile acquisition strategies for China's strategic petroleum reserve

    International Nuclear Information System (INIS)

    Wu, Gang; Fan, Ying; Wei, Yi-Ming; Liu, Lan-Cui

    2008-01-01

    The world's future oil price is affected by many factors. The challenge, therefore, is how to select optimal stockpile acquisition strategies to minimize the cost of maintaining a reserve. This paper provides a new method for analyzing this problem using an uncertain dynamic programming model to analyze stockpile acquisition strategies for strategic petroleum reserve. Using this model, we quantify the impact of uncertain world oil price on optimal stockpile acquisition strategies of China's strategic petroleum reserve for the period 2007-2010 and 2011-2020. Our results show that the future stockpile acquisition is related to oil prices and their probability and, if not considering the occurrence of oil supply shortage, China should at least purchase 25 million barrels when world oil price is at an optimal level. The optimal price of stockpile acquisition of every year has a stronger relationship with the probability of high price; and the optimal expected price and size of stockpile acquisition is different in each year. (author)

  6. Chemical Stockpile Disposal Program. Risk Analysis of the Disposal of Chemical Munitions at Regional or National Sites.

    Science.gov (United States)

    1987-08-01

    4-4i = I7-75 IA A uj11 wj M 2 i w bo 1o. P2 ari *fa3 IL L z - = a 2 1.- I 24 -~ 2 z 2 2 ~ o~t 0 I, I ’" a a c .3 0 5 , C., ZZ ~C -) ZZ 4 cc 4cc acca ...IN C I N - I CL- 0.0 0 00 C61. IA f6 .4 Q 0 0 0 0 0 C o 3 OF-- 04- 0 .0 0 0 u 0 0 0 W 0 -’ - 000 ’. 4-3 .0-4 0 0 04 0 41. . 11 . ,. ~ :!~r 0. 19 000 0

  7. Usage of solar aggregate stockpiles in the production of hot mix asphalt

    International Nuclear Information System (INIS)

    Androjić, Ivica; Kaluđer, Gordana

    2016-01-01

    Highlights: • Low energy storage mineral mixtures. • The impact of models thermal insulation on the temperature of aggregate. • Effect of periods with no solar radiation on the aggregate accumulated heat. • Low energy storage saves energy for preheating mineral mixtures. - Abstract: The production process of hot mix asphalt (HMA) requires a considerable demand for thermal energy which is fed into the process of drying and heating of mineral mixture. An overview of solar aggregate stockpiles designed in order to reduce energy consumption is given. Solar stockpiles were designed with the primary goal of achieving as much accumulation of thermal energy obtained from solar radiation as possible during the exposure period. Models of solar stockpiles were made with a constant volume capacity, variable thermal insulation thickness in the range of 2, 5 and 10 cm, and a glass ceiling surface to allow the realisation of high solar transmission into the interior of a stockpile. Temperature measurement of the mineral mixture deposited in the solar models and of those exposed to external environmental conditions was conducted during the period from May to November, 2015. The results achieved indicate to the facts that there comes to the constant growth in warmth of mineral mixtures in insulated stockpiles for the duration of their exposure to solar radiation, that an increase in thermal insulation thickness leads to the quadratic functional dependence between the referred thickness and mixture temperature and, ultimately, that there comes to the exponential loss of an accumulated thermal energy in insulated models in the period with no effect of solar radiation.

  8. Hedge math: Theoretical limits on minimum stockpile size across nuclear hedging strategies

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, Jarret Marshall [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Roesler, Alexander W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    In June 2013, the Department of Defense published a congressionally mandated, unclassified update on the U.S. Nuclear Employment Strategy. Among the many updates in this document are three key ground rules for guiding the sizing of the non-deployed U.S. nuclear stockpile. Furthermore, these ground rules form an important and objective set of criteria against which potential future stockpile hedging strategies can be evaluated.

  9. Chemical Stockpile Disposal Program. Risk Analysis of the Continued Storage of Chemical Munitions

    Science.gov (United States)

    1987-08-01

    assessment. has been utilized in various industries for some time. Insurance companies have long used actuarial data for statistical eva- luations to justify...hand, are examples of major industry efforts to quantify risks of low-frequency events for which no good actuarial data exist. The nuclear power...not all the components exhibit the asm reliability. Intrinsic variations can N be caused, for example, by different ianupacturers, mrinten.c prac- tices

  10. Disposal of chemical agents and munitions stored at Anniston Army Depot, Anniston, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Hunsaker, D.B. Jr.; Zimmerman, G.P.; Hillsman, E.L.; Miller, R.L.; Schoepfle, G.M.; Johnson, R.O.; Tolbert, V.R.; Kroodsma, R.L.; Rickert, L.W.; Rogers, G.O.; Staub, W.P.

    1990-09-01

    The purpose of this Phase I report is to examined the proposed implementation of on-site disposal at Anniston Army Depot (ANAD) in light of more detailed and more recent data than those included in the Final Programmatic Environmental Impact Statement (EPEIS). Two principal issues are addressed: (1) whether or not the new data would result in identification of on-site disposal at ANAD as the environmentally preferred alternative (using the same selection method and data analysis tools as in the FPEIS), and (2) whether or not the new data indicate the presence of significant environmental resources that could be affected by on-site disposal at ANAD. In addition, a status report is presented on the maturity of the disposal technology (and now it could affect on-site disposal at ANAD). Inclusion of these more recent data into the FPEIS decision method resulted in confirmation of on-site disposal for ANAD. No unique resources with the potential to prevent or delay implementation of on-site disposal at ANAD have been identified. A review of the technology status identified four principal technology developments that have occurred since publication of the FPEIS and should be of value in the implementation of on-site disposal at ANAD: the disposal of nonlethal agent at Pine Bluff Arsenal, located near Pine Bluff, Arkansas; construction and testing of facilities for disposal of stored lethal agent at Johnston Atoll, located about 1300 km (800 miles) southwest of Hawaii in the Pacific Ocean; lethal agent disposal tests at the chemical agent pilot plant operations at Tooele Army Depot, located near Salt Lake City, Utah; and equipment advances. 18 references, 13 figs., 10 tabs.

  11. U.S. Department of Energy Implementation of Chemical Evaluation Requirements for Transuranic Waste Disposal at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Alison [USDOE Office of Environmental Management (EM), Washington, DC (United States); Barkley, Michelle [USDOE Office of Environmental Management (EM), Washington, DC (United States); Poppiti, James [USDOE Office of Environmental Management (EM), Washington, DC (United States)

    2017-07-01

    This report summarizes new controls designed to ensure that transuranic waste disposed at the Waste Isolation Pilot Plant (WIPP) does not contain incompatible chemicals. These new controls include a Chemical Compatibility Evaluation, an evaluation of oxidizing chemicals, and a waste container assessment to ensure that waste is safe for disposal. These controls are included in the Chapter 18 of the Documented Safety Analysis for WIPP (1).

  12. U.S. Department of Energy Implementation of Chemical Evaluation Requirements for Transuranic Waste Disposal at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Moon, Alison; Barkley, Michelle; Poppiti, James

    2017-01-01

    This report summarizes new controls designed to ensure that transuranic waste disposed at the Waste Isolation Pilot Plant (WIPP) does not contain incompatible chemicals. These new controls include a Chemical Compatibility Evaluation, an evaluation of oxidizing chemicals, and a waste container assessment to ensure that waste is safe for disposal. These controls are included in the Chapter 18 of the Documented Safety Analysis for WIPP (1).

  13. Stockpiling anti-viral drugs for a pandemic: the role of Manufacturer Reserve Programs.

    Science.gov (United States)

    Harrington, Joseph E; Hsu, Edbert B

    2010-05-01

    To promote stockpiling of anti-viral drugs by non-government organizations such as hospitals, drug manufacturers have introduced Manufacturer Reserve Programs which, for an annual fee, provide the right to buy in the event of a severe outbreak of influenza. We show that these programs enhance drug manufacturer profits but could either increase or decrease the amount of pre-pandemic stockpiling of anti-viral drugs.

  14. Disposal and handling of nuclear steam generator chemical cleaning wastes

    International Nuclear Information System (INIS)

    Larrick, A.P.; Schneidmiller, D.

    1978-01-01

    A large number of pressurized water nuclear reactor electrical generating plants have experienced a corrosion-related problem with their steam generators known as denting. Denting is a mechanical deformation of the steam generator tubes that occurs at the tube support plates. Corrosion of the tube support plates occurs within the annuli through which the tubes pass and the resulting corrosion oxides, which are larger in volume than the original metal, compress and deform the tubes. In some cases, the induced stresses have been severe enough to cause tube and/or support cracking. The problem was so severe at the Turkey Point and Surrey plants that the tubing is being replaced. For less severe cases, chemical cleaning of the oxides, and other materials which deposit in the annuli from the water, is being considered. A Department of Energy-sponsored program was conducted by Consolidated Edison Co. of New York which identified several suitable cleaning solvents and led to in-plant chemical cleaning pilot demonstrations in the Indian Point Unit 1 steam generators. Current programs to improve the technology are being conducted by the Electric Power Research Institute, and the three PWR NSSS vendors with the assistance of numerous consultants, vendors, and laboratories. These programs are expected to result in more effective, less corrosive solvents. However, after a chemical cleaning is conducted, a large problem still remains- that of disposing of the spent wastes. The paper summarizes some of the methods currently available for handling and disposal of the wastes

  15. Construction of a technique plan repository and evaluation system based on AHP group decision-making for emergency treatment and disposal in chemical pollution accidents

    International Nuclear Information System (INIS)

    Shi, Shenggang; Cao, Jingcan; Feng, Li; Liang, Wenyan; Zhang, Liqiu

    2014-01-01

    Highlights: • Different chemical pollution accidents were simplified using the event tree analysis. • Emergency disposal technique plan repository of chemicals accidents was constructed. • The technique evaluation index system of chemicals accidents disposal was developed. • A combination of group decision and analytical hierarchy process (AHP) was employed. • Group decision introducing similarity and diversity factor was used for data analysis. - Abstract: The environmental pollution resulting from chemical accidents has caused increasingly serious concerns. Therefore, it is very important to be able to determine in advance the appropriate emergency treatment and disposal technology for different types of chemical accidents. However, the formulation of an emergency plan for chemical pollution accidents is considerably difficult due to the substantial uncertainty and complexity of such accidents. This paper explains how the event tree method was used to create 54 different scenarios for chemical pollution accidents, based on the polluted medium, dangerous characteristics and properties of chemicals involved. For each type of chemical accident, feasible emergency treatment and disposal technology schemes were established, considering the areas of pollution source control, pollutant non-proliferation, contaminant elimination and waste disposal. Meanwhile, in order to obtain the optimum emergency disposal technology schemes as soon as the chemical pollution accident occurs from the plan repository, the technique evaluation index system was developed based on group decision-improved analytical hierarchy process (AHP), and has been tested by using a sudden aniline pollution accident that occurred in a river in December 2012

  16. Construction of a technique plan repository and evaluation system based on AHP group decision-making for emergency treatment and disposal in chemical pollution accidents

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Shenggang [College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 (China); College of Chemistry, Baotou Teachers’ College, Baotou 014030 (China); Cao, Jingcan; Feng, Li; Liang, Wenyan [College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 (China); Zhang, Liqiu, E-mail: zhangliqiu@163.com [College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 (China)

    2014-07-15

    Highlights: • Different chemical pollution accidents were simplified using the event tree analysis. • Emergency disposal technique plan repository of chemicals accidents was constructed. • The technique evaluation index system of chemicals accidents disposal was developed. • A combination of group decision and analytical hierarchy process (AHP) was employed. • Group decision introducing similarity and diversity factor was used for data analysis. - Abstract: The environmental pollution resulting from chemical accidents has caused increasingly serious concerns. Therefore, it is very important to be able to determine in advance the appropriate emergency treatment and disposal technology for different types of chemical accidents. However, the formulation of an emergency plan for chemical pollution accidents is considerably difficult due to the substantial uncertainty and complexity of such accidents. This paper explains how the event tree method was used to create 54 different scenarios for chemical pollution accidents, based on the polluted medium, dangerous characteristics and properties of chemicals involved. For each type of chemical accident, feasible emergency treatment and disposal technology schemes were established, considering the areas of pollution source control, pollutant non-proliferation, contaminant elimination and waste disposal. Meanwhile, in order to obtain the optimum emergency disposal technology schemes as soon as the chemical pollution accident occurs from the plan repository, the technique evaluation index system was developed based on group decision-improved analytical hierarchy process (AHP), and has been tested by using a sudden aniline pollution accident that occurred in a river in December 2012.

  17. Uranium purchasing and stockpiling policies of European utilities

    International Nuclear Information System (INIS)

    Messer, K.P.

    1984-01-01

    Most European utilities almost entirely depend on uranium imports. Around 1970 there was a worldwide oversupply of uranium, and utilities concluded short and medium term supply contracts for initial power plant programs. A few years later the situation had changed, with uranium becoming scarce and expensive. Many European utilities decided to participate, directly or indirectly, in the exploration and development of uranium resources. In 1984 most utilities believed that long term contracts from each of the big producer regions should supply 20-25% of their demand. Some remaining demand was reserved for the spot market and reprocessed fuel. This buying policy has t be supplemented by uranium stockpiles corresponding to the demand for the coming two years. However, with the declining worldwide economy power demand has not grown as predicted, and supply contracts have obliged utilities to take delivery of more uranium than needed. Stockpiles have grown larger than planned. (L.L.) (7 figs.)

  18. Evidence synthesis and decision modelling to support complex decisions: stockpiling neuraminidase inhibitors for pandemic influenza usage [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Samuel I. Watson

    2017-03-01

    Full Text Available Objectives: The stockpiling of neuraminidase inhibitor (NAI antivirals as a defence against pandemic influenza is a significant public health policy decision that must be made despite a lack of conclusive evidence from randomised controlled trials regarding the effectiveness of NAIs on important clinical end points such as mortality. The objective of this study was to determine whether NAIs should be stockpiled for treatment of pandemic influenza on the basis of current evidence. Methods: A decision model for stockpiling was designed. Data on previous pandemic influenza epidemiology was combined with data on the effectiveness of NAIs in reducing mortality obtained from a recent individual participant meta-analysis using observational data. Evidence synthesis techniques and a bias modelling method for observational data were used to incorporate the evidence into the model. The stockpiling decision was modelled for adults (≥16 years old and the United Kingdom was used as an example. The main outcome was the expected net benefits of stockpiling in monetary terms. Health benefits were estimated from deaths averted through stockpiling. Results: After adjusting for biases in the estimated effectiveness of NAIs, the expected net benefit of stockpiling in the baseline analysis was £444 million, assuming a willingness to pay of £20,000/QALY ($31,000/QALY. The decision would therefore be to stockpile NAIs. There was a greater probability that the stockpile would not be utilised than utilised. However, the rare but catastrophic losses from a severe pandemic justified the decision to stockpile. Conclusions: Taking into account the available epidemiological data and evidence of effectiveness of NAIs in reducing mortality, including potential biases, a decision maker should stockpile anti-influenza medication in keeping with the postulated decision rule.

  19. Potassium iodide stockpiling

    International Nuclear Information System (INIS)

    Krimm, R.W.

    1983-01-01

    After examination by the Federal Emergency Management Agency (FEMA) and other federal agencies of federal policy on the use and distribution of potassium iodide (KI) as a thyroid-blocking agent for use in off-site preparedness around commercial nuclear powerplants, FEMA believes the present shelf life of KI is too short, that the minimum ordering quantities are an obstacle to efficient procurement, and that the packaging format offered by the drug industry does not meet the wishes of state and local government officials. FEMA has asked assistance from the Food and Drug Administration in making it possible for those states wishing to satisfy appropriate requirements to do so at the minimum cost to the public. Given an appropriate packaging and drug form, there appears to be no reason for the federal government to have further involvement in the stockpiling of KI

  20. Disposal of defense spent fuel and HLW from the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Ermold, L.F.; Loo, H.H.; Klingler, R.D.; Herzog, J.D.; Knecht, D.A.

    1992-12-01

    Acid high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage ate the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, with an emphasis on the description of HLW and spent fuels requiring repository disposal

  1. Covering of milled peat stockpile with wood chips; Jyrsinturveauman peittaeminen hakkeella

    Energy Technology Data Exchange (ETDEWEB)

    Franssila, T.; Leinonen, A.

    1996-12-31

    The aim of this project is to research the applicability of wooden materials for protection of milled peat stockpile against losses during storaging. Water transmission features of sawdust, wastewood chip and whole tree chip were investigated in laboratory with raining experiments. The plan for raining experiments was made with experiment planning program and results were analysed with multivariate analysis. Freezing features were investigated thorough breaking tests with hydraulic piston vice. Laboratory experiments were completed with field tests in Laakasuo near Sotkamo. On the basis of results covering peat stockpiles with sawdust is fully competitive comparing to present covering methods. Chip materials are technically not as good covering materials as sawdust

  2. Stockpile tritium production from fusion

    International Nuclear Information System (INIS)

    Lokke, W.A.; Fowler, T.K.

    1986-01-01

    A fusion breeder holds the promise of a new capability - ''dialable'' reserve capacity at little additional cost - that offers stockpile planners a new way to deal with today's uncertainties in forecasting long range needs. Though still in the research stage, fusion can be developed in time to meet future military requirements. Much of the necessary technology will be developed by the ongoing magnetic fusion energy program. However, a specific program to develop the nuclear technology required for materials production is needed if fusion is to become a viable option for a new production complex around the turn of the century

  3. Evaluating chemical toxicity of surface disposal of LILW-SL in Belgium

    International Nuclear Information System (INIS)

    Mallants, D.; Wang, L.; Weetjens, E.; Cool, W.

    2008-01-01

    ONDRAF/NIRAS is developing and evaluating a surface disposal concept for low and intermediate level short-lived radioactive waste (LILW-SL) at Dessel (Belgium)). In support of ONDRAF/NIRAS's assignment, SCK/CEN carried out long-term performance assessment calculations for the inorganic non-radioactive components that are present in LILW-SL. This paper summarizes the results obtained from calculations that were done for a heavily engineered surface disposal facility at the nuclear zone of Mol/Dessel. The calculations address the migration of chemo-toxic elements from the disposed waste to groundwater. Screening calculations were performed first to decide which non-radioactive components could potentially increase concentrations in groundwater to levels above the groundwater standards. On the basis of very conservative calculations, only 6 out of 41 chemical elements could not be classified as having a negligible impact on man and environment. For each of these six elements (B, Be, Cd, Pb, Sb, and Zn), the source term was characterized in terms of its chemical form (i.e., metal, oxide, or salt), and a macroscopic transport model built that would capture the small-scale dissolution processes relevant to element release from a cementitious waste container. Furthermore, reliable transport parameters in support of the convection dispersion-retardation (CDR) transport calculations were determined. This included derivation of (1) solubility for a cementitious near field environment based on thermodynamic equilibrium calculations with The Geo-chemist's Workbench, and (2) distribution coefficients based on a compilation of literature values. Scoping calculations illustrated the effects of transport parameter uncertainty on the rates at which inorganic components in LILW-SL leach to groundwater. (authors)

  4. 30 CFR 823.12 - Soil removal and stockpiling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Soil removal and stockpiling. 823.12 Section 823.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS SPECIAL PERMANENT PROGRAM PERFORMANCE STANDARDS-OPERATIONS ON PRIME FARMLAND § 823.12 Soil removal and...

  5. 77 FR 16205 - National Defense Stockpile Market Impact Committee Request for Public Comments on the Potential...

    Science.gov (United States)

    2012-03-20

    .... The Committee is seeking public comments on the potential market impact of the material research and... Defense Stockpile Market Impact Committee Request for Public Comments on the Potential Market Impact of... National Defense Stockpile Market Impact Committee, co-chaired by the Departments of Commerce and State, is...

  6. 77 FR 42271 - National Defense Stockpile Market Impact Committee Request for Public Comments on the Potential...

    Science.gov (United States)

    2012-07-18

    ... comments on the potential market impact associated with the two material research and development projects... Defense Stockpile Market Impact Committee Request for Public Comments on the Potential Market Impact of... National Defense Stockpile Market Impact Committee, co-chaired by the Departments of Commerce and State, is...

  7. Modeling the filtration ability of stockpiled filtering facepiece

    Science.gov (United States)

    Rottach, Dana R.

    2016-03-01

    Filtering facepiece respirators (FFR) are often stockpiled for use during public health emergencies such as an infectious disease outbreak or pandemic. While many stockpile administrators are aware of shelf life limitations, environmental conditions can lead to premature degradation. Filtration performance of a set of FFR retrieved from a storage room with failed environmental controls was measured. Though within the expected shelf life, the filtration ability of several respirators was degraded, allowing twice the penetration of fresh samples. The traditional picture of small particle capture by fibrous filter media qualitatively separates the effect of inertial impaction, interception from the streamline, diffusion, settling, and electrostatic attraction. Most of these mechanisms depend upon stable conformational properties. However, common FFR rely on electrets to achieve their high performance, and over time heat and humidity can cause the electrostatic media to degrade. An extension of the Langevin model with correlations to classical filtration concepts will be presented. The new computational model will be used to predict the change in filter effectiveness as the filter media changes with time.

  8. China to Establish Strategic Oil Stockpile Bases

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Based on the reports from China's State Development and Reform Committee, a new department of the State Council recently put into operation, the relevant departments have located a number of places as the country's strategic oil stockpile bases, such as Zhoushan and Zhenghai in Zhejiang Province, Huangdao in Shandong Province and Daya Bay in Guangdong Province. However, the plan still needs to be examined and approved by the State Council.

  9. Using stockpile delegation to improve China's strategic oil policy: A multi-dimension stochastic dynamic programming approach

    International Nuclear Information System (INIS)

    Chen, Xin; Mu, Hailin; Li, Huanan; Gui, Shusen

    2014-01-01

    There has been much attention paid to oil security in China in recent years. Although China has begun to establish its own strategic petroleum reserve (SPR) to prevent potential losses caused by oil supply interruptions, the system aiming to ensure China's oil security is still incomplete. This paper describes and provides evidence for the benefits of an auxiliary strategic oil policy choice, which aims to strengthen China's oil supply security and offer a solution for strategic oil operations with different holding costs. In this paper, we develop a multi-dimension stochastic dynamic programming model to analyze the oil stockpile delegation policy, which is an intermediate policy between public and private oil stockpiles and is appropriate for the Chinese immature private oil stockpile sector. The model examines the effects of the oil stockpile delegation policy in the context of several distinct situations, including normal world oil market conditions, slight oil supply interruption, and serious oil supply interruption. Operating strategies that respond to different oil supply situations for both the SPR and the delegated oil stockpile were obtained. Different time horizons, interruption times and holding costs of delegated oil stockpiles were examined. The construction process of China's SPR was also taken into account. - Highlights: • We provided an auxiliary strategic oil policy rooted in Chinese local conditions. • The policy strengthen China's capability for preventing oil supply interruption. • We model to obtain the managing strategies for China's strategic petroleum reserve. • Both of the public and delegated oil stockpile were taken into consideration. • The three phase's construction process of China's SPR was taken into account

  10. Construction of a technique plan repository and evaluation system based on AHP group decision-making for emergency treatment and disposal in chemical pollution accidents.

    Science.gov (United States)

    Shi, Shenggang; Cao, Jingcan; Feng, Li; Liang, Wenyan; Zhang, Liqiu

    2014-07-15

    The environmental pollution resulting from chemical accidents has caused increasingly serious concerns. Therefore, it is very important to be able to determine in advance the appropriate emergency treatment and disposal technology for different types of chemical accidents. However, the formulation of an emergency plan for chemical pollution accidents is considerably difficult due to the substantial uncertainty and complexity of such accidents. This paper explains how the event tree method was used to create 54 different scenarios for chemical pollution accidents, based on the polluted medium, dangerous characteristics and properties of chemicals involved. For each type of chemical accident, feasible emergency treatment and disposal technology schemes were established, considering the areas of pollution source control, pollutant non-proliferation, contaminant elimination and waste disposal. Meanwhile, in order to obtain the optimum emergency disposal technology schemes as soon as the chemical pollution accident occurs from the plan repository, the technique evaluation index system was developed based on group decision-improved analytical hierarchy process (AHP), and has been tested by using a sudden aniline pollution accident that occurred in a river in December 2012. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. FY 2017 Stockpile Stewardship and Management Plan - Biennial Plan Summary

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-03-01

    This year’s summary report updates the Fiscal Year 2016 Stockpile Stewardship and Management Plan (FY 2016 SSMP), the 25-year strategic program of record that captures the plans developed across numerous NNSA programs and organizations to maintain and modernize the scientific tools, capabilities, and infrastructure necessary to ensure the success of NNSA’s nuclear weapons mission. The SSMP is a companion to the Prevent, Counter, and Respond: A Strategic Plan to Reduce Global Nuclear Threats (FY 2017-2021) report, the planning document for NNSA’s nuclear threat reduction mission. New versions of both reports are published each year in response to new requirements and challenges. Much was accomplished in FY 2015 as part of the program of record described in this year’s SSMP. The science-based Stockpile Stewardship Program allowed the Secretaries of Energy and Defense to certify for the twentieth time that the stockpile remains safe, secure, and effective without the need for underground nuclear explosive testing. The talented scientists, engineers, and technicians at the three national security laboratories, the four nuclear weapons production plants, and the national security site are primarily responsible for this continued success. Research, development, test, and evaluation programs have advanced NNSA’s understanding of weapons physics, component aging, and material properties through first-of-a-kind shock physics experiments, along with numerous other critical experiments conducted throughout the nuclear security enterprise. The multiple life extension programs (LEPs) that are under way made progress toward their first production unit dates. The W76-1 LEP is past the halfway point in total production, and the B61-12 completed three development flight tests. Critical to this success is the budget. The Administration’s budget request for NNSA’s Weapons Activities has increased for all but one of the past seven years, resulting in a total increase of

  12. Uranium purchasing and stockpiling policies of European utilities

    International Nuclear Information System (INIS)

    Messer, K.P.

    1984-01-01

    When preparing my little presentation I was wondering whether a title like 'Policies of European utilities to minimise the inflow of uranium not needed and to reduce excessive stockpiles' would not be more appropriate. But I hop that I shall be able to convince you that we European utilities are not that short-sighted and that we do have a more far-sighted policy regarding uranium supplies

  13. Piling Pills? Forward-Looking Behavior and Stockpiling of Prescription Drugs

    DEFF Research Database (Denmark)

    Simonsen, Marianne; Skipper, Lars; Skipper, Niels

    This paper provides evidence of forward-looking behavior in the demand for prescription drugs, while relying on registry-based, individual-level information about the universe of Danish prescription drug purchases from 1995–2014. We exploit a universal shift in policy in early 2000 from a flat......-rate to a non-linear insurance plan for prescription drugs that incentivizes stockpiling at the end of the coverage year. We extend the original framework of Keeler et al. (1977) and discuss how the institutional features of most health insurance contracts, at least theoretically, incentivize intertemporal...... immediately prior to the end-of-year reset in the non-linear plan using a difference-in-difference strategy. We provide evidence that consumers react to this reset by stockpiling toward the end of the coverage year: consumers buy what amounts to an additional 20%. We detect heterogeneity in the size...

  14. Evaluation of environmental effect of coal stockpile in Muara Telang, Banyuasin, Indonesia

    Science.gov (United States)

    Rusdianasari; Arita, Susila; Ibrahim, Eddy; Ngudiantoro

    2013-04-01

    Stockpile commonly serves as a temporary dump before the coal is transported through the waterways. This study investigated the effects of coal stockpiles on the surrounding environment: air, water, and soil. The location of the study is in the estuary of Telang, South-Sumatra, Indonesia, which is located at the edge of the river of Telang and close to the residential community. The monitoring of the environmental impact from the stockpile is intended to conduct an environmental assessment owing the existence and operations of coal accumulation. Enviromental impact analysis was conducted based on the value of the effluent, air pollution (dust), soil and water by determining the parameters of the coal wastewater pH, total suspended solid, ferrous dan ferrous metals contents. The results indicate that the total suspended particulate, total suspended solids, noise level, ferrous metal and manganese metal were 10-14 μg/Nm3 249-355 mg/L, 41.3 to 50.3 dBA, 6.074 to7.579 mg/L, and 1.987 to 2.678 mg/L, respectively. Meanwhile the pH of water and soil were 3 to 4 and 2.83 to 4.02 respectively. It is concluded that the pH value are beyond the threshold standard.

  15. Evaluation of environmental effect of coal stockpile in Muara Telang, Banyuasin, Indonesia

    International Nuclear Information System (INIS)

    Rusdianasari; Arita, Susila; Ibrahim, Eddy; Ngudiantoro

    2013-01-01

    Stockpile commonly serves as a temporary dump before the coal is transported through the waterways. This study investigated the effects of coal stockpiles on the surrounding environment: air, water, and soil. The location of the study is in the estuary of Telang, South-Sumatra, Indonesia, which is located at the edge of the river of Telang and close to the residential community. The monitoring of the environmental impact from the stockpile is intended to conduct an environmental assessment owing the existence and operations of coal accumulation. Enviromental impact analysis was conducted based on the value of the effluent, air pollution (dust), soil and water by determining the parameters of the coal wastewater pH, total suspended solid, ferrous dan ferrous metals contents. The results indicate that the total suspended particulate, total suspended solids, noise level, ferrous metal and manganese metal were 10-14 μg/Nm 3 249-355 mg/L, 41.3 to 50.3 dBA, 6.074 to7.579 mg/L, and 1.987 to 2.678 mg/L, respectively. Meanwhile the pH of water and soil were 3 to 4 and 2.83 to 4.02 respectively. It is concluded that the pH value are beyond the threshold standard.

  16. Release mitigation spray safety systems for chemical demilitarization applications.

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  17. CHARACTERIZATION OF METAL GRADES IN A STOCKPILE OF AN IRON MINE (CASE STUDY- CHOGHART IRON MINE, IRAN

    Directory of Open Access Journals (Sweden)

    Francesco Tinti

    2018-01-01

    Full Text Available In any mining operation due to the cut-off grade (economic criteria, materials classify into the ore and waste. The material with grade equal to or higher than the cut-off grade is considered as ore and the material with grade less than the cut-off grade is transported as wastes to the waste dumps. However, because of increasing metal demand, depleting of in situ ore reserves and so the reduction of cut-off grades for many metals, the mentioned waste dumps were considered as valuable ore reserves named stockpiles. In this paper, multivariate geostatistics was used to estimate the iron grades of two stockpiles following the sequential of piling procedures from the main source - the ore deposit - to the piling field. One stockpile is characterized by phosphorous concentration ((P % > 0.6 %, while the other by iron concentration ((Fe %< 50%. Since economic and physical constraints made sampling physically and economically problematic, the grade distribution and variability were estimated on the basis of primary blast-hole data from the main ore body and the mine’s long-term planning policy. A geostatistical model was applied to the excavated part of the iron deposit and the stockpile, by reconstructing ore selection, haulage and piling method. Results were validated through spatial variability of iron and phosphorous concentrations by comparing grade variability (Fe and P with mining and pilling units. This methodology allows characterizing the iron grades within stockpiles without any extra sampling.

  18. DEM Simulation of Particle Stratification and Segregation in Stockpile Formation

    Directory of Open Access Journals (Sweden)

    Zhang Dizhe

    2017-01-01

    Full Text Available Granular stockpiles are commonly observed in nature and industry, and their formation has been extensively investigated experimentally and mathematically in the literature. One of the striking features affecting properties of stockpiles are the internal patterns formed by the stratification and segregation processes. In this work, we conduct a numerical study based on DEM (discrete element method model to study the influencing factors and triggering mechanisms of these two phenomena. With the use of a previously developed mixing index, the effects of parameters including size ratio, injection height and mass ratio are investigated. We found that it is a void-filling mechanism that differentiates the motions of particles with different sizes. This mechanism drives the large particles to flow over the pile surface and segregate at the pile bottom, while it also pushes small particles to fill the voids between large particles, giving rise to separate layers. Consequently, this difference in motion will result in the observed stratification and segregation phenomena.

  19. Reactor component chemical decontamination-developments in waste handling and disposal

    International Nuclear Information System (INIS)

    Papesch, R.; Atwood, K.L.

    1989-01-01

    Because of restrictive limits on man-rem exposure in European nuclear plants, a company has developed and applied a number of chemical decontamination techniques for components that must be periodically maintained. These techniques are particularly effective for components that can be placed in a decontamination bath for dose reduction prior to performing maintenance. The cleaning technique has the ability to achieve decontamination factors of at least 20 and in some cases much greater. For components with before cleaning dose rates of between 1 to as high as 80 R/hr, significant man-rem reductions are achieved when hundreds of manhours may be required to complete required component maintenance. Transferring this solvent technology to the U.S. required a program to develop solidification formulas to allow the solvent wastes to be disposed of in accordance with regulations and in a cost effective manner. This paper demonstrates in chemical decontaminations with small liquid volume systems that concentrated decontamination solvents can be employed to achieve high decontamination factors

  20. Guide about petroleum strategic stockpiles in France; Repere sur les stocks strategiques petroliers en France

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    The strategic character of petroleum products has been perceived since the first world war. It has led France to impose the petroleum operators to make stockpiles to provide against the consequences of a serious disruption of supplies. As a difference with some other industrialized countries like the USA or Japan, French stockpiles are made of finite products. A balanced geographical distribution of these stocks over the whole national territory increases their efficiency. Stockpiles of IEA member states must represent 90 days of net imports while those of European Union member states must represent 90 days of average domestic consumption. In France, each chartered operator contributes to the strategic storage and the stored volumes are defined by the law no 92-1443 from December 31, 1992. These stocks are permanently controlled and financial sanctions are applied in case of infraction. Particular dispositions are applied in overseas departments which are summarized in this paper. (J.S.)

  1. Open-pit coal mine production sequencing incorporating grade blending and stockpiling options: An application from an Indian mine

    Science.gov (United States)

    Kumar, Ashish; Chatterjee, Snehamoy

    2017-05-01

    Production scheduling is a crucial aspect of the mining industry. An optimal and efficient production schedule can increase the profits manifold and reduce the amount of waste to be handled. Production scheduling for coal mines is necessary to maintain consistency in the quality and quantity parameters of coal supplied to power plants. Irregularity in the quality parameters of the coal can lead to heavy losses in coal-fired power plants. Moreover, the stockpiling of coal poses environmental and fire problems owing to low incubation periods. This article proposes a production scheduling formulation for open-pit coal mines including stockpiling and blending opportunities, which play a major role in maintaining the quality and quantity of supplied coal. The proposed formulation was applied to a large open-pit coal mine in India. This contribution provides an efficient production scheduling formulation for coal mines after utilizing the stockpile coal within the incubation periods with the maximization of discounted cash flows. At the same time, consistency is maintained in the quality and quantity of coal to power plants through blending and stockpiling options to ensure smooth functioning.

  2. China's optimal stockpiling policies in the context of new oil price trend

    International Nuclear Information System (INIS)

    Xie, Nan; Yan, Zhijun; Zhou, Yi; Huang, Wenjun

    2017-01-01

    Optimizing the size of oil stockpiling plays a fundamental role in the process of making national strategic petroleum reserve (SPR) policies. There have been extensive studies on the operating strategies of SPR. However, previous literatures have paid more attention to a booming or stable international oil market, while few studies analyzed the impact of a long-term low oil price on SPR policy. As a supplement, this paper extends a static model to study China's optimal stockpiling policy under different oil price trends, and in response to different current oil prices. A new variable “FC”, which demonstrates the appreciation and depreciation of the reserved oil economic value, has been taken into account to assess the optimal size of SPR. In this paper, a more multi-perspective of view is provided to consider the policies of China's SPR, especially under the different trend of international oil price fluctuations. - Highlights: • We extended a static model to study optimal stockpiling size of China's SPR. • A new variable “FC” was applied to illustrate the shifting financial value of SPR. • We analyzed how current oil price and varied prediction influence optimal size. • Operational measures could be adjusted at the end of each decision-making period. • A more multifaceted of view might be provided for China's SPR policy-making.

  3. Application of Electrocoagulation Process for Continuous Coal Stockpile Wastewater Treatment System

    Directory of Open Access Journals (Sweden)

    Rusdianasari Rusdianasari

    2017-02-01

    Full Text Available Coal wastewater is characterized by high total suspended solid (TSS, heavy metals, and low acidity (pH. The purpose of this study was to research the effects of the operating parameters such as applied voltage, the number of electrodes, and reaction time on a real coal stockpile wastewater in the continuous electrocoagulation process. For this purpose, aluminum electrodes were used in the presence of potassium chloride as an electrolyte. It has been shown that the removal efficiency of TSS and heavy metals content increased with increasing the applied voltage and reaction time. The results indicate that the electrocoagulation process is efficient and able to achieve 88.67% TSS removal, 95.65% ferrous removal, 99.11% manganesse removal, and pH increased until 7.1 at 24 volts during 120 min, respectively. The experiments demonstrated the effectiveness of electrocoagulation methods for the treatment of coal stockpile wastewater.

  4. Biodegradation of HT Agent from an Assembled Chemical Weapons Assessment (ACWA) Projectile Washout Study

    National Research Council Canada - National Science Library

    Guelta, Mark A

    2006-01-01

    In this study, HT agent, removed from a chemical round similar to the current stockpile stored at Pueblo Chemical Depot, was neutralized and the hydrolysate treated in a laboratory scale Immobilized Cell Bioreactor (ICB...

  5. Recent canadian experience in chemical warfare agent destruction. An overview

    Energy Technology Data Exchange (ETDEWEB)

    McAndless, J.M.

    1995-09-01

    A Canadian chemical warfare agent destruction project (Swiftsure) was recently completed in which stockpiles of aged mustard, lewisite, nerve agents and contaminated scrap metal were incinerated or chemically neutralized in a safe, environmentally-responsible manner. The project scope, destruction technologies, environmental monitoring and public consultation programs are described.

  6. Greening academia: use and disposal of mobile phones among university students.

    Science.gov (United States)

    Ongondo, F O; Williams, I D

    2011-07-01

    Mobile phones have relatively short lifecycles and are rapidly seen as obsolete by many users within little over a year. However, the reusability of these devices as well as their material composition means that in terms of mass and volume, mobile phones represent the most valuable electronic products that are currently found in large numbers in waste streams. End-of-life mobile phones are a high value (from a reuse and resource perspective), high volume (quantity), low cost (residual monetary value) and transient (short lifecycle) electronic product. There are very large numbers of higher education (mainly university) students in the world--there are>2.4 million in the UK alone, 19 million in Europe and 18.2 million in the USA--and they often replace their mobile phones several times before graduation. Thus, because of the potentially significant environmental and economic impacts, a large scale survey of students at 5 UK universities was conducted to assess the behaviour of students with regard to their use and disposal of mobile phones. Additionally, a small scale trial mobile phone takeback service at one of the universities was carried out. The findings indicate that many students replace their phones at least once a year; replacing broken phones, getting upgrades from network operators, remaining "fashionable" and a desire to have a handset with a longer battery life are the main reasons for such rapid replacement. Almost 60% of replaced phones are not sent to reuse or recycling operations but are stockpiled by students mainly as spare/backup phones. Approximately 61% of students own an extra mobile phone with male students replacing their phones more often than females. In particular, the results highlight the potentially huge stockpile of mobile phones--and consequently valuable supplies of rare metals--being held by the public; we estimate that there are 3.7 million phones stockpiled by students in UK higher education alone (29.3 and 28.1 million

  7. Collaborative Decision Model on Stockpile Material of a Traditional Market Infrastructure using Value-Based HBU

    Science.gov (United States)

    Utomo, C.; Rahmawati, Y.; Pararta, D. L.; Ariesta, A.

    2017-11-01

    Readiness of infrastructure establishment is needed in the early phase of real estate development. To meet the needs of retail property in the form of traditional markets, the Government prepares to build a new 1300 units. Traditional market development requires infrastructure development. One of it is the preparation of sand material embankment as much as ± 200,000 m3. With a distance of 30 km, sand material can be delivered to the project site by dump trucks that can only be operated by 2 trip per day. The material is managed by using stockpile method. Decision of stockpile location requires multi person and multi criteria in a collaborative environment. The highest and the best use (HBU) criteria was used to construct a value-based decision hierarchy. Decision makers from five stakeholders analyzed the best of three locations by giving their own preference of development cost and HBU function. Analytical Hierarchy Process (AHP) based on satisfying options and cooperative game was applied for agreement options and coalition formation on collaborative decision. The result indicates that not all solutions become a possible location for the stockpile material. It shows the ‘best fit’ options process for all decision makers.

  8. Chemical Resistance of Disposable Nitrile Gloves Exposed to Simulated Movement

    Science.gov (United States)

    Phalen, Robert N.; Wong, Weng Kee

    2012-01-01

    Large discrepancies between laboratory permeation testing and field exposures have been reported, with indications that hand movement could account for a portion of these differences. This study evaluated the influence of simulated movement on chemical permeation of 30 different disposable nitrile glove products. Products were investigated out-of-box and with exposure to simulated whole-glove movement. Permeation testing was conducted using ethanol as a surrogate test chemical. A previously designed pneumatic system was used to simulate hand movement. No movement and movement tests were matched-paired to control for environmental conditions, as were statistical analyses. Permeation data were collected for a 30-min exposure period or until a breakthrough time (BT) and steady-state permeation rate (SSPR) could be determined. A third parameter, area under the curve at 30 min (AUC-30), was used to estimate potential worker exposure. With movement, a significant decrease in BT (p ≤ 0.05), ranging from 6–33%, was observed for 28 products. The average decrease in BT was 18% (p ≤ 0.001). With movement, a significant increase in SSPR (p ≤ 0.05), ranging from 1–78%, was observed with 25 products. The average increase in SSPR was 18% (p ≤ 0.001). Significant increases in AUC-30 (p ≤ 0.05), ranging from 23–277%, were also observed for all products where it could be calculated. On average, there was a 58% increase (p ≤ 0.001). The overall effect of movement on permeation through disposable nitrile gloves was significant. Simulated movement significantly shortened the BT, increased the SSPR, and increased the cumulative 30-min exposure up to three times. Product variability also accounted for large differences, up to 40 times, in permeation and cumulative exposure. Glove selection must take these factors into account. It cannot be assumed that all products will perform in a similar manner. PMID:23009187

  9. Solid waste disposal in the soil: effects on the physical, chemical, and organic properties of soil

    Directory of Open Access Journals (Sweden)

    Vanessa Regina Lasaro Mangieri

    2015-04-01

    Full Text Available Currently, there is growing concern over the final destination of the solid waste generated by society. Landfills should not be considered the endpoint for substances contained or generated in solid waste. The sustainable use of natural resources, especially soil and water, has become relevant, given the increase in anthropogenic activities. Agricultural use is an alternative to solid waste (leachate, biosolid disposal, considering the hypothesis that the agricultural use of waste is promising for reducing waste treatment costs, promoting nutrient reuse and improving the physical and chemical conditions of soil. Thus, this literature review, based on previously published data, seeks to confirm or disprove the hypothesis regarding the promising use of solid waste in agriculture to decrease the environmental liability that challenges public administrators in the development of efficient management. The text below addresses the following subtopics after the introduction: current solid waste disposal and environmental issues, the use of solid waste in agriculture, and the effect on the physical and chemical properties of soil and on organic matter, ending with final considerations.

  10. Chemical and Nuclear Waste Disposal: Problems and Solutions

    OpenAIRE

    James P. Murray; Joseph J. Harrington; Richard Wilson

    1982-01-01

    The problems of waste disposal have always been with us. In biblical times, the residents of Jerusalem always burnt their wastes inthehideousValeofGehenna.Thisgavewaytoburialofwasteor sometimes dumping it in shallow oceans. All too often the sewage pipes of the seaside towns did not even take the waste to the low tide mark; and the use of the deep oceans as a disposal site has been almost unknown...

  11. Methane, nitrous oxide and ammonia emissions from pigs housed on litter and from stockpiling of spent litter

    KAUST Repository

    Phillips, F. A.; Wiedemann, S. G.; Naylor, T. A.; McGahan, E. J.; Warren, B. R.; Murphy, C. M.; Parkes, Stephen; Wilson, J.

    2016-01-01

    Mitigation of agricultural greenhouse gas emissions is a target area for the Australian Government and the pork industry. The present study measured methane (CH4), nitrous oxide (N2O) and ammonia (NH3) from a deep-litter piggery and litter stockpile over two trials in southern New South Wales, to compare emissions from housing pigs on deep litter with those of pigs from conventional housing with uncovered anaerobic effluent-treatment ponds. Emissions were measured using open-path Fourier transform infrared spectrometry, in conjunction with a backward Lagrangian stochastic model. Manure excretion was determined by mass balance and emission factors (EFs) were developed to report emissions relative to volatile solids and nitrogen (N) input. Nitrous oxide emissions per animal unit (1 AU ≤ 500 kg liveweight) from deep-litter sheds were negligible in winter, and 8.4 g/AU.day in summer. Ammonia emissions were 39.1 in winter and 52.2 g/AU.day in summer, while CH4 emissions were 16.1 and 21.6 g/AU.day in winter and summer respectively. Emission factors averaged from summer and winter emissions showed a CH4 conversion factor of 3.6%, an NH3-N EF of 10% and a N2O-N EF of 0.01 kg N2O-N/kg N excreted. For the litter stockpile, the simple average of summer and winter showed an EF for NH3-N of 14%, and a N2O-N EF of 0.02 kg N2O-N/kg-N of spent litter added to the stockpile. We observed a 66% and 80% decrease in emissions from the manure excreted in litter-based housing with litter stockpiling or without litter stockpiling, compared with conventional housing with an uncovered anaerobic effluent-treatment pond. This provides a sound basis for mitigation strategies that utilise litter-based housing as an alternative to conventional housing with uncovered anaerobic effluent-treatment ponds. © CSIRO 2016.

