WorldWideScience

Sample records for chemical solution deposition

  1. Chemical solution deposition: a path towards low cost coated conductors

    International Nuclear Information System (INIS)

    The achievement of low cost deposition techniques for high critical current YBa2Cu3O7 coated conductors is one of the major objectives to achieve a widespread use of superconductivity in power applications. Chemical solution deposition techniques are appearing as a very promising methodology to achieve epitaxial oxide thin films at a low cost, so an intense effort is being carried out to develop routes for all chemical coated conductor tapes. In this work recent achievements will be presented towards the goal of combining the deposition of different type of buffer layers on metallic substrates based on metal-organic decomposition with the growth of YBa2Cu3O7 layers using the trifluoroacetate route. The influence of processing parameters on the microstructure and superconducting properties will be stressed. High critical currents are demonstrated in 'all chemical' multilayers

  2. Preparation of potassium tantalate thin films through chemical solution deposition

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Drbohlav, Ivo; Vaněk, Přemysl; Železný, Vladimír

    2004-01-01

    Roč. 24, č. 2 (2004), s. 455-462. ISSN 0955-2219 R&D Projects: GA MŠk LN00A028; GA MŠk OC 528.001; GA ČR GA202/02/0238; GA ČR GA202/00/1245 Institutional research plan: CEZ:AV0Z4032918 Keywords : chemical solution deposition * films * tantalates Subject RIV: CA - Inorganic Chemistry Impact factor: 1.483, year: 2004

  3. Effects of deposition time in chemically deposited ZnS films in acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, H.; Chelouche, A., E-mail: azeddinechelouche@gmail.com; Talantikite, D.; Merzouk, H.; Boudjouan, F.; Djouadi, D.

    2015-08-31

    We report an experimental study on the synthesis and characterization of zinc sulfide (ZnS) single layer thin films deposited on glass substrates by chemical bath deposition technique in acidic solution. The effect of deposition time on the microstructure, surface morphology, optical absorption, transmittance, and photoluminescence (PL) was investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), UV-Vis–NIR spectrophotometry and photoluminescence (PL) spectroscopy. The results showed that the samples exhibit wurtzite structure and their crystal quality is improved by increasing deposition time. The latter, was found to affect the morphology of the thin films as showed by SEM micrographs. The optical measurements revealed a high transparency in the visible range and a dependence of absorption edge and band gap on deposition time. The room temperature PL spectra indicated that all ZnS grown thin films emit a UV and blue light, while the band intensities are found to be dependent on deposition times. - Highlights: • Single layer ZnS thin films were deposited by CBD in acidic solution at 95 °C. • The effect of deposition time was investigated. • Coexistence of ZnS and ZnO hexagonal structures for time deposition below 2 h • Thicker ZnS films were achieved after monolayer deposition for 5 h. • The highest UV-blue emission observed in thin film deposited at 5 h.

  4. Effects of deposition time in chemically deposited ZnS films in acidic solution

    International Nuclear Information System (INIS)

    We report an experimental study on the synthesis and characterization of zinc sulfide (ZnS) single layer thin films deposited on glass substrates by chemical bath deposition technique in acidic solution. The effect of deposition time on the microstructure, surface morphology, optical absorption, transmittance, and photoluminescence (PL) was investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), UV-Vis–NIR spectrophotometry and photoluminescence (PL) spectroscopy. The results showed that the samples exhibit wurtzite structure and their crystal quality is improved by increasing deposition time. The latter, was found to affect the morphology of the thin films as showed by SEM micrographs. The optical measurements revealed a high transparency in the visible range and a dependence of absorption edge and band gap on deposition time. The room temperature PL spectra indicated that all ZnS grown thin films emit a UV and blue light, while the band intensities are found to be dependent on deposition times. - Highlights: • Single layer ZnS thin films were deposited by CBD in acidic solution at 95 °C. • The effect of deposition time was investigated. • Coexistence of ZnS and ZnO hexagonal structures for time deposition below 2 h • Thicker ZnS films were achieved after monolayer deposition for 5 h. • The highest UV-blue emission observed in thin film deposited at 5 h

  5. Surface chemical states of barium zirconate titanate thin films prepared by chemical solution deposition

    International Nuclear Information System (INIS)

    Ba(Zr0.05Ti0.95)O3 (BZT) thin films grown on Pt/Ti/SiO2/Si(1 0 0) substrates were prepared by chemical solution deposition. The structural and surface morphology of BZT thin films has been studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the random oriented BZT thin film grown on Pt/Ti/SiO2/Si(1 0 0) substrate with a perovskite phase. The SEM surface image showed that the BZT thin film was crack-free. And the average grain size and thickness of the BZT film are 35 and 400 nm, respectively. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Ti, and Zr exist mainly in the forms of BZT perovskite structure.

  6. Textured indium tin oxide thin films by chemical solution deposition and rapid thermal processing

    International Nuclear Information System (INIS)

    The microstructure of state-of-the-art chemical solution deposited indium tin oxide thin films typically consists of small randomly oriented grains, high porosity and poor homogeneity. The present study demonstrates how the thin film microstructure can be improved significantly by tailoring the precursor solutions and deposition conditions to be kinetically and thermodynamically favorable for generation of homogeneous textured thin films. This is explained by the occurrence of a single heterogeneous nucleation mechanism. The as-deposited thin films, crystallized at 800 deg. C, have a high apparent density, based on a refractive index of ∼ 1.98 determined by single wavelength ellipsometry at 633 nm. The microstructure of the films consists of columnar grains with preferred orientation as determined by X-ray diffraction and transmission electron microscopy. The resistivity, measured by the four point probe method, is ∼ 2 x 10-3 Ω cm prior to post-deposition treatments

  7. Chemical bath deposited CdS films using magnetic treated solutions

    International Nuclear Information System (INIS)

    CdS thin films were obtained by chemical bath deposition onto corning glass slides using precursor solutions previously treated in a steady magnetic field. The kinetic growth was affected in dependence of the magnetic field intensity used in the solution treatments. The growth rate is slower when magnetized solutions are used; however, the reaction exhaustion is more delayed. The magnetic treatments improve the conversion of starting materials in thin films. Thus, the bath is more efficient and thicker films can be obtained. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Comparison of chemical solution deposition systems for the fabrication of lead zirconate titanate thin films

    International Nuclear Information System (INIS)

    Ferroelectric thin films of lead zirconate titanate Pb(ZrxTi1-x)O3 (PZT) were prepared from five chemical solution deposition (CSD) systems, namely methoxyethanol, citrate, diol, acetic acid and triethanolamine. Physical characteristics of the solutions, processing parameters and physical and electrical properties of the films were used to assess the relative advantages and disadvantages of the different chemical systems. All the CSD systems decomposed to produce single phase perovskite PZT at temperatures above 650 deg C. Thin film deposition was influenced by the specific characteristics of each system such as wetting on the substrate and viscosity. Distinct precursor effects on the thin film crystallinity and electrical performance were revealed. The diol route yielded films with the highest crystallite size, highest permittivity and lowest loss tangent. The relative permittivity exhibited by films made by the other routes were 25% to 35% lower at equivalent thicknesses. Copyright (2001) The Australian Ceramic Society

  9. Preparation of potassium tantalate niobate thin films by chemical solution deposition and their characterization

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Železný, Vladimír; Vaněk, Přemysl

    2005-01-01

    Roč. 25, č. 12 (2005), s. 2151-2154. ISSN 0955-2219 R&D Projects: GA ČR GA202/02/0238; GA MŠk(CZ) LN00A028; GA MŠk OC 528.001 Institutional research plan: CEZ:AV0Z40320502 Keywords : films * tantalates * chemical solution deposition Subject RIV: CA - Inorganic Chemistry Impact factor: 1.567, year: 2005

  10. Transparent conducting oxide films of group V doped titania prepared by aqueous chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Elen, Ken [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Strategisch Initiatief Materialen (SIM), SoPPoM Program (Belgium); Capon, Boris [Strategisch Initiatief Materialen (SIM), SoPPoM Programm (Belgium); Coating and Contacting of Nanostructures, Ghent University, Krijgslaan 281 S1, B-9000 Ghent (Belgium); De Dobbelaere, Christopher [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Dewulf, Daan [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Peys, Nick [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw, Kapeldreef 75, B-3001 Heverlee (Belgium); Detavernier, Christophe [Coating and Contacting of Nanostructures, Ghent University, Krijgslaan 281 S1, B-9000 Ghent (Belgium); Hardy, An [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Van Bael, Marlies K., E-mail: marlies.vanbael@uhasselt.be [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium)

    2014-03-31

    Transparent conducting oxide (TCO) films of titania doped with vanadium (V), niobium (Nb) and tantalum (Ta) are obtained by aqueous Chemical Solution Deposition (CSD). The effect of the dopant on the crystallization and microstructure of the resulting films is examined by means of X-ray diffraction and electron microscopy. During annealing of the thin films, in-situ characterization of the crystal structure and sheet resistance is carried out. Niobium doped anatase films, obtained after annealing in forming gas, show a resistivity of 0,28 Ohm cm, which is the lowest resistivity reported for a solution deposited anatase-based TCO so far. Here, we demonstrate that aqueous CSD may provide a strategy for scalable TCO production in the future. - Highlights: • Aqueous chemical solution deposition of doped titanium dioxide • Doping delays the phase transition from anatase to rutile • Lowest resistivity after doping with niobium and annealing in Forming Gas • Transparency higher than 80% in the visible range of optical spectrum.

  11. Transparent conducting oxide films of group V doped titania prepared by aqueous chemical solution deposition

    International Nuclear Information System (INIS)

    Transparent conducting oxide (TCO) films of titania doped with vanadium (V), niobium (Nb) and tantalum (Ta) are obtained by aqueous Chemical Solution Deposition (CSD). The effect of the dopant on the crystallization and microstructure of the resulting films is examined by means of X-ray diffraction and electron microscopy. During annealing of the thin films, in-situ characterization of the crystal structure and sheet resistance is carried out. Niobium doped anatase films, obtained after annealing in forming gas, show a resistivity of 0,28 Ohm cm, which is the lowest resistivity reported for a solution deposited anatase-based TCO so far. Here, we demonstrate that aqueous CSD may provide a strategy for scalable TCO production in the future. - Highlights: • Aqueous chemical solution deposition of doped titanium dioxide • Doping delays the phase transition from anatase to rutile • Lowest resistivity after doping with niobium and annealing in Forming Gas • Transparency higher than 80% in the visible range of optical spectrum

  12. Chemical solution deposition of CaCu3Ti4O12 thin film

    Indian Academy of Sciences (India)

    Viswanathan S Saji; Han Cheol Choe

    2010-06-01

    CaCu3Ti4O12 (CCTO) thin film was successfully deposited on boron doped silica substrate by chemical solution deposition and rapid thermal processing. The phase and microstructure of the deposited films were studied as a function of sintering temperature, employing X-ray diffractometry and scanning electron microscopy. Dielectric properties of the films were measured at room temperature using impedance spectroscopy. Polycrystalline pure phase CCTO thin films with (220) preferential orientation was obtained at a sintering temperature of 750°C. There was a bimodal size distribution of grains. The dielectric constant and loss factor at 1 kHz obtained for a film sintered at 750°C was ∼ 2000 and tan ∼ 0.05.

  13. Influence of precursor solution parameters on chemical properties of calcium phosphate coatings prepared using Electrostatic Spray Deposition (ESD).

    NARCIS (Netherlands)

    Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Schoonman, J.; Jansen, J.A.

    2004-01-01

    A novel coating technique, referred to as Electrostatic Spray Deposition (ESD), was used to deposit calcium phosphate (CaP) coatings with a variety of chemical properties. The relationship between the composition of the precursor solutions and the crystal and molecular structure of the deposited coa

  14. YBCO coated conductors prepared by chemical solution deposition: A TEM study

    International Nuclear Information System (INIS)

    Recently large attention has been devoted to chemical solution deposition (CSD) as a promising method for fabricating low-cost YBCO coated conductors. We present an extensive transmission electron microscopy (TEM) cross-section analysis of CSD grown La2Zr2O7 (LZO) buffer layers on flexible Ni-5at%W substrates. The high performance of these chemical solution derived buffer layers was confirmed by a YBCO critical current density Jc of 0.84 MA/cm2 achieved for a coated conductor sample with a layer sequence Ni-5at%W/LZO (CSD)/CeO2 (CSD)/YBCO, where the YBCO film was deposited by pulsed laser deposition (PLD). TEM sample preparation was carried out by conventional mechanical polishing and ion milling techniques. TEM bright-field images of the LZO films and nickel substrates were acquired under two-beam conditions. The layer thicknesses and nanovoid size were determined for the LZO buffer layers. Moreover, the interfaces between the different layers were investigated and identified. Electron diffraction patterns were obtained in order to determine the microscopic texture of the samples. Despite the presence of nanovoids in the LZO buffer layers, they act as efficient Ni diffusion barriers

  15. Chemical surface deposition of cds thin films from CdI2 aqueous solution

    Directory of Open Access Journals (Sweden)

    G. Il’chuk

    2009-01-01

    Full Text Available For the first time using CdI2 solution CdS films on glass and ITO coated glass substrates were produced by the method of layerwise chemical surface deposition (ChSD. CdS thin films with the widths from 40 nm to 100 nm were obtained for windows in solar cells based on CdS/CdTe heterojunctions. Changes of the structural and optical properties of CdS films due to air annealing are shown.

  16. Structural and Optical Properties Thin Film Copper Oxides Formed by Chemical Solution Deposition Process Technique

    International Nuclear Information System (INIS)

    Cu2O films were prepared by chemical deposition process (CSD) using solutions of copper nitrate, dip-coated onto glass substrates. The precursor solutions were altered in an effort to seek the best solution for successful deposition. Organic additive of ethanolamine (EA) and (poly)ethylene glycol (PEG, H(OCH2CH2)nOH) was added to the solution and had shown positive effect in terms of the wetability and hence homogenous films resulted. Most films characterised by XRD gave (002) Cu2O, cuprite structure. To avoid films cracking and inhomogeneous coverage, multiple coatings were done with drying in between the successive coatings. Five to eight coatings were carried out for better coverage to ensure surface homogeneity. The microstructure of the surface oxides consisted of nanostructured oxides with uniform size distribution of 60-80nm. The optical transmittance of optimized Cu2O film reaches around 80% at wavelength of ∼ 700nm and the calculated direct optical band gaps were ∼ 2eV for the Cu2O films

  17. Simple Chemical Solution Deposition of Co₃O₄ Thin Film Electrocatalyst for Oxygen Evolution Reaction.

    Science.gov (United States)

    Jeon, Hyo Sang; Jee, Michael Shincheon; Kim, Haeri; Ahn, Su Jin; Hwang, Yun Jeong; Min, Byoung Koun

    2015-11-11

    Oxygen evolution reaction (OER) is the key reaction in electrochemical processes, such as water splitting, metal-air batteries, and solar fuel production. Herein, we developed a facile chemical solution deposition method to prepare a highly active Co3O4 thin film electrode for OER, showing a low overpotential of 377 mV at 10 mA/cm(2) with good stability. An optimal loading of ethyl cellulose additive in a precursor solution was found to be essential for the morphology control and thus its electrocatalytic activity. Our results also show that the distribution of Co3O4 nanoparticle catalysts on the substrate is crucial in enhancing the inherent OER catalytic performance. PMID:26489005

  18. (001) Oriented piezoelectric films prepared by chemical solution deposition on Ni foils

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Hong Goo, E-mail: hxy162@psu.edu; Trolier-McKinstry, Susan [Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-07-07

    Flexible metal foil substrates are useful in some microelectromechanical systems applications including wearable piezoelectric sensors or energy harvesters based on Pb(Zr,Ti)O₃ (PZT) thin films. Full utilization of the potential of piezoelectrics on metal foils requires control of the film crystallographic texture. In this study, (001) oriented PZT thin films were grown by chemical solution deposition (CSD) on Ni foil and Si substrates. Ni foils were passivated using HfO₂ grown by atomic layer deposition in order to suppress substrate oxidation during subsequent thermal treatment. To obtain the desired orientation of PZT film, strongly (100) oriented LaNiO₃ films were integrated by CSD on the HfO₂ coated substrates. A high level of (001) LaNiO₃ and PZT film orientation were confirmed by X-ray diffraction patterns. Before poling, the low field dielectric permittivity and loss tangents of (001) oriented PZT films on Ni are near 780 and 0.04 at 1 kHz; the permittivity drops significantly on poling due to in-plane to out-of-plane domain switching. (001) oriented PZT film on Ni displayed a well-saturated hysteresis loop with a large remanent polarization ~36 μC/cm², while (100) oriented PZT on Si showed slanted P-E hysteresis loops with much lower remanent polarizations. The |e{sub 31,f}| piezoelectric coefficient was around 10.6 C/m² for hot-poled (001) oriented PZT film on Ni.

  19. Nanostructured zinc oxide films synthesized by successive chemical solution deposition for gas sensor applications

    International Nuclear Information System (INIS)

    Nanostructured ZnO thin films have been deposited using a successive chemical solution deposition method. The structural, morphological, electrical and sensing properties of the films were studied for different concentrations of Al-dopant and were analyzed as a function of rapid photothermal processing temperatures. The films were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron and micro-Raman spectroscopy. Electrical and gas sensitivity measurements were conducted as well. The average grain size is 240 and 224 A for undoped ZnO and Al-doped ZnO films, respectively. We demonstrate that rapid photothermal processing is an efficient method for improving the quality of nanostructured ZnO films. Nanostructured ZnO films doped with Al showed a higher sensitivity to carbon dioxide than undoped ZnO films. The correlations between material compositions, microstructures of the films and the properties of the gas sensors are discussed

  20. A new single buffer layer for YBCO coated conductors prepared by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li Guo [Key Laboratory of Advanced Technologiesof Materials (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Pu Minghua [Key Laboratory of Advanced Technologiesof Materials (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Du Xiaohua [Key Laboratory of Advanced Technologiesof Materials (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhang Yanbing [Key Laboratory of Advanced Technologiesof Materials (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhou Huaming [Key Laboratory of Advanced Technologiesof Materials (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao Yong [Key Laboratory of Advanced Technologiesof Materials (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)]. E-mail: yzhao@home.swjtu.edu.cn

    2007-02-01

    A new single buffer layer YBiO{sub 3} has been proposed for YBCO coated conductors. Highly c-axis oriented YBiO{sub 3} buffer layer has been deposited on single crystal LaAlO{sub 3} by a low-cost chemical solution deposition method in a temperature range as low as 730-800 C in air. A very dense, smooth, pinhole-free morphology has been observed for YBiO{sub 3} buffer layer. Dense, homogeneous and epitaxially grown YBCO film has been obtained with its onset critical temperature 90 K and J {sub c} (77 K, 0 T) = 3.1 MA/cm{sup 2}. The addition of Bi{sub 2}O{sub 3}, which melts at around 817 C, has been argued to be responsible for the densification as well as low-process temperature of YBiO{sub 3} buffer layer. These results offer an alternative to prepare desirable buffer layer(s) for YBCO coated conductors via a cost-effective and easily scalable route.0.

  1. A new single buffer layer for YBCO coated conductors prepared by chemical solution deposition

    International Nuclear Information System (INIS)

    A new single buffer layer YBiO3 has been proposed for YBCO coated conductors. Highly c-axis oriented YBiO3 buffer layer has been deposited on single crystal LaAlO3 by a low-cost chemical solution deposition method in a temperature range as low as 730-800 C in air. A very dense, smooth, pinhole-free morphology has been observed for YBiO3 buffer layer. Dense, homogeneous and epitaxially grown YBCO film has been obtained with its onset critical temperature 90 K and J c (77 K, 0 T) = 3.1 MA/cm2. The addition of Bi2O3, which melts at around 817 C, has been argued to be responsible for the densification as well as low-process temperature of YBiO3 buffer layer. These results offer an alternative to prepare desirable buffer layer(s) for YBCO coated conductors via a cost-effective and easily scalable route

  2. Deposition and characteristics of PbS thin films by an in-situ solution chemical reaction process

    International Nuclear Information System (INIS)

    Preferential oriented and uniform PbS thin films were deposited by a room temperature in-situ solution chemical reaction process, in which the lead nitrate as precursor in a form of thin solid films from lead precursor solution was used to react with ammonium sulfide ethanol solution. Influence of 1-butanol addition in the lead precursor solution, Pb:S molar ratios in the separate cationic and anionic solutions, deposition cycle numbers and annealing treatment in Ar atmosphere on structure, morphology, chemical composition and optical absorption properties of the deposited PbS films were investigated based on X-ray diffraction, field emission scanning electron microscopy, energy dispersive spectrometer, atomic force microscopy, selected area electron diffraction, UV–vis, near infrared ray and fourier transform infrared spectroscopy measurements. The results showed that the deposited PbS thin films had a cubic structure and highly preferred orientation along with the plane (100). The deposition rate of single-layer was stable, about 30 nm in thickness per deposition cycle. - Highlights: • Time-efficiency synthetic method for the preparation of lead sulfide (PbS) films • Effect of 1-butanol addition into cationic precursor solution is discussed. • Growth rate of the PbS films is stable at about 30 nm per cycle

  3. Deposition and characteristics of PbS thin films by an in-situ solution chemical reaction process

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Junna; Ji, Huiming; Wang, Jian; Zheng, Xuerong; Lai, Junyun; Liu, Weiyan; Li, Tongfei [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Ma, Yuanliang; Li, Haiqin; Zhao, Suqin [College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining 810007 (China); Jin, Zhengguo, E-mail: zhgjin@tju.edu.cn [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2015-09-01

    Preferential oriented and uniform PbS thin films were deposited by a room temperature in-situ solution chemical reaction process, in which the lead nitrate as precursor in a form of thin solid films from lead precursor solution was used to react with ammonium sulfide ethanol solution. Influence of 1-butanol addition in the lead precursor solution, Pb:S molar ratios in the separate cationic and anionic solutions, deposition cycle numbers and annealing treatment in Ar atmosphere on structure, morphology, chemical composition and optical absorption properties of the deposited PbS films were investigated based on X-ray diffraction, field emission scanning electron microscopy, energy dispersive spectrometer, atomic force microscopy, selected area electron diffraction, UV–vis, near infrared ray and fourier transform infrared spectroscopy measurements. The results showed that the deposited PbS thin films had a cubic structure and highly preferred orientation along with the plane (100). The deposition rate of single-layer was stable, about 30 nm in thickness per deposition cycle. - Highlights: • Time-efficiency synthetic method for the preparation of lead sulfide (PbS) films • Effect of 1-butanol addition into cationic precursor solution is discussed. • Growth rate of the PbS films is stable at about 30 nm per cycle.

  4. YBa2Cu3O7-x thin films prepared by chemical solution deposition

    International Nuclear Information System (INIS)

    The discovery of superconductivity in ceramic materials by Bednorz and Mueller in early 1987, immediately followed by Wu et al., who showed that YBa2Cu3O7-x (YBCO) becomes superconducting (92 K) well above the boiling point of nitrogen (77 K) created a great excitement in superconductivity research. Potential applications of high Tc-superconductors require large critical currents and high-applied magnetic fields. Effective ways to increase the critical current density at high magnetic fields in YBCO are the introduction of nanoparticles and chemical substitution of yttrium by other rare earth elements. Since low costs and environmental compatibility are essential conditions for the preparation of long length YBCO films, the cost effective chemical solution deposition (CSD) procedure was selected, given that no vacuum technology is required. To reveal the flexibility and the good optimization possibilities of the CSD approach two main processes were chosen for comparison: a fluorine-free method, namely the polymer-metal precursor technique, and a fluorine-based method, the metalorganic deposition (MOD) using the trifluoroacetates (TFA) technique. Sharp transition temperature widths ΔTc of 1.1 K for the polymer metal method, 0.8 K for TFA method and critical current densities Jc of ∼3.5 MA/cm2 shows that high quality YBCO thin films can be produced using both techniques. Especially interesting is the magnetic field dependence of the critical current density Jc(B) of the Y(Dy)BCO (80 %) films showing that for the lower magnetic fields the critical current density Jc(B) is higher for a standard YBCO film, but at fields higher than 4.5 T the critical current density Jc(B) of Y(Dy)BCO is larger than that for the YBCO. Above 8 T, Jc(B) of the Y(Dy)BCO film is more than one order of magnitude higher than in pure YBCO film. (orig.)

  5. Superhydrophobicity of polyvinylidene fluoride membrane fabricated by chemical vapor deposition from solution

    International Nuclear Information System (INIS)

    Due to the chemical stability and flexibility, polyvinylidene fluoride (PVDF) membranes are widely used as the topcoat of architectural membrane structures, roof materials of vehicle, tent fabrics, and so on. Further modified PVDF membrane with superhydrophobic property may be even superior as the coating layer surface. The lotus flower is always considered to be a sacred plant, which can protect itself against water, dirt, and dust. The superhydrophobic surface of lotus leaf is rough, showing the micro- and nanometer scale morphology. In this work, the microreliefs of lotus leaf were mimicked using PVDF membrane and the nanometer scale peaks on the top of the microreliefs were obtained by the method of chemical vapor deposition from solution. The surface morphology of PVDF membrane was investigated by scanning electronic microscopy (SEM) and atomic force microscope (AFM). Elemental composition analysis by X-ray photoelectron spectroscopy (XPS) revealed that the material of the nanostructure of PVDF membrane was polymethylsiloxane. On the lotus-leaf-like PVDF membrane, the water contact angle and sliding angle were 155 deg. and 4 deg., respectively, exhibiting superhydrophobic property.

  6. (001) Oriented piezoelectric films prepared by chemical solution deposition on Ni foils

    International Nuclear Information System (INIS)

    Flexible metal foil substrates are useful in some microelectromechanical systems applications including wearable piezoelectric sensors or energy harvesters based on Pb(Zr,Ti)O3 (PZT) thin films. Full utilization of the potential of piezoelectrics on metal foils requires control of the film crystallographic texture. In this study, (001) oriented PZT thin films were grown by chemical solution deposition (CSD) on Ni foil and Si substrates. Ni foils were passivated using HfO2 grown by atomic layer deposition in order to suppress substrate oxidation during subsequent thermal treatment. To obtain the desired orientation of PZT film, strongly (100) oriented LaNiO3 films were integrated by CSD on the HfO2 coated substrates. A high level of (001) LaNiO3 and PZT film orientation were confirmed by X-ray diffraction patterns. Before poling, the low field dielectric permittivity and loss tangents of (001) oriented PZT films on Ni are near 780 and 0.04 at 1 kHz; the permittivity drops significantly on poling due to in-plane to out-of-plane domain switching. (001) oriented PZT film on Ni displayed a well-saturated hysteresis loop with a large remanent polarization ∼36 μC/cm2, while (100) oriented PZT on Si showed slanted P-E hysteresis loops with much lower remanent polarizations. The |e31,f| piezoelectric coefficient was around 10.6 C/m2 for hot-poled (001) oriented PZT film on Ni.

  7. Thick Fe2O3, Fe3O4 films prepared by the chemical solution deposition method

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Košovan, P.; Šubrt, Jan

    2006-01-01

    Roč. 39, č. 2 (2006), s. 85-94. ISSN 0928-0707 R&D Projects: GA ČR GA203/01/0408 Institutional research plan: CEZ:AV0Z40320502 Keywords : chemical solution deposition * thick films * alpha-Fe2O3 Subject RIV: CA - Inorganic Chemistry Impact factor: 1.009, year: 2006

  8. Microwave dielectric properties of BiFeO3 thin film prepared by aqueous chemical solution deposition method

    Directory of Open Access Journals (Sweden)

    Ričardas Sobiestianskas

    2009-12-01

    Full Text Available We report high frequency dielectric properties of multiferroic BiFeO3 (BFO thin film deposited by means of aqueous chemical solution deposition on platinized silicon substrate. The structure analysis of the BFO performed by X-ray diffraction and energy dispersive analysis showed pure, single-phase quality of the thin films. The impedance measurements were performed by vector network analyzer in frequency range 100 MHz to 10 GHz at ambient temperature. The film leakage currents dominate dielectric losses at low frequencies. The dielectric constant of the film is around 40. An internal charged defects acting as energy traps for electrons dominate dielectric losses in the frequency region above 4 GHz.

  9. Bipolar resistive switching behaviours in ZnMn2O4 film deposited on p+-Si substrate by chemical solution deposition

    Indian Academy of Sciences (India)

    Jiwen Xu; Zupei Yang; Yupei Zhang; Xiaowen Zhang; Hua Wang

    2014-12-01

    ZnMn2O4 active layer for resistance random access memory (RRAM) was deposited on p+-Si substrate by chemical solution deposition. The bipolar resistive switching behaviours of the Ag/ZnMn2O4/p+-Si capacitor are investigated. The bipolar resistive switching is reproducible and shows high ON/OFF ratio of > 102 and long retention times of > 105 s. The conduction mechanism of the Ag/ZnMn2O4/p+-Si capacitor in the low-resistance state (LRS) is ohmic conduction, whereas that of the device in high-resistance state (HRS) successively undergoes Ohm’s law, trap-filled-limited and Child’s law conduction procedure at room temperature.

  10. Chemical solution deposition using ink-jet printing for YBCO coated conductors

    International Nuclear Information System (INIS)

    This paper reports the successful application of ink-jet printing to the deposition of both continuous coatings and multi-filamentary structures of YBCO. Stable inks have been prepared using both the established TFA-MOD route and novel fluorine-free precursors with appropriate rheological properties for ink-jet printing. Continuous and well textured coatings with lengths exceeding 100 m and a thickness of 0.5 µm have been deposited by electromagnetic ink-jet printing from TFA precursors on LZO-buffered Ni–W substrates and samples have achieved a Jc around 1.5 MA cm−2 (self-field, 77 K). On single crystal substrates, continuous coatings and multi-filamentary structures have been deposited using piezoelectric ink-jet printing both from TFA- and water-based precursors, achieving Jc values up to 3 MA cm−2. (paper)

  11. Chemical solution deposition method of fabricating highly aligned MgO templates

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, Mariappan Parans (Knoxville, TN); Sathyamurthy, Srivatsan (Knoxville, TN); Aytug, Tolga (Knoxville, TN); Arendt, Paul N (Los Alamos, NM); Stan, Liliana (Los Alamos, NM); Foltyn, Stephen R (Los Alamos, NM)

    2012-01-03

    A superconducting article includes a substrate having an untextured metal surface; an untextured barrier layer of La.sub.2Zr.sub.2O.sub.7 or Gd.sub.2Zr.sub.2O.sub.7 supported by and in contact with the surface of the substrate; a biaxially textured buffer layer supported by the untextured barrier layer; and a biaxially textured superconducting layer supported by the biaxially textured buffer layer. Moreover, a method of forming a buffer layer on a metal substrate includes the steps of: providing a substrate having an untextured metal surface; coating the surface of the substrate with a barrier layer precursor; converting the precursor to an untextured barrier layer; and depositing a biaxially textured buffer layer above and supported by the untextured barrier layer.

  12. Chemical solution deposition method of fabricating highly aligned MgO templates

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, Mariappan Parans [Knoxville, TN; Sathyamurthy, Srivatsan [Knoxville, TN; Aytug, Tolga [Knoxville, TN; Arendt, Paul N [Los Alamos, NM; Stan, Liliana [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2009-06-30

    A superconducting article includes a substrate having an untextured metal surface; an untextured barrier layer of La.sub.2Zr.sub.2O.sub.7 or Gd.sub.2Zr.sub.2O.sub.7 supported by and in contact with the surface of the substrate; a biaxially textured buffer layer supported by the untextured barrier layer; and a biaxially textured superconducting layer supported by the biaxially textured buffer layer. Moreover, a method of forming a buffer layer on a metal substrate includes the steps of: providing a substrate having an untextured metal surface; coating the surface of the substrate with a barrier layer precursor; converting the precursor to an untextured barrier layer; and depositing a biaxially textured buffer layer above and supported by the untextured barrier layer.

  13. Approaches Towards the Minimisation of Toxicity in Chemical Solution Deposition Processes of Lead-Based Ferroelectric Thin Films

    Science.gov (United States)

    Bretos, Iñigo; Calzada, M. Lourdes

    The ever-growing environmental awareness in our lives has also been extended to the electroceramics field during the past decades. Despite the strong regulations that have come up (RoHS directive), a number of scientists work on ferroelectric thin film ceramics containing lead. Although the use of these materials in piezoelectric devices is exempt from the RoHS directive, successful ways of decreasing toxic load must be considered a crucial challenge. Within this framework, a few significant advances are presented here, based on different Chemical Solution Deposition strategies. Firstly, the UV sol-gel photoannealing technique (Photochemical Solution Deposition) avoids the volatilisation of hazardous lead from lead-based ferroelectric films, usually observed at conventional annealing temperatures. The key point of this approach lies in the photo-excitation of a few organic components in the gel film. There is also a subsequent annealing of the photo-activated film at temperatures low enough to prevent lead volatilisation, but allowing crystallisation of the pure perovskite phase. Ozonolysis of the films is also promoted when UV-irradiation is carried out in an oxygen atmosphere. This is known to improve electrical response. By this method, nominally stoichiometric solution (i.e., a solution without PbO-excess) derived films with reliable properties, and free of compositional gradients, may be prepared at temperatures as low as 450°C. A PtxPb interlayer between the ferroelectric film and the Pt silicon substrate is observed in the heterostructure of the low-temperature processed films. This is when lead excesses are present in their microstructure. The influence of this interface on the compositional depth profile of the films will be discussed. We will evaluate the feasibility of the UV sol-gel photoannealing technique in fabricating functional films while fulfilling environmental and technological aspects (like integration with silicon IC technology). The second

  14. Chemical solution deposited lanthanum zirconium oxide thin films: Synthesis and chemistry

    International Nuclear Information System (INIS)

    Pyrochlore lanthanum zirconium oxide (LZO) thin films textured along are synthesized using lanthanum acetate hydrate, zirconium propoxide, propionic acid, acetic acid glacial, and methanol as precursors. The materials growth and chemistry are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA). The formation of inkjet printed LZO films on Ni-5%W tape is found to be based on the decomposition of the LZO precursor solution. In the annealing process, Zr metal-oxides bonds are first eliminated between 150 and 250 deg. C, while carboxylates from precursors remain in LZO after the annealing carried out at 900 oC for an hour. Annealed LZO films have dense and smooth structure that are composed of nanoparticles sizing 10-15 nm and some pinholes sizing 25-35 nm accounted for less than 0.1% of the area are observed.

  15. YBa{sub 2}Cu{sub 3}O{sub 7-x} thin films prepared by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Apetrii, Claudia

    2009-11-25

    The discovery of superconductivity in ceramic materials by Bednorz and Mueller in early 1987, immediately followed by Wu et al., who showed that YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) becomes superconducting (92 K) well above the boiling point of nitrogen (77 K) created a great excitement in superconductivity research. Potential applications of high T{sub c}-superconductors require large critical currents and high-applied magnetic fields. Effective ways to increase the critical current density at high magnetic fields in YBCO are the introduction of nanoparticles and chemical substitution of yttrium by other rare earth elements. Since low costs and environmental compatibility are essential conditions for the preparation of long length YBCO films, the cost effective chemical solution deposition (CSD) procedure was selected, given that no vacuum technology is required. To reveal the flexibility and the good optimization possibilities of the CSD approach two main processes were chosen for comparison: a fluorine-free method, namely the polymer-metal precursor technique, and a fluorine-based method, the metalorganic deposition (MOD) using the trifluoroacetates (TFA) technique. Sharp transition temperature widths {delta}T{sub c} of 1.1 K for the polymer metal method, 0.8 K for TFA method and critical current densities J{sub c} of {approx}3.5 MA/cm{sup 2} shows that high quality YBCO thin films can be produced using both techniques. Especially interesting is the magnetic field dependence of the critical current density J{sub c}(B) of the Y(Dy)BCO (80 %) films showing that for the lower magnetic fields the critical current density J{sub c}(B) is higher for a standard YBCO film, but at fields higher than 4.5 T the critical current density J{sub c}(B) of Y(Dy)BCO is larger than that for the YBCO. Above 8 T, J{sub c}(B) of the Y(Dy)BCO film is more than one order of magnitude higher than in pure YBCO film. (orig.)

  16. Manufacture of Bi-cuprate thin films on MgO single crystal substrates by chemical solution deposition

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Bertelsen, Christian Vinther; Andersen, Niels Hessel; Kepa, Katarzyna; Hlásek, T.; Rubešová, K.; Huhtinen, H.; Paturi, P.

    2014-01-01

    Bi2Sr2CaCu2O8 thin films have been deposited on MgO single crystal substrates by spin-coating a solution based on 2-ethylhexanoate precursors dissolved in xylene. Pyrolysis takes place between 200°C and 450°C and is accompanied by the release of 2-ethylhexanoic acid, CO2 and H2O vapour. Highly c...

  17. Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution

    Science.gov (United States)

    Sandoval-Paz, M. G.; Rodríguez, C. A.; Porcile-Saavedra, P. F.; Trejo-Cruz, C.

    2016-07-01

    Copper (I) selenide thin films with orthorhombic and cubic structure were deposited on glass substrates by using the chemical bath deposition technique. The effects of the solution pH on the films growth and subsequently the structural, optical and electrical properties of the films were studied. Films with orthorhombic structure were obtained from baths wherein both metal complex and hydroxide coexist; while films with cubic structure were obtained from baths where the metal hydroxide there is no present. The structural modifications are accompanied by changes in bandgap energy, morphology and electrical resistivity of the films.

  18. Aqueous Chemical Solution Deposition of Novel, Thick and Dense Lattice-Matched Single Buffer Layers Suitable for YBCO Coated Conductors: Preparation and Characterization

    OpenAIRE

    Isabel Van Driessche; Petra Lommens; Sigelinde van Steenberge; Vyshnavi Narayanan

    2012-01-01

    In this work we present the preparation and characterization of cerium doped lanthanum zirconate (LCZO) films and non-stoichiometric lanthanum zirconate (LZO) buffer layers on metallic Ni-5% W substrates using chemical solution deposition (CSD), starting from aqueous precursor solutions. La2Zr2O7 films doped with varying percentages of Ce at constant La concentration (La0.5CexZr1−xOy) were prepared as well as non-stoichiometric La0.5+xZr0.5−xOy buffer layers with different percentages of La a...

  19. Fluorine doped zinc oxide thin films deposited by chemical spray, starting from zinc pentanedionate and hydrofluoric acid: Effect of the aging time of the solution

    International Nuclear Information System (INIS)

    Fluorine doped zinc oxide thin films, ZnO:F, were deposited on sodocalcic glass substrates, starting from zinc pentanedionate and hydrofluoric acid, by the chemical spray technique. The effect of the aging time of the starting solution on the electrical, structural, morphological and optical characteristics of the ZnO thin films was studied. Uniform, adherent, and mirror-like films were deposited at different days. A high electrical resistivity, was found in the films deposited the first day. However, a decrease in the resistivity, until a minimum, in the order of 3 x 10-2 Ω cm was reached for films deposited after the starting solution was aged for twelve days. The films fit well with the hexagonal, wurtzite-type ZnO structure, with a (0 0 2) preferential growth. Variation in the grain size was observed as a consequence of the aging of the solution. An average crystallite size varied between 17.3 and 22.8 nm due to aging effect, and some variations in surface morphology were encountered. All the films are highly transparent in the near UV-vis range, with an average transmittance oscillating between 83% and 90%.

  20. Manufacture of Bi-cuprate thin films on MgO single crystal substrates by chemical solution deposition

    International Nuclear Information System (INIS)

    Bi2Sr2CaCu2O8 thin films have been deposited on MgO single crystal substrates by spin-coating a solution based on 2-ethylhexanoate precursors dissolved in xylene. Pyrolysis takes place between 200°C and 450°C and is accompanied by the release of 2-ethylhexanoic acid, CO2 and H2O vapour. Highly c-axis oriented Bi2Sr2CaCu2O8 as well as Er- or Ho-doped Bi2Sr2(Ca,Ln)Cu2O8 (Ln = Er, Ho) films were obtained after heat treatment at 840°C in air.

  1. Transparent, amorphous and organics-free ZnO thin films produced by chemical solution deposition at 150 {sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Tellier, J. [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Kuscer, D., E-mail: danjela.kuscer@ijs.s [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Malic, B.; Cilensek, J.; Skarabot, M.; Kovac, J. [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Goncalves, G. [CEMOP Uninova, CEMAT I3N, FCT-UNL, Caparica 2829-516 (Portugal); Musevic, I.; Kosec, M. [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2010-07-01

    We have studied the low-temperature processing of ZnO by chemical solution deposition. A transparent, stable precursor solution prepared from zinc acetate dihydrate dissolved in 2-methoxyethanol was spin-coated on SiO{sub x}/Si, soda-lime glass and polymer substrates and heated at 150 {sup o}C. Selected thin films deposited on SiO{sub x}/Si were additionally heated at 450 {sup o}C. Microstructural and chemical analyses showed that the thin films heated at 150 {sup o}C in air were amorphous, contained no organic residues and had a root mean square roughness of 0.7 nm. The films deposited on SiO{sub x}/Si and heated at 450 {sup o}C were crystallised and consisted of randomly oriented grains with a diameter of about 20 nm. All thin films were transparent, exhibiting a transmission of over 80% in the visible range. The resistivity of the 120-nm thick ZnO films processed at 150 {sup o}C was 57 M{Omega} cm and upon heating at 450 {sup o}C it decreased to 1.9 k{Omega} cm.

  2. Chemical solution deposition preparation of double-perovskite La2NiMnO6 film on LaAlO3 (0 0 1) substrate

    International Nuclear Information System (INIS)

    The ordered double-perovskite La2NiMnO6 films were successfully deposited on LaAlO3 substrate by chemical solution deposition method. Some La2NiMnO6 films layer with seed layer were also prepared in order to obtain higher quality films. The X-ray diffraction and Raman scattering spectroscopy are used to characterize all the films, it is found that all films are single phase with highly (0 0 l)-oriented. The field-emission scanning electron microscopy shows that the film with seed layer is relatively smooth and dense. The magnetic measurements indicate that all films exhibit a Curie temperature of about 280 K, which is close to that of the bulk material. Moreover, the low temperature magnetization of the films with and without seed layer is different, which can be attributed to that the seed layer can prevent the diffusion between the films and the substrate.

  3. Improved ferroelectric polarization of V-doped Bi6Fe2Ti3O18 thin films prepared by a chemical solution deposition

    International Nuclear Information System (INIS)

    We prepared V-doped Bi6Fe2Ti3O18 thin films on Pt/Ti/SiO2/Si (100) substrates by using a chemical solution deposition route and investigated the doping effect on the microstructure, dielectric, leakage, and ferroelectric properties of Bi6Fe2Ti3O18 thin films. The Bi5.97Fe2Ti2.91V0.09O18 thin film exhibits improved dielectric properties, leakage current, and ferroelectric properties. The incorporation of vanadium resulted in a substantially enhanced remnant polarization (2Pr) over 30 μC/cm2 in Bi5.97Fe2Ti2.91V0.09O18 thin film compared with 10 μC/cm2 in Bi6Fe2Ti3O18 thin film. It is demonstrated that the improved properties may stem from the improvement of crystallinity of the films with the contribution of suppressed oxygen vacancies and decreased mobility of oxygen vacancies caused by the V-doping. The results will provide a guidance to optimize the ferroelectric properties in Bi6Fe2Ti3O18 thin films by chemical solution deposition, which is important to further explore single-phase multiferroics in the n = 5 Aurivillius thin films

  4. Growth of thick La2Zr2O7 buffer layers for coated conductors by polymer-assisted chemical solution deposition

    International Nuclear Information System (INIS)

    Highlights: • We develops a low-cost and high-efficient technology of fabricating LZO buffer layers. • Sufficient thickness LZO buffer layers have been obtained on NiW (2 0 0) alloy substrate. • Highly biaxially textured YBCO thin film has been deposited on LZO/NiW. - Abstract: La2Zr2O7 (LZO) epitaxial films have been deposited on LaAlO3 (LAO) (1 0 0) single-crystal surface and bi-axially textured NiW (2 0 0) alloy substrate by polymer-assisted chemical solution deposition, and afterwards studied with XRD, SEM and AFM approaches. Highly in-plane and out-of-plane oriented, dense, smooth, crack free and with a sufficient thickness (>240 nm) LZO buffer layers have been obtained on LAO (1 0 0) single-crystal surface; The films deposited on NiW (2 0 0) alloy substrate are also found with high degree in-plane and out-of-plane texturing, good density with pin-hole-free, micro-crack-free nature and a thickness of 300 nm. Highly epitaxial 500 nm thick YBa2Cu3O7−x (YBCO) thin film exhibits the self-field critical current density (Jc) reached 1.3 MA/cm2 at 77 K .These results demonstrate the LZO epi-films obtained with current techniques have potential to be a buffer layer for REBCO coated conductors

  5. Paraffin wax deposits and chemical inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, J.L.

    1970-01-01

    Solutions to this problem becomes necessary with the advent of extremely deep production, offshore production, and the probability of ocean-floor completions. The reasons for paraffin-wax accumulations are many and difficult to pinpoint. Inhibition of these paraffin deposits appears to be the best solution. Paraffin solvents and inhibitors are as follows: solvents, wetting agents, dispersants, and crystal modifiers. Solvents are effective, but can harm a refinery catalyst and create health hazards. Wetting agents and dispersants comprise the majority of chemicals used as paraffin wax inhibitors. Crystal modifiers are relatively new and may provide the most efficient means of reducing deposition. Evaluations of chemical paraffin inhibitors are outlined. Field test results which consider the various chemicals tested may give satisfactory results in determining which particular chemical can solve the problem of the particular situation. (38 refs.)

  6. Growth of thick La2Zr2O7 buffer layers for coated conductors by polymer-assisted chemical solution deposition

    Science.gov (United States)

    Zhang, Xin; Zhao, Yong; Xia, Yudong; Guo, Chunsheng; Cheng, C. H.; Zhang, Yong; Zhang, Han

    2015-06-01

    La2Zr2O7 (LZO) epitaxial films have been deposited on LaAlO3 (LAO) (1 0 0) single-crystal surface and bi-axially textured NiW (2 0 0) alloy substrate by polymer-assisted chemical solution deposition, and afterwards studied with XRD, SEM and AFM approaches. Highly in-plane and out-of-plane oriented, dense, smooth, crack free and with a sufficient thickness (>240 nm) LZO buffer layers have been obtained on LAO (1 0 0) single-crystal surface; The films deposited on NiW (2 0 0) alloy substrate are also found with high degree in-plane and out-of-plane texturing, good density with pin-hole-free, micro-crack-free nature and a thickness of 300 nm. Highly epitaxial 500 nm thick YBa2Cu3O7-x (YBCO) thin film exhibits the self-field critical current density (Jc) reached 1.3 MA/cm2 at 77 K .These results demonstrate the LZO epi-films obtained with current techniques have potential to be a buffer layer for REBCO coated conductors.

  7. Photovoltaic effect in BiFeO3/BaTiO3 multilayer structure fabricated by chemical solution deposition technique

    Science.gov (United States)

    Sharma, Savita; Tomar, Monika; Kumar, Ashok; Puri, Nitin K.; Gupta, Vinay

    2016-06-01

    Photovoltaic (PV) properties of bismuth ferrite (BFO) and barium titanate (BTO) multilayered ferroelectric BFO/BTO/BFO/BTO thin film structure deposited on Pt/Ti/SiO2/Si substrates using chemical solution deposition technique are presented. X-ray diffraction analysis confirms pure phase polycrystalline nature of deposited perovskite multilayered structures. Simultaneously both distorted rhombohedral (R3c) and tetragonal phases (P4mm) of the respective BFO and BTO components are also well retained. The ferroelectric sandwiched structures grown on fused quartz substrates exhibit high optical transmittance (~70%) with an energy band gap 2.62 eV. Current-voltage characteristics and PV response of multilayered structures is determined in metal-ferroelectric-metal (MFM) capacitor configuration. Considerably low magnitude of dark current density 1.53×10-7 A at applied bias of 5 V establish the resistive nature of semi-transparent multilayered structure. Enhanced PV response with 40 nm thin semitransparent Au as top electrode is observed under solid-state violet laser illumination (λ - 405 nm, 160 mW/cm2). The short circuit current density and open circuit voltage are measured to be 12.65 μA/cm2 and 1.43 V respectively with a high retentivity. The results obtained are highly encouraging for employing artificial multilayered engineering to improve PV characteristics.

  8. Strong interfacial magnetic coupling in epitaxial bilayers of LaCoO3/LaMnO3 prepared by chemical solution deposition

    International Nuclear Information System (INIS)

    We report the synthesis of high quality epitaxial bilayers of LaMnO3/LaCoO3 (LCO/LMO) on (001) LaAlO3, by spin-coating of a polymeric aqueous solutions. The bilayer shows a very large increase of the magnetization coercive field (≈ 3000%) with respect to the isolated LMO or LCO films. We suggest that the origin of this effect is a strong Mn4+–O–Co2+ exchange interaction at the interface. Our results demonstrate that a simple chemical method is able to produce high quality epitaxial heterostructures in which interfacial effects can modify substantially the properties of the individual layers. - Highlights: • Synthesis of high quality epitaxial bilayers of LaMnO3/LaCoO3 on (001) LaAlO3 • Polymer assisted deposition method • Interfacial effects can modify substantially the properties of the individual layers

  9. Structure and magnetism of Zn0.9Co0.1O DMS films prepared by chemical solution deposition method

    International Nuclear Information System (INIS)

    The Zn0.9Co0.1O films are fabricated by chemical solution deposition method. All the films have the ZnO wurtzite structure with a preferential orientation along the c-axis. The analysis of X-ray near-edge absorption spectroscopy and X-ray photoelectron spectroscopy indicates that the valence of Co is +2, and there are oxygen vacancies in Zn0.9Co0.1O films annealed in Ar atmosphere. Extended X-ray absorption fine structure results reveal that Co2+ ions have dissolved into ZnO and substituted for Zn2+ ions. Magnetization measurements show that the film annealed in Ar exhibits ferromagnetism which can be explained by the formation of bound magnetic polarons.

  10. Simple Chemical Vapor Deposition Experiment

    Science.gov (United States)

    Pedersen, Henrik

    2014-01-01

    Chemical vapor deposition (CVD) is a process commonly used for the synthesis of thin films for several important technological applications, for example, microelectronics, hard coatings, and smart windows. Unfortunately, the complexity and prohibitive cost of CVD equipment makes it seldom available for undergraduate chemistry students. Here, a…

  11. Growth of thick La{sub 2}Zr{sub 2}O{sub 7} buffer layers for coated conductors by polymer-assisted chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin, E-mail: xzhang@my.swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Yong, E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Xia, Yudong [State Key Lab of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Guo, Chunsheng [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Zhang, Yong [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhang, Han [Department of Physics, Peking University, Beijing 100871 (China)

    2015-06-15

    Highlights: • We develops a low-cost and high-efficient technology of fabricating LZO buffer layers. • Sufficient thickness LZO buffer layers have been obtained on NiW (2 0 0) alloy substrate. • Highly biaxially textured YBCO thin film has been deposited on LZO/NiW. - Abstract: La{sub 2}Zr{sub 2}O{sub 7} (LZO) epitaxial films have been deposited on LaAlO{sub 3} (LAO) (1 0 0) single-crystal surface and bi-axially textured NiW (2 0 0) alloy substrate by polymer-assisted chemical solution deposition, and afterwards studied with XRD, SEM and AFM approaches. Highly in-plane and out-of-plane oriented, dense, smooth, crack free and with a sufficient thickness (>240 nm) LZO buffer layers have been obtained on LAO (1 0 0) single-crystal surface; The films deposited on NiW (2 0 0) alloy substrate are also found with high degree in-plane and out-of-plane texturing, good density with pin-hole-free, micro-crack-free nature and a thickness of 300 nm. Highly epitaxial 500 nm thick YBa{sub 2}Cu{sub 3}O{sub 7−x} (YBCO) thin film exhibits the self-field critical current density (Jc) reached 1.3 MA/cm{sup 2} at 77 K .These results demonstrate the LZO epi-films obtained with current techniques have potential to be a buffer layer for REBCO coated conductors.

  12. Determination of electroless deposition by chemical nickeling

    OpenAIRE

    Badida, M.; M. Gombár; L. Sobotová; J. Kmec

    2013-01-01

    Increasing of technical level and reliability of machine products in compliance with the economical and ecological terms belongs to the main trends of the industrial development. During the utilisation of these products there arise their each other contacts and the interaction with the environment. That is the reason for their surface degradation by wear effect, corrosion and other influences. The chemical nickel-plating allows autocatalytic deposition of nickel from water solutions in the fo...

  13. Aqueous Chemical Solution Deposition of Novel, Thick and Dense Lattice-Matched Single Buffer Layers Suitable for YBCO Coated Conductors: Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    Isabel van Driessche

    2012-09-01

    Full Text Available In this work we present the preparation and characterization of cerium doped lanthanum zirconate (LCZO films and non-stoichiometric lanthanum zirconate (LZO buffer layers on metallic Ni-5% W substrates using chemical solution deposition (CSD, starting from aqueous precursor solutions. La2Zr2O7 films doped with varying percentages of Ce at constant La concentration (La0.5CexZr1−xOy were prepared as well as non-stoichiometric La0.5+xZr0.5−xOy buffer layers with different percentages of La and Zr ratios. The variation in the composition of these thin films enables the creation of novel buffer layers with tailored lattice parameters. This leads to different lattice mismatches with the YBa2Cu3O7−x (YBCO superconducting layer on top and with the buffer layers or substrate underneath. This possibility of minimized lattice mismatch should allow the use of one single buffer layer instead of the current complicated buffer architectures such as Ni-(5% W/LZO/LZO/CeO2. Here, single, crack-free LCZO and non-stoichiometric LZO layers with thicknesses of up to 140 nm could be obtained in one single CSD step. The crystallinity and microstructure of these layers were studied by XRD, and SEM and the effective buffer layer action was studied using XPS depth profiling.

  14. Annealing-induced changes in chemical bonding and surface characteristics of chemical solution deposited Pb0.95La0.05Zr0.54Ti0.46O3 thin films

    Science.gov (United States)

    Batra, Vaishali; Ramana, C. V.; Kotru, Sushma

    2016-08-01

    We report the effect of post deposition annealing temperature (Ta = 550 and 750 °C) on the surface morphology, chemical bonding and structural development of lanthanum doped lead zirconate titanate (Pb0.95La0.05Zr0.54Ti0.46O3; referred to PLZT) thin films prepared using chemical solution deposition method. Atomic force microscopy demonstrates formation of nanocrystallites in the film annealed at Ta = 750 °C. X-ray photoelectron spectroscopy (XPS) analyses indicate that the binding energies (BE) of the Pb 4f, Zr 3d, and Ti 2p doublet experience a positive energy shift at Ta = 750 °C, whereas the BE of O 1s and La 3d doublet show a negative shift with respect to the BE of the films annealed at Ta = 750 °C. Thermal induced crystallization and chemical modification is evident from XPS results. The Ar+ sputtering of the films reveals change in oxidation state and chemical bonding between the constituent atoms, with respect to Ta. Raman spectroscopy used to study phonon-light interactions show shift in longitudinal and transverse optical modes with the change in Ta, confirming the change in phase and crystallinity of these films. The results suggest annealing at Ta = 750 °C yield crystalline perovskite PLZT films, which is essential to obtain photovoltaic response from devices based on such films.

  15. Determination of electroless deposition by chemical nickeling

    Directory of Open Access Journals (Sweden)

    M. Badida

    2013-07-01

    Full Text Available Increasing of technical level and reliability of machine products in compliance with the economical and ecological terms belongs to the main trends of the industrial development. During the utilisation of these products there arise their each other contacts and the interaction with the environment. That is the reason for their surface degradation by wear effect, corrosion and other influences. The chemical nickel-plating allows autocatalytic deposition of nickel from water solutions in the form of coherent, technically very profitable coating without usage of external source of electric current. The research was aimed at evaluating the surface changes after chemical nickel-plating at various changes of technological parameters.

  16. Superconducting Dy1-x(Gd,Yb)xBa2Cu3O7-δ thin films made by Chemical Solution Deposition

    DEFF Research Database (Denmark)

    Opata, Yuri Aparecido; Wulff, Anders Christian; Hansen, Jørn Otto Bindslev;

    2016-01-01

    Dy1-x(Gd or Yb)xBa2Cu3O7-δ samples were prepared using chemical solution deposition (CSD), based on trifluoroacetate metal-organic decomposition (MOD) methods. X-ray diffraction results demonstrated the formation of the RE123 superconducting phase with a strong in-plane and out-of-plane texture. c...

  17. Site engineering in chemical solution deposited Na1/2Bi1/2TiO3 thin films using Mn acceptor

    Science.gov (United States)

    Feng, Chao; Yang, Changhong; Geng, Fangjuan; Lv, Panpan; Yao, Qian

    2016-02-01

    A series of Mn doped Na1/2Bi1/2TiO3 (NBT) thin films with dopant concentrations from 0 to 4 at% (NBTMn x , x = 0, 0.01, 0.02, 0.04) were fabricated on the indium tin oxide/glass substrates by chemical solution deposition. The effects of Mn doping content on crystalline, ferroelectric and dielectric properties were investigated. All thin films exhibit phase-pure polycrystalline perovskite structures. For the insulating measurement, at low electric field, space charge limited conduction or a grain boundary limited behavior is responsible for the leakage behavior of NBTMn x thin films, whereas at the high electric field, the dominant mechanism is changed to the interface-limited Fowler-Nordheim tunneling except NBTMn0.04. The leakage current density is reduced by more than three orders of magnitude in NBTMn0.02 compared with that of NBT thin film. Also, the enhanced ferroelectric properties of NBTMn0.02 thin film can be observed in polarization-electric filed hysteresis loop with P r of 38 μC cm-2, which is consistent with the result of the normalized capacitance-voltage curve. The dielectric constant and dissipation factor of NBTMn0.02 thin film are 501 and 0.04, respectively at 100 kHz. These electrical property improvements are attributed to the decrease of oxygen vacancy-induced leakage current.

  18. Effects of annealing atmosphere on crystallization and electrical properties in BiFeO3 thin films by chemical solution deposition(CSD)

    International Nuclear Information System (INIS)

    BiFeO3 (BFO) thin films have been prepared on platinized silicon substrates by chemical solution deposition (CSD) and annealed at 600 .deg. C for 1 hour under various atmospheres, i.e., O2, Air and N2. Effects of annealing atmospheres on the crystallization and electrical properties of BFO films were investigated. Crystallization behavior and electrical properties of BFO films depend on the oxygen partial pressure of the annealing atmosphere. The BFO thin film annealed in N2 atmosphere showed a good crystallinity. The surface roughness of the BFO film decreased with lowering oxygen partial pressure of the annealing atmosphere. Low leakage current density and P-E hysteresis were found only in the BFO film annealed at 600 .deg. C under N2 atmosphere. Leakage current density, polarization (at zero electric field) and electric field (at zero polarization) of the BFO film annealed at 600 .deg. C under N2 are 5 x 10-7 A/cm2 at 1 V, 0.2 μC/cm2 and 15kV/cm, respectively

  19. Substrate effects on the growth of epitaxial Pb(Mg1/3,Ta2/3)O3 thin films using chemical solution deposition

    International Nuclear Information System (INIS)

    The effect of various substrates on the formation of epitaxial Pb(Mg1/3,Ta2/3)O3 (PMT) thin films has been investigated. Pb(Mg1/3,Ta2/3)O3 thin films were prepared on SrTiO3 (STO), LaAlO3 (LAO), and MgO substrates by the chemical solution deposition (CSD) method. Microstructural evolution of PMT thin films as a function of annealing temperatures (650-750 deg C/1 h) has been studied using the transmission electron microscopy, the scanning electron microscopy, and the X-ray diffraction (XRD). Epitaxial PMT thin films could be grown on STO and LAO substrates with an epitaxial orientation relationship of [100](001)films parallel [100](001)substrates. However, pyrochlore phase was mainly observed and no epitaxy nature was observed in PMT thin films on MgO substrates. The difference in the epitaxy nature is explained in terms of the difference in the lattice mismatch and the crystal structure

  20. Orientation growth and electrical properties of ZnO/BaTiO3 heterostructures on silicon substrates by chemical solution deposition

    International Nuclear Information System (INIS)

    Metal-ferroelectric-semiconductor (MFS) structures based on ZnO/BaTiO3 were fabricated by chemical solution deposition (CSD). The microstructure of the heterostructures was characterized by x-ray diffraction and atomic force microscopy. Both ZnO and BaTiO3 layers were found to be c-axial oriented on LaNiO3-coated silicon substrates. The morphology revealed good interface quality with root-mean-square values of about 10 nm. Compared with BaTiO3 ferroelectric thin films, the capacitance-voltage curves of Pt/ZnO/BaTiO3/LaNiO3 heterostructures exhibited a counterclockwise hysteresis loop for the MFS capacitor confirming the ferroelectric nature integrated with an n-type semiconductor. The memory windows increased and then reduced as the frequency changed from 100 kHz to 1 MHz, which can be explained by a frequency-dependent coercive field and electron injection behaviour. The current-voltage curves of ZnO/BaTiO3 heterostructure showed a good insulating characteristic. These results suggested that ZnO/BaTiO3 MFS heterostructures by CSD can be used for memory devices.

  1. Transport properties and microstructure of La0.7Sr0.3MnO3 nanocrystalline thin films grown by polymer-assisted chemical solution deposition

    Institute of Scientific and Technical Information of China (English)

    Min Zhang; Li Lv; Zhantao Wei; Xinsheng Yang; Xin Zhang

    2014-01-01

    Perovskite-based materials can be widely used in the aerospace and transportation field. Perovskite man-ganese oxides La0.7Sr0.3MnO3 (LSMO) thin films were grown on LaAlO3 (100) and Si (100) single crystal sub-strates by the polymer-assisted chemical solution deposi-tion (PACSD) method. Electronic transport behavior, microstructure, and magnetoresistance (MR) of LSMO thin films on different substrates were investigated. The resis-tance of LSMO films fabricated on LaAlO3 substrates is smaller than that on the Si substrates. The magnetic field reduces resistance of LSMO films both on Si and LAO in the wide temperature region, when the insulator-metal transition temperature shifts to higher temperature. The low-field magnetoresistance of LSMO films on Si in low temperature range at 1 T is larger than that of LSMO films on LAO. However, the MR of LSMO film on LAO films at room-temperature is about 5.17%. The thin films are smooth and dense with uniform nanocrystal size grain. These results demonstrate that PACSD is an effective technique for producing high quality LSMO films, which is significant to improve the magnetic properties and the application of automotive sensor.

  2. Microreactor-Assisted Solution Deposition for Compound Semiconductor Thin Films

    Directory of Open Access Journals (Sweden)

    Chang-Ho Choi

    2014-05-01

    Full Text Available State-of-the-art techniques for the fabrication of compound semiconductors are mostly vacuum-based physical vapor or chemical vapor deposition processes. These vacuum-based techniques typically operate at high temperatures and normally require higher capital costs. Solution-based techniques offer opportunities to fabricate compound semiconductors at lower temperatures and lower capital costs. Among many solution-based deposition processes, chemical bath deposition is an attractive technique for depositing semiconductor films, owing to its low temperature, low cost and large area deposition capability. Chemical bath deposition processes are mainly performed using batch reactors, where all reactants are fed into the reactor simultaneously and products are removed after the processing is finished. Consequently, reaction selectivity is difficult, which can lead to unwanted secondary reactions. Microreactor-assisted solution deposition processes can overcome this limitation by producing short-life molecular intermediates used for heterogeneous thin film synthesis and quenching the reaction prior to homogeneous reactions. In this paper, we present progress in the synthesis and deposition of semiconductor thin films with a focus on CdS using microreactor-assisted solution deposition and provide an overview of its prospect for scale-up.

  3. Evolution of orientation degree, lattice dynamics and electronic band structure properties in nanocrystalline lanthanum-doped bismuth titanate ferroelectric films by chemical solution deposition.

    Science.gov (United States)

    Zhang, Jinzhong; Chen, Xiangui; Jiang, Kai; Shen, Yude; Li, Yawei; Hu, Zhigao; Chu, Junhao

    2011-08-21

    Ferroelectric lanthanum (La)-substituted bismuth titanate (Bi(4-x)La(x)Ti(3)O(12), BLT) nanocrystalline films with the composition range of 0 ≤x≤ 1 have been directly deposited on n-type Si (100) substrates by chemical solution deposition. The La substitution effects on the preferred orientation, surface morphology, phonon modes, emission bands and electronic band structures of the BLT films have been investigated by microscopy, Raman scattering, photoluminescence and spectroscopic ellipsometry at room temperature. X-Ray diffraction analysis shows that the films are polycrystalline and exhibit the pure perovskite phase structure. With increasing La composition, the (100)-orientation degree can be enhanced and the root-mean-square roughnesses slightly increase from 6.5 to 8.3 nm. It was found that the Raman-active mode A(1g)[Bi] at about 59 cm(-1) is unchanged while the B(1g) and A(1g)[Ti] phonon modes at about 648 and 853 cm(-1) are shifted towards higher frequency by about 36.6 and 8.4 cm(-1), respectively. Photoluminescence spectra show that the intensity of the peak located at about 2.3 eV increases with the La composition, except for the Bi(3)LaTi(3)O(12) film, due to the smallest grain size and oxygen vacancy defects. The optical constants of the BLT films have been uniquely extracted by fitting the measured ellipsometric spectra with a four-phase layered model (air/surface rough layer/BLT/Si) in the photon energy range of 0.73-4.77 eV. The Adachi dielectric function model has been successfully applied and reasonably describes the optical response behavior of the ferroelectric BLT films. Moreover, the film packing density decreases while the optical band gap linearly increases from 3.610 ± 0.066 to 3.758 ± 0.068 eV with increasing La composition. It is surmised that the phenomena are mainly ascribed to the variations of the electronic structure, especially for the conduction band, which is perturbed by the La doping. PMID:21743909

  4. Contacting cadmium deposition from spent industrial solutions

    International Nuclear Information System (INIS)

    Cadmium metal deposition from spent industrial solutions by cadmium (2) reduction with dispersed aluminium is studied. The influence of temperature, reagent concentration and the presence of complexing agents on the yield and purity of isolated cadmium metal is examined

  5. Dielectric properties of Ca(Zr0.05Ti0.95)O3 thin films prepared by chemical solution deposition

    International Nuclear Information System (INIS)

    Ca(Zr0.05Ti0.95)O3 (CZT) thin films were grown on Pt(111)/Ti/SiO2/Si(100) substrates by the soft chemical method. The films were deposited from spin-coating technique and annealed at 928K for 4h under oxygen atmosphere. CZT films present orthorhombic structure with a crack free and granular microstructure. Atomic force microscopy and field-emission scanning electron microscopy showed that CZT present grains with about 47nm and thickness about 450nm. Dielectric constant and dielectric loss of the films was approximately 210 at 100kHz and 0.032 at 1MHz. The Au/CZT/Pt capacitor shows a hysteresis loop with remnant polarization of 2.5μC/cm2, and coercive field of 18kV/cm, at an applied voltage of 6V. The leakage current density was about 4.6x10-8A/cm2 at 3V. Dielectric constant-voltage curve is located at zero bias field suggesting the absence of internal electric fields

  6. Epitaxial growth and characterization of La{sub 2}Zr{sub 2}O{sub 7} multilayers on biaxially textured NiW substrate by chemical solution deposition under highly reducing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mos, R.B.; Petrisor, T.; Gabor, M.S. [Technical University of Cluj-Napoca, Str. Memorandumului, nr. 28, 400114 Cluj-Napoca (Romania); Mancini, A.; Rufoloni, A.; Celentano, G. [ENEA Frascati, Via Enrico Fermi 45, 00044 Frascati, Roma (Italy); Falqui, A.; Genovese, A.; Ruffilli, R. [Istituto Italiano di Tecnologia, I.I.T. — Via Morego 30, 16163 Genova (Italy); Ciontea, L. [Technical University of Cluj-Napoca, Str. Memorandumului, nr. 28, 400114 Cluj-Napoca (Romania); Petrisor, T., E-mail: Traian.Petrisor@phys.utcluj.ro [Technical University of Cluj-Napoca, Str. Memorandumului, nr. 28, 400114 Cluj-Napoca (Romania)

    2013-03-01

    The paper presents the growth and characterization of highly textured La{sub 2}Zr{sub 2}O{sub 7} (LZO) multilayer coatings on Ni–5 at.%W (NiW) biaxially textured substrates by chemical solution deposition (CSD) under highly reducing conditions (Ar + 12%H{sub 2}) in order to protect the metallic substrate from oxidation. The coating solution consists in a stoichiometric mixture of lanthanum and zirconium acetylacetonates dissolved in an excess of propionic acid. The precursor chemistry was studied by means of infrared spectroscopy, thermogravimetric–differential thermal analyses, Raman spectroscopy and X-ray diffraction carried out on the precursor powder. The as-grown multilayer LZO coating exhibits a sharp in-plane and out-of-plane texture, with the full-width-at-half-maximum of the ω-scans and φ-scans of about 7.2° and 8.0°, respectively, close to that of the NiW substrate. The volume fraction of the c-axis oriented grains from the top layer of the coating increases with the number of layers. The LZO coating exhibits a smooth and crack-free surface, appropriate for the further epitaxial growth of a seed layer for the YBa{sub 2}Cu{sub 3}O{sub 7−x} (YBCO) deposition. Transmission Electron Microscopy was used to investigate the microstructure of the CSD LZO thin films deposited on flexible NiW substrates. A high density of nanovoids, with a size ranging between 10 and 30 nm, was observed in the LZO layers. YBCO films epitaxially grown by pulsed laser deposition on the CSD LZO buffer layer exhibit critical current densities, J{sub c}, close to 1.6 MA/cm{sup 2} at 77 K and self-field and zero resistance critical temperature (T{sub c}(R = 0)) of 90.3 K. - Highlights: ► Chemical solution deposition of epitaxial LZO multiple coatings ► Precursor characterization ► The improvement of the epitaxial fraction with the number of the LZO layers ► The LZO coatings are appropriate for further epitaxial deposition of YBCO film.

  7. Low-temperature transport properties of chemical solution deposited polycrystalline La{sub 0.7}Sr{sub 0.3}MnO{sub 3} ferromagnetic films under a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Junyu [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241 (China); Chen, Ying [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Rd., Shanghai 200050 (China); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Xu, Wenfei; Yang, Jing; Bai, Wei [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241 (China); Wang, Genshui [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Rd., Shanghai 200050 (China); Duan, Chungang; Tang, Zheng [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241 (China); Tang, Xiaodong, E-mail: xdtang@sist.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241 (China)

    2011-08-08

    Polycrystalline La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) films were prepared on SiO{sub 2}/Si (001) substrates by chemical solution deposition technique. Electrical and magnetic properties of LSMO were investigated. A minimum phenomenon in resistivity is found at the low temperature (<50 K) under magnetic fields from 0 T to 3 T. Kondo-like spin dependent scattering, which includes both spin polarization and grain boundary tunneling, was observed in the low-temperature electrical transport for the LSMO polycrystalline films. The temperature-dependent resistivity at low temperatures can be well fitted in the framework of elastic scattering, electron-electron (e-e) interaction, Kondo-like spin dependent scattering, and electron-phonon (e-ph) interaction. -- Highlights: → La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films were grown by a modified chemical solution deposition route. → High quality LSMO thin films were prepared directly onto SiO{sub 2}/Si substrates. → Abnormality in resistivity of LSMO films at low temperatures was studied in detail. → The abnormality was mainly attributed to Kondo-like spin dependent scattering.

  8. An all chemical solution deposition approach for the growth of highly textured CeO2 cap layers on La2Zr2O7-buffered long lengths of biaxially textured Ni-W substrates for YBCO-coated conductors

    International Nuclear Information System (INIS)

    A reel-to-reel, dip coating process has been developed to continuously deposit epitaxial La2Zr2O7 (LZO) and CeO2 on 5 m long cube-textured {100} (001)Ni tapes. Recent results for La2Zr2O7 and CeO2 buffer layers deposited on long lengths of Ni substrate for the realization of YBa2Cu3O7-x (YBCO)-coated conductors are presented. The major achievement is the development of a new all chemical solution deposition (CSD) process leading to the formation of highly textured buffer layers at moderate annealing temperatures. Reproducible highly textured, dense and crack-free LZO buffer layers and CeO2 cap layers were obtained for annealing temperatures as low as 900 deg. C in a reducing atmosphere (Ar-5 at.%-H2). The thickness of the LZO buffer layers was determined to be (200 ± 10) nm per single coating; prepared cerium oxide layers showed a thickness of 60 nm ± 10 nm. Pulsed laser deposition (PLD) was used to grow YBCO films on these substrates. A Tc0 of T = 90.5 K and ΔTc = 1.4 K was obtained on PLD-YBCO/CSD-CeO2 /CSD-LZO/Ni-5 at.% W, which shows the outstanding features of this new buffer layer architecture processed by CSD. The large layer thickness combined with low annealing temperatures is the main advantage of this new process for low-cost buffer layer deposition on Ni-RABiTS (rolling-assisted biaxially textured substrates)

  9. Thin-Film Deposition of Metal Oxides by Aerosol-Assisted Chemical Vapour Deposition: Evaluation of Film Crystallinity

    Science.gov (United States)

    Takeuchi, Masahiro; Maki, Kunisuke

    2007-12-01

    Sn-doped In2O3 (ITO) thin films are deposited on glass substrates using 0.2 M aqueous and methanol solutions of InCl3(4H2O) with 5 mol % SnCl2(2H2O) by aerosol-assisted chemical vapour deposition under positive and negative temperature gradient conditions. The film crystallinity is evaluated by determining the film thickness dependence of X-ray diffraction peak height. When using aqueous solution, the ITO films grow with the same crystallinity during the deposition, but when using methanol solution, the preferred orientation of ITO changes during the deposition.

  10. Influence of deposition time on the properties of chemical bath deposited manganese sulfide thin films

    Directory of Open Access Journals (Sweden)

    Anuar Kassim

    2010-12-01

    Full Text Available Manganese sulfide thin films were chemically deposited from an aqueous solution containing manganese sulfate, sodium thiosulfate and sodium tartrate. The influence of deposition time (2, 3, 6 and 8 days on the properties of thin films was investigated. The structure and surface morphology of the thin films were studied by X-ray diffraction and atomic force microscopy, respectively. In addition, in order to investigate the optical properties of the thin films, the UV-visible spectrophotometry was used. The XRD results indicated that the deposited MnS2 thin films exhibited a polycrystalline cubic structure. The number of MnS2 peaks on the XRD patterns initially increased from three to six peaks and then decreased to five peaks, as the deposition time was increased from 2 to 8 days. From the AFM measurements, the film thickness and surface roughness were found to be dependent on the deposition time.

  11. Chemical solution deposition (CSD) of CeO2 and La2Zr2O7 buffer layers on cube textured NiW substrates

    International Nuclear Information System (INIS)

    We present results of crack free layers of CeO2 and La2Zr2O7 deposited by means of CSD on cube textured Ni-4 at.% W substrates. EBSD-data show histograms with very good inplane- and out-of-plane textures and were used to simulate the critical current density in the YBCO layer. The surface roughness, a sensitive feature for good deposition results, was analyzed with a profilometer. In the CSD process we applied, the 2, 4-pentanedionates of the metal cations in glacial acetic acid and methanol served as starting substances

  12. Chemical Vapour Deposition of Large Area Graphene

    OpenAIRE

    Larsen, Martin Benjamin Barbour Spanget; Bøggild, Peter; Booth, Tim; Jørgensen, Anders Michael

    2015-01-01

    Chemical Vapor Deposition (CVD) is a viable technique for fabrication of large areas of graphene. CVD fabrication is the most prominent and common way of fabricating graphene in industry. In this thesis I have attempted to optimize a growth recipe and catalyst layer for CVD fabrication of uniform, single layer, and high carrier mobility large area graphene. The main goals of this work are; (1) explore the graphene growth mechanics in a low pressure cold-wall CVD system on a copper substrate, ...

  13. In-Situ Synchrotron X-ray Study of the Phase and Texture Evolution of Ceria and Superconductor Films Deposited by Chemical Solution Method

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude; He, Dong;

    2012-01-01

    /differential thermal analysis and Fourier transform infra-red (FTIR) spectroscopy allows to study the details on the decomposition and crystallization processes of ceria based in form of bulk and film. The success of this work demonstrates the possibility of studying chemical reaction pathway and texture evolution of...

  14. Influence of oxygen pressure on critical current density and magnetic flux pinning structures in YBa2Cu3O7-x fabricated by chemical solution deposition

    Institute of Scientific and Technical Information of China (English)

    Ding Fa-Zhu; Gu Hong-Wei; Zhang Teng; Dai Shao-Tao; Xiao Li-Ye

    2011-01-01

    This paper studies the effect of oxygen partial pressure on the fabrication of YBa2Cu3O7-x films on (00/) LaAlO3 substrates by metalorganic deposition using trifluoroacetates (TFA-MOD). As the oxygen partial pressure increases to 1500 Pa, a great increase in the superconducting properties is observed at high magnetic fields parallel to the YBCO c axis. The cross-sectional transmission electron microscope images show that a high density of stacking faults in the size range of 10-15 nm may act as flux pinning centres to enhance the critical current density of the YBCO films

  15. Advanced deposition model for thermal activated chemical vapor deposition

    Science.gov (United States)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  16. Chemical solution deposition preparation of double-perovskite La{sub 2}NiMnO{sub 6} film on LaAlO{sub 3} (0 0 1) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wang Tao [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Xu Weibing [Jiangxi University of Science and Technology, Ganzhou 341000 (China); Fang Xiaodong [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China)], E-mail: twang7290@ustc.edu; Dong Weiwei; Tao Ruhua; Li Da; Zhao Yiping [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Zhu Xuebin [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2009-05-05

    The ordered double-perovskite La{sub 2}NiMnO{sub 6} films were successfully deposited on LaAlO{sub 3} substrate by chemical solution deposition method. Some La{sub 2}NiMnO{sub 6} films layer with seed layer were also prepared in order to obtain higher quality films. The X-ray diffraction and Raman scattering spectroscopy are used to characterize all the films, it is found that all films are single phase with highly (0 0 l)-oriented. The field-emission scanning electron microscopy shows that the film with seed layer is relatively smooth and dense. The magnetic measurements indicate that all films exhibit a Curie temperature of about 280 K, which is close to that of the bulk material. Moreover, the low temperature magnetization of the films with and without seed layer is different, which can be attributed to that the seed layer can prevent the diffusion between the films and the substrate.

  17. Influence of oxygen pressure on critical current density and magnetic flux pinning structures in YBa2Cu3O7−x fabricated by chemical solution deposition

    International Nuclear Information System (INIS)

    This paper studies the effect of oxygen partial pressure on the fabrication of YBa2Cu3O7−x films on (00l) LaAlO3 substrates by metalorganic deposition using trifluoroacetates (TFA-MOD). As the oxygen partial pressure increases to 1500 Pa, a great increase in the superconducting properties is observed at high magnetic fields parallel to the YBCO c axis. The cross-sectional transmission electron microscope images show that a high density of stacking faults in the size range of 10–15 nm may act as flux pinning centres to enhance the critical current density of the YBCO films (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Chemical Vapour Deposition of Large Area Graphene

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget

    Chemical Vapor Deposition (CVD) is a viable technique for fabrication of large areas of graphene. CVD fabrication is the most prominent and common way of fabricating graphene in industry. In this thesis I have attempted to optimize a growth recipe and catalyst layer for CVD fabrication of uniform......, single layer, and high carrier mobility large area graphene. The main goals of this work are; (1) explore the graphene growth mechanics in a low pressure cold-wall CVD system on a copper substrate, and (2) optimize the process of growing high quality graphene in terms of carrier mobility, and crystal...... structure. Optimization of a process for graphene growth on commercially available copper foil is limited by the number of aluminium oxide particles on the surface of the catalyst. By replacing the copper foil with a thin deposited copper film on a SiO2/Si or c-plane sapphire wafer the particles can...

  19. Biocompatibility of chemical-vapour-deposited diamond.

    Science.gov (United States)

    Tang, L; Tsai, C; Gerberich, W W; Kruckeberg, L; Kania, D R

    1995-04-01

    The biocompatibility of chemical-vapour-deposited (CVD) diamond surfaces has been assessed. Our results indicate that CVD diamond is as biocompatible as titanium (Ti) and 316 stainless steel (SS). First, the amount of adsorbed and 'denatured' fibrinogen on CVD diamond was very close to that of Ti and SS. Second, both in vitro and in vivo there appears to be less cellular adhesion and activation on the surface of CVD diamond surfaces compared to Ti and SS. This evident biocompatibility, coupled with the corrosion resistance and notable mechanical integrity of CVD diamond, suggests that diamond-coated surfaces may be highly desirable in a number of biomedical applications. PMID:7654876

  20. Size-controlled spontaneously segregated Ba2YTaO6 nanoparticles in YBa2Cu3O7 nanocomposites obtained by chemical solution deposition

    International Nuclear Information System (INIS)

    We present a thorough study of the nucleation and growth processes of the solution-based YBa2Cu3O7–Ba2YTaO6 (YBCO–BYTO) system, carried out with a view to controlling the characteristics of the BYTO phase to meet the requirements for specific power applications. Scanning transmission electron microscopy and x-ray diffraction have been used to characterize the BYTO nucleation and phase evolution during the YBCO–BYTO conversion. At high BYTO loads (>10 mol%), the nanoparticles tend to aggregate, resulting in much less efficiency for generating nanostrained areas in the YBCO matrix, and enhancement of the vortex pinning. Our experiments show that by modifying the nucleation kinetics and thermodynamics of the BYTO, the nucleation mode (homogeneous versus heterogeneous), the particle size and the particle orientation can be controlled. We demonstrate that YBCO–BYTO nanocomposites with high concentration of nanoparticles can be prepared in such a way as to obtain small and randomly oriented nanoparticles (i.e. high incoherent interface), generating highly strained nanoareas in the YBCO, with enhancement in the vortex pinning. We have also observed that the incoherent interface is not the only parameter controlling the nanostrain. The Cu–O intergrowth characteristics must also be a key factor for controlling the nanostrain in future tuning of YBCO vortex pinning. (paper)

  1. Theoretical study of chemical reactions in solution

    International Nuclear Information System (INIS)

    Quantum chemical calculations in solution are becoming more and more important in chemistry. Reference interaction site model self-consistent field (RISM-SCF) is one of the powerful approaches to perform quantum chemical calculations in solution. In this work, we developed a new generation of RISM-SCF, where a robust fitting method was newly introduced. We applied the new method to tautomerization reaction of cytosine in aqueous phase. Our calculation reproduced experimentally obtained relative stabilities and relative free energies correctly

  2. Nanoscale Ferroelectric Switchable Polarization and Leakage Current Behavior in (Ba0.50Sr0.50(Ti0.80Sn0.20O3 Thin Films Prepared Using Chemical Solution Deposition

    Directory of Open Access Journals (Sweden)

    Venkata Sreenivas Puli

    2015-01-01

    Full Text Available Nanoscale switchable ferroelectric (Ba0.50Sr0.50(Ti0.80Sn0.20O3-BSTS polycrystalline thin films with a perovskite structure were prepared on Pt/TiOx/SiO2/Si substrate by chemical solution deposition. X-ray diffraction (XRD spectra indicate that a cubic perovskite crystalline structure and Raman spectra revealed that a tetragonal perovskite crystalline structure is present in the thin films. Sr2+ and Sn4+ cosubstituted film exhibited the lowest leakage current density. Piezoresponse Force Microscopy (PFM technique has been employed to acquire out-of-plane (OPP piezoresponse images and local piezoelectric hysteresis loop in polycrystalline BSTS films. PFM phase and amplitude images reveal nanoscale ferroelectric switching behavior at room temperature. Square patterns with dark and bright contrasts were written by local poling and reversible nature of the piezoresponse behavior was established. Local piezoelectric butterfly amplitude and phase hysteresis loops display ferroelectric nature at nanoscale level. The significance of this paper is to present ferroelectric/piezoelectric nature in present BSTS films at nanoscale level and corroborating ferroelectric behavior by utilizing Raman spectroscopy. Thus, further optimizing physical and electrical properties, BSTS films might be useful for practical applications which include nonvolatile ferroelectric memories, data-storage media, piezoelectric actuators, and electric energy storage capacitors.

  3. Substrate effects on the growth of epitaxial Pb(Mg{sub 1/3},Ta{sub 2/3})O{sub 3} thin films using chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hyeok [Photonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-Dong, Puk-Gu, Kwangju 500-757 (Korea, Republic of)]. E-mail: jinhyeok@chonnam.ac.kr; Shim, Yeon-A [Photonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-Dong, Puk-Gu, Kwangju 500-757 (Korea, Republic of); Kim, Taeun [Photonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-Dong, Puk-Gu, Kwangju 500-757 (Korea, Republic of); Kim, Youngman [Photonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-Dong, Puk-Gu, Kwangju 500-757 (Korea, Republic of); Moon, Jong-Ha [Photonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-Dong, Puk-Gu, Kwangju 500-757 (Korea, Republic of); Lee, Byung-Teak [Photonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-Dong, Puk-Gu, Kwangju 500-757 (Korea, Republic of)

    2005-03-01

    The effect of various substrates on the formation of epitaxial Pb(Mg{sub 1/3},Ta{sub 2/3})O{sub 3} (PMT) thin films has been investigated. Pb(Mg{sub 1/3},Ta{sub 2/3})O{sub 3} thin films were prepared on SrTiO{sub 3} (STO), LaAlO{sub 3} (LAO), and MgO substrates by the chemical solution deposition (CSD) method. Microstructural evolution of PMT thin films as a function of annealing temperatures (650-750 deg C/1 h) has been studied using the transmission electron microscopy, the scanning electron microscopy, and the X-ray diffraction (XRD). Epitaxial PMT thin films could be grown on STO and LAO substrates with an epitaxial orientation relationship of [100](001){sub films} parallel [100](001){sub substrates}. However, pyrochlore phase was mainly observed and no epitaxy nature was observed in PMT thin films on MgO substrates. The difference in the epitaxy nature is explained in terms of the difference in the lattice mismatch and the crystal structure.

  4. Highly orientated growth and characterization of La0.7Sr0.3MnO3 thin films with different orientations on SrTiO3 substrates by chemical solution deposition method

    International Nuclear Information System (INIS)

    La0.7Sr0.3MnO3 (LSMO) thin films were successfully prepared on (100), (110), and (111) oriented SrTiO3 substrates by chemical solution deposition method. The structural, magnetic, and magnetotransport properties were systematically studied. X-ray diffraction θ-2θ and ϕ-scan measurements results show that all the films have perfect crystalline orientation and in-plane alignment. Both the Curie temperature and metal-insulator transition temperature are almost the same for all the three orientations, about 339 K. The magnetoresistance value (MR value, defined as (RM − R0)/R0 × 100%, where RM and R0 are the resistivity with and without applied magnetic field) for the films reaches maximum near the Curie temperature. Both the magnetization and MR value for (100) direction LSMO are the largest, and meanwhile for (111) direction are the smallest. The saturation magnetization decreases approximately proportional to T2 at low temperature (T < Tc/2) for all the oriented film. Inversely, the resistivity increases proportional to T2 in the same temperature range, which can be attributed to the electron-electron scattering

  5. Chemical Vapor Deposition Of Silicon Carbide

    Science.gov (United States)

    Powell, J. Anthony; Larkin, David J.; Matus, Lawrence G.; Petit, Jeremy B.

    1993-01-01

    Large single-crystal SiC boules from which wafers of large area cut now being produced commerically. Availability of wafers opens door for development of SiC semiconductor devices. Recently developed chemical vapor deposition (CVD) process produces thin single-crystal SiC films on SiC wafers. Essential step in sequence of steps used to fabricate semiconductor devices. Further development required for specific devices. Some potential high-temperature applications include sensors and control electronics for advanced turbine engines and automobile engines, power electronics for electromechanical actuators for advanced aircraft and for space power systems, and equipment used in drilling of deep wells. High-frequency applications include communication systems, high-speed computers, and microwave power transistors. High-radiation applications include sensors and controls for nuclear reactors.

  6. Synthesis of mullite coatings by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mulpuri, R.P.; Auger, M.; Sarin, V.K. [Boston Univ., MA (United States)

    1996-08-01

    Formation of mullite on ceramic substrates via chemical vapor deposition was investigated. Mullite is a solid solution of Al{sub 2}O{sub 3} and SiO{sub 2} with a composition of 3Al{sub 2}O{sub 3}{circ}2SiO{sub 2}. Thermodynamic calculations performed on the AlCl{sub 3}-SiCl{sub 4}-CO{sub 2}-H{sub 2} system were used to construct equilibrium CVD phase diagrams. With the aid of these diagrams and consideration of kinetic rate limiting factors, initial process parameters were determined. Through process optimization, crystalline CVD mullite coatings have been successfully grown on SiC and Si{sub 3}N{sub 4} substrates. Results from the thermodynamic analysis, process optimization, and effect of various process parameters on deposition rate and coating morphology are discussed.

  7. Electrospray deposition of isolated chemically synthesized magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Pierre; Meffre, Anca; Lacroix, Lise-Marie; Ugnati, Damien [Université de Toulouse (France); INSA, UPS, CNRS, Laboratoire de Physique et Chimie des Nano-objets (LPCNO) (France); Ondarçuhu, Thierry [Centre d’Elaboration de Matériaux et d’Etudes Structurales (CEMES-CNRS) (France); Respaud, Marc; Lassagne, Benjamin, E-mail: lassagne@insa-toulouse.fr [Université de Toulouse (France); INSA, UPS, CNRS, Laboratoire de Physique et Chimie des Nano-objets (LPCNO) (France)

    2016-01-15

    The deposition of isolated magnetic nanoparticles onto a substrate was performed using electrohydrodynamic spraying. Two kinds of nanoparticles were sprayed, 11 nm CoFe carbide nanospheres and 10.5 nm Fe nanocubes. By studying carefully the evolution of the sprayed charged droplets and the mechanism of nanoparticle dispersion in them, we could optimize the nanoparticle concentration within the initial nanoparticle solution (i) to reduce the magnetic interaction and therefore prevent agglomeration and (ii) to obtain in a relatively short period (1 h) a deposit of isolated magnetic nanoparticles with a density of up to 400 nanoparticles per µm{sup 2}. These results open great perspectives for magnetic measurements on single objects using advanced magnetometry techniques as long as spintronics applications based on single chemically synthesized magnetic nanoparticles.

  8. Bath parameter dependence of chemically deposited Copper Selenide thin film

    International Nuclear Information System (INIS)

    In this article, a low cost chemical bath deposition (CBD) technique has been used for the preparation Of Cu2-xSe thin films on to glass substrate. Different thin fms (0.2-0.6/μm) were prepared by adjusting the bath parameter like concentration of ammonia, deposition time, temperature of the solution, and the ratios of the mixing composition between copper and selenium in the reaction bath. From these studies, it reveals that at low concentration of ammonia or TEA, the terminal thicknesses of the films are less, which gradually increases with the increase of concentrations and then drop down at still higher concentrations. It has been found that completing the Cu2+ ions with EA first, and then addition of ammonia yields better results than the reverse process. The film thickness increases with the decrease of value x of Cu2-xSe. (author)

  9. Coloration efficiency of chemically deposited electrochromic thin films

    International Nuclear Information System (INIS)

    Transparent nickel oxide and copper oxide thin films were produced by very simple and economic method of chemical deposition. Those films were deposited onto fluorine doped tin oxide (FTO) coated glass substrates. Electrochromic test device (ECTD) was constructed by using these films as working electrodes, together with the FTO as a counter electrode in alkaline environment (0,1 M NaOH aqueous solution). All the obtained films exhibited electrochromic behavior. Nichel oxide films were transparent for visible light in the reduced state, and displayed a dark brown color in the oxidised state and displayed a very dark brown color in the reduced state. The coloration efficiency (CE) at wavelength λ=670 nm was estimated from the slope of the graphical presentation of the optical density as a function of the charge density, during the charge extraction (nickel oxide films) and charge insertion (copper oxide films). (Author)

  10. Chemical characteristics of some major uranium deposits in western USA

    International Nuclear Information System (INIS)

    Multi-element chemical analyses of several thousand samples were retrieved from the US Geological Survey's computerized Rock Analysis Storage System and used to estimate the average abundances of various elements in each of several types of uranium deposits, in altered rocks associated with some of these deposits, and in unmineralized parts of the various host rocks. Deposits for which results are presented include the tabular deposits in the Morrison Formation, Ambrosia Lake district, New Mexico; secondary deposits in the Ambrosia Lake district; tabular deposits in the Morrison Formation of the Henry Mountains, Utah; tabular deposits in the Chinle Formation in Utah and Colorado; roll-type deposits in Tertiary rocks from the Texas Gulf district; roll-type deposits in the Tertiary basins of Wyoming; tabular deposits in the Entrada Sandstone in Colorado; and a vein-type deposit in crystalline rocks of the Front Range of Colorado. Statistical treatment of the data identified elements that were notably more or less abundant in the deposits and altered rocks than in the unmineralized parts of the host rocks. Comparisons of the mean abundances of elements in the deposits show that the chemical composition of roll-type deposits varies greatly even among deposits in the same district. By contrast, the chemical characteristics of tabular deposits display little variation; the Ambrosia Lake tabular deposits and those of the Henry Mountains district are particularly similar. The data place some constraints on the geochemical aspects of genetic models and suggest certain elements as potential prospecting guides

  11. Studying chemical vapor deposition processes with theoretical chemistry

    OpenAIRE

    Pedersen, Henrik; Elliott, Simon D.

    2014-01-01

    In a chemical vapor deposition (CVD) process, a thin film of some material is deposited onto a surface via the chemical reactions of gaseous molecules that contain the atoms needed for the film material. These chemical reactions take place on the surface and in many cases also in the gas phase. To fully understand the chemistry in the process and thereby also have the best starting point for optimizing the process, theoretical chemical modeling is an invaluable tool for providing atomic-scale...

  12. Preparation and characterization of Bi2Sr2CaCu2O8+δ thin films on MgO single crystal substrates by chemical solution deposition

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Kepa, Katarzyna; Hlásek, T.; Andersen, Niels Hessel; Rubešová, K.

    2013-01-01

    Bi2Sr2CaCu2O8 thin films have been deposited on MgO single crystal substrates by spin-coating a solution based on 2-ethylhexanoate precursors. Pyrolysis takes place between 200°C and 450°C and is accompanied by the release of 2-ethylhexanoic acid, CO2 and H2O vapour. Highly c-axis oriented Bi2Sr2Ca...

  13. Strain relaxation in graphene grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Troppenz, Gerald V., E-mail: gerald.troppenz@helmholtz-berlin.de; Gluba, Marc A.; Kraft, Marco; Rappich, Jörg; Nickel, Norbert H. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Silizium Photovoltaik, Kekuléstr. 5, D-12489 Berlin (Germany)

    2013-12-07

    The growth of single layer graphene by chemical vapor deposition on polycrystalline Cu substrates induces large internal biaxial compressive strain due to thermal expansion mismatch. Raman backscattering spectroscopy and atomic force microscopy were used to study the strain relaxation during and after the transfer process from Cu foil to SiO{sub 2}. Interestingly, the growth of graphene results in a pronounced ripple structure on the Cu substrate that is indicative of strain relaxation of about 0.76% during the cooling from the growth temperature. Removing graphene from the Cu substrates and transferring it to SiO{sub 2} results in a shift of the 2D phonon line by 27 cm{sup −1} to lower frequencies. This translates into additional strain relaxation. The influence of the processing steps, used etching solution and solvents on strain, is investigated.

  14. Phase Evolution of YBa2Cu3O7-x films by all-chemical solution deposition route for coated conductors

    DEFF Research Database (Denmark)

    Yue, Zhao; Tang, Xiao; Wu, Wei;

    2014-01-01

    is shown that the phase transition from the pyrolyzed film to fully converted YBCO film in the LF-MOD process is similar to that in typical trifluoroacetates-metal organic deposition (TFA-MOD) processes even though the amount of TFA in the solution is reduced by almost one half compared with typical...... TFA-MOD cases. Moreover, we found that the formation of impurities (mainly BaCeO3, NiWO4 and NiO) is strongly related to the annealing temperature, i.e., the diffusion controlled reactions become intensive from 760 oC, which might be connected with the poor structural and superconducting properties of...

  15. Development of One Meter Long Double-Sided CeO2 Buffered Ni-5at.%W Templates by Reel-to-Reel Chemical Solution Deposition Route

    DEFF Research Database (Denmark)

    Yue, Zhao; Konstantopoulou, K.; Wulff, Anders Christian;

    2013-01-01

    layer are 7.2◦ and 5.8◦ with standard deviation of 0.26◦ and 0.34◦, respectively, being indicative of the high quality epitaxial growth of the films prepared in the continuous manner. An all chemical solution derived YBCOLow−TFA/Ce0.9La0.1O2/Gd2Zr2O7/CeO2 structure is obtained on a short sample...

  16. Chemical vapor deposition of graphene single crystals.

    Science.gov (United States)

    Yan, Zheng; Peng, Zhiwei; Tour, James M

    2014-04-15

    As a two-dimensional (2D) sp(2)-bonded carbon allotrope, graphene has attracted enormous interest over the past decade due to its unique properties, such as ultrahigh electron mobility, uniform broadband optical absorption and high tensile strength. In the initial research, graphene was isolated from natural graphite, and limited to small sizes and low yields. Recently developed chemical vapor deposition (CVD) techniques have emerged as an important method for the scalable production of large-size and high-quality graphene for various applications. However, CVD-derived graphene is polycrystalline and demonstrates degraded properties induced by grain boundaries. Thus, the next critical step of graphene growth relies on the synthesis of large graphene single crystals. In this Account, we first discuss graphene grain boundaries and their influence on graphene's properties. Mechanical and electrical behaviors of CVD-derived polycrystalline graphene are greatly reduced when compared to that of exfoliated graphene. We then review four representative pathways of pretreating Cu substrates to make millimeter-sized monolayer graphene grains: electrochemical polishing and high-pressure annealing of Cu substrate, adding of additional Cu enclosures, melting and resolidfying Cu substrates, and oxygen-rich Cu substrates. Due to these pretreatments, the nucleation site density on Cu substrates is greatly reduced, resulting in hexagonal-shaped graphene grains that show increased grain domain size and comparable electrical properties as to exfoliated graphene. Also, the properties of graphene can be engineered by its shape, thickness and spatial structure. Thus, we further discuss recently developed methods of making graphene grains with special spatial structures, including snowflakes, six-lobed flowers, pyramids and hexagonal graphene onion rings. The fundamental growth mechanism and practical applications of these well-shaped graphene structures should be interesting topics and

  17. Development of a suppression method for deposition of radioactive cobalt after chemical decontamination. (2) Consideration of Fe3O4 plating mechanism on stainless steel in aqueous solution at 363 K

    International Nuclear Information System (INIS)

    Recently, chemical decontamination at the beginning of periodical inspection has been applied to many Japanese boiling water reactors in order to reduce radiation exposure. However, following the chemical decontamination, a dose rate increase can be seen in some plants after just a few operation cycles. The Hitachi ferrite coating (Hi-F Coat) process has been developed to reduce the recontamination by radioactive cobalt after the chemical decontamination. In this process, a fine Fe3O4 coating film is formed on the stainless steel base metal of the piping following the chemical decontamination in aqueous solution at 363 K. In this study, we investigated a Fe3O4 plating mechanism on the base metal in aqueous solution at 363 K by measurements using a quartz crystal microbalance. We found that the Fe3O4 film grew in three steps. First, the Fe3O4 particles were produced on a stainless steel surface. Second, the Fe3O4 particles grew as dome shapes and the converged domes became filmlike. Third, the film grew and became a closely packed Fe3O4 film. Furthermore, we determined the equation of the time dependence of the Fe3O4 film amount using crystal growth theory. The equation predicted the film amount at 10,000 s within a margin of error of 5%. (author)

  18. Chemical denitration of aqueous nitrate solutions

    International Nuclear Information System (INIS)

    The Plant for Active Waste Liquids (PAWL) at CRNL will immobilize in glass the fission products in waste from Mo-99 production. The nitrate ions in the waste can be destroyed by heating, but also by chemical reaction with formic acid (HCOOH). Since chemical denitration has several advantages over thermal denitration it was studied in the course of vitrification process development. Two free radical mechanisms are examined here to explain kinetic data on chemical denitration of nitric acid solutions with formic acid. One mechanism is applicable at > 1 mol/L HNO3 and involves the formate radical (HCOO.). The second mechanism holds at 3 and involves the hyponitrous radical (HNO.). Mass balances for various species were written based on the law of mass action applied to the equations describing the reaction mechanism. Analytical and numerical solutions were obtained and compared. Literature data on batch denitration were used to determine some of the rate constants while others were set arbitrarily. Observed stoichiometry and trends in reactant concentrations are predicted accurately for batch data. There are no literature data to compare with the prediction of negligible induction time

  19. Chemical vapour deposition of metal oxides and phosphides.

    OpenAIRE

    Binions, R.

    2006-01-01

    This thesis investigates the deposition of thin films of main group metal phosphide and main group metal oxide compounds on glass substrates by the use of dual source atmospheric pressure chemical vapour deposition. Binary phosphide systems with tin, germanium, silicon, antimony, copper or boron have been examined. Binary oxide systems of gallium, antimony, tin or niobium have also been investigated. Additionally these systems were deposited on gas sensor substrates and evaluated as metal oxi...

  20. Chemical Vapor Deposition of Silicon from Silane Pyrolysis

    Science.gov (United States)

    Praturi, A. K.; Lutwack, R.; Hsu, G.

    1977-01-01

    The four basic elements in the chemical vapor deposition (CVD) of silicon from silane are analytically treated from a kinetic standpoint. These elements are mass transport of silane, pyrolysis of silane, nucleation of silicon, and silicon crystal growth. Rate expressions that describe the various steps involved in the chemical vapor deposition of silicon were derived from elementary principles. Applications of the rate expressions for modeling and simulation of the silicon CVD are discussed.

  1. Chemical and physical solutions for hydrogen storage.

    Science.gov (United States)

    Eberle, Ulrich; Felderhoff, Michael; Schüth, Ferdi

    2009-01-01

    Hydrogen is a promising energy carrier in future energy systems. However, storage of hydrogen is a substantial challenge, especially for applications in vehicles with fuel cells that use proton-exchange membranes (PEMs). Different methods for hydrogen storage are discussed, including high-pressure and cryogenic-liquid storage, adsorptive storage on high-surface-area adsorbents, chemical storage in metal hydrides and complex hydrides, and storage in boranes. For the latter chemical solutions, reversible options and hydrolytic release of hydrogen with off-board regeneration are both possible. Reforming of liquid hydrogen-containing compounds is also a possible means of hydrogen generation. The advantages and disadvantages of the different systems are compared. PMID:19598190

  2. Discrete formulation of mixed finite element methods for vapor deposition chemical reaction equations

    Institute of Scientific and Technical Information of China (English)

    LUO Zhen-dong; ZHOU Yan-jie; ZHU Jiang

    2007-01-01

    The vapor deposition chemical reaction processes, which are of extremely extensive applications, can be classified as a mathematical modes by the following governing nonlinear partial differential equations containing velocity vector,temperature field,pressure field,and gas mass field.The mixed finite element(MFE)method is employed to study the system of equations for the vapor deposition chemical reaction processes.The semidiscrete and fully discrete MFE formulations are derived.And the existence and convergence(error estimate)of the semidiscrete and fully discrete MFE solutions are deposition chemical reaction processes,the numerical solutions of the velocity vector,the temperature field,the pressure field,and the gas mass field can be found out simultaneonsly.Thus,these researches are not only of important theoretical means,but also of extremely extensive applied vistas.