  12. Methane, nitrous oxide and ammonia emissions from pigs housed on litter and from stockpiling of spent litter

    KAUST Repository

    Phillips, F. A.

    2016-05-05

    Mitigation of agricultural greenhouse gas emissions is a target area for the Australian Government and the pork industry. The present study measured methane (CH4), nitrous oxide (N2O) and ammonia (NH3) from a deep-litter piggery and litter stockpile over two trials in southern New South Wales, to compare emissions from housing pigs on deep litter with those of pigs from conventional housing with uncovered anaerobic effluent-treatment ponds. Emissions were measured using open-path Fourier transform infrared spectrometry, in conjunction with a backward Lagrangian stochastic model. Manure excretion was determined by mass balance and emission factors (EFs) were developed to report emissions relative to volatile solids and nitrogen (N) input. Nitrous oxide emissions per animal unit (1 AU ≤ 500 kg liveweight) from deep-litter sheds were negligible in winter, and 8.4 g/AU.day in summer. Ammonia emissions were 39.1 in winter and 52.2 g/AU.day in summer, while CH4 emissions were 16.1 and 21.6 g/AU.day in winter and summer respectively. Emission factors averaged from summer and winter emissions showed a CH4 conversion factor of 3.6%, an NH3-N EF of 10% and a N2O-N EF of 0.01 kg N2O-N/kg N excreted. For the litter stockpile, the simple average of summer and winter showed an EF for NH3-N of 14%, and a N2O-N EF of 0.02 kg N2O-N/kg-N of spent litter added to the stockpile. We observed a 66% and 80% decrease in emissions from the manure excreted in litter-based housing with litter stockpiling or without litter stockpiling, compared with conventional housing with an uncovered anaerobic effluent-treatment pond. This provides a sound basis for mitigation strategies that utilise litter-based housing as an alternative to conventional housing with uncovered anaerobic effluent-treatment ponds. © CSIRO 2016.

  13. Waste disposal options report. Volume 1

    International Nuclear Information System (INIS)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste

  14. The nuclear arsenals and nuclear disarmament.

    Science.gov (United States)

    Barnaby, F

    1998-01-01

    Current world stockpiles of nuclear weapons and the status of treaties for nuclear disarmament and the ultimate elimination of nuclear weapons are summarised. The need for including stockpiles of civil plutonium in a programme for ending production and disposing of fissile materials is emphasized, and the ultimate difficulty of disposing of the last few nuclear weapons discussed.

  15. Draft Programmatic Environmental Impact Statement for Stockpile Stewardship and Management: Volume 3, Appendix I, Appendix J, Appendix K

    International Nuclear Information System (INIS)

    1996-02-01

    In response to the end of the Cold War and changes in the world's political regimes, United States is no longer producing new nuclear weapons. Instead, the US nuclear weapons program is reducing the size of the nuclear stockpile by dismantling existing weapons. DOE has been directed to maintain the safety and reliability of the reduced nuclear weapons stockpile in the absence of underground testing. Therefore, DOE has developed a stewardship and management program to provide a single highly integrated technical program. The stockpile stewardship portion of the PEIS evaluates the potential impacts of three proposed facilities: the National Ignition Facility, the Contained Firing facility, and the Atlas Facility. This volume contains appendices for these 3 facilities; alternatives affecting LANL, LLNL, SNL, and NTS are addressed. Impacts on land resources, site infrastructure, air qualaity, water resources, geology and soils, biotic resources, cultural resources, etc., are evaluated. This PEIS presents unclassified information only

  16. HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal

    International Nuclear Information System (INIS)

    1995-09-01

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal

  17. HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  18. The effect of chemical weapons incineration on the survival rates of Red-tailed Tropicbirds

    Science.gov (United States)

    Schreiber, E.A.; Schenk, G.A.; Doherty, P.F.

    2001-01-01

    In 1992, the Johnston Atoll Chemical Agent Disposal System (JACADS) began incinerating U.S. chemical weapons stockpiles on Johnston Atoll (Pacific Ocean) where about 500,000 seabirds breed, including Red-tailed Tropicbirds (Phaethon rubricauda). We hypothesized that survival rates of birds were lower in those nesting downwind of the incinerator smokestack compared to those upwind, and that birds might move away from the area. From 1992 - 2000 we monitored survival and movements between areas upwind and downwind from the JACADS facility. We used a multi-strata mark recapture approach to model survival, probability of recapture and movement. Probability of recapture was significantly higher for birds in downwind areas (owing to greater recapture effort) and thus was an important 'nuisance' parameter to take into account in modeling. We found no differences in survival between birds nesting upwind ( 0.8588) and downwind (0.8550). There was no consistent difference in movement rates between upwind or downwind areas from year to year: differences found may be attributed to differing vegetation growth and human activities between the areas. Our results suggest that JACADS has had no documentable influence on the survival and year to year movement of Red-tailed Tropicbirds.

  19. Verification of Chemical Weapons Destruction

    International Nuclear Information System (INIS)

    Lodding, J.

    2010-01-01

    The Chemical Weapons Convention is the only multilateral treaty that bans completely an entire category of weapons of mass destruction under international verification arrangements. Possessor States, i.e. those that have chemical weapons stockpiles at the time of becoming party to the CWC, commit to destroying these. All States undertake never to acquire chemical weapons and not to help other States acquire such weapons. The CWC foresees time-bound chemical disarmament. The deadlines for destruction for early entrants to the CWC are provided in the treaty. For late entrants, the Conference of States Parties intervenes to set destruction deadlines. One of the unique features of the CWC is thus the regime for verifying destruction of chemical weapons. But how can you design a system for verification at military sites, while protecting military restricted information? What degree of assurance is considered sufficient in such circumstances? How do you divide the verification costs? How do you deal with production capability and initial declarations of existing stockpiles? The founders of the CWC had to address these and other challenges in designing the treaty. Further refinement of the verification system has followed since the treaty opened for signature in 1993 and since inspection work was initiated following entry-into-force of the treaty in 1997. Most of this work concerns destruction at the two large possessor States, Russia and the United States. Perhaps some of the lessons learned from the OPCW experience may be instructive in a future verification regime for nuclear weapons. (author)

  20. U.S. assistance in the destruction of Russia's chemical weapons

    OpenAIRE

    Mostoller, Eric Charles

    2000-01-01

    The thesis examines the present status of Russia's chemical weapons destruction program, which is to be implemented according to the 1993 Chemical Weapons Convention (CWC). It assesses the magnitude of the challenges in destroying the world's largest chemical weapons stockpile, which is located at seven sites in western Russia. It also evaluates the environmental and international security concerns posed by the conditions at these sites and the disastrous implications of a failure of this che...

  1. Multiscale science for science-based stockpile stewardship

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, L.; Sharp, D.

    2000-12-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project has been to develop and apply the methods of multi scale science to the problems of fluid and material mixing due to instability and turbulence, and of materials characterization. Our specific focus has been on the SBSS (science-based stockpile stewardship) issue of assessing the performance of a weapons with off-design, aged, or remanufactured components in the absence of full-scale testing. Our products are physics models, based on microphysical principles and parameters, and suitable for implementation in the large scale design and assessment codes used in the nuclear weapons program.

  2. Online data sources for regulation and remediation of chemical production, distribution, use and disposal

    International Nuclear Information System (INIS)

    Snow, B.; Arnold, S.

    1995-01-01

    Environmental awareness is essential for todays corporation. Corporations have been held liable for the short-term and long-term effects of such chemicals as pharmaceuticals, agrochemicals and petrochemicals to name a few. Furthermore, corporations have been held accountable for disposal of wastes or by-products of chemical production. Responsibility for the environment either mandated by government agencies or done voluntarily is an economic factor for business operations. Remediation of environmental hazards on a voluntary basis has often created goodwill and a payoff for being socially responsible. Remediation also can result in new business opportunities or savings in production costs. To be environmentally aware and socially responsible, the chemist should know where to find regulatory information for countries worldwide. Using online data sources is an efficient method of seeking this information

  3. Safety in the Chemical Laboratory: Contracts to Dispose of Laboratory Waste.

    Science.gov (United States)

    Fischer, Kenneth E.

    1985-01-01

    Presents a sample contract for disposing of hazardous wastes in an environmentally sound, timely manner in accordance with all federal, state, and local requirements. Addresses situations where hazardous waste must be disposed of outside the laboratory and where alternate disposal methods are not feasible. (JN)

  4. Prevention of spontaneous combustion in coal stockpiles : Experimental results in coal storage yard

    NARCIS (Netherlands)

    Fierro, V.; Miranda, J.L.; Romero, C.; Andrés, J.M.; Arriaga, A.; Schmal, D.; Visser, G.H.

    1999-01-01

    The spontaneous ignition of coal stockpiles is a serious economic and safety problem. This paper deals with oxidation and spontaneous combustion of coal piles laid in coal storage yard and the measures to avoid the heat losses produced. Investigations on self heating were carried out with five test

  5. Selective hedging strategies for oil stockpiling

    International Nuclear Information System (INIS)

    Yun, Won-Cheol

    2006-01-01

    As a feasible option for improving the economics and operational efficiency of stockpiling by public agency, this study suggests simple selective hedging strategies using forward contracts. The main advantage of these selective hedging strategies over the previous ones is not to predict future spot prices, but to utilize the sign and magnitude of basis easily available to the public. Using the weekly spot and forward prices of West Texas Intermediate for the period of October 1997-August 2002, this study adopts an ex ante out-of-sample analysis to examine selective hedging performances compared to no-hedge and minimum-variance routine hedging strategies. To some extent, selective hedging strategies dominate the traditional routine hedging strategy, but do not improve upon the expected returns of no-hedge case, which is mainly due to the data characteristics of out-of-sample period used in this analysis

  6. Medical Managment of the Acute Radiation Syndrome: Recommendations of the Strategic National Stockpile Radiation Working Group

    National Research Council Canada - National Science Library

    Waselenka, Jamie K; MacVittie, Thomas J; Blakely, William F; Pesik, Nicki; Wiley, Albert L; Dickerson, William E; Tsu, Horace; Confer, Dennis L; Coleman, Norman; Seed, Thomas

    2004-01-01

    .... This consensus document was developed by the Strategic National Stockpile Radiation Working Group to provide a framework for physicians in internal medicine and the medical subspecialties to evaluate...

  7. DEVELOPMENT OF PASSIVE DETOXIFICATION TECHNOLOGY FOR GOLD HEAP LEACH STOCKPILED WASTES

    OpenAIRE

    M.P. Belykh; A.Yu. Chikin; S.V. Petrov; N.L. Belkova

    2017-01-01

    Purpose. The processes of biopassive detoxication are of special interest for the solution of environmental issues of detoxification of gold heap leach cyanide-bearing wastes whose detoxification period is unlimited. These processes are based on spontaneous degradation of cyanides under the influence of natural factors including the action of autochthonous bacterial community. The purpose of the work is to develop a biopassive detoxification technology of heap leach stockpiled wastes. Methods...

  8. 20 Years of Success: Science, Technology, and the Nuclear Weapons Stockpile

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-10-22

    On Oct. 22, 2015, NNSA celebrated the proven success of the Stockpile Stewardship Program at a half-day public event featuring remarks by Secretary of Energy Ernest Moniz, Secretary of State John Kerry, and Under Secretary for Nuclear Security and NNSA Administrator Lt. Gen. (retired) Frank G. Klotz. The event also featured remarks by Deputy Secretary of Energy Elizabeth Sherwood-Randall and NNSA Principal Deputy Administrator Madelyn Creedon.

  9. Recommendations on chemicals management policy and legislation in the framework of the Egyptian-German twinning project on hazardous substances and waste management.

    Science.gov (United States)

    Wagner, Burkhard O; Aziz, Elham Refaat Abdel; Schwetje, Anja; Shouk, Fatma Abou; Koch-Jugl, Juliane; Braedt, Michael; Choudhury, Keya; Weber, Roland

    2013-04-01

    The sustainable management of chemicals and their associated wastes-especially legacy stockpiles-is always challenging. Developing countries face particular difficulties as they often have insufficient treatment and disposal capacity, have limited resources and many lack an appropriate and effective regulatory framework. This paper describes the objectives and the approach of the Egyptian-German Twinning Project under the European Neighbourhood Policy to improve the strategy of managing hazardous substances in the Egyptian Environmental Affairs Agency (EEAA) between November 2008 and May 2011. It also provides an introduction to the Republic of Egypt's legal and administrative system regarding chemical controls. Subsequently, options for a new chemical management strategy consistent with the recommendations of the United Nations Chemicals Conventions are proposed. The Egyptian legal and administrative system is discussed in relation to the United Nations' recommendations and current European Union legislation for the sound management of chemicals. We also discuss a strategy for the EEAA to use the existing Egyptian legal system to implement the United Nations' Globally Harmonized System of Classification and Labelling of Chemicals, the Stockholm Convention and other proposed regulatory frameworks. The analysis, the results, and the recommendations presented may be useful for other developing countries in a comparable position to Egypt aspiring to update their legislation and administration to the international standards of sound management of chemicals.

  10. Chemical Weapons: FEMA and Army Must Be Proactive in Preparing States for Emergencies

    National Research Council Canada - National Science Library

    2001-01-01

    .... Such an accident could affect people in 10 different states. The Army plans to destroy its entire chemical weapons stockpile by 2007 and is taking measures to protect the public before and during the demilitarization process...

  11. A review of DOE chemical and geochemical research programmes (for disposal of low and intermediate level waste)

    International Nuclear Information System (INIS)

    May, R.

    1987-01-01

    A study of 26 DOE sponsored research programmes has been carried out with respect to their coverage of various chemical and geochemical issues posed by the proposed disposal of low and intermediate level wastes in a land repository. The study also took into account various experimental programmes sponsored by NIREX and abroad. The findings of the study are reported here. (author)

  12. Recycling And Disposal Of Waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ui So

    1987-01-15

    This book introduces sewage disposal sludge including properties of sludge and production amount, stabilization of sludge by anaerobic digestion stabilization of sludge by aerobic digestion, stabilization of sludge by chemical method, and dewatering, water process sludge, human waste and waste fluid of septic tank such as disposal of waste fluid and injection into the land, urban waste like definition of urban waste, collection of urban waste, recycling, properties and generation amount, and disposal method and possibility of injection of industrial waste into the ground.

  13. Hedging against antiviral resistance during the next influenza pandemic using small stockpiles of an alternative chemotherapy.

    Directory of Open Access Journals (Sweden)

    Joseph T Wu

    2009-05-01

    Full Text Available The effectiveness of single-drug antiviral interventions to reduce morbidity and mortality during the next influenza pandemic will be substantially weakened if transmissible strains emerge which are resistant to the stockpiled antiviral drugs. We developed a mathematical model to test the hypothesis that a small stockpile of a secondary antiviral drug could be used to mitigate the adverse consequences of the emergence of resistant strains.We used a multistrain stochastic transmission model of influenza to show that the spread of antiviral resistance can be significantly reduced by deploying a small stockpile (1% population coverage of a secondary drug during the early phase of local epidemics. We considered two strategies for the use of the secondary stockpile: early combination chemotherapy (ECC; individuals are treated with both drugs in combination while both are available; and sequential multidrug chemotherapy (SMC; individuals are treated only with the secondary drug until it is exhausted, then treated with the primary drug. We investigated all potentially important regions of unknown parameter space and found that both ECC and SMC reduced the cumulative attack rate (AR and the resistant attack rate (RAR unless the probability of emergence of resistance to the primary drug p(A was so low (less than 1 in 10,000 that resistance was unlikely to be a problem or so high (more than 1 in 20 that resistance emerged as soon as primary drug monotherapy began. For example, when the basic reproductive number was 1.8 and 40% of symptomatic individuals were treated with antivirals, AR and RAR were 67% and 38% under monotherapy if p(A = 0.01. If the probability of resistance emergence for the secondary drug was also 0.01, then SMC reduced AR and RAR to 57% and 2%. The effectiveness of ECC was similar if combination chemotherapy reduced the probabilities of resistance emergence by at least ten times. We extended our model using travel data between 105

  14. A Conceptual Framework for Allocation of Federally Stockpiled Ventilators During Large-Scale Public Health Emergencies.

    Science.gov (United States)

    Zaza, Stephanie; Koonin, Lisa M; Ajao, Adebola; Nystrom, Scott V; Branson, Richard; Patel, Anita; Bray, Bruce; Iademarco, Michael F

    2016-01-01

    Some types of public health emergencies could result in large numbers of patients with respiratory failure who need mechanical ventilation. Federal public health planning has included needs assessment and stockpiling of ventilators. However, additional federal guidance is needed to assist states in further allocating federally supplied ventilators to individual hospitals to ensure that ventilators are shipped to facilities where they can best be used during an emergency. A major consideration in planning is a hospital's ability to absorb additional ventilators, based on available space and staff expertise. A simple pro rata plan that does not take these factors into account might result in suboptimal use or unused scarce resources. This article proposes a conceptual framework that identifies the steps in planning and an important gap in federal guidance regarding the distribution of stockpiled mechanical ventilators during an emergency.

  15. Chemical Stockpile Disposal Program Final Programmatic Environmental Impact Statement Volume 3: Appendices A-S

    Science.gov (United States)

    1988-01-01

    Parts of the Guinea-Pig Eye," Acta. Pharmacol. Toxicol. 38, 299-307. Lynch, M. R., Rice, M. A., and Robinson, S. W. 1986. "Dissociation of Locomotor ...34Effects of the Organophosphorus Compound, 0-ethyl-N-dimethyl-phosphoramidocyanidate (Tabun), on Flavor Aversions, Locomotor Activity, and Rotarod...R. M. 1979. "Disappearance of Hydrocarbons Following a Major Gasoline Spill in the Ohio River," pp. 503-507 in Developments in Industrial

  16. Geohydrology of industrial waste disposal site

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1984-01-01

    An existing desert site for hazardous chemical and low-level radioactive waste disposal is evaluated for suitability. This site is characterized using geologic, geohydrologic, geochemical, and other considerations. Design and operation of the disposal facility is considered. Site characteristics are also evaluated with respect to new and proposed regulatory requirements under the Resource Conservation and Recovery Act (1976) regulations, 40 CFR Part 264, and the ''Licensing Requirements for Landfill Disposal of Radioactive Waste,'' 10 CRF Part 61. The advantages and disadvantages of siting new disposal facilities in similar desert areas are reviewed and contrasted to siting in humid locations

  17. Laboratory Waste Disposal Manual. Revised Edition.

    Science.gov (United States)

    Stephenson, F. G., Ed.

    This manual is designed to provide laboratory personnel with information about chemical hazards and ways of disposing of chemical wastes with minimum contamination of the environment. The manual contains a reference chart section which has alphabetical listings of some 1200 chemical substances with information on the health, fire and reactivity…

  18. Waste classification - history, standards, and requirements for disposal

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1989-01-01

    This document contains an outline of a presentation on the historical development in US of different classes (categories) or radioactive waste, on laws and regulations in US regarding classification of radioactive wastes; and requirements for disposal of different waste classes; and on the application of laws and regulations for hazardous chemical wastes to classification and disposal of naturally occurring and accelerator-produced radioactive materials; and mixed radioactive and hazardous chemical wastes

  19. The Army and chemical weapons destruction: Implementation in a changing context

    International Nuclear Information System (INIS)

    Lambright, W.H.; Gereben, A.; Cerveny, L.

    1998-01-01

    In 1985, Congress directed the Army to destroy the nation's stockpile of chemical weapons. The estimate was that this task could be accomplished by 1994 at a cost of $1.7 billion. By 1998, only a portion of the stockpile has been destroyed, the deadline extended to 2007 and the estimated cost had risen to approximately $16 billion. This paper discusses the factors underlying cost escalation and missed deadlines. It examines the diffusion of control over the implementation process surrounding the chemical weapons demilitarization (Chem Demil) program in the US. Focusing on the role of the Army and its difficulties in adjusting strategies in the face of political change from the Cold War to the post-Cold War setting, it analyzes the course of implementation through three converging streams of political activity. What differentiates the federal, intergovernmental, and international streams are the nature and number of actors, and the type of pressures with which the Army must deal

  20. Municipal sludge disposal economics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J L [SRI International, Menlo Park, CA; Bomberger, Jr, D C; Lewis, F M

    1977-10-01

    Costs for disposal of sludges from a municipal wastewater treatment plant normally represents greater than or equal to 25% of the total plant operating cost. The following 5 sludge handling options are considered: chemical conditioning followed by vacuum filtration, and incineration; high-pressure wet-air oxidation and vacuum filtration or filter press prior to incineration; thermal conditioning, vacuum filtraton, and incineration; high-pressure wet-air oxidation and vacuum filtration, with ash to landfill; aerobic or anaerobic digestion, followed by chemical conditioning, vacuum filtration, and disposal on land; and chemical conditioning, followed by a filter press, flash dryer, and sale as fertilizer. The 1st 2 options result in the ultimate disposal of small amounts of ash in a landfill; the digestion options require a significant landfill; the fertilizer option requires a successful marketing and sales effort. To compare the economies of scale for the options, analyses were performed for 3 plant capacities - 10, 100, and 500 mgd; as plant size increases, the economies of scale for incineration system are quite favorable. The anaerobic digestion system has a poorer capital cost-scaling factor. The incinerator options which start with chemical conditioning consume much less electrical power at all treatment plant sizes; incinerator after thermal conditioning uses more electricity but less fuel. Digestion requires no direct external fossil fuel input. The relative use of fuel is constant at all plant sizes for other options. The incinerator options can produce a significant amount of steam which may be used. The anaerobic digestion process can be a significant net producer of fuel gas.

  1. A Comparison of Distillery Stillage Disposal Methods

    OpenAIRE

    V. Sajbrt; M. Rosol; P. Ditl

    2010-01-01

    This paper compares the main stillage disposal methods from the point of view of technology, economics and energetics. Attention is paid to the disposal of both solid and liquid phase. Specifically, the following methods are considered: a) livestock feeding, b) combustion of granulated stillages, c) fertilizer production, d) anaerobic digestion with biogas production and e) chemical pretreatment and subsequent secondary treatment. Other disposal techniques mentioned in the literature (electro...

  2. Groundwater hydrology study of the Ames Chemical Disposal Site

    International Nuclear Information System (INIS)

    Stickel, T.

    1996-01-01

    The Ames Laboratory Chemical Disposal Site is located in northwestern Ames, Iowa west of Squaw Creek. From 1957 to 1966, Ames Laboratory conducted research to develop processes to separate uranium and thorium from nuclear power fuel and to separate yttrium from neutron shielding sources. The wastes from these processes, which contained both hazardous and radiological components, were placed into nine burial pits. Metal drums, plywood boxes, and steel pails were used to store the wastes. Uranium was also burned on the ground surface of the site. Monitoring wells were placed around the waste burial pits. Groundwater testing in 1993 revealed elevated levels of Uranium 234, Uranium 238, beta and alpha radiation. The north side of the burial pit had elevated levels of volatile organic compounds. Samples in the East Ravine showed no volatile organics; however, they did contain elevated levels of radionuclides. These analytical results seem to indicate that the groundwater from the burial pit is flowing down hill and causing contamination in the East Ravine. Although there are many avenues for the contamination to spread, the focus of this project is to understand the hydrogeology of the East Ravine and to determine the path of groundwater flow down the East Ravine. The groundwater flow data along with other existing information will be used to assess the threat of chemical migration down the East Ravine and eventually off-site. The primary objectives of the project were as follows: define the geology of the East Ravine; conduct slug tests to determine the hydraulic conductivity of both oxidized and unoxidized till; develop a three-dimensional mathematical model using ModIME and MODFLOW to simulate groundwater flow in the East Ravine

  3. Chemical and mineralogical aspects of water-bentonite interaction in nuclear fuel disposal conditions

    International Nuclear Information System (INIS)

    Melamed, A.; Pitkaenen, P.

    1996-01-01

    In the field of nuclear fuel disposal, bentonite has been selected as the principal sealing and buffer material for placement around waste canisters, forming both a mechanical and chemical barrier between the radioactive waste and the surrounding ground water. Ion exchange and mineral alteration processes were investigated in a laboratory study of the long-term interaction between compacted Na-bentonite (Volclay MX-80) and ground water solutions, conducted under simulated nuclear fuel disposal conditions. The possible alteration of montmorillonite into illite has been a major object of the mineralogical study. However, no analytical evidence was found, that would indicate the formation of this non-expandable clay type. Apparently, the change of montmorillonite from Na- to Ca-rich was found to be the major alteration process in bentonite. In the water, a concentration decrease in Ca, Mg, and K, and an increase in Na, HCO 3 and SO 4 were recorded. The amount of calcium ions available in the water was considered insufficient to account for the recorded formation of Ca-montmorillonite. It is therefore assumed that the accessory Ca-bearing minerals in bentonite provide the fundamental source of these cations, which exchange with sodium during the alteration process. (38 refs.)

  4. Thermal desorption-gas chromatography-mass spectrometry methods and strategy for screening of chemical warfare agents, their precursors and degradation products in environmental, industrial and waste samples

    NARCIS (Netherlands)

    Terzic, O.

    2016-01-01

    The Organisation for the Prohibition of Chemical Weapons (OPCW) is the international organisation set to oversee the implementation of the Chemical Weapons Convention treaty that prohibits the development, production, acquisition, stockpiling, retention, transfer or use of chemical weapons by States

  5. An assessment of the long-term impact of chemically toxic contaminants from the disposal of nuclear fuel waste

    International Nuclear Information System (INIS)

    Goodwin, B.W.; Garisto, N.C.; Barnard, J.W.

    1987-01-01

    This paper presents a study on the potential for impact on man of chemically toxic contaminants associated with the Canadian concept for the disposal of nuclear fuel waste. The elements of concern are determined through a series of screening criteria such as elemental abundances and solubilities. A systems variability analysis approach is then used to predict the possible concentrations of these elements that may arise in the biosphere. These concentrations are compared with environmental guidelines such as permissible levels in drinking water. Conclusions are made regarding the potential for the chemically toxic contaminants to have an impact on man. 54 refs

  6. Review and evaluation of alternative chemical disposal technologies

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Engineering and Technical Systems; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    .... In light of the fact that alternative technologies have evolved since the 1994 study, this new volume evaluates five Army-chosen alternatives to the baseline incineration system for the disposal...

  7. Chemical Disarmament: Current Problems in Implementing the Chemical Weapons Convention

    Directory of Open Access Journals (Sweden)

    Matoušek, J.

    2006-03-01

    Full Text Available The Chemical Weapons Convention (CWC is briefly characterised by stressing its main pillars, such as verified destruction ofCWstockpiles and destruction/conversion ofCWproduction facilities (CWPFs, verified non-production of CW by the chemical industries, assistance and protection, and international cooperation. The CWC´s leading principle in defining theCW(protecting it generally against scientific and technological development, i. e. so called General Purpose Criterion is thoroughly elucidated showing its relation to the CWC´s sophisticated verification system. Status of implementation (as of August 2005 shows main data obligatory declared by the States Parties (SP, among them 6 possessors of CW stockpiles (Russia, USA, India, South Korea, Albania and Libya. From the declared 71 373 agent-tons, 12 889 have been destroyed, from the declared 8 679 M items of munitions (containers, 2 420 have been destroyed, which means that the anticipated 10 years deadline for CW destruction (after entry into force – EIF will be not managed. For Russia and USA the allowed extension by another 5 years has been already agreed. From the 64 CWPFs (operational after 1946, declared by 12 SPs, 53 have been certified as destroyed/converted. The Organisation for the Prohibition of Chemical Weapons (OPCW is briefly presented and main results of the First Review Conference (2003 analysed on the base of the adopted principal documents. Future problems of implementing the CWC are connected in the first line with its universality, because among 16 non-SPs, several countries (located mainly in the Near East and on the Korean peninsula are presumed to be CW-possessors. Special emphasis is laid on both, threats and benefits of the scientific and technological development for current implementing the CWC as well as of its implementation in future after all CW stockpiles have been destroyed.

  8. Carbowaste: treatment and disposal of irradiated graphite and other carbonaceous waste

    International Nuclear Information System (INIS)

    Von Lensa, W.; Rizzato, C.; Baginski, K.; Banford, A.W.; Bradbury, D.; Goodwin, J.; Grambow, B.; Grave, M.J.; Jones, A.N.; Laurent, G.; Pina, G.; Vulpius, D.

    2014-01-01

    The European Project on 'Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste (CARBOWASTE)' addressed the retrieval, characterization, treatment, reuse and disposal of irradiated graphite with the following main results: - I-graphite waste features significantly depend on the specific manufacture process, on the operational conditions in the nuclear reactor (neutron dose, atmosphere, temperature etc.) and on radiolytic oxidation leading to partial releases of activation products and precursors during operation. - The neutron activation process generates significant recoil energies breaking pre-existing chemical bonds resulting in dislocations of activation products and new chemical compounds. - Most activation products exist in different chemical forms and at different locations. - I-graphite can be partly purified by thermal and chemical treatment processes leaving more leach-resistant waste products. - Leach tests and preliminary performance analyses show that i-graphite can be safely disposed of in a wide range of disposal systems, after appropriate treatment and/or conditioning. (authors)

  9. Inhibition of hydrogen sulfide generation from disposed gypsum drywall using chemical inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Xu Qiyong [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States); School of Environment and Energy, Shenzhen Graduate School of Peking University, 518055, (China); Townsend, Timothy, E-mail: ttown@ufl.edu [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States); Bitton, Gabriel [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States)

    2011-07-15

    Disposal of gypsum drywall in landfills has been demonstrated to elevate hydrogen sulfide (H{sub 2}S) concentrations in landfill gas, a problem with respect to odor, worker safety, and deleterious effect on gas-to-energy systems. Since H{sub 2}S production in landfills results from biological activity, the concept of inhibiting H{sub 2}S production through the application of chemical agents to drywall during disposal was studied. Three possible inhibition agents - sodium molybdate (Na{sub 2}MoO{sub 4}), ferric chloride (FeCl{sub 3}), and hydrated lime (Ca(OH){sub 2}) - were evaluated using flask and column experiments. All three agents inhibited H{sub 2}S generation, with Na{sub 2}MoO{sub 4} reducing H{sub 2}S generation by interrupting the biological sulfate reduction process and Ca(OH){sub 2} providing an unfavorable pH for biological growth. Although FeCl{sub 3} was intended to provide an electron acceptor for a competing group of bacteria, the mechanism found responsible for inhibiting H{sub 2}S production in the column experiment was a reduction in pH. Application of both Na{sub 2}MoO{sub 4} and FeCl{sub 3} inhibited H{sub 2}S generation over a long period (over 180 days), but the impact of Ca(OH){sub 2} decreased with time as the alkalinity it contributed was neutralized by the generated H{sub 2}S. Practical application and potential environmental implications need additional exploration.

  10. Request for interim approval to operate Trench 94 of the 218-E-12B Burial Ground as a chemical waste landfill for disposal of polychlorinated biphenyl waste in submarine reactor compartments

    International Nuclear Information System (INIS)

    Cummins, G.D.

    1994-06-01

    This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of this waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy's (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS

  11. Korean Reference HLW Disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Lee, J. Y.; Kim, S. S. (and others)

    2008-03-15

    This report outlines the results related to the development of Korean Reference Disposal System for High-level radioactive wastes. The research has been supported around for 10 years through a long-term research plan by MOST. The reference disposal method was selected via the first stage of the research during which the technical guidelines for the geological disposal of HLW were determined too. At the second stage of the research, the conceptual design of the reference disposal system was made. For this purpose the characteristics of the reference spent fuels from PWR and CANDU reactors were specified, and the material and specifications of the canisters were determined in term of structural analysis and manufacturing capability in Korea. Also, the mechanical and chemical characteristics of the domestic Ca-bentonite were analyzed in order to supply the basic design parameters of the buffer. Based on these parameters the thermal and mechanical analysis of the near-field was carried out. Thermal-Hydraulic-Mechanical behavior of the disposal system was analyzed. The reference disposal system was proposed through the second year research. At the final third stage of the research, the Korean Reference disposal System including the engineered barrier, surface facilities, and underground facilities was proposed through the performance analysis of the disposal system.

  12. Chemical stability of reactive skin decontamination lotion (RSDL®).

    Science.gov (United States)

    Bogan, R; Maas, H J; Zimmermann, T

    2018-09-01

    Reactive Skin Decontamination Lotion (RSDL ® ) is used for the decontamination of Chemical Warfare Agents and Toxic Industrial Compounds after dermal exposure. It has to be stockpiled over a long period and is handled in all climatic zones. Therefore stability is an essential matter of concern. In this work we describe a study to the chemical stability of RSDL ® as basis for an estimation of shelf life. We analysed RSDL ® for the active ingredient 2,3-butandione monoxime (diacetylmonooxime, DAM), the putative degradation product dimethylglyoxime (DMG) and unknown degradation products by means of a reversed phase high pressure liquid chromatography (HPLC). Calculations were done according to the Arrhenius equation. Based on the temperature dependent rate constants, the time span was calculated, until defined threshold values for DAM and DMG subject to specification and valid regulations were exceeded. The calculated data were compared to the ones gathered from stockpiled samples and samples exposed during foreign mission. The decline of DAM followed first order kinetics, while formation of DMG could be described by zero order kinetics. The rate constants were distinctively temperature dependent. Calculated data were in good accordance to the measured ones from stockpile and mission. Based on a specified acceptable DAM-content of 90% and a valid threshold value of 0.1% (w/w) for the degradation product DMG, RSDL ® proved to be stable for at least four years if stored at the recommended conditions of 15°C-30°C. If continuously stored at higher temperatures shelf life will decrease markedly. Therefore RSDL ® is an object for risk orientated quality monitoring during storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Should remaining stockpiles of smallpox virus (variola) be destroyed?

    Science.gov (United States)

    Weinstein, Raymond S

    2011-04-01

    In 2011, the World Health Organization will recommend the fate of existing smallpox stockpiles, but circumstances have changed since the complete destruction of these cultures was first proposed. Recent studies suggest that variola and its experimental surrogate, vaccinia, have a remarkable ability to modify the human immune response through complex mechanisms that scientists are only just beginning to unravel. Further study that might require intact virus is essential. Moreover, modern science now has the capability to recreate smallpox or a smallpox-like organism in the laboratory in addition to the risk of nature re-creating it as it did once before. These factors strongly suggest that relegating smallpox to the autoclave of extinction would be ill advised.

  14. Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass.

    Science.gov (United States)

    Roberts, David A; Cole, Andrew J; Paul, Nicholas A; de Nys, Rocky

    2015-09-15

    In most countries the mining industry is required to rehabilitate disturbed land with native vegetation. A typical approach is to stockpile soils during mining and then use this soil to recreate landforms after mining. Soil that has been stockpiled for an extended period typically contains little or no organic matter and nutrient, making soil rehabilitation a slow and difficult process. Here, we take freshwater macroalgae (Oedogonium) cultivated in waste water at a coal-fired power station and use it as a feedstock for the production of biochar, then use this biochar to enhance the rehabilitation of two types of stockpiled soil - a ferrosol and a sodosol - from the adjacent coal mine. While the biomass had relatively high concentrations of some metals, due to its cultivation in waste water, the resulting biochar did not leach metals into the pore water of soil-biochar mixtures. The biochar did, however, contribute essential trace elements (particularly K) to soil pore water. The biochar had very strong positive effects on the establishment and growth of a native plant (Kangaroo grass, Themeda australis) in both of the soils. The addition of the algal biochar to both soils at 10 t ha(-1) reduced the time to germination by the grass and increased the growth and production of plant biomass. Somewhat surprisingly, there was no beneficial effect of a higher application rate (25 t ha(-1)) of the biochar in the ferrosol, which highlights the importance of matching biochar application rates to the requirements of different types of soil. Nevertheless, we demonstrate that algal biochar can be produced from biomass cultivated in waste water and used at low application rates to improve the rehabilitation of a variety of soils typical of coal mines. This novel process links biomass production in waste water to end use of the biomass in land rehabilitation, simultaneously addressing two environmental issues associated with coal-mining and processing. Copyright © 2015

  15. Special waste disposal in Austria - cost benefit analysis

    International Nuclear Information System (INIS)

    Kuntscher, H.

    1983-01-01

    The present situation of special waste disposal in Austria is summarized for radioactive and nonradioactive wastes. A cost benefit analysis for regulary collection, transport and disposal of industrial wastes, especially chemical wastes is given and the cost burden for the industry is calculated. (A.N.)

  16. When are stockpiled products consumed faster? A convenience-salience framework of postpurchase consumption incidence and quantity

    NARCIS (Netherlands)

    Chandon, P.; Wansink, B.

    2002-01-01

    When people stockpile products, how do they decide when and how much they will consume? To answer this question, the authors develop a framework that shows how the salience and convenience of products influence postpurchase consumption incidence and quantity. Multiple research methods¿including

  17. Certainty in Stockpile Computing: Recommending a Verification and Validation Program for Scientific Software

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.

    1998-11-01

    As computing assumes a more central role in managing the nuclear stockpile, the consequences of an erroneous computer simulation could be severe. Computational failures are common in other endeavors and have caused project failures, significant economic loss, and loss of life. This report examines the causes of software failure and proposes steps to mitigate them. A formal verification and validation program for scientific software is recommended and described.

  18. Evaluation of improved chemical waste disposal and recovery methods for N reactor fuel fabrication operations: 1984 annual report

    International Nuclear Information System (INIS)

    Stewart, T.L.; Hartley, J.N.

    1984-12-01

    Pacific Northwest Laboratory personnel identified and evaluated alternative methods for recovery, recycle, and disposal of waste acids produced during N Reactor fuel operations. This work was conducted under a program sponsored by UNC Nuclear Industries, Inc.; the program goals were to reduce the volume of liquid waste by rejuvenating and recycling acid solutions and to generate a residual waste low in nitrates, fluorides, and metals. Disposal methods under consideration included nitric acid reclamation, grout encapsulation of final residual waste, nitrogen fertilizer production, biodenitrifaction, chemical or thermal destruction of NO 3 , and short-term impoundment of liquid NO 3 /SO 4 wastes. Preliminary testing indicated that the most feasible and practicable of these alternatives were (1) nitric acid reclamation followed by grouting of residual waste and (2) nitrogen fertilizer production. This report summarizes the investigations, findings, and recommendations for the 1984 fiscal year

  19. Worldwide governmental efforts to locate and destroy chemical weapons and weapons materials: minimizing risk in transport and destruction.

    Science.gov (United States)

    Trapp, Ralf

    2006-09-01

    The article gives an overview on worldwide efforts to eliminate chemical weapons and facilities for their production in the context of the implementation of the 1997 Chemical Weapons Convention (CWC). It highlights the objectives of the Organisation for the Prohibition of Chemical Weapons (OPCW), the international agency set up in The Hague to implement the CWC, and provides an overview of the present status of implementation of the CWC requirements with respect to chemical weapons (CW) destruction under strict international verification. It addresses new requirements that result from an increased threat that terrorists might attempt to acquire or manufacture CW or related materials. The article provides an overview of risks associated with CW and their elimination, from storage or recovery to destruction. It differentiates between CW in stockpile and old/abandoned CW, and gives an overview on the factors and key processes that risk assessment, management, and communication need to address. This discussion is set in the overall context of the CWC that requires the completion of the destruction of all declared CW stockpiles by 2012 at the latest.

  20. Key scientific challenges in geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Wang Ju

    2007-01-01

    The geological disposal of high radioactive waste is a challenging task facing the scientific and technical world. This paper introduces the latest progress of high level radioactive disposal programs in the latest progress of high level radioactive disposal programs in the world, and discusses the following key scientific challenges: (1) precise prediction of the evolution of a repository site; (2) characteristics of deep geological environment; (3) behaviour of deep rock mass, groundwater and engineering material under coupled con-ditions (intermediate to high temperature, geostress, hydraulic, chemical, biological and radiation process, etc); (4) geo-chemical behaviour of transuranic radionuclides with low concentration and its migration with groundwater; and (5) safety assessment of disposal system. Several large-scale research projects and several hot topics related with high-level waste disposal are also introduced. (authors)

  1. Proposed integrated hazardous waste disposal facility. Public environmental review

    International Nuclear Information System (INIS)

    1998-05-01

    This Public Environmental Report describes a proposal by the Health Department of Western Australia to establish a disposal facility for certain hazardous wastes and seeks comments from governments agencies and the public that will assist the EPA to make its recommendations to. The facility would only be used for wastes generated in Western Australia.The proposal specifically includes: a high temperature incinerator for the disposal of organo-chlorines (including agricultural chemicals and PCBs), and other intractable wastes for which this is the optimum disposal method; an area for the burial (after any appropriate conditioning) of low level radioactive intractable wastes arising from the processing of mineral sands (including monazite, ilmenite and zircon) and phosphate rock. Detailed information is presented on those wastes which are currently identified as requiring disposal at the facility.The proposed facility will also be suitable for the disposal of other intractable wastes including radioactive wastes (from industry, medicine and research) and other solid intractable wastes of a chemical nature including spent catalysts etc. Proposals to dispose of these other wastes at this facility in the future will be referred to the Environmental Protection Authority for separate assessment

  2. Request for interim approval to operate Trench 94 of the 218-E-12B Burial Ground as a chemical waste landfill for disposal of polychlorinated biphenyl waste in submarine reactor compartments. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, G.D.

    1994-06-01

    This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of this waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy`s (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS.

  3. Decision making technical support study for the US Army's Chemical Stockpile Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, D.L.; Dobson, J.E.

    1990-08-01

    This report examines the adequacy of current command and control systems designed to make timely decisions that would enable sufficient warning and protective response to an accident at the Edgewood area of Aberdeen Proving Ground (APG), Maryland, and at Pine Bluff Arsenal (PBA), Arkansas. Institutional procedures designed to facilitate rapid accident assessment, characterization, warning, notification, and response after the onset of an emergency and computer-assisted decision-making aids designed to provide salient information to on- and-off-post emergency responders are examined. The character of emergency decision making at APG and PBA, as well as potential needs for improvements to decision-making practices, procedures, and automated decision-support systems (ADSSs), are described and recommendations are offered to guide equipment acquisition and improve on- and off-post command and control relationships. We recommend that (1) a continued effort be made to integrate on- and off-post command control, and decision-making procedures to permit rapid decision making; (2) the pathways for alert and notification among on- and off-post officials be improved and that responsibilities and chain of command among off-post agencies be clarified; (3) greater attention be given to organizational and social context factors that affect the adequacy of response and the likelihood that decision-making systems will work as intended; and (4) faster improvements be made to on-post ADSSs being developed at APG and PBA, which hold considerable promise for depicting vast amounts of information. Phased development and procurement of computer-assisted decision-making tools should be undertaken to balance immediate needs against available resources and to ensure flexibility, equity among sites, and compatibility among on- and off-post systems. 112 refs., 6 tabs.

  4. Risk Analysis in Support of the Chemical Stockpile Disposal Program (CSDP). Volume 2. Consequence Data

    Science.gov (United States)

    1987-12-17

    0I 00 00.-;CO rs 8g uus 8 uv B F8 00 z Go 0-O 0000 a00 000000000000-000 cK 3 oo QQOMOO00 00-0,fl0 00 00 C, ~000000 f~l 00000 C o8 C; ; 0 6Lm0 686C 6 C...I.-.Oc.eaa aL ac ca ac aa ec a - acu~~~~~~~~~~~~~ .*..**-w aaca a8ac c e c acca ~~~~~~~~C a a9 a a ! a! a9 an aaacaaca aa aao ecaaaa z " .- C; Va ~cc a...00 0 00 0 0 CD~ 00 000 40O O LALnLnLnM mm 0 0 6 ; C; C.--0* CON40 wmm ; ;8§ F8 8R2 gCCCn" 8 o ~ u Q~ OR p Q~ Q~ a 00 00 0 Q Q OLJ Q0000 000088088 O 80

  5. Cutaneous reactions in nuclear, biological and chemical warfare

    Directory of Open Access Journals (Sweden)

    Arora Sandeep

    2005-03-01

    Full Text Available Nuclear, biological and chemical warfare have in recent times been responsible for an increasing number of otherwise rare dermatoses. Many nations are now maintaining overt and clandestine stockpiles of such arsenal. With increasing terrorist threats, these agents of mass destruction pose a risk to the civilian population. Nuclear and chemical attacks manifest immediately while biological attacks manifest later. Chemical and biological attacks pose a significant risk to the attending medical personnel. The large scale of anticipated casualties in the event of such an occurrence would need the expertise of all physicians, including dermatologists, both military and civilian. Dermatologists are uniquely qualified in this respect. This article aims at presenting a review of the cutaneous manifestations in nuclear, chemical and biological warfare and their management.

  6. Depleted uranium disposal options evaluation

    International Nuclear Information System (INIS)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ''waste,'' but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity

  7. Basic research needs for management and disposal of DOE wastes

    International Nuclear Information System (INIS)

    Grazis, B.M.; Schulz, W.W.