  3. Surface chemical studies of chemical vapour deposited diamond thin films

    International Nuclear Information System (INIS)

    Polycrystalime diamond grown by low pressure chemical vapour deposition (CVD) techniques has emerged in recent years as a new material with applications in such areas as optics, electronics, radiation detectors, chemical sensors and electrochemistry. A main aim of this thesis has been to advance current knowledge of the surface chemical properties of CVD diamond to underpin the development of our understanding of the properties and potential applications of this material. Cl2 is found to adsorb dissociatively on the clean, hydrogen-free diamond surface up to sub-monolayer coverage with a sticking probability of ∼1.2x10-3. Adsorption is a non-activated process, and the sticking probability and extent of coverage decreased with increasing temperature. This was shown to contrast with the behaviour found for the interaction of chlorine with the hydrogenated diamond surface where increased sticking probabilities and saturation surface coverages were observed, and where the reactivity also increased with temperature. Thermal desorption of atomic Cl occurred over a broad temperature range m both chemisorption systems, indicating the presence of more than one binding state. Atomic hydrogen was successful in efficiently etching the bound Cl from the surface. XeF2 was found to adsorb dissociatively onto the clean diamond surface to give up to monolayer coverages of F, which formed two distinct binding states. The first state, populated at low coverage, was predominantly covalent in character, while the second state, occurring at high surface coverages, had more ionic bonding character. Pre-hydrogenation of the diamond surface increased the reactive sticking probability observed, but decreased the extent of coverage by blocking reactive sites. The semi-ionic F was readily etched by atomic hydrogen, and underwent thermal desorption at temperatures as low as 300 deg C. The covalent form was more stable, being seemingly resistant to etching and persistent to high temperatures

  4. Ultrafast deposition of silicon nitride and semiconductor silicon thin films by Hot Wire Chemical Vapor Deposition

    OpenAIRE

    Schropp, R.E.I.; van der Werf, C.H.M.; Verlaan, V.; J.K. Rath; Li, H. B. T.

    2009-01-01

    The technology of Hot Wire Chemical Vapor Deposition (HWCVD) or Catalytic Chemical Vapor Deposition (Cat-CVD) has made great progress during the last couple of years. This review discusses examples of significant progress. Specifically, silicon nitride deposition by HWCVD (HW-SiNx) is highlighted, as well as thin film silicon single junction and multijunction junction solar cells. The application of HW-SiNx at a deposition rate of 3 nm/s to polycrystalline Si wafer solar cells has led to cell...

  5. An in-situ chemical reaction deposition of nanosized wurtzite CdS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chu Juan [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Jin Zhengguo, E-mail: zhgjin@tju.edu.cn [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Cai Shu [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Yang Jingxia [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Hong Zhanglian, E-mail: hong_zhanglian@zju.edu.cn [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2012-01-01

    Nanocrystalline CdS thin films were deposited on glass substrates by an ammonia-free in-situ chemical reaction synthesis technique using cadmium cationic precursor solid films as reaction source and sodium sulfide based solutions as anionic reaction medium. Effects of ethanolamine addition to the cadmium cationic precursor solid films, deposition cycle numbers and annealing treatments in Ar atmosphere on structure, morphology, chemical composition and optical properties of the resultant films were investigated by X-ray diffraction, field emission scanning electron microscope, energy dispersive X-ray analysis and UV-Vis spectra measurements. The results show that CdS thin films deposited by the in-situ chemical reaction synthesis have wurtzite structure with (002) plane preferential orientation and crystallite size is in the range of 16 nm-19 nm. The growth of film thickness is almost constant with deposition cycle numbers and about 96 nm per cycle.

  6. An in-situ chemical reaction deposition of nanosized wurtzite CdS thin films

    International Nuclear Information System (INIS)

    Nanocrystalline CdS thin films were deposited on glass substrates by an ammonia-free in-situ chemical reaction synthesis technique using cadmium cationic precursor solid films as reaction source and sodium sulfide based solutions as anionic reaction medium. Effects of ethanolamine addition to the cadmium cationic precursor solid films, deposition cycle numbers and annealing treatments in Ar atmosphere on structure, morphology, chemical composition and optical properties of the resultant films were investigated by X-ray diffraction, field emission scanning electron microscope, energy dispersive X-ray analysis and UV–Vis spectra measurements. The results show that CdS thin films deposited by the in-situ chemical reaction synthesis have wurtzite structure with (002) plane preferential orientation and crystallite size is in the range of 16 nm–19 nm. The growth of film thickness is almost constant with deposition cycle numbers and about 96 nm per cycle.

  7. Synthetic Graphene Grown by Chemical Vapor Deposition on Copper Foils

    Science.gov (United States)

    Chung, Ting Fung; Shen, Tian; Cao, Helin; Jauregui, Luis A.; Wu, Wei; Yu, Qingkai; Newell, David; Chen, Yong P.

    2013-04-01

    The discovery of graphene, a single layer of covalently bonded carbon atoms, has attracted intense interest. Initial studies using mechanically exfoliated graphene unveiled its remarkable electronic, mechanical and thermal properties. There has been a growing need and rapid development in large-area deposition of graphene film and its applications. Chemical vapor deposition on copper has emerged as one of the most promising methods in obtaining large-scale graphene films with quality comparable to exfoliated graphene. In this paper, we review the synthesis and characterizations of graphene grown on copper foil substrates by atmospheric pressure chemical vapor deposition. We also discuss potential applications of such large-scale synthetic graphene.

  8. The study of metal sulphide nanomaterials obtained by chemical bath deposition and hot-injection technique

    Science.gov (United States)

    Maraeva, E. V.; Alexandrova, O. A.; Forostyanaya, N. A.; Levitskiy, V. S.; Mazing, D. S.; Maskaeva, L. N.; Markov, V. Ph; Moshnikov, V. A.; Shupta, A. A.; Spivak, Yu M.; Tulenin, S. S.

    2015-11-01

    In this study lead sulphide - cadmium sulphide based layers were obtained through chemical deposition of water solutions and cadmium sulphide quantum dots were formed through hot-injection technique. The article discusses the results of surface investigations with the use of atomic force microscopy, Raman spectroscopy and photoluminescence measurements.

  9. 21 CFR 864.1850 - Dye and chemical solution stains.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dye and chemical solution stains. 864.1850 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1850 Dye and chemical solution stains. (a) Identification. Dye and chemical solution stains for medical purposes are mixtures...

  10. Preparation and Characterization of SnO2 thin films deposited by Chemical Bath Deposition method

    Science.gov (United States)

    Yusuf, Gbadebo T.; Raimi, Adepoju M.; Familusi, Timothy O.; Awodugba, Ayodeji O.; Efunwole, Hezekiah O.

    2013-04-01

    SnO2 thin films have been deposited onto the soda lime glass substrates by the chemical bath deposition method. The structural and optical properties of the SnO2 thin films were investigated. Tin chloride solution (SnCl2) and methanol were used as starting materials at substrate temperature 300^oC. The crystal structure and orientation of the SnO2 thin films were investigated by X-ray diffraction (XRD) patterns. The average grain size of the films was calculated using the Scherer formula and was found to be 29.6 nm which increased to 30.04nm after annealing in air at 400^oC. The optical absorbance and transmittance measurements were recorded by using spectrophotometer. The average transmittance of the film was around 80 % at wavelength 550 nm. The optical band gap of the thin films was determined and found to be 3.71eV. The gas sensing properties of tin oxide thin films obtained in this work could be performed for different gases like CO, CH4, H2S, H2 etc.

  11. Light-induced chemical vapour deposition painting with titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Halary-Wagner, E.; Bret, T.; Hoffmann, P

    2003-03-15

    Light-induced chemical vapour deposits of titanium dioxide are obtained from titanium tetra-isopropoxide (TTIP) in an oxygen and nitrogen atmosphere with a long pulse (250 ns) 308 nm XeCl excimer laser using a mask projection set-up. The demonstrated advantages of this technique are: (i) selective area deposition, (ii) precise control of the deposited thickness and (iii) low temperature deposition, enabling to use a wide range of substrates. A revolving mask system enables, in a single reactor load, to deposit shapes of controlled heights, which overlap to build up a complex pattern. Interferential multi-coloured deposits are achieved, and the process limitations (available colours and resolution) are discussed.

  12. Light-induced chemical vapour deposition painting with titanium dioxide

    Science.gov (United States)

    Halary-Wagner, E.; Bret, T.; Hoffmann, P.

    2003-03-01

    Light-induced chemical vapour deposits of titanium dioxide are obtained from titanium tetra-isopropoxide (TTIP) in an oxygen and nitrogen atmosphere with a long pulse (250 ns) 308 nm XeCl excimer laser using a mask projection set-up. The demonstrated advantages of this technique are: (i) selective area deposition, (ii) precise control of the deposited thickness and (iii) low temperature deposition, enabling to use a wide range of substrates. A revolving mask system enables, in a single reactor load, to deposit shapes of controlled heights, which overlap to build up a complex pattern. Interferential multi-coloured deposits are achieved, and the process limitations (available colours and resolution) are discussed.

  13. CdS films deposited by chemical bath under rotation

    Energy Technology Data Exchange (ETDEWEB)

    Oliva-Aviles, A.I., E-mail: aoliva@mda.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico); Patino, R.; Oliva, A.I. [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico)

    2010-08-01

    Cadmium sulfide (CdS) films were deposited on rotating substrates by the chemical bath technique. The effects of the rotation speed on the morphological, optical, and structural properties of the films were discussed. A rotating substrate-holder was fabricated such that substrates can be taken out from the bath during the deposition. CdS films were deposited at different deposition times (10, 20, 30, 40 and 50 min) onto Corning glass substrates at different rotation velocities (150, 300, 450, and 600 rpm) during chemical deposition. The chemical bath was composed by CdCl{sub 2}, KOH, NH{sub 4}NO{sub 3} and CS(NH{sub 2}){sub 2} as chemical reagents and heated at 75 deg. C. The results show no critical effects on the band gap energy and the surface roughness of the CdS films when the rotation speed changes. However, a linear increase on the deposition rate with the rotation energy was observed, meanwhile the stoichiometry was strongly affected by the rotation speed, resulting a better 1:1 Cd/S ratio as speed increases. Rotation effects may be of interest in industrial production of CdTe/CdS solar cells.

  14. CdS films deposited by chemical bath under rotation

    International Nuclear Information System (INIS)

    Cadmium sulfide (CdS) films were deposited on rotating substrates by the chemical bath technique. The effects of the rotation speed on the morphological, optical, and structural properties of the films were discussed. A rotating substrate-holder was fabricated such that substrates can be taken out from the bath during the deposition. CdS films were deposited at different deposition times (10, 20, 30, 40 and 50 min) onto Corning glass substrates at different rotation velocities (150, 300, 450, and 600 rpm) during chemical deposition. The chemical bath was composed by CdCl2, KOH, NH4NO3 and CS(NH2)2 as chemical reagents and heated at 75 deg. C. The results show no critical effects on the band gap energy and the surface roughness of the CdS films when the rotation speed changes. However, a linear increase on the deposition rate with the rotation energy was observed, meanwhile the stoichiometry was strongly affected by the rotation speed, resulting a better 1:1 Cd/S ratio as speed increases. Rotation effects may be of interest in industrial production of CdTe/CdS solar cells.

  15. Development of suppression method for deposition of radioactive nuclides after chemical decontamination by platinum deposition treatment

    International Nuclear Information System (INIS)

    Noble metal chemical addition (NMCA) technology has been widely adopted for BWR plants in the US as a means to mitigate stress corrosion cracking (SCC). Dose rate of the reactor water recirculation system piping of some BWR plants that apply a combination of NMCA and zinc injection technology have gradually decreased. Chemical decontamination removes 60Co, but also the noble metal from the piping surfaces. Thus, effect of dose rate reduction by NMCA is decreased in the plant operating period after chemical decontamination. We considered that platinum deposition treatment just after chemical decontamination before plant operation would be effective to prevent redeposition of the 60Co. In this platinum deposition treatment process, Sodium hexahydroxyplatinate (IV), hydrazine and ammonia are used as the treatment chemicals. A 60Co deposition reduction effect of 1/2 compared to non-treatment is confirmed for up to 1,000 hours by laboratory experiments. (author)

  16. Water Condensation on Zinc Surfaces Treated by Chemical Bath Deposition

    OpenAIRE

    Narhe, R.D. (Ramchandra D.); González-Viñas, W.; Beysens, D.A. (Daniel A.)

    2010-01-01

    Water condensation, a complex and challenging process, is investigated on a metallic (Zn) surface, regularly used as anticorrosive surface. The Zn surface is coated with hydroxide zinc carbonate by chemical bath deposition, a very simple, low-cost and easily applicable process. As the deposition time increases, the surface roughness augments and the contact angle with water can be varied from 75º to 150º , corresponding to changing the surface properties from hydrophobic to ultrahydrophobic a...

  17. Chemical Liquid Phase Deposition of Thin Aluminum Oxide Films

    OpenAIRE

    Sun, Jie; Sun, Yingchun

    2007-01-01

    Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system pH value played an important role in this experiment. The growth rate is 12 nm/h at room temperature. Post-growth annealing not only densifies and purifies the films, but results in film crystallization a...

  18. Synthetic Graphene Grown by Chemical Vapor Deposition on Copper Foils

    OpenAIRE

    Chung, Ting Fung; Shen, Tian; Cao, Helin; Jauregui, Luis A.; Wu, Wei; Yu, Qingkai; Newell, David; Chen, Yong P.

    2013-01-01

    The discovery of graphene, a single layer of covalently bonded carbon atoms, has attracted intense interests. Initial studies using mechanically exfoliated graphene unveiled its remarkable electronic, mechanical and thermal properties. There has been a growing need and rapid development in large-area deposition of graphene film and its applications. Chemical vapour deposition on copper has emerged as one of the most promising methods in obtaining large-scale graphene films with quality compar...

  19. Chemical vapor deposition (CVD) of uranium for alpha spectrometry

    International Nuclear Information System (INIS)

    The uranium determination through radiometric techniques as alpha spectrometry requires for its proper analysis, preparation methods of the source to analyze and procedures for the deposit of this on a surface or substrate. Given the characteristics of alpha particles (small penetration distance and great loss of energy during their journey or its interaction with the matter), is important to ensure that the prepared sources are thin, to avoid problems of self-absorption. The routine methods used for this are the cathodic electro deposition and the direct evaporation, among others. In this paper the use of technique of chemical vapor deposition (CVD) for the preparation of uranium sources is investigated; because by this, is possible to obtain thin films (much thinner than those resulting from electro deposition or evaporation) on a substrate and comprises reacting a precursor with a gas, which in turn serves as a carrier of the reaction products to achieve deposition. Preliminary results of the chemical vapor deposition of uranium are presented, synthesizing and using as precursor molecule the uranyl acetylacetonate, using oxygen as carrier gas for the deposition reaction on a glass substrate. The uranium films obtained were found suitable for alpha spectrometry. The variables taken into account were the precursor sublimation temperatures and deposition temperature, the reaction time and the type and flow of carrier gas. Of the investigated conditions, two depositions with encouraging results that can serve as reference for further work to improve the technique presented here were selected. Alpha spectra obtained for these depositions and the characterization of the representative samples by scanning electron microscopy and X-ray diffraction are also presented. (Author)

  20. Finding a solution to internal diesel injector deposits

    Energy Technology Data Exchange (ETDEWEB)

    Barbour, Robert; Quigley, Robert; Panesar, Avtar; Payne, James [Lubrizol Limited, Derby (United Kingdom); Arters, David; Bush, Jim; Stevens, Andrew [Lubrizol Corporation, Wickliffe, OH (United States)

    2013-06-01

    Internal diesel injector deposits (IDIDs) have caused widespread problems in the automotive industry since around 2005. Modem injectors that have been precisely engineered to operate highly controlled injection strategies are experiencing problems in the field due to deposits that have formed on their critical moving parts, such as the needle and control valve. Problems range from rough idling to a failure to start, when the moving parts become stuck. Early studies showed that the composition of these deposits is variable. In some cases the deposit contained noticeable amounts of sodium carboxylate; these are now generally referred to as 'sodium soaps'. In other incidences the dominant chemical functionality observed was an amide group, and hence these deposits are referred to as 'amide lacquers'. A combination of both types has been observed in many cases and other metals, like calcium, have also been detected. Further studies have shown that the sodium soap type can be formed from specific types of corrosion inhibitors. The source of the amide lacquers is less certain, but there are indications that they originate from specific fuel additives that contain critical levels of low molecular weight species. This paper broadly explores this area of high interest. It will report results on the analysis of deposits and the conditions needed to reproduce both types of IDID in bench engine testing. It will also investigate the types of contaminants that are likely to form IDIDs and explore difference in chemical structure that can lead to pro-fouling, non-fouling and anti-fouling behaviour. It will then show that a deposit control additive, specifically designed to control nozzle tip deposits in modem direct injection diesels, is equally effective in controlling IDIDs; both in terms of prevention and removal. Since IDIDS are formed from multiple sources, some of which are difficult to control in today' s market, the use of a broadly acting fuel

  1. Solution Based Deposition of Polyimide Ablators for NIF Capsules

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R

    2002-07-11

    Between June 1997 and March 2002 Luxel Corporation was contracted to explore the possibility of preparing NIF scale capsules with polyimide ablators using solution-based techniques. This work offered a potential alternative to a vapor deposition approach talking place at LLNL. The motivation for pursuing the solution-based approach was primarily two-fold. First, it was expected that much higher strength capsules (relative to vapor deposition) could be prepared since the solution precursors were known to produce high strength films. Second, in applying the ablator as a fluid it was expected that surface tension effects would lead to very smooth surfaces. These potential advantages were offset by expected difficulties, primary among them that the capsules would need to be levitated in some fashion (for example acoustically) during coating and processing, and that application of the coating uniformly to thicknesses of 150 pm on levitated capsules would be difficult. Because of the expected problems with the coupling of levitation and coating, most of the initial effort was to develop coating and processing techniques on stalk-mounted capsules. The program had some success. Using atomizer spray techniques in which application of {approx}5 {micro}m fluid coatings were alternated with heating to remove solvent resulted in up to 70 {micro}m thick coatings that were reasonably smooth at short wavelengths, and showed only about a 1 {micro}m thickness variation over long wavelengths. More controlled deposition with an inkjet devise was also developed. However difficult technical problems remained, and these problems coupled with the relative success of the vapor deposition approach led to the termination of the solution-based work in 2002. What follows is a compilation of the progress reports submitted by Luxel for this work which spanned a number of separate contracts. The reports are arranged chronologically, the last report in the collection has a modest summary of what

  2. Chemical-vapor deposition of silicon from silane

    Science.gov (United States)

    Hsu, G. C.; Lutwack, R.; Praturi, A. K.

    1979-01-01

    Report lists tables of standard free-energy change, equilibrium constant, and heat of reaction for chemical vapor deposition (CVD) of silicon from silane over temperature range of 100 to 1000 K. Data indicates silicon CVD may be a commercially economical process for production of silicon for solar arrays and other applications.

  3. Chemical vapor deposition (CVD) growth of graphene films

    Czech Academy of Sciences Publication Activity Database

    Frank, Otakar; Kalbáč, Martin

    Cambridge: Woodhead Publishing, 2014 - (Skákalová, V.; Kaiser, A.), s. 27-49. (Woodhead Publishing Series in Electronic and Optical Materials. 57). ISBN 978-0-85709-508-4 R&D Projects: GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : graphene * chemical vapor deposition (CVD) * isotope labeling Subject RIV: CF - Physical ; Theoretical Chemistry

  4. Chemical Vapor Deposition of Aluminum Oxide Thin Films

    Science.gov (United States)

    Vohs, Jason K.; Bentz, Amy; Eleamos, Krystal; Poole, John; Fahlman, Bradley D.

    2010-01-01

    Chemical vapor deposition (CVD) is a process routinely used to produce thin films of materials via decomposition of volatile precursor molecules. Unfortunately, the equipment required for a conventional CVD experiment is not practical or affordable for many undergraduate chemistry laboratories, especially at smaller institutions. In an effort to…

  5. IR Laser-induced Chemical Vapour Deposition of Polyselenocarbosilane Films

    Czech Academy of Sciences Publication Activity Database

    Santos, M.; Díaz, L.; Pola, Josef

    - : -, 2006, s. 1-2. [Reunión Nacional de Espectroscopia (RNE) y IV Congresso Ibérico de Espectroscopia (CIE) /20./. Ciúdad Real (ES), 10.09.2006-14.09.2006] Institutional research plan: CEZ:AV0Z40720504 Keywords : chemical vapour deposition Subject RIV: CH - Nuclear ; Quantum Chemistry

  6. Structure and physico-chemical properties of Kumkol petroleum deposit

    International Nuclear Information System (INIS)

    Results of study of physico-chemical properties and structure of Kumkol deposit petroleum in Southern Kazakhstan are presented. It is determined, that these petroleums are light, paraffinic, with low sulfur and ash contents, has insignificant concentration of vanadium and nickel, and has not porphyrin complexes. (author)

  7. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef;

    2010-01-01

    We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source. This confi...... increased the barrier property of the modified low-density polyethylene, polyethylene terephthalate, and polylactide by 96.48%, 99.69%, and 99.25%, respectively....

  8. Photocatalytic activity of tin-doped TiO{sub 2} film deposited via aerosol assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chua, Chin Sheng, E-mail: cschua@simtech.a-star.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Tan, Ooi Kiang; Tse, Man Siu [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Ding, Xingzhao [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore)

    2013-10-01

    Tin-doped TiO{sub 2} films are deposited via aerosol assisted chemical vapor deposition using a precursor mixture composing of titanium tetraisopropoxide and tetrabutyl tin. The amount of tin doping in the deposited films is controlled by the volume % concentration ratio of tetrabutyl tin over titanium tetraisopropoxide in the mixed precursor solution. X-ray diffraction analysis results reveal that the as-deposited films are composed of pure anatase TiO{sub 2} phase. Red-shift in the absorbance spectra is observed attributed to the introduction of Sn{sup 4+} band states below the conduction band of TiO{sub 2}. The effect of tin doping on the photocatalytic property of TiO{sub 2} films is studied through the degradation of stearic acid under UV light illumination. It is found that there is a 10% enhancement on the degradation rate of stearic acid for the film with 3.8% tin doping in comparison with pure TiO{sub 2} film. This improvement of photocatalytic performance with tin incorporation could be ascribed to the reduction of electron-hole recombination rate through charge separation and an increased amount of OH radicals which are crucial for the degradation of stearic acid. Further increase in tin doping results in the formation of recombination site and large anatase grains, which leads to a decrease in the degradation rate. - Highlights: ► Deposition of tin-doped TiO{sub 2} film via aerosol assisted chemical vapor depositionDeposited anatase films show red-shifted in UV–vis spectrum with tin-dopants. ► Photoactivity improves at low tin concentration but reduces at higher concentration. ► Improvement in photoactivity due to bandgap narrowing from Sn{sup 4+} band states ► Maximum photoactivity achieved occurs for films with 3.8% tin doping.

  9. ZnSe thin films by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Lokhande, C.D.; Patil, P.S.; Tributsch, H. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CS, Glienicker Strasse-100, D-14109 Berlin (Germany); Ennaoui, A. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CG, Glienicker Strasse-100, D-14109 Berlin (Germany)

    1998-09-04

    The ZnSe thin films have been deposited onto glass substrates by the simple chemical bath deposition method using selenourea as a selenide ion source from an aqueous alkaline medium. The effect of Zn ion concentration, bath temperature and deposition time period on the quality and thickness of ZnSe films has been studied. The ZnSe films have been characterized by XRD, TEM, EDAX, TRMC (time-resolved microwave conductivity), optical absorbance and RBS techniques for their structural, compositional, electronic and optical properties. The as-deposited ZnSe films are found to be amorphous, Zn rich with optical band gap, Eg, equal to 2.9 eV

  10. Chemical vapour deposition of zeolitic imidazolate framework thin films

    Science.gov (United States)

    Stassen, Ivo; Styles, Mark; Grenci, Gianluca; Gorp, Hans Van; Vanderlinden, Willem; Feyter, Steven De; Falcaro, Paolo; Vos, Dirk De; Vereecken, Philippe; Ameloot, Rob

    2016-03-01

    Integrating metal-organic frameworks (MOFs) in microelectronics has disruptive potential because of the unique properties of these microporous crystalline materials. Suitable film deposition methods are crucial to leverage MOFs in this field. Conventional solvent-based procedures, typically adapted from powder preparation routes, are incompatible with nanofabrication because of corrosion and contamination risks. We demonstrate a chemical vapour deposition process (MOF-CVD) that enables high-quality films of ZIF-8, a prototypical MOF material, with a uniform and controlled thickness, even on high-aspect-ratio features. Furthermore, we demonstrate how MOF-CVD enables previously inaccessible routes such as lift-off patterning and depositing MOF films on fragile features. The compatibility of MOF-CVD with existing infrastructure, both in research and production facilities, will greatly facilitate MOF integration in microelectronics. MOF-CVD is the first vapour-phase deposition method for any type of microporous crystalline network solid and marks a milestone in processing such materials.

  11. Deposition of diamond and boron nitride films by plasma chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Albella, J.M. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.; Gomez-Aleixandre, C. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.; Sanchez-Garrido, O. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.; Vazquez, L. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.; Martinez-Duart, J.M. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.

    1995-01-01

    The deposition problems of diamond and cubic boron nitride (c-BN) by chemical vapour deposition techniques are reviewed, with major emphasis on the nucleation and reaction mechanisms. A discussion is made of the main deposition parameters (i.e. gas mixture, substrate conditioning, plasma discharges etc.) which favour the formation of the cubic phase. Most of the work is devoted to diamond owing to the large progress attained in this material. In fact, the use of diamond as a hard protective coating is now on a commercial scale. By contrast, the preparation of c-BN layers with good characteristics still needs of further research. ((orig.))

  12. The atmospheric chemical vapour deposition of coatings on glass

    CERN Document Server

    Sanderson, K D

    1996-01-01

    The deposition of thin films of indium oxide, tin doped indium oxide (ITO) and titanium nitride for solar control applications have been investigated by Atmospheric Chemical Vapour Deposition (APCVD). Experimental details of the deposition system and the techniques used to characterise the films are presented. Results from investigations into the deposition parameters, the film microstructure and film material properties are discussed. A range of precursors were investigated for the deposition of indium oxide. The effect of pro-mixing the vaporised precursor with an oxidant source and the deposition temperature has been studied. Polycrystalline In sub 2 O sub 3 films with a resistivity of 1.1 - 3x10 sup - sup 3 OMEGA cm were obtained with ln(thd) sub 3 , oxygen and nitrogen. The growth of ITO films from ln(thd) sub 3 , oxygen and a range of tin dopants is also presented. The effect of the dopant precursor, the doping concentration, deposition temperature and the effect of additives on film growth and microstr...

  13. Chemically Deposited Thin-Film Solar Cell Materials

    Science.gov (United States)

    Raffaelle, R.; Junek, W.; Gorse, J.; Thompson, T.; Harris, J.; Hehemann, D.; Hepp, A.; Rybicki, G.

    2005-01-01

    We have been working on the development of thin film photovoltaic solar cell materials that can be produced entirely by wet chemical methods on low-cost flexible substrates. P-type copper indium diselenide (CIS) absorber layers have been deposited via electrochemical deposition. Similar techniques have also allowed us to incorporate both Ga and S into the CIS structure, in order to increase its optical bandgap. The ability to deposit similar absorber layers with a variety of bandgaps is essential to our efforts to develop a multi-junction thin-film solar cell. Chemical bath deposition methods were used to deposit a cadmium sulfide (CdS) buffer layers on our CIS-based absorber layers. Window contacts were made to these CdS/CIS junctions by the electrodeposition of zinc oxide (ZnO). Structural and elemental determinations of the individual ZnO, CdS and CIS-based films via transmission spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy and energy dispersive spectroscopy will be presented. The electrical characterization of the resulting devices will be discussed.

  14. Fundamental studies of chemical vapor deposition diamond growth processes

    International Nuclear Information System (INIS)

    We are developing laser spectroscopic techniques to foster a fundamental understanding of diamond film growth by hot filament chemical vapor deposition (CVD). Several spectroscopic techniques are under investigation to identify intermediate species present in the bulk reactor volume, the thin active volume immediately above the growing film, and the actual growing surface. Such a comprehensive examination of the overall deposition process is necessary because a combination of gas phase and surface chemistry is probably operating. Resonantly enhanced multiphoton ionization (REMPI) techniques have been emphasized. A growth rector that permits through-the-substrate gas sampling for REMPI/time-of-flight mass spectroscopy has been developed. 7 refs., 2 figs

  15. An Overview on Thin Films Prepared by Chemical Vapor Deposition

    International Nuclear Information System (INIS)

    Chemical vapor deposition, (CVD); involves the formation of a solid thin layer on a heated substrate surface by means of chemical reaction in gas or vapor phase. CVD techniques have expanded continuously and developed into the most important method for producing films for solid-state devices. CVD is considered to be the major technique for preparing most films used in the fabrication of semiconductor devices and integrated circuits. It has advantages such as the versatility, compatibility, quality, simplicity, reproducibility, and low cost. CVD has some disadvantages of; the use of comparatively high temperatures in many processes and chemical hazards caused by toxic, explosive, or corrosive gases. Chemical vapor deposition processes can be classified according to the type of their activation energy into thermally-activated CVD, plasma-enhanced CVD, laser-induced CVD, photochemical CVD, and electron-beam assisted CVD. In this paper an attempt is made to present all aspects of CVD equipment design and the variables affecting the deposition rate. Finally the preparation requirements and the application of CVD films are also summarized. 5 figs

  16. Metallization on FDM Parts Using the Chemical Deposition Technique

    Directory of Open Access Journals (Sweden)

    Azhar Equbal

    2014-08-01

    Full Text Available Metallization of ABS (acrylonitrile-butadiene-styrene parts has been studied on flat part surfaces. These parts are fabricated on an FDM (fused deposition modeling machine using the layer-wise deposition principle using ABS as a part material. Electroless copper deposition on ABS parts was performed using two different surface preparation processes, namely ABS parts prepared using chromic acid for etching and ABS parts prepared using a solution mixture of sulphuric acid and hydrogen peroxide (H2SO4/H2O2 for etching. After surface preparations using these routes, copper (Cu is deposited electrolessly using four different acidic baths. The acidic baths used are 5 wt% CuSO4 (copper sulfate with 15 wt% of individual acids, namely HF (hydrofluoric acid, H2SO4 (sulphuric acid, H3PO4 (phosphoric acid and CH3COOH (acetic acid. Cu deposition under different acidic baths used for both the routes is presented and compared based on their electrical performance, scanning electron microscopy (SEM and energy dispersive X-ray spectrometry (EDS. The result shows that chromic acid etched samples show better electrical performance and Cu deposition in comparison to samples etched via H2SO4/H2O2.

  17. The power source effect on SiOx coating deposition by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    SiOx coatings were prepared by capacitively coupled plasma enhanced chemical vapor deposition on polyethyleneterephtalate substrates in 23 kHz middle-frequency and radio frequency power supplies, respectively, where hexamethyldisiloxane was used as gas source. The influences of discharge conditions on gas phase intermediate species and active radicals for SiOx formation was investigated by mass spectrometry as real-time in-situ diagnosis. The deposited SiOx coating chemical structures were also analyzed by Fourier transform infrared spectroscopy. Meanwhile, the film barrier property, oxygen transmission rate, was measured at 23 oC and 50% humidity circumstance. The better barrier property was obtained in the MF power source depositing SiOx coated PET.

  18. The versatility of hot-filament activated chemical vapor deposition

    International Nuclear Information System (INIS)

    In the field of activated chemical vapor deposition (CVD) of polycrystalline diamond films, hot-filament activation (HF-CVD) is widely used for applications where large deposition areas are needed or three-dimensional substrates have to be coated. We have developed processes for the deposition of conductive, boron-doped diamond films as well as for tribological crystalline diamond coatings on deposition areas up to 50 cm x 100 cm. Such multi-filament processes are used to produce diamond electrodes for advanced electrochemical processes or large batches of diamond-coated tools and parts, respectively. These processes demonstrate the high degree of uniformity and reproducibility of hot-filament CVD. The usability of hot-filament CVD for diamond deposition on three-dimensional substrates is well known for CVD diamond shaft tools. We also develop interior diamond coatings for drawing dies, nozzles, and thread guides. Hot-filament CVD also enables the deposition of diamond film modifications with tailored properties. In order to adjust the surface topography to specific applications, we apply processes for smooth, fine-grained or textured diamond films for cutting tools and tribological applications. Rough diamond is employed for grinding applications. Multilayers of fine-grained and coarse-grained diamond have been developed, showing increased shock resistance due to reduced crack propagation. Hot-filament CVD is also used for in situ deposition of carbide coatings and diamond-carbide composites, and the deposition of non-diamond, silicon-based films. These coatings are suitable as diffusion barriers and are also applied for adhesion and stress engineering and for semiconductor applications, respectively

  19. Chemical vapor deposition of atomically thin materials for membrane dialysis applications

    Science.gov (United States)

    Kidambi, Piran; Mok, Alexander; Jang, Doojoon; Boutilier, Michael; Wang, Luda; Karnik, Rohit; Microfluidics; Nanofluidics Research Lab Team

    2015-11-01

    Atomically thin 2D materials like graphene and h-BN represent a new class of membranes materials. They offer the possibility of minimum theoretical membrane transport resistance along with the opportunity to tune pore sizes at the nanometer scale. Chemical vapor deposition has emerged as the preferable route towards scalable, cost effective synthesis of 2D materials. Here we show selective molecular transport through sub-nanometer diameter pores in graphene grown via chemical vapor deposition processes. A combination of pressure driven and diffusive transport measurements shows evidence for size selective transport behavior which can be used for separation by dialysis for applications such as desalting of biomolecular or chemical solutions. Principal Investigator

  20. Coating of metals with titanium diboride by chemical vapor deposition

    International Nuclear Information System (INIS)

    This study is an experimental investigation of the chemical vapor deposition of titanium diboride on metallic substrates by the hydrogen reduction of TiCl4 and BCl3 at temperatures between 8500C and 11000C. Kovar, tantalum, and several stainless steels were found to be suitable substrates since they could withstand the deposition temperature, had adequate resistance to HCl, a by-product of the deposition reaction, and had thermal expansion coefficients sufficiently close to that of TiB2 (less than or equal to10 x 10-6/0C). The TiB2 coatings produced were 68.2% Ti and thus near stoichiometry and had very low impurity content. They had Knoop hardnesses averaging 3300 kg/mm2 and exhibited extraordinary erosion resistance

  1. Chemical Liquid Phase Deposition of Thin Aluminum Oxide Films

    Institute of Scientific and Technical Information of China (English)

    SUN,Jie(孙捷); SUN,Ying-Chun(孙迎春)

    2004-01-01

    Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system's pH value played an important role in this experiment. The growth rate is 12 nm/h with the deposition at [Al2(SO4)3]=0.0837 mol·L-1, [NaHCO3]=0.214 mol·L-1, 15 ℃. Post-growth annealing not only densifies and purifies the films, but results in film crystallization as well, Excellent quality of A12O3 films in this work is supported by electron dispersion spectroscopy,Fourier transform infrared spectrum, X-ray diffraction spectrum and scanning electron microscopy photograph.

  2. Solution-deposited standards using a capillary matrix and lyophilization

    International Nuclear Information System (INIS)

    Standards for calibration of x-ray fluorescence spectrometers are discussed. A technique is outlined that has distinct promise for the preparation of membrane filter standards for x-ray analysis. The work thus far has shown that these standards are relatively uniform and are highly reproducible from standard to standard. The technique is intrinsically simple, and precise replicates can be made rapidly. Also the solution-deposited standards are expected to be durable over a long time. It is felt that the technique is capable of a high degree of accuracy and is a very useful addition to the available techniques for preparation of standards

  3. Advances in the chemical vapor deposition (CVD) of Tantalum

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki; Eriksen, Søren; Christensen, Erik;

    2014-01-01

    The chemical stability of tantalum in hot acidic media has made it a key material in the protection of industrial equipment from corrosion under such conditions. The Chemical Vapor Deposition of tantalum to achieve such thin corrosion resistant coatings is one of the most widely mentioned examples...... of CVD processes; however very little information on the process and its characteristics can be found. This work presents the state of the art on the CVD of tantalum in long narrow channels and a reaction mechanism is suggested based on a rudimentary model. The effects of the system pressure...

  4. Physical properties of chemical vapour deposited nanostructured carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mahadik, D.B.; Shinde, S.S.; Bhosale, C.H. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur, Maharashtra 416004 (India); Rajpure, K.Y., E-mail: rajpure@yahoo.com [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur, Maharashtra 416004 (India)

    2011-02-03

    Research highlights: In the present paper, nanostructured carbon films are grown using a natural precursor 'turpentine oil (C{sub 10}H{sub 16})' as a carbon source in the simple thermal chemical vapour deposition method. The influence of substrate surface topography (viz. stainless steel, fluorine doped tin oxide coated quartz) and temperature on the evolution of carbon allotropes surfaces topography/microstructural and structural properties are investigated and discussed. - Abstract: A simple thermal chemical vapour deposition technique is employed for the deposition of carbon films by pyrolysing the natural precursor 'turpentine oil' on to the stainless steel (SS) and FTO coated quartz substrates at higher temperatures (700-1100 deg. C). In this work, we have studied the influence of substrate and deposition temperature on the evolution of structural and morphological properties of nanostructured carbon films. The films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle measurements, Fourier transform infrared (FTIR) and Raman spectroscopy techniques. XRD study reveals that the films are polycrystalline exhibiting hexagonal and face-centered cubic structures on SS and FTO coated glass substrates respectively. SEM images show the porous and agglomerated surface of the films. Deposited carbon films show the hydrophobic nature. FTIR study displays C-H and O-H stretching vibration modes in the films. Raman analysis shows that, high ID/IG for FTO substrate confirms the dominance of sp{sup 3} bonds with diamond phase and less for SS shows graphitization effect with dominant sp{sup 2} bonds. It reveals the difference in local microstructure of carbon deposits leading to variation in contact angle and hardness, which is ascribed to difference in the packing density of carbon films, as observed also by Raman.

  5. Carbon nanostructures and networks produced by chemical vapor deposition

    OpenAIRE

    Kowlgi, N.K.K.; Koper, G.J.M.; Raalten, R.A.D.

    2012-01-01

    The invention pertains to a method for manufacturing crystalline carbon nanostructures and/or a network of crystalline carbon nanostructures, comprising: (i) providing a bicontinuous micro-emulsion containing metal nanoparticles having an average particle size between 1and 100nm; (ii) bringing said bicontinuous micro-emulsion into contact with a substrate; and (iii) subjecting said metal nanoparticles and a gaseous carbon source to chemical vapor deposition, thus forming carbon nanostructures...

  6. Chemical vapour deposition synthetic diamond: materials, technology and applications

    OpenAIRE

    Balmer, R. S.; Brandon, J R; Clewes, S L; Dhillon, H. K.; Dodson, J M; Friel, I.; Inglis, P. N.; Madgwick, T D; Markham, M. L.; Mollart, T P; Perkins, N.; Scarsbrook, G. A.; Twitchen, D. J.; Whitehead, A J; Wilman, J J

    2009-01-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synt...

  7. Dry-transfer of chemical vapour deposited nanocarbon thin films

    OpenAIRE

    Cole, Matthew Thomas

    2012-01-01

    This thesis presents the development of chemical vapour deposited (CVD) graphene and multi-walled carbon nanotubes (MWCNTs) as enabling technologies for flexible transparent conductors offering enhanced functionality. The technologies developed could be employed as thin film field emission sources, optical sensors and substrate-free wideband optical polarisers. Detailed studies were performed on CVD Fe and Ni catalysed carbon nanotubes and nanofibres on indium tin oxide, alu...

  8. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    OpenAIRE

    Bignardi, Luca; van Dorp, Willem F; Gottardi, Stefano; Ivashenko, Oleksii; Dudin, Pavel; Barinov, Alexei; de Hosson, Jeff Th. M.; Stöhr, Meike; Rudolf, Petra

    2013-01-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron spectromicroscopy, while the structural and crystalline properties are studied by TEM and Raman spectroscopy. We demonstrate that the suspended graphene membrane locally shows electronic properties comp...

  9. Laser-Induced Chemical Vapour Deposition of Silicon Carbonitride

    OpenAIRE

    Besling, W.; van der Put, P.; Schoonman, J.

    1995-01-01

    Laser-induced Chemical Vapour Deposition of silicon carbonitride coatings and powders has been investigated using hexamethyldisilazane (HMDS) and ammonia as reactants. An industrial CW CO2-laser in parallel configuration has been used to heat up the reactant gases. HMDS dissociates in the laser beam and reactive radicals are formed which increase rapidly in molecular weight by an addition mechanism. Dense polymer-like silicon carbonitride thin films and nanosized powders are formed depending ...

  10. Investigation of deposition characteristics and properties of high-rate deposited silicon nitride films prepared by atmospheric pressure plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Silicon nitride (SiN x) films have been prepared at extremely high deposition rates by the atmospheric pressure plasma chemical vapor deposition (AP-PCVD) technique on Si(001) wafers from gas mixtures containing He, H2, SiH4 and N2 or NH3. A 150 MHz very high frequency (VHF) power supply was used to generate high-density radicals in the atmospheric pressure plasma. Deposition rate, composition and morphology of the SiN x films prepared with various deposition parameters were studied by scanning electron microscopy and Auger electron spectroscopy. Fourier transformation infrared (FTIR) absorption spectroscopy was also used to characterize the structure and the chemical bonding configurations of the films. Furthermore, etching rate with buffered hydrofluoric acid (BHF) solution, refractive index and capacitance-voltage (C-V) characteristics were measured to evaluate the dielectric properties of the films. It was found that effective passivation of dangling bonds and elimination of excessive hydrogen atoms at the film-growing surface seemed to be the most important factor to form SiN x film with a dense Si-N network. The C-V curve of the optimized film showed good interface properties, although further improvement was necessary for use in the industrial metal-insulator-semiconductor (MIS) applications

  11. Chemical solution seed layer for rabits tapes

    Science.gov (United States)

    Goyal, Amit; Paranthaman, Mariappan; Wee, Sung-Hun

    2014-06-10

    A method for making a superconducting article includes the steps of providing a biaxially textured substrate. A seed layer is then deposited. The seed layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different rare earth or transition metal cations. A superconductor layer is grown epitaxially such that the superconductor layer is supported by the seed layer.

  12. XRD and UV-vis results of Tungstein oxide thin films prepared by chemical bath deposition

    International Nuclear Information System (INIS)

    In the experiment, using a simple, economical, chemical bath method for depositing tungstein oxide films, electrochromic tungstein oxide thin films were prepared from an aqueous solution of Na2WO4H2O and diethyl sulfate at boiling temperature on ITO coated glass substrate. The techniques such as X-ray and UV-VIS-spectroscopy diffraction were used for the characterization of the films. According to the results of X-ray and UV-VIS, WOx thin film is very promising material for electrochromic applications and this is simply and economically produced by chemical bath method

  13. Chemical bath deposition of II-VI compound thin films

    Science.gov (United States)

    Oladeji, Isaiah Olatunde

    II-VI compounds are direct bandgap semiconductors with great potentials in optoelectronic applications. Solar cells, where these materials are in greater demand, require a low cost production technology that will make the final product more affordable. Chemical bath deposition (CBD) a low cost growth technique capable of producing good quality thin film semiconductors over large area and at low temperature then becomes a suitable technology of choice. Heterogeneous reaction in a basic aqueous solution that is responsible for the II-VI compound film growth in CBD requires a metal complex. We have identified the stability constant (k) of the metal complex compatible with CBD growth mechanism to be about 106.9. This value is low enough to ensure that the substrate adsorbed complex relax for subsequent reaction with the chalcogen precursor to take place. It is also high enough to minimize the metal ion concentration in the bath participating in the precipitation of the bulk compounds. Homogeneous reaction that leads to precipitation in the reaction bath takes place because the solubility products of bulk II-VI compounds are very low. This reaction quickly depletes the bath of reactants, limit the film thickness, and degrade the film quality. While ZnS thin films are still hard to grow by CBD because of lack of suitable complexing agent, the homogeneous reaction still limits quality and thickness of both US and ZnS thin films. In this study, the zinc tetraammine complex ([Zn(NH3) 4]2+) with k = 108.9 has been forced to acquire its unsaturated form [Zn(NH3)3]2+ with a moderate k = 106.6 using hydrazine and nitrilotriacetate ion as complementary complexing agents and we have successfully grown ZnS thin films. We have also, minimized or eliminated the homogeneous reaction by using ammonium salt as a buffer and chemical bath with low reactant concentrations. These have allowed us to increase the saturation thickness of ZnS thin film by about 400% and raise that of US film

  14. Chemical solution seed layer for rabits tapes

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Amit; Paranthaman, Mariappan; Wee, Sung-Hun

    2014-06-10

    A method for making a superconducting article includes the steps of providing a biaxially textured substrate. A seed layer is then deposited. The seed layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different rare earth or transition metal cations. A superconductor layer is grown epitaxially such that the superconductor layer is supported by the seed layer.

  15. Chemical evaluation of soil-solution in acid forest soils

    Science.gov (United States)

    Lawrence, G.B.; David, M.B.

    1996-01-01

    Soil-solution chemistry is commonly studied in forests through the use of soil lysimeters.This approach is impractical for regional survey studies, however, because lysimeter installation and operation is expensive and time consuming. To address these problems, a new technique was developed to compare soil-solution chemistry among red spruce stands in New York, Vermont, New Hampshire, Maine. Soil solutions were expelled by positive air pressure from soil that had been placed in a sealed cylinder. Before the air pressure was applied, a solution chemically similar to throughfall was added to the soil to bring it to approximate field capacity. After the solution sample was expelled, the soil was removed from the cylinder and chemically analyzed. The method was tested with homogenized Oa and Bs horizon soils collected from a red spruce stand in the Adirondack Mountains of New York, a red spruce stand in east-central Vermont, and a mixed hardwood stand in the Catskill Mountains of New York. Reproducibility, effects of varying the reaction time between adding throughfall and expelling soil solution (5-65 minutes) and effects of varying the chemical composition of added throughfall, were evaluated. In general, results showed that (i) the method was reproducible (coefficients of variation were generally soil exchange chemistry. Concentrations of expelled solutions varied with the concentrations of added throughfall; the lower the CEC, the more sensitive expelled solution concentrations were to the chemical concentrations of added throughfall. Addition of a tracer (NaBr) showed that the expelled solution was a mixture of added solution and solution that preexisted in the soil. Comparisons of expelled solution concentrations with concentrations of soil solutions collected by zero-tension and tension lysimetry indicated that expelled solution concentrations were higher than those obtained with either type of lysimeter, although there was less difference with tension

  16. Plasma assisted chemical vapour deposition for optical coatings

    International Nuclear Information System (INIS)

    Full text: Plasma assisted chemical vapour deposition (PECVD) is commonly used in semiconductor fabrication plants for depositing layers of dielectric materials. Reactive gasses are admitted to a chamber at low pressure and applying an electric field, usually a RF field, generates a plasma. The gasses react to form a solid material on the walls of the chamber and substrates. In this project we are exploring the possibility of applying this method to the growth of multilayer optical thin films. A small prototype system was constructed and optical multi layers of up to 24 layers were deposited over a diameter of 90 mm. The system uses 13.56 MHz RF to generate the plasma in a simple capacitive plate chamber. The gasses used were silane, oxygen and nitrogen. This allows SiO2 (RI 1.45) and Si3N4 (RI 1.93) to be deposited. Multilayer coatings were designed using these materials on TFCalc. The required thickness for the various layers were tabulated and fed into a computer controlling the gas flow during deposition. In this way the structures were deposited semi-automatically. The growing films were monitored using a spectrometer looking at light reflected from the growing film over a range from 400 - 800 nm simultaneously. This data was then used to reconstruct the deposition and analyze deviations from the design. An SEM micrograph of the cross-section of the multilayers was used to obtain relative thicknesses of the individual layers. Other structures deposited include rugate notch filters, coloured filters and broad band anti-reflection layers. Running the prototype has proved the concept and the project has moved to a scale up stage in which a larger version is being constructed at Avtronics Pty Ltd. This aims to coat uniformly over a diameter of 600 mm. Initially, the same materials will be used to produce coatings but fixture work will increase the refractive index range of materials which can be deposited and fully automate the coating process. (authors)

  17. Deposition of indium tin oxide by atmospheric pressure chemical vapour deposition

    International Nuclear Information System (INIS)

    We report the deposition of indium tin oxide (ITO) by atmospheric pressure chemical vapour deposition (APCVD). This process is potentially scalable for high throughput, large area production. We utilised a previously unreported precursor combination; dimethylindium acetylacetonate, [Me2In(acac)] and monobutyltintrichloride, MBTC. [Me2In(acac)] is a volatile solid. It is more stable and easier to handle than traditional indium oxide precursors such as pyrophoric trialkylindium compounds. Monobutyltintrichloride (MBTC) is also easily handled and can be readily vaporised. It is compatible with the process conditions required for using [Me2In(acac)]. Cubic ITO was deposited at a substrate temperature of 550 °C with growth rates exceeding 15 nm/s and growth efficiencies of between 20 and 30%. Resistivity was 3.5 × 10−4 Ω cm and transmission for a 200 nm film was > 85% with less than 2% haze.

  18. Deposition of fluorine doped indium oxide by atmospheric pressure chemical vapour deposition

    International Nuclear Information System (INIS)

    We report the deposition of fluorine doped indium oxide by atmospheric pressure chemical vapour deposition (APCVD) using a previously unreported precursor combination; dimethylindium acetylacetonate, [Me2In(acac)] and trifluoroacetic acid (TFA). This process is potentially scalable for high throughput, large area production. [Me2In(acac)] is a volatile solid. It is more stable and easier to handle than traditional indium oxide precursors such as pyrophoric trialkylindium compounds. Cubic fluorine doped indium oxide (F.In2O3) was deposited at a substrate temperature of 550 °C with growth rates exceeding 8 nm/s. Resistivity was 8 × 10−4 Ω cm and transmission for a 200 nm film was > 80% with less than 1% haze.

  19. Deposition and characterization of Ru thin films prepared by metallorganic chemical vapor deposition

    CERN Document Server

    Kang, S Y; Lee, S K; Hwang, C S; Kim, H J

    2000-01-01

    Ru thin films were deposited at 300 approx 400 .deg. C by using Ru(C sub 5 H sub 4 C sub 2 H sub 5) sub 2 (Ru(EtCp) sub 2) as a precursor and low-pressure metalorganic chemical vapor deposition. The addition of O sub 2 gas was essential to form Ru thin films. The deposition rates of the films were about 200 A/min. For low oxygen addition and high substrate temperature, RuO sub 2 phases were formed. Also, thermodynamic calculations showed that all the supplied oxygen was consumed to oxidize carbon and hydrogen, cracked from the precursor ligand, rather than Ru. Thus, metal films could be obtained There was an optimum oxygen to precursor ratio at which the pure Ru phase could be obtained with minimum generation of carbon and RuO sub 2

  20. Characterization of Thin Films Deposited with Precursor Ferrocene by Plasma Enhanced Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    YAO Kailun; ZHENG Jianwan; LIU Zuli; JIA Lihui

    2007-01-01

    In this paper,the characterization of thin films,deposited with the precursor ferrocene(FcH)by the plasma enhanced chemical vapour deposition(PECVD)technique,was investigated.The films were measured by Scanning Electronic Microscopy(SEM),Atomic Force Microscopy(AFM),Electron Spectroscopy for Chemical Analysis(ESCA),and superconducting Quantum Interference Device(SQUID).It was observed that the film's layer is homogeneous in thickness and has a dense morphology without cracks.The surface roughness is about 36 nm.From the results of ESCA,it can be inferred that the film mainly contains the compound FeOOH,and carbon is combined with oxygen in different forms under different supply-powers.The hysteresis loops indicate that the film is of soft magnetism.

  1. Low-temperature chemical bath deposition of crystalline ZnO

    Science.gov (United States)

    Jacobs, Klaus; Balitsky, Denis; Armand, Pascale; Papet, Philippe

    2010-03-01

    ZnO crystals can be grown from alkaline aqueous solution not only by the standard hydrothermal technique at temperatures between 350 °C and 400 °C, but also by chemical bath deposition (CBD) at temperatures below 100 °C. In the presence of ZnO and ScAlMgO 4 (SCAM) substrates almost all ZnO deposits on the substrate, with different habits, however. Under optimized conditions even homoepitaxial layers can be obtained, while rod-like structures are obtained on SCAM substrates. The chemistry and the driving forces behind the two processes are considered in detail and the temperature dependence of the solution composition has been calculated. The driving force for the ZnO crystal growth in the standard hydrothermal technique is the difference in the ZnO solubility in alkaline solutions at different temperatures. In contrast, the driving force for the chemical bath deposition of ZnO at low temperatures is the decay of zinc ion complex molecules with increasing temperature.

  2. Development of a method to lower recontamination after chemical decontamination by depositing Pt nano particles

    International Nuclear Information System (INIS)

    The Pt coating (Pt-C) process has been developed to lower recontamination by radioactive elements after chemical decontamination of piping surfaces. In this process, a layer of fine Pt nano particles is formed in aqueous solution on the base metal of the piping following the chemical decontamination. In this study, we confirmed the suppression effect by the Pt-C toward 60Co deposition on type 316 stainless steel using a 60Co deposition test under hydrogen water chemistry. The deposition amounts of 60Co which were incorporated in oxides after 1000 h with and without the Pt-C process were about 90 and 10.2 Bq/cm2, respectively. The amount of 60Co deposition with Pt-C is about 10% that of non-coated specimens. The 60Co incorporation for the Pt-C specimen was suppressed by decreasing the formation of oxides. We considered this phenomenon from experimental results and concluded that oxides were chemically reduced by the effect of Pt and hydrogen radicals which were produced in the reaction between H2 and Pt, and then oxides were dissolved into the water. (author)

  3. Chemical Vapour Deposition of Gas Sensitive Metal Oxides

    Directory of Open Access Journals (Sweden)

    Stella Vallejos

    2016-03-01

    Full Text Available This article presents a review of recent research efforts and developments for the fabrication of metal-oxide gas sensors using chemical vapour deposition (CVD, presenting its potential advantages as a materials synthesis technique for gas sensors along with a discussion of their sensing performance. Thin films typically have poorer gas sensing performance compared to traditional screen printed equivalents, attributed to reduced porosity, but the ability to integrate materials directly with the sensor platform provides important process benefits compared to competing synthetic techniques. We conclude that these advantages are likely to drive increased interest in the use of CVD for gas sensor materials over the next decade, whilst the ability to manipulate deposition conditions to alter microstructure can help mitigate the potentially reduced performance in thin films, hence the current prospects for use of CVD in this field look excellent.

  4. Synthesis of Aligned Carbon Nanotubes by Thermal Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Gang; ZHOU Ming; MA Weiwei; CAI Lan

    2009-01-01

    Single crystal silicon was found to be very beneficial to the growth of aligned carbon nanotubes by chemical vapor deposition with C2H2 as carbon source. A thin film of Ni served as catalyst was deposited on the Si substrate by the K575X Peltier Cooled High Resolution Sputter Coater before growth. The growth properties of carbon nanotubes were studied as a function of the Ni catalyst layer thickness. The diameter, growth rate and areal density of the carbon nanotubes were controlled by the initial thickness of the catalyst layer. Steric hindrance between nanotubes forces them to grow in well-aligned manner at an initial stage of growth. Transmission electron microscope analysis revealed that nanotubes grew by a tip growth mechanism.

  5. Kinetics of chemical vapor deposition of boron on molybdenum

    International Nuclear Information System (INIS)

    Experimental rate data of chemical vapor deposition of boron by reduction of boron trichloride with hydrogen are analyzed to determine the reaction mechanism. The experiments were conducted at atmospheric pressure. The weight change of the sample was noted by means of a thermobalance. Molybdenum was used as the substrate. It has been found that the outer layer of the deposited film is Mo/sub 2/B/sub 5/ and the inner layer is MoB, and in the stational state of the reaction, the diffusion in the solid state is considered not to be rate controlling. When mass transport limitation was absent, the reaction orders with respect to boron trichloride and hydrogen were one third and one half, respectively. By comparing these orders with those obtained from Langmuir-Hinshelwood type equations, the rate controlling mechanism is identified to be the desorption of hydrogen chloride from the substrate

  6. Ion beam induced conductivity in chemically vapor deposited diamond films

    International Nuclear Information System (INIS)

    Polycrystalline diamond films deposited by the microwave plasma chemical vapor deposition (CVD) technique onto quartz substrates have been irradiated with 100 keV C and 320 keV Xe ions at room temperature and at 200 degree C. The dose dependence of the electrical conductivity measured in situ exhibited complicated, nonmonotonic behavior. High doses were found to induce an increase of up to ten orders of magnitude in the electrical conductivity of the film. The dose dependence of the conductivity for the CVD films was found to be very similar to that measured for natural, type IIa, single-crystal diamonds irradiated under identical conditions. This result suggests that the conduction mechanism in ion beam irradiated polycrystalline CVD diamond films is not dominated by grain boundaries and graphitic impurities as one might have expected, but rather is determined by the intrinsic properties of diamond itself

  7. Characterisation of TiO 2 deposited by photo-induced chemical vapour deposition

    Science.gov (United States)

    Kaliwoh, Never; Zhang, Jun-Ying; Boyd, Ian W.

    2002-01-01

    We report the deposition of thin TiO 2 films on crystalline Si and quartz by photo-induced chemical vapour deposition (CVD) using UV excimer lamps employing a dielectric barrier discharge in krypton chloride (KrCl ∗) to provide intense narrow band radiation at λ=222 nm. The precursor used was titanium isopropoxide (TTIP). Films from around 20-510 nm in thickness with refractive indices from 2.20 to 2.54 were grown at temperatures between 50 and 350 °C. The higher refractive index values compare favourably with the value of 2.58 recorded for the bulk material. The measured deposition rate was around 50 nm/min at 350 °C. Fourier transform infrared spectroscopy (FTIR) revealed the presence of TiO 2 through the observation of a Ti-O absorption peak and the absence of OH in films deposited at 250-350 °C indicated relatively good quality films. The phase of films deposited at 200-350 °C was anatase as determined by X-ray diffraction.

  8. Control of polyaniline deposition on microporous cellulose ester membranes by in situ chemical polymerization.

    Science.gov (United States)

    Qaiser, Asif A; Hyland, Margaret M; Patterson, Darrell A

    2009-11-12

    Polyaniline (PANI) can be deposited either on the surface or in the bulk of a microporous membrane by various chemical oxidative polymerization techniques. Each technique has distinctive effects on the PANI site and extent of deposition on the base membrane. In the present study, mixed cellulose ester (ME) membranes with tortuous pore morphology were used as base membranes. The chemical oxidative polymerization techniques employed, included polymerization using an in-house-built two-compartment permeation cell. The resultant composite membranes have been characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR-ATR), and electrical conductivity measurements. The results showed that PANI was layered on the pore walls of the membrane using two-compartment permeation cell. Vapor-phase polymerization yielded a surface layer of PANI with little deposition in the bulk. A distorted PANI surface layer was achieved by solution-phase (dip) polymerization. Moreover, asymmetric PANI deposition within the membrane bulk was evidenced using two-compartment permeation cell. Composite membranes synthesized using two-compartment cell showed highest levels of conductivity (approximately 10(-2) S/cm) as compared to the membranes modified by single-step solution-phase polymerization. FTIR-ATR results indicated the extent of PANI coating and its oxidation state which was identified as doped emeraldine PANI, from all the employed techniques. Asymmetric deposition and extent have been explained in terms of the physical and chemical reaction steps involved in the heterogeneous aniline polymerization reactions in the two-compartment cell technique. PMID:19888765

  9. Chemical vapour deposited diamonds for dosimetry of radiotherapeutical beams

    Energy Technology Data Exchange (ETDEWEB)

    Bucciolini, M.; Mazzocchi, S. [Firenze Univ., Firenze (Italy). Dipartimento di Fisiopatologia Clinica; INFN, Firenze (Italy); Borchi, E.; Bruzzi, M.; Pini, S.; Sciortino, S. [Firenze Univ., Firenze (Italy). Dipartimento di Energetica; INFN, Firenze (Italy); Cirrone, G.A.P.; Guttone, G.; Raffaele, L.; Sabini, M.G. [INFN, Catania (Italy). Laboratori Nazionali del Sud

    2002-07-01

    This paper deals with the application of synthetic diamond detectors to the clinical dosimetry of photon and electron beams. It has been developed in the frame of INFN CANDIDO project and MURST Cofin. Diamonds grown with CVD (Chemical Vapour Deposition) technique have been studied; some of them are commercial samples while others have been locally synthesised. Experiments have been formed using both on-line and off-line approaches. For the off-line measurements, TL (thermoluminescent) and TSC (thermally stimulated current) techniques have been used.

  10. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    Science.gov (United States)

    Bignardi, Luca; van Dorp, Willem F.; Gottardi, Stefano; Ivashenko, Oleksii; Dudin, Pavel; Barinov, Alexei; de Hosson, Jeff Th. M.; Stöhr, Meike; Rudolf, Petra

    2013-09-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron spectromicroscopy, while the structural and crystalline properties are studied by TEM and Raman spectroscopy. We demonstrate that the suspended graphene membrane locally shows electronic properties comparable with those of samples prepared by micromechanical cleaving of graphite. Measurements show that the area of high quality suspended graphene is limited by the folding of the graphene during the transfer.

  11. Microscopic characterisation of suspended graphene grown by chemical vapour deposition.

    Science.gov (United States)

    Bignardi, Luca; van Dorp, Willem F; Gottardi, Stefano; Ivashenko, Oleksii; Dudin, Pavel; Barinov, Alexei; De Hosson, Jeff Th M; Stöhr, Meike; Rudolf, Petra

    2013-10-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron spectromicroscopy, while the structural and crystalline properties are studied by TEM and Raman spectroscopy. We demonstrate that the suspended graphene membrane locally shows electronic properties comparable with those of samples prepared by micromechanical cleaving of graphite. Measurements show that the area of high quality suspended graphene is limited by the folding of the graphene during the transfer. PMID:23945527

  12. Chemical vapour deposited diamonds for dosimetry of radiotherapeutical beams

    International Nuclear Information System (INIS)

    This paper deals with the application of synthetic diamond detectors to the clinical dosimetry of photon and electron beams. It has been developed in the frame of INFN CANDIDO project and MURST Cofin. Diamonds grown with CVD (Chemical Vapour Deposition) technique have been studied; some of them are commercial samples while others have been locally synthesised. Experiments have been formed using both on-line and off-line approaches. For the off-line measurements, TL (thermoluminescent) and TSC (thermally stimulated current) techniques have been used

  13. Ballistic transport in graphene grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ∼1 μm. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene

  14. Plasma-enhanced chemical vapor deposition of multiwalled carbon nanofibers

    Science.gov (United States)

    Matthews, Kristopher; Cruden, Brett A.; Chen, Bin; Meyyappan, M.; Delzeit, Lance

    2002-01-01

    Plasma-enhanced chemical vapor deposition is used to grow vertically aligned multiwalled carbon nanofibers (MWNFs). The graphite basal planes in these nanofibers are not parallel as in nanotubes; instead they exhibit a small angle resembling a stacked cone arrangement. A parametric study with varying process parameters such as growth temperature, feedstock composition, and substrate power has been conducted, and these parameters are found to influence the growth rate, diameter, and morphology. The well-aligned MWNFs are suitable for fabricating electrode systems in sensor and device development.

  15. Modeling chemical vapor deposition of silicon dioxide in microreactors at atmospheric pressure

    International Nuclear Information System (INIS)

    We developed a multiphysics mathematical model for simulation of silicon dioxide Chemical Vapor Deposition (CVD) from tetraethyl orthosilicate (TEOS) and oxygen mixture in a microreactor at atmospheric pressure. Microfluidics is a promising technology with numerous applications in chemical synthesis due to its high heat and mass transfer efficiency and well-controlled flow parameters. Experimental studies of CVD microreactor technology are slow and expensive. Analytical solution of the governing equations is impossible due to the complexity of intertwined non-linear physical and chemical processes. Computer simulation is the most effective tool for design and optimization of microreactors. Our computational fluid dynamics model employs mass, momentum and energy balance equations for a laminar transient flow of a chemically reacting gas mixture at low Reynolds number. Simulation results show the influence of microreactor configuration and process parameters on SiO2 deposition rate and uniformity. We simulated three microreactors with the central channel diameter of 5, 10, 20 micrometers, varying gas flow rate in the range of 5-100 microliters per hour and temperature in the range of 300-800 °C. For each microchannel diameter we found an optimal set of process parameters providing the best quality of deposited material. The model will be used for optimization of the microreactor configuration and technological parameters to facilitate the experimental stage of this research

  16. Nitrogen-doped graphene by microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Rapid synthesis of nitrogen-doped, few-layer graphene films on Cu foil is achieved by microwave plasma chemical vapor deposition. The films are doped during synthesis by introduction of nitrogen gas in the reactor. Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and scanning tunneling microscopy reveal crystal structure and chemical characteristics. Nitrogen concentrations up to 2 at.% are observed, and the limit is linked to the rigidity of graphene films on copper surfaces that impedes further nitrogen substitutions of carbon atoms. The entire growth process requires only a few minutes without supplemental substrate heating and offers a promising path toward large-scale synthesis of nitrogen-doped graphene films. - Highlights: ► Rapid synthesis of nitrogen doped few layer graphene on Cu foil. ► Defect density increment on 2% nitrogen doping. ► Nitrogen doped graphene is a good protection to the copper metallic surface

  17. Aerosol assisted chemical vapor deposition using nanoparticle precursors: a route to nanocomposite thin films.

    Science.gov (United States)

    Palgrave, Robert G; Parkin, Ivan P

    2006-02-01

    Gold nanoparticle and gold/semiconductor nanocomposite thin films have been deposited using aerosol assisted chemical vapor deposition (CVD). A preformed gold colloid in toluene was used as a precursor to deposit gold films onto silica glass. These nanoparticle films showed the characteristic plasmon absorption of Au nanoparticles at 537 nm, and scanning electron microscopic (SEM) imaging confirmed the presence of individual gold particles. Nanocomposite films were deposited from the colloid concurrently with conventional CVD precursors. A film of gold particles in a host tungsten oxide matrix resulted from co-deposition with [W(OPh)(6)], while gold particles in a host titania matrix resulted from co-deposition with [Ti(O(i)Pr)(4)]. The density of Au nanoparticles within the film could be varied by changing the Au colloid concentration in the original precursor solution. Titania/gold composite films were intensely colored and showed dichromism: blue in transmitted light and red in reflected light. They showed metal-like reflection spectra and plasmon absorption. X-ray photoelectron spectroscopy and energy-dispersive X-ray analysis confirmed the presence of metallic gold, and SEM imaging showed individual Au nanoparticles embedded in the films. X-ray diffraction detected crystalline gold in the composite films. This CVD technique can be readily extended to produce other nanocomposite films by varying the colloids and precursors used, and it offers a rapid, convenient route to nanoparticle and nanocomposite thin films. PMID:16448130

  18. Surface engineering of biaxial Gd2Zr2O7 thin films deposited on Ni–5at%W substrates by a chemical solution method

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude; Liu, Min; Suo, Hongli

    2012-01-01

    The surface texture and morphology of thin films play an essential role in determining their properties. In this study, local features in the film surface of crystallized Gd2Zr2O7 (GZO) films with a thickness gradient are investigated by means of scanning electron microscopy and electron...... ordered crystal structure along the film thickness observed by a transmission electron microscope. On the basis of the enhanced understanding of the crystallization processes, we demonstrate a possibility of engineering the surface morphology and texture in the film deposited on technical substrates using...... backscatter diffraction. A strong dependence of the morphology and texture on the film thickness is observed, mainly due to (i) the transition of growth mode associated with the critical film thickness, i.e., increasing the film thickness leads to the grain morphology changing from 2-dimensional discs (highly...

  19. Chemical vapor deposition of conformal, functional, and responsive polymer films.

    Science.gov (United States)

    Alf, Mahriah E; Asatekin, Ayse; Barr, Miles C; Baxamusa, Salmaan H; Chelawat, Hitesh; Ozaydin-Ince, Gozde; Petruczok, Christy D; Sreenivasan, Ramaswamy; Tenhaeff, Wyatt E; Trujillo, Nathan J; Vaddiraju, Sreeram; Xu, Jingjing; Gleason, Karen K

    2010-05-11

    Chemical vapor deposition (CVD) polymerization utilizes the delivery of vapor-phase monomers to form chemically well-defined polymeric films directly on the surface of a substrate. CVD polymers are desirable as conformal surface modification layers exhibiting strong retention of organic functional groups, and, in some cases, are responsive to external stimuli. Traditional wet-chemical chain- and step-growth mechanisms guide the development of new heterogeneous CVD polymerization techniques. Commonality with inorganic CVD methods facilitates the fabrication of hybrid devices. CVD polymers bridge microfabrication technology with chemical, biological, and nanoparticle systems and assembly. Robust interfaces can be achieved through covalent grafting enabling high-resolution (60 nm) patterning, even on flexible substrates. Utilizing only low-energy input to drive selective chemistry, modest vacuum, and room-temperature substrates, CVD polymerization is compatible with thermally sensitive substrates, such as paper, textiles, and plastics. CVD methods are particularly valuable for insoluble and infusible films, including fluoropolymers, electrically conductive polymers, and controllably crosslinked networks and for the potential to reduce environmental, health, and safety impacts associated with solvents. Quantitative models aid the development of large-area and roll-to-roll CVD polymer reactors. Relevant background, fundamental principles, and selected applications are reviewed. PMID:20544886

  20. Neutron detectors made from chemically vapor deposited semiconductors

    International Nuclear Information System (INIS)

    In this paper, the authors present the results of investigations on the use of semiconductors deposited by chemical vapor deposition (CVD) for the fabrication of neutron detectors. For this purpose, 20 microm thick hydrogenated amorphous silicon (a-Si:H) pin diodes and 100 microm thick polycrystalline diamond resistive detectors were fabricated. The detectors were coupled to a neutron-charged particle converter: a layer of either gadolinium or boron (isotope 10 enriched) deposited by evaporation. They have demonstrated the capability of such neutron detectors to operate at neutron fluxes ranging from 101 to 106 neutrons/cm2.s. The fabrication of large area detectors for neutron counting or cartography through the use of multichannel reading circuits is discussed. The advantages of these detectors include the ability to produce large area detectors at low cost, radiation hardness (∼ 4 Mrad for a-Si:H and ∼ 100 Mrad for diamond), and for diamond, operation at temperatures up to 500 C. These properties enable the use of these devices for neutron detection in harsh environments. Thermal neutron detection efficiency up to 22% and 3% are expected by coupling a-Si:H diodes and diamond detectors to 3 microm thick gadolinium (isotope 157) and 2 microm thick boron layers, respectively

  1. Coating particles by chemical vapor deposition in fluidized bed reactors

    International Nuclear Information System (INIS)

    A technique to deposit a thin, adherent, uniformly dispersed coating onto the individual particles in a batch of granular or powdered material is described. We have been able to apply successfully a number of coatings to a variety of particulate materials using a fluidized-bed chemical vapor deposition (CVD) technique. By means of this technique we used tri-isobutylaluminum to apply adherent coatings of aluminum on powdered mica and powdered nickel. The powdered mica was also coated with titanium in a fluidized bed reactor in which titanium precursors were generated in situ by the reaction between HCl and metallic titanium. Post treatment of the titanium coated mica with ammonia produced agglomerates coated with TiN. These systems demonstrate the potential utility of the fluidized bed reactor for depositing a variety of coatings onto metallic and non-metallic dispersed materials. Preparation of such coated powders is likely to be valuable in a variety of industrial applications, such as the manufacture of composite structures. (orig.)

  2. Solvent-assisted dewetting during chemical vapor deposition.

    Science.gov (United States)

    Chen, Xichong; Anthamatten, Mitchell

    2009-10-01

    This study examines the use of a nonreactive solvent vapor, tert-butanol, during initiated chemical vapor deposition (iCVD) to promote polymer film dewetting. iCVD is a solventless technique to grow polymer thin films directly from gas phase feeds. Using a custom-built axisymmetric hot-zone reactor, smooth poly(methyl methacrylate) films are grown from methyl methacrylate (MMA) and tert-butyl peroxide (TBPO). When solvent vapor is used, nonequilibrium dewetted structures comprising of randomly distributed polymer droplets are observed. The length scale of observed topographies, determined using power spectral density (PSD) analysis, ranges from 5 to 100 microm and is influenced by deposition conditions, especially the carrier gas and solvent vapor flow rates. The use of a carrier gas leads to faster deposition rates and suppresses thin film dewetting. The use of solvent vapor promotes dewetting and leads to larger length scales of the dewetted features. Control over lateral length scale is demonstrated by preparation of hierarchal "bump on bump" topographies. Vapor-induced dewetting is demonstrated on silicon wafer substrate with a native oxide layer and also on hydrophobically modified substrate prepared using silane coupling. Autophobic dewetting of PMMA from SiOx/Si during iCVD is attributed to a thin film instability driven by both long-range van der Waals forces and short-range polar interactions. PMID:19670895

  3. Structural, electrical and optical properties of copper selenide thin films deposited by chemical bath deposition technique

    International Nuclear Information System (INIS)

    A low cost chemical bath deposition (CBD) technique has been used for the preparation of Cu2-xSe thin films on glass substrates. Structural, electrical and optical properties of these films were investigated. X-ray diffraction (XRD) study of the Cu2-xSe films annealed at 523K suggests a cubic structure with a lattice constant of 5.697A. Chemical composition was investigated by X-ray photoelectron spectroscopy (XPS). It reveals that absorbed oxygen in the film decreases remarkably on annealing above 423K. The Cu/Se ratio was observed to be the same in as-deposited and annealed films. Both as- deposited and annealed films show very low resistivity in the range of (0.04- 0.15) x 10-5 Ω-m. Transmittance and Reflectance were found in the range of 5-50% and 2-20% respectively. Optical absorption of the films results from free carrier absorption in the near infrared region with absorption coefficient of ∼108 m-1. The band gap for direct transition, Eg.dir varies in the range of 2.0-2.3eV and that for indirect transition Eg.indir is in the range of 1.25-1.5eV.1. (author)

  4. Low resistance polycrystalline diamond thin films deposited by hot filament chemical vapour deposition

    Indian Academy of Sciences (India)

    Mahtab Ullah; Ejaz Ahmed; Abdelbary Elhissi; Waqar Ahmed

    2014-05-01

    Polycrystalline diamond thin films with outgrowing diamond (OGD) grains were deposited onto silicon wafers using a hydrocarbon gas (CH4) highly diluted with H2 at low pressure in a hot filament chemical vapour deposition (HFCVD) reactor with a range of gas flow rates. X-ray diffraction (XRD) and SEM showed polycrystalline diamond structure with a random orientation. Polycrystalline diamond films with various textures were grown and (111) facets were dominant with sharp grain boundaries. Outgrowth was observed in flowerish character at high gas flow rates. Isolated single crystals with little openings appeared at various stages at low gas flow rates. Thus, changing gas flow rates had a beneficial influence on the grain size, growth rate and electrical resistivity. CVD diamond films gave an excellent performance for medium film thickness with relatively low electrical resistivity and making them potentially useful in many industrial applications.

  5. Thin films of barium fluoride scintillator deposited by chemical vapor deposition

    International Nuclear Information System (INIS)

    We have used metal-organic chemical vapor deposition (MOCVD) technology to coat optical substrates with thin (≅ 1-10 μm thick) films of inorganic BaF2 scintillator. Scanning electron microscope (SEM) photographs indicate that high-quality epitaxial crystalline film growth was achieved, with surface defects typically smaller than optical wavelengths. The scintillation light created by the deposition of ionizing radiation in the scintillating films was measured with a photomultiplier and shown to be similar to bulk melt-grown crystals. The results demonstrate the potential of these composite optical materials for planar and fiber scintillation radiation detectors in high energy and nuclear physics, synchrotron radiation research, and in radiation and X-ray imaging and monitoring. (orig.)

  6. The occurrence and origin of solutions in the Gorleben salt deposit

    International Nuclear Information System (INIS)

    In order to judge the usefulness of a salt deposit as a store for radioactive waste, it is necessary to examine the origin of all parts of the salt deposit. Only this scientific approach corresponds to the present state of geology. The article concerns the questions on the origin of the salt solutions found in the Gorleben salt deposit and the consequences from the occurrence of solutions in a salt deposit for final storage. (DG)

  7. Chemical models for martian weathering profiles: Insights into formation of layered phyllosilicate and sulfate deposits

    Science.gov (United States)

    Zolotov, Mikhail Yu.; Mironenko, Mikhail V.

    2016-09-01

    Numerical chemical models for water-basalt interaction have been used to constrain the formation of stratified mineralogical sequences of Noachian clay-bearing rocks exposed in the Mawrth Vallis region and in other places on cratered martian highlands. The numerical approaches are based on calculations of water-rock type chemical equilibria and models which include rates of mineral dissolution. Results show that the observed clay-bearing sequences could have formed through downward percolation and neutralization of acidic H2SO4-HCl solutions. A formation of weathering profiles by slightly acidic fluids equilibrated with current atmospheric CO2 requires large volumes of water and is inconsistent with observations. Weathering by solutions equilibrated with putative dense CO2 atmospheres leads to consumption of CO2 to abundant carbonates which are not observed in clay stratigraphies. Weathering by H2SO4-HCl solutions leads to formation of amorphous silica, Al-rich clays, ferric oxides/oxyhydroxides, and minor titanium oxide and alunite at the top of weathering profiles. Mg-Fe phyllosilicates, Ca sulfates, zeolites, and minor carbonates precipitate from neutral and alkaline solutions at depth. Acidic weathering causes leaching of Na, Mg, and Ca from upper layers and accumulation of Mg-Na-Ca sulfate-chloride solutions at depth. Neutral MgSO4 type solutions dominate in middle parts of weathering profiles and could occur in deeper layers owing to incomplete alteration of Ca minerals and a limited trapping of Ca to sulfates. Although salts are not abundant in the Noachian geological formations, the results suggest the formation of Noachian salty solutions and their accumulation at depth. A partial freezing and migration of alteration solutions could have separated sulfate-rich compositions from low-temperature chloride brines and contributed to the observed diversity of salt deposits. A Hesperian remobilization and release of subsurface MgSO4 type solutions into newly

  8. Highly oriented CdS films deposited by an ammonia-free chemical bath method

    International Nuclear Information System (INIS)

    In this work we report an ammonia-free chemical bath method to deposit highly oriented CdS films on glass substrates. The method is based in the substitution of ammonia by sodium citrate as the complexing agent of cadmium ions in the reaction solution. We compared the physical properties of the CdS films obtained by this method to those of CdS films obtained by a traditional method which uses the thiourea-ammonia system. We found that [0 0 2] crystalline orientation is higher in the films obtained by the ammonia-free method than in the ones obtained by the traditional method

  9. Highly oriented CdS films deposited by an ammonia-free chemical bath method

    Energy Technology Data Exchange (ETDEWEB)

    Ortuno Lopez, M.B.; Valenzuela-Jauregui, J.J.; Sotelo-Lerma, M.; Mendoza-Galvan, A.; Ramirez-Bon, R

    2003-04-01

    In this work we report an ammonia-free chemical bath method to deposit highly oriented CdS films on glass substrates. The method is based in the substitution of ammonia by sodium citrate as the complexing agent of cadmium ions in the reaction solution. We compared the physical properties of the CdS films obtained by this method to those of CdS films obtained by a traditional method which uses the thiourea-ammonia system. We found that [0 0 2] crystalline orientation is higher in the films obtained by the ammonia-free method than in the ones obtained by the traditional method.

  10. Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds.

    Science.gov (United States)

    Zu, Guoqing; Shen, Jun; Wang, Wenqin; Zou, Liping; Lian, Ya; Zhang, Zhihua

    2015-03-11

    Silica-titania composite aerogels were synthesized by chemical liquid deposition of titania onto nanoporous silica scaffolds. This novel deposition process was based on chemisorption of partially hydrolyzed titanium alkoxides from solution onto silica nanoparticle surfaces and subsequent hydrolysis and condensation to afford titania nanoparticles on the silica surface. The titania is homogeneously distributed in the silica-titania composite aerogels, and the titania content can be effectively controlled by regulating the deposition cycles. The resultant composite aerogel with 15 deposition cycles possessed a high specific surface area (SSA) of 425 m(2)/g, a small particle size of 5-14 nm, and a large pore volume and pore size of 2.41 cm(3)/g and 18.1 nm, respectively, after heat treatment at 600 °C and showed high photocatalytic activity in the photodegradation of methylene blue under UV-light irradiation. Its photocatalytic activity highly depends on the deposition cycles and heat treatment. The combination of small particle size, high SSA, and enhanced crystallinity after heat treatment at 600 °C contributes to the excellent photocatalytic property of the silica-titania composite aerogel. The higher SSAs compared to those of the reported titania aerogels (silica-titania aerogels promising candidates as photocatalysts. PMID:25664480

  11. Properties of nitrogen doped silicon films deposited by low-pressure chemical vapor deposition from silane and ammonia

    OpenAIRE

    Temple Boyer, Pierre; Jalabert, L.; Masarotto, L.; Alay, Josep Lluís; Morante i Lleonart, Joan Ramon

    2000-01-01

    Nitrogen doped silicon (NIDOS) films have been deposited by low-pressure chemical vapor deposition from silane SiH4 and ammonia NH3 at high temperature (750°C) and the influences of the NH3/SiH4 gas ratio on the films deposition rate, refractive index, stoichiometry, microstructure, electrical conductivity, and thermomechanical stress are studied. The chemical species derived from silylene SiH2 into the gaseous phase are shown to be responsible for the deposition of NIDOS and/or (silicon rich...

  12. Chemical vapour deposition synthetic diamond: materials, technology and applications

    Science.gov (United States)

    Balmer, R. S.; Brandon, J. R.; Clewes, S. L.; Dhillon, H. K.; Dodson, J. M.; Friel, I.; Inglis, P. N.; Madgwick, T. D.; Markham, M. L.; Mollart, T. P.; Perkins, N.; Scarsbrook, G. A.; Twitchen, D. J.; Whitehead, A. J.; Wilman, J. J.; Woollard, S. M.

    2009-09-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product.

  13. Field emission properties of chemical vapor deposited individual graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zamri Yusop, Mohd [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Department of Materials, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Yaakob, Yazid; Takahashi, Chisato; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan)

    2014-03-03

    Here, we report field emission (FE) properties of a chemical vapor deposited individual graphene investigated by in-situ transmission electron microscopy. Free-standing bilayer graphene is mounted on a cathode microprobe and FE processes are investigated varying the vacuum gap of cathode and anode. The threshold field for 10 nA current were found to be 515, 610, and 870 V/μm for vacuum gap of 400, 300, and 200 nm, respectively. It is observed that the structural stability of a high quality bilayer graphene is considerably stable during emission process. By contacting the nanoprobe with graphene and applying a bias voltage, structural deformation and buckling are observed with significant rise in temperature owing to Joule heating effect. The finding can be significant for practical application of graphene related materials in emitter based devices as well as understanding the contact resistance influence and heating effect.

  14. Thermoluminescence characterisation of chemical vapour deposited diamond films

    CERN Document Server

    Mazzocchi, S; Bucciolini, M; Cuttone, G; Pini, S; Sabini, M G; Sciortino, S

    2002-01-01

    The thermoluminescence (TL) characteristics of a set of six chemical vapour deposited diamond films have been studied with regard to their use as off-line dosimeters in radiotherapy. The structural characterisation has been performed by means of Raman spectroscopy. Their TL responses have been tested with radiotherapy beams ( sup 6 sup 0 Co photons, photons and electrons from a linear accelerator (Linac), 26 MeV protons from a TANDEM accelerator) in the dose range 0.1-7 Gy. The dosimetric characterisation has yielded a very good reproducibility, a very low dependence of the TL response on the type of particle and independence of the radiation energy. The TL signal is not influenced by the dose rate and exhibits a very low thermal fading. Moreover, the sensitivity of the diamond samples compares favourably with that of standard TLD100 dosimeters.

  15. Thermoluminescence of Zn O thin films deposited by chemical bath

    International Nuclear Information System (INIS)

    Full text: Zn O films on Si were synthesized using a deposition method by chemical bath and thermally treated at 900 degrees C for 12 h in air. The morphological characterization by scanning electron microscopy reveals that uniform films were obtained. To investigate the thermoluminescent properties of the films were exposed to irradiation with beta particles with doses in the range from 0.5 to 128 Gy. The brightness curves obtained using a heating rate of 5 degrees C have two peaks, one at 124 and another at 270 degrees C, and a linear dependence of the integrated thermoluminescence as a function of dose. The second maximum reveals the existence of localized trapping states of potential utility in thermoluminescent dosimetry. (Author)

  16. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  17. Characterization of Carbon Nanotubes Grown by Chemical Vapor Deposition

    Science.gov (United States)

    Cochrane, J. C.; Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Since the superior properties of multi-wall carbon nanotubes (MWCNT) could improve numerous devices such as electronics and sensors, many efforts have been made in investigating the growth mechanism of MWCNT to synthesize high quality MWCNT. Chemical vapor deposition (CVD) is widely used for MWCNT synthesis, and scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) are useful methods for analyzing the structure, morphology and composition of MWCNT. Temperature and pressure are two important growth parameters for fabricating carbon nanotubes. In MWCNT growth by CVD, the plasma assisted method is normally used for low temperature growth. However a high temperature environment is required for thermal CVD. A systematic study of temperature and pressure-dependence is very helpful to understanding MWCNT growth. Transition metal particles are commonly used as catalysis in carbon nanotube growth. It is also interesting to know how temperature and pressure affect the interface of carbon species and catalyst particles

  18. Structural properties of zinc oxide deposited using atmospheric pressure combustion chemical vapour deposition

    International Nuclear Information System (INIS)

    In this study the deposition of thin zinc oxide (ZnO) films under atmospheric pressure conditions was investigated. The deposition technique applied was combustion chemical vapour deposition (CCVD), at which a propane–air mixture was combusted in a burner. Dissolved zinc nitrate was used as precursor, which was guided as aerosol droplets by the processing gas flow directly into the reaction zone. Fundamental investigations were performed to form undoped ZnO. The structural properties of the films were analysed in dependence of the substrate temperature during the coating process. The presence of crystalline ZnO structures was proved and differences in film growth and crystallite sizes are revealed. Additionally, the particles generated by the CCVD-flame are characterised. The thin films showed a slight excess of Zn and several states of binding energy could be observed by fitting the core level spectra. Scanning and transmission electron microscopy also indicated ordered structures and additionally different orientations of crystallites were observed. - Highlights: • Columnar growth structures of ZnO by CCVD were observed. • The presence of polycrystalline ZnO with (002) as main orientation was confirmed. • Initial particles significantly differ from crystallite sizes of the resulting films. • The films show an excess of Zn with a Zn-to-O ratio of around 1.7

  19. Characterisation of silicon carbide films deposited by plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    The paper presents a characterisation of amorphous silicon carbide films deposited in plasma-enhanced chemical vapour deposition (PECVD) reactors for MEMS applications. The main parameter was optimised in order to achieve a low stress and high deposition rate. We noticed that the high frequency mode (13.56 MHz) gives a low stress value which can be tuned from tensile to compressive by selecting the correct power. The low frequency mode (380 kHz) generates high compressive stress (around 500 MPa) due to ion bombardment and, as a result, densification of the layer achieved. Temperature can decrease the compressive value of the stress (due to annealing effect). A low etching rate of the amorphous silicon carbide layer was noticed for wet etching in KOH 30% at 80 oC (around 13 A/min) while in HF 49% the layer is practically inert. A very slow etching rate of amorphous silicon carbide layer in XeF2 -7 A/min- was observed. The paper presents an example of this application: PECVD-amorphous silicon carbide cantilevers fabricated using surface micromachining by dry-released technique in XeF2

  20. Chemical vapor deposition coatings for oxidation protection of titanium alloys

    Science.gov (United States)

    Cunnington, G. R.; Robinson, J. C.; Clark, R. K.

    1991-01-01

    Results of an experimental investigation of the oxidation protection afforded to Ti-14Al-21Nb and Ti-14Al-23Nb-2V titanium aluminides and Ti-17Mo-3Al-3Nb titanium alloy by aluminum-boron-silicon and boron-silicon coatings are presented. These coatings are applied by a combination of physical vapor deposition (PVD) and chemical vapor deposition (CVD) processes. The former is for the application of aluminum, and the latter is for codeposition of boron and silicon. Coating thickness is in the range of 2 to 7 microns, and coating weights are 0.6 to 2.0 mg/sq cm. Oxidation testing was performed in air at temperatures to 1255 K in both static and hypersonic flow environments. The degree of oxidation protection provided by the coatings is determined from weight change measurements made during the testing and post test compositional analyses. Temperature-dependent total normal emittance data are also presented for four coating/substrate combinations. Both types of coatings provided excellent oxidation protection for the exposure conditions of this investigation. Total normal emittances were greater than 0.80 in all cases.

  1. Chemical vapour deposition of diamond coatings onto molybdenum dental tools

    International Nuclear Information System (INIS)

    The growth of polycrystalline diamond films onto molybdenum rods and dental burrs by using a new hot filament chemical vapour deposition (CVD) system has been investigated. Negative dc bias voltage relative to the filament was applied to the molybdenum substrate prior to deposition. This led to much improved film adhesion and increased nucleation density. There was a factor of four improvement in the adhesive force from 20 to 80 N when a bias voltage of -300 V was employed to the substrate. The CVD coated molybdenum dental burr was found to give much improved performance and lifetime compared to the conventional sintered diamond burr. The CVD diamond burr showed no signs of deterioration even after 1000 operations whereas the conventional sintered diamond burrs were ineffective after between 30 and 60 operations. This represents a 30-fold improvement when CVD is applied. CVD diamond growth onto dental burrs has the potential for replacing exciting technology by achieving better performance and lifetime in a cost-effective manner

  2. Thirty Gigahertz Optoelectronic Mixing in Chemical Vapor Deposited Graphene.

    Science.gov (United States)

    Montanaro, Alberto; Mzali, Sana; Mazellier, Jean-Paul; Bezencenet, Odile; Larat, Christian; Molin, Stephanie; Morvan, Loïc; Legagneux, Pierre; Dolfi, Daniel; Dlubak, Bruno; Seneor, Pierre; Martin, Marie-Blandine; Hofmann, Stephan; Robertson, John; Centeno, Alba; Zurutuza, Amaia

    2016-05-11

    The remarkable properties of graphene, such as broadband optical absorption, high carrier mobility, and short photogenerated carrier lifetime, are particularly attractive for high-frequency optoelectronic devices operating at 1.55 μm telecom wavelength. Moreover, the possibility to transfer graphene on a silicon substrate using a complementary metal-oxide-semiconductor-compatible process opens the ability to integrate electronics and optics on a single cost-effective chip. Here, we report an optoelectronic mixer based on chemical vapor-deposited graphene transferred on an oxidized silicon substrate. Our device consists in a coplanar waveguide that integrates a graphene channel, passivated with an atomic layer-deposited Al2O3 film. With this new structure, 30 GHz optoelectronic mixing in commercially available graphene is demonstrated for the first time. In particular, using a 30 GHz intensity-modulated optical signal and a 29.9 GHz electrical signal, we show frequency downconversion to 100 MHz. These results open promising perspectives in the domain of optoelectronics for radar and radio-communication systems. PMID:27043922

  3. Pattern Dependency and Loading Effect of Pure-Boron-Layer Chemical-Vapor Deposition

    NARCIS (Netherlands)

    Mohammadi, V.; De Boer, W.B.; Scholtes, T.L.M.; Nanver, L.K.

    2012-01-01

    The pattern dependency of pure-boron (PureB) layer chemical-vapor Deposition (CVD) is studied with respect to the correlation between the deposition rate and features like loading effects, deposition parameters and deposition window sizes. It is shown experimentally that the oxide coverage ratio and

  4. Selected area chemical vapor deposition of thin films for conductometric microelectronic chemical sensors

    Science.gov (United States)

    Majoo, Sanjeev

    Recent advances in microelectronics and silicon processing have been exploited to fabricate miniaturized chemical sensors. Although the capability of chemical sensing technology has grown steadily, it has been outpaced by the increasing demands for more reliable, inexpensive, and selective sensors. The diversity of applications requires the deployment of different sensing materials that have rich interfacial chemistry. However, several promising sensor materials are often incompatible with silicon micromachining and their deposition requires complicated masking steps. The new approach described here is to first micromachine a generic, instrumented, conductometric, microelectronic sensor platform that is fully functional except for the front-end sensing element. This generic platform contains a thin dielectric membrane, an integrated boron-doped silicon heater, and conductance electrodes. The membrane has low thermal mass and excellent thermal isolation. A proprietary selected-area chemical vapor deposition (SACVD) process in a cold-wall reactor at low pressures was then used to achieve maskless, self-lithographic deposition of thin films. The temperature-programmable integrated microheater initiates localized thermal decomposition/reaction of suitable CVD precursors confined to a small heated area (500 mum in diameter), and this creates the active sensing element. Platinum and titania (TiOsb2) films were deposited from pyrolysis of organometallic precursors, tetrakistrifluorophosphine platinum Pt(PFsb3)sb4 and titanium tetraisopropoxide Ti(OCH(CHsb3)sb2rbrack sb4, respectively. Deposition of gold metal films from chlorotriethylphosphine gold (Csb2Hsb5)sb3PAuCl precursor was also attempted but without success. The conductance electrodes permit in situ monitoring of film growth. The as-deposited films were characterized in situ by conductance measurements and optical microscopy and ex situ by electron microscopy and spectroscopy methods. Devices equipped with

  5. Molecular Dynamics Simulations of Solutions at Constant Chemical Potential

    CERN Document Server

    Perego, Claudio; Parrinello, Michele

    2015-01-01

    Molecular Dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, that range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, that influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a Grand-Canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work we propose the C$\\mu$MD method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the C$\\mu$MD method to the paradigmatic case of urea crystall...

  6. Chemically deposited Sb{sub 2}S{sub 3} thin films for optical recording

    Energy Technology Data Exchange (ETDEWEB)

    Shaji, S; Arato, A; Castillo, G Alan; Palma, M I Mendivil; Roy, T K Das; Krishnan, B [Facultad de IngenierIa Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P- 66450 (Mexico); O' Brien, J J; Liu, J, E-mail: bkrishnan@fime.uanl.m [Center for Nanoscience and Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One Univ. Blvd., St. Louis, MO - 63121 (United States)

    2010-02-24

    Laser induced changes in the properties of Sb{sub 2}S{sub 3} thin films prepared by chemical bath deposition are described in this paper. Sb{sub 2}S{sub 3} thin films of thickness 550 nm were deposited from a solution containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3} at 27 {sup 0}C for 5 h. These thin films were irradiated by a 532 nm continuous wave laser beam under different conditions at ambient atmosphere. X-ray diffraction analysis showed amorphous to polycrystalline transformation due to laser exposure of these thin films. Morphology and composition of these films were described. Optical properties of these films before and after laser irradiation were analysed. The optical band gap of the material was decreased due to laser induced crystallization. The results obtained confirm that there is further scope for developing this material as an optical recording media.

  7. CHEMICAL EQUILIBRIUM OF SOIL SOLUTION IN STEPPE ZONE SOIL

    OpenAIRE

    A. A. Batukaev; A. P. Endovitsky; T. M. Minkina; V. P. Kalinichenko; Z. S. Dikaev; S. N. Sushkova

    2014-01-01

    Dynamics of material composition, migration and accumulation of salts is determined by chemical equilibrium in soil solution. Soil solution contains associated electrically neutral ion pairs CaCO30; CaSO40, MgCO30, MgSO40, charged ion pairs CaHCO3+, MgHCO3...

  8. Laser diagnostics of chemical vapour deposition of diamond films

    CERN Document Server

    Wills, J B

    2002-01-01

    Cavity ring down spectroscopy (CRDS) has been used to make diagnostic measurements of chemically activated CH sub 4 / H sub 2 gas mixtures during the chemical vapour deposition (CVD) of thin diamond films. Absolute absorbances, concentrations and temperatures are presented for CH sub 3 , NH and C sub 2 H sub 2 in a hot filament (HF) activated gas mixture and CH, C sub 2 and C sub 2 H sub 2 in a DC arc plasma jet activated mixture. Measurements of the radical species were made using a pulsed dye laser system to generate tuneable visible and UV wavelengths. These species have greatest concentration in the hottest, activated regions of the reactors. Spatial profiling of the number densities of CH sub 3 and NH radicals have been used as stringent tests of predictions of radical absorbance and number densities made by 3-D numerical simulations, with near quantitative agreement. O sub 2 has been shown to reside in the activated region of the Bristol DC arc jet at concentrations (approx 10 sup 1 sup 3 molecules / cm...

  9. Vertically aligned peptide nanostructures using plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Vasudev, Milana C; Koerner, Hilmar; Singh, Kristi M; Partlow, Benjamin P; Kaplan, David L; Gazit, Ehud; Bunning, Timothy J; Naik, Rajesh R

    2014-02-10

    In this study, we utilize plasma-enhanced chemical vapor deposition (PECVD) for the deposition of nanostructures composed of diphenylalanine. PECVD is a solvent-free approach and allows sublimation of the peptide to form dense, uniform arrays of peptide nanostructures on a variety of substrates. The PECVD deposited d-diphenylalanine nanostructures have a range of chemical and physical properties depending on the specific discharge parameters used during the deposition process. PMID:24400716

  10. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  11. Evaluation of chemical and structural properties of germanium-carbon coatings deposited by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, Hossein, E-mail: h.jamali@mut-es.ac.ir; Mozafarinia, Reza; Eshaghi, Akbar

    2015-10-15

    Germanium-carbon coatings were deposited on silicon and glass substrates by plasma enhanced chemical vapor deposition (PECVD) using three different flow ratios of GeH{sub 4} and CH{sub 4} precursors. Elemental analysis, structural evaluation and microscopic investigation of coatings were performed using laser-induced breakdown spectroscopy (LIBS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. Based on the results, the coatings exhibited a homogeneous and dense structure free of pores with a very good adhesion to substrate. The structural evaluation revealed that the germanium-carbon coatings were a kind of a Ge-rich composite material containing the amorphous and crystalline germanium and amorphous carbon with the mixture of Ge–Ge, Ge–C, C–C, Ge–H and C–H bonds. The result suggested that the amorphisation of the coatings could be increased with raising CH{sub 4}:GeH{sub 4} flow rate ratio and subsequently increasing C amount incorporated into the coating. - Highlights: • Germanium-carbon coatings were prepared by PECVD technique. • The germanium-carbon coatings were a kind of composite material. • The amorphisation of the coatings were increased with raising CH{sub 4}:GeH{sub 4} flow ratio.

  12. Evaluation of chemical and structural properties of germanium-carbon coatings deposited by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Germanium-carbon coatings were deposited on silicon and glass substrates by plasma enhanced chemical vapor deposition (PECVD) using three different flow ratios of GeH4 and CH4 precursors. Elemental analysis, structural evaluation and microscopic investigation of coatings were performed using laser-induced breakdown spectroscopy (LIBS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. Based on the results, the coatings exhibited a homogeneous and dense structure free of pores with a very good adhesion to substrate. The structural evaluation revealed that the germanium-carbon coatings were a kind of a Ge-rich composite material containing the amorphous and crystalline germanium and amorphous carbon with the mixture of Ge–Ge, Ge–C, C–C, Ge–H and C–H bonds. The result suggested that the amorphisation of the coatings could be increased with raising CH4:GeH4 flow rate ratio and subsequently increasing C amount incorporated into the coating. - Highlights: • Germanium-carbon coatings were prepared by PECVD technique. • The germanium-carbon coatings were a kind of composite material. • The amorphisation of the coatings were increased with raising CH4:GeH4 flow ratio

  13. Development of a suppression method for deposition of radioactive cobalt after chemical decontamination. (1) Effect of the ferrite film coating on suppression of cobalt deposition

    International Nuclear Information System (INIS)

    In the last decade, chemical decontamination at the beginning of periodical inspection has been applied to many Japanese BWR plants in order to reduce radiation exposure. However, following the chemical decontamination, a rapid dose rate increase can be seen in some plants after just a few operation cycles. Oxide film, which easily incorporates radioactivity, might be formed after the chemical decontamination. We developed a new way to reduce the recontamination after the chemical decontamination to maintain long-term continued decontamination effects without any chemical injections or chemical controls in reactor water during operation. In our approach, a fine ferrite film is formed by the Hitachi Ferrite Coat process after oxide films formed during the plant operation are removed by the chemical decontamination process. We select Fe(HCOO)2 aqueous solution, H2O2, and N2H4 as the treatment chemicals for fine ferrite film formation for suitable BWR plant application. Our laboratory experiment results confirm a 60Co deposition reduction effect of 1/5 compared with that of nontreatment for up to 3,100 hours. The fine ferrite film that was formed on the specimen before the 60Co deposition test remains as a film structure after the test. The corrosion amount of the specimen is suppressed to 1/4 through the effect of the fine ferrite film. (author)

  14. The deposition of highly uniform and adhesive nanocrystalline PbS film from solution

    International Nuclear Information System (INIS)

    Mirror-like PbS films have been deposited by chemical deposition on glass substrates from alkaline chemical bath containing lead nitrate, sodium thiosulfate and 1-thioglycerol, which was used to catalyze the hydrolysis of thiosulfate. Nanostructure characterization was carried out by x-ray diffraction and scanning electron microscopy in order to determine the average crystallite size (61 nm) and study the surface morphologies of the as-deposited films

  15. Functional metal oxide coatings by molecule-based thermal and plasma chemical vapor deposition techniques.

    Science.gov (United States)

    Mathur, S; Ruegamer, T; Donia, N; Shen, H

    2008-05-01

    Deposition of thin films through vaccum processes plays an important role in industrial processing of decorative and functional coatings. Many metal oxides have been prepared as thin films using different techniques, however obtaining compositionally uniform phases with a control over grain size and distribution remains an enduring challenge. The difficulties are largely related to complex compositions of functional oxide materials, which makes a control over kinetics of nucleation and growth processes rather difficult to control thus resulting in non-uniform material and inhomogeneous grain size distribution. Application of tailor-made molecular precursors in low pressure or plasma-enhanced chemical vapor deposition (CVD) techniques offers a viable solution for overcoming thermodynamic impediments involved in thin film growth. In this paper molecule-based CVD of functional coatings is demonstrated for iron oxide (Fe2O3, Fe3O4), vanadium oxide (V2O5, VO2) and hafnium oxide (HfO2) phases followed by the characterization of their microstructural, compositional and functional properties which support the advantages of chemical design in simplifying deposition processes and optimizing functional behavior. PMID:18572690

  16. Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhani, Muhammad F., E-mail: brian@tf.itb.ac.id; Pasaribu, Maruli A. H., E-mail: brian@tf.itb.ac.id; Yuliarto, Brian, E-mail: brian@tf.itb.ac.id; Nugraha, E-mail: brian@tf.itb.ac.id [Advanced Functional Materials Laboratory, Engineering Physics Department Faculty of Industrial Technology, Institut Teknologi Bandung (Indonesia)

    2014-02-24

    ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine) and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure.

  17. Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method

    International Nuclear Information System (INIS)

    ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine) and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure

  18. The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bass, K.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom)

    2015-05-01

    Cadmium sulphide (CdS) thin films were deposited by two different processes, chemical bath deposition (CBD), and pulsed DC magnetron sputtering (PDCMS) on fluorine doped-tin oxide coated glass to assess the potential advantages of the pulsed DC magnetron sputtering process. The structural, optical and morphological properties of films obtained by CBD and PDCMS were investigated using X-ray photoelectron spectroscopy, X-ray diffraction, scanning and transmission electron microscopy, spectroscopic ellipsometry and UV-Vis spectrophotometry. The as-grown films were studied and comparisons were drawn between their morphology, uniformity, crystallinity, and the deposition rate of the process. The highest crystallinity is observed for sputtered CdS thin films. The absorption in the visible wavelength increased for PDCMS CdS thin films, due to the higher density of the films. The band gap measured for the as-grown CBD-CdS is 2.38 eV compared to 2.34 eV for PDCMS-CdS, confirming the higher density of the sputtered thin film. The higher deposition rate for PDCMS is a significant advantage of this technique which has potential use for high rate and low cost manufacturing. - Highlights: • Pulsed DC magnetron sputtering (PDCMS) of CdS films • Chemical bath deposition of CdS films • Comparison between CdS thin films deposited by chemical bath and PDCMS techniques • High deposition rate deposition for PDCMS deposition • Uniform, pinhole free CdS thin films.