    1991-04-01

    This document was chartered by the Department of Energy (DOE), Office of Energy Research. It identifies and describes 87 basic research needs in support of advanced technology for management and disposal of Department of Energy radioactive, hazardous chemical, and mixed wastes. A team of scientists and engineers from several DOE laboratories and sites, from academia, and from industry identified and described the basic research needs called out in this report. Special efforts were made to ensure that basic research needs related to management and disposal of any hazardous chemical wastes generated at nonnuclear DOE sites and facilities were properly identified. It is hoped that scientists in both DOE and nongovernment laboratories and institutions will find this document useful when formulating research efforts relevant to waste management and disposal. For management and disposal of DOE radioactive and mixed wastes, basic research needs are identified in nine separate action areas. Basic research needs for management and disposal of DOE hazardous chemical wastes are identified in five action areas. Sufficient description and background information are provided in the report for each particular research need to enable qualified and imaginative scientists to conceive research efforts and programs that will meet the need. 28 refs., 7 tabs

  8. Disposal of Draeger Tubes at Savannah River Site

    International Nuclear Information System (INIS)

    Malik, N.P.

    2000-01-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located in Aiken, South Carolina that is operated by the Westinghouse Savannah River Company (WSRC). At SRS Draeger tubes are used to identify the amount and type of a particular chemical constituent in the atmosphere. Draeger tubes rely on a chemical reaction to identify the nature and type of a particular chemical constituent in the atmosphere. Disposal practices for these tubes were identified by performing a hazardous waste evaluation per the Resource Conservation and Recovery Act (RCRA). Additional investigations were conducted to provide guidance for their safe handling, storage and disposal. A list of Draeger tubes commonly used at SRS was first evaluated to determine if they contained any material that could render them as a RCRA hazardous waste. Disposal techniques for Draeger tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79. 261.24 (b) and/or contained an acid in the liquid form were addressed

  9. On Utilization and Stockpiling of Prescription Drugs when Co-payments Increase: Heterogeneity across Types of Drugs

    DEFF Research Database (Denmark)

    Skipper, Niels

    by stockpiling on their medications. This has implications for other papers in the literature that use variation in subsidy rates over time to estimate the price elasticity of demand. This is not the case for penicillin however, where price elasticities are estimated to be in the -.18 – -.35 range. Further, I...

  10. CFD simulations of the effect of wind on the spontaneous heating of coal stockpiles

    Czech Academy of Sciences Publication Activity Database

    Taraba, B.; Michalec, Zdeněk; Michalcová, V.; Blejchař, T.; Bojko, M.; Kozubková, M.

    2014-01-01

    Roč. 118, č. 1 (2014), s. 107-112 ISSN 0016-2361 Grant - others:GA ČR GA105/08/1414; TA ČR(CZ) TA01020351; GA MŠk(CZ) ED2.1.00/03.0100 Institutional support: RVO:68145535 Keywords : coal oxidation * spontaneous heating * CFD modelling * coal stockpile Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.520, year: 2014 http://www.sciencedirect.com/science/article/pii/S0016236113010053#

  11. A Comparison of Distillery Stillage Disposal Methods

    Directory of Open Access Journals (Sweden)

    V. Sajbrt

    2010-01-01

    Full Text Available This paper compares the main stillage disposal methods from the point of view of technology, economics and energetics. Attention is paid to the disposal of both solid and liquid phase. Specifically, the following methods are considered: a livestock feeding, b combustion of granulated stillages, c fertilizer production, d anaerobic digestion with biogas production and e chemical pretreatment and subsequent secondary treatment. Other disposal techniques mentioned in the literature (electrofenton reaction, electrocoagulation and reverse osmosis have not been considered, due to their high costs and technological requirements.Energy and economic calculations were carried out for a planned production of 120 m3 of stillage per day in a given distillery. Only specific treatment operating costs (per 1 m3 of stillage were compared, including operational costs for energy, transport and chemicals. These values were determined for January 31st, 2009. Resulting sequence of cost effectiveness: 1. – chemical pretreatment, 2. – combustion of granulated stillage, 3. – transportation of stillage to a biogas station, 4. – fertilizer production, 5. – livestock feeding. This study found that chemical pretreatment of stillage with secondary treatment (a method developed at the Department of Process Engineering, CTU was more suitable than the other methods. Also, there are some important technical advantages. Using this method, the total operating costs are approximately 1 150 ??/day, i.e. about 9,5 ??/m3 of stillage. The price of chemicals is the most important item in these costs, representing about 85 % of the total operating costs.

  12. Scrapyard challenge

    International Nuclear Information System (INIS)

    Hollick, A.

    2001-01-01

    This paper considers the issues surrounding Plutonium and the current buildup in the civil and military stockpiles. These stockpiles need to be reduced and three alternatives are discussed for the use or disposal of Plutonium. This paper will continue the debate about what we can do with Plutonium in general and what opportunities it provides - do we bury it or 'burn' it? The alternatives debated are:- Mixed Oxide Fuel (MOX); Fast Reactors and their associated reactor islands and finally Immobilisation. The various consequences of disposal are also addressed. (authors)

  13. Waste-Mixes Study for space disposal

    International Nuclear Information System (INIS)

    McCallum, R.F.; Blair, H.T.; McKee, R.W.; Silviera, D.J.; Swanson, J.L.

    1983-01-01

    The Wastes Mixes Study is a component of Cy-1981 and 1982 research activities to determine if space disposal could be a feasible complement to geologic disposal for certain high-level (HLW) and transuranic wastes (TRU). The objectives of the study are: to determine if removal of radionuclides from HLW and TRU significantly reduces the long-term radiological risks of geologic disposal; to determine if chemical partitioning of the waste for space disposal is technically feasible; to identify acceptable waste forms for space disposal; and to compare improvements in geologic disposal system performance to impacts of additional treatment, storage, and transportation necessary for space disposal. To compare radiological effects, five system alternatives are defined: Reference case - All HLW and TRU to a repository. Alternative A - Iodine to space, the balance to a repository. Alternative B - Technetium to space, the balance to a repository. Alternative C - 95% of cesium and strontium to a repository; the balance of HLW aged first, then to space; plutonium separated from TRU for recycle; the balance of the TRU to a repository. Alternative D - HLW aged first, then to space, plutonium separated from TRU for recycle; the balance of the TRU to a repository. The conclusions of this study are: the incentive for space disposal is that it offers a perception of reduced risks rather than significant reduction. Suitable waste forms for space disposal are cermet for HLW, metallic technetium, and lead iodide. Space disposal of HLW appears to offer insignificant safety enhancements when compared to geologic disposal; the disposal of iodine and technetium wastes in space does not offer risk advantages. Increases in short-term doses for the alternatives are minimal; however, incremental costs of treating, storing and transporting wastes for space disposal are substantial

  14. Evaluation of models of particulate suspension for a thorium ore stockpile

    International Nuclear Information System (INIS)

    Smith, W.J.

    1983-01-01

    Fifteen mathematical models of particle saltation, suspension, and resuspension were reviewed and categorized. Appropriate models were applied to the estimation of particulate releases from a hypothetical thorium ore storage pile. An assumed location (near Lemhi Pass, Montana) was used to permit the development of site specific information on ore characteristics and environmental influences. The available models were characterized in terms of suitability for representing aspects of the ore pile, such as rough surface features, wide particle size range, and site specific climate. Five models were selected for detailed study. A computer code for each of these is given. Site specific data for the assumed ore stockpile location were prepared. These data were manipulated to provide the input values required for each of the five models. Representative values and ranges for model variables are tabulated. The response of each model to input data for selected variables was determined. Each model was evaluated in terms of the physical realism of its response of each model to input data for selected variables was determined. Each model was evaluated in terms of the physical realism of its responses and its overall ability to represent the features of an ore stockpile. The two models providing the best representation were a modified version of the dust suspension subroutine TAILPS from the computer code MILDOS, and the dust suspension formulation from the computer code REDIST. Their responses are physically reasonable, although different from each other for two parameters: ore moisture and surface roughness. With the input values judged most representative of an ore pile near Lemhi Pass, the estimate of the release of suspended particulates is on the order of 1 g/m 2 -yr

  15. Alternatives for definse waste-salt disposal

    International Nuclear Information System (INIS)

    Benjamin, R.W.; McDonell, W.R.

    1983-01-01

    Alternatives for disposal of decontaminated high-level waste salt at Savannah River were reviewed to estimate costs and potential environmental impact for several processes. In this review, the reference process utilizing intermediate-depth burial of salt-concrete (saltcrete) monoliths was compared with alternatives including land application of the decontaminated salt as fertilizer for SRP pine stands, ocean disposal with and without containment, and terminal storage as saltcake in existing SRP waste tanks. Discounted total costs for the reference process and its modifications were in the same range as those for most of the alternative processes; uncontained ocean disposal with truck transport to Savannah River barges and storage as saltcake in SRP tanks had lower costs, but presented other difficulties. Environmental impacts could generally be maintained within acceptable limits for all processes except retention of saltcake in waste tanks, which could result in chemical contamination of surrounding areas on tank collapse. Land application would require additional salt decontamination to meet radioactive waste disposal standards, and ocean disposal without containment is not permitted in existing US practice. The reference process was judged to be the only salt disposal option studied which would meet all current requirements at an acceptable cost

  16. Safety of geologic disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Zaitsu, Tomohisa; Ishiguro, Katsuhiko; Masuda, Sumio

    1992-01-01

    This article introduces current concepts of geologic disposal of high level radioactive waste and its safety. High level radioactive waste is physically stabilized by solidifying it in a glass form. Characteristics of deep geologic layer are presented from the viewpoint of geologic disposal. Reconstruction of multi-barrier system receives much attention to secure the safety of geologic disposal. It is important to research performance assessment of multi-barrier system for preventing dissolution or transfer of radionuclides into the ground water. Physical and chemical modeling for the performance assessment is outlined in the following terms: (1) chemical property of deep ground water, (2) geochemical modeling of artificial barrier spatial water, (3) hydrology of deep ground water, (4) hydrology of the inside of artificial barrier, and (5) modeling of radionuclide transfer from artificial barrier. (N.K.)

  17. Degradation of cementitious materials associated with salstone disposal units

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, F. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-01

    The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed “saltstone”. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of a saltstone disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions.

  18. Status report on the disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Culler, F.L. Jr.; McLain, S. (comps.)

    1957-06-25

    A comprehensive survey of waste disposal techniques, requirements, costs, hazards, and long-range considerations is presented. The nature of high level wastes from reactors and chemical processes, in the form of fission product gases, waste solutions, solid wastes, and particulate solids in gas phase, is described. Growth predictions for nuclear reactor capacity and the associated fission product and transplutonic waste problem are made and discussed on the basis of present knowledge. Biological hazards from accumulated wastes and potential hazards from reactor accidents, ore and feed material processing, chemical reprocessing plants, and handling of fissionable and fertile material after irradiation and decontamination are surveyed. The waste transportation problem is considered from the standpoints of magnitude of the problem, present regulations, costs, and cooling periods. The possibilities for ultimate waste management and/or disposal are reviewed and discussed. The costs of disposal, evaporation, storage tanks, and drum-drying are considered.

  19. A study on possible use of Urtica dioica (common nettle) plants as uranium (234U, 238U) contamination bioindicator near phosphogypsum stockpile.

    Science.gov (United States)

    Olszewski, Grzegorz; Boryło, Alicja; Skwarzec, Bogdan

    The aim of this study was to determine uranium concentrations in common nettle ( Urtica dioica ) plants and corresponding soils samples which were collected from the area of phosphogypsum stockpile in Wiślinka (northern Poland). The uranium concentrations in roots depended on its concentrations in soils. Calculated BCF and TF values showed that soils characteristics and air deposition affect uranium absorption and that different uranium species have different affinities to U . dioica plants. The values of 234 U/ 238 U activity ratio indicate natural origin of these radioisotopes in analyzed plants. Uranium concentration in plants roots is negatively weakly correlated with distance from phosphogypsum stockpile.

  20. A study on possible use of Urtica dioica (common nettle) plants as uranium (234U, 238U) contamination bioindicator near phosphogypsum stockpile

    International Nuclear Information System (INIS)

    Olszewski, Grzegorz; Borylo, Alicja; Skwarzec, Bogdan

    2016-01-01

    The aim of this study was to determine uranium concentrations in common nettle (Urtica dioica) plants and corresponding soils samples which were collected from the area of phosphogypsum stockpile in Wislinka (northern Poland). The uranium concentrations in roots depended on its concentrations in soils. Calculated BCF and TF values showed that soils characteristics and air deposition affect uranium absorption and that different uranium species have different affinities to U. dioica plants. The values of 234 U/ 238 U activity ratio indicate natural origin of these radioisotopes in analyzed plants. Uranium concentration in plants roots is negatively weakly correlated with distance from phosphogypsum stockpile. (author)

  1. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  2. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  3. Internal Controls and Compliance with Laws and Regulations for the National Defense Stockpile Transaction Fund Financial Statements for FY 1996

    National Research Council Canada - National Science Library

    Lane, F

    1997-01-01

    The Chief Financial Officers Act of 1990, as amended by the Federal Financial Management Act of 1994, requires an annual audit of revolving funds such as the National Defense Stockpile Transaction Fund...

  4. Changes in chemical permeation of disposable latex, nitrile, and vinyl gloves exposed to simulated movement.

    Science.gov (United States)

    Phalen, Robert N; Le, Thi; Wong, Weng Kee

    2014-01-01

    Glove movement can affect chemical permeation of organic compounds through polymer glove products. However, conflicting reports make it difficult to compare the effects of movement on chemical permeation through commonly available glove types. The aim of this study was to evaluate the effect of movement on chemical permeation of an organic solvent through disposable latex, nitrile, and vinyl gloves. Simulated whole-glove permeation testing was conducted using ethyl alcohol and a previously designed permeation test system. With exposure to movement, a significant decrease (p ≤ 0.001) in breakthrough time (BT) was observed for the latex (-23%) and nitrile gloves (-31%). With exposure to movement, only the nitrile glove exhibited a significant increase (p ≤ 0.001) in steady-state permeation rate (+47%) and cumulative permeation at 30 min (+111%). Even though the nitrile glove provided optimum chemical resistance against ethyl alcohol, it was most affected by movement. With exposure to movement, the latex glove was an equivalent option for overall worker protection, because it was less affected by movement and the permeation rate was lower than that of the nitrile glove. In contrast, the vinyl glove was the least affected by movement, but did not provide adequate chemical resistance to ethyl alcohol in comparison with the nitrile and latex gloves. Glove selection should take movement and polymer type into account. Some glove polymer types are less affected by movement, most notably the latex glove in this test. With nitrile gloves, at least a factor of three should be used when attempting to assign a protection factor when repetitive hand motions are anticipated. Ultimately, the latex gloves outperformed nitrile and vinyl in these tests, which evaluated the effect of movement on chemical permeation. Future research should aim to resolve some of the observed discrepancies in test results with latex and vinyl gloves.

  5. Chemical Weapons Disposal: Understanding Scheduled Downtime at Disposal Facilities

    National Research Council Canada - National Science Library

    1997-01-01

    ... materiel and to enhance national security. Aging chemical weapons, many created during World War II, Korean and Cold War eras are safely stored in eight secured sites within the continental United States...

  6. Recovery from a chemical weapons accident or incident: A concept paper on planning

    Energy Technology Data Exchange (ETDEWEB)

    Herzenberg, C.L.; Haffenden, R.; Lerner, K.; Meleski, S.A.; Tanzman, E.A. [Argonne National Lab., IL (United States); Lewis, L.M. [US Dept. of Agriculture (United States); Hemphill, R.C. [Niagara Mohawk Power Corporation (United States); Adams, J.D. [US Environmental Protection Agency (United States)

    1994-04-01

    Emergency planning for an unintended release of chemical agent from the nation`s chemical weapons stockpile should include preparation for. the period following implementation of immediate emergency response. That period -- the recovery, reentry, and restoration stage -- is the subject of this report. The report provides an overview of the role of recovery, reentry, and restoration planning in the Chemical Stockpile Emergency Preparedness Program (CSEPP), describes the transition from immediate emergency response to restoration, and analyzes the legal framework that would govern restoration activities. Social, economic, and administrative issues, as well as technical ones, need to be considered in the planning effort. Because of possible jurisdictional conflicts, appropriate federal, state, and local agencies need to be included in a coordinated planning process. Advance consideration should be given to the pertinent federal and state statutes and regulations. On the federal level, the principal statutes and regulations to be considered are those associated with the Comprehensive Environmental Response, Compensation, and Liability Act; the Resource Conservation and Recovery Act; and the National Environmental Policy Act. This report recommends that extensive preaccident planning be undertaken for the recovery, reentry, and restoration stage and outlines several key issues that should be considered in that planning. The need for interagency cooperation and coordination at all levels of the planning process is emphasized.

  7. Co-disposal of mixed waste materials

    International Nuclear Information System (INIS)

    Phillips, S.J.; Alexander, R.G.; Crane, P.J.; England, J.L.; Kemp, C.J.; Stewart, W.E.

    1993-08-01

    Co-disposal of process waste streams with hazardous and radioactive materials in landfills results in large, use-efficiencies waste minimization and considerable cost savings. Wasterock, produced from nuclear and chemical process waste streams, is segregated, treated, tested to ensure regulatory compliance, and then is placed in mixed waste landfills, burial trenches, or existing environmental restoration sites. Large geotechnical unit operations are used to pretreat, stabilize, transport, and emplace wasterock into landfill or equivalent subsurface structures. Prototype system components currently are being developed for demonstration of co-disposal

  8. Aspects of nuclear wastes disposal of use in teaching basic chemistry

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1994-01-01

    In this paper the utilization of several aspects of chemical issues in nuclear wastes disposal proposals are discussed. Equilibrium speciation, complexation competition, the effect of pH and complexation on redox speciation, sorption on colloids, etc. are a few examples of the chemical behavior of fission products and actinide metals in natural aquatic systems. A brief review of the types of nuclear wastes in the US and the proposed methods of disposal are presented to reflect the diversity of chemical problems involved and the opportunities they offer to use open-quotes realclose quotes examples in teaching

  9. National Certification Methodology for the Nuclear Weapons Stockpile

    International Nuclear Information System (INIS)

    Goodwin, B T; Juzaitis, R J

    2006-01-01

    and December of 2001 and continued in 2002 have proven useful in developing the methodology, and future workshops should prove useful in further refining this framework. Each laboratory developed an approach to certification with some differences in detailed implementation. The general methodology introduces specific quantitative indicators for assessing confidence in our nuclear weapon stockpile. The quantitative indicators are based upon performance margins for key operating characteristics and components of the system, and these are compared to uncertainties in these factors. These criteria can be summarized in a quantitative metric (for each such characteristic) expressed as: (i.e., confidence in warhead performance depends upon CR significantly exceeding unity for all these characteristics). These Confidence Ratios are proposed as a basis for guiding technical and programmatic decisions on stockpile actions. This methodology already has been deployed in certifying weapons undergoing current life extension programs or component remanufacture. The overall approach is an adaptation of standard engineering practice and lends itself to rigorous, quantitative, and explicit criteria for judging the robustness of weapon system and component performance at a detailed level. There are, of course, a number of approaches for assessing these Confidence Ratios. The general certification methodology was publicly presented for the first time to a meeting of Strategic Command SAG in January 2002 and met with general approval. At that meeting, the Laboratories committed to further refine and develop the methodology through the implementation process. This paper reflects the refinement and additional development to date. There will be even further refinement at a joint laboratory workshop later in FY03. A common certification methodology enables us to engage in peer reviews and evaluate nuclear weapon systems on the basis of explicit and objective metrics. The clarity provided by

  10. Hanford grout disposal program - an environmentally sound alternative

    International Nuclear Information System (INIS)

    Bergman, T.B.; Allison, J.M.

    1987-01-01

    The Hanford Grout Disposal Program (HGDP) is a comprehensive, integrated program to develop technology and facilities for the disposal of ∼ 3.0 x 10 5 m 3 (80 million gal) of the low-level fraction of liquid radioactive tank wastes at the Hanford site in southeastern Washington state. Environmentally sound disposal via long-term protection of the public and the environment is the principal goal of the HGDP. To accomplish this goal, several criteria have been established that guide technology and facility development activities. The key criteria are discussed. To meet the challenges posed by disposal of these wastes, the HGDP is developing a waste form using grout-forming materials, such as blast furnace slag, fly ash, clays, and Portland cement for solidification and immobilization of both the radioactive and hazardous chemical constituents. In addition to development of a final waste form, the HGDP is also developing a unique disposal system to assure long-term protection of the public and the environment. Disposal of a low-level nonhazardous waste will be initiated, as a demonstration of the disposal system concept, in June 1988. Disposal of higher activity hazardous wastes is scheduled to begin in October 1989

  11. Modeling of reactive chemical transport of leachates from a utility fly-ash disposal site

    International Nuclear Information System (INIS)

    Apps, J.A.; Zhu, M.; Kitanidis, P.K.; Freyberg, D.L.; Ronan, A.D.; Itakagi, S.

    1991-04-01

    Fly ash from fossil-fuel power plants is commonly slurried and pumped to disposal sites. The utility industry is interested in finding out whether any hazardous constituents might leach from the accumulated fly ash and contaminate ground and surface waters. To evaluate the significance of this problem, a representative site was selected for modeling. FASTCHEM, a computer code developed for the Electric Power Research Institute, was utilized for the simulation of the transport and fate of the fly-ash leachate. The chemical evolution of the leachate was modeled as it migrated along streamtubes defined by the flow model. The modeling predicts that most of the leachate seeps through the dam confining the ash pond. With the exception of ferrous, manganous, sulfate and small amounts of nickel ions, all other dissolved constituents are predicted to discharge at environmentally acceptable concentrations

  12. Pharmaceutical lobbying and pandemic stockpiling of Tamiflu: a qualitative study of arguments and tactics.

    Science.gov (United States)

    Vilhelmsson, Andreas; Mulinari, Shai

    2017-08-09

    Little is known about how pharmaceutical companies lobby authorities or experts regarding procurement or the use of vaccines and antivirals. This paper investigates how members of Denmark's pandemic planning committee experienced lobbying efforts by Roche, manufacturer of Tamiflu, the antiviral that was stockpiled before the 2009 A(H1N1) pandemic. Analysis of interviews with six of seven members of the Danish core pandemic committee, supplemented with documentary analysis. We sought to identify (1) arguments and (2) tactics used in lobbying, and to characterize interviewees' views on the impact of (3) lobbying and (4) scientific evidence on the decision to stockpile Tamiflu. Roche lobbied directly (in its own name) and through a seemingly independent third party. Roche used two arguments: (1) the procurement agreement had to be signed quickly because the drug would be delivered on a first-come, first-served basis and (2) Denmark was especially vulnerable to an influenza crisis because it had smaller Tamiflu stocks than other countries. Most interviewees suspected that lobbying had an impact on Tamiflu procurement. Our study highlights risks posed by pharmaceutical lobbying. Arguments and tactics deployed by Roche are likely to be repeated whenever many countries are negotiating drug procurements in a monopolistic market. © The Author 2017. Published by Oxford University Press on behalf of Faculty of Public Health.

  13. Science-based stockpile stewardship at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Immele, J.

    1995-01-01

    I would like to start by working from Vic Reis's total quality management diagram in which he began with the strategy and then worked through the customer requirements-what the Department of Defense (DoD) is hoping for from the science-based stockpile stewardship program. Maybe our customer's requirements will help guide some of the issues that we should be working on. ONe quick answer to open-quotes why have we adopted a science-based strategyclose quotes is that nuclear weapons are a 50-year responsibility, not just a 5-year responsibility, and stewardship without testing is a grand challenge. While we can do engineering maintenance and turn over and remake a few things on the short time scale, without nuclear testing, without new weapons development, and without much of the manufacturing base that we had in the past, we need to learn better just how these weapons are actually working

  14. The treatment and disposal of liquid waste in the nuclear power industry

    International Nuclear Information System (INIS)

    Lewis, J.B.

    1978-01-01

    Paper presented by the head of the Industrial Chemistry Group at AERE Harwell at a symposium held by the University of Newcastle upon Tyne (UK) in association with the Institute of Water Pollution Control and the Institution of Chemical Engineers in September 1977. Main headings are as follows: general introduction; units of measurement of radioactivity; environmental considerations (disposal authorisations, natural background, critical path approach, discharges to the sea, discharges to rivers); types of liquid waste (general, high level wastes, wastes from chemical processing stages, wastes from nuclear power stations, miscellaneous wastes); treatment techniques (general, evaporation, chemical precipitation, ion exchange, reverse osmosis, electrodialysis); disposal of radioactive concentrates (high level wastes, sludges, exhausted ion exchangers, etc.). It is concluded that the main task remaining is to find the best means of ultimate disposal of high level wastes. (U.K.)

  15. Field application of the Numobag as a portable disposable isolation unit and for treating chemical, radiological or biologically induced wounds.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Keith A.; Felton, Robert; Vaughan, Courtenay Thomas

    2005-04-01

    Numotech Inc. has developed the Numobag{trademark}, a disposable, lightweight, wound healing device which produces Topical Hyperbaric Oxygen Therapy (THOT). The Numobag{trademark} is cost effective and has been clinically validated to heal large skin lesions rapidly and has proven to arrest wound advancement from several insidious forms of biological attack including dermal anthrax, small pox, necrotizing fasciitis etc. The Numobag{trademark} can treat mass casualties wounded by chemical/radiological burns or damaging biological exposures. The Numobag{trademark} can be a frontline tool as an isolation unit, reducing cross-contamination and infection of medical personnel. The heightened oxygen content kills organisms on the skin and in the wound, avoids expensive hospital trash disposal procedures, and helps the flesh heal. The Numobag{trademark} requires high purity oxygen. Numotech Inc. is teaming with Sandia National Laboratories and Spektr Conversion in Russia to develop a cost effective, portable, low power oxygen generator.

  16. Biomaterials for mediation of chemical and biological warfare agents.

    Science.gov (United States)

    Russell, Alan J; Berberich, Jason A; Drevon, Geraldine F; Koepsel, Richard R

    2003-01-01

    Recent events have emphasized the threat from chemical and biological warfare agents. Within the efforts to counter this threat, the biocatalytic destruction and sensing of chemical and biological weapons has become an important area of focus. The specificity and high catalytic rates of biological catalysts make them appropriate for decommissioning nerve agent stockpiles, counteracting nerve agent attacks, and remediation of organophosphate spills. A number of materials have been prepared containing enzymes for the destruction of and protection against organophosphate nerve agents and biological warfare agents. This review discusses the major chemical and biological warfare agents, decontamination methods, and biomaterials that have potential for the preparation of decontamination wipes, gas filters, column packings, protective wear, and self-decontaminating paints and coatings.

  17. Safety in the Chemical Laboratory--Chemical Management: A Method for Waste Reduction.

    Science.gov (United States)

    Pine, Stanley H.

    1984-01-01

    Discusses methods for reducing or eliminating waste disposal problems in the chemistry laboratory, considering both economic and environmental aspects of the problems. Proposes inventory control, shared use, solvent recycling, zero effluent, and various means of disposing of chemicals. (JM)

  18. Safe disposal of surplus plutonium

    Science.gov (United States)

    Gong, W. L.; Naz, S.; Lutze, W.; Busch, R.; Prinja, A.; Stoll, W.

    2001-06-01

    About 150 tons of weapons grade and weapons usable plutonium (metal, oxide, and in residues) have been declared surplus in the USA and Russia. Both countries plan to convert the metal and oxide into mixed oxide fuel for nuclear power reactors. Russia has not yet decided what to do with the residues. The US will convert residues into a ceramic, which will then be over-poured with highly radioactive borosilicate glass. The radioactive glass is meant to provide a deterrent to recovery of plutonium, as required by a US standard. Here we show a waste form for plutonium residues, zirconia/boron carbide (ZrO 2/B 4C), with an unprecedented combination of properties: a single, radiation-resistant, and chemically durable phase contains the residues; billion-year-old natural analogs are available; and criticality safety is given under all conceivable disposal conditions. ZrO 2/B 4C can be disposed of directly, without further processing, making it attractive to all countries facing the task of plutonium disposal. The US standard for protection against recovery can be met by disposal of the waste form together with used reactor fuel.

  19. Risk analysis of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Girardi, F.; de Marsily, G.; Weber, J.

    1980-01-01

    The problems of risk analysis of geological disposal of radioactive waste are briefly summarized. Several characteristics, such as the very long time span considered, make it rather unique among the problems of modern society. The safety of nuclear waste disposal in geological formations is based on several barriers, natural and man-made, which prevent disposed radionuclides from reaching the biosphere. They include a) the physico-chemical form of conditioned waste, b) the waste container, c) the geological isolation, d) buffering and backfilling materials, radionuclide retention in the geosphere and e) environmental dilution and isolation processes. The knowledge available on each barrier and its modelling is reviewed. Specific disposal strategies in clay, granite and salt formations are considered, outlining the performance of the barriers in each particular strategy, and results obtained in preliminary evaluations

  20. REEMISSION OF MERCURY COMPOUNDS FROM SEWAGE SLUDGE DISPOSAL

    OpenAIRE

    Beata Janowska

    2016-01-01

    The sewage sludge disposal and cultivation methods consist in storage, agricultural use, compost production, biogas production or heat treatment. The sewage sludge production in municipal sewage sludge treatment plants in year 2013 in Poland amounted to 540.3 thousand Mg d.m. The sewage sludge for agricultural or natural use must satisfy chemical, sanitary and environmental safety requirements. The heavy metal content, including the mercury content, determines the sewage sludge disposal metho...

  1. Experimental study and modelling of physico-chemical mechanisms of clay-concrete interactions in the radioactive waste geological disposal context

    International Nuclear Information System (INIS)

    Dauzeres, A.

    2010-09-01

    These research works are carried out as part of the radioactive wastes geological disposal feasibility study. The current option developed by Andra, includes several cementitious materials in contact with the surrounding Callovo-Oxfordian (COX) (an argillite). Concretes and argillite present very different pore solutions (ionic concentrations and pH). Controlled by the concentrations differences, the aqueous species diffusion in the solids generates chemical and physical disturbances. This study is based on experimental, analytical and numerical works, in order to identify the mechanisms controlling the clayey environment influence on cementitious materials. (author)

  2. Geochemical behavior of disposed radioactive waste

    International Nuclear Information System (INIS)

    Barney, G.S.; Navratil, J.D.; Schulz, W.W.

    1984-01-01

    The papers in this book are organized to cover the chemical aspects that are important to understanding the behavior of disposed radioactive wastes. These aspects include radionuclide sorption and desorption, solubility of radionuclide compounds, chemical species of radionuclides in natural waters, hydrothermal geochemical reactions, measurements of radionuclide migration, solid state chemistry of wastes, and waste-form leaching behavior. The information in each of the papers is necessary to predict the transport of radionuclides from wastes via natural waters and thus to predict the safety of the disposed waste. Radionuclide transport in natural waters is strongly dependent on sorption, desorption, dissolution, and precipitation processes. The first two papers discuss laboratory investigations of these processes. Descriptions of sorption and desorption behavior of important radionuclides under a wide range of environmental conditions are presented in the first section. Among the sorbents studied are basalt interbed solids, granites, clays, sediments, hydrous oxides, and pure minerals. Effects of redox conditions, groundwater composition and pH on sorption reactions are described

  3. Hydrologic information needs for evaluating waste disposal options

    Energy Technology Data Exchange (ETDEWEB)

    Huff, D.D.

    1983-01-01

    Before waste disposal options can be assessed, an objective or set of criteria for evaluation must be established. For hydrologists, the objective is to ensure that ground water and surface water do not become contaminated beyond acceptable limits as a result of waste disposal operations. The focus here is on the information required to quantify hydrologic transport of potential contaminants from the disposal site. It is important to recognize that the composition of the waste, its physical and chemical form, and the intended disposal methods (e.g., surface spreading, incineration, shallow land burial, or interment in a deep geologic repository) must either be specified a priori or set forth as specific options for evaluation, because these factors influence the nature of the hydrologic data needs. The hydrologic information needs of major importance are given together with specific measurable variables to be determined.

  4. Chemical reagent and process for refuse disposal

    International Nuclear Information System (INIS)

    Somerville, R.B.; Fan, L.T.

    1989-01-01

    A process for treating refuse by mixing them with a reactive chemical and a puzzolana-type material. Said chemical includes a retarding agent which modifies the viscosity and an accelerating agent. (author)

  5. Composite analysis E-area vaults and saltstone disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  6. Composite analysis E-area vaults and saltstone disposal facilities

    International Nuclear Information System (INIS)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public

  7. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Hare, Tony.

    1990-01-01

    The Save Our Earth series has been designed to appeal to the inquiring minds of ''planet-friendly'' young readers. There is now a greater awareness of environmental issues and an increasing concern for a world no longer able to tolerate the onslaught of pollution, the depletion of natural resources and the effects of toxic chemicals. Each book approaches a specific topic in a way that is exciting and thought-provoking, presenting the facts in a style that is concise and appropriate. The series aims to demonstrate how various environmental subjects relate to our lives, and encourages the reader to accept not only responsibility for the planet, but also for its rescue and restoration. This volume, on nuclear waste disposal, explains how nuclear energy is harnessed in a nuclear reactor, what radioactive waste is, what radioactivity is and its effects, and the problems and possible solutions of disposing of nuclear waste. An awareness of the dangers of nuclear waste is sought. (author)

  8. Modelling the transfer of chemical pollutants to the aquifer in the very low level waste disposal site of El Cabril, Spain

    International Nuclear Information System (INIS)

    Duro, L.; Merino, J.; Grive, M.; Jordana, S.; Bruno, J.; Ordonez, M.

    2005-01-01

    A Very Low Level Radioactive Waste disposal site is being planned in El Cabril, Spain, where a Low and Intermediate Level Radioactive Waste disposal site is already located. As part of the ongoing safety assessment for this new facility, we have modelled the transfer of chemical pollutants from the disposal site to the underlying aquifer. The conceptual model is based on the water transport due to the infiltration of rain through the disposal cell. The source term is given by the dissolution of the initial inventory limited by sorption in cement (the main form of the waste) and secondary phase solubility. Several assumptions have been made: all protective layers are degraded, the system is saturated and the water flux is stationary and unidimensional in the vertical direction. A compartment modelling approach has been followed, and the system has been divided in four compartments: Top clay layer, Waste, Bottom clay layer and Subsoil. The latter acts as a sink representing the discharge to the aquifer. Advective and diffusive fluxes are defined between the compartments taking into account hydrological, geochemical and transport properties of the different materials and compounds. The results of the simulation (up to 106 years) show that there is an initial increase in the contaminant release to the aquifer due to the leaching of the waste by the infiltrating waters until a maximum is obtained. In most of the elements the maximum is given by their respective solubility limit and therefore the release is constant during all the time the concentration in the pore water is controlled by solubility. (author)

  9. The cause and effect of exclusionary zoning within a jurisdiction, and, The stockpile of petroleum needed to contain OPEC's price shocks

    Science.gov (United States)

    Vatter, Marc H.

    In Part I, I model a jurisdiction where residents differ by income, and housing confers benefits on neighbors. By majority vote, residents choose minima on consumption of housing that differ by neighborhood, and they separate into neighborhoods by income. In practice, such laws take the form of minimum lot sizes, bans on multi-family units, building codes, and other restrictions. This policy maximizes a benefit-cost welfare criterion. Alternative policies include no minima and a uniform minimum citywide, based on libertarian and utilitarian welfare criteria, respectively. I compare the policies in terms of efficiency, implementability, and distributional consequences, and give numerical examples based on U.S. data. Willingness to pay for the benefit-cost optimum is convex in income. This helps to explain why neighborhood stratification by income has outpaced stratification of income itself in U.S metropolitan areas since 1970. In the examples, gains to a rich household are in the thousands and losses to the poor in the hundreds of dollars annually. In Part II, I estimate the stockpile of petroleum sufficient to contain a price shock perpetrated by the OPEC. I estimate world demand for petroleum such that the long run price elasticity exceeds that in the short run, and supply from non-OPEC producers with a similar kind of lagged response. Given this structure for elasticities, OPEC profits from sudden increases in price. I simulate interaction among consumers, non-OPEC producers, OPEC, and an International Energy Agency (IEA) that punishes OPEC by releasing oil onto the market. I endow the IEA with increasingly large stockpiles until they suffice to limit price shocks to specified levels. Every 5 reduction in the shock raises present-valued world GDP by about 650 billion. The IEA now has 1.4 billion barrels of petroleum, including 700 million in the U.S. Strategic Petroleum Reserve. A 3 billion barrel stockpile would suffice to reduce a 35 price shock to 20, raising

  10. ARTIST process. A novel chemical process for treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Tachimori, Shoichi

    2001-10-01

    A new chemical process, ARTIST process, is proposed for the treatment of spent nuclear fuel. The main concept of the ARTIST process is to recover and stock all actinides (Ans) as two groups, uranium (U) and a mixture of transuranics (TRU), to preserve their resource value and to dispose solely fission products (FPs). The process is composed of two main steps, an U exclusive isolation and a total recovery of TRU; which copes with the nuclear non-proliferation measures, and additionally of Pu separation process and soft N-donor process if requested, and optionally of processes for separation of long-lived FPs. These An products: U-product and TRU-product, are to be solidified by calcination and allowed to the interim stockpile for future utilization. These separations are achieved by use of amidic extractants in accord with the CHON principle. The technical feasibility of the ARTIST process was explained by the performance of both the branched alkyl monoamides in extracting U and suppressing the extraction of tetravalent Ans due to the steric effect and the diglycolic amide (TODGA) in thorough extraction of all TRU by tridentate fashion. When these TRU are requested to put into reactors, LWR or FBR, for power generation or the Accelerator - Driven System (ADS) for transmutation, Pu (Np) or Am-Cm (Np) are to be extracted from the TRU-product. (author)

  11. DOE SNF technology development necessary for final disposal

    International Nuclear Information System (INIS)

    Hale, D.L.; Fillmore, D.L.; Windes, W.E.

    1996-01-01

    Existing technology is inadequate to allow safe disposal of the entire inventory of US Department of Energy (DOE) spent nuclear fuel (SNF). Needs for SNF technology development were identified for each individual fuel type in the diverse inventory of SNF generated by past, current, and future DOE materials production, as well as SNF returned from domestic and foreign research reactors. This inventory consists of 259 fuel types with different matrices, cladding materials, meat composition, actinide content, and burnup. Management options for disposal of SNF include direct repository disposal, possible including some physical or chemical preparation, or processing to produce a qualified waste form by using existing aqueous processes or new treatment processes. Technology development needed for direct disposal includes drying, mitigating radionuclide release, canning, stabilization, and characterization technologies. While existing aqueous processing technology is fairly mature, technology development may be needed to apply one of these processes to SNF different than for which the process was originally developed. New processes to treat SNF not suitable for disposal in its current form were identified. These processes have several advantages over existing aqueous processes

  12. The challenge of measuring emergency preparedness: integrating component metrics to build system-level measures for strategic national stockpile operations.

    Science.gov (United States)

    Jackson, Brian A; Faith, Kay Sullivan

    2013-02-01

    Although significant progress has been made in measuring public health emergency preparedness, system-level performance measures are lacking. This report examines a potential approach to such measures for Strategic National Stockpile (SNS) operations. We adapted an engineering analytic technique used to assess the reliability of technological systems-failure mode and effects analysis-to assess preparedness. That technique, which includes systematic mapping of the response system and identification of possible breakdowns that affect performance, provides a path to use data from existing SNS assessment tools to estimate likely future performance of the system overall. Systems models of SNS operations were constructed and failure mode analyses were performed for each component. Linking data from existing assessments, including the technical assistance review and functional drills, to reliability assessment was demonstrated using publicly available information. The use of failure mode and effects estimates to assess overall response system reliability was demonstrated with a simple simulation example. Reliability analysis appears an attractive way to integrate information from the substantial investment in detailed assessments for stockpile delivery and dispensing to provide a view of likely future response performance.

  13. Natural weathering in dry disposed ash dump: Insight from chemical, mineralogical and geochemical analysis of fresh and unsaturated drilled cores.

    Science.gov (United States)

    Akinyemi, S A; Akinlua, A; Gitari, W M; Khuse, N; Eze, P; Akinyeye, R O; Petrik, L F

    2012-07-15

    Some existing alternative applications of coal fly ash such as cement manufacturing; road construction; landfill; and concrete and waste stabilisation use fresh ash directly collected from coal-fired power generating stations. Thus, if the rate of usage continues, the demand for fresh ash for various applications will exceed supply and use of weathered dry disposed ash will become necessary alternative. As a result it's imperative to understand the chemistry and pH behaviour of some metals inherent in dry disposed fly ash. The bulk chemical composition as determined by XRF analysis showed that SiO2, Al2O3 and Fe2O3 were the major oxides in fresh ash and unsaturated weathered ashes. The unsaturated weathered ashes are relatively depleted in CaO, Fe2O3, TiO2, SiO2, Na2O and P2O5 due to dissolution and hydrolysis caused by chemical interaction with ingressing CO2 from the atmosphere and infiltrating rain water. Observed accumulations of Fe2O3, TiO2, CaO, K2O, Na2O and SO3 and Zn, Zr, Sr, Pb, Ni, Cr and Co in the lower layers indicate progressive downward movement through the ash dump though at a slow rate. The bulk mineralogy of unsaturated weathered dry disposed ash, as determined by XRD analysis, revealed quartz and mullite as the major crystalline phases; while anorthite, hematite, enstatite, lime, calcite, and mica were present as minor mineral phases. Pore water chemistry revealed a low concentration of readily soluble metals in unsaturated weathered ashes in comparison with fresh ash, which shows high leachability. This suggests that over time the precipitation of transient minor secondary mineral phases; such as calcite and mica might retard residual metal release from unsaturated weathered ash. Chloride and sulphate species of the water soluble extracts of weathered ash are at equilibrium with Na+ and K+; these demonstrate progressive leaching over time and become supersaturated at the base of unsaturated weathered ash. This suggests that the ash dump does not

  14. Development of techniques to dispose of the Windscale AGR heat exchangers

    International Nuclear Information System (INIS)

    Crossley, H.; Wakefield, J.R.

    1991-01-01

    In a gas-cooled nuclear power plant the gas side of the heat exchanger tubes becomes contaminated with radioactive deposits carried from the reactor in the coolant stream. In order to dispose of the heat exchangers in the safest and most cost-effective way during plant decommissioning, the deposits have to be removed. In situ chemical decontamination is considered to be the only viable method. This paper describes the research and development of chemical decontamination methods for the Windscale AGR heat exchangers, and the testing of a selected method on an in situ superheater. The research involved characterization of tube corrosion and radioactivity deposits, laboratory testing of chemical reagents on actual tube samples, and the provision and operation of a plant to apply the selected reagent. Disposal of radioactive effluent is an important consideration in chemical decontamination and in the present case was the major factor in determining the process

  15. Options for disposal and reapplication of depleted uranium hexafluoride

    International Nuclear Information System (INIS)

    Fitch, St.H.

    2009-01-01

    The nuclear renaissance has spurred the need to enrich uranium to fuel power reactors to meet the nation's energy requirements. However, enriching uranium produces the volatile byproduct of DUF 6 tails. In an ambient environment, DUF 6 decomposes into uranium oxides and hydrogen fluoride (HF). This HF component makes DUF 6 unsuitable for disposal as low-level waste. To make DUF 6 suitable for disposal, it must be stabilized in a controlled process by converting it into uranium oxides and fluorine compounds by the processes of de-conversion and fluorine extraction. Once stabilized, the DU and fluorine have reapplication potential that would delay or divert the need for disposal. Certain challenges confound this process, notably the chemical toxicity from elemental fluorine and DU, radiation hazards, limited low-level waste disposal capacity, and potential political and public opposition. (authors)

  16. Management of low and intermediate level radioactive wastes with regard to their chemical toxicity

    International Nuclear Information System (INIS)

    2002-12-01

    A preliminary overview is provided of management options for low and intermediate level radioactive waste (LILW) with regard to its chemical toxicity. In particular, the following issues are identified and described associated with the management and safe disposal of chemically toxic materials in LILW: the origin and characteristics; the regulatory approaches; the pre-disposal management; the disposal; the safety assessment. Also included are: regulatory framework for chemically toxic low level wastes in the USA; pre-disposal processing options for LILW containing chemically toxic components; example treatment technologies for LILW containing chemically toxic components and safety assessment case studies for Germany, Belgium, France and Sweden

  17. Nuclear techniques and the disposal of non-radioactive solid wastes

    International Nuclear Information System (INIS)

    Landsberger, S.; Buchholz, B.

    1993-01-01

    One of the most vital and persistent public health challenges facing local, state, and national governments is the disposal of solid waste produced from industrial, utility, and municipal sources. There is a growing interest in the monitoring, control, and safe disposal of the chemical constituents arising from these sources. For instance, it is now well known that the release of by products from coal-fired power plants - namely airborne particulates, bottom ash, and fly ash - can have adverse effects on air and water quality. It is therefore important that reliable chemical analytical techniques are readily available to assess the impact of widespread disposal practices of organic and inorganic chemicals. The use of nuclear and nuclear-related analytical techniques - such as neutron activation analysis, energy dispersive x-ray fluorescence and particle induced X-ray emission - have become widespread in major areas of science and technology. These methods and techniques have important applications in such work since they can be used for both the determination of specific individual pollutants (e.g. toxic heavy metals) and multi-elemental analyses for source identification and apportionment purposes. Other nuclear techniques, such as isotope tracers, have also had wide acceptance in characterizing diffusion patterns for metals in soil and aqueous environments and water pollution flows. 1 graph., 1 tab

  18. Fate of chemical warfare agents and toxic indutrial chemicals in landfills

    DEFF Research Database (Denmark)

    Bartelt-Hunt, D.L.; Barlaz, M.A.; Knappe, D.R.U.

    2006-01-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs......], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from...... CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis halflives. Monte Carlo simulations were performed to assess...