  19. Photoluminescence properties of poly (p-phenylene vinylene) films deposited by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gedelian, Cynthia A. [Department of Physics, Applied Physics, and Astronomy, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy 12180-3590, NY (United States); Rajanna, K.C., E-mail: kcrajannaou@yahoo.com [Department of Chemistry, Osmania University, Hyderabad 500007, Andhra Pradesh (India); Premerlani, Brian; Lu, Toh-Ming [Department of Physics, Applied Physics, and Astronomy, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy 12180-3590, NY (United States)

    2014-01-15

    Photoluminescence spectra of PPV at varying thicknesses and temperatures have been studied. A study of the quenching of the polymer film using a modified version of fluorescence spectroscopy reveals interface effects dominating at thicknesses below about 600 Å, while bulk effects dominate at higher thicknesses. The application of the Stern–Volmer equation to solid film is discussed. Stern–Volmer plots were nonlinear with downward deviations at higher thickness of the film which was explained due to self-quenching in films and larger conformational change and increased restriction from change in electron density due to electron transition during excitation in bulk polymer films over 60 nm thick. PPV deposited into porous (∼4 nm in diameter) nanostructured substrate shows a larger 0–0 than 0–1 transition peak intensity and decreased disorder in the films due to structure imposed by substrate matrix. Temperature dependent effects are measured for a film at 500 Å, right on the border between the two areas. PPV films deposited on porous methyl silsesquioxane (MSQ) were also examined in order to compare the flat film to a substrate that allows for the domination of interface effects. The enthalpies of the first two peaks are very similar, but the third peak demonstrates a lower enthalpy and a larger wavelength shift with temperature. Films deposited inside pores show a smaller amount of disorder than flat films. Calculation of the Huang–Rhys factor at varying temperatures for the flat film and film in porous MSQ shows large temperature dependence for the flat film but a smaller amount of disorder in the nanostructured film. -- Highlights: • Poly (p-phenylene vinylene) films deposited by chemical vapor deposition exhibited photoluminescence properties. • Fluorescence spectra of the polymer films revealed interface effects dominating at thicknesses below about 600 Å, while bulk effects dominate at higher thicknesses. • Stern–Volmer plots were

  20. Photoluminescence properties of poly (p-phenylene vinylene) films deposited by chemical vapor deposition

    International Nuclear Information System (INIS)

    Photoluminescence spectra of PPV at varying thicknesses and temperatures have been studied. A study of the quenching of the polymer film using a modified version of fluorescence spectroscopy reveals interface effects dominating at thicknesses below about 600 Å, while bulk effects dominate at higher thicknesses. The application of the Stern–Volmer equation to solid film is discussed. Stern–Volmer plots were nonlinear with downward deviations at higher thickness of the film which was explained due to self-quenching in films and larger conformational change and increased restriction from change in electron density due to electron transition during excitation in bulk polymer films over 60 nm thick. PPV deposited into porous (∼4 nm in diameter) nanostructured substrate shows a larger 0–0 than 0–1 transition peak intensity and decreased disorder in the films due to structure imposed by substrate matrix. Temperature dependent effects are measured for a film at 500 Å, right on the border between the two areas. PPV films deposited on porous methyl silsesquioxane (MSQ) were also examined in order to compare the flat film to a substrate that allows for the domination of interface effects. The enthalpies of the first two peaks are very similar, but the third peak demonstrates a lower enthalpy and a larger wavelength shift with temperature. Films deposited inside pores show a smaller amount of disorder than flat films. Calculation of the Huang–Rhys factor at varying temperatures for the flat film and film in porous MSQ shows large temperature dependence for the flat film but a smaller amount of disorder in the nanostructured film. -- Highlights: • Poly (p-phenylene vinylene) films deposited by chemical vapor deposition exhibited photoluminescence properties. • Fluorescence spectra of the polymer films revealed interface effects dominating at thicknesses below about 600 Å, while bulk effects dominate at higher thicknesses. • Stern–Volmer plots were

  1. Electrical and magnetic properties of La{sub 0.835}Na{sub 0.165}Mn{sub 0.9}RE{sub 0.1}O{sub 3} (RE = Mg, Cr, Ti) films prepared by chemical solution deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Dong Weiwei [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China)], E-mail: wwdong@aiofm.ac.cn; Zhu Xuebin [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Tao Ruhua; Fang Xiaodong [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China)

    2008-07-31

    La{sub 0.835}Na{sub 0.165}Mn{sub 0.9}RE{sub 0.1}O{sub 3} (RE = Mg, Cr, Ti) films were prepared by chemical solution deposition method on LaAlO{sub 3} (100) substrates. All the as-grown thin films are highly (h00) oriented with pseudocubic structure. There is a transition from the paramagnetic to ferromagnetic state in all the samples, but the substitution of Mn{sup 3+} ions by Mg{sup 2+} ions appears spin-glass cluster in the low temperature. Additionally, the sample La{sub 0.835}Na{sub 0.165}Mn{sub 0.9}Mg{sub 0.1}O{sub 3} has the lowest Curie temperature and the metal-insulating transition temperature, and the resistivity is the highest. The resistivity curve exhibits insulating behavior in the temperature range of 100-390 K. The results are discussed in terms of the blocking of the percolative channel and the electric and magnetic disorder because of the substitution of a nonmagnetic ion.

  2. Superhydrophobic poly(vinylidene fluoride) film fabricated by alkali treatment enhancing chemical bath deposition

    International Nuclear Information System (INIS)

    Based on the lotus effect principle, the superhydrophobic poly(vinylidene fluoride) (PVDF) film was successfully prepared by the method of alkali treatment enhancing chemical bath deposition. The surface of PVDF film prepared in this work was constructed by many smooth and regular microreliefs. Oxygen-containing functional groups were introduced in PVDF film by treatment with aqueous NaOH solution. The nano-scale peaks on the top of the microreliefs were implemented by the reaction between dimethyldichlorosilane/methyltrichlorosilane solution and the oxygen-containing functional groups of PVDF film. The micro- and nano-scale structures, similar to the lotus leaf, was clearly observed on PVDF film surface by scanning electronic microscopy (SEM) and atomic force microscope (AFM). The water contact angle and sliding angle on the fabricated lotus-leaf-like PVDF film surface were 157 deg. and 1 deg., respectively, exhibiting superhydrophobic property and self-cleaning property.

  3. Superhydrophobic poly(vinylidene fluoride) film fabricated by alkali treatment enhancing chemical bath deposition

    Science.gov (United States)

    Zheng, Zhenrong; Gu, Zhenya; Huo, Ruiting; Luo, Zhishan

    2010-01-01

    Based on the lotus effect principle, the superhydrophobic poly(vinylidene fluoride) (PVDF) film was successfully prepared by the method of alkali treatment enhancing chemical bath deposition. The surface of PVDF film prepared in this work was constructed by many smooth and regular microreliefs. Oxygen-containing functional groups were introduced in PVDF film by treatment with aqueous NaOH solution. The nano-scale peaks on the top of the microreliefs were implemented by the reaction between dimethyldichlorosilane/methyltrichlorosilane solution and the oxygen-containing functional groups of PVDF film. The micro- and nano-scale structures, similar to the lotus leaf, was clearly observed on PVDF film surface by scanning electronic microscopy (SEM) and atomic force microscope (AFM). The water contact angle and sliding angle on the fabricated lotus-leaf-like PVDF film surface were 157° and 1°, respectively, exhibiting superhydrophobic property and self-cleaning property.

  4. A simple method for chemical bath deposition of electrochromic tungsten oxide films

    International Nuclear Information System (INIS)

    A simple, economical, chemical bath method for depositing tungsten oxide films has been developed. The films have been prepared from aqueous solution containing Na2WO4.2H2O and diethyl sulfate in slightly acidic media at 90-95 deg. C on fluoride doped tin oxide substrates (FTO). The X-ray analysis clearly showed that the films do not correspond to any known tungsten oxide with its experimental d-values and in the text the composition is denoted as WO x. The thin films durability was tested in aqueous solution of LiClO4 (0.1 mol dm-3) for about 7000 cycles followed by cyclic voltammetry which confirmed that the coated material is highly stable. The optical transmittance spectra of colored and bleached states showed significant change in the transmittance, which make these films favorable for electrochromic devices

  5. A simple method for chemical bath deposition of electrochromic tungsten oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Najdoski, Metodija Z. [Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, P.O. Box 162, Arhimedova 5, 1000 Skopje (Macedonia, The Former Yugoslav Republic of)], E-mail: metonajd@iunona.pmf.ukim.edu.mk; Todorovski, Toni [Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, P.O. Box 162, Arhimedova 5, 1000 Skopje (Macedonia, The Former Yugoslav Republic of)

    2007-08-15

    A simple, economical, chemical bath method for depositing tungsten oxide films has been developed. The films have been prepared from aqueous solution containing Na{sub 2}WO{sub 4}.2H{sub 2}O and diethyl sulfate in slightly acidic media at 90-95 deg. C on fluoride doped tin oxide substrates (FTO). The X-ray analysis clearly showed that the films do not correspond to any known tungsten oxide with its experimental d-values and in the text the composition is denoted as WO {sub x}. The thin films durability was tested in aqueous solution of LiClO{sub 4} (0.1 mol dm{sup -3}) for about 7000 cycles followed by cyclic voltammetry which confirmed that the coated material is highly stable. The optical transmittance spectra of colored and bleached states showed significant change in the transmittance, which make these films favorable for electrochromic devices.

  6. Effect of solution conductivity and electrode shape on the deposition of carbon nanotubes from solution using dielectrophoresis

    International Nuclear Information System (INIS)

    Dielectrophoresis (DEP) is a popular technique for fabricating carbon nanotube (CNT) devices. The electric current passing through the solution during DEP creates a temperature gradient, which results in electrothermal fluid flow because of the presence of the electric field. CNT solutions prepared with various methods can have different conductivities and the motion of the solution because of the electrothermal phenomenon can affect the DEP deposition differently in each case. We investigated the effect of this movement in solutions with various levels of conductivity through experiments as well as numerical modeling. Our results show that electrothermal motion in the solution can alter the deposition pattern of the nanotubes drastically for high conductivity solutions, while DEP remains the dominant force when a low conductivity (surfactant-free) solution is used. The extent of effectiveness of each force is discussed in the various cases and the fluid movement model is investigated using two- and three-dimensional finite element simulations. (paper)

  7. Deposition of highly (111)-oriented PZT thin films by using metal organic chemical deposition

    CERN Document Server

    Bu, K H; Choi, D K; Seong, W K; Kim, J D

    1999-01-01

    Lead zirconate titanate (PZT) thin films have been grown on Pt/Ta/SiNx/Si substrates by using metal organic chemical vapor deposition with Pb(C sub 2 H sub 5) sub 4 , Zr(O-t-C sub 4 H sub 9) sub 4 , and Ti(O-i-C sub 3 H sub 7) sub 4 as source materials and O sub 2 as an oxidizing gas. The Zr fraction in the thin films was controlled by varying the flow rate of the Zr source material. The crystal structure and the electrical properties were investigated as functions of the composition. X-ray diffraction analysis showed that at a certain range of Zr fraction, highly (111)-oriented PZT thin films with no pyrochlore phases were deposited. On the other hand, at low Zr fractions, there were peaks from Pb-oxide phases. At high Zr fractions, peaks from pyrochlore phase were seen. The films also showed good electrical properties, such as a high dielectric constant of more than 1200 and a low coercive voltage of 1.35 V.

  8. Plasma-enhanced chemical vapor deposition for YBCO film fabrication of superconducting fault-current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Hyuk; Kim, Chan Joong

    2006-05-15

    Since the high-temperature superconductor of oxide type was founded, many researches and efforts have been performed for finding its application field. The YBCO superconducting film fabricated on economic metal substrate with uniform critical current density is considered as superconducting fault-current limiter (SFCL). There are physical and chemical processes to fabricate superconductor film, and it is understood that the chemical methods are more economic to deposit large area. Among them, chemical vapor deposition (CVD) is a promising deposition method in obtaining film uniformity. To solve the problems due to the high deposition temperature of thermal CVD, plasma-enhanced chemical vapor deposition (PECVD) is suggested. This report describes the principle and fabrication trend of SFCL, example of YBCO film deposition by PECVD method, and principle of plasma deposition.

  9. Plasma-enhanced chemical vapor deposition for YBCO film fabrication of superconducting fault-current limiter

    International Nuclear Information System (INIS)

    Since the high-temperature superconductor of oxide type was founded, many researches and efforts have been performed for finding its application field. The YBCO superconducting film fabricated on economic metal substrate with uniform critical current density is considered as superconducting fault-current limiter (SFCL). There are physical and chemical processes to fabricate superconductor film, and it is understood that the chemical methods are more economic to deposit large area. Among them, chemical vapor deposition (CVD) is a promising deposition method in obtaining film uniformity. To solve the problems due to the high deposition temperature of thermal CVD, plasma-enhanced chemical vapor deposition (PECVD) is suggested. This report describes the principle and fabrication trend of SFCL, example of YBCO film deposition by PECVD method, and principle of plasma deposition

  10. High quality thin films of thermoelectric misfit cobalt oxides prepared by a chemical solution method

    Science.gov (United States)

    Rivas-Murias, Beatriz; Manuel Vila-Fungueiriño, José; Rivadulla, Francisco

    2015-07-01

    Misfit cobaltates ([Bi/Ba/Sr/Ca/CoO]nRS[CoO2]q) constitute the most promising family of thermoelectric oxides for high temperature energy harvesting. However, their complex structure and chemical composition makes extremely challenging their deposition by high-vacuum physical techniques. Therefore, many of them have not been prepared as thin films until now. Here we report the synthesis of high-quality epitaxial thin films of the most representative members of this family of compounds by a water-based chemical solution deposition method. The films show an exceptional crystalline quality, with an electrical conductivity and thermopower comparable to single crystals. These properties are linked to the epitaxial matching of the rock-salt layers of the structure to the substrate, producing clean interfaces free of amorphous phases. This is an important step forward for the integration of these materials with complementary n-type thermoelectric oxides in multilayer nanostructures.

  11. Chemical Bath Deposition of Aluminum Oxide Buffer on Curved Surfaces for Growing Aligned Carbon Nanotube Arrays.

    Science.gov (United States)

    Wang, Haitao; Na, Chongzheng

    2015-07-01

    Direct growth of vertically aligned carbon nanotube (CNT) arrays on substrates requires the deposition of an aluminum oxide buffer (AOB) layer to prevent the diffusion and coalescence of catalyst nanoparticles. Although AOB layers can be readily created on flat substrates using a variety of physical and chemical methods, the preparation of AOB layers on substrates with highly curved surfaces remains challenging. Here, we report a new solution-based method for preparing uniform layers of AOB on highly curved surfaces by the chemical bath deposition of basic aluminum sulfate and annealing. We show that the thickness of AOB layer can be increased by extending the immersion time of a substrate in the chemical bath, following the classical Johnson-Mehl-Avrami-Kolmogorov crystallization kinetics. The increase of AOB thickness in turn leads to the increase of CNT length and the reduction of CNT curviness. Using this method, we have successfully synthesized dense aligned CNT arrays of micrometers in length on substrates with highly curved surfaces including glass fibers, stainless steel mesh, and porous ceramic foam. PMID:26053766

  12. Grain boundaries in graphene grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    The scientific literature on grain boundaries (GBs) in graphene was reviewed. The review focuses mainly on the experimental findings on graphene grown by chemical vapor deposition (CVD) under a very wide range of experimental conditions (temperature, pressure hydrogen/hydrocarbon ratio, gas flow velocity and substrates). Differences were found in the GBs depending on the origin of graphene: in micro-mechanically cleaved graphene (produced using graphite originating from high-temperature, high-pressure synthesis), rows of non-hexagonal rings separating two perfect graphene crystallites are found more frequently, while in graphene produced by CVD—despite the very wide range of growth conditions used in different laboratories—GBs with more pronounced disorder are more frequent. In connection with the observed disorder, the stability of two-dimensional amorphous carbon is discussed and the growth conditions that may impact on the structure of the GBs are reviewed. The most frequently used methods for the atomic scale characterization of the GB structures, their possibilities and limitations and the alterations of the GBs in CVD graphene during the investigation (e.g. under e-beam irradiation) are discussed. The effects of GB disorder on electric and thermal transport are reviewed and the relatively scarce data available on the chemical properties of the GBs are summarized. GBs are complex enough nanoobjects so that it may be unlikely that two experimentally produced GBs of several microns in length could be completely identical in all of their atomic scale details. Despite this, certain generalized conclusions may be formulated, which may be helpful for experimentalists in interpreting the results and in planning new experiments, leading to a more systematic picture of GBs in CVD graphene. (paper)

  13. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    International Nuclear Information System (INIS)

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH3 radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch4/H2 and C2H2/H2 gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C2→C1 species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH3/CH4/H2 and N2/CH4/H2 gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH3, influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H2/CH4/N2 gas mixture. Spatially resolved species emission intensity maps were obtained for C2(d→a), CN(B→X) and Hβ from Abel-inverted datasets. The C2(d→a) and CN(B→X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N2 additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C2(a) in a DC-arcjet reactor operating on an Ar/H2/CH4 gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C2(v=0) transition revealed a rotational temperature of ∼3300 K. This gas temperature is similar to that deduced from optical emission spectroscopy studies of the C2(d→a) transition. (author)

  14. Charged impurity-induced scatterings in chemical vapor deposited graphene

    Science.gov (United States)

    Li, Ming-Yang; Tang, Chiu-Chun; Ling, D. C.; Li, L. J.; Chi, C. C.; Chen, Jeng-Chung

    2013-12-01

    We investigate the effects of defect scatterings on the electric transport properties of chemical vapor deposited (CVD) graphene by measuring the carrier density dependence of the magneto-conductivity. To clarify the dominant scattering mechanism, we perform extensive measurements on large-area samples with different mobility to exclude the edge effect. We analyze our data with the major scattering mechanisms such as short-range static scatters, short-range screened Coulomb disorders, and weak-localization (WL). We establish that the charged impurities are the predominant scatters because there is a strong correlation between the mobility and the charge impurity density. Near the charge neutral point (CNP), the electron-hole puddles that are induced by the charged impurities enhance the inter-valley scattering, which is favorable for WL observations. Away from the CNP, the charged-impurity-induced scattering is weak because of the effective screening by the charge carriers. As a result, the local static structural defects govern the charge transport. Our findings provide compelling evidence for understanding the scattering mechanisms in graphene and pave the way for the improvement of fabrication techniques to achieve high-quality CVD graphene.

  15. Photo Initiated Chemical Vapour Deposition To Increase Polymer Hydrophobicity.

    Science.gov (United States)

    Bérard, Ariane; Patience, Gregory S; Chouinard, Gérald; Tavares, Jason R

    2016-01-01

    Apple growers face new challenges to produce organic apples and now many cover orchards with high-density polyethylene (HDPE) nets to exclude insects, rather than spraying insecticides. However, rainwater- associated wetness favours the development of apple scabs, Venturia inaequalis, whose lesions accumulate on the leaves and fruit causing unsightly spots. Treating the nets with a superhydrophobic coating should reduce the amount of water that passes through the net. Here we treat HDPE and polyethylene terephthalate using photo-initiated chemical vapour deposition (PICVD). We placed polymer samples in a quartz tube and passed a mixture of H2 and CO through it while a UVC lamp (254 nm) illuminated the surface. After the treatment, the contact angle between water droplets and the surface increased by an average of 20°. The contact angle of samples placed 70 cm from the entrance of the tube was higher than those at 45 cm and 20 cm. The PICVD-treated HDPE achieved a contact angle of 124°. Nets spray coated with a solvent-based commercial product achieved 180° but water ingress was, surprisingly, higher than that for nets with a lower contact angle. PMID:27531048

  16. Structure of chemical vapor deposition titania/silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Leboda, R.; Gun' ko, V.M.; Marciniak, M.; Malygin, A.A.; Malkin, A.A.; Grzegorczyk, W.; Trznadel, B.J.; Pakhlov, E.M.; Voronin, E.F.

    1999-10-01

    The structure of porous silica gel/titania synthesized using chemical vapor deposition (CVD) of titania via repeated reactions of TiCl{sub 4} with the surface and subsequent hydrolysis of residual Ti-Cl bonds at different temperatures was investigated by means of low-temperature nitrogen adsorption-desorption, X-ray diffraction (XRD), IR spectroscopy, and theoretical methods. A globular model of porous solids with corpuscular structure was applied to estimate the porosity parameters of titania/silica gel adsorbents. The utilization of this model is useful, for example, to predict conditions for synthesis of titania/silica with a specified structure. Analysis of pore parameters and fractal dimension suggests that the porosity and fractality of samples decrease with increasing amount of TiO{sub 2} covering the silica gel surface in a nonuniform layer, which represents small particles embedded in pores and larger particles formed at the outer surface of silica globules. Theoretical simulation shows that the Si-O-Ti linkages between the cover and the substrate can be easily hydrolyzed, which is in agreement with the IR data corresponding to the absence of a band at 950 cm {sup {minus}1} (characteristic of Si-O-Ti bridges) independent of the concentration of CVD-titania.

  17. Temperature admittance spectroscopy of boron doped chemical vapor deposition diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zubkov, V. I., E-mail: VZubkovspb@mail.ru; Kucherova, O. V.; Zubkova, A. V.; Ilyin, V. A.; Afanas' ev, A. V. [St. Petersburg State Electrotechnical University (LETI), Professor Popov Street 5, 197376 St. Petersburg (Russian Federation); Bogdanov, S. A.; Vikharev, A. L. [Institute of Applied Physics of the Russian Academy of Sciences, Ul' yanov Street 46, 603950 Nizhny Novgorod (Russian Federation); Butler, J. E. [St. Petersburg State Electrotechnical University (LETI), Professor Popov Street 5, 197376 St. Petersburg (Russian Federation); Institute of Applied Physics of the Russian Academy of Sciences, Ul' yanov Street 46, 603950 Nizhny Novgorod (Russian Federation); National Museum of Natural History (NMNH), P.O. Box 37012 Smithsonian Inst., Washington, D.C. 20013-7012 (United States)

    2015-10-14

    Precision admittance spectroscopy measurements over wide temperature and frequency ranges were carried out for chemical vapor deposition epitaxial diamond samples doped with various concentrations of boron. It was found that the experimentally detected boron activation energy in the samples decreased from 314 meV down to 101 meV with an increase of B/C ratio from 600 to 18000 ppm in the gas reactants. For the heavily doped samples, a transition from thermally activated valence band conduction to hopping within the impurity band (with apparent activation energy 20 meV) was detected at temperatures 120–150 K. Numerical simulation was used to estimate the impurity DOS broadening. Accurate determination of continuously altering activation energy, which takes place during the transformation of conduction mechanisms, was proposed by numerical differentiation of the Arrhenius plot. With increase of boron doping level the gradual decreasing of capture cross section from 3 × 10{sup −13} down to 2 × 10{sup −17} cm{sup 2} was noticed. Moreover, for the hopping conduction the capture cross section becomes 4 orders of magnitude less (∼2 × 10{sup −20} cm{sup 2}). At T > T{sub room} in doped samples the birth of the second conductance peak was observed. We attribute it to a defect, related to the boron doping of the material.

  18. Temperature admittance spectroscopy of boron doped chemical vapor deposition diamond

    Science.gov (United States)

    Zubkov, V. I.; Kucherova, O. V.; Bogdanov, S. A.; Zubkova, A. V.; Butler, J. E.; Ilyin, V. A.; Afanas'ev, A. V.; Vikharev, A. L.

    2015-10-01

    Precision admittance spectroscopy measurements over wide temperature and frequency ranges were carried out for chemical vapor deposition epitaxial diamond samples doped with various concentrations of boron. It was found that the experimentally detected boron activation energy in the samples decreased from 314 meV down to 101 meV with an increase of B/C ratio from 600 to 18000 ppm in the gas reactants. For the heavily doped samples, a transition from thermally activated valence band conduction to hopping within the impurity band (with apparent activation energy 20 meV) was detected at temperatures 120-150 K. Numerical simulation was used to estimate the impurity DOS broadening. Accurate determination of continuously altering activation energy, which takes place during the transformation of conduction mechanisms, was proposed by numerical differentiation of the Arrhenius plot. With increase of boron doping level the gradual decreasing of capture cross section from 3 × 10-13 down to 2 × 10-17 cm2 was noticed. Moreover, for the hopping conduction the capture cross section becomes 4 orders of magnitude less (˜2 × 10-20 cm2). At T > Troom in doped samples the birth of the second conductance peak was observed. We attribute it to a defect, related to the boron doping of the material.

  19. Growth of graphene underlayers by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fabiane, Mopeli; Khamlich, Saleh; Bello, Abdulhakeem; Dangbegnon, Julien; Momodu, Damilola; Manyala, Ncholu, E-mail: ncholu.manyala@up.ac.za [Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Charlie Johnson, A. T. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2013-11-15

    We present a simple and very convincing approach to visualizing that subsequent layers of graphene grow between the existing monolayer graphene and the copper catalyst in chemical vapor deposition (CVD). Graphene samples were grown by CVD and then transferred onto glass substrates by the bubbling method in two ways, either direct-transfer (DT) to yield poly (methyl methacrylate) (PMMA)/graphene/glass or (2) inverted transfer (IT) to yield graphene/PMMA/glass. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to reveal surface features for both the DT and IT samples. The results from FE-SEM and AFM topographic analyses of the surfaces revealed the underlayer growth of subsequent layers. The subsequent layers in the IT samples are visualized as 3D structures, where the smaller graphene layers lie above the larger layers stacked in a concentric manner. The results support the formation of the so-called “inverted wedding cake” stacking in multilayer graphene growth.

  20. Growth of graphene underlayers by chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Mopeli Fabiane

    2013-11-01

    Full Text Available We present a simple and very convincing approach to visualizing that subsequent layers of graphene grow between the existing monolayer graphene and the copper catalyst in chemical vapor deposition (CVD. Graphene samples were grown by CVD and then transferred onto glass substrates by the bubbling method in two ways, either direct-transfer (DT to yield poly (methyl methacrylate (PMMA/graphene/glass or (2 inverted transfer (IT to yield graphene/PMMA/glass. Field emission scanning electron microscopy (FE-SEM and atomic force microscopy (AFM were used to reveal surface features for both the DT and IT samples. The results from FE-SEM and AFM topographic analyses of the surfaces revealed the underlayer growth of subsequent layers. The subsequent layers in the IT samples are visualized as 3D structures, where the smaller graphene layers lie above the larger layers stacked in a concentric manner. The results support the formation of the so-called “inverted wedding cake” stacking in multilayer graphene growth.

  1. Development of microforming process combined with selective chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Koshimizu Kazushi

    2015-01-01

    Full Text Available Microforming has been received much attention in the recent decades due to the wide use of microparts in electronics and medical purpose. For the further functionalization of these micro devices, high functional surface with noble metals and nanomaterials are strongly required in bio- and medical fields, such as bio-sensors. To realize the efficient manufacturing process, which can deform the submillimeter scale bulk structure and can construct the micro to nanometer scale structures in one process, the present study proposes a combined process of microforming for metal foils with a selective chemical vapor deposition (SCVD on the active surface of work materials. To clarify the availability of this proposed process, the feasibility of SCVD of functional materials to active surface of titanium (Ti was investigated. CVD of iron (Fe and carbon nanotubes (CNTs which construct CNTs on the patterned surface of active Ti and non-active oxidation layer were conducted. Ti thin films on silicon substrate and Fe were used as work materials and functional materials, respectively. CNTs were grown on only Ti surface. Consequently, the selectivity of the active surface of Ti to the synthesis of Fe particles in CVD process was confirmed.

  2. Selective formation of monodisperse CdSe nanoparticles on functionalized self-assembled monolayers using chemical bath deposition

    International Nuclear Information System (INIS)

    Using CdSe chemical bath deposition (CBD) we demonstrate the selective growth and deposition of monodisperse nanoparticles on functionalized self-assembled monolayers (SAMs) using time-of-flight secondary ion mass spectrometry and scanning electron microscopy. We show that the deposition mechanism involves both ion-by-ion growth and cluster-by-cluster deposition. On -COOH terminated SAMs strongly adherent CdSe nanoparticles form via a mixed ion-by-ion and cluster-by-cluster mechanism. Initially, Cd2+ ions form complexes with the terminal carboxylate groups. The Cd2+-carboxylate complexes then act as the nucleation sites for the ion-by-ion growth of CdSe. After a sufficient concentration of Se2- has formed in solution via the hydrolysis of selenosulfate ions, the deposition mechanism switches to cluster-by-cluster deposition. On -OH and -CH3 terminated SAMs monodisperse CdSe nanoparticles are deposited via cluster-by-cluster deposition and they do not bind strongly to the surface. Finally, under the appropriate experimental conditions we demonstrate the selective deposition of CdSe nanoparticles on patterned -CH3/-COOH SAMs.

  3. Anion Effect of Zinc Source on Chemically Deposited ZnS(O,OH Films

    Directory of Open Access Journals (Sweden)

    K. Ernits

    2009-01-01

    Full Text Available The study on the anion effect of different Zn sources—Zn(CH3COO2, ZnCl2, ZnI2, Zn(NO32 and ZnSO4—on the chemical deposition of ZnS(O,OH films revealed that the growth rate and composition of the ZnS(O,OH layer depend on the instability constant (pK value of the corresponding Zn-complex Zn(Ln in the chemical bath solution. In the region of pKZn(NH32+>pKZn(Ln the ZnS(O,OH film's growth rate and ZnS concentration in films increased with the increasing pK value of the used Zn salt complex up to the pK value of the Zn[NH3]2+ complex and decreased in the region where pKZn(NH32+deposited ZnS(O,OH films did not depend on the Zn precursor's instability constant, the ZnS(O,OH film from zinc nitrate containing bath has higher band gap energy (Eg = 3.8 eV. The maximum efficiency of CISSe and CZTSSe monograin layer solar cells was gained with ZnS(O,OH buffer layer deposited from CBD solution containing Zn(CH3COO2 as Zn source, which provided the highest growth rate and ZnS concentration in the ZnS(O,OH film on glass substrates.

  4. Hydrazine-Free Solution-Deposited CuIn(S,Se)2 Solar Cells by Spray Deposition of Metal Chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Arnou, Panagiota; van Hest, Maikel F. A. M.; Cooper, Carl S.; Malkov, Andrei V.; Walls, John M.; Bowers, Jake W.

    2016-05-18

    Solution processing of semiconductors, such as CuInSe2 and its alloys (CIGS), can significantly reduce the manufacturing costs of thin film solar cells. Despite the recent success of solution deposition approaches for CIGS, toxic reagents such as hydrazine are usually involved, which introduce health and safety concerns. Here, we present a simple and safer methodology for the preparation of high-quality CuIn(S, Se)2 absorbers from metal sulfide solutions in a diamine/dithiol mixture. The solutions are sprayed in air, using a chromatography atomizer, followed by a postdeposition selenization step. Two different selenization methods are explored resulting in power conversion efficiencies of up to 8%.

  5. Properties of alumina films by atmospheric pressure metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    Thin alumina films were deposited at low temperatures (290–420°C) on stainless steel, type AISI 304. The deposition process was carried out in nitrogen by metal-organic chemical vapour deposition using aluminum tri-sec-butoxide. The film properties including the protection of the underlying substrat

  6. Initiated-chemical vapor deposition of organosilicon layers: Monomer adsorption, bulk growth, and process window definition

    NARCIS (Netherlands)

    Aresta, G.; Palmans, J.; M. C. M. van de Sanden,; Creatore, M.

    2012-01-01

    Organosilicon layers have been deposited from 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane (V3D3) by means of the initiated-chemical vapor deposition (i-CVD) technique in a deposition setup, ad hoc designed for the engineering of multilayer moisture permeation barriers. The application of Fourier

  7. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    Science.gov (United States)

    Cappelli, Mark A.

    1999-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies ion the processing of semiconductor materials arising from understanding etch chemistries are being developed through a research collaboration between Stanford University and NASA-Ames Research Center, Although a great deal of laboratory-scale research has been performed on many of materials processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. In addition, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. The research described involves the study of plasmas used in semiconductor processes. An inductively coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics and chemistries. This ICP source generates plasmas with higher electron densities (approximately 10(exp 12)/cu cm) and lower operating pressures (approximately 7 mTorr) than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The motivation for this study is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas-phase and surface reaction rates. species

  8. Corrosion deposits removal from Kozloduy NPP VVER-440 steam generator tubing by chemical cleaning

    International Nuclear Information System (INIS)

    A strict control of primary and secondary circuits metal equipment corrosion of VVER-440 Kozloduy NPP units has been performed for the whole period of operation. This is carried out following a specific program including visual inspection and chemical analysis of equipment corrosion deposits. During their migration, the corrosion products deposit on the metal surface in the so-called standstill zones. One of these is the steam generator. The process results in: deterioration of thermal exchange; deterioration of corrosion conditions under deposits corrosion, pitting corrosion, etc. Using quantity deposits data and deposits chemical consistence, chemical cleaning of steam generator surfaces is performed. Decision for such chemical treatment of secondary circuit equipment is taken when the amount of deposits on the steam generator tubing is greater than 150 g/m2. This limit is based on operational experience and manufacturer requirements. (R.P.)

  9. Deposit-Refund on Labor: A Solution to Equilibrium Unemployment?

    OpenAIRE

    Ben J. Heijdra; Ligthart, Jenny E.

    2001-01-01

    The paper studies the employment effects of a deposit-refund scheme on labor in a simple search-theoretic model of the labor market. It is shown that if a firm pays a deposit when it fires a worker to be refunded when it employs the same or another worker, the vacancy rate increases and the unemployment rate declines. However, the scheme introduces rigidities in the labor market which may be undesirable in countries wanting to liberalize their labor markets. JEL classification codes: J3, J680...

  10. Deposit-Refundon Labor; A Solution to Equilibrium Unemployment?

    OpenAIRE

    Ben J. Heijdra; Jenny Elisabeth Ligthart

    2000-01-01

    The paper studies the employment effects of a deposit-refund scheme on labor in a simple search-theoretic model of the labor market. It is shown that if a firm pays a deposit to the government when it fires a worker, to be refunded when it employs the same or another worker, the vacancy rate increases and the unemployment rate declines. However, the scheme introduces rigidities in the labor market that may be undesirable in countries wanting to liberalize their labor markets.

  11. Early Stages of the Chemical Vapor Deposition of Pyrolytic Carbon Investigated by Atomic Force Microscopy

    OpenAIRE

    Pfrang, Andreas; WAN Yong-Zhong; Schimmel, Thomas

    2009-01-01

    The early stages of chemical vapor deposition of pyrolytic carbon on planar silicon substrates were studied by the atomic force microscopy-based technique of chemical contrast imaging. Short deposition times were chosen to focus on the early stages of the deposition process, and three different types of nucleation were found: random nucleation of single islands, nucleation of carbon islands along lines and secondary nucleation which corresponds to the nucleation of carbon islands at the edges...

  12. Molecular designing of precursors for chemical vapor deposition

    International Nuclear Information System (INIS)

    Both tin oxide and antimony oxide, can act as gas sensing material whose activity/selectivity is enhanced by the incorporation of a second metal. We are interested in the formation of bimetallic and trimetallic carboxylates and alkoxides which can be used as single source precursors for such mixed metal oxides. Sb(dmae)/sub 3/ (dmae=OCH/sub 2/CH/sub 2/(CH/sub 3/)sub 2/ has been prepared from Sb(OC/sub 2/H/sub 5/)/sub 3/ and Hdmae and used to generate the bimetallic materials Sb(dmae)/sub 3/Cd(acac)/sub 2/. Sn(acac)/sub 2/ hydrolyses to yield crystalline cage Sn/sub 4/O/sub 6/(dmae)/sub 4/. Sn(dmae)/sub 2/ can also be used to generate bimetallic materials such as [Sn(dmae)/sub 2/ Cd(acac)/sub 2/]/sub 2/]. Bimetallic and trimetallic carboxylates of general formula [R/sub 3/Ge-CHRCH/sub 2/COO]/sub 4-n/SnRn. [Where R=CH/sub 3/, C/sub 2/H/sub 5/, C/sub 6/H/sub 5/, tolyl, cyclohexyl, (CH/sub 3/)/sub 3/ Si CH/sub 2/-etc.] have been prepared and characterized by various analytic techniques. Chemical vapor deposition using Sb(dmae)/sub 3/ Cd(acac)/sub 2/ and various bimetallic carboxylates yield thin films of Cd/sub 2/Sb/sub 2/O/sub 7/ and SnOGeO respectively. (author)

  13. Review of chemical vapor deposition of graphene and related applications.

    Science.gov (United States)

    Zhang, Yi; Zhang, Luyao; Zhou, Chongwu

    2013-10-15

    Since its debut in 2004, graphene has attracted enormous interest because of its unique properties. Chemical vapor deposition (CVD) has emerged as an important method for the preparation and production of graphene for various applications since the method was first reported in 2008/2009. In this Account, we review graphene CVD on various metal substrates with an emphasis on Ni and Cu. In addition, we discuss important and representative applications of graphene formed by CVD, including as flexible transparent conductors for organic photovoltaic cells and in field effect transistors. Growth on polycrystalline Ni films leads to both monolayer and few-layer graphene with multiple layers because of the grain boundaries on Ni films. We can greatly increase the percentage of monolayer graphene by using single-crystalline Ni(111) substrates, which have smooth surface and no grain boundaries. Due to the extremely low solubility of carbon in Cu, Cu has emerged as an even better catalyst for the growth of monolayer graphene with a high percentage of single layers. The growth of graphene on Cu is a surface reaction. As a result, only one layer of graphene can form on a Cu surface, in contrast with Ni, where more than one layer can form through carbon segregation and precipitation. We also describe a method for transferring graphene sheets from the metal using polymethyl methacrylate (PMMA). CVD graphene has electronic properties that are potentially valuable in a number of applications. For example, few-layer graphene grown on Ni can function as flexible transparent conductive electrodes for organic photovoltaic cells. In addition, because we can synthesize large-grain graphene on Cu foil, such large-grain graphene has electronic properties suitable for use in field effect transistors. PMID:23480816

  14. Simplified Monte Carlo simulations of chemical vapour deposition diamond growth

    International Nuclear Information System (INIS)

    A simple one-dimensional Monte Carlo model has been developed to simulate the chemical vapour deposition (CVD) of a diamond (100) surface. The model considers adsorption, etching/desorption, lattice incorporation, and surface migration along and across the dimer rows. The top of a step-edge is considered to have an infinite Ehrlich-Schwoebel potential barrier, so that mobile surface species cannot migrate off the edge. The reaction probabilities are taken from experimental or calculated literature values for standard CVD diamond conditions. The criterion used for the critical nucleus needed to form a new layer is considered to be two surface carbon species bonded together, which forms an immobile, unetchable step on the surface. This nucleus can arise from two migrating species meeting, or from direct adsorption of a carbon species next to a migrating species. The analysis includes film growth rate, surface roughness, and the evolving film morphology as a function of varying reaction probabilities. Using standard CVD diamond parameters, the simulations reveal that a smooth film is produced with apparent step-edge growth, with growth rates (∼1 μm h-1) consistent with experiment. The β-scission reaction was incorporated into the model, but was found to have very little effect upon growth rates or film morphology. Renucleation events believed to be due to reactive adsorbates, such as C atoms or CN groups, were modelled by creating random surface defects which form another type of critical nucleus upon which to nucleate a new layer. These were found to increase the growth rate by a factor of ∼10 when the conditions were such that the rate-limiting step for growth was new layer formation. For other conditions these surface defects led to layered 'wedding cake' structures or to rough irregular surfaces resembling those seen experimentally during CVD of nanocrystalline diamond.

  15. Carbon Nanotubes/Nanofibers by Plasma Enhanced Chemical Vapour Deposition

    Science.gov (United States)

    Teo, K. B. K.; Hash, D. B.; Bell, M. S.; Chhowalla, M.; Cruden, B. A.; Amaratunga, G. A. J.; Meyyappan, M.; Milne, W. I.

    2005-01-01

    Plasma enhanced chemical vapour deposition (PECVD) has been recently used for the production of vertically aligned carbon nanotubedfibers (CN) directly on substrates. These structures are potentially important technologically as electron field emitters (e.g. microguns, microwave amplifiers, displays), nanoelectrodes for sensors, filter media, superhydrophobic surfaces and thermal interface materials for microelectronics. A parametric study on the growth of CN grown by glow discharge dc-PECVD is presented. In this technique, a substrate containing thin film Ni catalyst is exposed to C2H2 and NH3 gases at 700 C. Without plasma, this process is essentially thermal CVD which produces curly spaghetti-like CN as seen in Fig. 1 (a). With the plasma generated by biasing the substrate at -6OOV, we observed that the CN align vertically during growth as shown in Fig. l(b), and that the magnitude of the applied substrate bias affects the degree of alignment. The thickness of the thin film Ni catalyst was found to determine the average diameter and inversely the length of the CN. The yield and density of the CN were controlled by the use of different diffusion barrier materials under the Ni catalyst. Patterned CN growth [Fig. l(c)], with la variation in CN diameter of 4.1% and 6.3% respectively, is achieved by lithographically defining the Ni thin film prior to growth. The shape of the structures could be varied from very straight nanotube-like to conical tip-like nanofibers by increasing the ratio of C2H2 in the gas flow. Due to the plasma decomposition of C2H2, amorphous carbon (a-C) is an undesirable byproduct which could coat the substrate during CN growth. Using a combination of depth profiled Auger electron spectroscopy to study the substrate and in-situ mass spectroscopy to examine gas phase neutrals and ions, the optimal conditions for a-C free growth of CN is determined.

  16. Compositional study of silicon oxynitride thin films deposited using electron cyclotron resonance plasma-enhanced chemical vapor deposition technique

    International Nuclear Information System (INIS)

    We have used backscattering spectrometry and 15N(1H,α,γ)12C nuclear reaction analysis techniques to study in detail the variation in the composition of silicon oxynitride films with deposition parameters. The films were deposited using 2.45 GHz electron cyclotron resonance plasma-enhanced chemical vapor deposition (PECVD) technique from mixtures of precursors argon, nitrous oxide, and silane at deposition temperature 90 deg. C. The deposition pressure and nitrous oxide-to-silane gas flow rates ratio have been found to have a pronounced influence on the composition of the films. When the deposition pressure was varied for a given nitrous oxide-to-silane gas flow ratio, the amount of silicon and nitrogen increased with the deposition pressure, while the amount of oxygen decreased. For a given deposition pressure, the amount of incorporated nitrogen and hydrogen decreased while that of oxygen increased with increasing nitrous oxide-to-silane gas flow rates ratio. For nitrous oxide-to-silane gas flow ratio of 5, we obtained films which contained neither chemically bonded nor nonbonded nitrogen atoms as revealed by the results of infrared spectroscopy, backscattering spectrometry, and nuclear reaction analysis. Our results demonstrate the nitrogen-free nearly stoichiometric silicon dioxide films can be prepared from a mixture of precursors argon, nitrous oxide, and silane at low substrate temperature using high-density PECVD technique. This avoids the use of a hazardous and an often forbidden pair of silane and oxygen gases in a plasma reactor

  17. Assessment of Soil Solution Chemicals after Tannery Effluents Disposal

    Directory of Open Access Journals (Sweden)

    Célia A.   Surita

    2007-01-01

    Full Text Available Knowledge about soil solution chemicals is important for assessing their mobility, availability, migration to groundwater and toxicity to plants. The objective of this study was to apply factor analysis to data obtained on soil solution chemicals during a one-year monitoring program in a controlled experiment with tannery effluents disposed on the soil surface, to extract information on their relationship and identify the main contaminants. Seventeen chemical parameters were monitored at six different depths on soil profile, focusing on metals and nitrate in soil solution. Four Factors accounted for 79.20% of the total variance, of which the most important were: Factor 1 (48.35% showed significant loadings for Mn2+, Na+, K+, Ca2+, Mg2+, Cl-, Pb2+ and electric conductivity, strongly influenced by high load effluent disposal; Factor 2 (12.21% was related with SO42+, Factor 3 (10.16% associated with Cu2+ and Zn2+ and Factor 4 (8.49% associated with nitrogen mineralization dynamics after high disposal.

  18. Growth of titanium silicate thin films by photo-induced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.M.; Fang, Q.; Zhang, J.-Y.; Wu, J.X.; Di, Y.; Chen, W.; Chen, M.L.; Boyd, Ian W

    2004-04-01

    Titanium silicate thin films have been grown on Si substrates by photo-induced chemical vapor deposition using 222-nm ultraviolet excimer lamps. Titanium tetraisopropoxide (TTIP) and tetraethoxysilane (TEOS) were used as precursors. TTIP and TEOS were dissolved together in cyclohexane and introduced into the photochemical reaction chamber through a droplet injector vaporizer. The composition of the film was controlled by changing the ratio of TTIP to TEOS in the precursor solution. High quality titanium silicate films with various Ti/Si ratios and low carbon content have been achieved as revealed by X-ray photoelectron spectroscopy measurements. The atomic percentage of Ti content in the grown silicate films is significantly larger than that in the precursor solution. The films were measured to be 30-80 nm in thickness and 1.91-2.31 in refractive index by ellipsometry. Both the growth rate and refractive index increase with increasing Ti percentage in the silicate films. The evolution of Fourier transform infrared spectra of the silicate films with solution composition shows that the Ti-O-Si absorption at approximately 920 cm{sup -1} becomes stronger, while the Ti-O absorption at approximately 430 cm{sup -1} becomes weaker with decreasing Ti percentage in the solution. A small feature at {approx}1035 cm{sup -1} related to Si-O-Si bonds is also observed in the SiO{sub 2}-rich Ti silicate film.

  19. Polyimide (PI) films by chemical vapor deposition (CVD): Novel design, experiments and characterization

    OpenAIRE

    Puig-Pey González, Jaime; Lamure, Alain; Senocq, François

    2007-01-01

    International audience Polyimide (PI) has been deposited by chemical vapor deposition (CVD) under vacuum over the past 20 years. In the early nineties, studies, experiences and characterization were mostly studied as depositions from the co-evaporation of the dianhydride and diamine monomers. Later on, several studies about its different applications due to its interesting mechanical and electrical properties enhanced its development. Nowadays, not many researches around PI deposition are ...

  20. Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • ZnO nanostructures are grown by simple chemical vapour deposition. • Polycrystalline nanostructured porous thin film is obtained. • Film exhibits stable specific capacity (∼400 mA h g−1) after prolonged cycling. • CVD-grown ZnO nanostructures show promising prospects as Li-ion battery anode. - Abstract: ZnO nanostructures are grown by a simple chemical vapour deposition method directly on a stainless steel disc current collector and successfully tested in lithium cells. The structural/morphological characterization points out the presence of well-defined polycrystalline nanostructures having different shapes and a preferential orientation along the c-axis direction. In addition, the high active surface of the ZnO nanostructures, which accounts for a large electrode/electrolyte contact area, and the complete wetting with the electrolyte solution are considered to be responsible for the good electrical transport properties and the adequate electrochemical behaviour, as confirmed by cyclic voltammetry and galvanostatic charge/discharge cycling. Indeed, despite no binder or conducting additives are used, when galvanostatically tested in lithium cells, after an initial decay, the ZnO nanostructures can provide a rather stable specific capacity approaching 70 μA h cm−2 (i.e., around 400 mA h g−1) after prolonged cycling at 1 C, with very high Coulombic efficiency and an overall capacity retention exceeding 62%

  1. Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Laurenti, M., E-mail: marco.laurenti@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Garino, N. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Porro, S.; Fontana, M. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Gerbaldi, C., E-mail: claudio.gerbaldi@polito.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2015-08-15

    Highlights: • ZnO nanostructures are grown by simple chemical vapour deposition. • Polycrystalline nanostructured porous thin film is obtained. • Film exhibits stable specific capacity (∼400 mA h g{sup −1}) after prolonged cycling. • CVD-grown ZnO nanostructures show promising prospects as Li-ion battery anode. - Abstract: ZnO nanostructures are grown by a simple chemical vapour deposition method directly on a stainless steel disc current collector and successfully tested in lithium cells. The structural/morphological characterization points out the presence of well-defined polycrystalline nanostructures having different shapes and a preferential orientation along the c-axis direction. In addition, the high active surface of the ZnO nanostructures, which accounts for a large electrode/electrolyte contact area, and the complete wetting with the electrolyte solution are considered to be responsible for the good electrical transport properties and the adequate electrochemical behaviour, as confirmed by cyclic voltammetry and galvanostatic charge/discharge cycling. Indeed, despite no binder or conducting additives are used, when galvanostatically tested in lithium cells, after an initial decay, the ZnO nanostructures can provide a rather stable specific capacity approaching 70 μA h cm{sup −2} (i.e., around 400 mA h g{sup −1}) after prolonged cycling at 1 C, with very high Coulombic efficiency and an overall capacity retention exceeding 62%.

  2. Chemical behavior of plutonium in LWR fuel reprocessing solutions

    International Nuclear Information System (INIS)

    These studies were conducted to provide fundamental information that will be required for the satisfactory treatment of the actinide elements in nuclear fuel reprocessing plants. Three problem areas are described that could result in plutonium losses prior to or during Purex processing. They involve (1) decreasing plutonium distribution coefficients with successive extraction stages even in pure HNO3 solution; (2) Pu(IV) interaction with the ruthenium component of the feed solution; and (3) plutonium losses associated with precipitates of zirconia, zirconium molybdate, and plutonium molybdate. The results indicate that although small extraction losses do occur and significant plutonium losses can result from feed solution instabilities, it should be possible to avoid process conditions which promote this behavior; therefore, from the viewpoint of plutonium chemical behavior, very high plutonium recoveries (>99.9% should be possible

  3. Simplified Solutions for Activity Deposited on Moving Filter Media.

    Science.gov (United States)

    Smith, David L; Chabot, George E

    2016-10-01

    Simplified numerical solutions for particulate activity viewed on moving filter continuous air monitors are developed. The monitor configurations include both rectangular window (RW) and circular window (CW) types. The solutions are demonstrated first for a set of basic airborne radioactivity cases, for a series of concentration pulses, and for indicating the effects of step changes in reactor coolant system (RCS) leakage for a pressurized water reactor. The method is also compared to cases from the prior art. These simplified solutions have additional benefits: They are easily adaptable to multiple radionuclides, they will accommodate collection and detection efficiencies that vary in known ways across the collection area, and they also ease the solution programming. PMID:27575345

  4. SYNTHESIS OF CARBON NANOSTRUCTURES BY PLASMA ENHANCED CHEMICAL VAPOUR DEPOSITION AT ATMOSPHERIC PRESSURE

    OpenAIRE

    Jašek Ondřej; Synek Petr; Zajíčková Lenka; Eliáš Marek; Kudrle Vít

    2010-01-01

    Carbon nanostructures present leading field in nanotechnology research. Wide range of chemical and physical methods was used for carbon nanostructures synthesis including arc discharges, laser ablation and chemical vapour deposition. Plasma enhanced chemical vapour deposition (PECVD) with its application in modern microelectronics industry became soon target of research in carbon nanostructures synthesis. The selection of the ideal growth process depends on the application. Most of PECVD tech...