  19. Long-term criticality control in radioactive waste disposal facilities using depleted uranium

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1997-01-01

    Plant photosynthesis has created a unique planetary-wide geochemistry - an oxidizing atmosphere with oxidizing surface waters on a planetary body with chemically reducing conditions near or at some distance below the surface. Uranium is four orders of magnitude more soluble under chemically oxidizing conditions than it is under chemically reducing conditions. Thus, uranium tends to leach from surface rock and disposal sites, move with groundwater, and concentrate where chemically reducing conditions appear. Earth's geochemistry concentrates uranium and can separate uranium from all other elements except oxygen, hydrogen (in water), and silicon (silicates, etc). Fissile isotopes include 235 U, 233 U, and many higher actinides that eventually decay to one of these two uranium isotopes. The potential for nuclear criticality exists if the precipitated uranium from disposal sites has a significant fissile enrichment, mass, and volume. The earth's geochemistry suggests that isotopic dilution of fissile materials in waste with 238 U is a preferred strategy to prevent long-term nuclear criticality in and beyond the boundaries of waste disposal facilities because the 238 U does not separate from the fissile uranium isotopes. Geological, laboratory, and theoretical data indicate that the potential for nuclear criticality can be minimized by diluting fissile materials with- 238 U to 1 wt % 235 U equivalent

  20. Research on near-surface disposal of very low level radioactive waste

    International Nuclear Information System (INIS)

    Wang Shaowei; Yue Huiguo; Hou Jie; Chen Haiying; Zuo Rui; Wang Jinsheng

    2012-01-01

    Radioactive waste disposal is one of the most sensitive environmental problems to control and solve. As the arriving of decommissioning of early period nuclear facilities in China, large amounts of very low level radioactive waste will be produced inevitably. The domestic and abroad definitions about very low level radioactive waste and its disposal were introduced, and then siting principles of near-surface disposal of very low level radioactive waste were discussed. The near- surface disposal siting methods of very low level radioactive waste were analyzed from natural and geographical conditions assessment, geological conditions analysis, hydrogeological conditions analysis, geological hazard assessment and radioactive background investigation; the near-surface disposal sites'natural barriers of very low level radioactive waste were analyzed from the crustal structure and physico-chemical characteristics, the dynamics characteristics of groundwater, the radionuclide adsorption characteristics of natural barriers and so on; the near-surface disposal sites' engineered barriers of very low level radioactive waste were analyzed from the repository design, the repository barrier materials selection and so on. Finally, the improving direction of very low level radioactive waste disposal was proposed. (authors)

  1. Emergency preparedness among people living near US army chemical weapons sites after September 11, 2001.

    Science.gov (United States)

    Williams, Bryan L; Magsumbol, Melina S

    2007-09-01

    We examined trust in the army and perceptions of emergency preparedness among residents living near the Anniston, Ala, and Richmond, Ky, US Army chemical weapons stockpile sites shortly after September 11, 2001. Residents (n = 655) living near the 2 sites who participated in a cross-sectional population were relatively unprepared in the event of a chemical emergency. The events of September 11 gave rise to concerns regarding the security of stored chemical weapons and the sites' vulnerability to terrorist attacks. Although residents expressed trust in the army to manage chemical weapons safely, only a few expressed a desire to actively participate in site decisions. Compliance with procedures during emergencies could be seriously limited, putting residents in these sites at higher levels of risk of exposure to chemical hazards than nonresidents.

  2. Rock-welding materials for deep borehole nuclear waste disposal.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swift, Peter N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The concept of deep borehole nuclear waste disposal has recently been proposed. Effective sealing of a borehole after waste emplacement is generally required. In a high temperature disposal mode, the sealing function will be fulfilled by melting the ambient granitic rock with waste decay heat or an external heating source, creating a melt that will encapsulate waste containers or plug a portion of the borehole above a stack of the containers. However, there are certain drawbacks associated with natural materials, such as high melting temperatures, slow crystallization kinetics, the resulting sealing materials generally being porous with low mechanical strength, insufficient adhesion to waste container surface, and lack of flexibility for engineering controls. Here we show that natural granitic materials can be purposefully engineered through chemical modifications to enhance the sealing capability of the materials for deep borehole disposal. This work systematically explores the effect of chemical modification and crystallinity (amorphous vs. crystalline) on the melting and crystallization processes of a granitic rock system. A number of engineered granitic materials have been obtained that have decreased melting points, enhanced viscous densification, and accelerated recrystallization rates without compromising the mechanical integrity of the materials.

  3. Oak Ridge greater confinement disposal demonstrations

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Clapp, R.B.

    1987-01-01

    Demonstrations are being conducted in association with the disposal of a high activity low-level waste (LLW) stream. The waste stream in question will result from the cement solidification of decanted liquids from the Melton Valley Storage Tanks (MVST). The solid waste will be produced beginning in mid summer 1988. It is anticipated to have significant concentrations of Cs-137 and Sr-90, with smaller amounts of other radionuclides and <100 nCi/gm of TRU. The solid waste forms are expected to have surface dose rates in the 1 to 2 r/hr range. The solid waste will also contain several chemical species at concentrations which are below those of concern, but which may present enhanced corrosion potential for the disposal units. 2 refs., 5 figs

  4. Post-disposal safety assessment of toxic and radioactive waste: waste types, disposal practices, disposal criteria, assessment methods and post-disposal impacts

    International Nuclear Information System (INIS)

    Torres, C.; Simon, I.; Little, R.H.; Charles, D.; Grogan, H.A.; Smith, G.M.; Sumerling, T.J.; Watkins, B.M.

    1993-01-01

    The need for safety assessments of waste disposal stems not only from the implementation of regulations requiring the assessment of environmental effects, but also from the more general need to justify decisions on protection requirements. As waste-disposal methods have become more technologically based, through the application of more highly engineered design concepts and through more rigorous and specific limitations on the types and quantities of the waste disposed, it follows that assessment procedures also must become more sophisticated. It is the overall aim of this study to improve the predictive modelling capacity for post-disposal safety assessments of land-based disposal facilities through the development and testing of a comprehensive, yet practicable, assessment framework. This report records all the work which has been undertaken during Phase 1 of the study. Waste types, disposal practices, disposal criteria and assessment methods for both toxic and radioactive waste are reviewed with the purpose of identifying those features relevant to assessment methodology development. Difference and similarities in waste types, disposal practices, criteria and assessment methods between countries, and between toxic and radioactive wastes are highlighted and discussed. Finally, an approach to identify post-disposal impacts, how they arise and their effects on humans and the environment is described

  5. Role of the Chemical Weapons Convention (CWC) in Combating Chemical Terrorism

    International Nuclear Information System (INIS)

    Matousek, J.

    2007-01-01

    Main reason for concluding the CWC was preventing use of CWs in hostilities by state actors. Chemical terrorism is a broader phenomenon involving not only misuse of CWs but also of non-weaponised toxic compounds and intended strikes on industrial and social infrastructures with release of toxic, liquefied and inflammable chemicals. Nevertheless, the CWC is an important instrument in combating the most dangerous forms of international chemical terrorism. The effort of OPCW and mainly of SPs national authorities ensure that chemicals produced for peaceful purposes are not misused, provide some guarantees that terrorists will not be able to acquire or make their own CWs. That is why universality of the CWC and respective national implementation measures including comprehensive legislation are of utmost importance. The enforcement by all countries of the CWCs requirement to make the development, production, stockpiling, transfers and use of CWs illegal for anyone means that terrorist could be put on trial for violating the CWC. The OPCWs expertise and knowledge of CWs, verification regime and the system of assistance and protection under the CWC as a reflection of international co-operation are being put to use to prevent and respond to chemical terrorist strikes and thus considerably diminish their potential consequences. It can be added that pursuant to the UN SC Resolution 1540, all nations are obliged to take actions ensuring that non-State actors cannot develop, produce, use or trade CWs in the terms of the CWC. Current status of implementing the CWC is analysed with special emphasis on prevention of and response to terrorist chemical attacks.(author)

  6. Time evolution of the Clay Barrier Chemistry in a HLW deep geological disposal in granite

    International Nuclear Information System (INIS)

    Font, I.; Miguel, M. J.; Juncosa, R.

    2000-01-01

    The main goal of a high level waste geological disposal is to guarantee the waste isolation from the biosphere, locking them away into very deep geological formations. The best way to assure the isolation is by means of a multiple barrier system. These barriers, in a serial disposition, should assure the confinement function of the disposal system. Two kinds of barriers are considered: natural barriers (geological formations) and engineered barriers (waste form, container and backfilling and sealing materials). Bentonite is selected as backfilling and sealing materials for HLW disposal into granite formations, due to its very low permeability and its ability to fill the remaining spaces. bentonite has also other interesting properties, such as, the radionuclide retention capacity by sorption processes. Once the clay barrier has been placed, the saturation process starts. The granite groundwater fills up the voids of the bentonite and because of the chemical interactions, the groundwater chemical composition varies. Near field processes, such as canister corrosion, waste leaching and radionuclide release, strongly depends on the water chemical composition. Bentonite pore water composition is such a very important feature of the disposal system and its determination and its evolution have great relevance in the HLW deep geological disposal performance assessment. The process used for the determination of the clay barrier pore water chemistry temporal evolution, and its influence on the performance assessment, are presented in this paper. (Author)

  7. Revegetation of flue gas desulfurization sludge pond disposal sites

    International Nuclear Information System (INIS)

    Artiola, J.F.

    1994-12-01

    A comprehensive search of published literature was conducted to summarize research undertaken to date on revegetation of flue gas desulfurization (FGD) waste disposal ponds. A review of the physical and chemical properties of FGD sludges and wastes with similar characteristics is also included in order to determine the advantages and limitations of FGD sludge for plant growth. No specific guidelines have been developed for the revegetation of FGD sludge disposal sites. Survey studies showed that the wide-ranging composition of FGD wastes was determined primarily by the sulfur dioxide and other flue gas scrubbing processes used at powerplants. Sulfate rich (>90%CaSO 4 ) FGD sludges are physically and chemically more stable, and thus more amenable to revegetation. Because of lack of macronutrients and extremely limited microbial activity, FBD sludge ponds presented a poor plant growth environment without amendment. Studies showed the natural process of inoculation of the FGD sludge with soil microbes that promote plant growth be can after disposal but proceeded slowly. Revegetation studies reviewed showed that FGD sludges amended with soils supported a wider variety of plant species better and longer than abandoned FGD ponds. Two major types of plants have been successful in revegetation of FGD waste ponds and similar wastes: salt-tolerant plants and aquatic plants. A comprehensive list of plant species with potential for regetation of FGD sludge disposal pond sites is presented along with successful revegetation techniques

  8. [Chemical weapons and chemical terrorism].

    Science.gov (United States)

    Nakamura, Katsumi

    2005-10-01

    Chemical Weapons are kind of Weapons of Mass Destruction (WMD). They were used large quantities in WWI. Historically, large quantities usage like WWI was not recorded, but small usage has appeared now and then. Chemical weapons are so called "Nuclear weapon for poor countrys" because it's very easy to produce/possession being possible. They are categorized (1) Nerve Agents, (2) Blister Agents, (3) Cyanide (blood) Agents, (4) Pulmonary Agents, (5) Incapacitating Agents (6) Tear Agents from the viewpoint of human body interaction. In 1997 the Chemical Weapons Convention has taken effect. It prohibits chemical weapons development/production, and Organization for the Prohibition of Chemical Weapons (OPCW) verification regime contributes to the chemical weapons disposal. But possibility of possession/use of weapons of mass destruction by terrorist group represented in one by Matsumoto and Tokyo Subway Sarin Attack, So new chemical terrorism countermeasures are necessary.

  9. Magnox fuel dry storage and direct disposal assessment of CEGB/SSEB reports

    International Nuclear Information System (INIS)

    1987-12-01

    This report assesses the Boards' presented work in response to Recommendations 17 and 18 of the Environment Committee's First Report (Jan 86). The Boards have made an extensive study of the dry store design and also considered direct disposal. Their basic conclusion that the financial advantage is with continued reprocessing is accepted with the comment that their storage and disposal costs may be on the high side. The Boards statements on drying wet-stored fuel and on improvement of the fuel's chemical stability are accepted. The Boards coverage of fuel after disposal is considered to be too brief; the assessment expresses a more pessimistic view than the Boards' of the acceptability of direct disposal. (author)

  10. Fissuring-chemical damaging on transfers in concrete

    International Nuclear Information System (INIS)

    Tognazzi, C.

    1998-01-01

    Concrete is a material often use in the nuclear wastes disposal. The safety analysis of a long time wastes disposal with concrete requires to verify the concrete behaviour in water. As concretes generally have cracks, it is necessary to study the crack propagation influence on chemical degradation. In this paper, the author presents diffusion tests on fissured and/or chemical aged cement. The chemical degradation of the material leads to a supplementary porosity by the hydrates decalcification and increases its diffusivity. The cracking impact is less important and can be experimentally concealed. (A.L.B.)

  11. Roles of bentonite in radioactive waste disposal

    International Nuclear Information System (INIS)

    Suzuki, Keizo

    1995-01-01

    Bentonite is used in radioactive waste disposal from the following points; (1) properties (2) now utilization fields (3) how to use in radioactive waste disposal (4) how much consumption and deposits as source at the present time. Bentonite is produced as alteration products from pyroclastic rocks such as volcanic ash and ryolite, and is clay composed mainly smectite (montmorillonite in general). Therefore, special properties of bentonite such as swelling potential, rheological property, bonding ability, cation exchange capacity and absorption come mainly from properties of montmorillonite. Bentonite has numerous uses such as iron ore pelleizing, civil engineering, green sand molding, cat litter, agricultural chemicals and drilling mud. Consumption of bentonite is about 600-700 x 10 3 tons in Japan and about 10 x 10 6 tons in the world. Roles of bentonite to be expected in radioactive waste disposal are hydraulic conductivity, swelling potential, absorption, mechanical strength, ion diffusion capacity and long-term durability. These properties come from montmorillonite. (author)

  12. Behavior of cement paste as backfill in waste disposal boreholes

    International Nuclear Information System (INIS)

    Ferreira, Eduardo G.A.; Isiki, Vera L.K.; Miyamoto, Hissae; Marumo, Julio T.; Vicente, Roberto

    2011-01-01

    The Radioactive Waste Management Laboratory (GRR) at the Nuclear and Energy Research Institute (IPEN) in Sao Paulo, Brazil, is developing the concept a repository for disposition of disused sealed radioactive sources in a deep borehole, aiming at providing a feasible and inexpensive alternative for final disposal. A relevant fraction of the Brazilian inventory of sources has long half-life which prevents them to be disposed of in shallow ground disposal facilities. In the concept of repository under study, Portland cement paste is intended to be used as a backfill between the steel casing and the geological formation around the borehole. Cement paste will function as structural, an additional barrier against the migration of radionuclides outside the repository, and as a blockage against the transport of water between the different strata of the geological setting. The durability of cementitious materials under the conditions prevailing at the depth of disposal is as yet unknown. The objective of this research is to investigate the behavior of the cement paste and to estimate its service life. In this paper we present the results of mechanical strength measurements and chemical and mineralogical analysis of samples to detect the changes caused by radiation, temperature and aggressive chemicals present in ground water. Techniques of analysis included Inductively Coupled Plasma Atomic Emission Spectroscopy, Ion Chromatography, X-Ray Diffraction, and Thermo-Gravimetric Analysis. (author)

  13. High-level radioactive waste disposal type and theoretical analyses

    International Nuclear Information System (INIS)

    Lu Yingfa; Wu Yanchun; Luo Xianqi; Cui Yujun

    2006-01-01

    Study of high-level radioactive waste disposal is necessary for the nuclear electrical development; the determination of nuclear waste depository type is one of importance safety. Based on the high-level radioactive disposal type, the relative research subjects are proposed, then the fundamental research characteristics of nuclear waste disposition, for instance: mechanical and hydraulic properties of rock mass, saturated and unsaturated seepage, chemical behaviors, behavior of special soil, and gas behavior, etc. are introduced, the relative coupling equations are suggested, and a one dimensional result is proposed. (authors)

  14. Principal prerequisites and practice for using deep aquifers for disposal of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Pimenov, M.K.; Balukova, V.D.; Leontichuk, A.S.; Kokorin, I.N.; Yudin, F.P.; Rakov, N.A.

    1977-01-01

    One of the most promising methods of safe disposal of liquid radioactive wastes in the USSR is the creation of storage places in deep aquifers in zones of stagnant regime or the slow exchange of underground water. The results of investigations and disposal practices testify to the safety and efficiency of such a method of final waste disposal which fulfils the main requirements for protecting the environment. Geological formations and stratum-collectors may be studied and selected to secure localization of liquid radioactive wastes injected into them for many tens and even hundreds of thousand years. The main requirements and criteria which must be met by geological structures and stratum-collectors to ensure safe disposal of wastes are formulated. Waste disposal is realized only after a thorough scientific appreciation of health and safety of present and future generations with regard to the regime of disposal and physico-chemical processes depending on the compatibility of the wastes with rocks and stratal waters as well as on the period of time of waste exposure up to the maximum permissible concentrations. Positive and negative factors of the method are analysed. Methods of preparing waste for disposal and chemical methods of restoring the response of the holes, ways of effective remote control of disposal and environment, etc., are briefly discussed. The results of 10-12 years experimental and industrial exploitation of storage places for liquid radioactive wastes of low- and medium-level activity are presented. The results of enlarged field tests on disposal of high-level activity liquid wastes are described. Preliminary prediction calculations are shown to be confirmed with sufficient accuracy by the data on exploitation. (author)

  15. Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate

    International Nuclear Information System (INIS)

    Al Yaqout, Anwar F.

    2003-01-01

    Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14±1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85±0.19 million t representing 37.22±6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait

  16. Assessment of seeps in the vicinity of the Mexican Hat tailings disposal cell

    International Nuclear Information System (INIS)

    1990-10-01

    The Phase II remedial action at the Mexican Hat site began in September 1988, and involved the excavation, transportation, and placement of contaminated materials onto the lower tailings pile. These materials were from the upper tailings pile, portions of the lower tailings pile, off-pile contaminated areas, and demolition material stockpiled at the former-mill site. By December 1989, all of the contaminated soils on the upper tailings pile area and most of the off-pile windblown and waterborne contamination had been removed and placed on the lower pile. Since that time, several seeps have been observed near the site. These seeps and some previously identified seeps may be related to remedial action construction activities or the past disposal of mill tailings at the Mexican Hat site. The objectives of this report are to: summarize the geology and hydrostratigraphy of the site; discuss field investigation of the locations, chronology, and flow rates of the seeps; discuss background groundwater quality, tailings pore fluid characterization, and water quality of the seeps; identify possible sources of the seeps; interpret the data; make recommendations for continued site characterization and assessment

  17. Coffee Stirrers and Drinking Straws as Disposable Spatulas

    Science.gov (United States)

    Turano, Morgan A.; Lobuono, Cinzia; Kirschenbaum, Louis J.

    2015-01-01

    Although metal spatulas are damaged through everyday use and become discolored and corroded by chemical exposure, plastic drinking straws are inexpensive, sterile, and disposable, reducing the risk of cross-contamination during laboratory procedures. Drinking straws are also useful because they come in a variety of sizes; narrow sample containers…

  18. Disposal method of radioactive wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Fukazawa, Tetsuo.

    1986-01-01

    Purpose: To improve the safety of underground disposal of radioactive wastes for a long period of time by surrounding the periphery of the radioactive wastes with materials that can inhibit the migration of radioactive nuclides and are physically and chemically stable. Method: Hardening products prepared from a water-hardenable calcium silicate compound and an aqueous solution of alkali silicate have compression strength as comparable with that of concretes, high water tightness and adsorbing property to radioactive isotopes such as cobalt similar to that of concretes and they also show adsorption to cesium which is not adsorbed to concretes. Further, the kneaded slurry thereof is excellent in the workability and can be poured even into narrow gaps. Accordingly, by alternately charging granular radioactive wastes and this slurry before hardening into the ground, the radioactive wastes can be put to underground disposal stably with simple procedures. (Kamimura, M.)

  19. Physicochemical characterization of copper slag and alternatives of friendly environmental management

    Directory of Open Access Journals (Sweden)

    Sánchez M.

    2013-01-01

    Full Text Available Copper slags are usually considered a waste and characterized only by the final copper content. Large and increasing quantities are being produced and disposed of by stockpiling near the metallurgical plants. This paper stresses the importance of physico-chemical characterization when considering uses for slags and the possibility of recovering the valuable metals still remaining in this phase. The purpose of this work is to support and encourage a change in the classical perception of slag from a ‘waste’ to a ‘resource’; promote the development of new technologies for treatment to recover residual values and encourage a search for new uses; with the ultimate objective of eliminating slag stockpiles thereby diminishing the environmental impact of smelting operations. Some of the results of experimental laboratory work done by the authors and examples of commercial applications will be shown. A promising future for valorization and utilization of slags is expected and will provide an example when considering the use of all the other large quantities of wastes generated by the mining industry.

  20. Prediction of temperature and thermal inertia effect in the maturation stage and stockpiling of a large composting mass

    OpenAIRE

    Barrena Gómez, Raquel

    2006-01-01

    A macroscopic non-steady state energy balance was developed and solved for a composting pile of source-selected organic fraction of municipal solid waste during the maturation stage (13,500 kg of compost). Simulated temperature profiles correlated well with temperature experimental data (ranging from 50 to 70 °C) obtained during the maturation process for more than 50 days at full scale. Thermal inertia effect usually found in composting plants and associated to the stockpiling of large compo...

  1. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Science.gov (United States)

    2010-01-01

    ... DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.52 Land disposal... wastes by placing in disposal units which are sufficiently separated from disposal units for the other... between any buried waste and the disposal site boundary and beneath the disposed waste. The buffer zone...

  2. Preliminary disposal limits, plume interaction factors, and final disposal limits

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-11

    In the 2008 E-Area Performance Assessment (PA), each final disposal limit was constructed as the product of a preliminary disposal limit and a plume interaction factor. The following mathematical development demonstrates that performance objectives are generally expected to be satisfied with high confidence under practical PA scenarios using this method. However, radionuclides that experience significant decay between a disposal unit and the 100-meter boundary, such as H-3 and Sr-90, can challenge performance objectives, depending on the disposed-of waste composition, facility geometry, and the significance of the plume interaction factor. Pros and cons of analyzing single disposal units or multiple disposal units as a group in the preliminary disposal limits analysis are also identified.

  3. Household Hazardous Waste Disposal Project. Summary Report. Metro Toxicant Program Report No. 1A.

    Science.gov (United States)

    Ridgley, Susan M.; Galvin, David V.

    The Household Hazardous Waste Disposal Project was established as an interagency effort to reduce the level of toxicants entering the environment by developing a control plan for the safe disposal of small quantities of household chemicals. This summary report provides an overview of the aspects of this problem that were examined, and the steps…

  4. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea.

  5. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    International Nuclear Information System (INIS)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu

    2016-01-01

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea

  6. Engineered barrier durability: An issue for disposal near populated areas

    International Nuclear Information System (INIS)

    Porter, C.L.

    1995-01-01

    Under the current national policy for disposal of low-level radioactive waste (LLW) in the United States of America, each State is required to provide disposal capacity for the LLW generated within its borders. The formation of ''Compacts'' of several States is allowed if approved by Congress. Such forced regionalization of disposal facilities based on State boundaries results in some disposal facilities being sited near populated areas at locations with less than optimum site characteristics from a disposal standpoint. To compensate for this engineered barriers are included in the proposed designs. Portland cement based concrete (PCC), which is the dominant material for disposal vault designs, is degraded via many mechanisms, most of which are related to its permeability. The numerous uncertainties associated with the long-term performance of PCC has lead to many unsuccessful attempts to obtain public acceptance of proposed disposal facilities. These unsuccessful efforts have delayed establishing disposal capacity to the point that a crisis is looming on the horizon. This paper investigates the results of on-going research into the viability of commercially available, impermeable, mass-poured construction materials as an alternative to PCC in LLW disposal vaults. The results from testing and research on two such materials, concrete made from sulfur polymer cement (SPC) and ICOM (an epoxy based concrete) are reported. Material properties and test results include strength parameters, chemical resistance, porosity, permeability, deconability, radiation damage resistance, and biodegradation. The data indicates that with these alternative materials the uncertainties in predicting service life of an engineered barrier can be reduced

  7. Geochemical and Geophysical Study in a Degraded Area Used for Disposal of Sludge from a Water Treatment Plant

    International Nuclear Information System (INIS)

    Moreira, R.C.A.; Nunes, S.A.; Da Silva, D.R.; Lira, C.P.; Boaventura, G.R.; Do Nascimento, C.T.C.; Moreira, R.C.A.; Pinheiro, L.A.

    2011-01-01

    The effects of disposal of sludge from water treatment plant (WTS) in area damaged by laterite extraction and its consequences to soil and groundwater were investigated. Therefore, the presence and concentration of anthropogenic elements and chemical compounds were determinated. WTS disposal's influence was characterized by electroresistivity method. The WTS's geochemical dispersion was noticed in the first meters of the non saturated zone from the lending area. Lateritic profiles were characterized due to the large variation in chemical composition between the horizons. Infiltration and percolation of rainwater through the WTS have caused migration of total dissolved solids to the groundwater. WTS's disposing area has more similarities to local preserved vegetation than to gravel bed area. WTS can be considered a noninert residue if disposed in degraded areas located in regions with similar geological and hydrochemical characteristics.

  8. Scenarios of the TWRS low-level waste disposal program

    International Nuclear Information System (INIS)

    1994-10-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 Area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pretreating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste

  9. Alternative disposal options for alpha-mixed low-level waste

    International Nuclear Information System (INIS)

    Loomis, G.G.; Sherick, M.J.

    1995-01-01

    This paper presents several disposal options for the Department of Energy alpha-mixed low-level waste. The mixed nature of the waste favors thermally treating the waste to either an iron-enriched basalt or glass waste form, at which point a multitude of reasonable disposal options, including in-state disposal, are a possibility. Most notably, these waste forms will meet the land-ban restrictions. However, the thermal treatment of this waste involves considerable waste handling and complicated/expensive offgas systems with secondary waste management problems. In the United States, public perception of offgas systems in the radioactive incinerator area is unfavorable. The alternatives presented here are nonthermal in nature and involve homogenizing the waste with cryogenic techniques followed by complete encapsulation with a variety of chemical/grouting agents into retrievable waste forms. Once encapsulated, the waste forms are suitable for transport out of the state or for actual in-state disposal. This paper investigates variances that would have to be obtained and contrasts the alternative encapsulation idea with the thermal treatment option

  10. Alternative disposal options for alpha-mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, G.G.; Sherick, M.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    This paper presents several disposal options for the Department of Energy alpha-mixed low-level waste. The mixed nature of the waste favors thermally treating the waste to either an iron-enriched basalt or glass waste form, at which point a multitude of reasonable disposal options, including in-state disposal, are a possibility. Most notably, these waste forms will meet the land-ban restrictions. However, the thermal treatment of this waste involves considerable waste handling and complicated/expensive offgas, systems with secondary waste management problems. In the United States, public perception of off gas systems in the radioactive incinerator area is unfavorable. The alternatives presented here are nonthermal in nature and involve homogenizing the waste with cryogenic techniques followed by complete encapsulation with a variety of chemical/grouting agents into retrievable waste forms. Once encapsulated, the waste forms are suitable for transport out of the state or for actual in-state disposal. This paper investigates variances that would have to be obtained and contrasts the alternative encapsulation idea with the thermal treatment option.

  11. Disposal of radioactive waste from mining and processing of mineral sands

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1993-01-01

    All mineral sands products contain the naturally radioactive elements uranium and thorium and their daughters. The activity levels in the different minerals can vary widely and in the un mined state are frequently widely dispersed and add to the natural background radiation levels. Following mining, the minerals are concentrated to a stage where radiation levels can present an occupational hazard and disposal of waste can result in radiation doses in excess of the public limit. Chemical processing can release radioactive daughters, particularly radium, leading to the possibility of dispersal and resulting in widespread exposure of the public. The activity concentration in the waste can vary widely and different disposal options appropriate to the level of activity in the waste are needed. Disposal methods can range from dilution and dispersal of the material into the mine site, for untreated mine tailings, to off site disposal in custom built and engineered waste disposal facilities, for waste with high radionuclide content. The range of options for disposal of radioactive waste from mineral sands mining and processing is examined and the principles for deciding on the appropriate disposal option are discussed. The range of activities of waste from different downstream processing paths are identified and a simplified method of identifying potential waste disposal paths is suggested. 15 refs., 4 tabs

  12. Application of Generic Disposal System Models

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    This report describes specific GDSA activities in fiscal year 2015 (FY2015) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code (Hammond et al., 2011) and the Dakota uncertainty sampling and propagation code (Adams et al., 2013). Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through the engineered barriers and natural geologic barriers to a well location in an overlying or underlying aquifer. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.

  13. Advances in Geologic Disposal System Modeling and Application to Crystalline Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fascitelli, D. G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-22

    The Used Fuel Disposition Campaign (UFDC) of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of used nuclear fuel (UNF) and high-level nuclear waste (HLW). Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling (DOE 2011). These priorities are directly addressed in the UFDC Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media (e.g., salt, granite, clay, and deep borehole disposal). This report describes specific GDSA activities in fiscal year 2016 (FY 2016) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code and the Dakota uncertainty sampling and propagation code. Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.

  14. Disposable attenuated total reflection-infrared crystals from silicon wafer: a versatile approach to surface infrared spectroscopy.

    Science.gov (United States)

    Karabudak, Engin; Kas, Recep; Ogieglo, Wojciech; Rafieian, Damon; Schlautmann, Stefan; Lammertink, R G H; Gardeniers, Han J G E; Mul, Guido

    2013-01-02

    Attenuated total reflection-infrared (ATR-IR) spectroscopy is increasingly used to characterize solids and liquids as well as (catalytic) chemical conversion. Here we demonstrate that a piece of silicon wafer cut by a dicing machine or cleaved manually can be used as disposable internal reflection element (IRE) without the need for polishing and laborious edge preparation. Technical aspects, fundamental differences, and pros and cons of these novel disposable IREs and commercial IREs are discussed. The use of a crystal (the Si wafer) in a disposable manner enables simultaneous preparation and analysis of substrates and application of ATR spectroscopy in high temperature processes that may lead to irreversible interaction between the crystal and the substrate. As representative application examples, the disposable IREs were used to study high temperature thermal decomposition and chemical changes of polyvinyl alcohol (PVA) in a titania (TiO(2)) matrix and assemblies of 65-450 nm thick polystyrene (PS) films.

  15. Infiltration control for low-level radioactive solid waste disposal areas: an assessment

    International Nuclear Information System (INIS)

    Arora, H.S.

    1980-11-01

    The primary mode of radionuclide transport from shallow land-disposal sites for low-level wastes can be traced to infiltration of precipitation. This report examines the factors that affect surface water entry and movement in the ground and assesses available infiltration-control technology for solid-waste-disposal sites in the humid eastern portion of the United States. A survey of the literature suggests that a variety of flexible and rigid liner systems are available as barriers for the stored waste and would be effective in preventing water infiltration. Installation of near-surface seals of bentonite clay admixed with dispersive chemicals seem to offer the required durability and low permeability at a reasonable cost. The infiltration rate in a bentonite-sealed area may be further retarded by the application of dispersive chemicals that can be easily admixed with the surface soil. Because the effectiveness of a dispersive chemical for infiltration reduction is influenced by the physico-chemical properties of the soil, appropriate laboratory tests should be conducted prior to field application

  16. Military Munitions Waste Working Group report

    International Nuclear Information System (INIS)

    1993-01-01

    This report presents the findings of the Military Munitions Waste Working Group in its effort to achieve the goals directed under the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT Committee) for environmental restoration and waste management. The Military Munitions Waste Working Group identified the following seven areas of concern associated with the ordnance (energetics) waste stream: unexploded ordnance; stockpiled; disposed -- at known locations, i.e., disposal pits; discharged -- impact areas, unknown disposal sites; contaminated media; chemical sureties/weapons; biological weapons; munitions production; depleted uranium; and rocket motor and fuel disposal (open burn/open detonation). Because of time constraints, the Military Munitions Waste Working Group has focused on unexploded ordnance and contaminated media with the understanding that remaining waste streams will be considered as time permits. Contents of this report are as follows: executive summary; introduction; Military Munitions Waste Working Group charter; description of priority waste stream problems; shortcomings of existing approaches, processes and technologies; innovative approaches, processes and technologies, work force planning, training, and education issues relative to technology development and cleanup; criteria used to identify and screen potential demonstration projects; list of potential candidate demonstration projects for the DOIT committee decision/recommendation and appendices

  17. Military Munitions Waste Working Group report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-30

    This report presents the findings of the Military Munitions Waste Working Group in its effort to achieve the goals directed under the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT Committee) for environmental restoration and waste management. The Military Munitions Waste Working Group identified the following seven areas of concern associated with the ordnance (energetics) waste stream: unexploded ordnance; stockpiled; disposed -- at known locations, i.e., disposal pits; discharged -- impact areas, unknown disposal sites; contaminated media; chemical sureties/weapons; biological weapons; munitions production; depleted uranium; and rocket motor and fuel disposal (open burn/open detonation). Because of time constraints, the Military Munitions Waste Working Group has focused on unexploded ordnance and contaminated media with the understanding that remaining waste streams will be considered as time permits. Contents of this report are as follows: executive summary; introduction; Military Munitions Waste Working Group charter; description of priority waste stream problems; shortcomings of existing approaches, processes and technologies; innovative approaches, processes and technologies, work force planning, training, and education issues relative to technology development and cleanup; criteria used to identify and screen potential demonstration projects; list of potential candidate demonstration projects for the DOIT committee decision/recommendation and appendices.

  18. Project Swiftsure final report: Destruction of chemical agent waste at Defence Research Establishment Suffield. Special publication

    Energy Technology Data Exchange (ETDEWEB)

    McAndless, J.M.

    1994-04-01

    Project Swiftsure describes a three-year project at the Defence Research Establishment Suffield to safely destroy stockpiles of mustard lewisite, nerve agents and decontaminate scrap material which was stored on the DRES Experimental Proving Ground. Using both in-house and contracted resources, the agent waste was destroyed by chemical neutralization or incineration. With the exception of the arsenic byproducts from the lewisite neutralization process, all secondary waste generated by chemical neutralization was incinerated. Mustard in different forms was thermally destroyed using a transportable incinerator of commercial design. Extensive environmental monitoring and public consultation programs were conducted during the project. Results of the monitoring programs verified that the chemical warfare agents were destroyed in a safe, environmentally-responsible manner. jg p.329.

  19. Seventh symposium on coal mine drainage research. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Seventh Symposium on Coal Mine Drainage Research, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Seventeen papers from the proceedings have been entered individually into EDB and ERA. Topics covered include chemical reactions of pyrite oxidation and acid formation in spoil banks, abandoned mines, etc., formation of small acid lakes from the drainage and their neutralization by natural and other neutralization measures, trace elements in acid mine drainage, ground water contamination, limnology, effects of surface mined ground reclamation and neutralization, water purification and treatment, mining and coal preparation plant waste disposal, ash and fly ash disposal (to minimize leaching from the wastes), runoff from large coal storage stockpiles during storms (prevention of environmental effects by collection and neutralization by passing through an ash pond). (LTN)

  20. Innovative Concepts and Operational Techniques for the Strategic National Stockpile

    International Nuclear Information System (INIS)

    Adams, S. A.

    2007-01-01

    This presentation is to discuss the innovative concepts and operational techniques developed by the Center for Disease Control and Prevention's Division of Strategic National Stockpile (DSNS). The primary response model for the SNS is to move from secure strategic storage locations to an area of need within 12 hours to augment local resources. While this 12 hour response is appropriate for most threat scenarios, it clearly cannot meet the needs of first line responders who need to rapidly administer initial dosing of nerve agent antidote. To address the threat of nerve agent poisoning the DSNS developed the CHEMPACK Project which allows centralized SNS management forward placement within hundreds of local jurisdictions. Another variation from the primary mission of the DSNS is addressing the nation's potential shortfall in non-acute care bed capacity. To address this mission, the Federal Medical Station (FMS) program was created to build surge capability to meet a range of non-acute medical needs following a disaster. The FMS model is a pre-configured 250 bed unit that is deployable throughout the Nation and configured to respond rapidly. Operational techniques used to maximize product lifespan and efficacy will also be discussed.(author)

  1. Execution techniques for high-level radioactive waste disposal. 2. Fundamental concept of geological disposal and implementing approach of disposal project

    International Nuclear Information System (INIS)

    Kawanishi, Motoi; Komada, Hiroya; Tsuchino, Susumu; Shiozaki, Isao; Kitayama, Kazumi; Akasaka, Hidenari; Inagaki, Yusuke; Kawamura, Hideki

    1999-01-01

    The making high activity of the high-level radioactive waste disposal business shall be fully started after establishing of the implementing organization which is planned around 2000. Considering each step of disposal business, in this study, the implementation procedure for a series of disposal business such as the selection of the disposal site, the construction and operation of the disposal facility, the closure and decommissioning of the disposal facility and the management after closure, which are carried forward by the implementation body is discussed in detail from the technical viewpoint and an example of the master schedule is proposed. Furthermore, we investigate and propose the concept of the geological disposal which becomes important in carrying forward to making of the business of the disposal, such as the present site selection smoothly, the fundamental idea of the safe securing for disposal, the basic idea to get trust to the disposal technique and the geological environmental condition which is the basic condition of this whole study for the disposal business making. (author)

  2. 2005 dossier: clay. Tome: phenomenological evolution of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological processes taking place in an argilite-type geologic disposal facility for high-level and long-lived (HLLL) radioactive wastes. Content: 1 - introduction: goal, input data, time and space scales, long-time forecasting of the phenomenological evolution; 2 - the Meuse/Haute-Marne site, the HLLL wastes and the disposal concepts: impact of the repository architecture; 3 - initial state of the geologic environment prior to the building up of the repository: general framework, geologic formations, tectonics and fractures, surface environment, geologic synthesis; 4 - phenomenological processes: storage-related processes, geodynamics-related processes, time scales of processes and of radionuclides migration, independence and evolution similarities of the repository and of the geologic environment; 5 - heat loads: heat transfers between containers and geologic formations, spatial organization of the thermal load, for C-type wastes and spent fuels, for B-type wastes, synthesis of the repository thermal load; 6 - flows and liquid solution and gas transfers: hydraulic behaviour of surrounding Jurassic formations (Tithonian, Kimmeridgian, Callovian, Oxfordian); 7 - chemical phenomena: chemical evolution of ventilated facilities (alveoles, galleries, boreholes), chemical evolution of B-type waste alveoles and of gallery and borehole sealing after closure, far field chemical evolution of Callovo-Oxfordian argilites and of other surrounding formations; 8 - mechanical evolution of the disposal and of the surrounding geologic environment: creation of an initial excavated damaged zone (EDZ), mechanical evolution of ventilated galleries, alveoles and sealing before and after closure, large-scale mechanical evolution; 9 - geodynamical evolution of the Callovo-Oxfordian and other surrounding formations and of the surface environment: internal

  3. Grand Rounds: An Outbreak of Toxic Hepatitis among Industrial Waste Disposal Workers

    OpenAIRE

    Cheong, Hae-Kwan; Kim, Eun A; Choi, Jung-Keun; Choi, Sung-Bong; Suh, Jeong-Ill; Choi, Dae Seob; Kim, Jung Ran

    2006-01-01

    Context Industrial waste (which is composed of various toxic chemicals), changes to the disposal process, and addition of chemicals should all be monitored and controlled carefully in the industrial waste industry to reduce the health hazard to workers. Case presentation Five workers in an industrial waste plant developed acute toxic hepatitis, one of whom died after 3 months due to fulminant hepatitis. In the plant, we detected several chemicals with hepatotoxic potential, including pyridine...

  4. First Stabilization and Disposal of Radioactive Zinc Bromide at the SRS

    International Nuclear Information System (INIS)

    Denny, J.K.

    2003-01-01

    Facilities Disposition Projects (FDP) personnel at Savannah River Site (SRS) implement the Inactive Facility Risk Management Program to drive down risk and costs in SRS inactive facilities. The program includes cost-effective techniques to identify and dispose of hazardous chemicals and radioactive waste from inactive facilities, thereby ensuring adequate protection of the public, workers and the environment. In June 1998, FDP conducted an assessment of the inactive C-Reactor Facility to assure that chemical and radiological hazards had been identified and were being safely managed. The walkdown identified the need to mitigate a significant hazard associated with storing approximately 13,400 gallons of liquid radioactive Zinc Bromide in three aging railcar tankers outside of the facility. No preventive maintenance was being performed on the rusting tankers and a leak could send radioactive Zinc Bromide into an outfall and offsite to the Savannah River. In 2001, DOE-Savannah River (DOE- SR) funded the FDP to eliminate the identified hazard by disposing of the radioactive Zinc Bromide solution and the three contaminated railcar tankers. This paper describes the innovative, cost-effective approaches and technology used to perform the first stabilization and disposal of radioactive Zinc Bromide at SRS

  5. Preliminary Borehole Disposal In Medium Flow Hydrogeological Condition Using IAEA Screening Tools

    International Nuclear Information System (INIS)

    Nazran Harun; Mohd Abd Wahab Yusof; Norasalwa Zakaria; Mohd Zaidi Ibrahim; Muhammad Fathi Sujan

    2014-01-01

    A screening tool developed by International Atomic Energy Agency (IAEA) has been used to provide means of improving the capacity of Malaysian Nuclear Agency (Nuclear Malaysia) in assessing the potential sites for Borehole Disposal for Disused Sealed Radioactive Sources. It allows the isolation provided by the capsule and disposal container to be evaluated. In addition, it has a conservative model of radionuclide transport with no retardation of radionuclide. Hence, rapid decisions can be made by providing an early indication of the potential suitability of sites based on their hydro-chemical characteristics. The objective of this paper is to identify and determine the types and radionuclide activities of inventory that can be disposed in the borehole. The results of the analysis show the volume of gas doses occur from the disposal and time taken for the cement to be corroded. (author)

  6. Degradation Of Cementitious Materials Associated With Saltstone Disposal Units

    International Nuclear Information System (INIS)

    Flach, G. P; Smith, F. G. III

    2013-01-01

    The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed ''saltstone''. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of an SDF disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions. The nominal value (NV) is an intermediate result that is more probable than the conservative estimate

  7. Degradation Of Cementitious Materials Associated With Saltstone Disposal Units

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P; Smith, F. G. III

    2013-03-19

    The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed “saltstone”. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of an SDF disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions. The nominal value (NV) is an intermediate result that is more probable than the conservative

  8. Biologics industry challenges for developing diagnostic tests for the National Veterinary Stockpile.

    Science.gov (United States)

    Hardham, J M; Lamichhane, C M

    2013-01-01

    Veterinary diagnostic products generated ~$3 billion US dollars in global sales in 2010. This industry is poised to undergo tremendous changes in the next decade as technological advances move diagnostic products from the traditional laboratory-based and handheld immunologic assays towards highly technical, point of care devices with increased sensitivity, specificity, and complexity. Despite these opportunities for advancing diagnostic products, the industry continues to face numerous challenges in developing diagnostic products for emerging and foreign animal diseases. Because of the need to deliver a return on the investment, research and development dollars continue to be focused on infectious diseases that have a negative impact on current domestic herd health, production systems, or companion animal health. Overcoming the administrative, legal, fiscal, and technological barriers to provide veterinary diagnostic products for the National Veterinary Stockpile will reduce the threat of natural or intentional spread of foreign diseases and increase the security of the food supply in the US.

  9. Addendum to the Composite Analysis for the E-Area Vaults and Saltstone Disposal Facilities

    International Nuclear Information System (INIS)

    Cook, J.R.

    2002-01-01

    Revision 1 of the Composite Analysis (CA) Addendum has been prepared to respond to the U.S. Department of Energy (DOE) Low-Level Waste Disposal Facilities Federal Review Group review of the CA. This addendum to the composite analysis responds to the conditions of approval. The composite analysis was performed on the two active SRS low-level radioactive waste disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of the Savannah River Site and contains all of the waste disposal facilities, the chemical separation facilities and associated high-level waste storage facilities, as well as numerous other sources of radioactive material

  10. Expediting the commercial disposal option: Low-level radioactive waste shipments from the Mound Plant

    Energy Technology Data Exchange (ETDEWEB)

    Rice, S.; Rothman, R.

    1995-12-31

    In April, Envirocare of Utah, Inc., successfully commenced operation of its mixed waste treatment operation. A mixed waste which was (a) radioactive, (b) listed as a hazardous waste under the Resource Conservation and Recovery Act (RCRA), and (c) prohibited from land disposal was treated using Envirocare`s full-scale Mixed Waste Treatment Facility. The treatment system involved application of chemical fixation/stabilization technologies to reduce the leachability of the waste to meet applicable concentration-based RCRA treatment standards. In 1988, Envirocare became the first licensed facility for the disposal of naturally occurring radioactive material. In 1990, Envirocare received a RCRA Part B permit for commercial mixed waste storage and disposal. In 1994, Envirocare was awarded a contract for the disposal of DOE mixed wastes. Envirocare`s RCRA Part B permit allows for the receipt, storage, treatment, and disposal of mixed wastes that do not meet the land-disposal treatment standards of 40 CFR (Code of Federal Regulations) 268. Envirocare has successfully received, managed, and disposed of naturally occurring radioactive material, low-activity radioactive waste, and mixed waste from government and private generators.

  11. TECHNO – ECONOMIC ACCEPTABILITY ANALISYS OF WASTE DISPOSAL BY INJECTION INTO APPROPRIATE FORMATION

    Directory of Open Access Journals (Sweden)

    Vladislav Brkić

    2013-12-01

    Full Text Available During exploration and production of oil and natural gas, various types of waste must be disposed in a permanent and safe way. There is a range of methods for processing and disposal of waste, such as disposal into landfills, solidification, namely chemical stabilization, thermal processing, appropriate formation injections uncovered by a deep well, disposal into salt domes and bioremediation. The method of waste disposal into appropriate formations is a method where strict geological and technical criteria must be satisfied when applied. A fundamental scientific hypothesis has been formulated whereby economic acceptability of the waste injection method, as a main method for waste disposal, is to be shown by an economic evaluation. The results of this research are relevant since there has been an intention in Croatia and worldwide to abandon wells permanently due to oil and gas reservoirs depletion and therefore it is essential to estimate economic impacts of the waste injection method application. In that way, profitability of using existing wells for waste disposal in oil industry has been increased, leading to the improvement of petroleum company’s business activities (the paper is published in Croatian.

  12. Used Fuel Disposal in Crystalline Rocks. FY15 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-20

    The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media. Chapter headings are as follows: Fuel matrix degradation model and its integration with performance assessments, Investigation of thermal effects on the chemical behavior of clays, Investigation of uranium diffusion and retardation in bentonite, Long-term diffusion of U(VI) in bentonite: dependence on density, Sorption and desorption of plutonium by bentonite, Dissolution of plutonium intrinsic colloids in the presence of clay and as a function of temperature, Laboratory investigation of colloid-facilitated transport of cesium by bentonite colloids in a crystalline rock system, Development and demonstration of discrete fracture network model, Fracture continuum model and its comparison with discrete fracture network model.

  13. Anatomy of a decision III: Evaluation of national disposal at sea program action level efficacy considering 2 chemical action levels.

    Science.gov (United States)

    Apitz, Sabine E; Vivian, Chris; Agius, Suzanne

    2017-11-01

    The potential performance (i.e., ability to separate nontoxic from toxic sediments) of a range of international Disposal at Sea (DaS) chemical Action Levels (ALs) was compared using a sediment chemical and toxicological database. The use of chemistry alone (without the use of further lines of evidence) did not perform well at reducing costs and protecting the environment. Although some approaches for interpreting AL1 results are very effective at filtering out the majority of acutely toxic sediments, without subsequent toxicological assessment, a large proportion of nontoxic sediments would be unnecessarily subjected to treatment and containment, and a number of sublethally toxic sediments would be missed. Even the best tiered systems that collect and evaluate information sequentially resulted in the failure to catch at least some sublethally or acutely toxic sediments. None of the AL2s examined were particularly effective in distinguishing between non-, sublethally, or acutely toxic sediments. Thus, this review did not support the use of chemical AL2s to predict the degree to which sediments will be toxic. Integr Environ Assess Manag 2017;13:1086-1099.© 2017 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  14. Criteria for long-term hazard assessment of chemotoxic and radiotoxic waste disposal

    International Nuclear Information System (INIS)

    Merz, E.R.

    1988-01-01

    Present-day human activities generate chemotoxic as well as radiotoxic wastes. They must likewise be considered as extremely hazardous. If wastes are composed simultaneously of both kinds, as may occur in nuclear facility operations or nuclear medical applications, the material is called mixed waste. Whereas radioactive waste management and disposal have received considerable attention in the past, less care has been devoted to chemotoxic wastes. Also, mixed wastes may pose problems diverging from singly composed materials. The disposal of mixed wastes is not sufficiently well regulated in the Federal Republic of Germany. Currently, non-radioactive hazardous wastes are mostly disposed of by shallow land burial. Much more rigorous safety precautions are applied with regard to radioactive wastes. According to the orders of the German Federal Government, their disposal is only permitted in continental underground repositories. These repository requirements for radioactive waste disposal should be superior to the near-surface disposal facilities. At present, federal and state legislation do not permit hazardous chemical and radioactive wastes to be deposited simultaneously. It is doubtful whether this instruction is always suitable and also justified. This paper presents a modified strategy

  15. Trench water chemistry at commercially operated low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Pietrzak, R.F.; Dayal, R.; Kinsley, M.T.; Clinton, J.; Czyscinski, K.S.; Weiss, A.J.

    1982-01-01

    Water samples from the disposal trenches of two low-level radioactive-waste-disposal sites were analyzed for their inorganic, organic, and radionuclide contents. Since oxidation of the trench waters can occur during their movement along the groundwater flow path, experiments were performed to measure the chemical and physical changes that occur in these waters upon oxidation. Low concentrations of chelating agents, shown to exist in trench waters, may be responsible for keeping radionuclides, particularly 60 Co, in solution. 4 figures, 5 tables

  16. Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

    International Nuclear Information System (INIS)

    Kwak, Kyung Kil; Ji, Young Yong

    2010-12-01

    The radioactive waste form should be meet the waste acceptance criteria of national regulation and disposal site specification. We carried out a characterization of rad waste form, especially the characteristics of radioactivity, mechanical and physical-chemical properties in various rad waste forms. But asphalt products is not acceptable waste form at disposal site. Thus we are change the product materials. We select the development of the new process or new materials. The asphalt process is treatment of concentrated liquid and spent-resin and that we decide the Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

  17. Monitoring methods for nuclear fuel waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R B; Barnard, J W; Bird, G A [and others

    1997-11-01

    This report examines a variety of monitoring activities that would likely be involved in a nuclear fuel waste disposal project, during the various stages of its implementation. These activities would include geosphere, environmental, vault performance, radiological, safeguards, security and community socioeconomic and health monitoring. Geosphere monitoring would begin in the siting stage and would continue at least until the closure stage. It would include monitoring of regional and local seismic activity, and monitoring of physical, chemical and microbiological properties of groundwater in rock and overburden around and in the vault. Environmental monitoring would also begin in the siting stage, focusing initially on baseline studies of plants, animals, soil and meteorology, and later concentrating on monitoring for changes from these benchmarks in subsequent stages. Sampling designs would be developed to detect changes in levels of contaminants in biota, water and air, soil and sediments at and around the disposal facility. Vault performance monitoring would include monitoring of stress and deformation in the rock hosting the disposal vault, with particular emphasis on fracture propagation and dilation in the zone of damaged rock surrounding excavations. A vault component test area would allow long-term observation of containers in an environment similar to the working vault, providing information on container corrosion mechanisms and rates, and the physical, chemical and thermal performance of the surrounding sealing materials and rock. During the operation stage, radiological monitoring would focus on protecting workers from radiation fields and loose contamination, which could be inhaled or ingested. Operational zones would be established to delineate specific hazards to workers, and movement of personnel and materials between zones would be monitored with radiation detectors. External exposures to radiation fields would be monitored with dosimeters worn by

  18. Analysis of Biota to Evaluate the Risks Associated with Chemical Warfare Materiel Present in Sea-Disposed Military Munitions to Human Health and the Environment

    Science.gov (United States)

    Briggs, C. W.; Bissonnette, M. C.; Edwards, M.; Shjegstad, S. M.

    2016-12-01

    Thousands of 100-lb M47A series bombs containing sulfur mustard were disposed in the ocean following World War II yet few studies have been conducted at sites in excess of 250 m, the depth where most discarded military munitions (DMM) were disposed. The Hawai`i Undersea Military Munitions Assessment (HUMMA) project was conducted to evaluate the risk from chemical warfare materiel (CWM) in DMM to human health, measuring ecological differences between the disposal area and nearby but otherwise similar areas, and evaluating the most efficient platforms for surveying DMM sea-disposal sites located at depths between 400-650 m. During the 2014 HUMMA Sampling Survey, the Jason 2 remotely operated vehicle was used to collect data. Shrimp were collected and analyzed to assess the potential for bioaccumulation of CWM, energetics and metals from munitions. No CWM was detected in H. ensifer tissue samples, indicating bioaccumulation is not occurring. Low levels of 2,4,6-trinitrotoluene, 4-amino-2,6-­dinitrotoluene, 1,3,5-trinitrobenzene, nitrobenzene, arsenic, copper, and lead were detected and the concentrations were not significantly different at DMM and control sites. No visible deformities, eroded fins, lesions, or tumors were observed on the shrimp living in the vicinity of M47A bombs. Given these results and under current and potential future uses of the HUMMA study area, health risks to likely receptors are within EPA acceptable levels. Photographic data and benthic infauna analysis were used to study benthic organisms that lived on or near munitions. There was no statistically distinguishable difference between organism distributions in dense and sparse munitions fields. Conventional munitions were found to have the greatest number of benthic infauna individuals, with control sites generally having the least number of individuals. This is consistent with the benthic macro-fauna analysis, which shows that munitions provide habitat.

  19. Disposal safety

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    International consensus does not seem to be necessary or appropriate for many of the issues concerned with the safety of nuclear waste disposal. International interaction on the technical aspects of disposal has been extensive, and this interaction has contributed greatly to development of a consensus technical infrastructure for disposal. This infrastructure provides a common and firm base for regulatory, political, and social actions in each nation

  20. French surface disposal experience. The disposal of large waste

    International Nuclear Information System (INIS)

    Dutzer, Michel; Lecoq, Pascal; Duret, Franck; Mandoki, Robert

    2006-01-01

    More than 90 percent of the volume of radioactive waste that are generated in France can be managed in surface disposal facilities. Two facilities are presently operated by ANDRA: the Centre de l'Aube disposal facility that is dedicated to low and intermediate short lived waste and the Morvilliers facility for very low level waste. The Centre de l'Aube facility was designed at the end of the years 1980 to replace the Centre de la Manche facility that ended operation in 1994. In order to achieve as low external exposure as possible for workers it was decided to use remote handling systems as much as possible. Therefore it was necessary to standardize the types of waste containers. But taking into account the fact that these waste were conditioned in existing facilities, it was not possible to change a major part of existing packages. As a consequence, 6 mobile roofs were constructed to handle 12 different types of waste packages in the disposal vaults. The scope of Centre de l'Aube was mainly to dispose operational waste. However some packages, as 5 or 10 m 3 metallic boxes, could be used for larger waste generated by decommissioning activities. The corresponding flow was supposed to be small. After the first years of operations, it appeared interesting to develop special procedures to dispose specific large waste in order to avoid external exposure costly cutting works in the generating facilities. A 40 m 3 box and a large remote handling device were disposed in vaults that were currently used for other types of packages. Such a technique could not be used for the disposal of vessel heads that were replaced in 55 pressurised water power reactors. The duration of disposal and conditioning operation was not compatible with the flow of standard packages that were delivered in the vaults. Therefore a specific type of vault was designed, including handling and conditioning equipment. The first pressure vessel head was delivered on the 29 of July 2004, 6 heads have been

  1. The disposal of Canada's nuclear fuel waste: engineering for a disposal facility

    International Nuclear Information System (INIS)

    Simmons, G.R.; Baumgartner, P.

    1994-01-01

    This report presents some general considerations for engineering a nuclear fuel waste disposal facility, alternative disposal-vault concepts and arrangements, and a conceptual design of a used-fuel disposal centre that was used to assess the technical feasibility, costs and potential effects of disposal. The general considerations and alternative disposal-vault arrangements are presented to show that options are available to allow the design to be adapted to actual site conditions. The conceptual design for a used-fuel disposal centre includes descriptions of the two major components of the disposal facility, the Used-Fuel Packaging Plant and the disposal vault; the ancillary facilities and services needed to carry out the operations are also identified. The development of the disposal facility, its operation, its decommissioning, and the reclamation of the site are discussed. The costs, labour requirements and schedules used to assess socioeconomic effects and that may be used to assess the cost burden of waste disposal to the consumer of nuclear energy are estimated. The Canadian Nuclear Fuel Waste Management Program is funded jointly by AECL and Ontario Hydro under the auspices of the CANDU Owners Group. (author)

  2. Recent Canadian experience in chemical warfare agent destruction: An overview. Suffield report No. 626

    Energy Technology Data Exchange (ETDEWEB)

    McAndless, J.M.

    1995-12-31

    This paper reviews a project in which stockpiles of aged mustard (bis-2-chloroethyl sulfide), lewisite (2-chlorovinyl-dichloro arsine), nerve agents, and contaminated scrap metal were incinerated or chemically neutralized in a safe, environmentally responsible manner. Sections of the paper describe the public consultation program conducted prior to destruction operations, the environmental assessment of the destruction projects, the environmental protection plan implemented to eliminate or mitigate risks with respect to the installation and operation of the destruction equipment, the environmental monitoring procedures, the agent destruction operations, and the destruction process performance, including incinerator emissions.

  3. Disposal of olive mill wastewater with DC arc plasma method.

    Science.gov (United States)

    Ibrahimoglu, Beycan; Yilmazoglu, M Zeki

    2018-07-01

    Olive mill wastewater is an industrial waste, generated as a byproduct of olive oil production process and generally contains components such as organic matter, suspended solids, oil, and grease. Although various methods have been developed to achieve the disposal of this industrial wastewater, due to the low cost, the most common disposal application is the passive storage in the lagoons. The main objective of this study is to reduce pollution parameters in olive mill wastewater and draw water to discharge limits by using plasma technology. Plasma-assisted disposal of olive mill wastewater method could be an alternative disposal technique when considering potential utilization of treated water in agricultural areas and economic value of flammable plasma gas which is the byproduct of disposal process. According to the experimental results, the rates of COD (chemical oxygen demand) and BOD (biological oxygen demand) of olive mill wastewater are decreased by 94.42% and 95.37%, respectively. The dissolved oxygen amount is increased from 0.36 to 6.97 mg/l. In addition, plasma gas with high H 2 content and treated water that can be used in agricultural areas for irrigation are obtained from non-dischargeable wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Granite disposal of U.S. high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A.; Mariner, Paul E.; Lee, Joon H.; Hardin, Ernest L.; Goldstein, Barry; Hansen, Francis D.; Price, Ronald H.; Lord, Anna Snider

    2011-08-01

    This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, based on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site

  5. Stockpile stewardship and management programmatic environmental impact statement data for the no action and phase-out alternatives at the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    1996-07-01

    Alternatives for the Oak Ridge Y-12 Plant are being considered under the Stockpile Stewardship and Management Program (SSM). The three alternatives under consideration include: continuing the secondary manufacturing operations in a down-sized footprint; no action; and phasing out the secondary manufacturing operations at Y-12. This report provides specific environmental data requested for the Y-12 Plant alternatives of no action and phase out

  6. Geological Disposal of Nuclear Waste: Investigating the Thermo-Hygro-Mechanical-Chemical (THMC) Coupled Processes at the Waste Canister- Bentonite Barrier Interface

    Science.gov (United States)

    Davies, C. W.; Davie, D. C.; Charles, D. A.

    2015-12-01

    Geological disposal of nuclear waste is being increasingly considered to deal with the growing volume of waste resulting from the nuclear legacy of numerous nations. Within the UK there is 650,000 cubic meters of waste safely stored and managed in near-surface interim facilities but with no conclusive permanent disposal route. A Geological Disposal Facility with incorporated Engineered Barrier Systems are currently being considered as a permanent waste management solution (Fig.1). This research focuses on the EBS bentonite buffer/waste canister interface, and experimentally replicates key environmental phases that would occur after canister emplacement. This progresses understanding of the temporal evolution of the EBS and the associated impact on its engineering, mineralogical and physicochemical state and considers any consequences for the EBS safety functions of containment and isolation. Correlation of engineering properties to the physicochemical state is the focus of this research. Changes to geotechnical properties such as Atterberg limits, swelling pressure and swelling kinetics are measured after laboratory exposure to THMC variables from interface and batch experiments. Factors affecting the barrier, post closure, include corrosion product interaction, precipitation of silica, near-field chemical environment, groundwater salinity and temperature. Results show that increasing groundwater salinity has a direct impact on the buffer, reducing swelling capacity and plasticity index by up to 80%. Similarly, thermal loading reduces swelling capacity by 23% and plasticity index by 5%. Bentonite/steel interaction studies show corrosion precipitates diffusing into compacted bentonite up to 3mm from the interface over a 4 month exposure (increasing with temperature), with reduction in swelling capacity in the affected zone, probably due to the development of poorly crystalline iron oxides. These results indicate that groundwater conditions, temperature and corrosion

  7. The geography, geology and mining history of Rum Jungle

    International Nuclear Information System (INIS)

    Lowson, R.T.

    1975-01-01

    The geology and geography of the Rum Jungle region are described. A description is given of the effect on the environment of mining operations such as ore processing, effluent disposal and the leaching of stockpiles and overburden heaps. (author)

  8. Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Cho, Dong Geun; Kook, Dong Hak; Lee, Min Soo; Choi, Heui Joo

    2011-01-01

    There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over 100 .deg. C were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

  9. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  10. Review of problems associated with the utilization of available thorium resources

    International Nuclear Information System (INIS)

    O'Hara, F.A.; Gray, R.A.

    1975-01-01

    Portions of the U. S. Thorium Stockpile are in danger of literally ''going to waste.'' These raw materials, with their high concentrations of thorium, are valuable resources which can be utilized to fuel thermal converter reactors. A portion of this stockpile was transferred to Mound Laboratory in the early 1950's. In 1972, the material was determined to be excess to all present and foreseeable future national requirements. Disposal by burial was recommended by the AEC. Following a detailed study of the potential usefulness of the material and the costs associated with land burial, the AEC agreed to offer the material on surplus sale. Risks and benefits associated with retention of the thorium stockpile are described. Nuclear Materials Managers are uniquely situated to exercise influence and direct the future course of remaining thorium reserves

  11. Waste and Disposal: Research and Development

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.

    2002-01-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2001 in three topical areas are reported on: performance assessments (PA), waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. SCK-CEN partcipated in several PA projects supported by the European Commission. In the BENIPA project, the role of bentonite barriers in performance assessments of HLW disposal systems is evaluated. The applicability of various output variables (concentrations, fluxes) as performance and safety indicators is investigated in the SPIN project. The BORIS project investigates the chemical behaviour and the migration of radionuclides at the Borehole injection site at Krasnoyarsk-26 and Tomsk-7. SCK-CEN contributed to an impact assessment of a radium storage facility at Olen (Belgium) and conducted PA for site-specific concepts regarding surface or deep disposal of low-level waste at the nuclear zones in the Mol-Dessel region. As regards R and D on waste forms and packages, SCK continued research on the compatbility of various waste forms (bituminised waste, vitrified waste, spent fuel) with geological disposal in clay. Main emphasis in 2001 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to

  12. Waste and Disposal: Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P

    2002-04-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2001 in three topical areas are reported on: performance assessments (PA), waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. SCK-CEN partcipated in several PA projects supported by the European Commission. In the BENIPA project, the role of bentonite barriers in performance assessments of HLW disposal systems is evaluated. The applicability of various output variables (concentrations, fluxes) as performance and safety indicators is investigated in the SPIN project. The BORIS project investigates the chemical behaviour and the migration of radionuclides at the Borehole injection site at Krasnoyarsk-26 and Tomsk-7. SCK-CEN contributed to an impact assessment of a radium storage facility at Olen (Belgium) and conducted PA for site-specific concepts regarding surface or deep disposal of low-level waste at the nuclear zones in the Mol-Dessel region. As regards R and D on waste forms and packages, SCK continued research on the compatbility of various waste forms (bituminised waste, vitrified waste, spent fuel) with geological disposal in clay. Main emphasis in 2001 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to

  13. Low level waste disposal

    International Nuclear Information System (INIS)

    Barthoux, A.

    1985-01-01

    Final disposal of low level wastes has been carried out for 15 years on the shallow land disposal of the Manche in the north west of France. Final participant in the nuclear energy cycle, ANDRA has set up a new waste management system from the production center (organization of the waste collection) to the disposal site including the setting up of a transport network, the development of assessment, additional conditioning, interim storage, the management of the disposal center, records of the location and characteristics of the disposed wastes, site selection surveys for future disposals and a public information Department. 80 000 waste packages representing a volume of 20 000 m 3 are thus managed and disposed of each year on the shallow land disposal. The disposal of low level wastes is carried out according to their category and activity level: - in tumuli for very low level wastes, - in monoliths, a concrete structure, of the packaging does not provide enough protection against radioactivity [fr

  14. Disposal of the radioactive contaminated soils from the NPP site

    International Nuclear Information System (INIS)

    Matusek, I.; Plsko, J.; Sajtlava, M.; Hulla, J.; Kovacs, T.

    2004-01-01

    Disposal of contaminated soils at site of NPP is one of the most important task within the frame of research and development tasks of the NPP decommissioning. The works within this field can be seen in several areas. Considered soil activity monitoring, observation of its geo-technical and geo-chemical parameters, volume balance, research of the radio nuclides behaviour in the soil and simulation of their influence on the surrounding environment with special emphasis on underground water, project studies and construction of the disposal facility for contaminated soils. This work presents overview of gained results in the mentioned areas of the research and development. (author)

  15. DEVELOPMENT, QUALIFICATION, AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE

    International Nuclear Information System (INIS)

    Sams, T.L.; Edge, J.A.; Swanberg, D.J.; Robbins, R.A.

    2011-01-01

    Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

  16. Waste disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure

  17. Modeling of geo-material durability and contaminant fate in recycling or disposal of industrial and radioactive waste

    International Nuclear Information System (INIS)

    De Windt, L.

    2011-01-01

    This report deals with the HYTEC model, coupling chemical and hydrodynamic processes, and its application to the recycling of inorganic wastes and the disposal of hazardous and radioactive wastes. A common feature is the assessment of geo-material durability while submitted to chemical disturbances by their industrial or natural environment and, reciprocally, the quantification of contaminant fate in soils and aquifers. Research papers in a first section numerically oriented, HYTEC is validated by means of an intercomparison exercise based on oxidative UO 2 dissolution and the subsequent migration of U species in subsurface environments. A numerical approach of leaching tests is also discussed. Several researches based on HYTEC follows. The evolution of the cement/clay interface is simulated in the framework of the multi-barrier system of radioactive waste disposal and the Tournemire engineering analog; discriminating between the physical and chemical key processes. The physico-chemical processes of cement biodegradation by fungi are investigated with a focus on acidic hydrolysis and complexation by biogenic carboxylic acids. Modeling of source-terms and ageing with respect to contaminant migration is discussed in the case of the chemical alteration of spent fuel pellets under disposal conditions by considering radiolytic dissolution, inhibiting effect and radioactive decay, and by analyzing the effect of fractures on the containment properties of subsurface disposal facilities of stabilized/solidified waste. Leaching lab experiments applied to steel slag and the chemical evolution of leachate from MSWI sub-bases of two pilot roads over 10 years are eventually modelled to better estimate the environmental impact of such recycling scenarios. On-going research In the straight lines of the modeling of radioactive waste disposal, a first perspective is to investigate the transient states driven by thermal gradient and water re-saturation of the near-field barriers and

  18. Electrochemical corrosion studies on a selected carbon steel for application in nuclear waste disposal containers: Influence of chemical species in brines on corrosion

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Smailos, E.

    1994-04-01

    In previous corrosion studies, carbon steels were identified as promising materials for the manufacture of long-lived high-level waste containers that could act as an engineered barrier in a rock-salt repository. In this paper, the influence of chemical species, potentially present in salt brines, on the electrochemical corrosion behavior of the preselected fine-grained steel TStE 355 was studied. The steel was examined at 90 C in a disposal relevant NaCl-rich brine containing various species (Br - , I - , Cu 2+ , Mn 2+ , S 2- , B(OH )4 - and Fe 3+ ) at concentrations between 10 -5 M/I and 10 -1 M/I. (orig.) [de

  19. Scenarios of the TWRS low-level waste disposal program. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pre-treating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste

  20. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  1. Hybrid disposal systems and nitrogen removal in individual sewage disposal systems

    Energy Technology Data Exchange (ETDEWEB)

    Franks, A.L.

    1993-06-01

    The use of individual disposal systems in ground-water basins that have adverse salt balance conditions and/or geologically unsuitable locations, has become a major problem in many areas of the world. There has been much research in design of systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of the treated waste in areas with adverse geologic conditions and systems for the removal of nitrogen and phosphorus prior to percolation to the ground water. This paper outlines the history of development and rationale for design and construction of individual sewage disposal systems and describes the designs and limitations of the hybrid and denitrification units. The disposal systems described include Mounds, Evapotranspiration and Evapotranspiration/Infiltration systems. The denitrification units include those using methanol, sulfur and limestone, gray water and secondary treated wastewater for energy sources.

  2. The disposal of orphan wastes using the greater confinement disposal concept

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H.; Dickman, P.T.

    1991-01-01

    In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ''home'' for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ''special-case'' or ''orphan'' wastes. This paper describes an ongoing project sponsored by the DOE's Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs

  3. Reliability Impact of Stockpile Aging: Stress Voiding; TOPICAL

    International Nuclear Information System (INIS)

    ROBINSON, DAVID G.

    1999-01-01

    The objective of this research is to statistically characterize the aging of integrated circuit interconnects. This report supersedes the stress void aging characterization presented in SAND99-0975, ''Reliability Degradation Due to Stockpile Aging,'' by the same author. The physics of the stress voiding, before and after wafer processing have been recently characterized by F. G. Yost in SAND99-0601, ''Stress Voiding during Wafer Processing''. The current effort extends this research to account for uncertainties in grain size, storage temperature, void spacing and initial residual stress and their impact on interconnect failure after wafer processing. The sensitivity of the life estimates to these uncertainties is also investigated. Various methods for characterizing the probability of failure of a conductor line were investigated including: Latin hypercube sampling (LHS), quasi-Monte Carlo sampling (qMC), as well as various analytical methods such as the advanced mean value (Ah/IV) method. The comparison was aided by the use of the Cassandra uncertainty analysis library. It was found that the only viable uncertainty analysis methods were those based on either LHS or quasi-Monte Carlo sampling. Analytical methods such as AMV could not be applied due to the nature of the stress voiding problem. The qMC method was chosen since it provided smaller estimation error for a given number of samples. The preliminary results indicate that the reliability of integrated circuits due to stress voiding is very sensitive to the underlying uncertainties associated with grain size and void spacing. In particular, accurate characterization of IC reliability depends heavily on not only the frost and second moments of the uncertainty distribution, but more specifically the unique form of the underlying distribution

  4. Dose and risk assessment for intrusion into mixed waste disposal sites

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Aaberg, R.L.

    1991-10-01

    Sites previously used for disposal of radioactive and hazardous chemical materials have resulted in situations that pose a potential threat to humans from inadvertent intrusion. An example generic scenario analysis was developed to demonstrate the evaluation of potential exposure to either cleanup workers or members of the public who intrude into buried waste containing both radioactive and hazardous chemical contaminants. The example scenarios consist of a collection of exposure routes (or pathways) with specific modeling assumptions for well-drilling and for excavation to construct buildings. These scenarios are used to describe conceptually some potential patterns of activity by non-protected human beings during intrusion into mixed-waste disposal sites. The dose from exposure to radioactive materials is calculated using the GENII software system and converted to risk by using factors from ICRP Publication 60. The hazard assessment for nonradioactive materials is performed using recent guidelines from the US Environmental Protection Agency (EPA). The example results are in the form of cancer risk for carcinogens and radiation exposure

  5. Shale disposal of U.S. high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Sassani, David Carl; Stone, Charles Michael; Hansen, Francis D.; Hardin, Ernest L.; Dewers, Thomas A.; Martinez, Mario J.; Rechard, Robert Paul; Sobolik, Steven Ronald; Freeze, Geoffrey A.; Cygan, Randall Timothy; Gaither, Katherine N.; Holland, John Francis; Brady, Patrick Vane

    2010-05-01

    This report evaluates the feasibility of high-level radioactive waste disposal in shale within the United States. The U.S. has many possible clay/shale/argillite basins with positive attributes for permanent disposal. Similar geologic formations have been extensively studied by international programs with largely positive results, over significant ranges of the most important material characteristics including permeability, rheology, and sorptive potential. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in shale media. We develop scoping performance analyses, based on the applicable features, events, and processes identified by international investigators, to support a generic conclusion regarding post-closure safety. Requisite assumptions for these analyses include waste characteristics, disposal concepts, and important properties of the geologic formation. We then apply lessons learned from Sandia experience on the Waste Isolation Pilot Project and the Yucca Mountain Project to develop a disposal strategy should a shale repository be considered as an alternative disposal pathway in the U.S. Disposal of high-level radioactive waste in suitable shale formations is attractive because the material is essentially impermeable and self-sealing, conditions are chemically reducing, and sorption tends to prevent radionuclide transport. Vertically and laterally extensive shale and clay formations exist in multiple locations in the contiguous 48 states. Thermal-hydrologic-mechanical calculations indicate that temperatures near emplaced waste packages can be maintained below boiling and will decay to within a few degrees of the ambient temperature within a few decades (or longer depending on the waste form). Construction effects, ventilation, and the thermal pulse will lead to clay dehydration and deformation, confined to an excavation disturbed zone within

  6. A study on possible use of Urtica dioica (common nettle) plant as polonium (210)Po and lead (210)Pb contamination biomonitor in the area of phosphogypsum stockpile.

    Science.gov (United States)

    Olszewski, Grzegorz; Boryło, Alicja; Skwarzec, Bogdan

    2016-04-01

    The aim of this study was to test a possible use of Urtica dioica (common nettle) plant as a biomonitor of polonium (210)Po and lead (210)Pb contamination near phosphogypsum stacks by determining concentrations of these radionuclides in samples collected from the area of phosphogypsum stockpile in Wiślinka (northern Poland). The (210)Po and (210)Pb contents in roots depended on their concentrations in soils. Bioconcentration factor values from soil to root of the plant did not depend on (210)Po and (210)Pb contents in soils that leads to the conclusion that different polonium and lead species have different affinities to U. dioica plants. The main sources of both analyzed radionuclides in green parts of plants are wet and dry air deposition and transportation from soil. The values of (210)Po/(210)Pb activity ratio indicate natural origin of these radioisotopes in analyzed plants. (210)Po and (210)Pb concentration in U. dioica roots is negatively weakly correlated with distance from phosphogypsum stockpile.

  7. Proceedings of the 1981 subseabed disposal program. Annual workshop

    International Nuclear Information System (INIS)

    1982-01-01

    The 1981 Annual Workshop was the twelfth meeting of the principal investigators and program management personnel participating in the Subseabed Disposal Program (SDP). The first workshop was held in June 1973, to address the development of a program (initially known as Ocean Basin Floors Program) to assess the deep sea disposal of nuclear wastes. Workshops were held semi-annually until late 1977. Since November 1977, the workshops have been conducted following the end of each fiscal year so that the program participants could review and critique the total scope of work. This volume contains a synopsis, as given by each Technical Program Coordinator, abstracts of each of the talks, and copies of the visual materials, as presented by each of the principal investigators, for each of the technical elements of the SDP for the fiscal year 1981. The talks were grouped under the following categories; general topics; site studies; thermal response studies; emplacement studies; systems analysis; chemical response studies; biological oceanography studies; physical oceanographic studies; instrumentation development; transportation studies; social environment; and international seabed disposal

  8. Proceedings of the 1981 subseabed disposal program. Annual workshop

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The 1981 Annual Workshop was the twelfth meeting of the principal investigators and program management personnel participating in the Subseabed Disposal Program (SDP). The first workshop was held in June 1973, to address the development of a program (initially known as Ocean Basin Floors Program) to assess the deep sea disposal of nuclear wastes. Workshops were held semi-annually until late 1977. Since November 1977, the workshops have been conducted following the end of each fiscal year so that the program participants could review and critique the total scope of work. This volume contains a synopsis, as given by each Technical Program Coordinator, abstracts of each of the talks, and copies of the visual materials, as presented by each of the principal investigators, for each of the technical elements of the SDP for the fiscal year 1981. The talks were grouped under the following categories; general topics; site studies; thermal response studies; emplacement studies; systems analysis; chemical response studies; biological oceanography studies; physical oceanographic studies; instrumentation development; transportation studies; social environment; and international seabed disposal.

  9. Nuclear chemistry research for the safe disposal of nuclear waste

    International Nuclear Information System (INIS)

    Fanghaenel, Thomas

    2011-01-01

    The safe disposal of high-level nuclear waste and spent nuclear fuel is of key importance for the future sustainable development of nuclear energy. Concepts foresee the isolation of the nuclear waste in deep geological formations. The long-term radiotoxicity of nuclear waste is dominated by plutonium and the minor actinides. Hence it is essential for the performance assessment of a nuclear waste disposal to understand the chemical behaviour of actinides in a repository system. The aqueous chemistry and thermodynamics of actinides is rather complex in particular due to their very rich redox chemistry. Recent results of our detailed study of the Plutonium and Neptunium redox - and complexation behaviour are presented and discussed. (author)

  10. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  11. High-level waste disposal, ethics and thermodynamics

    Science.gov (United States)

    Schwartz, Michael O.

    2008-06-01

    Moral philosophy applied to nuclear waste disposal can be linked to paradigmatic science. Simple thermodynamic principles tell us something about rightness or wrongness of our action. Ethical judgement can be orientated towards the chemical compatibility between waste container and geological repository. A container-repository system as close as possible to thermodynamic equilibrium is ethically acceptable. It aims at unlimited stability, similar to the stability of natural metal deposits within the Earth’s crust. The practicability of the guideline can be demonstrated.

  12. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched {sup 235}U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched {sup 235}U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing.

  13. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    International Nuclear Information System (INIS)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched 235 U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched 235 U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing

  14. Proposal of a SiC disposal canister for very deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo; Lee, Minsoo; Lee, Jong-Youl; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper authors proposed a silicon carbide, SiC, disposal canister for the DBD concept in Korea. A. Kerber et al. first proposed the SiC canister for a geological disposal of HLW, CANDU or HTR spent nuclear fuels. SiC has some drawbacks in welding or manufacturing a large canister. Thus, we designed a double layered disposal canister consisting of a stainless steel outer layer and a SiC inner layer. KAERI has been interested in developing a very deep borehole disposal (DBD) of HLW generated from pyroprocessing of PWR spent nuclear fuel and supported the relevant R and D with very limited its own budget. KAERI team reviewed the DBD concept proposed by Sandia National Laboratories (SNL) and developed its own concept. The SNL concept was based on the steel disposal canister. The authors developed a new technology called cold spray coating method to manufacture a copper-cast iron disposal canister for a geological disposal of high level waste in Korea. With this method, 8 mm thin copper canister with 400 mm in diameter and 1200 mm in height was made. In general, they do not give any credit on the lifetime of a disposal canister in DBD concept unlike the geological disposal. In such case, the expensive copper canister should be replaced with another one. We designed a disposal canister using SiC for DBD. According to an experience in manufacturing a small size canister, the fabrication of a large-size one is a challenge. Also, welding of SiC canister is not easy. Several pathways are being paved to overcome it.

  15. Research on geological disposal: R and D concept on geological disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The objective on geological disposal of high-level radioactive wastes are to ensure the long term radiological protection of the human and his environment in accordance with current internationally agreed radiation protection principles. The principle of geological disposal is to settle the high-level wastes in deep underground so as to isolate them from the human and his environment considering the existence of groundwater. Japan is currently in the stage of assessing technical feasibility of geological disposal to the extent practicable. In accordance with the AEC (Atomic Energy Commission) policy in 1989, PNC (Power Reactor and Nuclear Fuel Development Corporation) has conducted the research and development on geological disposal in three areas: 1) studies of geological environment, 2) research and development of disposal technology, and 3) performance assessment study. (author)

  16. Radiological Operational Safety Verification for LILW Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Youl [FNC Technology, SNU, Seoul (Korea, Republic of); Jeong, Seung Young; Kim, Byung Soo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2011-10-15

    The successful implementation of radioactive waste repository program depends on scientific and technical aspects of excellent safety strategy as well as on societal aspects such as stakeholder acceptance and confidence. Monitoring is considered as key element in serving both ends. It covers all stages of the disposal process from site selection to institutional monitoring after the repository is closed. Basically, the purpose of the monitoring of radioactive waste disposal facility is not to reveal any increase of radioactivity due to the repository, but to provide reassurance and confirmation that the repository is fulfilling its passive safety purpose as an initial disposal concept and that long-term safety driven by regulatory requirements is ensured throughout the entire lifetime of disposal facility including post-closure phase. Five principal objectives of monitoring of geological disposal are summarized by IAEA-TECDOC-1208 as follows 1) Supporting management decisions in a staged programme of repository development: 2) Strengthening understanding of system behavior: 3) Societal decision making: 4) Accumulating an environmental database: 5) Nuclear safeguards (if repository contains fissile material, i.e., spent fuel or plutonium-rich waste) Based on the results of detailed studies of the above objectives and related phenomena, 6 categories of potential monitoring parameters are determined as follows: (1) degradation of repository structures, (2) behavior of the waste package and its associated buffer material, (3) near field chemical interactions between introduced materials, groundwater and host rock, (4) chemical and physical changes to the surrounding geosphere, (5) provision of an environmental database, and (6) nuclear safeguards. Typical monitoring parameters include temperature (heat), water level, pore-water and moisture content (groundwater), rock pressure, fractures, displacement and deformation (stress), water quality chemistry and dissolved

  17. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  18. Disposal of radioactive and other hazardous wastes

    International Nuclear Information System (INIS)

    Boge, R.; Bergman, C.; Bergvall, S.; Gyllander, C.

    1989-01-01

    The purpose of the workshop was discuss legal, scientific and practical aspects of disposal of low- and intermediate-level radioactive waste and other types of hazardous waste. During the workshop the non-radioactive wastes discussed were mainly wastes from energy production, but also industrial, chemical and household wastes. The workshop gave the participants the opportunity to exchange information on policies, national strategies and other important matters. A number of invited papers were presented and the participants brought background papers, describing the national situation, that were used in the working groups. One of the main aims of the workshop was to discuss if the same basic philosophy as that used in radiation protection could be used in the assessment of disposal of non-radioactive waste, as well as to come up with identifications of areas for future work and to propose fields for research and international cooperation. The main text of the report consists of a summary of the discussions and the conclusions reached by the workshop

  19. The Role of the Two-Component System BaeSR in Disposing Chemicals through Regulating Transporter Systems in Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Ming-Feng Lin

    Full Text Available Bacterial two-component regulatory systems (TCSs facilitate changes in gene expression in response to environmental stimuli. TCS BaeR regulons influence tigecycline susceptibility in Acinetobacter baumannii through positively regulating the pump genes adeA and adeB. In this study, we demonstrate that an additional two transport systems, AdeIJK and MacAB-TolC, are also regulated by BaeSR. In the wild type and clinical tigecycline-resistant A. baumannii strains, gene expression of AdeIJK and MacAB-TolC increased after tigecycline induction, implicating their importance to tigecycline resistance in addition to AdeABC. Phenotypic microarray results showed that A. baumannii is vulnerable to certain chemicals, especially tannic acid, after deleting baeR, which was confirmed using the spot assay. The wild-type strain of A. baumannii also exhibited 1.6-fold and 4.4-fold increase in gene expression of adeJ and macB in the medium with 100 μg/mL tannic acid, but the increase was fully inhibited by baeR deletion. An electrophoretic motility shift assay based on an interaction between His-BaeR and the adeA, adeI and macA promoter regions did not demonstrate direct binding. In conclusion, A. baumannii can use the TCS BaeSR in disposing chemicals, such as tannic acid and tigecycline, through regulating the efflux pumps.

  20. History of geological disposal concept (3). Implementation phase of geological disposal (2000 upward)

    International Nuclear Information System (INIS)

    Masuda, Sumio; Sakuma, Hideki; Umeki, Hiroyuki

    2015-01-01

    Important standards and concept about geological disposal have been arranged as an international common base and are being generalized. The authors overview the concept of geological disposal, and would like this paper to help arouse broad discussions for promoting the implementation plan of geological disposal projects in the future. In recent years, the scientific and technological rationality of geological disposal has been recognized internationally. With the addition of discussions from social viewpoints such as ethics, economy, etc., geological disposal projects are in the stage of starting after establishment of social consensus. As an international common base, the following consolidated and systematized items have been presented as indispensable elements in promoting business projects: (1) step-by-step approach, (2) safety case, (3) reversibility and recovery potential, and (4) trust building and communications. This paper outlines the contents of the following cases, where international common base was reflected on the geological disposal projects in Japan: (1) final disposal method and safety regulations, and (2) impact of the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Station accident on geological disposal plan. (A.O.)

  1. Proceedings of a workshop on physical oceanography related to the subseabed disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Marietta, M.G.

    1981-04-01

    At this workshop a group of expert scientists: (1) assessed the current state of knowledge with regard to the physical oceanographic questions that must be answered generally if high level nuclear waste is to be disposed of on or under the seabed; (2) discussed physical oceanographic science necessarily related to the US Subseabed Disposal Program; (3) recommended necessary research; and (4) identified other ongoing programs with which important liaisons should be made and continued. This report is a collection of workshop presentations, and recommendations, and a synthesis of topical group recommendations into a unified statement of research needs. The US Seabed Disposal Program is described. The goal is to assess the technical, environmental and engineering feasibility of seabed disposal. The environmental studies program will assess possible ecosystem and health effects from radionuclides which may be released due to accidental leakage. Discussion on the following topics are also included: bottom boundary layer; mixing across isopycnal surfaces; circulation modeling; mesoscale dispersion; deep circulation of the Pacific Ocean; vertical transport at edges; instrumentation; chemical oceanography; plutonium distribution in the Pacific; biology report; chemical dumping report; and low-level waste report

  2. Effect of water treatment additives on lime softening residual trace chemical composition--implications for disposal and reuse.

    Science.gov (United States)

    Cheng, Weizhi; Roessler, Justin; Blaisi, Nawaf I; Townsend, Timothy G

    2014-12-01

    Drinking water treatment residues (WTR) offer potential benefits when recycled through land application. The current guidance in Florida, US allows for unrestricted land application of lime softening WTR; alum and ferric WTR require additional evaluation of total and leachable concentrations of select trace metals prior to land application. In some cases a mixed WTR is produced when lime softening is accompanied by the addition of a coagulant or other treatment chemical; applicability of the current guidance is unclear. The objective of this research was to characterize the total and leachable chemical content of WTR from Florida facilities that utilize multiple treatment chemicals. Lime and mixed lime WTR samples were collected from 18 water treatment facilities in Florida. Total and leachable concentrations of the WTR were measured. To assess the potential for disposal of mixed WTR as clean fill below the water table, leaching tests were conducted at multiple liquid to solid ratios and under reducing conditions. The results were compared to risk-based soil and groundwater contamination thresholds. Total metal concentrations of WTR were found to be below Florida soil contaminant thresholds with Fe found in the highest abundance at a concentration of 3600 mg/kg-dry. Aluminum was the only element that exceeded the Florida groundwater contaminant thresholds using SPLP (95% UCL = 0.23 mg/L; risk threshold = 0.2 mg/L). Tests under reducing conditions showed elevated concentrations of Fe and Mn, ranging from 1 to 3 orders of magnitude higher than SPLP leachates. Mixed lime WTR concentrations (total and leachable) were lower than the ferric and alum WTR concentrations, supporting that mixed WTR are appropriately represented as lime WTR. Testing of WTR under reducing conditions demonstrated the potential for release of certain trace metals (Fe, Al, Mn) above applicable regulatory thresholds; additional evaluation is needed to assess management options where

  3. Radioactive waste disposal sites: Two successful closures at Tinker Air Force Base

    International Nuclear Information System (INIS)

    McKenzie, G.; Mohatt, J.V.; Kowall, S.J.; Jarvis, M.F.

    1993-06-01

    This article describes remediation and closure of two radioactive waste disposal sites at Tinker Air Force Base, Oklahoma, making them exemption regulatory control. The approach consisted of careful exhumation and assessment of soils in sites expected to be contaminated based on historical documentation, word of mouth, and geophysical surveys; removal of buried objects that had gamma radiation exposure levels above background; and confirmation that the soil containing residual radium-226 was below an activity level equal to no more than a 10 mrem/yr annual dose equivalent. In addition, 4464 kg of chemically contaminated excavated soils were removed for disposal. After remediation, the sites met standards for unrestricted use. These sites were two of the first three Air Force radioactive disposal sites to be closed and were the first to be closed under Draft NUREG/CR-5512

  4. Selection of Computer Codes for Shallow Land Waste Disposal in PPTA Serpong

    International Nuclear Information System (INIS)

    Syahrir

    1996-01-01

    Selection of Computer Codes for Shallow Land Waste Disposal in PPTA Serpong. Models and computer codes have been selected for safety assessment of near surface waste disposal facility. This paper provides a summary and overview of the methodology and codes selected. The methodology allows analyses of dose to individuals from offsite releases under normal conditions as well as on-site doses to inadvertent intruders. A demonstration in the case of shallow land waste disposal in Nuclear Research Establishment are in Serpong has been given for normal release scenario. The assessment includes infiltration of rainfall, source-term, ground water (well) and surface water transport, food-chain and dosimetry. The results show dose history of maximally exposed individuals. The codes used are VS2DT, PAGAN and GENII. The application of 1 m silt loam as a moisture barrier cover decreases flow in the disposal unit by a factor of 27. The selected radionuclides show variety of dose histories according to their chemical and physical characteristics and behavior in the environment

  5. Reentry planning: The technical basis for offsite recovery following warfare agent contamination

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.P.; Munro, N.B.