  5. Chemical treatment of deposits of junctions 'collector-tube' of horizontal steam generators

    International Nuclear Information System (INIS)

    ring gaps of underexpander can allow under specific conditions, created by lithium hydroxide, to provide a vapor lock and dry salt in the top of a crack. It results are of the density of corrosion current and the hydrogenation rate of coffer-dam perforated part of collector made from steel 08Ch18N10T. From these viewpoints the deposits are the important factor of prolongation the resource of coffer-dam. Complexing combination agents during their simultaneous presence in water, tends to form more than complex, mixed complexes with increased solubility for example, Ttrilon-B (EDTA) and its sodium salts. So if representing Complexing agents of iron represent in the form of [Fe-EDTA]2 and [Fe-EDTA]- or hydroxocomplexing agents of iron [FeOH EDTA]- [FeOH EDTA]2[FeOH EDTA]3[Fe-EDTA]4 a results of research EDTA solutions complexing agents indicate especially to a higher strength FE - EDTA and FEOH - EDTA (a great value of pK). The following conclusions are formulated in the paper: Optimization of water-chemical mode of the second contour remaining, the importance factor, for reducing the corrosion damage of steam generators and should be carried out according to the criteria of increasing the technical resource of metal as junctions, so as a whole of steam generator. Optimization processes of chemical washing should be come with reconstruction facilities of steam generator and its strapping (systems, blow-down, level measuring). Deactivation and chemical washing processes should be completed step of a passive protective film. (author)

  6. Chemical solution derived planarization layers for highly aligned IBAD-MgO templates

    International Nuclear Information System (INIS)

    The main goal of this research is to develop a chemical solution derived planarization layer to fabricate highly aligned IBAD-MgO templates for the development of high temperature superconductor (HTS) based coated conductors. The standard IBAD-MgO template needs an additional electrochemical polishing step of the mechanically polished 50 μm-thick Hastelloy C-276 substrates to ensure a flat and smooth surface for subsequent growth of multi-layer buffer architectures, which include: sputtered 80 nm Al2O3; sputtered 7 nm Y2O3; IBAD 10 nm MgO; sputtered 30 nm homo-epi MgO; and sputtered 30 nm LaMnO3 (LMO) layers. We have successfully developed a solution planarization layer that removes the electrochemical polishing step and also acts as a barrier layer. Crack-free, smooth Al2O3 layers were prepared on mechanically polished Hastelloy substrates using a chemical solution process. The average surface roughness value, Ra, for a starting substrate was 9–10 nm. After eight coatings of Al2O3 layer, the Ra was reduced to 2 nm. Highly aligned IBAD-MgO layers with out-of-plane and in-plane textures comparable to the standard IBAD-MgO layers were successfully deposited on top of the solution planarization Al2O3 layers with an Y2O3 nucleation layer using a reel-to-reel ion-beam sputtering system. Both homo-epi MgO and LMO layers were subsequently deposited on the IBAD-MgO layers using RF sputtering to complete the buffer stack required for the growth of HTS films. YBa2Cu3O7−δ (YBCO) films with a thickness of 0.8 μm deposited on these IBAD-MgO templates by pulsed laser deposition showed a high self-field critical current density, Jc, of 3.04 MA cm−2 at 77 K and 6.05 MA cm−2 at 65 K. These results demonstrate that a low-cost chemical-solution-based, high-throughput Al2O3 planarization layer can remove the electro-polishing step and replace sputtered Al2O3 layers for the production of high Jc YBCO-coated conductors. (fast track communication)

  7. Photocatalytic Functional Coating of TiO2 Thin Film Deposited by Cyclic Plasma Chemical Vapor Deposition at Atmospheric Pressure

    Science.gov (United States)

    Kwon, Jung-Dae; Rha, Jong-Joo; Nam, Kee-Seok; Park, Jin-Seong

    2011-08-01

    Photocatalytic TiO2 thin films were prepared with titanium tetraisopropoxide (TTIP) using cyclic plasma chemical vapor deposition (CPCVD) at atmospheric pressure. The CPCVD TiO2 films contain carbon-free impurities up to 100 °C and polycrystalline anatase phases up to 200 °C, due to the radicals and ion-bombardments. The CPCVD TiO2 films have high transparency in the visible wavelength region and absorb wavelengths below 400 nm (>3.2 eV). The photocatalytic effects of the CPCVD TiO2 and commercial sprayed TiO2 films were measured by decomposing methylene blue (MB) solution under UV irradiation. The smooth CPCVD TiO2 films showed a relatively lower photocatalytic efficiency, but superior catalyst-recycling efficiency, due to their high adhesion strength on the substrates. This CPCVD technique may provide the means to produce photocatalytic thin films with low cost and high efficiency, which would be a reasonable candidate for practical photocatalytic applications, because of the reliability and stability of their photocatalytic efficiency in a practical environment.

  8. In situ doping of ZnO nanowires using aerosol-assisted chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pung, Swee-Yong; Choy, Kwang-Leong; Hou Xianghui; Dinsdale, Keith, E-mail: Kwang-leong.Choy@nottingham.ac.uk [Faculty of Engineering, Energy and Sustainability Research Division, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2010-08-27

    An in situ doping approach of producing Al-doped ZnO NWs was demonstrated using an aerosol-assisted chemical vapour deposition (AA-CVD) technique. In this technique, Zn precursor was kept in the middle of a horizontal tube furnace whereas the dopant solution was kept in an aerosol generator, which was located outside the furnace. The Al aerosol was flowed into the reactor during the growth of NWs in order to achieve in situ doping. Al-doped ZnO NWs were synthesized as verified by the combination of XRD, TEM/EDS and TOF-SIMS analysis. Highly (00.2) oriented ZnO seed layers were used to promote vertically aligned growth of Al-doped ZnO NWs. Lastly, a growth mechanism of vertically aligned Al-doped ZnO NWs was discussed.

  9. Comparative X-ray photoelectron spectroscopy study of plasma enhanced chemical vapor deposition and micro pressure chemical vapor deposition of phosphorus silicate glass layers after rapid thermal annealing

    International Nuclear Information System (INIS)

    In this paper the bonding state of Phosphorus Silicate Glass (PSG) layers obtained by two different technological approaches, i.e. in two types of reactors: Plasma Enhanced Chemical Vapor Deposition (PECVD) and Micro Pressure Chemical Vapor Deposition (MPCVD) are investigated employing XPS and AES. The PSG layers are deposited at 3800C and 4200C in corresponding reactors. XPS and AES analyses show that Si2p peak recorded from PECVD layers are not as expected at their position characteristics of silicon dioxide but instead they are at the characteristic of elemental silicon. Plasma enhancement during deposition leads to less oxidized and more inhomogeneous layer. After rapid thermal annealing the Si2p peak is situated at position characteristic of silicon dioxide. (authors)

  10. Laser diagnostics of chemical vapour deposition of diamond films

    International Nuclear Information System (INIS)

    Cavity ring down spectroscopy (CRDS) has been used to make diagnostic measurements of chemically activated CH4 / H2 gas mixtures during the chemical vapour deposition (CVD) of thin diamond films. Absolute absorbances, concentrations and temperatures are presented for CH3, NH and C2H2 in a hot filament (HF) activated gas mixture and CH, C2 and C2H2 in a DC arc plasma jet activated mixture. Measurements of the radical species were made using a pulsed dye laser system to generate tuneable visible and UV wavelengths. These species have greatest concentration in the hottest, activated regions of the reactors. Spatial profiling of the number densities of CH3 and NH radicals have been used as stringent tests of predictions of radical absorbance and number densities made by 3-D numerical simulations, with near quantitative agreement. O2 has been shown to reside in the activated region of the Bristol DC arc jet at concentrations (∼1013 molecules / cm3) sufficient for it to play an important role in the diamond film growth, with CH approximately equivalent in abundance. The average gas temperatures of both C2 and CH radicals in the DC arc jet are found to be 3200 ± 300 K in the free flowing plasma plume, as measured from Boltzmann plots and Doppler line widths. Both number densities and gas temperatures rise significantly within 5 mm of the substrate surface in what is termed the boundary layer. Temperatures rise to 4800 ± 400 K within 1 mm from the substrate surface where the average C2 and CH concentrations are a factor of approximately four greater than in the free flowing plume. The effects of changing process parameters such as methane fraction in the feed gas and activation input power on number densities and temperatures have also been investigated. In addition to these advances in our understanding of the diamond CVD process, a new spectroscopic technique, continuous wave cavity ring down spectroscopy (cw CRDS) using tuneable, continuous wave diode lasers, has

  11. Chemical behaviour of Np, Pu and Am in aquatic solutions

    International Nuclear Information System (INIS)

    The chemical behaviour of Np, Am and Pu has been studied in aquatic systems of various ionic strength and NaCl concentrations as well as in natural groundwaters. Basic chemical reactions investigated are hydrolysis reaction of Np(V), Pu(IV) and Am(III), carbonate complexation of Pu(IV) and Am(III), and redox reaction of Pu and Am induced by α-radiolysis in brine solutions. The α-induced radiolysis reactions in NaCl solutions are carefully evaluated. The generation of real-colloids of Am(III) and Pu(IV) and the generation of Am(III)-pseudo-colloids through sorption of Am3+ on groundwater-colloids have been also investigated. The natural groundwater-colloids and humic substances, being present in Gorleben groundwaters, are characterized systematically in order to facilate a better understanding of colloid generation in a given groundwater. Transuranium ions in solution have been speciated either by UV-VIS spectroscopy for relatively high concentrations or by Laser-induced photoacoustic spectroscopy (LPAS) for sub-μmol concentrations. (orig.)

  12. Chemical behaviour of plutonium in aqueous chloride solutions

    International Nuclear Information System (INIS)

    The chemical behaviour of Plutonium has been investigated in concentrated NaCl solutions in the neutral pH range. The α-radiation induced radiolysis reactions oxidize the Cl--ion to Cl2, HClO, ClO- and other species, which produce a strongly oxidizing medium. Under these conditions the Pu ions of lower oxidation states are readily oxidized to Pu(VI), which then undergo depending on the pH of the solution, various chemical reactions to produce PuO2Cln, PuO2(ClO)m or PuO2(OH)x species. In addition to primary radiolysis reactions taking place in NaCl solutions, the reactions leading to the PuO2(Cl)n and PuO2(ClO)m species have been characterized and quantified systematically by spectroscopic and thermodynamic evaluation. The redox and complexation reactions of Pu ions under varying NaCl concentration, specific α-activity and pH are discussed. (orig.)

  13. A Two-Level Undercut-Profile Substrate for Chemical-Solution-Based Filamentary Coated Conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Lundeman, Jesper H.; Hansen, Jørn B.; Mishin, Oleg; Yue, Zhao; Mohajeri, Roya; Grivel, Jean-Claude

    2016-01-01

    present study, the 2LUPS concept is applied to a commercial cube-textured Ni-5at.% W tape, and the surface of the 2LUPS coated with two Gd2Zr2O7 buffer layers using chemical solution deposition is examined. Except for narrow regions near the edge of upper plateaus, the plateaus are found to be covered by......A recently developed two-level undercut-profile substrate (2LUPS), containing two levels of plateaus connected by a curved wall with an undercut profile, enables self-forming filaments in a coated conductor during physical line-of-sight deposition of buffer and superconducting layers. In the...... strongly textured Gd2Zr2O7 buffer layers after dip coating and sintering....

  14. Practical silicon deposition rules derived from silane monitoring during plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bartlome, Richard, E-mail: richard.bartlome@alumni.ethz.ch; De Wolf, Stefaan; Demaurex, Bénédicte; Ballif, Christophe [Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue de la Maladière 71b, 2000 Neuchâtel (Switzerland); Amanatides, Eleftherios; Mataras, Dimitrios [University of Patras, Department of Chemical Engineering, Plasma Technology Laboratory, P.O. Box 1407, 26504 Patras (Greece)

    2015-05-28

    We clarify the difference between the SiH{sub 4} consumption efficiency η and the SiH{sub 4} depletion fraction D, as measured in the pumping line and the actual reactor of an industrial plasma-enhanced chemical vapor deposition system. In the absence of significant polysilane and powder formation, η is proportional to the film growth rate. Above a certain powder formation threshold, any additional amount of SiH{sub 4} consumed translates into increased powder formation rather than into a faster growing Si film. In order to discuss a zero-dimensional analytical model and a two-dimensional numerical model, we measure η as a function of the radio frequency (RF) power density coupled into the plasma, the total gas flow rate, the input SiH{sub 4} concentration, and the reactor pressure. The adjunction of a small trimethylboron flow rate increases η and reduces the formation of powder, while the adjunction of a small disilane flow rate decreases η and favors the formation of powder. Unlike η, D is a location-dependent quantity. It is related to the SiH{sub 4} concentration in the plasma c{sub p}, and to the phase of the growing Si film, whether the substrate is glass or a c-Si wafer. In order to investigate transient effects due to the RF matching, the precoating of reactor walls, or the introduction of a purifier in the gas line, we measure the gas residence time and acquire time-resolved SiH{sub 4} density measurements throughout the ignition and the termination of a plasma.

  15. Practical silicon deposition rules derived from silane monitoring during plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    We clarify the difference between the SiH4 consumption efficiency η and the SiH4 depletion fraction D, as measured in the pumping line and the actual reactor of an industrial plasma-enhanced chemical vapor deposition system. In the absence of significant polysilane and powder formation, η is proportional to the film growth rate. Above a certain powder formation threshold, any additional amount of SiH4 consumed translates into increased powder formation rather than into a faster growing Si film. In order to discuss a zero-dimensional analytical model and a two-dimensional numerical model, we measure η as a function of the radio frequency (RF) power density coupled into the plasma, the total gas flow rate, the input SiH4 concentration, and the reactor pressure. The adjunction of a small trimethylboron flow rate increases η and reduces the formation of powder, while the adjunction of a small disilane flow rate decreases η and favors the formation of powder. Unlike η, D is a location-dependent quantity. It is related to the SiH4 concentration in the plasma cp, and to the phase of the growing Si film, whether the substrate is glass or a c-Si wafer. In order to investigate transient effects due to the RF matching, the precoating of reactor walls, or the introduction of a purifier in the gas line, we measure the gas residence time and acquire time-resolved SiH4 density measurements throughout the ignition and the termination of a plasma

  16. Exact solutions for chemical bond orientations from residual dipolar couplings

    International Nuclear Information System (INIS)

    New methods for determining chemical structures from residual dipolar couplings are presented. The fundamental dipolar coupling equation is converted to an elliptical equation in the principal alignment frame. This elliptical equation is then combined with other angular or dipolar coupling constraints to form simple polynomial equations that define discrete solutions for the unit vector(s). The methods are illustrated with residual dipolar coupling data on ubiquitin taken in a single anisotropic medium. The protein backbone is divided into its rigid groups (namely, its peptide planes and Cα frames), which may be solved for independently. A simple procedure for recombining these independent solutions results in backbone dihedral angles φ and ψ that resemble those of the known native structure. Subsequent refinement of these φ-ψ angles by the ROSETTA program produces a structure of ubiquitin that agrees with the known native structure to 1.1 A Cα rmsd

  17. Autopsy report for chemical burns from cresol solution.

    Science.gov (United States)

    Emoto, Yuko; Yoshizawa, Katsuhiko; Shikata, Nobuaki; Tsubura, Airo; Nagasaki, Yasushi

    2016-01-01

    Cresol, which is used as a disinfectant and insecticide, has erosive effects on epidermal and epithelial tissues in the body. Oral exposure causes gastrointestinal corrosive injuries as a direct chemical burn. We report herein a case of suicidal poisoning by ingestion of cresol solution. An octogenarian man with depression was found dead approximately 14 h after exposure to less than 500 mL of saponated cresol solution. Macroscopically, corrosive lesions such as red-to-brown-colored epithelium and edematous thickening of walls were seen in the skin, mouth, oral cavity, esophagus, and stomach. Histopathologically, coagulative necrosis and vascular dilatation were detected from mucosal to muscular layers in the esophagus, stomach, and duodenum. Congestive edema of the lungs, edematous changes in the brain, and proximal tubular necrosis of the kidneys were seen, suggesting acute circulatory disturbance due to shock. This human case offers valuable information on the direct irritation and shock induced by systemic exposure to corrosive substances. PMID:26404918

  18. Influences of deposition temperature on characteristics of B-doped ZnO films deposited by metal–organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Boron-doped zinc oxide films were fabricated by metal–organic chemical vapor deposition at deposition temperatures (Td) from 150 to 210 °C. The deposition rate increases abruptly and monotonically with increasing Td. The resistivity also varies drastically, and a minimum resistivity of 1.6 × 10−3Ω cm is obtained at Td = 175 °C. The crystal orientation and surface texture show Td dependence. These characteristics correlate with each other. The dependence of these characteristics on Td is caused by the reactivity of the source materials. - Highlights: • Transparent conducting boron-doped zinc oxide films were deposited and characterized. • Comparing various characteristics, these characteristics correlate each other. • These characteristics were influenced by chemical vapor reactions strongly

  19. Influence of anionic concentration and deposition temperature on formation of wurtzite CdS thin films by in situ chemical reaction method

    International Nuclear Information System (INIS)

    Highlights: ► We have deposited nanocrystalline CdS thin films on glass substrates by a new in situ chemical reaction synthesis. ► This method used cadmium precursor solid films as reaction source and sodium sulfide based solutions as anionic reaction medium. ► The influence of the S:Cd molar concentrations in separate cationic and anionic precursor solutions on CdS films was investigated. ► The influence of the deposition temperature on crystallized structure and morphologies of the deposited CdS films were investigated. - Abstract: Nanocrystalline CdS thin films were deposited on glass substrates by a new in situ chemical reaction synthesis using cadmium precursor solid films as reaction source and sodium sulfide based solutions as anionic reaction medium. The influence of the S:Cd molar concentrations in separate cationic and anionic precursor solutions and the deposition temperature on the crystallized structure, morphologies, chemical component and optical properties of the deposited CdS films was investigated by X-ray diffraction, field emission scanning electron microscope, energy dispersive X-ray analysis and UV–Vis spectra measurements. The results show that CdS thin films deposited by the in situ chemical reaction synthesis have wurtzite structure with (0 0 2) plane preferential orientation and this tendency gradually enhances with increase of S:Cd molar concentration ratio. The deposition rate was 80–100 nm thickness per cycle in the range of deposition temperature from 20 °C to 60 °C.

  20. Fabrication of Isotropic Pyrocarbon at 1400℃ by Thermal Gradient Chemical Vapor Deposition Apparatus

    Institute of Scientific and Technical Information of China (English)

    GUO Lingjun; ZHANG Dongsheng; LI Kezhi; LI Hejun

    2009-01-01

    An experiment was designed to prepare isotropic pyrocarbon by thermal gradient chemical vapor deposition apparatus.The deposition was performed under ambient atmosphere at 1400℃,with natural gas volume flow of 3.5 m~3/h for 80 h.The results show that the thickness and the bulk density of the deposit are about 1.95 g/cm~3 and 10 mm,respectively.The microstructure of the deposit was examined by polarized light microscopy and scanning electron microscopy,which shows that the deposit is constituted of sphere isotropic pyrocarbon,pebble pyrocarbon and laminar pyrocarbon.

  1. The power source effect on SiO{sub x} coating deposition by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Junfeng [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Daxing, Beijing, 102600 (China); Chen Qiang, E-mail: chenqiang@bigc.edu.c [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Daxing, Beijing, 102600 (China); Zhang Yuefei; Liu Fuping; Liu Zhongwei [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Daxing, Beijing, 102600 (China)

    2009-05-29

    SiOx coatings were prepared by capacitively coupled plasma enhanced chemical vapor deposition on polyethyleneterephtalate substrates in 23 kHz middle-frequency and radio frequency power supplies, respectively, where hexamethyldisiloxane was used as gas source. The influences of discharge conditions on gas phase intermediate species and active radicals for SiOx formation was investigated by mass spectrometry as real-time in-situ diagnosis. The deposited SiOx coating chemical structures were also analyzed by Fourier transform infrared spectroscopy. Meanwhile, the film barrier property, oxygen transmission rate, was measured at 23 {sup o}C and 50% humidity circumstance. The better barrier property was obtained in the MF power source depositing SiOx coated PET.

  2. Effect of deposition temperature on boron-doped carbon coatings deposited from a BCl3-C3H6-H2 mixture using low pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    A mixture of propylene, hydrogen and boron trichloride was used to fabricate boron-doped carbon coatings by using low pressure chemical vapor deposition (LPCVD) technique. Effect of deposition temperature on deposition rate, morphologies, compositions and bonding states of boron-doped carbon coatings was investigated. Below 1273 K, the deposition rate is controlled by reaction dynamics. The deposition rate increases with increasing deposition temperature. The activation energy is 208.74 kJ/mol. Above 1273 K, the deposition rate decreases due to smaller critical radius rc and higher nuclei formation rate J with increasing temperature. Scanning electron microscopy shows that the structure changes from glass-like to nano-laminates with increasing deposition temperature. The boron concentration decreases with increasing deposition temperature, corresponding with increasing carbon concentration. The five types of bonding states are B-C, B-sub-C, BC2O, BCO2 and B-O. B-sub-C and BC2O are the main bonding states. The reactions are dominant at all temperatures, in which the B-sub-C and PyC are formed.

  3. Hydrazine-Free Solution-Deposited CuIn(S,Se)2 Solar Cells by Spray Deposition of Metal Chalcogenides.

    Science.gov (United States)

    Arnou, Panagiota; van Hest, Maikel F A M; Cooper, Carl S; Malkov, Andrei V; Walls, John M; Bowers, Jake W

    2016-05-18

    Solution processing of semiconductors, such as CuInSe2 and its alloys (CIGS), can significantly reduce the manufacturing costs of thin film solar cells. Despite the recent success of solution deposition approaches for CIGS, toxic reagents such as hydrazine are usually involved, which introduce health and safety concerns. Here, we present a simple and safer methodology for the preparation of high-quality CuIn(S, Se)2 absorbers from metal sulfide solutions in a diamine/dithiol mixture. The solutions are sprayed in air, using a chromatography atomizer, followed by a postdeposition selenization step. Two different selenization methods are explored resulting in power conversion efficiencies of up to 8%. PMID:27135679

  4. Low pressure chemical vapor deposition of niobium coating on silicon carbide

    International Nuclear Information System (INIS)

    Nb coatings were prepared on a SiC substrate by low pressure chemical vapor deposition using NbCl5. Thermodynamic calculations were performed to study the effect of temperature and partial pressure of NbCl5 on the final products. The as-deposited coatings were characterized by scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy. The Nb coatings are oriented and grow in the preferred (2 0 0) plane and (2 1 1) plane, at 1173 K and 1223-1423 K, respectively. At 1123-1273 K, the deposition is controlled by the surface kinetic processes. The activation energy is found to be 133 kJ/mol. At 1273-1373 K, the deposition is controlled by the mass transport processes. The activation energy is found to be 46 kJ/mol. The growth mechanism of the chemical vapor deposited Nb is also discussed based on the morphologies and the deposition rates.

  5. Deposition of Lead Sulfide Nanostructure Films on TiO2 Surface via Different Chemical Methods due to Improving Dye-Sensitized Solar Cells Efficiency

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted -- Highlights: • TiO2 surface was fabricated by electrophoresis deposition method. • PbS nanostructure layers were deposited on the TiO2 surface via different chemical methods. • The effects of chemical deposition methods on the optical properties of fabricated surfaces were studied. • Dye-sensitized solar cells (DSSCs) were made with the fabricated TiO2/PbS surfaces. • The effects of different deposition methods on DSSC performance were investigated. -- Abstract: In this work TiO2 P25 was deposited successfully on the FTO glass by electrophoresis method. Different chemical methods were served for deposition of nanosized PbS such as chemical bath deposition (CBD) and successive ion layer adsorption and reaction (SILAR). Also in this paper, nanosized lead sulfide was successfully deposited on TiO2 surface by hydrothermal (HT) and microwave (MW) methods. Also TiO2/PbS nanocomposite was synthesized via a simple hydrothermal method and deposited on FTO glass by doctor blade (DB) technique. Dye sensitized solar cells were fabricated from prepared electrodes, Pt as counter electrode, dye solution and electrolyte. The effect of chemical deposition methods were investigated on surface quality, optical properties and solar cell efficiency. The observation showed that using different chemical methods for deposition of PbS on TiO2 surface is led to fabrication solar cells with different efficiencies and performances. The electrodes were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), cross-section SEM, UV–vis diffuse reflectance spectroscopy (DRS), energy dispersive X-ray analysis (EDX) spectroscopy, atomic force microscopy (AFM), cyclic voltammetry (CV) and UV–Vis spectroscopy. Dye-sensitized solar cells (DSSC) made by the fabricated electrodes as working electrode and then were investigated by current density-voltage (J-V) curve and electrochemical

  6. JOVIAN STRATOSPHERE AS A CHEMICAL TRANSPORT SYSTEM: BENCHMARK ANALYTICAL SOLUTIONS

    International Nuclear Information System (INIS)

    We systematically investigated the solvable analytical benchmark cases in both one- and two-dimensional (1D and 2D) chemical-advective-diffusive systems. We use the stratosphere of Jupiter as an example but the results can be applied to other planetary atmospheres and exoplanetary atmospheres. In the 1D system, we show that CH4 and C2H6 are mainly in diffusive equilibrium, and the C2H2 profile can be approximated by modified Bessel functions. In the 2D system in the meridional plane, analytical solutions for two typical circulation patterns are derived. Simple tracer transport modeling demonstrates that the distribution of a short-lived species (such as C2H2) is dominated by the local chemical sources and sinks, while that of a long-lived species (such as C2H6) is significantly influenced by the circulation pattern. We find that an equator-to-pole circulation could qualitatively explain the Cassini observations, but a pure diffusive transport process could not. For slowly rotating planets like the close-in extrasolar planets, the interaction between the advection by the zonal wind and chemistry might cause a phase lag between the final tracer distribution and the original source distribution. The numerical simulation results from the 2D Caltech/JPL chemistry-transport model agree well with the analytical solutions for various cases.

  7. JOVIAN STRATOSPHERE AS A CHEMICAL TRANSPORT SYSTEM: BENCHMARK ANALYTICAL SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xi; Shia Runlie; Yung, Yuk L., E-mail: xiz@gps.caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-04-20

    We systematically investigated the solvable analytical benchmark cases in both one- and two-dimensional (1D and 2D) chemical-advective-diffusive systems. We use the stratosphere of Jupiter as an example but the results can be applied to other planetary atmospheres and exoplanetary atmospheres. In the 1D system, we show that CH{sub 4} and C{sub 2}H{sub 6} are mainly in diffusive equilibrium, and the C{sub 2}H{sub 2} profile can be approximated by modified Bessel functions. In the 2D system in the meridional plane, analytical solutions for two typical circulation patterns are derived. Simple tracer transport modeling demonstrates that the distribution of a short-lived species (such as C{sub 2}H{sub 2}) is dominated by the local chemical sources and sinks, while that of a long-lived species (such as C{sub 2}H{sub 6}) is significantly influenced by the circulation pattern. We find that an equator-to-pole circulation could qualitatively explain the Cassini observations, but a pure diffusive transport process could not. For slowly rotating planets like the close-in extrasolar planets, the interaction between the advection by the zonal wind and chemistry might cause a phase lag between the final tracer distribution and the original source distribution. The numerical simulation results from the 2D Caltech/JPL chemistry-transport model agree well with the analytical solutions for various cases.

  8. Characteristics of sintered HA coating deposited by chemical method on AISI 316L substrate

    International Nuclear Information System (INIS)

    Graphical abstract: Potentiodynamic polarization curves of various conditions tested in Ringer’s solution at 37 ± 1 °C. - Highlights: • Sintering resulted in a well-dispersed HA-coating. • Sintering of HA resulted in a slightly higher surface roughness. • Sintering improved the coating/substrate adhesion. • Sintering of HA-coated samples possessed higher corrosion resistance. - Abstract: Hydroxyapatite (HA) coating is widely applied for biomaterials because of its chemical similarity to the mineral component of bones. The bioactive nature of HA coating enhances the formation of strong chemical bonds with surrounding bones. The present work is aimed at investigating the effects of sintering at 500, 600 and 700 °C on the crystallization and adhesive properties of HA coating, deposited by chemical method on AISI 316L stainless steel substrate. The properties of HA coating were studied by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and standard tensile adhesion test. In addition, the corrosion behavior after heat treatments was evaluated in Ringer’s solution at 37 °C as a simulated body fluid. The results refer to a good enhancement of the crystallization of the HA coating sintered at 700 °C. The adhesive strength of as-coated (AC) material increased from 8.3 MPa to 12.2, 16.8 and 19.8 MPa after sintering at 500, 600 and 700 °C, respectively. The corrosion rate of the as-coated material reduced sharply from 0.405 to 0.094 μA cm−2 after sintering at 700 °C

  9. Formation of Micro- and Nanostructures on the Nanotitanium Surface by Chemical Etching and Deposition of Titania Films by Atomic Layer Deposition (ALD

    Directory of Open Access Journals (Sweden)

    Denis V. Nazarov

    2015-12-01

    Full Text Available In this study, an integrated approach was used for the preparation of a nanotitanium-based bioactive material. The integrated approach included three methods: severe plastic deformation (SPD, chemical etching and atomic layer deposition (ALD. For the first time, it was experimentally shown that the nature of the etching medium (acidic or basic Piranha solutions and the etching time have a significant qualitative impact on the nanotitanium surface structure both at the nano- and microscale. The etched samples were coated with crystalline biocompatible TiO2 films with a thickness of 20 nm by Atomic Layer Deposition (ALD. Comparative study of the adhesive and spreading properties of human osteoblasts MG-63 has demonstrated that presence of nano- and microscale structures and crystalline titanium oxide on the surface of nanotitanium improve bioactive properties of the material.

  10. Composition and morphological characteristics of chemically sprayed fluorine-doped zinc oxide thin films deposited on Si(1 0 0)

    International Nuclear Information System (INIS)

    Fluorine-doped zinc oxide thin films (ZnO:F) were deposited on Si(1 0 0) substrates by the chemical spray technique (CST) from an aged-solution. The effect of the substrate temperature on the morphology and composition of the ZnO:F thin films was studied. The films were polycrystalline, with a preferential growth along the ZnO (0 0 2) plane, irrespective of the deposition temperature. The average crystal size within the films was ca. 35 nm and the morphology of the surface was found to be dependent on the substrate temperature. At low substrate temperatures irregular-shaped grains were observed, whereas at higher temperatures uniform flat grains were obtained. Elemental analysis showed that the composition of the films is close to stoichiometric ZnO and that samples contain quite a low fluorine concentration, which decreases as a function of the deposition temperature

  11. Electro-Optical Properties of Carbon Nanotubes Obtained by High Density Plasma Chemical Vapor Deposition

    OpenAIRE

    Ana Paula Mousinho; Ronaldo D. Mansano

    2011-01-01

    In this work, we studied the electro-optical properties of high-aligned carbon nanotubes deposited at room temperature. For this, we used the High Density Plasma Chemical Vapor Deposition system. This system uses a new concept of plasma generation: a planar coil is coupled to an RF system for plasma generation. This was used together with an electrostatic shield, for plasma densification, thereby obtaining high-density plasmas. The carbon nanotubes were deposited using pure methane plasmas. T...

  12. Sealing of micromachined cavities using chemical vapor deposition methods: characterization and optimization

    OpenAIRE

    Liu, Chang; Tai, Yu-Chong

    1999-01-01

    This paper presents results of a systematic investigation to characterize the sealing of micromachined cavities using chemical vapor deposition (CVD) methods. We have designed and fabricated a large number and variety of surface-micromachined test structures with different etch-channel dimensions. Each cavity is then subjected to a number of sequential CVD deposition steps with incremental thickness until the cavity is successfully sealed. At etch deposition interval, the sealing status of ev...

  13. Chemical deposition in CdSe thin films using cadmium trithanolamine complex

    Energy Technology Data Exchange (ETDEWEB)

    Eid, A.H.; Mahmoud, S. (National Research centre, Dokki, Cairo (EG). Dept. of Electron Microscopy and Thin Films)

    1992-07-01

    Thin layers of metal chalcogenides are important for photovoltaic cells, photoconductors and other electro-optical devices. These materials can be obtained in thin-layer form by sputtering, spray pyrolysis, vacuum deposition and sintering. Chemical deposition is the simplest way of obtaining thin layers of high quality and good reproducibility. In the recent work the triethanolamine (TEA) complex of Cd{sup 2+} ion was used for CdSe thin-film deposition. (author).

  14. Optimisation of wet chemical silane deposition to improve the interfacial strength of stainless steel/epoxy

    International Nuclear Information System (INIS)

    Highlights: • γ-aminopropyltriethoxysilane (APS) wet surface treatment was evaluated to improve the interfacial strength of stainless steel/epoxy hybrid. • The applied methodology seems to be of major importance. • A doubling of the interfacial strength compared to non-treated samples is observed. • The obtained fracture strength value of more than 60 MPa by far exceeds values currently found in literature and approaches the epoxy fracture strength. - Abstract: The evaluation of various wet chemical deposition conditions of γ-aminopropyltriethoxysilane (APS) on stainless steel resulted in stainless steel/epoxy hybrids with improved interfacial strength. Nuclear magnetic resonance spectroscopy (NMR) revealed the working window of the silane solution used, while scanning electron microscopy (SEM) and spectroscopic ellipsometry (SE) served at characterising the final APS film structural properties. With pull-off testing the interfacial strength of surface treated steel plates in contact with an epoxy resin was determined. Fracture surface morphological features allowed identifying the failure mode. Optimisation of the different silane deposition conditions led to a doubling of the interfacial strength compared to non-treated samples. The fracture strength value of more than 60 MPa by far exceeds values currently found in literature and approaches the epoxy fracture strength by which the original adhesive failure mode converts into a more cohesive failure mode

  15. Optimisation of wet chemical silane deposition to improve the interfacial strength of stainless steel/epoxy

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Amit Kumar, E-mail: aghosh@vub.ac.be [Research group of Physical Chemistry and Polymer Science, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels (Belgium); Bertels, Ellen; Goderis, Bart; Smet, Mario [Polymer Chemistry and Materials, KU Leuven, Celestijnenlaan 200f-box 2404, B-3001 Heverlee (Belgium); Van Hemelrijck, Danny [Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels (Belgium); Van Mele, Bruno [Research group of Physical Chemistry and Polymer Science, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels (Belgium)

    2015-01-01

    Highlights: • γ-aminopropyltriethoxysilane (APS) wet surface treatment was evaluated to improve the interfacial strength of stainless steel/epoxy hybrid. • The applied methodology seems to be of major importance. • A doubling of the interfacial strength compared to non-treated samples is observed. • The obtained fracture strength value of more than 60 MPa by far exceeds values currently found in literature and approaches the epoxy fracture strength. - Abstract: The evaluation of various wet chemical deposition conditions of γ-aminopropyltriethoxysilane (APS) on stainless steel resulted in stainless steel/epoxy hybrids with improved interfacial strength. Nuclear magnetic resonance spectroscopy (NMR) revealed the working window of the silane solution used, while scanning electron microscopy (SEM) and spectroscopic ellipsometry (SE) served at characterising the final APS film structural properties. With pull-off testing the interfacial strength of surface treated steel plates in contact with an epoxy resin was determined. Fracture surface morphological features allowed identifying the failure mode. Optimisation of the different silane deposition conditions led to a doubling of the interfacial strength compared to non-treated samples. The fracture strength value of more than 60 MPa by far exceeds values currently found in literature and approaches the epoxy fracture strength by which the original adhesive failure mode converts into a more cohesive failure mode.

  16. Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Michael E.A.; Dunnill, Charles W.; Goodall, Josie; Darr, Jawwad A.; Binions, Russell, E-mail: uccarbi@ucl.ac.uk

    2011-07-01

    Hybrid atmospheric pressure chemical vapour and aerosol assisted deposition via the reaction of vanadium acetylacetonate and a suspension of preformed titanium dioxide or cerium dioxide nanoparticles, led to the production of vanadium dioxide nanocomposite thin films on glass substrates. The preformed nanoparticle oxides used for the aerosol were synthesised using a continuous hydrothermal flow synthesis route involving the rapid reaction of a metal salt solution with a flow of supercritical water in a flow reactor. Multifunctional nanocomposite thin films from the hybrid deposition process were characterised using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The functional properties of the films were evaluated using variable temperature optical measurements to assess thermochromic behaviour and methylene blue photodecolourisation experiments to assess photocatalytic activity. The tests show that the films are multifunctional in that they are thermochromic (having a large change in infra-red reflectivity upon exceeding the thermochromic transition temperature) and have significant photocatalytic activity under irradiation with 254 nm light.

  17. Plasma enhanced chemical vapor deposition of zirconium nitride thin films

    International Nuclear Information System (INIS)

    Depositions of high quality zirconium nitride, (Zr3N4), films using the metal-organic precursor Zr(NEt2)4 were carried out in a microwave argon/ammonia plasma (2.45 GHz). The films were deposited on crystalline silicon wafers and quartz substrates at temperatures of 200--400 C. The transparent yellow films have resistivity values greater than MΩ cm. The stoichiometry is N/Zr = 1.3, with less than 5 atom % carbon and little or no oxygen. The hydrogen content is less than 9 atom %, and it does not vary with deposition temperature. The growth rates range from 600 to 1,200 angstrom/min, depending on the flow rates and precursor bubbler temperature. X-ray diffraction studies show a Zr3N4 film deposited at 400 C is polycrystalline with some (220) orientation. The crystallite size is approximately 30 angstrom. The band gap, as estimated from transmission spectra, is 3.1 eV

  18. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition

    OpenAIRE

    Jourdain, Vincent; Bichara, Christophe

    2013-01-01

    Due to its higher degree of control and its scalability, catalytic chemical vapour deposition is now the prevailing synthesis method of carbon nanotubes. Catalytic chemical vapour deposition implies the catalytic conversion of a gaseous precursor into a solid material at the surface of reactive particles or of a continuous catalyst film acting as a template for the growing material. Significant progress has been made in the field of nanotube synthesis by this method although nanotube samples ...

  19. Plasma-enhanced Chemical Vapor Deposition of Aluminum Oxide Using Ultrashort Precursor Injection Pulses

    NARCIS (Netherlands)

    Dingemans, G.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2012-01-01

    An alternative plasma-enhanced chemical vapor deposition (PECVD) method is developed and applied for the deposition of high-quality aluminum oxide (AlOx) films. The PECVD method combines a continuous plasma with ultrashort precursor injection pulses. We demonstrate that the modulation of the precurs

  20. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells.

    Science.gov (United States)

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors. PMID:27174318

  1. Titanium-based coatings on copper by chemical vapor deposition in fluidized bed reactors

    International Nuclear Information System (INIS)

    Titanium, TiN and TiOx coatings were deposited on copper and Cu-Ni alloys by chemical vapor deposition in fluidized bed reactors. These coatings provide the copper with a tenfold increase in corrosion resistance in chloride aqueous environments, as determined by a.c. impedance studies. (orig.)

  2. Effect of solvent nature on radiation-chemical degradation of collulose nitrate in solutions

    International Nuclear Information System (INIS)

    The influence of solvent nature of radiation-chemical processes of nitrocellulose destruction in solutions was studied by the methods of capillary viscosimetry and chemical analysis. It is shown that radiation-chemical yield of bond ruptures in macrochain increases in the series of solvents THP< alcohol-ether< acetone< DMPA< DMSO< acetonitrile. Anomalously high radiation-chemical yield of denitration processes in nitrocellulose in solutions was ascertained. The mechanism of radiation-chemical processes of nitrocellulose destruction in solutions is considered

  3. Electron emission from nano-structured carbon films fabricated by hot-filament chemical-vapor deposition and microwave plasma-enhanced chemical vapor deposition

    CERN Document Server

    Park, K H; Lee, K M; Oh, S G; Lee, S I; Koh, K H

    2000-01-01

    The electron-emission characteristics of nano-structured carbon films fabricated by using the HFCVD (hot- filament chemical-vapor deposition) and the MPECVD (microwave plasma-enhanced chemical-vapor deposition) methods with a metal catalyst are presented. According to our observation, neither the formation nor the alignment of nano tubes is absolutely necessary to realize carbon-based electron emitters. However, utilization of chrome as an interlayer between Si substrates and metal catalyst particles results in a great improvement in the emission characteristics and the mechanical stability. Also, fabrication of good electron-emitting carbon films on glass substrates, with sputter-deposited chrome electrodes,at a nominal temperature approx 615 .deg. C was demonstrated.

  4. CHEMICAL EQUILIBRIUM OF SOIL SOLUTION IN STEPPE ZONE SOIL

    Directory of Open Access Journals (Sweden)

    A. A. Batukaev

    2014-01-01

    Full Text Available Dynamics of material composition, migration and accumulation of salts is determined by chemical equilibrium in soil solution. Soil solution contains associated electrically neutral ion pairs CaCO30; CaSO40, MgCO30, MgSO40, charged ion pairs CaHCO3+, MgHCO3+, NaCO3-, NaSO4-, CaOH+, MgOH+. Calculation method is proposed for quantitative assessment of real ion forms in the soil solution of chestnut solonetz soil complex. Were proposed equations to calculate free and associated forms of ions. To solve the equations were used an iteration, a linear interpolation of equilibrium constants, a Method of Ionic Pairs including a law of initial concentration preservation, a law of the operating masses of equilibrium system, the concentration constants of ion pair dissociation on the law of operating masses. Was determined the quantity of ion free form and a coefficient of ion association as ratio of ions free form to analytical content ?e = Cass/Can. The association of ions varies in individual soils and soil layer. Increasing soil solution salinity amplifies the ions association. In form of ionic pairs in soil solution are: 11.8-53.8% of Ca2+; 9.4-57.3% of Mg2+; 0.7-11.9% of Na+; 2.2-22.3% of HCO3-, 11.8-62.7% of SO42-. The ion CO32- is high associated, the share of ions in associated form is up to 92.7%. The degree of soil solution saturation was obtained for three level of approximation accounting on analytical concentration, calculated association coefficient, calculated coefficient of association. Relating to thermodynamic solubility product S0, the mathematical product of analytical ionic pairs

  5. Atmospheric pressure chemical vapor deposition of ZnO: Process modeling and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Deelen, J. van, E-mail: joop.vandeelen@tno.nl [TNO, Department of Thin Film Technology, De Rondom 1, 5612 AP Eindhoven (Netherlands); Illiberi, A.; Kniknie, B.; Beckers, E.H.A. [TNO, Department of Thin Film Technology, De Rondom 1, 5612 AP Eindhoven (Netherlands); Simons, P.J.P.M.; Lankhorst, A. [Celsian, De Rondom 1, 5612 AP Eindhoven (Netherlands)

    2014-03-31

    The deposition of zinc oxide has been performed by atmospheric pressure chemical vapor deposition and trends in growth rates are compared with the literature. Diethylzinc and tertiary butanol were used as the primary reactants and deposition rates above 800 nm/min were obtained. The reaction kinetics were studied and detailed process modeling based on a reaction mechanism that includes the formation of an alkylzinc alkoxide intermediate product is discussed. This mechanism can explain the temperature dependent variety in deposition profiles observed in the static deposition experiments. The capability of modeling to gain insight in the local process conditions inside a reactor is demonstrated. - Highlights: • ZnO deposition at high rates of 800 nm/min • Modeling based on two step mechanism gives good fit. • Modeling gives insight in the inside of the reactor. • Modeling can even predict static deposition profiles.

  6. Atmospheric pressure chemical vapor deposition of ZnO: Process modeling and experiments

    International Nuclear Information System (INIS)

    The deposition of zinc oxide has been performed by atmospheric pressure chemical vapor deposition and trends in growth rates are compared with the literature. Diethylzinc and tertiary butanol were used as the primary reactants and deposition rates above 800 nm/min were obtained. The reaction kinetics were studied and detailed process modeling based on a reaction mechanism that includes the formation of an alkylzinc alkoxide intermediate product is discussed. This mechanism can explain the temperature dependent variety in deposition profiles observed in the static deposition experiments. The capability of modeling to gain insight in the local process conditions inside a reactor is demonstrated. - Highlights: • ZnO deposition at high rates of 800 nm/min • Modeling based on two step mechanism gives good fit. • Modeling gives insight in the inside of the reactor. • Modeling can even predict static deposition profiles

  7. Chemical vapor deposition polymerization the growth and properties of parylene thin films

    CERN Document Server

    Fortin, Jeffrey B

    2004-01-01

    Chemical Vapor Deposition Polymerization - The Growth and Properties of Parylene Thin Films is intended to be valuable to both users and researchers of parylene thin films. It should be particularly useful for those setting up and characterizing their first research deposition system. It provides a good picture of the deposition process and equipment, as well as information on system-to-system variations that is important to consider when designing a deposition system or making modifications to an existing one. Also included are methods to characterizae a deposition system's pumping properties as well as monitor the deposition process via mass spectrometry. There are many references that will lead the reader to further information on the topic being discussed. This text should serve as a useful reference source and handbook for scientists and engineers interested in depositing high quality parylene thin films.

  8. Chemical bath deposition and characterization of electrochromic thin films of sodium vanadium bronzes

    Energy Technology Data Exchange (ETDEWEB)

    Najdoski, Metodija, E-mail: metonajd@yahoo.com [Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, POB 162, Arhimedova 5, 1000 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of); Koleva, Violeta [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Demiri, Sani [Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, POB 162, Arhimedova 5, 1000 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We report a new chemical bath method for the deposition of vanadium bronze thin films. Black-Right-Pointing-Pointer The films are phase mixture of NaV{sub 6}O{sub 15} and Na{sub 1.1}V{sub 3}O{sub 7.9} with 10.58% lattice water. Black-Right-Pointing-Pointer The as-deposited vanadium bronze films exhibit two-step electrochromism. Black-Right-Pointing-Pointer They change their yellow-orange color to green and then from green to blue color. Black-Right-Pointing-Pointer The method allows the preparation of films on substrates with low melting point. -- Abstract: Thin yellow-orange films of sodium vanadium oxide bronzes have been prepared from a sodium-vanadium solution (1:1) at 75 Degree-Sign C and pH = 3. The composition, structure and morphology of the films have been studied by XRD, IR spectroscopy, TG and SEM-EDX analyses. It has been established that the prepared films are a phase mixture of hydrated NaV{sub 6}O{sub 15} (predominant component) and Na{sub 1.1}V{sub 3}O{sub 7.9} with total water content of 10.58%. The sodium vanadium bronze thin films exhibit two-step electrochromism followed by color change from yellow-orange to green, and then from green to blue. The cyclic voltammetry measurements on the as-deposited and annealed vanadium bronze films reveal the existence of different oxidation/reduction vanadium sites which make these films suitable for electrochromic devices. The annealing of the films at 400 Degree-Sign C changes the composition, optical and electrochemical properties.

  9. Chemical bath deposition and characterization of electrochromic thin films of sodium vanadium bronzes

    International Nuclear Information System (INIS)

    Highlights: ► We report a new chemical bath method for the deposition of vanadium bronze thin films. ► The films are phase mixture of NaV6O15 and Na1.1V3O7.9 with 10.58% lattice water. ► The as-deposited vanadium bronze films exhibit two-step electrochromism. ► They change their yellow-orange color to green and then from green to blue color. ► The method allows the preparation of films on substrates with low melting point. -- Abstract: Thin yellow-orange films of sodium vanadium oxide bronzes have been prepared from a sodium–vanadium solution (1:1) at 75 °C and pH = 3. The composition, structure and morphology of the films have been studied by XRD, IR spectroscopy, TG and SEM–EDX analyses. It has been established that the prepared films are a phase mixture of hydrated NaV6O15 (predominant component) and Na1.1V3O7.9 with total water content of 10.58%. The sodium vanadium bronze thin films exhibit two-step electrochromism followed by color change from yellow-orange to green, and then from green to blue. The cyclic voltammetry measurements on the as-deposited and annealed vanadium bronze films reveal the existence of different oxidation/reduction vanadium sites which make these films suitable for electrochromic devices. The annealing of the films at 400 °C changes the composition, optical and electrochemical properties

  10. Morphological and optical properties changes in nanocrystalline Si (nc-Si) deposited on porous aluminum nanostructures by plasma enhanced chemical vapor deposition for Solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghrib, M., E-mail: mondherghrib@yahoo.fr [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Gaidi, M.; Ghrib, T.; Khedher, N. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Ben Salam, M. [L3M, Department of Physics, Faculty of Sciences of Bizerte, 7021 Zarzouna (Tunisia); Ezzaouia, H. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia)

    2011-08-15

    Photoluminescence (PL) spectroscopy was used to determine the electrical band gap of nanocrystalline silicon (nc-Si) deposited by plasma enhancement chemical vapor deposition (PECVD) on porous alumina structure by fitting the experimental spectra using a model based on the quantum confinement of electrons in Si nanocrystallites having spherical and cylindrical forms. This model permits to correlate the PL spectra to the microstructure of the porous aluminum silicon layer (PASL) structure. The microstructure of aluminum surface layer and nc-Si films was systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). It was found that the structure of the nanocrystalline silicon layer (NSL) is dependent of the porosity (void) of the porous alumina layer (PAL) substrate. This structure was performed in two steps, namely the PAL substrate was prepared using sulfuric acid solution attack on an Al foil and then the silicon was deposited by plasma enhanced chemical vapor deposition (PECVD) on it. The optical constants (n and k as a function of wavelength) of the deposited films were obtained using variable angle spectroscopic ellipsometry (SE) in the UV-vis-NIR regions. The SE spectrum of the porous aluminum silicon layer (PASL) was modeled as a mixture of void, crystalline silicon and aluminum using the Cauchy model approximation. The specific surface area (SSA) was estimated and was found to decrease linearly when porosity increases. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their micro-structural properties.

  11. Development of a suppression method for deposition of radioactive cobalt after chemical decontamination. (3) The suppression mechanism with preoxidized ferrite film for deposition of radioactive cobalt

    International Nuclear Information System (INIS)

    The Hitachi ferrite coating film process (Hi-F) has been developed to lower recontamination after chemical decontamination. In this process, the chemical decontamination process is carried out, and a fine Fe3O4 coating film is formed on the surface of stainless steel piping in an aqueous solution. In order to improve the suppression of 60Co deposition further, we combined the original Hi-F with a preoxidation step. We found the deposited amount of 60Co with preoxidized Hi-F coating film (OHi-FC) was 1/10 of that for non-coated specimens. In this study, we investigated the suppression mechanism of 60Co for the OHi-FC. The composition of OHi-FC was changed from Fe3O4 to Fe2O3 and then the crystals in the OHi-FC grew three times larger than those of the original Hi-F coating film. Consequently the corrosion amount of the stainless steel base metal was reduced by getting larger grains in the coating film. Because 60Co was incorporated into the corrosion oxide, the suppression effect of 60Co deposition by preoxidation was attributed to the suppression of the formation of the corrosion oxide by the OHi-FC. (author)

  12. Graphene growth with giant domains using chemical vapor deposition

    OpenAIRE

    Yong, Virginia; Hahn, H. Thomas

    2011-01-01

    We report the first demonstration of the growth of giant graphene domains on platinum (Pt), which results in a uniform bilayer graphene film with domain sizes of millimetre scale. These giant graphene domains are attributed to the giant Pt grains attained in post-deposition annealed Pt thin films that exhibit a strong dependency on the Pt film thickness. Giant grains have been claimed to occur in other metallic materials under appropriate film thicknesses and processing conditions. Our findin...

  13. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface

    International Nuclear Information System (INIS)

    An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible fluid over a linearly shrinking surface is presented. The flow is permeated by an externally applied magnetic field normal to the plane of the flow. The equations governing the flow and concentration field are reduced into a set of nonlinear ordinary differential equations using similarity variables. Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall mass flux (PMF) as boundary conditions. The study reveals that the concentration over a shrinking sheet is significantly different from that of a stretching surface. It is found that the solute boundary layer thickness is enhanced with the increasing values of the Schmidt number and the power-law index parameter, but decreases with enhanced values of magnetic and reaction rate parameters for the PSC case. For the PMF case, the solute boundary layer thickness decreases with the increase of the Schmidt number, magnetic and reaction rate parameter for power-law index parameter n = 0. Negative solute boundary layer thickness is observed for the PMF case when n = 1 and 2, and these facts may not be realized in real-world applications. (fundamental areas of phenomenology(including applications))

  14. Aluminium nitride coatings preparation using a chemical vapour deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Armas, B.; Combescure, C.; Icaza Herrera, M. de; Sibieude, F. [Centre National de la Recherche Scientifique (CNRS), 66 - Font-Romeu (France). Inst. de Science et du Genie des Materiaux et des Procedes

    2000-07-01

    Aluminium nitride was obtained in a cold wall reactor using AlCl{sub 3} and NH{sub 3} as precursors and N{sub 2} as a carrier gas. AlCl{sub 3} was synthesized << in situ >> by means of an original method based on the reaction of SiCl{sub 4(g)} with Al{sub (S)}. The substrate used was a cylinder of graphite coated with SiC and heated by high frequency induction. The deposition rate was studied as a function of temperature in the range 900 - 1500 C, the total pressure varying from 2 to 180 hPa. At low temperatures an Arrhenius type representation of the kinetics for several pressures indicated a thermally activated process with an apparent activation energy of about 80 kJ.mol{sup -1}. At high deposition temperatures, the deposition rate was almost constant, indicating that the growth was controlled by a diffusion process. The influence of gas composition and total AlCl{sub 3} flow rate was also discussed. The different layers were characterised particularly by means of X-ray diffraction and SEM. The influence of temperature and total pressure on crystallization and morphology was studied. (orig.)

  15. Functionalization and Area-Selective Deposition of Magnetic Carbon-Coated Iron Nanoparticles from Solution

    OpenAIRE

    Erika Widenkvist; Oscar Alm; Mats Boman; Ulf Jansson; Helena Grennberg

    2011-01-01

    A route to area-selective deposition of carbon-coated iron nanoparticles, involving chemical modification of the surface of the particles, is described. Partial oxidative etching of the coating introduces carboxylic groups, which then are esterified. The functionalized particles can be selectively deposited on the Si areas of Si/SiO2 substrates by a simple dipping procedure. Nanoparticles and nanoassemblies have been analyzed using SEM, TEM, and XPS.

  16. Polymer Thin Films and Surface Modification by Chemical Vapor Deposition: Recent Progress.

    Science.gov (United States)

    Chen, Nan; Kim, Do Han; Kovacik, Peter; Sojoudi, Hossein; Wang, Minghui; Gleason, Karen K

    2016-06-01

    Chemical vapor deposition (CVD) polymerization uses vapor phase monomeric reactants to synthesize organic thin films directly on substrates. These thin films are desirable as conformal surface engineering materials and functional layers. The facile tunability of the films and their surface properties allow successful integration of CVD thin films into prototypes for applications in surface modification, device fabrication, and protective films. CVD polymers also bridge microfabrication technology with chemical and biological systems. Robust coatings can be achieved via CVD methods as antifouling, anti-icing, and antihydrate surfaces, as well as stimuli-responsive or biocompatible polymers and novel nanostructures. Use of low-energy input, modest vacuum, and room-temperature substrates renders CVD polymerization compatible with thermally sensitive substrates and devices. Compared with solution-based methods, CVD is particularly useful for insoluble materials, such as electrically conductive polymers and controllably crosslinked networks, and has the potential to reduce environmental, health, and safety impacts associated with solvents. This review discusses the relevant background and selected applications of recent advances by two methods that display and use the high retention of the organic functional groups from their respective monomers, initiated CVD (iCVD) and oxidative CVD (oCVD) polymerization. PMID:27276550

  17. Plasma Enhanced Chemical Vapor Deposition Nanocrystalline Tungsten Carbide Thin Film and Its Electro-catalytic Activity

    Institute of Scientific and Technical Information of China (English)

    Huajun ZHENG; Chunan MA; Jianguo HUANG; Guohua LI

    2005-01-01

    Nanocrystalline tungsten carbide thin films were fabricated on graphite substrates by plasma enhanced chemical vapor deposition (PECVD) at H2 and Ar atmosphere, using WF6 and CH4 as precursors. The crystal phase, structure and chemical components of the films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS), respectively. The results show that the film prepared at CH4/WF6concentration ratio of 20 and at 800℃ is composed of spherical particles with a diameter of 20~35 nm. Electrochemical investigations show that the electrochemical real surface area of electrode of the film is large, and the electrode of the film exhibits higher electro-catalytic activity in the reaction of methanol oxidation. The designated constant current of the film catalyst is 123.6 mA/cm2 in the mixture solution of H2SO4 and CH3OH at the concentration of 0.5 and 2.0 mol/L at 70℃, and the designated constant potential is only 0.306 V (vs SCE).

  18. Flexible Nonvolatile Polymer Memory Array on Plastic Substrate via Initiated Chemical Vapor Deposition.

    Science.gov (United States)

    Jang, Byung Chul; Seong, Hyejeong; Kim, Sung Kyu; Kim, Jong Yun; Koo, Beom Jun; Choi, Junhwan; Yang, Sang Yoon; Im, Sung Gap; Choi, Sung-Yool

    2016-05-25

    Resistive random access memory based on polymer thin films has been developed as a promising flexible nonvolatile memory for flexible electronic systems. Memory plays an important role in all modern electronic systems for data storage, processing, and communication; thus, the development of flexible memory is essential for the realization of flexible electronics. However, the existing solution-processed, polymer-based RRAMs have exhibited serious drawbacks in terms of the uniformity, electrical stability, and long-term stability of the polymer thin films. Here, we present poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3)-based RRAM arrays fabricated via the solvent-free technique called initiated chemical vapor deposition (iCVD) process for flexible memory application. Because of the outstanding chemical stability of pV3D3 films, the pV3D3-RRAM arrays can be fabricated by a conventional photolithography process. The pV3D3-RRAM on flexible substrates showed unipolar resistive switching memory with an on/off ratio of over 10(7), stable retention time for 10(5) s, excellent cycling endurance over 10(5) cycles, and robust immunity to mechanical stress. In addition, pV3D3-RRAMs showed good uniformity in terms of device-to-device distribution. The pV3D3-RRAM will pave the way for development of next-generation flexible nonvolatile memory devices. PMID:27142537

  19. Physical properties of nitrogen-doped diamond-like amorphous carbon films deposited by supermagnetron plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Diamond-like amorphous carbon films doped with nitrogen (DAC:N) were deposited on Si and glass wafers intermittently using i-C4H10/N2 repetitive supermagnetron plasma chemical vapor deposition. Deposition duration, which is equal to a plasma heating time of wafer, was selected to be 40 or 60 s, and several layers were deposited repetitively to form one thick film. DAC:N films were deposited at a lower-electrode temperature of 100 deg. C as a function of upper- and lower-electrode rf powers (200 W/200 W-1 kW/1 kW) and N2 concentration (0%-80%). With an increase in N2 concentration and rf power, the resistivity and the optical band gap decreased monotonously. With increase of the deposition duration from 40 to 60 s, resistivity decreased to 0.03Ω cm and optical band gap decreased to 0.02 eV (substantially equal to 0 eV within the range of experimental error), at an N2 concentration of 80% and rf power of 1 kW(/1 kW)

  20. Metal organic chemical vapor deposition of environmental barrier coatings for the inhibition of solid deposit formation from heated jet fuel

    Science.gov (United States)

    Mohan, Arun Ram

    Solid deposit formation from jet fuel compromises the fuel handling system of an aviation turbine engine and increases the maintenance downtime of an aircraft. The deposit formation process depends upon the composition of the fuel, the nature of metal surfaces that come in contact with the heated fuel and the operating conditions of the engine. The objective of the study is to investigate the effect of substrate surfaces on the amount and nature of solid deposits in the intermediate regime where both autoxidation and pyrolysis play an important role in deposit formation. A particular focus has been directed to examining the effectiveness of barrier coatings produced by metal organic chemical vapor deposition (MOCVD) on metal surfaces for inhibiting the solid deposit formation from jet fuel degradation. In the first part of the experimental study, a commercial Jet-A sample was stressed in a flow reactor on seven different metal surfaces: AISI316, AISI 321, AISI 304, AISI 347, Inconel 600, Inconel 718, Inconel 750X and FecrAlloy. Examination of deposits by thermal and microscopic analysis shows that the solid deposit formation is influenced by the interaction of organosulfur compounds and autoxidation products with the metal surfaces. The nature of metal sulfides was predicted by Fe-Ni-S ternary phase diagram. Thermal stressing on uncoated surfaces produced coke deposits with varying degree of structural order. They are hydrogen-rich and structurally disordered deposits, spherulitic deposits, small carbon particles with relatively ordered structures and large platelets of ordered carbon structures formed by metal catalysis. In the second part of the study, environmental barrier coatings were deposited on tube surfaces to inhibit solid deposit formation from the heated fuel. A new CVD system was configured by the proper choice of components for mass flow, pressure and temperature control in the reactor. A bubbler was designed to deliver the precursor into the reactor

  1. Chemical vapor deposition and characterization of titanium dioxide thin films

    Science.gov (United States)

    Gilmer, David Christopher

    1998-12-01

    The continued drive to decrease the size and increase the speed of micro-electronic Metal-Oxide-Semiconductor (MOS) devices is hampered by some of the properties of the SiOsb2 gate dielectric. This research has focused on the CVD of TiOsb2 thin films to replace SiOsb2 as the gate dielectric in MOS capacitors and transistors. The relationship of CVD parameters and post-deposition anneal treatments to the physical and electrical properties of thin films of TiOsb2 has been studied. Structural and electrical characterization of TiOsb2 films grown from the CVD precursors tetraisopropoxotitanium (IV) (TTIP) and TTIP plus Hsb2O is described in Chapter 3. Both types of deposition produced stoichiometric TiOsb2 films comprised of polycrystalline anatase, but the interface properties were dramatically degraded when water vapor was added. Films grown with TTIP in the presence of Hsb2O contained greater than 50% more hydrogen than films grown using only TTIP and the hydrogen content of films deposited in both wet and dry TTIP environments decreased sharply with a post deposition Osb2 anneal. A significant thickness variation of the dielectric constant was observed which could be explained by an interfacial oxide and the finite accumulation thickness. Fabricated TiOsb2 capacitors exhibited electrically equivalent SiOsb2 gate dielectric thicknesses and leakage current densities as low as 38, and 1×10sp{-8} Amp/cmsp2 respectively. Chapter 4 discusses the low temperature CVD of crystalline TiOsb2 thin films deposited using the precursor tetranitratotitanium (IV), TNT, which produces crystalline TiOsb2 films of the anatase phase in UHV-CVD at temperatures as low as 184sp°C. Fabricated TiOsb2 capacitors exhibited electrically equivalent SiOsb2 gate dielectric thicknesses and leakage current densities as low as 17, and 1×10sp{-8} Amp/cmsp2 respectively. Chapter 5 describes the results of a comparison of physical and electrical properties between TiOsb2 films grown via LPCVD using

  2. Speciation and Precipitation of Uranium Complexes in Hydrothermal Solutions Related to Granite—type Uranium Deposits

    Institute of Scientific and Technical Information of China (English)

    陈培荣; 章邦桐; 等

    1992-01-01

    Uranium-bearing hydrothermal solutions during the stage of ore deposition are weakly alkaline and of the Ca2+ -Na+/HCO3- -F- type.UO2(CO3)22- and UO2F4-, are dominant in the hydrothermal solutions with respect to their activity.Wall-rock hydrothermal alterations ,temperature and pressure drop and the reducing capability of rock assemblage (Δeh) led to a decrease in Eh of the hydrothermal solutions and an increase in Eh at which uranium began precipitating.Therefore,the mechanism of uranium precipitation is essentially the reduction of uranium complexes.The granite-type uranium deposits are the most important type of uranium resources in China.Discussions will be made in this paper concerning the hydrothermal speciation and precipitation mech-anisms of uranium complexes in the light of fluid inclusion and geological data from some major de-posits of this type in South China.

  3. Spontaneous electrochemical processing in conventional organic solutions for iron ion removal and metal deposition

    Science.gov (United States)

    Sun, Jinghua

    2002-01-01

    In one part of this research, spontaneous electrochemical redox reactions in conventional organic solutions commonly used in solvent extraction were demonstrated. In these reactions, the more noble metal is reduced while the less noble metal dissolves simultaneously. This technique was successfully applied in metal recovery or impurity separation in laboratory tests using synthetic and commercially produced solutions. The second use of the process was in depositing metal seed layers on metallized wafers for use in chip manufacture. The patented process in the first application, called galvanic stripping, has been demonstrated on batch and continuous levels to separate iron from a sulfate medium using DEHPA. The use of zinc and steel scrap as reductants was evaluated. The reductant was found to be one of the most important components in the galvanic stripping process. The effects of other processing variables such as solution chemistry, reductant surface area, ferric ion concentration in the organic phase, agitation, and aqueous pH on iron recovery and efficiency were also evaluated. An experimental design with statistical analysis was utilized to optimize overall iron removal and process efficiency. The continuous test allowed the cycling of the organic and strip aqueous solutions and produced a concentrated iron sulfate strip solution containing ferrous ions in the range of 90 to 130 g/L. Based on the galvanic stripping principle a novel metal deposition technique was successfully applied for depositing seed layers on TiSiN and other metal films on Si wafers for subsequent electroless copper deposition as well as the deposition of gold onto a sputtered copper film. XPS measurements confirmed that the deposited particles or films were a pure metallic metal phase. The effects of various factors including the organic bath composition, reaction time, temperature and agitation on the deposit surface morphologies and the distribution of nuclei were investigated.

  4. Rapid Deposition of Titanium Oxide and Zinc Oxide Films by Solution Precursor Plasma Spray

    Science.gov (United States)

    Ando, Yasutaka

    In order to develop a high rate atmospheric film deposition process for functional films, as a basic study, deposition of titanium oxide film and zinc oxide film by solution precursor plasma spray (SPPS) was conducted in open air. Consequently, in the case of titanium oxide film deposition, anantase film and amorphous film as well as rutile film could be deposited by varying the deposition distance. In the case of anatase dominant film, photo-catalytic properties of the films could be confirmed by wettability test. In addition, the dye sensitized sollar cell (DSC) using the TiO2 film deposited by this SPPS technique as photo voltaic device generates 49mV in OCV. On the other hand, in the case of zinc oxide film deposition, it was proved that well crystallized ZnO films with photo catalytic properties could be deposited. From these results, this process was found to have high potential for high rate functional film deposition process conducted in the air.

  5. Second harmonic generation in ZnO thin films fabricated by metalorganic chemical vapor deposition

    Science.gov (United States)

    Liu, C. Y.; Zhang, B. P.; Binh, N. T.; Segawa, Y.

    2004-07-01

    Second harmonic generation (SHG) from ZnO thin films fabricated by metalorganic chemical vapor deposition (MOCVD) technique was carried out. By comparing the second harmonic signal generated in a series of ZnO films with different deposition temperatures, we conclude that a significant part of second harmonic signal is generated at the film deposited with appropriate temperature. The second-order susceptibility tensor χ(2)zzz=9.2 pm/V was deduced for a film deposited at 250 °C.

  6. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-08-31

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  7. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    International Nuclear Information System (INIS)

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  8. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    Science.gov (United States)

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  9. ZnS thin film deposited with chemical bath deposition process directed by different stirring speeds

    International Nuclear Information System (INIS)

    In this combined film thickness, scanning electron microscopy (SEM), X-ray diffraction and optical properties study, we explore the effects of different stirring speeds on the growth and optical properties of ZnS film deposited by CBD method. From the disclosed changes of thickness of ZnS film, we conclude that film thickness is independent of the stirring speeds in the heterogeneous process (deposition time less than 40 min), but increases with the stirring speeds and/or deposition time increasing in the homogeneous process. Grazing incident X-ray diffraction (GIXRD) and the study of optical properties disclosed that the ZnS films grown with different stirring speeds show partially crystallized film and exhibit good transmittance (70-88% in the visible region), but the stirring speeds cannot give much effects on the structure and optical properties in the homogeneous process.

  10. Selective epitaxial Si based layers and TiSi 2 deposition by integrated chemical vapor deposition

    Science.gov (United States)

    Regolini, J. L.; Margail, J.; Bodnar, S.; Maury, D.; Morin, C.

    1996-07-01

    High performance IC manufacturing requirements, such as large diameter wafer uniformity, reproducibility, throughput and reliability can be fulfilled by commercial integrated processing, single wafer cluster tools. This paper presents results obtained on an industrial cluster reactor for 200 mm wafers by combining epitaxial silicon related materials and selective deposition of TiSi 2. Low temperature epitaxial Si and SiGe alloys are studied for buried thin layers used in CMOS and HBT devices. The doping profile abruptness for B and P are within SIMS resolution limits. TheTiSi 2/Si selective deposition is also investigated, sequentially and in situ, as a technique for future salicidedS/D with a reduction in technological steps and interface contamination. Statistical electrical results obtained using 0.35 and 0.25 μm CMOS technologies in which the CVD silicide deposition is tested, are presented and compared with the standard salicide technique.

  11. Electrochemical deposition of coatings of highly entropic alloys from non-aqueous solutions

    Directory of Open Access Journals (Sweden)

    Jeníček V.

    2016-03-01

    Full Text Available The paper deals with electrochemical deposition of coatings of highly entropic alloys. These relatively new materials have been recently intensively studied. The paper describes the first results of electrochemical coating with highly entropic alloys by deposition from non-aqueous solutions. An electrochemical device was designed and coatings were deposited. The coatings were characterised with electronic microscopy scanning, atomic absorption spectrometry and X-ray diffraction methods and the combination of methods of thermic analysis of differential scanning calorimetry and thermogravimetry.

  12. Characterization of titanium oxynitride films deposited by low pressure chemical vapor deposition using amide Ti precursor

    Energy Technology Data Exchange (ETDEWEB)

    Song Xuemei; Gopireddy, Deepthi [Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Takoudis, Christos G. [Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States)], E-mail: takoudis@uic.edu

    2008-07-31

    In this study, we investigate the use of an amide-based Ti-containing precursor, namely tetrakis(diethylamido)titanium (TDEAT), for TiN{sub x}O{sub y} film deposition at low temperature. Traditionally, alkoxide-based Ti-containing precursor, such as titanium tetra-isopropoxide (TTIP), along with NH{sub 3} is used for titanium oxynitride (TiN{sub x}O{sub y}) film deposition. When TTIP is used, at low temperatures it is difficult to form TiN{sub x}O{sub y} films with high N/O ratios. In this study, by using TDEAT, TiN{sub x}O{sub y} films are deposited on H-passivated Si (100) substrates in a cold wall reactor at 300 {sup o}C and 106 Pa. Rutherford backscattering spectroscopy analysis shows nitrogen incorporation in the TiN{sub x}O{sub y} films to be as high as 28 at.%. X-ray photoelectron spectroscopy analysis of as-deposited films confirms the formation of{sub .} TiN{sub x}O{sub y}, while Fourier transform infrared and Raman spectra indicate that the films have amorphous structure. Moreover, there is no detectable bulk carbon impurity and no SiO{sub 2} formation at the TiN{sub x}O{sub y}/Si interface. Upon annealing the as-deposited films in air at 750 deg. C for 30 min, they oxidize to TiO{sub 2} and crystallize to form a rutile structure with a small amount of anatase phase. Based on these results, TDEAT appears to be a promising precursor for both TiN{sub x}O{sub y} and TiO{sub 2} film deposition.

  13. The Chemical Vapour Deposition of Tantalum - in long narrow channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki

    protective layers of tantalum because of the process’ ability to coat complex geometries and its relative ease to control. This work focuses on studying the CVD of tantalum in long narrow channels with the view that the knowledge gained during the project can be used to optimise the commercial coating...... that there is a major change in morphology between 850 – 900 °C. The effects of system pressure and precursor partial pressure are also studied, and were found to have relevance to the tantalum distribution along the substrates but little effect on the structural morphology of the deposited layer. In...

  14. Coating of ceramic powders by chemical vapor deposition techniques (CVD)

    International Nuclear Information System (INIS)

    New ceramic materials with selected advanced properties can be designed by coating of ceramic powders prior to sintering. By variation of the core and coating material a large number of various powders and ceramic materials can be produced. Powders which react with the binder phase during sintering can be coated with stable materials. Thermal expansion of the ceramic materials can be adjusted by varying the coating thickness (ratio core/layer). Electrical and wear resistant properties can be optimized for electrical contacts. A fluidized bed reactor will be designed which allow the deposition of various coatings on ceramic powders. (author)

  15. Fabrication and characterization of indium sulfide thin films deposited on SAMs modified substrates surfaces by chemical bath deposition

    International Nuclear Information System (INIS)

    In an effort to explore the optoelectronic properties of nanostructured indium sulfide (In2S3) thin films for a wide range of applications, the In2S3 thin films were successfully deposited on the APTS layers (-NH2-terminated) modified ITO glass substrates using the chemical bath deposition technique. The surface morphology, structure and composition of the resultant In2S3 thin films were characterized by FESEM, XRD, and XPS, respectively. Also, the correlations between the optical properties, photocurrent response and the thickness of thin films were established. According to the different deposition mechanisms on the varying SAMs terminational groups, the positive and negative micropatterned In2S3 thin films were successfully fabricated on modified Si substrates surface combining with the ultraviolet lithography process. This offers an attractive opportunity to fabricate patterned In2S3 thin films for controlling the spatial positioning of functional materials in microsystems.

  16. Spatio-temporal patterns of throughfall and solute deposition in an open tropical rain forest

    Science.gov (United States)

    Zimmermann, Alexander; Germer, Sonja; Neill, Christopher; Krusche, Alex V.; Elsenbeer, Helmut

    2008-10-01

    SummaryThe brief interaction of precipitation with a forest canopy can create a high spatial variability of both throughfall and solute deposition. We hypothesized that (i) the variability in natural forest systems is high but depends on system-inherent stability, (ii) the spatial variability of solute deposition shows seasonal dynamics depending on the increase in rainfall frequency, and (iii) spatial patterns persist only in the short-term. The study area in the north-western Brazilian state of Rondônia is subject to a climate with a distinct wet and dry season. We collected rain and throughfall on an event basis during the early wet season ( n = 14) and peak of the wet season ( n = 14) and analyzed the samples for pH and concentrations of NH4+, Na +, K +, Ca 2+, Mg 2+, Cl -, NO3-, SO42- and DOC. The coefficient of variation for throughfall based on both sampling intervals was 29%, which is at the lower end of values reported from other tropical forest sites, but which is higher than in most temperate forests. Coefficients of variation of solute deposition ranged from 29% to 52%. This heterogeneity of solute deposition is neither particularly high nor particularly low compared with a range of tropical and temperate forest ecosystems. We observed an increase in solute deposition variability with the progressing wet season, which was explained by a negative correlation between heterogeneity of solute deposition and antecedent dry period. The temporal stability of throughfall patterns was low during the early wet season, but gained in stability as the wet season progressed. We suggest that rapid plant growth at the beginning of the rainy season is responsible for the lower stability, whereas less vegetative activity during the later rainy season might favor the higher persistence of "hot" and "cold" spots of throughfall quantities. The relatively high stability of throughfall patterns during later stages of the wet season may influence processes at the forest floor

  17. New chemical evolution analytical solutions including environment effects

    CERN Document Server

    Spitoni, E

    2015-01-01

    In the last years, more and more interest has been devoted to analytical solutions, including inflow and outflow, to study the metallicity enrichment in galaxies. In this framework, we assume a star formation rate which follows a linear Schmidt law, and we present new analytical solutions for the evolution of the metallicity (Z) in galaxies. In particular, we take into account environmental effects including primordial and enriched gas infall, outflow, different star formation efficiencies, and galactic fountains. The enriched infall is included to take into account galaxy-galaxy interactions. Our main results can be summarized as: i) when a linear Schmidt law of star formation is assumed, the resulting time evolution of the metallicity Z is the same either for a closed-box model or for an outflow model. ii) The mass-metallicity relation for galaxies which suffer a chemically enriched infall, originating from another evolved galaxy with no pre-enriched gas, is shifted down in parallel at lower Z values, if co...

  18. Validation of chemical analyses of atmospheric deposition in forested European sites

    Directory of Open Access Journals (Sweden)

    Erwin ULRICH

    2005-08-01

    Full Text Available Within the activities of the Integrated Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests and of the EU Regulation 2152/2003, a Working Group on Quality Assurance/Quality Control of analyses has been created to assist the participating laboratories in the analysis of atmospheric deposition, soil and soil solution, and leaves/needles. As part of the activity of the WG, this study is a statistical analysis in the field of water analysis of chemical concentrations and relationships between ions, and between conductivity and ions for different types of samples (bulk or wet-only samples, throughfall, stemflow considered in forest studies. About 5000 analyses from seven laboratories were used to establish relationships representative of different European geographic and climatic situations, from northern Finland to southern Italy. Statistically significant differences between the relationships obtained from different types of solutions, interacting with different types of vegetation (throughfall and stemflow samples, broad-leaved trees and conifers and with varying influence of marine salt were tested. The ultimate aim is to establish general relationships between ions, and between conductivity and ions, with relative confidence limits, which can be used as a comparison with those established in single laboratories. The use of such techniques is strongly encouraged in the ICPF laboratories to validate single chemical analyses, to be performed when it is still possible to replicate the analysis, and as a general overview of the whole set of analyses, to obtain an indication of the laboratory performance on a long-term basis.

  19. Influence of humidity on the growth characteristics and properties of chemical bath-deposited ZnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Cheng; Chao, Yen-Tai [Department of Mechatronics Engineering, National Changhua University of Education, Changhua 50007, Taiwan (China); Yao, Pin-Chuan, E-mail: pcyao@mail.dyu.edu.tw [Department of Materials Science and Engineering, Da-Yeh University, Dacun, Changhua 51591, Taiwan (China)

    2014-07-01

    In this study, the effect of humidity on the growth characteristics and properties of chemical bath-deposited ZnS thin films was systematically investigated. All deposition was conducted by an open CBD system under various relative humidity levels (RH) or by a hermetic CBD system as a comparison. It shows, for films deposited by an open system, the ambient humidity plays an important role in the quality of the resultant films. Damp environments lead to powdery films. Generally, all films prepared in this study using NH{sub 3} and hydrazine hydrate as the complexing agents were amorphous or poorly crystalline. For an open system, the [H{sup +}] from the dissolved carbon dioxide in the air competes with the ammonium ions in the bath solution. According to Le Châtelier's principle, more ammonia was consumed, which favors the free [Zn{sup +2}] in the solution, facilitating the homogeneous precipitation of Zn(OH){sub 2} and giving rise to a powdery film. The x-ray photoelectron spectrum shows, for an open system, the content of Zn–O compounds in the form of Zn(OH){sub 2} and ZnO, etc., is increased by the relative humidity of the environment. The visible transmittance is reduced by RH. The higher optical band gap of the as-deposited films could be attributed to the quantum confinement effects due to the small grain size of the polycrystalline ZnS films over the substrates.

  20. Comparison of optical coatings deposited by novel physical and chemical techniques

    International Nuclear Information System (INIS)

    The authors have undertaken a systematic study of various methods of depositing good quality thin films of optically interesting materials by different physical and chemical methods in an effort to identify promising techniques for producing low-absorbing, low-scatter, high damage-threshold coatings. The deposition methods studied include e-beam deposition in a UHV environment, sol-gel processes utilizing hot isostatic pressing (HIP) to densify the films, photochemical deposition using organometallic reagents entrained in inert or potentially reactive gas flows, and ion-beam deposition in a reactive environment. The deposited single-layer films were analyzed using various surface analysis techniques to provide information on film composition, stoichiometry, and impurity level

  1. Two dimensional transition metal dichalcogenides grown by chemical vapor deposition

    OpenAIRE

    Tsang, Ka-yi; 曾家懿

    2014-01-01

    An atomically thin film of semiconducting transition metal dichalcogenides (TMDCs) is emerging as a class of key materials in chemistry and physics due to their remarkable chemical and electronic properties. The TMDCs are layered materials with weak out-of-plane van der Waals (vdW) interaction and strong in-plane covalent bonding enabling scalable exfoliation into two-dimensional (2D) layers of atomic thickness. The growth techniques to prepare these 2D TMDC materials in high yield and large ...

  2. Thin Film Deposition of Conducting Polymers and Carbon Allotropes via Interfacial Solution Processing and Evaporative Vapor Phase Polymerization

    OpenAIRE

    D'Arcy, Julio Marcelo

    2012-01-01

    A new solution processing technique is developed for depositing continuously conductive transparent thin films comprised of conducting polymer nanostructures. The deposition mechanism is driven by interfacial surface tension gradients leading to rapid directional fluid flow known as the Marangoni effect. This technique is a universal solution to thin film deposition for coating any type of substrate at ambient conditions within seconds. The versatility of this method of deposition is further ...

  3. Effect of Different Catalyst Deposition Technique on Aligned Multiwalled Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Mohamed Shuaib Mohamed Saheed

    2014-01-01

    Full Text Available The paper reported the investigation of the substrate preparation technique involving deposition of iron catalyst by electron beam evaporation and ferrocene vaporization in order to produce vertically aligned multiwalled carbon nanotubes array needed for fabrication of tailored devices. Prior to the growth at 700°C in ethylene, silicon dioxide coated silicon substrate was prepared by depositing alumina followed by iron using two different methods as described earlier. Characterization analysis revealed that aligned multiwalled carbon nanotubes array of 107.9 µm thickness grown by thermal chemical vapor deposition technique can only be achieved for the sample with iron deposited using ferrocene vaporization. The thick layer of partially oxidized iron film can prevent the deactivation of catalyst and thus is able to sustain the growth. It also increases the rate of permeation of the hydrocarbon gas into the catalyst particles and prevents agglomeration at the growth temperature. Combination of alumina-iron layer provides an efficient growth of high density multiwalled carbon nanotubes array with the steady growth rate of 3.6 µm per minute for the first 12 minutes and dropped by half after 40 minutes. Thicker and uniform iron catalyst film obtained from ferrocene vaporization is attributed to the multidirectional deposition of particles in the gaseous form.

  4. Contact lens physical properties and lipid deposition in a novel characterized artificial tear solution

    OpenAIRE

    Lorentz, Holly; Heynen, Miriam; Kay, Lise M.M.; Dominici, Claudia Yvette; Khan, Warda; Ng, Wendy W.S.; Jones, Lyndon

    2011-01-01

    Purpose To characterize various properties of a physiologically-relevant artificial tear solution (ATS) containing a range of tear film components within a complex salt solution, and to measure contact lens parameters and lipid deposition of a variety of contact lens materials after incubation in this ATS. Methods A complex ATS was developed that contains a range of salts, proteins, lipids, mucin, and other tear film constituents in tear-film relevant concentrations. This ATS was tested to co...

  5. Friction and Wear of Ion-Beam-Deposited Diamondlike Carbon on Chemical-Vapor-Deposited, Fine-Grain Diamond

    Science.gov (United States)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Lanter, William C.

    1996-01-01

    Friction and wear behavior of ion-beam-deposited diamondlike carbon (DLC) films coated on chemical-vapor-deposited (CVD), fine-grain diamond coatings were examined in ultrahigh vacuum, dry nitrogen, and humid air environments. The DLC films were produced by the direct impact of an ion beam (composed of a 3:17 mixture of Ar and CH4) at ion energies of 1500 and 700 eV and an RF power of 99 W. Sliding friction experiments were conducted with hemispherical CVD diamond pins sliding on four different carbon-base coating systems: DLC films on CVD diamond; DLC films on silicon; as-deposited, fine-grain CVD diamond; and carbon-ion-implanted, fine-grain CVD diamond on silicon. Results indicate that in ultrahigh vacuum the ion-beam-deposited DLC films on fine-grain CVD diamond (similar to the ion-implanted CVD diamond) greatly decrease both the friction and wear of fine-grain CVD diamond films and provide solid lubrication. In dry nitrogen and in humid air, ion-beam-deposited DLC films on fine-grain CVD diamond films also had a low steady-state coefficient of friction and a low wear rate. These tribological performance benefits, coupled with a wider range of coating thicknesses, led to longer endurance life and improved wear resistance for the DLC deposited on fine-grain CVD diamond in comparison to the ion-implanted diamond films. Thus, DLC deposited on fine-grain CVD diamond films can be an effective wear-resistant, lubricating coating regardless of environment.

  6. Low temperature deposition of nanocrystalline silicon carbide films by plasma enhanced chemical vapor deposition and their structural and optical characterization

    International Nuclear Information System (INIS)

    Nanocrystalline silicon carbide (SiC) thin films were deposited by plasma enhanced chemical vapor deposition technique at different deposition temperatures (Td) ranging from 80 to 575 deg. C and different gas flow ratios (GFRs). While diethylsilane was used as the source for the preparation of SiC films, hydrogen, argon and helium were used as dilution gases in different concentrations. The effects of Td, GFR and dilution gases on the structural and optical properties of these films were investigated using high resolution transmission electron microscope (HRTEM), micro-Raman, Fourier transform infrared (FTIR) and ultraviolet-visible optical absorption techniques. Detailed analysis of the FTIR spectra indicates the onset of formation of SiC nanocrystals embedded in the amorphous matrix of the films deposited at a temperature of 300 deg. C. The degree of crystallization increases with increasing Td and the crystalline fraction (fc) is 65%±2.2% at 575 deg. C. The fc is the highest for the films deposited with hydrogen dilution in comparison with the films deposited with argon and helium at the same Td. The Raman spectra also confirm the occurrence of crystallization in these films. The HRTEM measurements confirm the existence of nanocrystallites in the amorphous matrix with a wide variation in the crystallite size from 2 to 10 nm. These results are in reasonable agreement with the FTIR and the micro-Raman analysis. The variation of refractive index (n) with Td is found to be quite consistent with the structural evolution of these films. The films deposited with high dilution of H2 have large band gap (Eg) and these values vary from 2.6 to 4.47 eV as Td is increased from 80 to 575 deg. C. The size dependent shift in the Eg value has also been investigated using effective mass approximation. Thus, the observed large band gap is attributed to the presence of nanocrystallites in the films

  7. Chemical Weathering of New Pyroclastic Deposits from Mt. Merapi (Java), Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Fiantis, Dian; Nelson, Malik; Van Ranst, Eric; Shamshudin, Josup; Qafoku, Nikolla

    2009-09-01

    Java Island, Indonesia with abundant amount of pyroclastic deposits is located in the very active and dynamic Pacific Ring of Fires. Studying the geochemical weathering indices of these pyroclastic deposits is important to get a clear picture about weathering profiles on deposits resulting from the eruption of Mt. Merapi. Immediately after the first phase of the eruption (March to June 2006), moist and leached pyroclastic deposits were collected. These pyroclastic deposits were found to be composed of volcanic glass, plagioclase feldspar in various proportions, orthopyroxene, clinopyroxene, olivine, amphibole, and titanomagnetite. Total elemental composition of the bulk samples (including trace elements and heavy metals) were determined by wet chemical methods and X-ray fluorescence (XRF) analyses. Weathering of the pyroclastic deposits was studied using various weathering indices. The Ruxton ratio, weathering index of Parker, Vought resudual index and chemical index of weathering of moist pyroclastic are lower than the leached sample but the alteration indices (chemical and plagioclase) are slightly higher in the moist compared to the leached pyroclastic deposits.

  8. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface

    Institute of Scientific and Technical Information of China (English)

    Chandaneswar Midya

    2012-01-01

    An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible Buid over a linearly shrinking surface is presented. The Row is permeated by an externally applied magnetic Geld normal to the plane of the flow. The equations governing the Row and concentration Reid are reduced into a set of nonlinear ordinary differential equations using similarity variables. Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall mass flux (PMF) as boundary conditions. The study reveals that the concentration over a shrinking sheet is signiRcantly different from that of a stretching surface. It s found that te solute boundary layer thickness is enhanced with the increasing values of the Schmidt number and the power-law index parameter, but decreases with enhanced vaJues of magnetic and reaction rate parameters for the PSC case. For the PMF case, the solute boundary layer thickness decreases with the increase of the Schmidt number, magnetic and reaction rate parameter for power-law index parameter n = 0. Negative solute boundary layer thickness is observed for the PMF case when n = 1 and 2, and these facts may not be realized in real-world applications.%An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible fluid over a linearly shrinking surface is presented.The flow is permeated by an externally applied magnetic field normal to the plane of the flow.The equations governing the flow and concentration field are reduced into a set of nonlinear ordinary differential equations using similarity variables.Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall

  9. Controlled growth of epitaxial CeO2 thin films with self-organized nanostructure by chemical solution method

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude

    2013-01-01

    electron microscope observation also reveals that this phenomenon is mainly attributable to the surface re-organization, which is strongly associated with the critical film thickness, crystallization temperature, reducing ability of the crystallization atmosphere as well as the interface properties.......Chemical solution deposition is a versatile technique to grow oxide thin films with self-organized nanostructures. Morphology and crystallographic orientation control of CeO2 thin films grown on technical NiW substrates by a chemical solution deposition method are achieved in this work. Based on an...

  10. Chemical bath deposition of semiconductor thin films & nanostructures in novel microreactors

    Science.gov (United States)

    McPeak, Kevin M.

    Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures and thin films, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. CBD is traditionally performed in a batch reactor, requiring only a substrate to be immersed in a supersaturated solution of aqueous precursors such as metal salts, complexing agents, and pH buffers. Highlights of CBD include low cost, operation at low temperature and atmospheric pressure, and scalability to large area substrates. In this dissertation, I explore CBD of semiconductor thin films and nanowire arrays in batch and continuous flow microreactors. Microreactors offer many advantages over traditional reactor designs including a reduction in mass transport limitations, precise temperature control and ease of production scale-up by "numbering up". Continuous flow micoreactors offer the unique advantage of providing reaction conditions that are time-invariant but change smoothly as a function of distance down the reaction channel. Growth from a bath whose composition changes along the reactor length results in deposited materials whose properties vary as a function of position on the substrate, essentially creating a combinatorial library. These substrates can be rapidly characterized to identify relationships between growth conditions and material properties or growth mechanisms. I have used CBD in a continuous flow microreactor to deposit ZnO nanowire arrays and CdZnS films whose optoelectronic properties vary as a function of position. The spatially-dependent optoelectronic properties of these materials have been correlated to changes in the composition, structure or growth mechanisms of the materials and ultimately their growth conditions by rigorous spatial characterization. CBD in a continuous flow microreactor, coupled with spatial characterization, provides a new route to understanding the connection between CBD growth

  11. Characterization of amorphous yttria layers deposited by aqueous solutions of Y-chelate alkoxides complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Soon, E-mail: kyscjb@i-sunam.com; Lee, Yu-Ri; Kim, Byeong-Joo; Lee, Jae-Hun; Moon, Seung-Hyun; Lee, Hunju

    2015-01-15

    Highlights: • Economical method for crack-free amorphous yttria layer deposition by dip coating. • Simpler process for planar yttria film as a diffusion barrier and nucleation layer. • Easy control over the film properties with better characteristics. • Easy control over the thickness of the deposited films. • A feasible process that can be easily adopted by HTSCC industries. - Abstract: Crack-free amorphous yttria layers were deposited by dip coating in solutions of different Y-chelate alkoxides complex. Three Y-chelate solutions of different concentrations were prepared using yttrium acetate tetrahydrate, yttrium stearic acid as Y source materials. PEG, diethanolamine were used as chelating agents, while ethanol, methanol and tetradecane were used as solvent. Three different combinations of chelating and solvents were used to prepare solutions for Y{sub 2}O{sub 3} dip coating on SUS, electropolished and non-electropolished Hastelloy C-276 substrates. The thickness of the films was varied by changing the number of dipping cycles. At an optimized condition, the substrate surface roughness (rms) value was reduced from ∼50 nm to ∼1 nm over a 10 × 10 μm{sup 2} area. After Y{sub 2}O{sub 3} deposition, MgO was deposited using ion-beam assisted deposition (IBAD), then LaMnO{sub 3} (LMO) was deposited using sputtering and GdBCO was deposited using reactive co-evaporation by deposition and reaction (RCE-DR). Detailed X-ray study indicates that LMO/MgO/Y{sub 2}O{sub 3} and GdBCO/LMO/MgO/Y{sub 2}O{sub 3} stack films have good out-of-plane and in-plane textures with strong c-axis alignment. The critical current (Ic) of GdBCO/LMO/MgO/Y{sub 2}O{sub 3} multilayer structure varied from 190 to 420 A/cm with different solutions, when measured at 77 K. These results demonstrated that amorphous yttria can be easily deposited by dip coating using Y-chelates complex as a diffusion barrier and nucleation layer.

  12. Structural Evolution of SiC Films During Plasma-Assisted Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Evolution of chemical bonding configurations for the films deposited from hexamethyldisiloxane (HMDSO) diluted with H2 during plasma assisted chemical vapour deposition is investigated. In the experiment a small amount of CH4 was added to adjust the plasma environment and modify the structure of the deposited films. The measurements of Raman spectroscopy and X-ray diffraction (XRD) revealed the production of 6H-SiC embedded in the amorphous matrix without the input of CH4. As CH4 was introduced into the deposition reaction, the transition of 6H-SiC to cubic SiC in the films took place, and also the film surfaces changed from a structure of ellipsoids to cauliflower-like shapes. With a further increase of CH4 in the flow ratio, the obtained films varied from Si-C bonding dominant to a sp2/sp3 carbon-rich composition. (low temperature plasma)

  13. Metastable phase formation during chemical vapor deposition of niobium-germanium films

    International Nuclear Information System (INIS)

    Regularities of different metastable phase formation during chemical vapor deposition of niobium-germanium coatings were investigated. These coatings were deposited on wire and band metal substrates by method of chemical transport reactions with the use of iodine as transporting agent. It was shown that it was possible to deposite the metastable Nb5Ge3 phase with structure of T2 type and X phase with cubic structure and hypothetical Nb2Ge composition during iodide process using Nb3Ge alloy as initial material together with phases existing at state diagram. Metastable T2 and X phases are formed only at high total pressure (more 250-500 Pa) and deposition rate less 1 μm/min. Coatings on the base of Nb3Ge with germanium content from 11 to 23 at.% were obtained

  14. Highly sensitive methanol chemical sensor based on undoped silver oxide nanoparticles prepared by a solution method

    International Nuclear Information System (INIS)

    We have prepared silver oxide nanoparticles (NPs) by a simple solution method using reducing agents in alkaline medium. The resulting NPs were characterized by UV-vis and FT-IR spectroscopy, X-ray powder diffraction, and field-emission scanning electron microscopy. They were deposited on a glassy carbon electrode to give a sensor with a fast response towards methanol in liquid phase. The sensor also displays good sensitivity and long-term stability, and enhanced electrochemical response. The calibration plot is linear (r2 = 0.8294) over the 0.12 mM to 0.12 M methanol concentration range. The sensitivity is ∼ 2.65 μAcm-2 mM-1, and the detection limit is 36.0 μM (at a SNR of 3). We also discuss possible future prospective uses of this metal oxide semiconductor nanomaterial in terms of chemical sensing. (author)

  15. Preparation and characteristics of chemical bath deposited ZnS thin films: Effects of different complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seung Wook [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Agawane, G.L.; Gang, Myeng Gil [Photonics Technology Research Institute, Department of Materials Science Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Moholkar, A.V. [Department of Physics, Shivaji University, Kolhapur 416-004 (India); Moon, Jong-Ha [Photonics Technology Research Institute, Department of Materials Science Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Kim, Jin Hyeok, E-mail: jinhyeok@chonnam.ac.kr [Photonics Technology Research Institute, Department of Materials Science Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Lee, Jeong Yong, E-mail: j.y.lee@kaist.ac.kr [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Thick ZnS thin films were successfully prepared by chemical bath deposition in a basic medium using less toxic complexing agents. Black-Right-Pointing-Pointer Effect of different complexing agents such as no complexing agent, Na{sub 3}-citrate and a mixture of Na{sub 3}-citrate and EDTA on the properties of ZnS thin films was investigated. Black-Right-Pointing-Pointer ZnS thin film deposited using two complexing agent showed the outstanding characteristics as compared to those using no and one complexing agent. - Abstract: Zinc sulfide (ZnS) thin films were prepared on glass substrates by a chemical bath deposition technique using aqueous zinc acetate and thiourea solutions in a basic medium (pH {approx} 10) at 80 Degree-Sign C. The effects of different complexing agents, such as a non-complexing agent, Na{sub 3}-citrate, and a mixture of Na{sub 3}-citrate and ethylenediamine tetra-acetate (EDTA), on the structural, chemical, morphological, optical, and electrical properties of ZnS thin films were investigated. X-ray diffraction pattern showed that the ZnS thin film deposited without any complexing agent was grown on an amorphous phase. However, the ZnS thin films deposited with one or two complexing agents showed a polycrystalline hexagonal structure. No secondary phase (ZnO) was observed. X-ray photoelectron spectroscopy showed that all ZnS thin films exhibited both Zn-S and Zn-OH bindings. Field emission scanning electron microscopy (FE-SEM) images showed that ZnS thin films deposited with complexing agents had thicker thicknesses than that deposited without a complexing agent. The electrical resistivity of ZnS thin films was over 10{sup 5} {Omega} cm regardless of complexing agents. The average transmittance of the ZnS thin films deposited without a complexing agent, those with Na{sub 3}-citrate, and those with a mixture of Na{sub 3}-citrate and EDTA was approximately 85%, 65%, and 70%, respectively, while the band gap

  16. Influence of solution deposition rate on properties of V2O5 thin films deposited by spray pyrolysis technique

    Science.gov (United States)

    Abd-Alghafour, N. M.; Ahmed, Naser M.; Hassan, Zai; Mohammad, Sabah M.

    2016-07-01

    Vanadium oxide (V2O5) thin films were deposited on glass substrates by using a cost-efficient spray pyrolysis technique. The films were grown at 350° through thermal decomposition of VCl3 in deionized water with different solution spray rates. The high resolution X-ray diffraction results revealed the formation of nanocrystalline films having orthorhombic structures with preferential orientation along (101) direction. The spray rate influenced the surface morphology and crystallite size of the films. The crystallite size was found to increase whereas the micro-strain was decreased by increasing the spray deposition rates. The increase in crystallite size and decrease in the macrostrain resulted in an improvement in the films' crystallinity. The UV-Visible spectroscopy analysis indicated that the average transmittance of all films lies in the range 75-80 %. The band gap of V2O5 film was decreased from 2.65 to 2.46 eV with increase of the spray deposition rate from 5 ml/min to 10 ml/min. first, second, and third level headings (first level heading).

  17. Selective light induced chemical vapour deposition of titanium dioxide thin films

    OpenAIRE

    Wagner, Estelle; Hoffmann, Patrik

    2005-01-01

    Light Induced Chemical Vapour Deposition (LICVD) of titanium dioxide thin films is studied in this work. It is shown that this technique enables to deposit locally and selectively a chosen crystalline phase with a precise controlled thickness at low substrate temperature, allowing even the use of polymer substrates. A home made LICVD reactor was set up, consisting of a main chamber in which the substrate was placed on a temperature controlled plate and could be irradiated perpendicularly thro...

  18. Selective light induced chemical vapour deposition of titanium dioxide thin films

    OpenAIRE

    Wagner, Estelle

    2003-01-01

    Light Induced Chemical Vapour Deposition (LICVD) of titanium dioxide thin films is studied in this work. It is shown that this technique enables to deposit locally and selectively a chosen crystalline phase with a precise controlled thickness at low substrate temperature, allowing even the use of polymer substrates. A home made LICVD reactor was set up, consisting of a main chamber in which the substrate was placed on a temperature controlled plate and could be irradiated perpendicularly thro...

  19. Super-Hydrophobic and Oloephobic Crystalline Coatings by Initiated Chemical Vapor Deposition

    OpenAIRE

    Coclite, Anna Maria; Shi, Yujun; Gleason, Karen K.

    2013-01-01

    Preferred crystallographic orientation (texture) in thin films frequently has a strong effect on the properties of the materials and it is important for stable surface properties. Organized molecular films of poly-perfluorodecylacrylate p(PFDA) were deposited by initiated Chemical Vapor Deposition (iCVD). The high tendency of p(PFDA) to crystallize has been fully retained in the polymers prepared by iCVD. The degree of crystallinity and the preferred orientation of the perfluoro side chains, ...

  20. Laser induced chemical vapour deposition of TiN coatings at atmospheric pressure

    OpenAIRE

    Croonen, Y.; Verspui, G.

    1993-01-01

    Laser induced Chemical Vapour Deposition of a wide variety of materials has been studied extensively at reduced pressures. However, for this technique to be economically and industrially applicable, processes at atmospheric pressure are preferred. A model study was made on the substrate-coating system molybdenum-titaniumnitride focussing on the feasibility to deposit TiN films locally at atmospheric pressure. The results of this study turned out to be very promising. A Nd-YAG laser beam ([MAT...

  1. Influence of Triethanolamine on the Chemical Bath Deposited NiS Thin Films

    OpenAIRE

    Anuar Kassim; Ho S. Min; Tan W. Tee; Ngai C. Fei

    2011-01-01

    Problem statement: Recently, many scientists looking for new chalcogenide materials for the solar cell applications. Nowadays, silicon-based solar cell became dominant products in the market. Because of expensive silicon-based solar cells, scientists hope replaces it with cheaper chalcogenide materials. Approach: The binary chalcogenide materials were deposited onto microscope glass slide using simple chemical bath deposition method. Here, we study the influence of complex...

  2. Green electroluminescence from ZnO/n-InP heterostructure fabricated by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    Vertically aligned ZnO films were deposited on n-InP by metalorganic chemical vapour deposition. X-ray diffraction, field emission scanning electron microscopy and photoluminescence measurements demonstrated that the ZnO films had good quality. By evaporating AuZn electrodes on both ZnO and InP surfaces, a ZnO-based light emitting device was fabricated. Under forward voltage, weak green emissions can be observed in darkness

  3. Green electroluminescence from ZnO/n-InP heterostructure fabricated by metalorganic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Huichao [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhang Baolin [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Li Xiangping [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Dong Xin [State Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Department of Physics, Dalian University of Technology, Dalian 116023 (China); Li Wancheng [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Guan Hesong [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Cui Yongguo [State Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Department of Physics, Dalian University of Technology, Dalian 116023 (China); Xia Xiaochuan [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Yang Tianpeng [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Chang Yuchun [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Du Guotong [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2007-09-07

    Vertically aligned ZnO films were deposited on n-InP by metalorganic chemical vapour deposition. X-ray diffraction, field emission scanning electron microscopy and photoluminescence measurements demonstrated that the ZnO films had good quality. By evaporating AuZn electrodes on both ZnO and InP surfaces, a ZnO-based light emitting device was fabricated. Under forward voltage, weak green emissions can be observed in darkness.

  4. Remote Microwave Plasma Enhanced Chemical Vapour Deposition of SiO2 Films : Oxygen Plasma Diagnostic

    OpenAIRE

    Regnier, C.; Desmaison, J.; Tristant, P.; Merle, D.

    1995-01-01

    Silicon oxide is deposited by remote microwave plasma enhanced chemical vapour deposition (RMPECVD). The silica films are produced by exciting oxygen in a microwave discharge while a mixture of 5% of silane diluted in argon is introduced downstream. In the afterglow, double Langmuir probe measurements and rotational temperatures deduced from optical emission spectroscopy (OES), show that the electron energy is transferred to the gas when the pressure increases (19 - 26 Pa). Therefore the elec...

  5. Physico-chemical study of the focused electron beam induced deposition process

    OpenAIRE

    Bret, Tristan; Hoffmann, Patrik

    2007-01-01

    The focused electron beam induced deposition process is a promising technique for nano and micro patterning. Electrons can be focused in sub-angström dimensions, which allows atomic-scale resolution imaging, analysis, and processing techniques. Before the process can be used in controlled applications, the precise nature of the deposition mechanism must be described and modelled. The aim of this research work is to present a physical and chemical description of the focused electron beam induc...

  6. Nucleation and growth of copper phthalocyanine aggregates deposited from solution on planar surfaces

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Copper phthalocyanine deposited on planar surfaces by 3 solution process methods. • Aggregate morphology examined for coverage extending over 3 orders of magnitude. • Morphologies vary from small individual domains to mesh-like multilayers. • Nucleation and growth model explains the observed deposit morphologies. - Abstract: Copper phthalocyanine (CuPc) dissolved in trifluoroacetic acid (TFA) is deposited on solid SiO2 surfaces by solvent evaporation. The deposited CuPc aggregates are investigated by atomic force microscopy (AFM). The CuPc deposits were prepared by spin casting, dip coating, and spray deposition. Depending on the amount of deposited CuPc the aggregate morphology ranges from small individual domains to mesh-like multilayers. Each domain/layer consists of many parallel stacks of CuPc molecules with the square, plate-like molecules piled face-wise within each stack. The parallel stacks are attached sideways (i.e., edgewise attachment molecularly) to the substrate forming “nanoribbons” with uniform thickness of about 1 nm and varying width. The thickness reflects the length of a molecular edge, the width the number of stacks. A nucleation and growth model is presented that explains the observed aggregate and multilayer morphologies as result of the combination of nucleation, transport processes and a consequence of the anisotropic intermolecular interactions due to the shape of the CuPc molecule

  7. Nucleation and growth of copper phthalocyanine aggregates deposited from solution on planar surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Fatemeh [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany); Gojzewski, Hubert, E-mail: hubert.gojzewski@put.poznan.pl [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany); Institute of Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan (Poland); Riegler, Hans [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany)

    2015-10-01

    Graphical abstract: - Highlights: • Copper phthalocyanine deposited on planar surfaces by 3 solution process methods. • Aggregate morphology examined for coverage extending over 3 orders of magnitude. • Morphologies vary from small individual domains to mesh-like multilayers. • Nucleation and growth model explains the observed deposit morphologies. - Abstract: Copper phthalocyanine (CuPc) dissolved in trifluoroacetic acid (TFA) is deposited on solid SiO{sub 2} surfaces by solvent evaporation. The deposited CuPc aggregates are investigated by atomic force microscopy (AFM). The CuPc deposits were prepared by spin casting, dip coating, and spray deposition. Depending on the amount of deposited CuPc the aggregate morphology ranges from small individual domains to mesh-like multilayers. Each domain/layer consists of many parallel stacks of CuPc molecules with the square, plate-like molecules piled face-wise within each stack. The parallel stacks are attached sideways (i.e., edgewise attachment molecularly) to the substrate forming “nanoribbons” with uniform thickness of about 1 nm and varying width. The thickness reflects the length of a molecular edge, the width the number of stacks. A nucleation and growth model is presented that explains the observed aggregate and multilayer morphologies as result of the combination of nucleation, transport processes and a consequence of the anisotropic intermolecular interactions due to the shape of the CuPc molecule.