    1990-04-01

    In the event on an unplanned release of chemical agent during any stage of Chemical Stockpile Disposal Program (CSDP), the potential exists for contamination of drinking water, forage crops, grains, garden produce and livestock. Persistent agents, such as VX or sulfur mustard, pose the greatest human health concern for reentry. The purpose of this technical support study is to provide information and analyses that can be used by federal, state and local emergency planners in determining the safety or reentry to, as well as the potential for recovery of, contaminated or suspect areas beyond the installation boundary. Guidelines for disposition of livestock, agricultural crops and personal/real property are summarized. Advisories for ingestion of food crops, water, meat and milk from the affected zones are proposed. This document does not address potential adverse effects to, or agent contamination of, wild species of plants or animals. 80 refs., 4 figs., 29 tabs.

  6. High density thermite mixture for shaped charge ordnance disposal

    Directory of Open Access Journals (Sweden)

    Tamer Elshenawy

    2017-10-01

    Full Text Available The effect of thermite mixture based on aluminum and ferric oxides for ammunition neutralization has been studied and tested. Thermochemical calculations have been carried out for different percentage of Al using Chemical Equilibrium Code to expect the highest performance thermite mixture used for shaped charge ordnance disposal. Densities and enthalpy of different formulations have been calculated and demonstrated. The optimized thermite formulation has been prepared experimentally using cold iso-static pressing technique, which exhibited relatively high density and high burning rate thermite mixture. The produced green product compacted powder mixture was tested against small caliber shaped charge bomblet for neutralization. Theoretical and experimental results showed that the prepared thermite mixture containing 33% of aluminum as a fuel with ferric oxide can be successfully used for shaped charge ordnance disposal.

  7. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  8. Environmental protection, a task of chemical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Schlachter, H

    1980-12-01

    The environmental burden in air and water in Germany is surveyed. The terms 'eco-unobjectionable technology' and 'disposal technology' are then considered with the aid of examples. These are fundamental chemical engineering approaches for reducing or eliminating environmental burdens due to industrial production processes. 'Eco-unobjectionable processes' are those in which undesired pollutants are not even formed, i.e. when possible emissions are eliminated at source. If this is only partly possible, or impossible, then disposal measures are adopted. This means removal of unavoidable pollutants from waste gases and waste water, and the disposal of other wastes.

  9. Geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sato, Tsutomu

    2000-01-01

    For disposing method of radioactive wastes, various feasibilities are investigated at every nations and international organizations using atomic energy, various methods such as disposal to cosmic space, disposal to ice sheet at the South Pole and so forth, disposal into ocean bed or its sediments, and disposal into ground have been examined. It is, however, impossible institutionally at present, to have large risk on accident in the disposal to cosmic space, to be prohibited by the South Pole Treaty on the disposal to ice sheet at the South Pole, and to be prohibited by the treaty on prevention of oceanic pollution due to the disposal of wastes and so forth on the disposal into oceanic bed or its sediments (London Treaty). Against them, the ground disposal is thought to be the most powerful method internationally from some reasons shown as follows: no burden to the next generation because of no need in long-term management by human beings; safety based on scientific forecasting; disposal in own nation; application of accumulated technologies on present mining industries, civil engineering, and so forth to construction of a disposal facility; and, possibility to take out wastes again, if required. For the ground disposal, wastes must be buried into the ground and evaluated their safety for long terms. It is a big subject to be taken initiative by engineers on geoscience who have quantified some phenomena in the ground and at ultra long term. (G.K.)

  10. Toxicity of harbour canal sediments before dredging and after off shore disposal

    NARCIS (Netherlands)

    Van den Hurk, P.; Eertman, R.H.M.; Stronkhorst, J.

    1997-01-01

    Dredge material from an entrance waterway to the port of Rotterdam and sediments from the North Sea off-shore disposal site were tested for toxicity using three different sediment bioassays, The goals of the study were to evaluate if bioassays generate useful additional information to chemical based

  11. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  12. Environmental Restoration Disposal Facility waste acceptance criteria. Revision 1

    International Nuclear Information System (INIS)

    Corriveau, C.E.

    1996-01-01

    The Environmental Restoration Disposal Facility (ERDF) is designed to be an isolation structure for low-level radioactive remediation waste, chemically contaminated remediation waste, and remediation waste that contains both chemical and radioactive constituents (i.e., mixed remediation waste) produced during environmental remediation of Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) past-practice units at the Hanford Site. Remedial action wastes, which will become a structural component of the ERDF, include bulk soil, demolition debris, and miscellaneous wastes from burial grounds. These wastes may originate from CERCLA past-practice sites (i.e., operable units) in the 100 Areas, the 200 Areas, and the 300 Area of the Hanford Site

  13. Waste disposal: preliminary studies

    International Nuclear Information System (INIS)

    Carvalho, J.F. de.

    1983-01-01

    The problem of high level radioactive waste disposal is analyzed, suggesting an alternative for the final waste disposal from irradiated fuel elements. A methodology for determining the temperature field around an underground disposal facility is presented. (E.G.) [pt

  14. Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization (40 CFR (section) 761.75[c])

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions

    2002-01-01

    This initial report is being submitted pursuant to Title 40 Code of Federal Regulations (CFR) (section) 761.75(c) to request authorization to allow the disposal of transuranic (TRU) wastes containing polychlorinated biphenyls (PCBs) which are duly regulated under the Toxic Substances Control Act (TSCA). Approval of this initial report will not affect the disposal of TRU or TRU mixed wastes that do not contain PCBs. This initial report also demonstrates how the Waste Isolation Pilot Plant (WIPP) meets or exceeds the technical standards for a Chemical Waste Landfill. Approval of this request will allow the U.S. Department of Energy (DOE) to dispose of approximately 88,000 cubic feet (ft3) (2,500 cubic meters [m3]) of TRU wastes containing PCBs subject to regulation under the TSCA. This approval will include only those PCB/TRU wastes, which the TSCA regulations allow for disposal of the PCB component in municipal solid waste facilities or chemical waste landfills (e.g., PCB remediation waste, PC B articles, and bulk PCB product waste). Disposal of TRU waste by the DOE is congressionally mandated in Public Law 102-579 (as amended by the National Defense Authorization Act for Fiscal Year 1997, Pub. L. 104-201, referred to as the WIPP Land Withdrawal Act [LWA]). Portions of the TRU waste inventory contain hazardous waste constituents regulated under 40 CFR Parts 260 through 279, and/or PCBs and PCB Items regulated under 40 CFR Part 761. Therefore, the DOE TRU waste program must address the disposal requirements for these hazardous waste constituents and PCBs. To facilitate the disposal of TRU wastes containing hazardous waste constituents, the owner/operators received a Hazardous Waste Facility Permit (HWFP) from the New Mexico Environment Department (NMED) on October 27, 1999. The permit allows the disposal of TRU wastes subject to hazardous waste disposal requirements (TRU mixed waste). Informational copies of this permit and other referenced documents are available

  15. The impact of an automated dose-dispensing scheme on user compliance, medication understanding, and medication stockpiles

    DEFF Research Database (Denmark)

    Larsen, Anna Bira; Haugbølle, Lotte Stig

    2007-01-01

    the assumed user benefits. Neither Danish nor international studies dealt with users' perspective on ADD in general or with respect to the pinpointed benefits, and thus exploration was needed. OBJECTIVES: The objective of this article is to respond to the following research question: How does ADD affect users......' handling and consumption of medication in terms of compliance behavior, and how does the assumption of user benefits made by health professionals and legislators measure up to users' experiences with ADD? METHODS: The results built on a secondary analysis of 9 qualitative interviews with a varied selection...... understanding, nor does it automatically eliminate stockpiles of old medication in users' homes. The gap between the perspectives of users and health professionals makes a compelling case for considering users' voices in the development and implementation of future health technologies....

  16. Disposal of unwanted pesticides in Stellenbosch, South Africa

    International Nuclear Information System (INIS)

    Aqiel Dalvie, Mohamed; Africa, Algernon; London, Leslie

    2006-01-01

    Background: Unwanted pesticides in developing countries are major environmental health threats. This study followed-up a previous audit of unwanted and obsolete pesticides on farms in a rural district of South Africa six years after a National Retrieval Project (NPR) was undertaken. Methods: A descriptive survey of 37 farms that had been in possession of unwanted pesticides in a 1995 survey and a purposive sample of 34 neighbouring farms, was carried out. The survey data included farm details; details of unwanted pesticide stocks, volumes of empty containers and safety and hygiene of pesticide stores. In addition, management was asked if they had been informed about and participated in the 1997 NPR and similarly whether they were aware of the retrieval planned by the African Stockpiles Programme (ASP). Results: Forty (56%) farms were in possession of obsolete pesticides of which 24 (59%) were farms that had unwanted stocks in the previous survey. There were more than 9 tonnes of these pesticides, 50% more than in the previous survey, including 20 chemicals banned, withdrawn or restricted in South Africa or classified as WHO Class I toxicity. Over 2800 kg of pesticides (30%) were not identifiable. None of the farms participated in the NPR, although 47 knew of the initiative. Only six farmers (9%) knew of the ASP initiative. Fifty-nine farms (83%) had empty containers on the premises. Most pesticide stores (67%) had floors contaminated with chemicals. Conclusion: The survey found that despite the NPR, the problem of unwanted pesticides in the study area and probably throughout South Africa has deteriorated. National and international policies should control the problem at source and encourage more sustainable agriculture

  17. High density thermite mixture for shaped charge ordnance disposal

    OpenAIRE

    Tamer Elshenawy; Salah Soliman; Ahmed Hawass

    2017-01-01

    The effect of thermite mixture based on aluminum and ferric oxides for ammunition neutralization has been studied and tested. Thermochemical calculations have been carried out for different percentage of Al using Chemical Equilibrium Code to expect the highest performance thermite mixture used for shaped charge ordnance disposal. Densities and enthalpy of different formulations have been calculated and demonstrated. The optimized thermite formulation has been prepared experimentally using col...

  18. Less is Better. Laboratory Chemical Management for Waste Reduction.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    An objective of the American Chemical Society is to promote alternatives to landfilling for the disposal of laboratory chemical wastes. One method is to reduce the amount of chemicals that become wastes. This is the basis for the "less is better" philosophy. This bulletin discusses various techniques involved in purchasing control,…

  19. Measurement of chemical leaching potential of sulfate from landfill disposed sulfate containing wastes.

    Science.gov (United States)

    Sun, Wenjie; Barlaz, Morton A

    2015-02-01

    A number of sulfate-containing wastes are disposed in municipal solid wastes (MSW) landfills including residues from coal, wood, and MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, the sulfate can be reduced to hydrogen sulfide which is problematic for several reasons including its low odor threshold, toxicity, and corrosive nature. The overall objective of this study was to evaluate existing protocols for the quantification of total leachable sulfate from solid samples and to compare their effectiveness and efficiency with a new protocol described in this study. Methods compared include two existing acid extraction protocols commonly used in the U.S., a pH neutral protocol that requires multiple changes of the leaching solution, and a new acid extraction method. The new acid extraction method was shown to be simple and effective to measure the leaching potential of sulfate from a range of landfill disposed sulfate-containing wastes. However, the acid extraction methods do not distinguish between sulfate and other forms of sulfur and are thus most useful when sulfate is the only form of sulfur present. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Long-Term Performance of Silo Concrete in Low- and Intermediate-Level Waste (LILW) Disposal Facility

    International Nuclear Information System (INIS)

    Jung, Hae Ryong; Kwon, Ki Jung; Lee, Seung Hyun; Lee, Sung Bok; Jeong, Yi Yeong; Yoon, Eui Sik; Kim, Do Gyeum

    2012-01-01

    Concrete has been considered one of the engineered barriers in the geological disposal facility for low- and intermediate-level wastes (LILW). The concrete plays major role as structural support, groundwater infiltration barrier, and transport barrier of radionuclides dissolved from radioactive wastes. It also works as a chemical barrier due to its high pH condition. However, the performance of the concrete structure decrease over a period of time because of several physical and chemical processes. After a long period of time in the future, the concrete would lose its effectiveness as a barrier against groundwater inflow and the release of radionuclides. An subsurface environment below the frost depth should be favorable for concrete longevity as temperature and moisture variation should be minimal, significantly reducing the potential of cracking due to drying shrinkage and thermal expansion and contraction. Therefore, the concrete structures of LILW disposal facilities below groundwater table are expected to have relatively longer service life than those of near-surface or surface concrete structures. LILW in Korea is considered to be disposed of in the Wolsong LILW Disposal Center which is under construction in geological formation. 100,000 waste packages are expected to be disposed in the 6 concrete silos below EL -80m in the Wolsong LILW Disposal Center as first stage. The concrete silo has been considered the main engineered barrier which plays a role to inhibit water inflow and the release of radionuclides to the environments. Although a number of processes are responsible for the degradation of the silo concrete, it is concluded that a reinforcing steel corrosion cause the failure of the silo concrete. Therefore, a concrete silo failure time is calculated based on a corrosion initiation time which takes for chloride ions to penetrate through the concrete cover, and a corrosion propagation time. This paper aims to analyze the concrete failure time in the

  1. Long-Term Performance of Silo Concrete in Low- and Intermediate-Level Waste (LILW) Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hae Ryong; Kwon, Ki Jung; Lee, Seung Hyun; Lee, Sung Bok; Jeong, Yi Yeong [Korea Radioactive-waste Management Corporation, Daejeon (Korea, Republic of); Yoon, Eui Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Do Gyeum [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2012-05-15

    Concrete has been considered one of the engineered barriers in the geological disposal facility for low- and intermediate-level wastes (LILW). The concrete plays major role as structural support, groundwater infiltration barrier, and transport barrier of radionuclides dissolved from radioactive wastes. It also works as a chemical barrier due to its high pH condition. However, the performance of the concrete structure decrease over a period of time because of several physical and chemical processes. After a long period of time in the future, the concrete would lose its effectiveness as a barrier against groundwater inflow and the release of radionuclides. An subsurface environment below the frost depth should be favorable for concrete longevity as temperature and moisture variation should be minimal, significantly reducing the potential of cracking due to drying shrinkage and thermal expansion and contraction. Therefore, the concrete structures of LILW disposal facilities below groundwater table are expected to have relatively longer service life than those of near-surface or surface concrete structures. LILW in Korea is considered to be disposed of in the Wolsong LILW Disposal Center which is under construction in geological formation. 100,000 waste packages are expected to be disposed in the 6 concrete silos below EL -80m in the Wolsong LILW Disposal Center as first stage. The concrete silo has been considered the main engineered barrier which plays a role to inhibit water inflow and the release of radionuclides to the environments. Although a number of processes are responsible for the degradation of the silo concrete, it is concluded that a reinforcing steel corrosion cause the failure of the silo concrete. Therefore, a concrete silo failure time is calculated based on a corrosion initiation time which takes for chloride ions to penetrate through the concrete cover, and a corrosion propagation time. This paper aims to analyze the concrete failure time in the

  2. Role of the unsaturated zone in radioactive and hazardous waste disposal

    International Nuclear Information System (INIS)

    Mercer, J.W.; Marine, I.W.; Rao, P.S.C.

    1983-01-01

    The problems of hazardous and low-level radioactive waste disposal caused by the physical and chemical processes active in the unsaturated zone are explored in this book. The focus is on the use of laboratory analyses, field observations, and numerical and analytical calculations to create a clear picture of both problems and potential solutions. Topics include policy modeling, statistical techniques, liners, and field applications. Contents include: Modeling of Moisture Movement through Layered Trench Covers; Role of Partially Saturated Soil in Liner Design for Hazardous Waste Disposal Sites; Field Experiments to Determine Saturated Hydraulic Conductivity in the Vadose Zone; Role of Desaturation on Transport through Fractured Rock; Nuclear Waste Isolation in the Unsaturated Zone of Arid Regions

  3. Scenario analysis for the postclosure assessment of the Canadian concept for nuclear fuel waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, B W; Stephens, M E; Davison, C C; Johnson, L H; Zach, R

    1994-12-01

    AECL Research has developed and evaluated a concept for disposal of Canada`s nuclear fuel waste involving deep underground disposal of the waste in intrusive igneous rock of the Canadian Shield. The postclosure assessment of this concept focusses on the effects on human health and the environment due to potential contaminant releases into the biosphere after the disposal vault is closed. Both radiotoxic and chemically toxic contaminants are considered. One of the steps in the postclosure assessment process is scenario analysis. Scenario analysis identifies factors that could affect the performance of the disposal system and groups these factors into scenarios that require detailed quantitative evaluation. This report documents a systematic procedure for scenario analysis that was developed for the postclosure assessment and then applied to the study of a hypothetical disposal system. The application leads to a comprehensive list of factors and a set of scenarios that require further quantitative study. The application also identifies a number of other factors and potential scenarios that would not contribute significantly to environmental and safety impacts for the hypothetical disposal system. (author). 46 refs., 3 tabs., 3 figs., 2 appendices.

  4. Scenario analysis for the postclosure assessment of the Canadian concept for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Goodwin, B.W.; Stephens, M.E.; Davison, C.C.; Johnson, L.H.; Zach, R.

    1994-12-01

    AECL Research has developed and evaluated a concept for disposal of Canada's nuclear fuel waste involving deep underground disposal of the waste in intrusive igneous rock of the Canadian Shield. The postclosure assessment of this concept focusses on the effects on human health and the environment due to potential contaminant releases into the biosphere after the disposal vault is closed. Both radiotoxic and chemically toxic contaminants are considered. One of the steps in the postclosure assessment process is scenario analysis. Scenario analysis identifies factors that could affect the performance of the disposal system and groups these factors into scenarios that require detailed quantitative evaluation. This report documents a systematic procedure for scenario analysis that was developed for the postclosure assessment and then applied to the study of a hypothetical disposal system. The application leads to a comprehensive list of factors and a set of scenarios that require further quantitative study. The application also identifies a number of other factors and potential scenarios that would not contribute significantly to environmental and safety impacts for the hypothetical disposal system. (author). 46 refs., 3 tabs., 3 figs., 2 appendices

  5. Disposal systems evaluations and tool development : Engineered Barrier System (EBS) evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny (LBNL); Liu, Hui-Hai (LBNL); Steefel, Carl I. (LBNL); Serrano de Caro, M. A. (LLNL); Caporuscio, Florie Andre (LANL); Birkholzer, Jens T. (LBNL); Blink, James A. (LLNL); Sutton, Mark A. (LLNL); Xu, Hongwu (LANL); Buscheck, Thomas A. (LLNL); Levy, Schon S. (LANL); Tsang, Chin-Fu (LBNL); Sonnenthal, Eric (LBNL); Halsey, William G. (LLNL); Jove-Colon, Carlos F.; Wolery, Thomas J. (LLNL)

    2011-01-01

    Key components of the nuclear fuel cycle are short-term storage and long-term disposal of nuclear waste. The latter encompasses the immobilization of used nuclear fuel (UNF) and radioactive waste streams generated by various phases of the nuclear fuel cycle, and the safe and permanent disposition of these waste forms in geological repository environments. The engineered barrier system (EBS) plays a very important role in the long-term isolation of nuclear waste in geological repository environments. EBS concepts and their interactions with the natural barrier are inherently important to the long-term performance assessment of the safety case where nuclear waste disposition needs to be evaluated for time periods of up to one million years. Making the safety case needed in the decision-making process for the recommendation and the eventual embracement of a disposal system concept requires a multi-faceted integration of knowledge and evidence-gathering to demonstrate the required confidence level in a deep geological disposal site and to evaluate long-term repository performance. The focus of this report is the following: (1) Evaluation of EBS in long-term disposal systems in deep geologic environments with emphasis on the multi-barrier concept; (2) Evaluation of key parameters in the characterization of EBS performance; (3) Identification of key knowledge gaps and uncertainties; and (4) Evaluation of tools and modeling approaches for EBS processes and performance. The above topics will be evaluated through the analysis of the following: (1) Overview of EBS concepts for various NW disposal systems; (2) Natural and man-made analogs, room chemistry, hydrochemistry of deep subsurface environments, and EBS material stability in near-field environments; (3) Reactive Transport and Coupled Thermal-Hydrological-Mechanical-Chemical (THMC) processes in EBS; and (4) Thermal analysis toolkit, metallic barrier degradation mode survey, and development of a Disposal Systems

  6. Disposal systems evaluations and tool development: Engineered Barrier System (EBS) evaluation

    International Nuclear Information System (INIS)

    Rutqvist, Jonny; Liu, Hui-Hai; Steefel, Carl I.; Serrano de Caro, M.A.; Caporuscio, Florie Andre; Birkholzer, Jens T.; Blink, James A.; Sutton, Mark A.; Xu, Hongwu; Buscheck, Thomas A.; Levy, Schon S.; Tsang, Chin-Fu; Sonnenthal, Eric; Halsey, William G.; Jove-Colon, Carlos F.; Wolery, Thomas J.

    2011-01-01

    Key components of the nuclear fuel cycle are short-term storage and long-term disposal of nuclear waste. The latter encompasses the immobilization of used nuclear fuel (UNF) and radioactive waste streams generated by various phases of the nuclear fuel cycle, and the safe and permanent disposition of these waste forms in geological repository environments. The engineered barrier system (EBS) plays a very important role in the long-term isolation of nuclear waste in geological repository environments. EBS concepts and their interactions with the natural barrier are inherently important to the long-term performance assessment of the safety case where nuclear waste disposition needs to be evaluated for time periods of up to one million years. Making the safety case needed in the decision-making process for the recommendation and the eventual embracement of a disposal system concept requires a multi-faceted integration of knowledge and evidence-gathering to demonstrate the required confidence level in a deep geological disposal site and to evaluate long-term repository performance. The focus of this report is the following: (1) Evaluation of EBS in long-term disposal systems in deep geologic environments with emphasis on the multi-barrier concept; (2) Evaluation of key parameters in the characterization of EBS performance; (3) Identification of key knowledge gaps and uncertainties; and (4) Evaluation of tools and modeling approaches for EBS processes and performance. The above topics will be evaluated through the analysis of the following: (1) Overview of EBS concepts for various NW disposal systems; (2) Natural and man-made analogs, room chemistry, hydrochemistry of deep subsurface environments, and EBS material stability in near-field environments; (3) Reactive Transport and Coupled Thermal-Hydrological-Mechanical-Chemical (THMC) processes in EBS; and (4) Thermal analysis toolkit, metallic barrier degradation mode survey, and development of a Disposal Systems

  7. Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Price, L.

    1994-09-01

    The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE's Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS

  8. Biological and environmental hazards associated with exposure to chemical warfare agents: arsenicals.

    Science.gov (United States)

    Li, Changzhao; Srivastava, Ritesh K; Athar, Mohammad

    2016-08-01

    Arsenicals are highly reactive inorganic and organic derivatives of arsenic. These chemicals are very toxic and produce both acute and chronic tissue damage. On the basis of these observations, and considering the low cost and simple methods of their bulk syntheses, these agents were thought to be appropriate for chemical warfare. Among these, the best-known agent that was synthesized and weaponized during World War I (WWI) is Lewisite. Exposure to Lewisite causes painful inflammatory and blistering responses in the skin, lung, and eye. These chemicals also manifest systemic tissue injury following their cutaneous exposure. Although largely discontinued after WWI, stockpiles are still known to exist in the former Soviet Union, Germany, Italy, the United States, and Asia. Thus, access by terrorists or accidental exposure could be highly dangerous for humans and the environment. This review summarizes studies that describe the biological, pathophysiological, toxicological, and environmental effects of exposure to arsenicals, with a major focus on cutaneous injury. Studies related to the development of novel molecular pathobiology-based antidotes against these agents are also described. © 2016 New York Academy of Sciences.

  9. Biological and environmental hazards associated with exposure to chemical warfare agents: arsenicals

    Science.gov (United States)

    Li, Changzhao; Srivastava, Ritesh K.; Athar, Mohammad

    2016-01-01

    Arsenicals are highly reactive inorganic and organic derivatives of arsenic. These chemicals are very toxic and produce both acute and chronic tissue damage. Based on these observations, and considering the low cost and simple methods of their bulk syntheses, these agents were thought to be appropriate for chemical warfare. Among these, the most known agent synthesized and weaponized during World War I (WWI) is Lewisite. Exposure to Lewisite causes painful inflammatory and blistering responses in the skin, lung, and eye. These chemicals also manifest systemic tissue injury following their cutaneous exposure. Although largely discontinued after WWI, their stockpiles are still known to exist in the former Soviet Union, Germany, Italy, the United States, and Asia. Thus, their access by terrorists or accidental exposure could be highly dangerous for humans and the environment. This review summarizes studies which describe the biological, pathophysiological, toxicological, and environmental effects of exposure to arsenicals, with a major focus on cutaneous injury. Studies related to the development of novel molecular pathobiology–based antidotes against these agents are also described. PMID:27636894

  10. Geochemistry of radioactive waste disposal

    International Nuclear Information System (INIS)

    Bird, G.W.

    1979-01-01

    Safe, permanent disposal of radioactive wastes requires isolation of a number of elements including Se, Tc, I, Sr, Cs, Pd, u, Np, Pu and Cm from the environment for a long period of time. The aquatic chemistry of these elements ranges from simple anionic (I - ,IO 3 - ) and cationic (Cs + ,Sr ++ ) forms to multivalent hydrolyzed complexes which can be anionic or cationic (Pu(OH) 2 + ,Pu(OH) 3 + , PuO 2 (CO 3 )(OH) - ,PuO 2 Cl - ,etc.) depending on the chemical environment. The parameters which can affect repository safety are rate of access and composition of grounwater, stability of the waste container, stability of the waste form, rock-water-waste interactons, and dilution and dispersion as the waste moves away from the repository site. Our overall research program on radioactive waste disposal includes corrosion studies of containment systems hydrothermal stability of various waste forms, and geochemical behaviour of various nuclides including solubilities, redox equilibria, hydrolysis, colloid fomation and transport ion exchange equilibria and adsorption on mineral surfaces and irreversible precipitation reactions. This paper discusses the geochemistry of I, Se, Tc, Cs, Sr and the actinide elements and potential mechanisms by which the mobility could be retarded if necessary

  11. Evaluation of Proposed New LLW Disposal Activity: Disposal of Aqueous PUREX Waste Stream in the Saltstone Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2003-01-01

    The Aqueous PUREX waste stream from Tanks 33 and 35, which have been blended in Tank 34, has been identified for possible processing through the Saltstone Processing Facility for disposal in the Saltstone Disposal Facility

  12. Research requirements for a unified approach to modelling chemical effects associated with radioactive waste disposal

    International Nuclear Information System (INIS)

    Krol, A.A.; Read, D.

    1986-09-01

    This report contains the results of a review of the current modelling, laboratory experiments and field experiments being conducted in the United Kingdom to aid understanding and improve prediction of the effects of chemistry on the disposal of radioactive wastes. The aim has been to summarise present work and derive a structure for future research effort that would support the use of probabilistic risk assessment (pra) methods for the disposal of radioactive wastes. The review was conducted by a combination of letter and personal visits, and preliminary results were reported to a plenary meeting of participants held in April, 1986. Following this meeting, copies of the report were circulated to participants at draft stage, so that the finalised report should be taken to provide as far as possible a consensus of opinion of research requirements. (author)

  13. Earth Construction and Landfill Disposal Options for Slaker Grits

    OpenAIRE

    Risto Pöykiö; G. Watkins; H. Nurmesniemi and O. Dahl

    2010-01-01

    Slaker grits, an industrial residue originating from the chemical recovery process at sulfate (kraft) pulp mills, are typically disposed of to landfill in Finland. However, due to the relatively low total heavy metal and low leachable heavy metal, chloride, fluoride, sulfate, Dissolved O rganic Carbon (DOC) and Total Dissolved Solids (TDS) concentrations, the residue is a potential earth construction material. This paper gives an overview of the relevant Finnish legislation on the use of indu...

  14. Dismantlement and destruction of chemical, nuclear and conventional weapons

    International Nuclear Information System (INIS)

    Schulte, N.T.

    1997-01-01

    The safe destruction and dismantling of chemical, nuclear and conventional weapons is of fundamental importance to the security of all countries represented in this volume. Expertise in the field is not confined to one country or organisation: all can benefit from each other. There is an ever present danger of proliferation of weapons of mass destruction: approximately two dozen countries have ongoing programmes to develop or acquire such weapons, and many are also gaining the capability to build air-surface delivery systems. But much can be done to prevent proliferation by reducing leakage of materials and know-how and by solving the problems of the destruction of surplus weapons systems, which has now come to be a key issue. In 13 sessions of the workshop attention was paid to (1) Dismantlement and Destruction of Chemical, Nuclear and Conventional Weapons; (2) Status of Implementation of Arms Control Treaties and Voluntary Commitments; (3) National Perspectives on Cooperation in Disarmament; (4) Stocktaking of National and Bilateral Disposal/Destruction Programmes: Chemical Weapons; (5) Stocktaking of National and Bilateral Disposal/Destruction Programmes: Nuclear Weapons; (6) Stocktaking of National and Bilateral Disposal/Destruction Programmes: Conventional Weapons. Session; (7) Experience with Currently Employed Chemical Destruction Technologies; (8) Alternative Chemical Destruction Technologies; (9) Deactivation, Dismantlement and Destruction of Delivery Systems and Infrastructure for Nuclear Weapons; (10) Storage, Safeguarding and Disposition of Fissile Materials; (11) Technologies for Conversion and Civil Use of Demilitarized Materials; (12) International Organizations; and (13) Environmental Challenges Posed by Chemical and Nuclear Disarmament

  15. The chemistry of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Wiles, D.R.

    2002-01-01

    About one-fifth of the world's supply of energy is derived from nuclear fission. While this important source of power avoids the environmental and resource problems of most other fuels, and although nuclear accident statistics are much less alarming, no other peacetime technology has evoked such public disquiet and impassioned feeling. Central to dealing with these fears is the management and disposal of radioactive waste. An expert Canadian panel in 1977 recommended permanent disposal of wastes in deep geological formations, providing a basis for subsequent policies and research. In 1988, the Federal Environmental Assessment Review Office (FEARO) appointed a panel to assess the proposed disposal concepts and to recommend government policy. The panel in turn appointed a Scientific Review Group to examine the underlying science. Behind all these issues lay one central question: How well is the chemistry understood? This became the principal concern of Professor Donald Wiles, the senior nuclear chemist of the Scientific Review Group. In this book, Dr. Wiles carefully describes the nature of radioactivity and of nuclear power and discusses in detail the management of radioactive waste by the multi-barrier system, but also takes an unusual approach to assessing the risks. Using knowledge of the chemical properties of the various radionuclides in spent fuel, this book follows each of the important radionuclides as it travels through the many barriers placed in its path. It turns out that only two radionuclides are able to reach the biosphere, and they arrive at the earth's surface only after many thousands of years. A careful analysis of the critical points of the disposal plan emphasizes site rejection criteria and other stages at which particular care must be taken, demonstrating how dangers can be anticipated and putting to rest the fear of nuclear fuel waste and its geological burial

  16. Wildlife health implications of sewage disposal in wetlands

    Science.gov (United States)

    Friend, M.; Godfrey, P.J.; Kaynor, E.R.; Pelczarski, S.

    1985-01-01

    Wildlife health concerns associated with disposal of sewage effluent in wetlands are of three primary types: (1) introduction of pathogens, (2) introduction of pollutants that adversely impact on host body defense mechanisms, and (3) changes in the physical and chemical properties of wetlands that favor the development and maintenance of disease problems. Unlike the situation with human health concerns, introduction of pathogens is not the major concern regarding wildlife health. Instead, the focus of attention needs to be directed at environmental changes likely to take place as a result of effluent discharges into different types of wetlands. Unless these changes are adequately addressed from a disease perspective, marshes utilized for sewage disposal could become disease incubators and wildlife death traps. This result would be unfortunate because the backlash would likely negate the potentially beneficial aspects of the use of sewage wastewater for the creation of new wetlands and have a severe impact on progress being made towards evaluation of the compatibility of wildlife and sewage effluents.

  17. Underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-08-15

    Disposal of low- and intermediate-level radioactive wastes by shallow land burial, emplacement in suitable abandoned mines, or by deep well injection and hydraulic fracturing has been practised in various countries for many years. In recent years considerable efforts have been devoted in most countries that have nuclear power programmes to developing and evaluating appropriate disposal systems for high-level and transuranium-bearing waste, and to studying the potential for establishing repositories in geological formations underlaying their territories. The symposium, organized jointly by the IAEA and OECD's Nuclear Energy Agency in cooperation with the Geological Survey of Finland, provided an authoritative account of the status of underground disposal programmes throughout the world in 1979. It was evidence of the experience that has been gained and the comprehensive investigations that have been performed to study various options for the underground disposal of radioactive waste since the last IAEA/NEA symposium on this topic (Disposal of Radioactive Waste into the Ground) was held in 1967 in Vienna. The 10 sessions covered the following topics: National programme and general studies, Disposal of solid waste at shallow depth and in rock caverns, underground disposal of liquid waste by deep well injection and hydraulic fracturing, Disposal in salt formations, Disposal in crystalline rocks and argillaceous sediments, Thermal aspects of disposal in deep geological formations, Radionuclide migration studies, Safety assessment and regulatory aspects.

  18. The disposition of civil plutonium in the UK

    International Nuclear Information System (INIS)

    Sadnicki, M.J.; Barker, F.

    2001-01-01

    This paper quantifies the likely future stockpile of UK separated plutonium, and reviews current UK policy. The current strategy of storing plutonium oxide powder is shown to be inconsistent with passivity and disposability objectives. Analysis also shows that there is little potential for use on a commercial basis of Mixed-Oxide (MOX) fuel to reduce the stockpile. Four plutonium immobilisation options are defined, with particular reference to non-proliferation goals. The resource costs of implementing these options are quantified, together with the resource costs of a programme of Government-subsidized MOX use. Immobilisation may offer a more cost-effective solution than a MOX fuel route. (author)

  19. Modeling of radionuclide migration and a temperature dynamics in underground disposal of liquid radioactive waste

    International Nuclear Information System (INIS)

    Larin, V.K.; Zubkov, A.A.; Balakhonov, V.G.; Sukhorukov, V.A.; Zhiganov, A.N.; Noskov, M.D.; Istomin, A.D.; Kesler, A.G.

    2002-01-01

    Mathematical model of radionuclide migration and temperature field dynamics during underground disposal of liquid radioactive wastes is presented. The model involves the description of filtration, convective-dispersion mass transfer, sorption and desorption of radionuclides, radioactive decay, convective heat transport and hear transfer. Software making possible to conduct prognosis calculations of changing state of stratum-collector of radioactive wastes was made. Results of the simulation of temperature field dynamics and behaviour of radionuclides on underground disposal of liquid radioactive wastes of the Siberian chemical plant are performed [ru

  20. 75 FR 19311 - Ocean Dumping; Guam Ocean Dredged Material Disposal Site Designation

    Science.gov (United States)

    2010-04-14

    ... not all suitable materials can be re-used or stockpiled for future use given costs, logistical... not expected with regard to vessel safety and operational costs. The lack of impact is expected... reporting and record-keeping burden on the regulated community, as well as to minimize the cost of Federal...

  1. Heat generation and heating limits for the IRUS LLRW disposal facility

    International Nuclear Information System (INIS)

    Donders, R.E.; Caron, F.

    1995-10-01

    Heat generation from radioactive decay and chemical degradation must be considered when implementing low-level radioactive waste (LLRW) disposal. This is particularly important when considering the management of spent radioisotope sources. Heating considerations and temperature calculations for the proposed IRUS (Intrusion Resistant Underground Structure) near-surface disposal facility are presented. Heat transfer calculations were performed using a finite element code with realistic but somewhat conservative heat transfer parameters and environmental boundary conditions. The softening-temperature of the bitumen waste-form (38 deg C) was found to be the factor that limits the heat generation rate in the facility. This limits the IRUS heat rate, assuming a uniform source term, to 0.34 W/m 3 . If a reduced general heat-limit is considered, then some higher-heat packages can be accepted with restrictions placed on their location within the facility. For most LLRW, heat generation from radioactive decay and degradation are a small fraction of the IRUS heating limits. However, heating restrictions will impact on the disposal of higher-activity radioactive sources. High activity 60 Co sources will require decay-storage periods of about 70 years, and some 137 Cs will need to bed disposed of in facilities designed for higher-heat waste. (author). 21 refs., 8 tabs., 2 figs

  2. Exploratory Disposal and Reuse Feasibility Analysis of Winter Maintenance Wash Water.

    Science.gov (United States)

    Ullinger, Heather L; Kennedy, Marla J; Schneider, William H; Miller, Christopher M

    2016-01-01

    The Ohio Department of Transportation has more than 60 facilities without sewer access generating approximately 19 million gallons of winter maintenance wash water. Off-site disposal is costly, creating the need for sustainable management strategies. The objective of this study was to conduct an exploratory feasibility analysis to assess wash water disposal and potential reuse as brine. Based on a comprehensive literature review and relevant environmental chemistry, a sampling protocol consisting of 31 water quality constituents was utilized for monthly sampling at three geographically distinct Ohio Department of Transportation garages during the winter of 2012. Results were compared to local disposal and reuse guidance limits. Three constituents, including a maximum copper concentration of 858 ppb, exceeded disposal limits, and many constituents also failed to meet reuse limits. Some concentrations were orders of magnitude higher than reuse limits and suggest pre-treatment would be necessary if wash water were reused as brine. These water quality results, in conjunction with copper chemical equilibrium modeling, show pH and dissolved carbon both significantly impact the total dissolved copper concentration and should be measured to assess reuse potential. The sampling protocol and specific obstacles highlighted in this paper aid in the future development of sustainable wash water management strategies.

  3. Exploratory Disposal and Reuse Feasibility Analysis of Winter Maintenance Wash Water.

    Directory of Open Access Journals (Sweden)

    Heather L Ullinger

    Full Text Available The Ohio Department of Transportation has more than 60 facilities without sewer access generating approximately 19 million gallons of winter maintenance wash water. Off-site disposal is costly, creating the need for sustainable management strategies. The objective of this study was to conduct an exploratory feasibility analysis to assess wash water disposal and potential reuse as brine. Based on a comprehensive literature review and relevant environmental chemistry, a sampling protocol consisting of 31 water quality constituents was utilized for monthly sampling at three geographically distinct Ohio Department of Transportation garages during the winter of 2012. Results were compared to local disposal and reuse guidance limits. Three constituents, including a maximum copper concentration of 858 ppb, exceeded disposal limits, and many constituents also failed to meet reuse limits. Some concentrations were orders of magnitude higher than reuse limits and suggest pre-treatment would be necessary if wash water were reused as brine. These water quality results, in conjunction with copper chemical equilibrium modeling, show pH and dissolved carbon both significantly impact the total dissolved copper concentration and should be measured to assess reuse potential. The sampling protocol and specific obstacles highlighted in this paper aid in the future development of sustainable wash water management strategies.

  4. Alternative disposal technologies for new low-level radioactive waste disposal/storage facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    A Draft Environmental Impact Statement for Waste Management Activities for groundwater protection has been prepared for the Savannah River Plant. Support documentation for the DEIS included an Environmental Information Document on new radioactive waste disposal and storage facilities in which possible alternative disposal technologies were examined in depth. Six technologies that would meet the needs of the Savannah River Plant that selected for description and analysis include near surface disposal, near surface disposal with exceptions, engineered storage, engineered disposal, vault disposal of untreated waste, and a combination of near surface disposal, engineered disposal, and engineered storage. 2 refs

  5. Alternatives for the treatment and disposal of healthcare wastes in developing countries

    International Nuclear Information System (INIS)

    Diaz, L.F.; Savage, G.M.; Eggerth, L.L.

    2005-01-01

    Waste production in healthcare facilities in developing countries has brought about a variety of concerns due to the use of inappropriate methods of managing the wastes. Inappropriate treatment and final disposal of the wastes can lead to adverse impacts to public health, to occupational health and safety, and to the environment. Unfortunately, most economically developing countries suffer a variety of constraints to adequately managing these wastes. Generally in developing countries, few individuals in the staff of the healthcare facility are familiar with the procedures required for a proper waste management program. Furthermore, the management of wastes usually is delegated to poorly educated laborers who perform most activities without proper guidance and insufficient protection. This paper presents some of the most common treatment and disposal methods utilized in the management of infectious healthcare wastes in developing countries. The methods discussed include: autoclave; microwave; chemical disinfection; combustion (low-, medium-, and high-technology); and disposal on the ground (dump site, controlled landfill, pits, and sanitary landfill). Each alternative for treatment and disposal is explained, including a description of the types of wastes that can and cannot be treated. Background information on the technologies also is included in order to provide information to those who may not be familiar with the details of each alternative. In addition, a brief presentation of some of the emissions from each of the treatment and disposal alternatives is presented

  6. Characterization of organics in leachates from low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Francis, A.J.; Iden, C.R.; Nine, B.; Chang, C.

    1979-01-01

    Low-level radioactive wastes generated by the nuclear industry, universities, research institutions, and hospitals are disposed of in shallow-land trenches and pits. In 1962 the first commercial disposal site was opened in Beatty, Nevada. Since then, the industry has grown to include three private companies operating six disposal areas located in sparsely populated areas: at Maxey Flats (Morehead), Kentucky; Beatty, Nevada; Sheffield, Illinois; Barnwell, South Carolina; West Valley, New York; and Richland, Washington. Although the facilities are operated by private industry, they are located on public land and are subject to federal and state regulation. Although inventories of the radioactive materials buried in the disposal sites are available, no specific records are kept on the kinds and quantities of organic wastes buried. In general, the organic wastes consist of contaminated paper, packing materials, clothing, plastics, ion-exchange resins, scintillation vials, solvents, chemicals, decontamination fluids, carcasses of experimental animals, and solidification agents. Radionuclides such as 14 C, 3 H, 90 Sr, 134 137 Cs, 60 Co, 241 Am, and 238 239 240 Pu have been identified in leachate samples collected from several trenches at Maxey Flats and West Valley. The purpose of this report is to identify some of the organic compounds present in high concentrations in trench leachates at the disposal sites in order to begin to evaluate their effect on radionuclide mobilization and contamination of the environment

  7. Low-level radioactive mixed waste land disposal facility -- Permanent disposal

    International Nuclear Information System (INIS)

    Erpenbeck, E.G.; Jasen, W.G.

    1993-03-01

    Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 x 10 -7 cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination

  8. Radioactive wastes processing and disposing container

    International Nuclear Information System (INIS)

    Wada, Jiro; Kato, Hiroaki.

    1987-01-01

    Purpose: To obtain a processing and disposing container at low level radioactive wastes, excellent in corrosion and water resistance, as well as impact shock resistance for the retrieval storage over a long period of time. Constitution: The container is constituted with sands and pebbles as aggregates and glass fiber-added unsaturated polyester resins as binders. The container may entirely be formed with such material or only the entire inner surface may be formed with the material as liners. A container having excellent resistance to water, chemicals, freezing or melting, whether impact shock, etc. can be obtained, thereby enabling retrieval storage for radioactive wastes at the optimum low level. (Takahashi, M.)

  9. Uncertainties about the safety of disposal leading to a wish to keep alternatives open. Discussion on the concepts 'storage' ('wait and see') vs. 'disposal' and 'retrievable disposal' vs. 'definitive disposal'

    International Nuclear Information System (INIS)

    Norrby, S.

    2000-01-01

    Uncertainties about the safety of final disposal may lead to unwillingness to take decisions about waste management issues that may seem to be non-reversible. This has lead to proposals that we should wait with decisions on final measures and instead store the waste for some period of time. Also the possibility of retrieval may lead to decisions not to go for permanent disposal but instead to retrievable disposal. These aspects and the pros and cons are discussed both from a more general perspective and also with some reflections from the Swedish programme for nuclear waste management and disposal. (author)

  10. Preliminary risk assessment for nuclear waste disposal in space. Volume I. Executive summary of technical report

    International Nuclear Information System (INIS)

    Rice, E.E.; Denning, R.S.; Friedlander, A.L.

    1982-01-01

    Three major conclusions come from this preliminary risk assessment of nuclear waste disposal in space. Preliminary estimates of space disposal risk are low, even with the estimated uncertainty bounds. If calculated mined geologic repository (MGR) release risks remain low, and the EPA requirements continue to be met, then no additional space disposal study effort is warranted. If risks perceived by the public are significant in the acceptance of mined geologic repositories, then consideration of space disposal as an MGR complement is warranted. As a result of this study, the following recommendations are made to NASA and the US DOE: During the continued evaluation of the mined geologic repository risk over the years ahead by DOE, if any significant increase in the calculated health risk is predicted for the MGR, then space disposal should be reevaluated at that time. The risks perceived by the public for the MGR should be evaluated on a broad basis by an independent organization to evaluate acceptance. If, in the future, MGR risks are found to be significant due to some presently unknown technical or social factor, and space disposal is selected as an alternative that may be useful in mitigating the risks, then the following space disposal study activities are recommended: improvement in chemical processing technology for wastes; payload accident response analysis; risk uncertainty analysis for both MGR and space disposal; health risk modeling that includes pathway and dose estimates; space disposal cost modeling; assessment of space disposal perceived (by public) risk benefit; and space systems analysis supporting risk and cost modeling

  11. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  12. Chinese buffer material for high-level radiowaste disposal-basic features of GMZ-1

    International Nuclear Information System (INIS)

    Wen, Zhijian

    2005-01-01

    Radioactive wastes arising from a wide range of human activities are in many different physical and chemical forms, contaminated with varying radioactivity. Their common feature is the potential hazard associated with their radioactivity and the need to manage them in such a way as to protect the human environment. The geological disposal is regarded as the most reasonable and effective way to safety disposal high-level radioactive wastes in the world. The conceptual model of geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineered barrier system. The buffer is one of the main engineered barriers for HLW repository. The buffer material is expected to maintain its low water permeability, self-sealing property, radio nuclides adsorption and retardation property, thermal conductivity, chemical buffering property, overpack supporting property, stress buffering property over a long period of time. Bentonite is selected as the main content of buffer material that can satisfy above. GMZ deposit is selected as the candidate supplier for Chinese buffer material of High Level Radioactive waste repository. This paper presents geological features of GMZ deposit and basic property of GMZ Na bentonite. GMZ bentonite deposit is a super large scale deposits with high content of Montmorillonite (about 75%) and GMZ-1, which is Na-bentonite produced from GMZ deposit is selected as reference material for Chinese buffer material study

  13. Kajian Toksikologi dan Penanggulangan Pelepasan Senjata Kimia

    Directory of Open Access Journals (Sweden)

    Mariana Raini

    2012-10-01

    Full Text Available A chemical weapon is defined as a substance that is intended for use in military and non­ military operations to kill, seriously injure or otherwise incapacitate people, or to harm or destroy their habitat or economy. Chemical weapons can be made by toxic chemicals reaction. Chemical weapons misused may lead to terror, injury, death and environmental damage. The Chemical Weapons Convention (CWC is an arms control agreement which outlaws the production, stockpiling and use of chemical weapons. CWC is the Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons and on their Destruction.This article describe how to identify chemical weapons, sign and symptom of their toxicity, impact and the chemical weapons convention, in order to handle and control chemical weapons release.   Key words: chemical weapons, precursor, Chemical Weapons Convention

  14. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Cluchet, J.; Roger, B.

    1975-10-01

    After mentioning the importance of the problem of the disposal of wastes produced in the electro-nuclear industry, a short reminder on a few laws of radioactivity (nature and energy of radiations, half-life) and on some basic dosimetry is given. The conditioning and storage procedures are then indicated for solid wastes. The more active fractions of liquid wastes are incorporated into blocks of glass, whereas the less active are first concentrated by chemical treatments or by evaporation. The concentrates are then embedded into concrete, asphalt or resins. Storage is done according to the nature of each type of wastes: on a hard-surfaced area or inside concrete-lined trenches for the lowest radioactivity, in pits for the others. Transuranium elements with very long half-lives are buried in very deep natural cavities which can shelter them for centuries. From the investigations conducted so far and from the experience already gained, it can be concluded that safe solutions are within our reach [fr

  15. The pharmaceuticalisation of security: Molecular biomedicine, antiviral stockpiles, and global health security.

    Science.gov (United States)

    Elbe, Stefan

    2014-12-01

    Pharmaceuticals are now critical to the security of populations. Antivirals, antibiotics, next-generation vaccines, and antitoxins are just some of the new 'medical countermeasures' that governments are stockpiling in order to defend their populations against the threat of pandemics and bioterrorism. How has security policy come to be so deeply imbricated with pharmaceutical logics and solutions? This article captures, maps, and analyses the 'pharmaceuticalisation' of security. Through an in-depth analysis of the prominent antiviral medication Tamiflu , it shows that this pharmaceutical turn in security policy is intimately bound up with the rise of a molecular vision of life promulgated by the biomedical sciences. Caught in the crosshairs of powerful commercial, political, and regulatory pressures, governments are embracing a molecular biomedicine promising to secure populations pharmaceutically in the twenty-first century. If that is true, then the established disciplinary view of health as a predominantly secondary matter of 'low' international politics is mistaken. On the contrary, the social forces of health and biomedicine are powerful enough to influence the core practices of international politics - even those of security. For a discipline long accustomed to studying macrolevel processes and systemic structures, it is in the end also our knowledge of the minute morass of molecules that shapes international relations.

  16. Fate of chemical warfare agents and toxic industrial chemicals in landfills.

    Science.gov (United States)

    Bartelt-Hunt, Shannon L; Barlaz, Morton A; Knappe, Detlef R U; Kjeldsen, Peter

    2006-07-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in MSW landfills was predicted with a mathematical model. Five blister agents [sulfur mustard (HD), nitrogen mustard (HN-2), lewisite (L), ethyldichloroarsine (ED), and phosgene oxime (CX)], eight nerve agents [tabun (GA), sarin (GB), soman (GD), GE, GF, VX, VG, and VM], one riot-control agent [CS], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis half-lives. Monte Carlo simulations were performed to assess the influence of uncertainty in model input parameters on CWA/TIC fate predictions. Correlation analyses showed that uncertainty in hydrolysis rate constants was the primary contributor to variance of CWA fate predictions, while uncertainty in the Henry's Law constant and landfill gas-production rate accounted for most of the variance of TIC fate predictions. CWA hydrolysates were more persistent than the parent CWAs, but limited information is available on abiotic or biotic transformation rates for these chemicals.

  17. Chemical Waste Landfill Annual Post-Closure Care Report Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Michael Marquand [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Little, Bonnie Colleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The CWL is a 1.9-acre remediated interim status landfill located in the southeastern corner of SNL/NM Technical Area III (Figures 2-1 and 2-2) undergoing post-closure care in accordance with the PCCP (NMED October 2009 and subsequent revisions). From 1962 until 1981, the CWL was used for the disposal of chemical and solid waste generated by SNL/NM research activities. Additionally, a small amount of radioactive waste was disposed of during the operational years. Disposal of liquid waste in unlined pits and trenches ended in 1981, and after 1982 all liquid waste disposal was terminated. From 1982 through 1985, only solid waste was disposed of at the CWL, and after 1985 all waste disposal ended. The CWL was also used as a hazardous waste drum-storage facility from 1981 to 1989. A summary of the CWL disposal history is presented in the Closure Plan (SNL/NM December 1992) along with a waste inventory based upon available disposal records and information.

  18. Characteristics study of bentonite as candidate of buffer materials for radioactive waste disposal system

    International Nuclear Information System (INIS)

    Suryantoro; Arimuladi, S.P.; Sastrowardoyo, P.B.

    1998-01-01

    Literature studies on bentonite characteristic of, as candidate for radioactive waste disposal system, have been conducted. Several information have been obtained from references, which would be contributed on performance assessment of engineered barrier. The functions bentonite includes the buffering of chemical and physical behavior, i.e. swelling property, self sealing, hydraulic conductivities and gas permeability. This paper also presented long-term stability of bentonite in natural condition related to the illitisazation, which could change its buffering capacities. These information, showed that bentonite was satisfied to be used for candidate of buffer materials in radioactive waste disposal system. (author)

  19. Effects of land disposal of municipal sewage sludge on fate of nitrates in soil, streambed sediment, and water quality

    Science.gov (United States)

    Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.

    1994-01-01

    This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area.Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH.Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil.As a result of investigations at

  20. Selection of disposal contractor by multi criteria decision making methods

    Directory of Open Access Journals (Sweden)

    Cenker Korkmazer

    2016-08-01

    Full Text Available Hazardous waste is substance that threaten people and environment in case of improper storage, disposal and transport due to its concentration, physical and chemical properties. Companies producing hazardous waste as a result of several activities mostly do not have any own disposal facilities. In addition, they do not pay attention enough to determine the right contractor as a disposal facility. On the other hand, there are various qualitative and quantitative criteria affecting the selection of the contractor and conflicting with each other. The aim of the performed study is to assist one of these companies producing hazardous waste in the selection of the best contractor that eliminates hazardous waste economic and harmless way. In the study, contractor weights in percentage is calculated by using Analytic Network Process (ANP as one of the multi-criteria decision making (MCDM methods and widely used in the literature which considers both qualitative and quantitative criteria. In the next step, by the help of the mathematical model, contractors that will be given which type of hazardous waste are identified. This integrated approach can be used as a guide for similar firms.

  1. Contaminant accumulation and biomarker responses in caged mussels, Mytilus galloprovincialis, to evaluate bioavailability and toxicological effects of remobilized chemicals during dredging and disposal operations in harbour areas

    International Nuclear Information System (INIS)

    Bocchetti, Raffaella; Fattorini, Daniele; Pisanelli, Barbara; Macchia, Simona; Oliviero, Lisa; Pilato, Fabiano; Pellegrini, David; Regoli, Francesco

    2008-01-01

    Remobilization of chemicals from contaminated sediments is a major risk associated with dredging and disposal operations in harbour areas. In this work caged mussels, Mytilus galloprovincialis, were chosen as bioindicator organisms to reveal the impact and recovery of organisms from these activities in the harbour of Piombino (Tuscany, Italy) where approximately 100,000 m 3 of sediments were removed and disposed in a local confined disposal facility (CDF). Organisms were deployed before, during and after the end of operations, selecting sites differently impacted by these activities. Temporal changes in environmental bioavailability and biological effects of pollutants were assessed by integrating analyses of trace metals and polycyclic aromatic hydrocarbons (PAHs) accumulated in tissues of caged mussels with a wide array of biomarkers reflecting exposure to specific classes of pollutants and different levels of cellular unbalance or toxicity. Such biological responses included levels of metallothioneins, activity of acyl CoA oxidase (AOX) as a marker of peroxisome proliferation, oxidative stress biomarkers (content of glutathione, enzymatic activities of catalase, glutathione S-transferases, glutathione reductase, glutathione peroxidases), total oxyradical scavenging capacity (TOSC) toward peroxyl and hydroxyl radicals, lysosomal membrane stability and genotoxic effects measured as DNA strand breaks and frequency of micronuclei. Obtained results indicated that a general disturbance was already present in the whole harbour area and especially in the inner site before the beginning of operations, when caged mussels exhibited a significant accumulation of PAHs and Pb, lower TOSC values and higher levels of both lysosomal and genotoxic damages. Bioavailability of trace metals and PAHs markedly increased during dredging activities with values up to 40 μg/g for Pb and up to 2200 ng/g for PAHs in tissues of caged mussels, a significant inhibition of antioxidant

  2. Contaminant accumulation and biomarker responses in caged mussels, Mytilus galloprovincialis, to evaluate bioavailability and toxicological effects of remobilized chemicals during dredging and disposal operations in harbour areas

    Energy Technology Data Exchange (ETDEWEB)

    Bocchetti, Raffaella; Fattorini, Daniele; Pisanelli, Barbara [Istituto di Biologia e Genetica, Universita Politecnica delle Marche, Via Ranieri Monte d' Ago, 60100 Ancona (Italy); Macchia, Simona; Oliviero, Lisa; Pilato, Fabiano; Pellegrini, David [Istituto Centrale per la Ricerca Scientifica e Tecnologica Applicata al Mare (ICRAM), Viale Nazario Sauro 4, 57128 Livorno (Italy); Regoli, Francesco [Istituto di Biologia e Genetica, Universita Politecnica delle Marche, Via Ranieri Monte d' Ago, 60100 Ancona (Italy)], E-mail: f.regoli@univpm.it

    2008-09-29

    Remobilization of chemicals from contaminated sediments is a major risk associated with dredging and disposal operations in harbour areas. In this work caged mussels, Mytilus galloprovincialis, were chosen as bioindicator organisms to reveal the impact and recovery of organisms from these activities in the harbour of Piombino (Tuscany, Italy) where approximately 100,000 m{sup 3} of sediments were removed and disposed in a local confined disposal facility (CDF). Organisms were deployed before, during and after the end of operations, selecting sites differently impacted by these activities. Temporal changes in environmental bioavailability and biological effects of pollutants were assessed by integrating analyses of trace metals and polycyclic aromatic hydrocarbons (PAHs) accumulated in tissues of caged mussels with a wide array of biomarkers reflecting exposure to specific classes of pollutants and different levels of cellular unbalance or toxicity. Such biological responses included levels of metallothioneins, activity of acyl CoA oxidase (AOX) as a marker of peroxisome proliferation, oxidative stress biomarkers (content of glutathione, enzymatic activities of catalase, glutathione S-transferases, glutathione reductase, glutathione peroxidases), total oxyradical scavenging capacity (TOSC) toward peroxyl and hydroxyl radicals, lysosomal membrane stability and genotoxic effects measured as DNA strand breaks and frequency of micronuclei. Obtained results indicated that a general disturbance was already present in the whole harbour area and especially in the inner site before the beginning of operations, when caged mussels exhibited a significant accumulation of PAHs and Pb, lower TOSC values and higher levels of both lysosomal and genotoxic damages. Bioavailability of trace metals and PAHs markedly increased during dredging activities with values up to 40 {mu}g/g for Pb and up to 2200 ng/g for PAHs in tissues of caged mussels, a significant inhibition of antioxidant

  3. Stress-corrosion cracks behavior under underground disposal environment of radioactive wastes

    International Nuclear Information System (INIS)

    Isei, Takehiro; Seto, Masahiro; Ogata, Yuji; Wada, Yuji; Utagawa, Manabu; Kosugi, Masayuki

    2000-01-01

    This study is composed by two sub-theme of study on stress-corrosion cracking under an environment of disposal on radioactive wastes and control technique on microscopic crack around the disposal cavity, and aims at experimental elucidation on forming mechanism of stress-corrosion cracking phenomenon on rocks and establishment of its control technique. In 1998 fiscal year, together with an investigation on effect of temperature on fracture toughness and on stress-corrosion cracks performance of sedimentary rocks (sandy rocks), an investigation on limit of the stress-corrosion cracking by addition of chemicals and on crack growth in a rock by in-situ observation using SEM were carried out. As a result, it was formed that fracture toughness of rocks reduced at more than 100 centigrade of temperature, that a region showing an equilibrium between water supply to crack end and crack speed appeared definitely, that a limit of stress-corrosion cracking appeared by addition of chemicals, and that as a result of observing crack advancement of saturated rock by in-situ observation of crack growth using SEM, a process zone was formed at the front of main crack due to grain boundary fracture. (G.K.)

  4. Chemical treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Pottier, P.E.

    1968-01-01

    This is the third manual of three commissioned by the IAEA on the three principal techniques used in concentrating radioactive liquid wastes, namely chemical precipitation, evaporation and ion exchange. The present manual deals with chemical precipitation by coagulation-flocculation and sedimentation, commonly called ''chemical treatment'' of low-activity wastes. Topics discussed in the manual are: (i) principles of coagulation on flocculation and sedimentation and associated processes; (ii) process and equipment; (iii) conditioning and disposal of flocculation sludge; (iv) sampling and the equipment required for experiments; and (v) factors governing the selection of processes. 99 refs, 17 figs, 4 tabs

  5. Toxic and hazardous waste disposal. Volume 4. New and promising ultimate disposal options

    International Nuclear Information System (INIS)

    Pojasek, R.B.

    1980-01-01

    Separate abstrats were prepared for four of the eighteen chapters of this book which reviews several disposal options available to the generators of hazardous wastes. The chapters not abstracted deal with land disposal of hazardous wastes, the solidification/fixation processes, waste disposal by incineration and molten salt combustion and the use of stabilized industrial waste for land reclamation and land farming

  6. West Hackberry Brine Disposal Project pre-discharge characterization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C. (eds.)

    1982-01-01

    The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. A three month sampling effort, February through April 1981, and previous investigations from the study area are integrated to establish baseline information for evaluation of impacts from brine disposal in the nearshore marine waters and from freshwater withdrawal from the coastal marsh of the Chenier Plain. January data are included for some tasks that sampled while testing and mobilizing their instruments prior to the February field effort. The study addresses the areas of physical oceanography, estuarine hydrology and hydrography, water and sediment quality, benthos, nekton, phytoplankton, zooplankton, and data management.

  7. Aspects on the acceptance of waste for disposal in SFR

    International Nuclear Information System (INIS)

    Torstenfelt, Boerje

    2006-01-01

    When licensing a final repository for radioactive waste certain assumptions have to be made concerning the waste. These assumptions cover radionuclide inventory and nonradiological materials and its physical and chemical impact on the waste, the repository and on the environment. Development of new waste treatment systems and waste packages at the waste producer site aim at finding solutions and products that can be stored, transported and disposed of safely and are economically sound. This paper discusses some aspects concerning development of new or modified waste products. It highlights the importance of analysing the whole sequence in treatment, handling and disposing the waste. The process should be to find an optimal solution for the whole system, considering the fact that what is best in one step it not necessary best for the whole system, including the post closure issues. (author)

  8. Disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    The problem of disposal can be tackled in two ways: the waste can be diluted and dispersed so that the radiation to which any single individual would be subjected would be negligible, or it can be concentrated and permanently isolated from man and his immediate environment. A variety of methods for the discharge of radioactive waste into the ground were described at the Monaco conference. They range from letting liquid effluent run into pits or wells at appropriately chosen sites to the permanent storage of high activity material at great depth in geologically suitable strata. Another method discussed consists in the incorporation of high level fission products in glass which is either buried or stored in vaults. Waste disposal into rivers, harbours, outer continental shelves and the open sea as well as air disposal are also discussed. Many of the experts at the Monaco conference were of the view that most of the proposed, or actually applied, methods of waste disposal were compatible with safety requirements. Some experts, felt that certain of these methods might not be harmless. This applied to the possible hazards of disposal in the sea. There seemed to be general agreement, however, that much additional research was needed to devise more effective and economical methods of disposal and to gain a better knowledge of the effects of various types of disposal operations, particularly in view of the increasing amounts of waste material that will be produced as the nuclear energy industry expands

  9. Report on radioactive waste disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The safe management of radioactive wastes constitutes an essential part of the IAEA programme. A large number of reports and conference proceedings covering various aspects of the subject have been issued. The Technical Review Committee on Underground Disposal (February 1988) recommended that the Secretariat issue a report on the state of the art of underground disposal of radioactive wastes. The Committee recommended the need for a report that provided an overview of the present knowledge in the field. This report covers the basic principles associated with the state of the art of near surface and deep geological radioactive waste disposal, including examples of prudent practice, and basic information on performance assessment methods. It does not include a comprehensive description of the waste management programmes in different countries nor provide a textbook on waste disposal. Such books are available elsewhere. Reviewing all the concepts and practices of safe radioactive waste disposal in a document of reasonable size is not possible; therefore, the scope of this report has been limited to cover essential parts of the subject. Exotic disposal techniques and techniques for disposing of uranium mill tailings are not covered, and only brief coverage is provided for disposal at sea and in the sea-bed. The present report provides a list of references to more specialized reports on disposal published by the IAEA as well as by other bodies, which may be consulted if additional information is sought. 108 refs, 22 figs, 2 tabs

  10. Disposal options for radioactive waste

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1991-01-01

    On the basis of the radionuclide composition and the relative toxicity of radioactive wastes, a range of different options are available for their disposal. Practically all disposal options rely on confinement of radioactive materials and isolation from the biosphere. Dilution and dispersion into the environment are only used for slightly contaminated gaseous and liquid effluents produced during the routine operation of nuclear facilities, such as power plants. For the bulk of solid radioactive waste, whatever the contamination level and decay of radiotoxicity with time are, isolation from the biosphere is the objective of waste disposal policies. The paper describes disposal approaches and the various techniques used in this respect, such as shallow land burial with minimum engineered barriers, engineered facilities built at/near the surface, rock cavities at great depth and finally deep geologic repositories for long-lived waste. The concept of disposing long-lived waste into seabed sediment layers is also discussed, as well as more remote possibilities, such as disposal in outer space or transmutation. For each of these disposal methods, the measures to be adopted at institutional level to reinforce technical isolation concepts are described. To the extent possible, some comments are made with regard to the applicability of such disposal methods to other hazardous wastes. (au)

  11. Underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This report is an overview document for the series of IAEA reports dealing with underground waste disposal to be prepared in the next few years. It provides an introduction to the general considerations involved in implementing underground disposal of radioactive wastes. It suggests factors to be taken into account for developing and assessing waste disposal concepts, including the conditioned waste form, the geological containment and possible additional engineered barriers. These guidelines are general so as to cover a broad range of conditions. They are generally applicable to all types of underground disposal, but the emphasis is on disposal in deep geological formations. Some information presented here may require slight modifications when applied to shallow ground disposal or other types of underground disposal. Modifications may also be needed to reflect local conditions. In some specific cases it may be that not all the considerations dealt with in this book are necessary; on the other hand, while most major considerations are believed to be included, they are not meant to be all-inclusive. The book primarily concerns only underground disposal of the wastes from nuclear fuel cycle operations and those which arise from the use of isotopes for medical and research activities

  12. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities

    International Nuclear Information System (INIS)

    2003-12-01

    Radioactive waste must be managed safely, consistent with internationally agreed safety standards. The disposal method chosen for the waste should be commensurate with the hazard and longevity of the waste. Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides and low concentrations of long lived radionuclides. The term 'near surface disposal' encompasses a wide range of design options, including disposal in engineered structures at or just below ground level, disposal in simple earthen trenches a few metres deep, disposal in engineered concrete vaults, and disposal in rock caverns several tens of metres below the surface. The use of a near surface disposal option requires design and operational measures to provide for the protection of human health and the environment, both during operation of the disposal facility and following its closure. To ensure the safety of both workers and the public (both in the short term and the long term), the operator is required to design a comprehensive waste management system for the safe operation and closure of a near surface disposal facility. Part of such a system is to establish criteria for accepting waste for disposal at the facility. The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures and in addition, to prevent or limit hazards, which could arise from non-radiological causes. Waste acceptance criteria include limits on radionuclide content concentration in waste materials, and radionuclide amounts in packages and in the repository as a whole. They also include limits on quantity of free liquids, requirements for exclusion of chelating agents and pyrophoric materials, and specifications of the characteristics of the waste containers. Largely as a result of problems encountered at some disposal facilities operated in the past, in 1985 the IAEA published guidance on generic acceptance

  13. Standard guide for characterization of spent nuclear fuel in support of geologic repository disposal

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide provides guidance for the types and extent of testing that would be involved in characterizing the physical and chemical nature of spent nuclear fuel (SNF) in support of its interim storage, transport, and disposal in a geologic repository. This guide applies primarily to commercial light water reactor (LWR) spent fuel and spent fuel from weapons production, although the individual tests/analyses may be used as applicable to other spent fuels such as those from research and test reactors. The testing is designed to provide information that supports the design, safety analysis, and performance assessment of a geologic repository for the ultimate disposal of the SNF. 1.2 The testing described includes characterization of such physical attributes as physical appearance, weight, density, shape/geometry, degree, and type of SNF cladding damage. The testing described also includes the measurement/examination of such chemical attributes as radionuclide content, microstructure, and corrosion product c...

  14. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    International Nuclear Information System (INIS)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-01-01

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information

  15. Transuranic advanced disposal systems: preliminary 239Pu waste-disposal criteria for Hanford

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1982-08-01

    An evaluation of the feasibility and potential application of advanced disposal systems is being conducted for defense transuranic (TRU) wastes at the Hanford Site. The advanced waste disposal options include those developed to provide greater confinement than provided by shallow-land burial. An example systems analysis is discussed with assumed performance objectives and various Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for 239 Pu are determined by applying the Allowable Residual Contamination Level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. A 10,000 year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/y to any exposed individual. Preliminary waste disposal criteria derived by this method for 239 Pu in soils at the Hanford Site are: 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth. 2 figures, 5 tables

  16. Conversion and Blending Facility highly enriched uranium to low enriched uranium as uranyl nitrate hexahydrate. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.

  17. Overview of the performance objectives and scenarios of TWRS Low-Level Waste Disposal Program. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pre-treating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. Assuming the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If the disposal system is not acceptable, then the waste will be subject to possible retrieval followed by some other disposal solution. Westinghouse Hanford Company is also planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing

  18. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-01-01

    The Canadian concept for nuclear fuel waste disposal is based on disposing of the waste in a vault excavated 500-1000 m deep in intrusive igneous rock of the Canadian Shield. The author believes that, if the concept is accepted following review by a federal environmental assessment panel (probably in 1995), then it is important that implementation should begin without delay. His reasons are listed under the following headings: Environmental leadership and reducing the burden on future generations; Fostering public confidence in nuclear energy; Forestalling inaction by default; Preserving the knowledge base. Although disposal of reprocessing waste is a possible future alternative option, it will still almost certainly include a requirement for geologic disposal

  19. Performance assessment studies for the long-term safety evaluation of radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Olteanu, M.; Bujoreanu, L.

    2008-01-01

    Especially during the last ten years, a part of Romanian research program 'Management of Radioactive Waste and Spent Fuel' was focused mainly on applicative research for the design of near-surface disposal facility, which intends to accommodate the low and intermediate radioactive waste generated from Cernavoda NPP. In this frame, our contribution was at the acquisition of technical data for the characterization of the future disposal facility. In the present, the project of the disposal facility, located on the Saligny site, near Cernavoda NPP, must be licensed. As regards to the safe disposal, the location of final disposal, the Saligny site, has been characterized through the five geological formations which contain potential routes for transport of radionuclide released from disposal facility, in the receiving zones(potential receiving zones), into liquid and gaseous phases. The technical characteristics of the disposal facility were adapted at the Romanian disposal concept using the reference data from IAEA technical report (IAEA,1999). Input parameters which characterized from physical and chemical point of view the disposal system, were partially taken from literature. The performance assessment studies, which follows the preliminary design development phases and the selection, describes how the source term is affected by the infiltration of water through the disposal facility, degradation process of engineering barriers (reflected in the distribution coefficient values) and solubility limit. The studies regard the evaluation of the source term, sensitivity and uncertainty analysis provide the information on 'how' and 'why' were evaluated, following: (i) radiological safety assessment of near-surface disposal facility on Saligny site; (ii) complexity standard assessment of the Engineering Barriers Systems (EBS); (iii) identification of the elements which must be elaborated for the increase of the disposal safety and the necessity for new technical data for

  20. Historical relationship between performance assessment for radioactive waste disposal and other types of risk assessment

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1999-01-01

    This article describes the evolution of the process for assessing the hazards of a geologic disposal system for radioactive waste and, similarly, nuclear power reactors, and the relationship of this process with other assessments of risk, particularly assessments of hazards from manufactured carcinogenic chemicals during use and disposal. This perspective reviews the common history of scientific concepts for risk assessment developed until the 1950s. Computational tools and techniques developed in the late 1950s and early 1960s to analyze the reliability of nuclear weapon delivery systems were adopted in the early 1970s for probabilistic risk assessment of nuclear power reactors, a technology for which behavior was unknown. In turn, these analyses became an important foundation for performance assessment of nuclear waste disposal in the late 1970s. The evaluation of risk to human health and the environment from chemical hazards is built on methods for assessing the dose response of radionuclides in the 1950s. Despite a shared background, however, societal events, often in the form of legislation, have affected the development path for risk assessment for human health, producing dissimilarities between these risk assessments and those for nuclear facilities. An important difference is the regulator's interest in accounting for uncertainty

  1. Lessons to be learned from radioactive waste disposal practices for non-radioactive hazardous waste management

    International Nuclear Information System (INIS)

    Merz, E.R.

    1991-01-01

    The criteria to be set up for any kind of hazardous waste disposal must always be put in perspective: 1. what are the waste characteristics? 2. what time period for safe isolation is of interest? 3. which geological disposal alternatives exist? Different approaches may be used in the short- and long-term perspective. In either case, a general procedure is recommended which involves concentrating, containing and isolating the source of toxicity, both radioactive and chemotoxic substances, as far as practicable. Waste characterization of either chemotoxic or radioactive wastes should be performed applying comparable scientifically based principles. The important question which arises is whether their hazard potential can be quantified on the basis of dose comparison regarding the morbidity effects of radiation and of chemical pollutants. Good control over the consequences of hazardous waste disposal requires threat detailed criteria for tolerable contamination of radioactive as well as chemical pollutants should be established, and that compliance with these criteria can be demonstrated. As yet, there are no well developed principles for assessing the detriment from most types of genotoxic waste other than radioactive material. The time horizon discussed for both categories of waste for their proof of safe isolation differs by a factor of about one hundred. (au)

  2. Safety considerations of disposal of disused sealed sources in Puspokszilagy Repository, Hungary

    International Nuclear Information System (INIS)

    2003-01-01

    The report presents the management of radioactive waste in Hungary Puspokszilagy Repository (RWTDF) including waste acceptance criteria, safety assessments, Action Plan for the safety improvement and present projects. The Puspokszilagy Repository is a typical near-surface repository, sink into the ground 6 m depth. The facility is a shallow land disposal type, appropriated for disposal of short and medium lived LILW, acceptable for temporary storage of long lived LILW. It consists of vaults containing cells for solidified drummed waste, wells for spent sealed sources, work building for treatment and interim storage and office building for environmental measurements. Two safety assessments have been performed in 2000 and 2002. The new safety assessment confirms the main statements of SA 2000, according to which several waste types can cause serious problems in the distant future: Until the finish of passive control the safety of the environment is guaranteed. After that time it is possible to arise events leading to exceeding of dose restricts (more then 10 mSv/yr but less then 100 mSv/yr), because of disposal of long lived radionuclides (mainly C-14,Tc-99, Ra-226, Th-232, U-234) and significant activities of Cs-137 sources.There are uncertainties in radionuclide amounts and distributions, as well as in the physical and chemical characteristics of the wastes that determine radionuclide mobility and toxicity. The recommendations to improve the safety include: Long lived SSRS in the 'B' and 'D' wells should be removed before the closure of repository. Large Cs-137 sources and long lived sources in the 'A' vaults should be recovered (if its feasible); All vaults should be backfilled to provide chemical conditioning; The waste packaged in plastic bags should be repackaged and compacted into drums or containers; The inventory should be revise. Waste acceptance requirements in the future are: The disposal of long lived radionuclides is no permitted. The long lived waste

  3. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  4. The uncertain future for nuclear graphite disposal: Crisis or opportunity?

    International Nuclear Information System (INIS)

    Wickham, A.J.; Neighbour, G.B.; Dubourg, M.

    2001-01-01

    Over the last twenty years, numerous proposals have been made for the long-term treatment of radioactive graphite waste. These plans have ranged from sea dumping through incineration to land-based disposal, sometimes preceded by a variable period of 'safe-storage' within the original reactor containment, to allow for the decay of shorter-lived isotopes ahead of dismantling. A number of novel chemical or physical pre-treatments of the graphite, with the objective of facilitating its subsequent disposal or improving the environmental consequences of the chosen disposal route, have also been suggested. There are patents issued on systems for transmutation of long-lived isotopes to reduce the radiological consequences of disposal of intact graphite, and for separation of certain isotopes such as carbon-14 from the matrix in an incineration process. Although these far-reaching proposals are not apparently cost-effective, scope for cost-recovery does exist, i.e., in terms of disposal of the separated carbon-14 in cements used for immobilisation of other radioactive solid waste materials. More recently, political and environmental factors have further complicated the issue. Nuclear regulators are challenging the proposed length of 'safe-storage' schemes on the basis that essential knowledge on the reactor materials may be lost in the interim. International agreements such as OSPAR have effectively eliminated the possibility for disposal at sea, whilst public opinion is strongly expressed against any expansion of existing land-based disposal sites or the creation of new ones. As a particular example, the United Kingdom authorities recently denied to the official body charged with the development of a deep repository the necessary planning consents to develop an exploratory rock-structure laboratory on the most favoured site. The current drive towards minimising or eliminating any radioactivity release to the environment has the unintended consequence of causing the waste

  5. The influence of water disposal method on the property of chemical oil-displacement agent--taking Guan 109-1 area of Dagang oilfield as example

    Directory of Open Access Journals (Sweden)

    Shengwang Yuan

    2018-03-01

    Full Text Available Aiming at the actual demand of Guan 109-1 block in Dagang oilfield, by means of instrumental analysis, chemical analysis, modern physical simulation, viewing polymer viscosity and seepage characteristic as evaluation index, the experimental research on the influence of water disposal method on the property of chemical oil-displacement agent was carried out. Results showed that through adding scaling agent, scale was formed because of the reaction between scaling agent and Ca2+, Mg2+ in the flooding water, which could enhance the viscosity of polymer solution. Through comparing the resistance factor and residual resistance factor of polymer solution which was respectively prepared with flooding water, softened water and scale, the resistance factor and residual resistance factor of polymer solution with scale was the largest, that of polymer solution prepared with softened water was second and that of polymer solution prepared with flooding water came last. Furthermore, scaling agent weakened the gelling effect between cross-linking agent Cr3+ and polymer molecule chains. The earlier the cross-linking agent Cr3+ was added, the larger the polymer viscosity, resistance factor and residual resistance factor of Cr3+ polymer were.

  6. Canisters for spent-fuel disposal: Design measures against localized corrosion

    International Nuclear Information System (INIS)

    Werme, L.O.; Oversby, V.M.

    2000-01-01

    Common to all high-level-waste disposal concepts is the encapsulation of the waste into metal canisters. The purpose of this waste canister is to isolate the radioactive waste from contact with its surroundings for a desired time period. The design service life ranges from hundreds to thousands of years depending on the disposal concept. After the isolation has been breached, other barriers in the disposal system will delay and attenuate the radioactive releases to acceptable levels. In a deep geologic repository, the waste package will be exposed to chemical attack and, depending on the type of repository, to mechanical stresses. Each of these factors will by itself or in combination inevitably lead to loss of confinement some time in the future. In the design of the Swedish waste canister, the corrosion resistance is provided by an outer shell of pure copper while an insert supplies the mechanical strength cast nodular iron. The close fit between the insert and the copper results in very small tensile stresses in the copper over very limited areas once the repository has been saturated. Measurements of stress corrosion crack growth show that annealed copper cannot maintain sufficiently high stress intensity factors for cracks to grow. For annealed copper, the stress intensity factor was limited to 25 MPa·m 1/2 because of extensive plastic deformation. For cold-worked copper, no crack growth could be observed for stress intensity factors 1/2 . Through the choices of canister material, canister, and repository design, and considering the expected chemical conditions, the risks for localized corrosion can be lowered to an acceptable level, if not eliminated altogether, and the releases from prematurely failed canisters can be kept well within acceptable dose levels

  7. Unreviewed Disposal Question Evaluation: Waste Disposal in Engineered Trenches 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-12

    Revision 0 of this UDQE addressed the proposal to place Engineered Trench #3 (ET#3) in the footprint designated for Slit Trench #12 (ST#12) and operate using ST#12 disposal limits. Similarly, Revision 1 evaluates whether ET#4 can be located in and operated to Slit Trench #13 (ST#13) disposal limits. Both evaluations conclude that the proposed operations result in an acceptably small risk of exceeding a SOF of 1.0 and approve these actions from a performance assessment (PA) perspective. Because ET#3 will be placed in the location previously designated for ST#12, Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore, new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  8. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  9. The disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ormai, P.

    2006-01-01

    The first part shows different ways of 'producing' radioactive wastes, defines the wastes of small, medium and high activity and gives estimation on the quantity of the necessary capacities of waste disposal facilities. The modern radioactive waste disposal that is the integrated processing of the form of waste, the package, the technical facility and the embedding geological environment that guarantee the isolation together. Another factor is the lifetime of radioactive waste which means that any waste containing long lifetime waste in higher concentration than 400-4000 kBq/kg should be disposed geologically. Today the centre of debate disposal of radioactive waste is more social than technical. For this reason not only geological conditions and technical preparations, but social discussions and accepting communities are needed in selecting place of facilities. Now, the focus is on long term temporary disposal of high activity wastes, like burnt out heating elements. The final part of the paper summarizes the current Hungarian situation of disposal of radioactive wastes. (T-R.A.)

  10. Marine disposal of radioactive wastes - the debate

    International Nuclear Information System (INIS)

    Blair, I.

    1985-01-01

    The paper defends the case for marine disposal of radioactive wastes. The amount of packaged waste disposed; the site for marine disposal; the method of disposal; the radioactivity arising from the disposal; and safety factors; are all briefly discussed. (U.K.)

  11. Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Carilli, J.T.

    2006-01-01

    Low-level radioactive waste (LLW) streams which have a clear, defined pathway to disposal are becoming less common as U.S. Department of Energy accelerated cleanup sites enters their closure phase. These commonly disposed LLW waste streams are rapidly being disposed and the LLW inventory awaiting disposal is dwindling. However, more complex waste streams that have no path for disposal are now requiring attention. The U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NSO) Environmental Management Program is charged with the responsibility of carrying out the disposal of onsite and off-site defense-generated and research-related LLW at the Nevada. Test Site (NTS). The NSO and its generator community are constantly pursuing new LLW disposal techniques while meeting the core mission of safe and cost-effective disposal that protects the worker, the public and the environment. From trenches to present-day super-cells, the NTS disposal techniques must change to meet the LLW generator's disposal needs. One of the many ways the NTS is addressing complex waste streams is by designing waste specific pits and trenches. This ensures unusual waste streams with high-activity or large packaging have a disposal path. Another option the NTS offers is disposal of classified low-level radioactive-contaminated material. In order to perform this function, the NTS has a safety plan in place as well as a secure facility. By doing this, the NTS can accept DOE generated classified low-level radioactive-contaminated material that would be equivalent to U.S. Nuclear Regulatory Commission Class B, C, and Greater than Class C waste. In fiscal year 2006, the NTS will be the only federal disposal facility that will be able to dispose mixed low-level radioactive waste (MLLW) streams. This is an activity that is highly anticipated by waste generators. In order for the NTS to accept MLLW, generators will have to meet the stringent requirements of the NTS

  12. Greenpeace tells a different story

    International Nuclear Information System (INIS)

    McSorley, J.

    1992-01-01

    Greenpeace comments on the issue of disposing of Australia's stockpile of low-level radioactive waste are presented. The main concern is that opening a major waste repository within Australia to accommodate the growing radioactive pile accumulate from medical, industrial and mining operations could be the first step towards making Australia a high-level waste dump

  13. Assessment of chemicals in construction products

    DEFF Research Database (Denmark)

    Krogh, Hanne; Olsen, Stig Irving

    2000-01-01

    . The reasons for that are lacks of product-specific emissions by manufacturing of chemical products, e.g. waterproofing systems and sealants. Besides, most LCA-models do not include assessments of emissions in working environment, in indoor environment or from disposal processes. It was therefore...

  14. Control and tracking arrangements for solid low-level waste disposals to the UK Drigg disposal site

    International Nuclear Information System (INIS)

    Elgie, K.G.; Grimwood, P.D.

    1993-01-01

    The Drigg disposal site has been the principal disposal site for solid low-level radioactive wastes (LLW) in the United Kingdom since 1959. It is situated on the Cumbrian coast, some six kilometers to the south of the Sellafield nuclear reprocessing site. The Drigg site receives LLW from a wide range of sources including nuclear power generation, nuclear fuel cycle activities, defense activities, isotope manufacture, universities, hospitals, general industry and clean-up of contaminated sites. This LLW has been disposed of in a series of trenches cut into the underlying clay layer of the site, and, since 1988, also into concrete lined vault. The total volume of LLW disposed of at Drigg is at present in the order of 800,000m 3 , with disposals currently approximately 25,000m 3 per year. British Nuclear Fuels plc (BNFL) owns and operates the Drigg disposal site. To meet operational and regulatory requirements, BNFL needs to ensure the acceptability of the disposed waste and be able to track it from its arising point to its specific disposal location. This paper describes the system that has been developed to meet these requirements

  15. Near-surface land disposal

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1989-01-01

    The Radioactive Waste Management Handbook provides a comprehensive, systematic treatment of nuclear waste management. Near-Surface Land Disposal, the first volume, is a primary and secondary reference for the technical community. To those unfamiliar with the field, it provides a bridge to a wealth of technical information, presenting the technology associated with the near-surface disposal of low or intermediate level wastes. Coverage ranges from incipient planning to site closure and subsequent monitoring. The book discusses the importance of a systems approach during the design of new disposal facilities so that performance objectives can be achieved; gives an overview of the radioactive wastes cosigned to near-surface disposal; addresses procedures for screening and selecting sites; and emphasizes the importance of characterizing sites and obtaining reliable geologic and hydrologic data. The planning essential to the development of particular sites (land acquisition, access, layout, surface water management, capital costs, etc.) is considered, and site operations (waste receiving, inspection, emplacement, closure, stabilization, etc.) are reviewed. In addition, the book presents concepts for improved confinement of waste, important aspects of establishing a monitoring program at the disposal facility, and corrective actions available after closure to minimize release. Two analytical techniques for evaluating alternative technologies are presented. Nontechnical issues surrounding disposal, including the difficulties of public acceptance are discussed. A glossary of technical terms is included

  16. Chemical durability of glasses containing radioactive fission product waste

    International Nuclear Information System (INIS)

    Mendel, J.E.; Ross, W.A.

    1974-04-01

    Measurements made to determine the chemical durability of glasses for disposal of radioactive waste are discussed. The term glass covers materials varying from true glass with only minute quantities of crystallites, such as insoluble RuO 2 , to quasi glass-ceramics which are mostly crystalline. Chemical durability requirements and Soxhlet extractor leach tests are discussed

  17. Disposal options for disused radioactive sources

    International Nuclear Information System (INIS)

    2005-01-01

    This report presents a review of relevant information on the various technical factors and issues, as well as approaches and relevant technologies, leading to the identification of potential disposal options for disused radioactive sources. The report attempts to provide a logical 'road map' for the disposal of disused radioactive sources, taking into consideration the high degree of variability in the radiological properties of such types of radioactive waste. The use of borehole or shaft type repositories is highlighted as a potential disposal option, particularly for those countries that have limited resources and are looking for a simple, safe and cost effective solution for the disposal of their radioactive source inventories. It offers information about usage and characteristics of radioactive sources, disposal considerations, identification and screening of disposal options as well as waste packaging and acceptance criteria for disposal. The information provided in the report could be adapted or adopted to identify and develop specific disposal options suitable for the type and inventory of radioactive sources kept in storage in a given Member State

  18. Disposal of tritium-exposed metal hydrides

    International Nuclear Information System (INIS)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R ampersand D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed

  19. Natural analogue study on engineered barriers for underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Araki, K.; Motegi, M.; Emoto, Y.; Kaji, Y.; Ikari, S.; Nada, T.; Watanabe, T.

    1989-01-01

    This is a report to develop the natural analogue methodology for the assessment of the life of the engineered barriers beyond the time period of normal experiments, 1000 years, for the disposal of low-level radioactive wastes with activity levels greater than those of wastes acceptable for shallow land burial in Japan. Geological and archeological events and objects available for the assessment of the possible life of each engineered barrier are surveyed. Taking heavy precipitation into account in Japan, a long-term, zero-release engineered barrier system using long-term durable materials based on the natural analogue events and objects is proposed along with the conventional type of water permeable engineered barrier system. The combination of the material quality and the environment that could be achieved within the repository is important for the long-term durability of the engineered barrier material. It is proposed that for the natural analogue study a physico-chemical methodology, which may be referred to as the physico-chemical natural history, is necessary to get parameters from the natural analogue events for the long-term assessment of the disposal system

  20. Disposal of Iodine-129

    International Nuclear Information System (INIS)

    Morgan, M.T.; Moore, J.G.; Devaney, H.E.; Rogers, G.C.; Williams, C.; Newman, E.

    1978-01-01

    One of the problems to be solved in the nuclear waste management field is the disposal of radioactive iodine-129, which is one of the more volatile and long-lived fission products. Studies have shown that fission products can be fixed in concrete for permanent disposal. Current studies have demonstrated that practical cementitious grouts may contain up to 18% iodine as barium iodate. The waste disposal criterion is based on the fact that harmful effects to present or future generations can be avoided by isolation and/or dilution. Long-term isolation is effective in deep, dry repositories; however, since penetration by water is possible, although unlikely, release was calculated based on leach rates into water. Further considerations have indicated that sea disposal on or in the ocean floor may be a more acceptable alternative

  1. Sub-seabed disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sivintsaev, Yu.V.

    1990-01-01

    The first stage of investigations of possibility of sub-seabed disposal of long-living intermediate-level radioactive wastes carried out by NIREX (UK) is described. Advantages and disadvantages of sub-seabed disposal of radioactive wastes are considered; regions suitable for disposal, transport means for marine disposal are described. Three types of sub-seabed burials are characterized

  2. REEMISSION OF MERCURY COMPOUNDS FROM SEWAGE SLUDGE DISPOSAL

    Directory of Open Access Journals (Sweden)

    Beata Janowska

    2016-12-01

    Full Text Available The sewage sludge disposal and cultivation methods consist in storage, agricultural use, compost production, biogas production or heat treatment. The sewage sludge production in municipal sewage sludge treatment plants in year 2013 in Poland amounted to 540.3 thousand Mg d.m. The sewage sludge for agricultural or natural use must satisfy chemical, sanitary and environmental safety requirements. The heavy metal content, including the mercury content, determines the sewage sludge disposal method. Mercury has a high chemical activity and biological form compounds with different properties. The properties of the mercury present in sewage sludge or composts, its potential bioavailability depend on its physicochemical forms. Different forms of mercury, which are found in soil and sediments and sewage sludge, may be determined using various techniques sequential extraction. In order to assess the bioavailability the analysis of fractional of mercury in samples of sewage sludge and composts was made. For this purpose the analytical procedure based on a four sequential extraction process was applied. Mercury fractions were classified as exchangeable (EX, base soluble (BS, acids soluble (AS and oxidizable (OX. This article presents the research results on the mercury compounds contents in sewage sludge subjected to drying process, combustion and in composted sewage sludge. During drying and combustion process of the sewage sludge, mercury transforms into volatile forms that could be emitted into the atmosphere. The mercury fractionation in composted sewage sludge proved that mercury in compost occurs mainly in an organic fraction and in a residual fraction that are scarce in the environment.

  3. Performance monitoring of an improved disposal trench in a humid environment in a fractured geology

    International Nuclear Information System (INIS)

    Mills, D.; Razor, J.

    1988-01-01

    An engineering evaluation of an improved disposal trench at the Maxey Flats Waste Disposal Site is being conducted in order to demonstrate the feasibility of a burial trench suitable for use at a site in a humid environment and underlain by complex and fractured geologic media. This demonstration is one of several proposed final site stabilization alternatives which will have to be evaluated prior to final site closure. Due to requirements in the Central Midwest Compact Commission, no waste generated as a result of the site closure may be disposed in the Commission's disposal site. Hence, the waste will be disposed on-site. The demonstration trench was constructed and filled with waste during the fall of 1985 with final trench capping being completed in July 1986. Since that time the trench has been evaluated utilizing trench settlement monument elevations, leachate production measurements, leachate radionuclide analysis, chemical tracer analysis and trench water balance. Measurements performed to date indicated that the trench lower infiltration barrier has a permeability of about 1E-7 cm/sec. Water balance measurements indicated that less than one percent of the total rainfall crossed the trench capillary barrier. No settlement of the trench cap has been observed. No liquid has appeared in the leachate collection and monitoring sumps

  4. Disposal of Radioactive Wastes. Vol. II. Proceedings of the Scientific Conference on the Disposal of Radioactive Wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-01

    Almost every human activity creates some kind of waste. Whether it is harmful, inconvenient, neutral or even positively useful in some other activity depends largely on its nature, which can often be changed by some fairly simple chemical process so as to neutralize harmful wastes, render inconvenient wastes useful, and so on. Radioactive ''waste'' can be extremely harmful or useful, again depending on its form and the way it is handled; but its essential nature cannot be changed or destroyed by any means at present under the control of man. Furthermore, the harmful waste of today may well become the useful raw material of tomorrow. As more and more countries embark on programs of nuclear research and nuclear power, the quantities of radioactive material to be disposed of are rapidly increasing and the problems of safeguarding humanity on the one hand and of storing possibly useful material on the other are assuming great importance. It was for these reasons that the International Atomic Energy Agency and the United Nations Educational, Scientific and Cultural Organization combined their forces in sponsoring and organizing, with the co-operation of the Food and Agricultural Organization of the United Nations, a large scientific conference devoted to the subject of the disposal of radioactive wastes. The Conference was held from 16 to 21 November 1959 at the Oceanographic Museum in Monaco, in deference to the leading position of this institution in the field of oceanography, which is an extremely important discipline in relation to the disposal of wastes into the sea. A total of 283 scientists attended, representing 31 countries and 11 international organizations. It is with the consciousness of offering scientific information of great value to the future progress of an extremely important field of knowledge that I now commend these Proceedings to the earnest attention of all workers in that field.

  5. Disposal of Radioactive Wastes. Vol. I. Proceedings of the Scientific Conference on the Disposal of Radioactive Wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-01

    Almost every human activity creates some kind of waste. Whether it is harmful, inconvenient, neutral or even positively useful in some other activity depends largely on its nature, which can often be changed by some fairly simple chemical process so as to neutralize harmful wastes, render inconvenient wastes useful, and so on. Radioactive ''waste'' can be extremely harmful or useful, again depending on its form and the way it is handled; but its essential nature cannot be changed or destroyed by any means at present under the control of man. Furthermore, the harmful waste of today may well become the useful raw material of tomorrow. As more and more countries embark on programs of nuclear research and nuclear power, the quantities of radioactive material to be disposed of are rapidly increasing and the problems of safeguarding humanity on the one hand and of storing possibly useful material on the other are assuming great importance. It was for these reasons that the International Atomic Energy Agency and the United Nations Educational, Scientific and Cultural Organization combined their forces in sponsoring and organizing, with the co-operation of the Food and Agricultural Organization of the United Nations, a large scientific conference devoted to the subject of the disposal of radioactive wastes. The Conference was held from 16 to 21 November 1959 at the Oceanographic Museum in Monaco, in deference to the leading position of this institution in the field of oceanography, which is an extremely important discipline in relation to the disposal of wastes into the sea. A total of 283 scientists attended, representing 31 countries and 11 international organizations. It is with the consciousness of offering scientific information of great value to the future progress of an extremely important field of knowledge that I now commend these Proceedings to the earnest attention of all workers in that field.

  6. Disposal of Radioactive Wastes. Vol. I. Proceedings of the Scientific Conference on the Disposal of Radioactive Wastes

    International Nuclear Information System (INIS)

    1960-01-01

    Almost every human activity creates some kind of waste. Whether it is harmful, inconvenient, neutral or even positively useful in some other activity depends largely on its nature, which can often be changed by some fairly simple chemical process so as to neutralize harmful wastes, render inconvenient wastes useful, and so on. Radioactive ''waste'' can be extremely harmful or useful, again depending on its form and the way it is handled; but its essential nature cannot be changed or destroyed by any means at present under the control of man. Furthermore, the harmful waste of today may well become the useful raw material of tomorrow. As more and more countries embark on programs of nuclear research and nuclear power, the quantities of radioactive material to be disposed of are rapidly increasing and the problems of safeguarding humanity on the one hand and of storing possibly useful material on the other are assuming great importance. It was for these reasons that the International Atomic Energy Agency and the United Nations Educational, Scientific and Cultural Organization combined their forces in sponsoring and organizing, with the co-operation of the Food and Agricultural Organization of the United Nations, a large scientific conference devoted to the subject of the disposal of radioactive wastes. The Conference was held from 16 to 21 November 1959 at the Oceanographic Museum in Monaco, in deference to the leading position of this institution in the field of oceanography, which is an extremely important discipline in relation to the disposal of wastes into the sea. A total of 283 scientists attended, representing 31 countries and 11 international organizations. It is with the consciousness of offering scientific information of great value to the future progress of an extremely important field of knowledge that I now commend these Proceedings to the earnest attention of all workers in that field

  7. Toward Hazardless Waste: A Guide for Safe Use and Disposal of Hazardous Household Products.

    Science.gov (United States)

    Toteff, Sally; Zehner, Cheri

    This guide is designed to help individuals make responsible decisions about safe use and disposal of household products. It consists of eight sections dealing with: (1) hazardous chemicals in the home, how hazaradous products become hazardous waste, and whether a hazardous waste problem exists in Puget Sound; (2) which household wastes are…

  8. Financing of radioactive waste disposal

    International Nuclear Information System (INIS)

    Reich, J.

    1989-01-01

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP) [de

  9. Social dimensions of nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Armin [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Technology Assessment and Systems Analysis

    2015-07-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  10. Phytoextraction crop disposal--an unsolved problem

    International Nuclear Information System (INIS)

    Sas-Nowosielska, A.; Kucharski, R.; Malkowski, E.; Pogrzeba, M.; Kuperberg, J.M.; Krynski, K.

    2004-01-01

    Several methods of contaminated crop disposal after phytoextraction process (composting, compaction, incineration, ashing, pyrolysis, direct disposal, liquid extraction) have been described. Advantages and disadvantages of methods are presented and discussed. Composting, compaction and pyrolysis are the pretreatment steps, since significant amount of contaminated biomass will still exist after each of the process. Four methods of final disposal were distinguished: incineration, direct disposal, ashing and liquid extraction. Among them, incineration (smelting) is proposed as the most feasible, economically acceptable and environmentally sound. - Methods of contaminated crop disposal are described and evaluated

  11. Social dimensions of nuclear waste disposal

    International Nuclear Information System (INIS)

    Grunwald, Armin

    2015-01-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  12. Hong kong chemical waste treatment facilities: a technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Siuwang, Chu [Enviropace Ltd., Hong Kong (Hong Kong)

    1994-12-31

    The effective management of chemical and industrial wastes represents one of the most pressing environmental problems confronting the Hong Kong community. In 1990, the Hong Kong government contracted Enviropace Limited for the design, construction and operation of a Chemical Waste Treatment Facility. The treatment and disposal processes, their integration and management are the subject of discussion in this paper

  13. Hong kong chemical waste treatment facilities: a technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Siuwang, Chu [Enviropace Ltd., Hong Kong (Hong Kong)

    1993-12-31

    The effective management of chemical and industrial wastes represents one of the most pressing environmental problems confronting the Hong Kong community. In 1990, the Hong Kong government contracted Enviropace Limited for the design, construction and operation of a Chemical Waste Treatment Facility. The treatment and disposal processes, their integration and management are the subject of discussion in this paper

  14. [Risk Assessment and Risk Management of Chemicals in China].

    Science.gov (United States)

    Wang, Tie-yu; Zhou, Yun-qiao; Li, Qi-feng; Lü, Yong-long

    2016-02-15

    Risk assessment and risk management have been increasingly approved as an effective approach for appropriate disposal and scientific management of chemicals. This study systematically analyzed the risk assessment methods of chemicals from three aspects including health risk, ecological risk and regional risk. Based on the current situation of classification and management towards chemicals in China, a specific framework of risk management on chemicals was proposed by selecting target chemicals, predominant industries and related stakeholders as the objects. The results of the present study will provide scientific support for improving risk assessment and reasonable management of chemicals in China.

  15. Modelling of the underwater disposal of uranium mine tailings in Elliot Lake

    International Nuclear Information System (INIS)

    Halbert, B.E.; Scharer, J.M.; Chakravatti, J.L.; Barnes, E.

    1982-01-01

    Underwater disposal of uranium mine tailings from the Elliot Lake area operations offers potential advantages in controlling radon gas release, emission of airborne particulate matter, and acid production from pyrites in the tailings. In addition, the proximity of the three active properties, one owned by Denison Mines Limited and two by Rio Algom Limited, to a large deep lake has spurred interest in the concept. It has been estimated that the placement of approximately 150 million tonnes of tailings from future planned production would occupy less than 20% of the lake volume. To assess the applicability of the underwater tailings disposal concept, a multi-stage study was developed in conjunction with the regulatory agencies. The most important facet identified for investigation during the first-stage investigations was an assessment of the effects of underwater disposal on water quality in the Serpent River Basin watershed. To simulate the effects of underwater disposal, a computer simulation routine was developed and integrated with a water quality model previously developed for the Basin which predicts levels of total dissolved solids, ammonia, dissolved radium-226 and pH. The underwater disposal model component reflects the effects of direct input of tailings into the hypolimnion, the chemical/biological transformation of dissolved constituents in the water column, the reactions of pyritic tailings deposited on the bottom, and the flux of dissolved constituents from the tailings into the water column. To establish site-specific values for the underwater disposal model, field and laboratory experiments were utilized to evaluate rates of pyrite and ammonia oxidation, and pH-alkalinity relationships. The results of these studies and their use in the water quality model are discussed. In addition, the results of two model run simulations are presented. (author)

  16. Land disposal alternatives for low-level waste

    International Nuclear Information System (INIS)

    Alexander, P.; Lindeman, R.; Saulnier, G.; Adam, J.; Sutherland, A.; Gruhlke, J.; Hung, C.

    1982-01-01

    The objective of this project is to develop data regarding the effectiveness and costs of the following options for disposing of specific low-level nuclear waste streams; sanitary landfill; improved shallow land burial; intermediate depth disposal; deep well injection; conventional shallow land burial; engineered surface storage; deep geological disposal; and hydrofracturing. This will be accomplished through the following steps: (1) characterize the properties of the commercial low-level wastes requiring disposal; (2) evaluate the various options for disposing of this waste, characterize selected representative waste disposal sites and design storage facilities suitable for use at those sites; (3) calculate the effects of various waste disposal options on population health risks; (4) estimate the costs of various waste disposal options for specific sites; and (5) perform trade-off analyses of the benefits of various waste disposal options against the costs of implementing these options. These steps are described. 2 figures, 2 tables

  17. Unreviewed Disposal Question: A Discipline Process to Manage Change in LLW Disposal

    International Nuclear Information System (INIS)

    Goldston, W.T.

    2000-01-01

    The Department of Energy's waste management Order, DOE O 435.1, requires that low--level waste disposal facilities develop and maintain a radiological performance assessment to ensure that disposal operations are within a performance envelope defined by performance objectives for long-term protection of the public and the environment. The Order also requires that a radiological composite analysis be developed and maintained to ensure that the disposal facility, in combination with other sources of radioactive material that may remain when all DOE activities have ceased, will not compromise future radiological protection of the public and the environment. The Order further requires that a Disposal Authorization Statement (DAS) be obtained from DOE Headquarters and that the disposal facility be operated within the performance assessment, composite analysis, and DAS. Maintenance of the performance assessment and composite analysis includes conducting test, research, and monitoring activities to increase confidence in the results of the analyses. It also includes updating the analyses as changes are proposed in the disposal operations, or other information requiring an update, becomes available. Personnel at the Savannah River Site have developed and implemented an innovative process for reviewing proposed or discovered changes in low-level radioactive waste disposal operations. The process is a graded approach to determine, in a disciplined manner, whether changes are within the existing performance envelope, as defined by the performance assessment, composite analysis, and DAS, or whether additional analysis is required to authorize the change. This process is called the Unreviewed Disposal Question (UDQ) process. It has been developed to be analogous to the Unreviewed Safety Question (UDQ) process that has been in use within DOE for many years. This is the first formalized system implemented in the DOE complex to examine low-level waste disposal changes the way the

  18. Subseabed disposal safety analysis

    International Nuclear Information System (INIS)

    Koplick, C.M.; Kabele, T.J.

    1982-01-01

    This report summarizes the status of work performed by Analytic Sciences Corporation (TASC) in FY'81 on subseabed disposal safety analysis. Safety analysis for subseabed disposal is divided into two phases: pre-emplacement which includes all transportation, handling, and emplacement activities; and long-term (post-emplacement), which is concerned with the potential hazard after waste is safely emplaced. Details of TASC work in these two areas are provided in two technical reports. The work to date, while preliminary, supports the technical and environmental feasibility of subseabed disposal of HLW

  19. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  20. Chemical looping combustion: A new low-dioxin energy conversion technology.

    Science.gov (United States)

    Hua, Xiuning; Wang, Wei

    2015-06-01

    Dioxin production is a worldwide concern because of its persistence and carcinogenic, teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to traditional solid waste incineration developed to reduce the dioxin production. Based on the equilibrium composition of the Deacon reaction, pyrolysis gas oxidized by seven common oxygen carriers, namely, CuO, NiO, CaSO4, CoO, Fe2O3, Mn3O4, and FeTiO3, is studied and compared with the pyrolysis gas directly combusted by air. The result shows that the activity of the Deacon reaction for oxygen carriers is lower than that for air. For four typical oxygen carriers (CuO, NiO, Fe2O3, and FeTiO3), the influences of temperature, pressure, gas composition, and tar on the Deacon reaction are discussed in detail. According to these simulation results, the dioxin production in China, Europe, the United States, and Japan is predicted for solid waste disposal by the pyrolysis-chemical looping combustion process. Thermodynamic analysis results in this paper show that chemical looping combustion can reduce dioxin production in the disposal of solid waste. Copyright © 2015. Published by Elsevier B.V.

  1. Overview of nuclear waste disposal in space

    International Nuclear Information System (INIS)

    Rice, E.E.; Priest, C.C.

    1981-01-01

    One option receiving consideration by the Department of Energy (DOE) is the space disposal of certain high-level nuclear wastes. The National Aeronautics and Space Administration is assessing the space disposal option in support of DOE studies on alternatives for nuclear waste management. The space disposal option is viewed as a complement, since total disposal of fuel rods from commercial power plants is not considered to be economically practical with Space Shuttle technology. The space disposal of certain high-level wastes may, however, provide reduced calculated and perceived risks. The space disposal option in conjunction with terrestrial disposal may offer a more flexible and lower risk overall waste management system. For the space disposal option to be viable, it must be demonstrated that the overall long-term risks associated with this activity, as a complement to the mined geologic repository, would be significantly less than the long-term risk associated with disposing of all the high-level waste. The long-term risk benefit must be achieved within an acceptable short-term and overall program cost. This paper briefly describes space disposal alternatives, the space disposal destination, possible waste mixes and forms, systems and typical operations, and the energy and cost analysis

  2. Spectroscopic and first-principles calculation studies of the chemical forms of palladium ion in nitric acid solution for development of disposal of high-level radioactive nuclear wastes

    Science.gov (United States)

    Watanabe, Shinta; Sato, Toshikazu; Yoshida, Tomoko; Nakaya, Masato; Yoshino, Masahito; Nagasaki, Takanori; Inaba, Yusuke; Takeshita, Kenji; Onoe, Jun

    2018-04-01

    We have investigated the chemical forms of palladium (Pd) ion in nitric acid solution, using XAFS/UV-vis spectroscopic and first-principles methods in order to develop the disposal of high-level radioactive nuclear liquid wastes (HLLW: radioactive metal ions in 2 M nitric acid solution). The results of theoretical calculations and XAFS/UV-vis spectroscopy indicate that Pd is a divalent ion and forms a square-planar complex structure coordinated with four nitrate ions, [Pd(NO3)4]2-, in nitric acid solution. This complex structure is also thermodynamically predicted to be most stable among complexes [Pd(H2O)x(NO3)4-x]x-2 (x = 0-4). Since the overall feature of UV-vis spectra of the Pd complex was independent of nitric acid concentration in the range 1-6 M, the structure of the Pd complex remains unchanged in this range. Furthermore, we examined the influence of γ-ray radiation on the [Pd(NO3)4]2- complex, using UV-vis spectroscopy, and found that UV-vis spectra seemed not to be changed even after 1.0 MGy irradiation. This implies that the Pd complex structure will be still stable in actual HLLW. These findings obtained above are useful information to develop the vitrification processes for disposal of HLLW.

  3. The disposal of Canada's nuclear fuel waste: postclosure assessment of a reference system

    International Nuclear Information System (INIS)

    Goodwin, B.W.; McConnell, D.B.; Andres, T.H.

    1994-01-01

    The concept for disposal of Canada's nuclear fuel waste is based on a vault located deep in plutonic rock of the Canadian Shield. We document in this report a method to assess the long-term impacts of a disposal facility for nuclear fuel waste. The assessment integrates relevant information from engineering design studies, site investigations, laboratory studies, expert judgment and detailed mathematical analyses to evaluate system performance in terms of safety criteria, guidelines and standards. The method includes the use of quantitative tools such as the Systems Variability Analysis computer Code (SYVAC) to deal with parameter uncertainty and the use of reasoned arguments based on well-established scientific principles. We also document the utility of the method by describing its application to a hypothetical implementation of the concept called the reference disposal system. The reference disposal system generally conforms to the overall characteristics of the concept, except we have made some specific site and design choices so that the assessment would be more realistic. To make the reference system more representative of a real system, we have used the geological observations of the AECL's Whiteshell Research Area located near Lac du Bonnet, Manitoba, to define the characteristics of the geosphere and the groundwater flow system. This research area has been subject to more than a decade of geological and hydrological studies. The analysis of the reference disposal system provides estimates of radiological and chemical toxicity impacts on members of a critical group and estimates of possible impacts on the environment. The latter impacts include estimates of radiation dose to nonhuman organisms. Other quantitative analyses examine the use of derived constraints to improve the margin of safety, the effectiveness of engineered and natural barriers, and the sensitivity of the results to influential features, events, and processes of the reference disposal

  4. Tannery sludge disposal: Materials recovery feasibility. Problematiche dello smaltimento dei fanghi di conceria

    Energy Technology Data Exchange (ETDEWEB)

    Tiravanti, G. (Consiglio Nazionale delle Ricerche, Bari (Italy). Ist. di Ricerca sulle Acque); Santori, M. (Consiglio Nazionale delle Ricerche, Rome (Italy). Ist. di Ricerca sulle Acque)

    1993-02-01

    Tannery industries utilize chromium as a main leather tanning material. The exhaustion yield of tanning baths is generally between 50-60% and this implies high quantities of chromium, a precious raw material, discharged into the wastes. The tannery wastewater treatment plants in Italy generate about 280,000 t/year of sludges containing as much as 5% of chromium, whose disposal is not an easy task. This paper describes some data on tanning sludge chemical characterization and current disposal possibilities. Moreover, some processes, developed at IRSA, based on the extraction of metals from the sludge in acidic media and their treatment with selective ion exchange resins, are illustrated. Such processes allow the recovery and recycling of raw materials, minimizing the production of wastes.

  5. Preparations for Retrieval of Buried Waste at Material Disposal Area B

    International Nuclear Information System (INIS)

    Chaloupka, A.B.; Criswell, C.W.; Goldberg, M.S.; Gregory, D.R.; Worth, E.P.

    2009-01-01

    Material Disposal Area B, a hazard category 3 nuclear facility, is scheduled for excavation and the removal of its contents. Wastes and excavated soils will be characterized for disposal at approved off-site waste disposal facilities. Since there were no waste disposal records, understanding the context of the historic operations at MDA B was essential to understanding what wastes were disposed of and what hazards these would pose during retrieval. The operational history of MDA B is tied to the earliest history of the Laboratory, the scope and urgency of World War II, the transition to the Atomic Energy Commission in January 1947, and the start of the cold war. A report was compiled that summarized the development of the process chemistry, metallurgy, and other research and production activities at the Laboratory during the 1944 to 1948 time frame that provided a perspective of the work conducted; the scale of those processes; and the handling of spent chemicals and contaminated items in lieu of waste disposal records. By 1947, all laboratories had established waste disposal procedures that required laboratory and salvage wastes to be boxed and sealed. Large items or equipment were to be wrapped with paper or placed in wooden crates. Most wastes were placed in cardboard boxes and were simply piled into the active trench. Bulldozers were used to cover the material with fill dirt on a weekly basis. No effort was made to separate waste types or loads, or to compact the wastes under the soil cover. Using the historical information and a statistical analysis of the plutonium inventory, LANL prepared a documented safety analysis for the waste retrieval activities at MDA B, in accordance with DOE Standard 1120-2005, Integration of Environment, Safety, and Health into Facility Disposition Activities, and the provisions of 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response. The selected hazard controls for the MDA B project consist of passive design

  6. HLW disposal dilemma

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.

    2003-01-01

    The radioactive waste is an inevitable residue from the use of radioactive materials in industry, research and medicine, and from the operation of generating electricity nuclear power stations. The management and disposal of such waste is therefore an issue relevant to almost all countries. Undoubtedly the biggest issue concerning radioactive waste management is that of high level waste. The long-lived nature of some types of radioactive wastes and the associated safety implications of disposal plans have raised concern amongst those who may be affected by such facilities. For these reasons the subject of radioactive waste management has taken on a high profile in many countries. Not one Member State in the European Union can say that their high level waste will be disposed of at a specific site. Nobody can say 'that is where it is going to go'. Now, there is a very broad consensus on the concept of geological disposal. The experts have little, if any doubt that we could safely dispose of the high level wastes. Large sectors of the public continue to oppose to most proposals concerning the siting of repositories. Given this, it is increasingly difficult to get political support, or even political decisions, on such sites. The failure to advance to the next step in the waste management process reinforces the public's initial suspicion and resistance. In turn, this makes the political decisions even harder. In turn, this makes the political decisions even harder. The management of spent fuel from nuclear power plant became a crucial issue, as the cooling pond of the Romanian NPP is reaching saturation. During the autumn of 2000, the plant owner proceeded with an international tendering process for the supply of a dry storage system to be implemented at the Cernavoda station to store the spent fuel from Unit 1 and eventually from Unit 2 for a minimum period of 50 years. The facility is now in operation. As concern the disposal of the spent fuel, the 'wait and see

  7. Container for processing and disposing radioactive wastes and industrial wastes

    International Nuclear Information System (INIS)

    Araki, Kunio; Kasahara, Yuko; Kasai, Noboru; Sudo, Giichi; Ishizaki, Kanjiro.

    1978-01-01

    Purpose: To improve the performance of containers for radioactive wastes for ocean disposal and on-land disposal such as impact strength, chemical resistance, fire resistance, corrosion resistance, water impermeability and the like. Constitution: Steel fiber-reinforced concrete previously molded in a shape of a container is impregnated with polymerizable impregnating agent selected from the group consisting of a polymerizable monomer, liquid mixture of a polymerizable monomer and an oligomer, a polymer solution, a copolymer solution and the liquid mixture thereof. Then, the polymerizable impregnating agent is polymerized to solidify in the concrete by way of heat-polymerization or radiation-induced polymerization to form a waste container. The container thus obtained can be improved with the impact resistance and wear resistance and further improved with salt water resistance, acid resistance, corrosion resistance and solidity by the impregnation of the polymer, as well as can effectively be prevented from leaching out of radioactive substances. (Furukawa, Y.)

  8. Engineering geology of waste disposal

    International Nuclear Information System (INIS)

    Bentley, S.P.

    1996-01-01

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK)

  9. Waste Water Disposal Design And Management I

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book gives descriptions of waste water disposal, design and management, which includes design of waterworks and sewerage facility such as preparatory work and building plan, used waste water disposal facilities, waste water disposal plant and industrial waste water disposal facilities, water use of waste water disposal plant and design of pump and pump facilities such as type and characteristic, selection and plan, screening and grit.

  10. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  11. Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Henghu Sun; Yuan Yao

    2012-06-29

    Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

  12. Toxicant emissions from hazardous wastes in landfills - implications for disposal risk management decisions

    International Nuclear Information System (INIS)

    Assmuth, T.W.

    1991-01-01

    The environmental impacts and risks of hazardous wastes disposed in Finnish landfills were assessed in a 5-yr field study. By systematic analysis of the acquired information, the toxicological impacts and risks of landfills seem as a whole small when compared with those caused by other kinds of environmental toxicants. Locally more significant risks arise, and may be difficult to manage. Scientific information on risk factors and their development is as yet insufficient, and additional research and monitoring are needed. Since uncertainties will remain, the prevention and control of risks, e.g. by improved hazardous waste management and disposal, are advocated by safety principles, but are made difficult by many technical and societal factors. Control strategies and remedial actions should thus be based on more comprehensive, comparative risk assessments and improved decision methods. Ethical, political and methodological issues in the management of hazardous waste disposal are discussed, with special reference to the interaction of science with regulatory decision-making related to the risks of old chemical waste sites. (44 refs.) (au)

  13. Evaluation of Collection and Disposal of Hospital Waste in Hospitals and Healthcare Centers

    Directory of Open Access Journals (Sweden)

    Saeid Nazemi

    2012-08-01

    Full Text Available Currently, one of the environmental issues is waste of hospitals and healthcare facilities which due to hazardous, toxic, and disease-causing agents such as pharmaceutical, chemical and infectious disease, is of particular sensitivity. According to a 2002 survey by WHO, it was determined that 22 million people worldwide suffer from infectious diseases annually, because of contacting hospital wastes. Also based on a research conducted in 22 countries, 18 to 64 percent of hospitals wastes are not disposed properly [1]. The purpose f the study is to appraise collection and disposal of hospital wastes in hospitals and healthcare centers of Shahroud.In this sectional study, 3 university hospitals (580 beds and 10 healthcare facilities were investigated for six months (mehr-azar 89 at Shahroud. In order to determine the amount of waste, produced waste of an entire day was weighted in hospitals and health centers. In this research, proposed questionnaires of WHO for developing countries was used to evaluate collection and disposal system of hospitals waste. Collected data was coded and analyzed by SPSS ver.15.

  14. Efficiency analyses of the CANDU spent fuel repository using modified disposal canisters for a deep geological disposal system design

    International Nuclear Information System (INIS)

    Lee, J.Y.; Cho, D.K.; Lee, M.S.; Kook, D.H.; Choi, H.J.; Choi, J.W.; Wang, L.M.

    2012-01-01

    Highlights: ► A reference disposal concept for spent nuclear fuels in Korea has been reviewed. ► To enhance the disposal efficiency, alternative disposal concepts were developed. ► Thermal analyses for alternative disposal concepts were performed. ► From the result of the analyses, the disposal efficiency of the concepts was reviewed. ► The most effective concept was suggested. - Abstract: Deep geological disposal concept is considered to be the most preferable for isolating high-level radioactive waste (HLW), including nuclear spent fuels, from the biosphere in a safe manner. The purpose of deep geological disposal of HLW is to isolate radioactive waste and to inhibit its release of for a long time, so that its toxicity does not affect the human beings and the biosphere. One of the most important requirements of HLW repository design for a deep geological disposal system is to keep the buffer temperature below 100 °C in order to maintain the integrity of the engineered barrier system. In this study, a reference disposal concept for spent nuclear fuels in Korea has been reviewed, and based on this concept, efficient alternative concepts that consider modified CANDU spent fuels disposal canister, were developed. To meet the thermal requirement of the disposal system, the spacing of the disposal tunnels and that of the disposal pits for each alternative concept, were drawn following heat transfer analyses. From the result of the thermal analyses, the disposal efficiency of the alternative concepts was reviewed and the most effective concept suggested. The results of these analyses can be used for a deep geological repository design and detailed analyses, based on exact site characteristics data, will reduce the uncertainty of the results.

  15. Program for responsible and safe disposal of spent fuel elements and radioactive wastes (National disposal program)

    International Nuclear Information System (INIS)

    2015-01-01

    The contribution covers the following topics: fundamentals of the disposal policy; amount of radioactive wastes and prognosis; disposal of radioactive wastes - spent fuel elements and wastes from waste processing, radioactive wastes with low heat production; legal framework of the nuclear waste disposal in Germany; public participation, cost and financing.

  16. Update on the Federal Facilities Compliance Act disposal workgroup disposal site evaluation - what has worked and what has not

    International Nuclear Information System (INIS)

    Case, J.T.; Waters, R.D.

    1995-01-01

    The Department of Energy (DOE) has been developing a planning process for mixed low-level waste (MLLW) disposal in conjunction with the affected states for over two years and has screened the potential disposal sites from 49 to 15. A radiological performance evaluation was conducted on these fifteen sites to further identify their strengths and weaknesses for disposal of MLLW. Technical analyses are on-going. The disposal evaluation process has sufficiently satisfied the affected states' concerns to the point that disposal has not been a major issue in the consent order process for site treatment plans. Additionally, a large amount of technical and institutional information on several DOE sites has been summarized. The relative technical capabilities of the remaining fifteen sites have been demonstrated, and the benefits of waste form and disposal facility performance have been quantified. However, the final disposal configuration has not yet been determined. Additionally, the MLLW disposal planning efforts will need to integrate more closely with the low-level waste disposal activities before a final MLLW disposal configuration can be determined. Recent Environmental Protection Agency efforts related to the definition of hazardous wastes may also affect the process

  17. Physico-Chemical Characterization and Pollution Index ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    bodies; groundwater and surface water (Slomwcznska ... may then enter the environment and pollute the surrounding water ... In order to avoid chemical and biological changes that have the ..... disposal of treated leachates to inland surface water .... India. 3(5): 147-153. Kumar, D., and Alappat, B. J. (2003b). A technique.

  18. Final disposal options for mercury/uranium mixed wastes from the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Gorin, A.H.; Leckey, J.H.; Nulf, L.E.

    1994-01-01

    Laboratory testing was completed on chemical stabilization and physical encapsulation methods that are applicable (to comply with federal and state regulations) to the final disposal of both hazardous and mixed hazardous elemental mercury waste that is in either of the following categories: (1) waste generated during decontamination and decommissioning (D and D) activities on mercury-contaminated buildings, such as Building 9201-4 at the Oak Ridge Y-12 Plant, or (2) waste stored and regulated under either the Federal Facilities Compliance Agreement or the Federal Facilities Compliance Act. Methods were used that produced copper-mercury, zinc-mercury, and sulfur-mercury materials at room temperature by dry mixing techniques. Toxicity Characteristic Leaching Procedure (TCLP) results for mercury on batches of both the copper-mercury and the sulfur-mercury amalgams consistently produced leachates with less than the 0.2-mg/L Resource Conservation and Recovery Act (RCRA) regulatory limit for mercury. The results clearly showed that the reaction of mercury with sulfur at room temperature produces black mercuric sulfide, a material that is well suited for land disposal. The results also showed that the copper-mercury and zinc-mercury amalgams had major adverse properties that make them undesirable for land disposal. In particular, they reacted readily in air to form oxides and liberate elemental mercury. Another major finding of this study is that sulfur polymer cement is potentially useful as a physical encapsulating agent for mercuric sulfide. This material provides a barrier in addition to the chemical stabilization that further prevents mercury, in the form of mercuric sulfide, from migrating into the environment

  19. Generalized economic model for evaluating disposal costs at a low-level waste disposal facility

    International Nuclear Information System (INIS)

    Baird, R.D.; Rogers, V.C.

    1985-01-01

    An economic model is developed which can be used to evaluate cash flows associated with the development, operations, closure, and long-term maintenance of a proposed Low-Level Radioactive Waste disposal facility and to determine the unit disposal charges and unit surcharges which might result. The model includes the effects of nominal interest rate (rate of return on investment, or cost of capital), inflation rate, waste volume growth rate, site capacity, duration of various phases of the facility history, and the cash flows associated with each phase. The model uses standard discounted cash flow techniques on an after-tax basis to determine that unit disposal charge which is necessary to cover all costs and expenses and to generate an adequate rate of return on investment. It separately considers cash flows associated with post-operational activities to determine the required unit surcharge. The model is applied to three reference facilities to determine the respective unit disposal charges and unit surcharges, with various values of parameters. The sensitivity of the model results are evaluated for the unit disposal charge

  20. Analyses of soils at commercial radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1983-01-01

    Brookhaven National Laboratory, in order to provide technical assistance to the NRC, has measured a number of physical and chemical characteristics of soils from three commercial low-level radioactive waste disposal sites. Samples were collected from an area adjacent to the disposal site at Sheffield, IL, and from two operating sites: one at Barnwell, SC, and the other near Richland, WA. The soil samples, which were analyzed from each site, were believed to include soil which was representative of that in contact with buried waste forms. Results of field measurements of earth resistivity and of soil pH will be presented. Additionally, the results of laboratory measurements of resistivity, moisture content, pH, exchange acidity and the soluble ion content of the soils will be discussed. The soluble ion content of the soils was determined by analysis of aqueous extracts of saturated soil pastes. The concentrations of the following ions were determined: Ca 2+ , Mg 2+ , K + , Na + , HCO 3 - , CO 3 2- , SO 4 2- , Cl - , S 2-

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 1 ... potential for immobilization and disposal of high level nuclear waste, was developed. ... on the fission product substituted NZP sintered at 1000°C, in pure de-ionized water ...

  2. Disposal of Savannah River Plant waste salt

    International Nuclear Information System (INIS)

    Dukes, M.D.

    1982-01-01

    Approximately 26-million gallons of soluble low-level waste salts will be produced during solidification of 6-million gallons of high-level defense waste in the proposed Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). Soluble wastes (primarily NaNO 3 , NaNO 2 , and NaOH) stored in the waste tanks will be decontaminated by ion exchange and solidified in concrete. The resulting salt-concrete mixture, saltcrete, will be placed in a landfill on the plantsite such that all applicable federal and state disposal criteria are met. Proposed NRC guidelines for the disposal of waste with the radionuclide content of SRP salt would permit shallow land burial. Federal and state rules require that potentially hazardous chemical wastes (mainly nitrate-nitrate salts in the saltcrete) be contained to the degree necessary to meet drinking water standards in the ground water beneath the landfill boundary. This paper describes the proposed saltcrete landfill and tests under way to ensure that the landfill will meet these criteria. The work includes laboratory and field tests of the saltcrete itself, a field test of a one-tenth linear scale model of the entire landfill system, and a numerical model of the system

  3. Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

  4. radioactive waste disposal standards abroad

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian; Zhang Xue

    2012-01-01

    With the world focus on human health and environmental protection, the problem of radioactive waste disposal has gradually become a global issue, and the focus of attention of public. The safety of radioactive waste disposal, is not only related to human health and environmental safety, but also an important factor of affecting the sustainable development of nuclear energy. In recent years the formulation of the radioactive waste disposal standards has been generally paid attention to at home and abroad, and it has made great progress. In China, radioactive waste management standards are being improved, and there are many new standards need to be developed. The revised task of implement standards is very arduous, and there are many areas for improvement about methods and procedures of the preparation of standards. This paper studies the current situation of radioactive waste disposal standards of the International Atomic Energy Agency, USA, France, Britain, Russia, Japan, and give some corresponding recommendations of our radioactive waste disposal standards. (authors)

  5. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

    2011-06-20

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

  6. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    International Nuclear Information System (INIS)

    Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

    2011-01-01

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

  7. Disposal of radioactive waste material

    International Nuclear Information System (INIS)

    Cairns, W.J.; Burton, W.R.

    1984-01-01

    A method of disposal of radioactive waste consists in disposing the waste in trenches dredged in the sea bed beneath shallow coastal waters. Advantageously selection of the sites for the trenches is governed by the ability of the trenches naturally to fill with silt after disposal. Furthermore, this natural filling can be supplemented by physical filling of the trenches with a blend of absorber for radionuclides and natural boulders. (author)

  8. Assessment and management of chemical exposure in the Mohs laboratory.

    Science.gov (United States)

    Gunson, Todd H; Smith, Harvey R; Vinciullo, Carl

    2011-01-01

    The correct handling, storage, and disposal of chemicals used in the processing of tissue for Mohs micrographic surgery are essential. To identify the chemicals involved in the preparation of Mohs frozen sections and assess the associated occupational health risks. To quantify exposure levels of hazardous chemicals and ensure that they are minimized. A risk assessment form was completed for each chemical. Atmospheric sampling was performed at our previous laboratory for formaldehyde and volatile organic compounds. These data were used in the design of our new facility, where testing was repeated. Twenty-five chemicals were identified. Ten were classified as hazardous substances, 10 were flammable, six had specific disposal requirements, four were potential carcinogens, and three were potential teratogens. Formaldehyde readings at our previous laboratory were up to eight times the national exposure standard. Testing at the new laboratory produced levels well below the exposure standards. Chemical exposure within the Mohs laboratory can present a significant occupational hazard. Acutely toxic and potentially carcinogenic formaldehyde was found at high levels in a relatively standard laboratory configuration. A laboratory can be designed with a combination of physical environment and operational protocols that minimizes hazards and creates a safe working environment. © 2010 by the American Society for Dermatologic Surgery, Inc.

  9. 48 CFR 2845.603 - Disposal methods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Disposal methods. 2845.603 Section 2845.603 Federal Acquisition Regulations System DEPARTMENT OF JUSTICE Contract Management GOVERNMENT PROPERTY Reporting, Redistribution, and Disposal of Contractor Inventory 2845.603 Disposal methods...

  10. 48 CFR 945.603 - Disposal methods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Disposal methods. 945.603 Section 945.603 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACT MANAGEMENT GOVERNMENT PROPERTY Reporting, Redistribution, and Disposal of Contractor Inventory 945.603 Disposal methods. ...

  11. Evaluation of the Acceptability of Potential Depleted Uranium Hexafluoride Conversion Products at the Envirocare Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.

    2001-01-11

    The purpose of this report is to review and document the capability of potential products of depleted UF{sub 6} conversion to meet the current waste acceptance criteria and other regulatory requirements for disposal at the facility in Clive, Utah, owned by Envirocare of Utah, Inc. The investigation was conducted by identifying issues potentially related to disposal of depleted uranium (DU) products at Envirocare and conducting an initial analysis of them. Discussions were then held with representatives of Envirocare, the state of Utah (which is a NRC Agreement State and, thus, is the cognizant regulatory authority for Envirocare), and DOE Oak Ridge Operations. Provisional issue resolution was then established based on the analysis and discussions and documented in a draft report. The draft report was then reviewed by those providing information and revisions were made, which resulted in this document. Issues that were examined for resolution were (1) license receipt limits for U isotopes; (2) DU product classification as Class A waste; (3) use of non-DOE disposal sites for disposal of DOE material; (4) historical NRC views; (5) definition of chemical reactivity; (6) presence of mobile radionuclides; and (7) National Environmental Policy Act coverage of disposal. The conclusion of this analysis is that an amendment to the Envirocare license issued on October 5, 2000, has reduced the uncertainties regarding disposal of the DU product at Envirocare to the point that they are now comparable with uncertainties associated with the disposal of the DU product at the Nevada Test Site that were discussed in an earlier report.

  12. Safety of direct disposal of spent fuel and of disposal of reprocessing waste

    Energy Technology Data Exchange (ETDEWEB)

    Besnus, F. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Fontenay-aux-Roses (France)

    2006-07-01

    In 2005, the French Agency for Radioactive waste management (ANDRA) established a report on the feasibility of the geological disposal of high level and intermediate level long lived radioactive waste, in a clay formation. The hypothesis of spent fuel direct disposal was also considered. By the end of 2005, IRSN performed a complete technical review of ANDRA's report, aiming at highlighting the salient safety issues that were to be addressed within a process that may possibly lead to the creation of a disposal facility for these wastes. The following publication presents the main conclusions of this technical review. (author)

  13. Safety of direct disposal of spent fuel and of disposal of reprocessing waste

    International Nuclear Information System (INIS)

    Besnus, F.

    2006-01-01

    In 2005, the French Agency for Radioactive waste management (ANDRA) established a report on the feasibility of the geological disposal of high level and intermediate level long lived radioactive waste, in a clay formation. The hypothesis of spent fuel direct disposal was also considered. By the end of 2005, IRSN performed a complete technical review of ANDRA's report, aiming at highlighting the salient safety issues that were to be addressed within a process that may possibly lead to the creation of a disposal facility for these wastes. The following publication presents the main conclusions of this technical review. (author)

  14. Board on chemical sciences and technology

    International Nuclear Information System (INIS)

    1988-01-01

    Current and Ongoing Projects include: Committee on Nuclear and Radiochemistry; Committee on Nuclear and Radiochemistry Workshop on Training Requirements for Chemists in Nuclear Medicine, Nuclear Industry, and Related Areas; Committee on Nuclear and Radiochemistry Workshop on High-Temperature and Nuclear Chemical Processes in Severe Reactor Accidents; Committee on Chemical Engineering Frontiers Research Needs and Opportunities; Committee on Separation Science on Technology; Panel on Future Directions for Fundamental Science in Fossil Energy Research; Committee for Handling and Disposal of Biohazards in the Laboratory (BIL); Advisory Panels to the AFSOR Chemical and Atmospheric Sciences Directorate; US National Committee for Pure and Applied Chemistry; US National Committee for Biochemistry; US National Committee for Crystallography

  15. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  16. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  17. No nuclear power. No disposal facility?

    Energy Technology Data Exchange (ETDEWEB)

    Feinhals, J. [DMT GmbH und Co.KG, Hamburg (Germany)

    2016-07-01

    Countries with a nuclear power programme are making strong efforts to guarantee the safe disposal of radioactive waste. The solutions in those countries are large disposal facilities near surface or in deep geological layers depending on the activity and half-life of the nuclides in the waste. But what will happen with the radioactive waste in countries that do not have NPPs but have only low amounts of radioactive waste from medical, industrial and research facilities as well as from research reactors? Countries producing only low amounts of radioactive waste need convincing solutions for the safe and affordable disposal of their radioactive waste. As they do not have a fund by an operator of nuclear power plants, those countries need an appropriate and commensurate solution for the disposal of their waste. In a first overview five solutions seem to be appropriate: (i) the development of multinational disposal facilities by using the existing international knowhow; (ii) common disposal with hazardous waste; (iii) permanent storage; (iv) use of an existing mine or tunnel; (v) extension of the borehole disposal concept for all the categories of radioactive wastes.

  18. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  19. Comparison of the waste management aspects of spent fuel disposal and reprocessing: post-disposal radiological impact

    International Nuclear Information System (INIS)

    Mobbs, S.F.; Harvey, M.P.; Martin, J.S.; Mayall, A.; Jones, M.E.

    1991-01-01

    A joint project involving contractors from France, Germany and the UK was set up by the Commission of the European Communities to assess the implications of two waste management options: the direct disposal of spent fuel and reprocessing of that fuel. This report describes the calculation of the radiological impact on the public of the management and disposal of the wastes associated with these two options. Six waste streams were considered: discharge of liquid reprocessing effluents, discharge of gaseous reprocessing effluents, disposal of low-level solid wastes arising from reprocessing, disposal of intermediate-level solid wastes arising from reprocessing, disposal of vitrified high-level reprocessing wastes, and direct disposal of spent fuel. The results of the calculations are in the form of maximum annual doses and risks to individual members of the public, and collective doses to four population groups, integrated over six time periods. These results were designed for input into a computer model developed by another contractor, Yard Ltd, which combines costs and impacts in a multi-attribute hierarchy to give an overall measure of the impact of a given option

  20. Isotopic dilution requirements for 233U criticality safety in processing and disposal facilities

    International Nuclear Information System (INIS)

    Elam, K.R.; Forsberg, C.W.; Hopper, C.M.; Wright, R.Q.

    1997-11-01

    The disposal of excess 233 U as waste is being considered. Because 233 U is a fissile material, one of the key requirements for processing 233 U to a final waste form and disposing of it is to avoid nuclear criticality. For many processing and disposal options, isotopic dilution is the most feasible and preferred option to avoid nuclear criticality. Isotopic dilution is dilution of fissile 233 U with nonfissile 238 U. The use of isotopic dilution removes any need to control nuclear criticality in process or disposal facilities through geometry or chemical composition. Isotopic dilution allows the use of existing waste management facilities, that are not designed for significant quantities of fissile materials, to be used for processing and disposing of 233 U. The amount of isotopic dilution required to reduce criticality concerns to reasonable levels was determined in this study to be ∼ 0.66 wt% 233 U. The numerical calculations used to define this limit consisted of a homogeneous system of silicon dioxide (SiO 2 ), water (H 2 O), 233 U, and depleted uranium (DU) in which the ratio of each component was varied to determine the conditions of maximum nuclear reactivity. About 188 parts of DU (0.2 wt% 235 U) are required to dilute 1 part of 233 U to this limit in a water-moderated system with no SiO 2 present. Thus, for the US inventory of 233 U, several hundred metric tons of DU would be required for isotopic dilution