  8. Electrochemical studies of nickel deposition from aqueous solution in super-gravity field

    Institute of Scientific and Technical Information of China (English)

    GUO ZhanCheng; GONG YingPeng; LU WeiChang

    2007-01-01

    The effect of super-gravity on electrochemical deposition of nickel from aqueous solution was studied. The SEM pictures show that the microstructure of nickel film deposited under the super-gravity condition is finer and more uniform compared with that obtained in normal gravity condition, and the crystal grains diminish with the increase of super-gravity coefficient. The XRD patterns indicate that the arrangement of crystalline grains of nickel film deposited under the super-gravity field is more regular, and the crystalline grain sizes decrease with the increase of super-gravity coefficient. Toughness, tensile stress and hardness of the nickel film are markedly raised with the increase of super-gravity coefficient, and hydrogen content in the nickel film decreases with the increase of super-gravity coefficient. From the polarization curves of hydrogen evolution reaction under the super-gravity condition, a significant reduction of over-potential on electrode was found when current density increased. The process of hydrogen evolution reaction was enhanced under the super-gravity condition. The electro-deposition rate, the microstructure and properties of deposited nickel film under super-gravity condition were still affected by the relative orientation between inertia force and depositing surface. It is favorable to gain the nickel film with better mechanic properties when inertia force orientates vertically towards depositing surface.

  9. Electrochemical studies of nickel deposition from aqueous solution in super-gravity field

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of super-gravity on electrochemical deposition of nickel from aqueous solution was studied. The SEM pictures show that the microstructure of nickel film deposited under the super-gravity condition is finer and more uniform compared with that obtained in normal gravity condition, and the crystal grains diminish with the increase of super-gravity coefficient. The XRD patterns indicate that the ar-rangement of crystalline grains of nickel film deposited under the super-gravity field is more regular, and the crystalline grain sizes decrease with the increase of super-gravity coefficient. Toughness, tensile stress and hardness of the nickel film are markedly raised with the increase of super-gravity coefficient, and hydrogen content in the nickel film decreases with the increase of super-gravity coefficient. From the polarization curves of hydrogen evolution reaction under the su-per-gravity condition, a significant reduction of over-potential on electrode was found when current density increased. The process of hydrogen evolution reaction was enhanced under the super-gravity condition. The electro-deposition rate, the microstructure and properties of deposited nickel film under super-gravity condi-tion were still affected by the relative orientation between inertia force and depos-iting surface. It is favorable to gain the nickel film with better mechanic properties when inertia force orientates vertically towards depositing surface.

  10. Effects of deposition parameters on microstructure and thermal conductivity of diamond films deposited by DC arc plasma jet chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    QU Quan-yan; QIU Wan-qi; ZENG De-chang; LIU Zhong-wu; DAI Ming-jiang; ZHOU Ke-song

    2009-01-01

    The uniform diamond films with 60 mm in diameter were deposited by improved DC arc plasma jet chemical vapor deposition technique. The structure of the film was characterized by scanning electronic microcopy(SEM) and laser Raman spectrometry. The thermal conductivity was measured by a photo thermal deflection technique. The effects of main deposition parameters on microstructure and thermal conductivity of the films were investigated. The results show that high thermal conductivity, 10.0 W/(K-cm), can be obtained at a CH4 concentration of 1.5% (volume fraction) and the substrate temperatures of 880-920 ℃ due to the high density and high purity of the film. A low pressure difference between nozzle and vacuum chamber is also beneficial to the high thermal conductivity.

  11. Effects of deposition temperature and chemical composition on the ZnO crystal growth on the surface of Pd catalyst through electroless chemical reaction

    International Nuclear Information System (INIS)

    Zinc oxide (ZnO) was site-selectively grown on the palladium (Pd) catalyst through the electroless deposition process under mild conditions, and the effects of deposition temperature and chemical composition on the ZnO crystal growth were investigated. ZnO crystals were synthesized on the UV-patterned Pd catalysts in the aqueous solutions of various dimethylamine borane (DMAB)/Zn(NO3)2 ratio at 30-70 deg. C. The site-selective deposition was confirmed by X-ray photoelectron spectroscopy (XPS) data and elemental maps of Pd, Zn and oxygen in energy-filtering transmission electron microscopy (EFTEM), and the crystal morphology was observed by scanning electron microscopy (SEM). A strong near band emission at around 390 nm and a weak green emission at around 470 nm were observed in the photoluminescence (PL) spectrum. The ZnO crystals were grown in the following three steps: (1) ZnO fibrils were generated on the Pd catalysts and became sphere-like particles, (2) hexagonal wurtzite crystals initiated to grow from the sphere-like particles, and (3) the crystals grew in two directions-longitudinal and lateral growths giving rod-type or needle-type hexagonal crystals. It was found that longitudinal growth rate increased with increasing deposition temperature or DMAB/Zn(NO3)2 ratio

  12. Occurrence forms of uranium in the production solutions in the areas of underground leaching of epigenetic uranium deposits

    International Nuclear Information System (INIS)

    Redox, acid-basic features of solutions (Eh changes from + 50 to 650 mV, pH from 7.5 to 1.5) and their chemical composition are studied in the process of hydrogeochemical investigations at the areas of underground leaching (UL) of epigenetic uranium deposits. It is shown that at studied areas of UL under neutral and weakly acidic conditions up to (pH 6.0-5.8), carbonate complexes of uranyl are the prevailing form of uranium existence in the solution, and sulfate complexes prevail under more acidic conditions. A supposition is made that it is expedient to process separate ore blocks with increased carbonate contents, particularly with oxidant additions under near-neutral acid-basic conditions (pH 7.2-6.8) with the use of weakly acid pumping solutions, which act (at the expense of their interaction with carbonates of ore-containing rocks) for enrichment of working solutions with HCO3- and CO32- ions, promoting uranium transfer into solution

  13. Development of a Computational Chemical Vapor Deposition Model: Applications to Indium Nitride and Dicyanovinylaniline

    Science.gov (United States)

    Cardelino, Carlos

    1999-01-01

    A computational chemical vapor deposition (CVD) model is presented, that couples chemical reaction mechanisms with fluid dynamic simulations for vapor deposition experiments. The chemical properties of the systems under investigation are evaluated using quantum, molecular and statistical mechanics models. The fluid dynamic computations are performed using the CFD-ACE program, which can simulate multispecies transport, heat and mass transfer, gas phase chemistry, chemistry of adsorbed species, pulsed reactant flow and variable gravity conditions. Two experimental setups are being studied, in order to fabricate films of: (a) indium nitride (InN) from the gas or surface phase reaction of trimethylindium and ammonia; and (b) 4-(1,1)dicyanovinyl-dimethylaminoaniline (DCVA) by vapor deposition. Modeling of these setups requires knowledge of three groups of properties: thermodynamic properties (heat capacity), transport properties (diffusion, viscosity, and thermal conductivity), and kinetic properties (rate constants for all possible elementary chemical reactions). These properties are evaluated using computational methods whenever experimental data is not available for the species or for the elementary reactions. The chemical vapor deposition model is applied to InN and DCVA. Several possible InN mechanisms are proposed and analyzed. The CVD model simulations of InN show that the deposition rate of InN is more efficient when pulsing chemistry is used under conditions of high pressure and microgravity. An analysis of the chemical properties of DCVA show that DCVA dimers may form under certain conditions of physical vapor transport. CVD simulations of the DCVA system suggest that deposition of the DCVA dimer may play a small role in the film and crystal growth processes.

  14. Continuous Microreactor-Assisted Solution Deposition for Scalable Production of CdS Films

    Energy Technology Data Exchange (ETDEWEB)

    Ramprasad, Sudhir; Su, Yu-Wei; Chang, Chih-Hung; Paul, Brian; Palo, Daniel R.

    2013-06-13

    Solution deposition offers an attractive, low temperature option in the cost effective production of thin film solar cells. Continuous microreactor-assisted solution deposition (MASD) was used to produce nanocrystalline cadmium sulfide (CdS) films on fluorine doped tin oxide (FTO) coated glass substrates with excellent uniformity. We report a novel liquid coating technique using a ceramic rod to efficiently and uniformly apply reactive solution to large substrates (152 mm × 152 mm). This technique represents an inexpensive approach to utilize the MASD on the substrate for uniform growth of CdS films. Nano-crystalline CdS films have been produced from liquid phase at ~90°C, with average thicknesses of 70 nm to 230 nm and with a 5 to 12% thickness variation. The CdS films produced were characterized by UV-Vis spectroscopy, transmission electron microscopy, and X-Ray diffraction to demonstrate their suitability to thin-film solar technology.

  15. Detection of copper ions from aqueous solutions using layered double hydroxides thin films deposited by PLD

    Science.gov (United States)

    Vlad, A.; Birjega, R.; Matei, A.; Luculescu, C.; Nedelcea, A.; Dinescu, M.; Zavoianu, R.; Pavel, O. D.

    2015-10-01

    Layered double hydroxides (LDHs) thin films with Mg-Al were deposited using pulsed laser deposition (PLD) technique. We studied the ability of our films to detect copper ions in aqueous solutions. Copper is known to be a common pollutant in water, originating from urban and industrial waste. Clay minerals, including layered double hydroxides (LDHs), can reduce the toxicity of such wastes by adsorbing copper. We report on the uptake of copper ions from aqueous solution on LDH thin films obtained via PLD. The obtained thin films were characterized using X-ray Diffraction, Atomic Force Microscopy, and Scanning Electron Microscopy with Energy Dispersive X-ray analysis. The results in this study indicate that LDHs thin films obtained by PLD have potential as an efficient adsorbent for removing copper from aqueous solution.

  16. Stress control of plasma enhanced chemical vapor deposited silicon oxide film from tetraethoxysilane

    International Nuclear Information System (INIS)

    Thin silicon dioxide films have been studied as a function of deposition parameters and annealing temperatures. Films were deposited by tetraethoxysilane (TEOS) dual-frequency plasma enhanced chemical vapor deposition with different time interval fractions of high-frequency and low-frequency plasma depositions. The samples were subsequently annealed up to 930 °C to investigate their stress behavior. Films that were deposited in high-frequency dominated plasma were found to have tensile residual stress after annealing at temperatures higher than 800 °C. The residual stress can be controlled to slightly tensile by changing the annealing temperature. High tensile stress was observed during the annealing of high-frequency plasma-deposited films, leading to film cracks that limit the film thickness, as predicted by the strain energy release rate equation. Thick films without cracks were obtained by iterating deposition and annealing to stack multiple layers. A series of wet cleaning experiments were conducted, and we discovered that water absorption in high-frequency plasma-deposited films causes the residual stress to decrease. A ∼40 nm thick low-frequency deposited oxide cap is sufficient to prevent water from diffusing through the film. Large-area free-standing tensile stressed oxide membranes without risk of buckling were successfully fabricated. (technical note)

  17. Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ozaydin-Ince, Gozde, E-mail: gozdeince@sabanciuniv.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Matin, Asif, E-mail: amatin@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khan, Zafarullah, E-mail: zukhan@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Zaidi, S.M. Javaid, E-mail: zaidismj@kfupm.edu.sa [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gleason, Karen K., E-mail: kkgleasn@mit.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-07-31

    Thin-film polymeric reverse osmosis membranes, due to their high permeation rates and good salt rejection capabilities, are widely used for seawater desalination. However, these membranes are prone to biofouling, which affects their performance and efficiency. In this work, we report a method to modify the membrane surface without damaging the active layer or significantly affecting the performance of the membrane. Amphiphilic copolymer films of hydrophilic hydroxyethylmethacrylate and hydrophobic perfluorodecylacrylate (PFA) were synthesized and deposited on commercial RO membranes using an initiated chemical vapor deposition technique which is a polymer deposition technique that involves free-radical polymerization initiated by gas-phase radicals. Relevant surface characteristics such as hydrophilicity and roughness could be systematically controlled by varying the polymer chemistry. Increasing the hydrophobic PFA content in the films leads to an increase in the surface roughness and hydrophobicity. Furthermore, the surface morphology studies performed using the atomic force microscopy show that as the thickness of the coating increases average surface roughness increases. Using this knowledge, the coating thickness and chemistry were optimized to achieve high permeate flux and to reduce cell attachment. Results of the static bacterial adhesion tests show that the attachment of bacterial cells is significantly reduced on the coated membranes. - Highlights: • Thin films are deposited on reverse osmosis membranes. • Amphiphilic thin films are resistant to protein attachment. • The permeation performance of the membranes is not affected by the coating. • The thin film coatings delayed the biofouling.

  18. Growth mechanism of planar or nanorod structured tungsten oxide thin films deposited via aerosol assisted chemical vapour deposition (AACVD)

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Min; Blackman, Chris [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2015-07-15

    Aerosol assisted chemical vapour deposition (AACVD) is used to deposit tungsten oxide thin films from tungsten hexacarbonyl (W(CO){sub 6}) at 339 to 358 C on quartz substrate. The morphologies of as-deposited thin films, which are comprised of two phases (W{sub 25}O{sub 73} and W{sub 17}O{sub 47}), vary from planar to nanorod (NR) structures as the distance from the inlet towards the outlet of the reactor is traversed. This is related to variation of the actual temperature on the substrate surface (ΔT = 19 C), which result in a change in growth mode due to competition between growth rate (perpendicular to substrate) and nucleation rate (parallel to substrate). When the ratio of perpendicular growth rate to growth rate contributed by nucleation is higher than 7.1, the as-deposited tungsten oxide thin film forms as NR. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Surface transformations of carbon (graphene, graphite, diamond, carbide), deposited on polycrystalline nickel by hot filaments chemical vapour deposition

    International Nuclear Information System (INIS)

    The deposition of carbon has been studied at high temperature on polycrystalline nickel by hot filaments activated chemical vapor deposition (HFCVD). The sequences of carbon deposition are studied by surface analyses: Auger electron spectroscopy (AES), electron loss spectroscopy (ELS), X-ray photoelectron spectroscopy (XPS) in a chamber directly connected to the growth chamber. A general scale law of the (C/Ni) intensity lines is obtained with a reduced time. Both, shape analysis of the AES C KVV line and the C1s relative intensity suggest a three-step process: first formation of graphene and a highly graphitic layer, then multiphase formation with graphitic, carbidic and diamond-like carbon and finally at a critical temperature that strongly depends on the pretreatment of the polycrystalline nickel surface, a rapid transition to diamond island formation. Whatever the substrate diamond is always the final product and some graphene layers the initial product. Moreover it is possible to stabilize a few graphene layers at the initial sequences of carbon deposition. The duration of this stabilization step is strongly depending however on the pre-treatment of the Ni surface.

  20. Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition

    International Nuclear Information System (INIS)

    Thin-film polymeric reverse osmosis membranes, due to their high permeation rates and good salt rejection capabilities, are widely used for seawater desalination. However, these membranes are prone to biofouling, which affects their performance and efficiency. In this work, we report a method to modify the membrane surface without damaging the active layer or significantly affecting the performance of the membrane. Amphiphilic copolymer films of hydrophilic hydroxyethylmethacrylate and hydrophobic perfluorodecylacrylate (PFA) were synthesized and deposited on commercial RO membranes using an initiated chemical vapor deposition technique which is a polymer deposition technique that involves free-radical polymerization initiated by gas-phase radicals. Relevant surface characteristics such as hydrophilicity and roughness could be systematically controlled by varying the polymer chemistry. Increasing the hydrophobic PFA content in the films leads to an increase in the surface roughness and hydrophobicity. Furthermore, the surface morphology studies performed using the atomic force microscopy show that as the thickness of the coating increases average surface roughness increases. Using this knowledge, the coating thickness and chemistry were optimized to achieve high permeate flux and to reduce cell attachment. Results of the static bacterial adhesion tests show that the attachment of bacterial cells is significantly reduced on the coated membranes. - Highlights: • Thin films are deposited on reverse osmosis membranes. • Amphiphilic thin films are resistant to protein attachment. • The permeation performance of the membranes is not affected by the coating. • The thin film coatings delayed the biofouling

  1. LASER-INDUCED DECOMPOSITION OF METAL CARBONYLS FOR CHEMICAL VAPOR DEPOSITION OF MICROSTRUCTURES

    OpenAIRE

    Tonneau, D.; Auvert, G.; Pauleau, Y.

    1989-01-01

    Tungsten and nickel carbonyls were used to produce metal microstructures by laser-induced chemical vapor deposition (CVD) on various substrates. The deposition rate of microstructures produced by thermodecomposition of W(CO)6 on Si substrates heated with a cw Ar+ laser beam was relatively low (10 to 30 nm/s) even at high temperatures (above 900°C). Ni microstructures were deposited on quartz substrates irradiated with a CO2 laser beam. Relatively high laser powers were needed to heat the Ni s...

  2. Deposition of air-borne 238Pu near a chemical separation facility

    International Nuclear Information System (INIS)

    Three methods were compared to measure deposition of 238Pu released from a chemical separation facility at the Savannah River Plant, Aiken, SC. The following methods were used: adhesive paper; a collector of rain and dryfall; and soil samples. Excellent agreement among the three methods was found. The measured deposition for the particular source term and meteorological conditions at the Savannah River Plant is described by y proportional to x/sup -1.36/ where y is the pCi of 238Pu deposited per square meter per mC: 238Pu released, and x is distance in meters from the source

  3. Synthesis of silicon carbide nanowires by solid phase source chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    NI Jie; LI Zhengcao; ZHANG Zhengjun

    2007-01-01

    In this paper,we report a simple approach to synthesize silicon carbide(SiC)nanowires by solid phase source chemical vapor deposition(CVD) at relatively low temperatures.3C-SiC nanowires covered by an amorphous shell were obtained on a thin film which was first deposited on silicon substrates,and the nanowires are 20-80 am in diameter and several μm in length,with a growth direction of[200].The growth of the nanowires agrees well on vapor-liquid-solid (VLS)process and the film deposited on the substrates plays an important role in the formation of nanowires.

  4. Chemical bath deposition and electrochromic properties of NiO{sub x} films

    Energy Technology Data Exchange (ETDEWEB)

    Ristova, M.; Velevska, J. [Physics Department, Faculty of Science, P. O. Box 162, Skopje (Macedonia); Ristov, M. [Macedonian Academy of Sciences and Arts, Skopje (Macedonia)

    2002-02-01

    Nickel oxide (NiO{sub x}) thin films were prepared by the chemical deposition method (solution growth) on two kinds of substrates: (1) glass and (2) glass/SnO{sub 2}:F. Films were thermally treated at 200C for 10min in atmosphere. The texture, microstructure and composition were examined by optical microscopy, X-ray diffraction patterns (XRD) and X-ray photoelectron spectroscopy (XPS) analysis of the surface layer. The films exhibited anode electrochromism. The optical properties of the bleached and colored state were examined with transmittance spectroscopy in the visible region and reflectance FTIR spectroscopy. An electrochromic test device (ECTD), consisting of SnO{sub 2}/NiO{sub x}/NaOH-H{sub 2}O/SnO{sub 2}, was assembled and tested by cyclic voltammetry combined with a simultaneous recording of the change of transparency at {lambda}=670nm. The coloration efficiency was evaluated to be 24.3cm{sup 2}/C. The spontaneous ex-situ change of coloration with time of the colored and bleached NiO{sub x}/SnO{sub 2}/glass was also examined.

  5. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  6. The chemical evolution of a travertine-depositing stream: geochemical processes and mass transfer reactions

    Science.gov (United States)

    Lorah, M.M.; Herman, J.S.

    1988-01-01

    Focuses on quantiatively defining the chemical changes occurring in Falling Spring Creek, a travertine-depositing stream located in Alleghany County, Virgina. The processes of CO2 outgassing and calcite precipitation or dissolution control the chemical evolution of the stream. Physical evidence for calcite precipitation exists in the travertine deposits which are first observed immediately above the waterfall and extend for at least 1.0 km below the falls. Net calcite precipitation occurs at all times of the year but is greatest during low-flow conditions in the summer and early fall. -from Authors

  7. Properties of Plasma Enhanced Chemical Vapor Deposition Barrier Coatings and Encapsulated Polymer Solar Cells

    International Nuclear Information System (INIS)

    In this paper, we report silicon oxide coatings deposited by plasma enhanced chemical vapor deposition technology (PECVD) on 125 μm polyethyleneterephthalate (PET) surfaces for the purpose of the shelf lifetime extension of sealed polymer solar cells. After optimization of the processing parameters, we achieved a water vapor transmission rate (WVTR) of ca. 10−3 g/m2/day with the oxygen transmission rate (OTR) less than 0.05 cc/m2/day, and succeeded in extending the shelf lifetime to about 400 h in encapsulated solar cells. And then the chemical structure of coatings related to the properties of encapsulated cell was investigated in detail. (plasma technology)

  8. Opening of triangular hole in triangular-shaped chemical vapor deposited hexagonal boron nitride crystal

    OpenAIRE

    Sharma, Subash; Kalita, Golap; Vishwakarma, Riteshkumar; Zulkifli, Zurita; Tanemura, Masaki

    2015-01-01

    In-plane heterostructure of monolayer hexagonal boron nitride (h-BN) and graphene is of great interest for its tunable bandgap and other unique properties. Here, we reveal a H2-induced etching process to introduce triangular hole in triangular-shaped chemical vapor deposited individual h-BN crystal. In this study, we synthesized regular triangular-shaped h-BN crystals with the sizes around 2-10 μm on Cu foil by chemical vapor deposition (CVD). The etching behavior of individual h-BN crystal w...

  9. An economic analysis of the deposition of electrochromic WO3 via sputtering or plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    The costs of manufacturing electrochromic WO3 thin films deposited by either radio frequency plasma enhanced chemical vapor deposition (PECVD) or DC reactive magnetron sputtering of metal targets were modeled. Both inline systems for large area glass substrates and roll-to-roll systems for flexible webs were compared. Costs of capital, depreciation, raw materials, labor, power, and other miscellaneous items were accounted for in the model. The results predict that on similar sized systems, PECVD can produce electrochromic WO3 for as little as one-third the cost, and have more than 10 times the annual production capacity of sputtering. While PECVD cost is dominated by raw materials, primarily WF6, sputtering cost is dominated by labor and depreciation

  10. Structural and Luminescent Properties of ZnO Thin Films Deposited by Atmospheric Pressure Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guo-Liang; LIN Bi-Xia; HONG Liang; MENG Xiang-Dong; FU Zhu-Xi

    2004-01-01

    ZnO thin films were successfully deposited on Si (100) substrates by chemical vapour deposition (CVD) at atmospheric pressure (1 atm). The only solid source used here is zinc acetate, (CHsCOO)2Zn, and the carrier gas is nitrogen. The sample, which was prepared at 550℃ during growth and then annealed in air at 900℃ , has only a ZnO (002) diffraction peak at 34.6° with its FWHM of 0.23° in the XRD pattern. The room-temperature PL spectrum shows a strong ultraviolet emission with the peak centred at 380nm. We analysed the effects of many factors, such as the source, substrates, growth and annealing temperatures, and annealing ambience, on the structural and optical properties of our prepared ZnO films.

  11. Characterization of Plasma Enhanced Chemical Vapor Deposition-Physical Vapor Deposition transparent deposits on textiles to trigger various antimicrobial properties to food industry textiles

    International Nuclear Information System (INIS)

    Textiles for the food industry were treated with an original deposition technique based on a combination of Plasma Enhanced Chemical Vapor Deposition and Physical Vapor Deposition to obtain nanometer size silver clusters incorporated into a SiOCH matrix. The optimization of plasma deposition parameters (gas mixture, pressure, and power) was focused on textile transparency and antimicrobial properties and was based on the study of both surface and depth composition (X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), as well as Transmission Electron Microscopy, Atomic Force Microscopy, SIMS depth profiling and XPS depth profiling on treated glass slides). Deposition conditions were identified in order to obtain a variable and controlled quantity of ∼ 10 nm size silver particles at the surface and inside of coatings exhibiting acceptable transparency properties. Microbiological characterization indicated that the surface variable silver content as calculated from XPS and ToF-SIMS data directly influences the level of antimicrobial activity.

  12. Effects of Thermal Annealing on the Optical Properties of Titanium Oxide Thin Films Prepared by Chemical Bath Deposition Technique

    Directory of Open Access Journals (Sweden)

    H.U. Igwe

    2010-08-01

    Full Text Available A titanium oxide thin film was prepared by chemical bath deposition technique, deposited on glass substrates using TiO2 and NaOH solution with triethanolamine (TEA as the complexing agent. The films w ere subjected to post deposition annealing under various temperatures, 100, 150, 200, 300 and 399ºC. The thermal treatment streamlined the properties of the oxide films. The films are transparent in the entire regions of the electromagnetic spectrum, firmly adhered to the substrate and resistant to chemicals. The transmittance is between 20 and 95% while the reflectance is between 0.95 and 1%. The band gaps obtained under various thermal treatments are between 2.50 and 3.0 ev. The refractive index is between 1.52 and 2.55. The thickness achieved is in the range of 0.12-0.14 :m.These properties of the oxide film make it suitable for application in solar cells: Liquid and solid dye-sensitized photoelectrochemical solar cells, photo induced water splitting, dye synthesized solar cells, environmental purifications, gas sensors, display devices, batteries, as well as, solar cells with an organic or inorganic extremely thin absorber. These thin films are also of interest for the photooxidation of water, photocatalysis, electro chromic devices and other uses.

  13. Physical properties of chemically deposited Bi2S3 thin films using two post-deposition treatments

    International Nuclear Information System (INIS)

    Highlights: • The post-deposition treatment by Ar plasma is a viable alternative to enhance the optical, electrical, morphological and structural properties of Bi2S3 semiconductor thin films. • The plasma treatment avoids the loss in thickness of the chemically deposited Bi2S3 thin films. • The Eg values were 1.60 eV for the thermally annealed samples and 1.56 eV for the Ar plasma treated samples. • The highest value obtained for the electrical conductivity was 7.7 × 10−2 (Ω cm)−1 in plasma treated samples. - Abstract: As-deposited bismuth sulfide (Bi2S3) thin films prepared by chemical bath deposition technique were treated with thermal annealed in air atmosphere and argon AC plasma. The as-deposited, thermally annealing and plasma treatment Bi2S3 thin films have been characterized by X-ray diffraction (XRD) analysis, atomic force microscopy analysis (AFM), transmission, specular reflectance and electrical measurements. The structural, morphological, optical and electrical properties of the films are compared. The XRD analysis showed that both post-deposition treatments, transform the thin films from amorphous to a crystalline phase. The atomic force microscopy (AFM) measurement showed a reduction of roughness for the films treated in plasma. The energy band gap value of the as-prepared film was Eg = 1.61 eV, while for the film thermally annealed was Eg = 1.60 eV and Eg = 1.56 eV for film treated with Plasma. The electrical conductivity under illumination of the as-prepared films was 3.6 × 10−5 (Ω cm)−1, whereas the conductivity value for the thermally annealed films was 2.0 × 10−3 (Ω cm)−1 and for the plasma treated films the electrical conductivity increases up to 7.7 × 10−2 (Ω cm)−1

  14. Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands

    International Nuclear Information System (INIS)

    In a Scots pine forest the throughfall deposition and the chemical composition of the soil solution was monitored since 1984. (Inter)national legislation measures led to a reduction of the deposition of nitrogen and sulphur. The deposition of sulphur has decreased by approximately 65%. The total mineral-nitrogen deposition has decreased by ca. 25%, which is mainly due to a reduction in ammonium-N deposition (-40%), since nitrate-N deposition has increased (+50%). The nitrogen concentration in the upper mineral soil solution at 10 cm depth has decreased, leading to an improved nutritional balance, which may result in improved tree vitality. In the drainage water at 90 cm depth the fluxes of NO3- and SO42- have decreased, resulting in a reduced leeching of accompanying base cations, thus preserving nutrients in the ecosystem. It may take still several years, however, before this will meet the prerequisite of a sustainable ecosystem. - Legislation has resulted in a reduction of N and S deposition and led to improved biogeochemical conditions in a Scots pine forest

  15. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition

    OpenAIRE

    Zhu, Wenjuan; Low, Tony; Lee, Yi-Hsien; Wang, Han; Farmer, Damon B.; Kong, Jing; Xia, Fengnian; Avouris, Phaedon

    2013-01-01

    Layered transition metal dichalcogenides display a wide range of attractive physical and chemical properties and are potentially important for various device applications. Here we report the electronic transport and device properties of monolayer molybdenum disulphide (MoS2) grown by chemical vapour deposition (CVD). We show that these devices have the potential to suppress short channel effects and have high critical breakdown electric field. However, our study reveals that the electronic pr...

  16. Growth and properties of few-layer graphene prepared by chemical vapor deposition

    OpenAIRE

    Park, Hye Jin; Meyer, Jannik; Roth, Siegmar; Skakalova, Viera

    2009-01-01

    The structure, and electrical, mechanical and optical properties of few-layer graphene (FLG) synthesized by chemical vapor deposition (CVD) on a Ni coated substrate were studied. Atomic resolution transmission electron microscope (TEM) images show highly crystalline single layer parts of the sample changing to multilayer domains where crystal boundaries are connected by chemical bonds. This suggests two different growth mechanisms. CVD and carbon segregation participate in the growth process ...

  17. Effect of [Zn]/[S] ratios on the properties of chemical bath deposited zinc sulfide thin films

    International Nuclear Information System (INIS)

    ZnS thin films have been prepared by chemical bath deposition (CBD) technique onto glass substrates deposited at about 80 deg. C using aqueous solution of zinc sulfate hepta-hydrate, ammonium sulfate, thiourea, ammonia and hydrazine hydrate. Ammonia and hydrazine hydrate were used as complexing agents. The influence of the ratio of [Zn]/[S] on formation and properties of ZnS thin films has been investigated. The ratio of [Zn]/[S] was changed from 3:1 to 1:9 by varying volumes and/or concentrations of zinc sulfate hepta-hydrate and thiourea in the deposition solution. The structural and morphological characteristics of films have been investigated by X-ray diffraction (XRD), scanning electron microscope and UV-vis spectroscopic analysis. ZnS films were obtained with the [Zn]/[S] ratio ranged from1:1 to 1:6. In the cases of [Zn]/[S] ratio ≥ 3:1 or ≤1:9, no deposition was found. Transparent and polycrystalline ZnS film was obtained with pure-wurtzite structure at the [S]/[Zn] ratio of 1:6. The related formation mechanisms of CBD ZnS are discussed. The deposited ZnS films show good optical transmission (80-90%) in the visible region and the band gap is found to be in the range of 3.65-3.74 eV. The result is useful to further develop the CBD ZnS technology.

  18. Dielectric and ferroelectric properties of highly (100)-oriented (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 thin films grown on LaNiO 3/γ-Al 2O 3/Si substrates by chemical solution deposition

    Science.gov (United States)

    Guo, Yiping; Akai, Daisuke; Sawada, Kazauki; Ishida, Makoto

    2008-07-01

    A (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 chemical solution was prepared by using barium acetate, nitrate of sodium, nitrate of bismuth, and Ti-isopropoxide as raw materials. A white precipitation appeared during the preparation was analyzed to be Ba(NO 3) 2. We found that ethanolamine is a very effective coordinating ligand of Ba 2+. A transparent and stable (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 precursor chemical solution has been achieved by using ethanolamine as a ligand of Ba 2+. (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 films were grown on LaNiO 3/γ-Al 2O 3/Si substrates. Highly (100)-oriented (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 films were obtained in this work due to lattice match growth. The dielectric, ferroelectric and insulative characteristics against applied field were studied. The conduction current shows an Ohmic conduction behavior at lower voltages and space-charge-limited behavior at higher voltages, respectively. These results indicate that, the (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 film is a promising lead-free ferroelectric film.

  19. Optical properties of TiO{sub 2} thin films prepared by chemical spray pyrolysis from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ayouchi, R.; Casteleiro, C.; Schwarz, R. [Departamento de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Barrado, J.R.; Martin, F. [Laboratorio de Materiales y Superficie (Unidad Asociada al CSIC), Departamento de Fisica Aplicada I e Departamento de Ingenieria Quimica, Universidad de Malaga, 29071 Malaga (Spain)

    2010-04-15

    Titanium dioxide (TiO{sub 2}) is known to have three different kinds of polymorphous crystalline forms: rutile, anatase, and brookite. The rutile phase is always formed at higher temperatures, while the anatase phase is formed at lower temperatures and transformed into rutile phase above 800 C. Various deposition techniques have been developed for depositing TiO{sub 2} thin films, including evaporation, sputtering, chemical vapour deposition and thermal oxidation of titanium. Among them, the Chemical Spray Pyrolysis (CSP) technique has many advantages, such as good conformal coverage, the possibility of epitaxial growth and the application to large area deposition. Also, this method is low cost and it is easy to control the deposition growth parameters. In the present work, TiO{sub 2} thin films have been deposited on p-Si(001) and fused silica substrates by Chemical Spray Pyrolysis (CSP) method from aqueous solution containing titanium (IV) isopropoxide (Ti[OCH(CH{sub 3}){sub 2}]{sub 4}). As-deposited thin films show anatase polycrystalline structure, and rutile phase formed for films annealed at 750 C. SEM images have confirmed a smooth and crack-free surface with low surface roughness. X-ray photoelectron spectroscopy (XPS) combined with 4 keV Ar{sup +} depth profiling has shown that crystallized films correspond to TiO{sub 2}. Residual carbon coming from the organic precursor solution is only detected at the surface of the film. Thin films deposited on fused silica were highly transparent (more than 85%), with an indirect optical band gap of 3,43 and 3,33 eV for as-deposited and annealed films, respectively, and refractive indexes in the range between 2.01-2.29. Spectroscopic Ellipsometry (SE) also has been used to extract optical parameters. SE data fitted to triple-layer physical model revealed the same tendency to increase refractive index in annealed films. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Direct liquid injection chemical vapor deposition of platinum doped cerium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zanfoni, N.; Avril, L.; Imhoff, L.; Domenichini, B., E-mail: bruno.domenichini@u-bourgogne.fr; Bourgeois, S.

    2015-08-31

    Thin films of Pt-doped CeO{sub 2} were grown by direct liquid injection chemical vapor deposition on silicon wafer covered by native oxide at 400 °C using Ce(IV) alkoxide and organoplatinum(IV) as precursors. X-ray photoelectron spectra evidenced that the platinum oxidation state is linked to the deposition way. For platinum deposited on top of cerium oxide thin films previously grown, metallic platinum particles were obtained. Cerium and platinum codeposition allowed obtaining a Pt{sup 0} and Pt{sup 2+} mixture with the Pt{sup 2+} to Pt ratio strongly dependent on the platinum flow rate during the deposition. Indeed, the lower the platinum precursor flow rate is, the higher the Pt{sup 2+} to Pt ratio is. Moreover, surface and cross-sectional morphologies obtained by scanning electron microscopy evidenced porous layers in any case. - Highlights: • Pt-doped ceria were synthesized. • Films were obtained by direct liquid injection chemical vapor deposition. • Simultaneous deposition of Pt and Ce was used to obtain homogeneous films. • Pt{sup 2+} was revealed through X-ray photoelectron spectroscopy. • Different routes were used to exalt Pt{sup 2+}/Pt ratio.

  1. Direct liquid injection chemical vapor deposition of platinum doped cerium oxide thin films

    International Nuclear Information System (INIS)

    Thin films of Pt-doped CeO2 were grown by direct liquid injection chemical vapor deposition on silicon wafer covered by native oxide at 400 °C using Ce(IV) alkoxide and organoplatinum(IV) as precursors. X-ray photoelectron spectra evidenced that the platinum oxidation state is linked to the deposition way. For platinum deposited on top of cerium oxide thin films previously grown, metallic platinum particles were obtained. Cerium and platinum codeposition allowed obtaining a Pt0 and Pt2+ mixture with the Pt2+ to Pt ratio strongly dependent on the platinum flow rate during the deposition. Indeed, the lower the platinum precursor flow rate is, the higher the Pt2+ to Pt ratio is. Moreover, surface and cross-sectional morphologies obtained by scanning electron microscopy evidenced porous layers in any case. - Highlights: • Pt-doped ceria were synthesized. • Films were obtained by direct liquid injection chemical vapor deposition. • Simultaneous deposition of Pt and Ce was used to obtain homogeneous films. • Pt2+ was revealed through X-ray photoelectron spectroscopy. • Different routes were used to exalt Pt2+/Pt ratio

  2. CHEMICALLY DEPOSITED SILVER FILM USED AS A SERS-ACTIVE OVER COATING LAYER FOR POLYMER FILM

    Institute of Scientific and Technical Information of China (English)

    Xiao-ning Liu; Gi Xue; Yun Lu; Jun Zhang; Fen-ting Li; Chen-chen Xue; Stephen Z.D. Cheng

    2001-01-01

    When colloidal silver particles were chemically deposited onto polymer film as an over-coating layer, surfaceenhanced Raman scattering (SERS) spectra could be collected for the surface analysis. SERS measurements of liquid crystal film were successfully performed without disturbing the surface morphology.

  3. Electronic Transport in Chemical Vapor Deposited Graphene Synthesized on Cu: Quantum Hall Effect and Weak Localization

    OpenAIRE

    Cao, H. L.; Yu, Q. K.; Jauregui, L. A.; Tian, J; Wu, W.; Z. Liu; Jalilian, R.; Benjamin, D. K.; Jiang, Z.; J. Bao; Pei, S S; Chen, Y P

    2009-01-01

    We report on electronic properties of graphene synthesized by chemical vapor deposition (CVD) on copper then transferred to SiO2/Si. Wafer-scale (up to 4 in.) graphene films have been synthesized, consisting dominantly of monolayer graphene as indicated by spectroscopic Raman mapping. Low temperature transport measurements are performed on microdevices fabricated from such CVD graphene, displaying ambipolar field ...

  4. Density-controlled growth of well-aligned ZnO nanowires using chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Well-aligned ZnO nanowires were grown on Si substrate by chemical vapor deposition.The experimental results showed that the density of nanowires was related to the heating process and growth temperature.High-density ZnO nanowires were obtained under optimal conditions.The growth mechanism of the ZnO nanowires was presented as well.

  5. Thermoluminescence Characteristics of a New Production of Chemical Vapour Deposition Diamond

    Energy Technology Data Exchange (ETDEWEB)

    Furetta, C.; Kitis, G.; Brambilla, A.; Jany, C.; Bergonzo, P.; Foulon, F

    1999-07-01

    The dosimetric properties are presented of a recent production of chemical vapour deposition diamond growth. Experimental data concerning the TL response as a function of dose, the energy response and fading behaviour are reported. Very preliminary results suggest that diamond can be used in TL mode as well as an activation detector. (author)

  6. Control of tin oxide film morphology by addition of hydrocarbons to the chemical vapour deposition process

    Czech Academy of Sciences Publication Activity Database

    Yates, H.M.; Evans, P.; Sheel, D.W.; Remeš, Zdeněk; Vaněček, Milan

    2010-01-01

    Roč. 519, č. 4 (2010), s. 1334-1340. ISSN 0040-6090 EU Projects: European Commission(XE) 214134 - N2P; European Commission(XE) 38885 - SE-POWERFOIL Institutional research plan: CEZ:AV0Z10100521 Keywords : alcohol * chemical vapour deposition * morphology * tin oxide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.909, year: 2010

  7. Dense CdS thin films on fluorine-doped tin oxide coated glass by high-rate microreactor-assisted solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yu-Wei, E-mail: suyuweiwayne@gmail.com [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97330 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States); Ramprasad, Sudhir [Energy Processes and Materials Division, Pacific Northwest National Laboratory, Corvallis, OR 9730 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States); Han, Seung-Yeol; Wang, Wei [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97330 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States); Ryu, Si-Ok [School of Display and Chemical Engineering, Yeungnam University, 214-1 Dae-dong, Gyeonsan, Gyeongbuk 712-749 (Korea, Republic of); Palo, Daniel R. [Barr Engineering Co., Hibbing, MN 55747 (United States); Paul, Brian K. [School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97330 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States); Chang, Chih-hung [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97330 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States)

    2013-04-01

    Continuous microreactor-assisted solution deposition is demonstrated for the deposition of CdS thin films on fluorine-doped tin oxide (FTO) coated glass. The continuous flow system consists of a microscale T-junction micromixer with the co-axial water circulation heat exchanger to control the reacting chemical flux and optimize the heterogeneous surface reaction. Dense, high quality nanocrystallite CdS thin films were deposited at an average rate of 25.2 nm/min, which is significantly higher than the reported growth rate from typical batch chemical bath deposition process. Focused-ion-beam was used for transmission electron microscopy specimen preparation to characterize the interfacial microstructure of CdS and FTO layers. The band gap was determined at 2.44 eV by UV–vis absorption spectroscopy. X-ray photon spectroscopy shows the binding energies of Cd 3d{sub 3/2}, Cd 3d{sub 5/2}, S 2P{sub 3/2} and S 2P{sub 1/2} at 411.7 eV, 404.8 eV, 162.1 eV and 163.4 eV, respectively. - Highlights: ► CdS films deposited using continuous microreactor-assisted solution deposition (MASD) ► Dense nanocrystallite CdS films can be reached at a rate of 25.2 [nm/min]. ► MASD can approach higher film growth rate than conventional chemical bath deposition.

  8. Chemical vapour deposition of thermochromic vanadium dioxide thin films for energy efficient glazing

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Michael E.A. [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); UCL Energy Institute, Central House, 14 Upper Woburn Place, London, WC1H 0NN (United Kingdom); Binions, Russell, E-mail: r.binions@qmul.ac.uk [School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom)

    2014-06-01

    Vanadium dioxide is a thermochromic material that undergoes a semiconductor to metal transitions at a critical temperature of 68 °C. This phase change from a low temperature monoclinic structure to a higher temperature rutile structure is accompanied by a marked change in infrared reflectivity and change in resistivity. This ability to have a temperature-modulated film that can limit solar heat gain makes vanadium dioxide an ideal candidate for thermochromic energy efficient glazing. In this review we detail the current challenges to such glazing becoming a commercial reality and describe the key chemical vapour deposition technologies being employed in the latest research. - Graphical abstract: Schematic demonstration of the effect of thermochromic glazing on solar radiation (red arrow represents IR radiation, black arrow represents all other solar radiation). - Highlights: • Vanadium dioxide thin films for energy efficient glazing. • Reviews chemical vapour deposition techniques. • Latest results for thin film deposition for vanadium dioxide.

  9. Chemical deposition and characterization of thorium-alloyed lead sulfide thin films

    International Nuclear Information System (INIS)

    We present a chemical bath deposition process for alloying PbS thin films with 232Th, a stable isotope of thorium, to provide a model system for radiation damage studies. Variation of deposition parameters such as temperature, reagent concentrations and time allows controlling the properties of the resulting films. Small amounts of incorporated thorium (0.5%) strongly affected the surface topography and the orientation of the films and slowed down the growth rate. The Th appears to be incorporated as substitutional ions in the PbS lattice. - Highlights: • Chemical bath deposition has been used for alloying lead sulfide films with 232Th. • The effect of Th on the structural and optical properties of the films was studied. • Incorporation of Th affected surface topography, orientation, Eg and growth rate

  10. Chemical vapor deposition of ZrC within a spouted bed by bromide process

    Science.gov (United States)

    Ogawa, T.; Ikawa, K.; Iwamoto, K.

    1981-03-01

    ZrC coatings by chemical vapor deposition were applied to particles of ThO 2, UO 2 and Al 2O 3 at 1623-1873 K. The feed gas mixture consisted of ZrBr 4, CH 4, H 2 and Ar. The results were compared with the calculated chemical equilibria in the Zr-C-H-Br system. It was shown that the weight and composition of the deposit can be calculated by thermochemical analysis after correcting the methane flow rate for a pyrolysis efficiency. Predominant reaction presumably occurring were derived by a mass balance consideration on the calculated equilibrium species. A simplified model of the ZrC deposition was proposed.

  11. A Study on Medium Temperature Chemical Vapor Deposition (MT-CVD) Technology and Super Coating Materials

    Institute of Scientific and Technical Information of China (English)

    GAO Jian; LI Jian-ping; ZENG Xiang-cai; MA Wen-cun

    2004-01-01

    In this paper, the dense and columnar crystalline TiCN coating layers with very good bonding strength between a layer and another layer was deposited using Medium Temperature Chemical Vapor Deposition (MT-CVD) where CH3CN organic composite with C/N atomic clusters etc. was utilized at 700 ~ 900 ℃. Effect of coating processing parameters, such as coating temperature, pressure and different gas flow quantity on structures and properties of TiCN coating layers were investigated. The super coating mechanis mand structures were analyzed. The new coating processing parameters and properties of carbide inserts with super coating layers were gained by using the improved high temperature chemical vapor deposition (HTCVD) equipment and HT-CVD, in combination with MT-CVD technology.

  12. P-type thin films transistors with solution-deposited lead sulfide films as semiconductor

    International Nuclear Information System (INIS)

    In this paper we demonstrate p-type thin film transistors fabricated with lead sulfide (PbS) as semiconductor deposited by chemical bath deposition methods. Crystallinity and morphology of the resulting PbS films were characterized using X-ray diffraction, atomic force microscopy and scanning electron microscopy. Devices were fabricated using photolithographic processes in a bottom gate configuration with Au as source and drain top contacts. Field effect mobility for as-fabricated devices was ∼ 0.09 cm2 V−1 s−1 whereas the mobility for devices annealed at 150 °C/h in forming gas increased up to ∼ 0.14 cm2 V−1 s−1. Besides the thermal annealing, the entire fabrications process was maintained below 100 °C. The electrical performance of the PbS-thin film transistors was studied before and after the 150 °C anneal as well as a function of the PbS active layer thicknesses. - Highlights: ► Thin film transistors with PbS as semiconductor deposited by chemical bath deposition. ► Photolithography-based thin film transistors with PbS films at low temperatures. ► Electron mobility for anneal-PbS devices of ∼ 0.14 cm2 V−1 s−1. ► Highest mobility reported in thin film transistors with PbS as the semiconductor.

  13. Characteristics of zinc oxide nanorod array/titanium oxide film heterojunction prepared by aqueous solution deposition

    Science.gov (United States)

    Lee, Ming-Kwei; Hong, Min-Hsuan; Li, Bo-Wei

    2016-07-01

    The characteristics of a ZnO nanorod array/TiO2 film heterojunction were investigated. A TiO2 film was prepared on glass by aqueous solution deposition with precursors of ammonium hexafluorotitanate and boric acid at 40 °C. Then, a ZnO seed layer was prepared on a TiO2 film/glass substrate by RF sputtering. A vertically oriented ZnO nanorod array was grown on a ZnO seed layer/TiO2 film/glass substrate by aqueous solution deposition with precursors of zinc nitrate and hexamethylenetetramine (HMT) at 70 °C. After thermal annealing in N2O ambient at 300 °C, this heterojunction used as an oxygen gas sensor shows much better rise time, decay time, and on/off current ratio than as-grown and annealed ZnO nanorods.

  14. Fabrication and characterization of indium sulfide thin films deposited on SAMs modified substrates surfaces by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Meng Xu [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050 (China); Lu Yongjuan; Zhang Xiaoliang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing, 10049 (China); Yang Baoping [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050 (China); Yi Gewen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Jia Junhong, E-mail: jhjia@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)

    2011-11-01

    In an effort to explore the optoelectronic properties of nanostructured indium sulfide (In{sub 2}S{sub 3}) thin films for a wide range of applications, the In{sub 2}S{sub 3} thin films were successfully deposited on the APTS layers (-NH{sub 2}-terminated) modified ITO glass substrates using the chemical bath deposition technique. The surface morphology, structure and composition of the resultant In{sub 2}S{sub 3} thin films were characterized by FESEM, XRD, and XPS, respectively. Also, the correlations between the optical properties, photocurrent response and the thickness of thin films were established. According to the different deposition mechanisms on the varying SAMs terminational groups, the positive and negative micropatterned In{sub 2}S{sub 3} thin films were successfully fabricated on modified Si substrates surface combining with the ultraviolet lithography process. This offers an attractive opportunity to fabricate patterned In{sub 2}S{sub 3} thin films for controlling the spatial positioning of functional materials in microsystems.

  15. Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials

    Indian Academy of Sciences (India)

    Awadesh Kr Mallik; Nanadadulal Dandapat; Prajit Ghosh; Utpal Ganguly; Sukhendu Jana; Sayan Das; Kaustav Guha; Garfield Rebello; Samir Kumar Lahiri; Someswar Datta

    2013-04-01

    Diamond-like nanocomposite (DLN) coatings have been deposited over different substrates used for biomedical applications by plasma-enhanced chemical vapour deposition (PECVD). DLN has an interconnecting network of amorphous hydrogenated carbon and quartz-like oxygenated silicon. Raman spectroscopy, Fourier transform–infra red (FT–IR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used for structural characterization. Typical DLN growth rate is about 1 m/h, measured by stylus profilometer. Due to the presence of quartz-like Si:O in the structure, it is found to have very good adhesive property with all the substrates. The adhesion strength found to be as high as 0.6 N on SS 316 L steel substrates by scratch testing method. The Young’s modulus and hardness have found to be 132 GPa and 14.4 GPa, respectively. DLN coatings have wear factor in the order of 1 × 10-7 mm3/N-m. This coating has found to be compatible with all important biomedical substrate materials and has successfully been deposited over Co–Cr alloy based knee implant of complex shape.

  16. Deposition kinetics and characterization of stable ionomers from hexamethyldisiloxane and methacrylic acid by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Urstöger, Georg; Resel, Roland; Koller, Georg; Coclite, Anna Maria

    2016-04-01

    A novel ionomer of hexamethyldisiloxane and methacrylic acid was synthesized by plasma enhanced chemical vapor deposition (PECVD). The PECVD process, being solventless, allows mixing of monomers with very different solubilities, and for polymers formed at high deposition rates and with high structural stability (due to the high number of cross-links and covalent bonding to the substrate) to be obtained. A kinetic study over a large set of parameters was run with the aim of determining the optimal conditions for high stability and proton conductivity of the polymer layer. Copolymers with good stability over 6 months' time in air and water were obtained, as demonstrated by ellipsometry, X-Ray reflectivity, and FT-IR spectroscopy. Stable coatings showed also proton conductivity as high as 1.1 ± 0.1 mS cm-1. Chemical analysis showed that due to the high molecular weight of the chosen precursors, it was possible to keep the plasma energy-input-per-mass low. This allowed limited precursor fragmentation and the functional groups of both monomers to be retained during the plasma polymerization.

  17. Solution-Processed Carbon Nanotube and Chemically Synthesized Graphene Nanoribbon Field Effect Transistors

    Science.gov (United States)

    Bennett, Patrick Bryce

    Carbon nanotubes (CNTs) possess great potential as high performance semiconducting channels due to their one-dimensional nature, extremely high mobility, and their demonstrated ability to transport electrons ballistically in transistors. However, the presence of metallic CNTs in CNT films and arrays represents a major impediment towards large-scale integration. Methods of solution purification have demonstrated partial success in metallic CNT removal, although their effects on device performance are unknown. While this problem may be solvable, new synthesis techniques have recently resulted in the creation of high-density films of graphene nanoribbons (GNRs) with atomically smooth edges, uniform widths, and uniform band structure. These may ultimately supplant CNTs in device applications due to their theoretically similar, but uniform electronic properties. This work aims to study the effects of purification of semiconducting CNTs in thin film transistors (TFTs) and to develop methods to increase device performance when metallic CNTs are present. Devices consisting of large networks of CNTs as well as short channel, single CNT devices are characterized to determine the effects of solution processing on CNTs themselves. Short channel, bottom-up GNR devices are fabricated to compare their performance to CNT transistors. The first half of this dissertation describes the methods of integrating CNTs from various sources into transistors. Growth and transfer are described, as well as methods of creating aqueous suspensions for solution processing. Development of novel surfactant materials based on biomimetic polymers used to suspend CNTs in solution are reported and characterized. Methods of deposition out of solution and onto insulating substrates are covered. Device fabrication from start to finish is detailed, with the subtleties of processing required to produce sub 10-nm channel length devices explained. The second half reports devices produced via these techniques

  18. Pitting resistance of TiN deposited on Inconel 600 by plasma-assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    TiN films were deposited on Inconel 600 by PACVD using the gaseous mixture of TiCl4, N2, H2, and Ar in order to increase the pitting resistance of Inconel 600. The pitting resistance was examined using a potentiodynamic polarization technique with a chloride solution. The effect of chloride concentration in the electrolyte on the pitting potential was also investigated. Inconel 600 coated with TiN film shows a superior pitting resistance to that without TiN film in condition that the thickness of the film is greater than a certain critical value. As the deposition temperature as well as the RF power increases, the residual Cl concentration in the film decreases, resulting in the improvement of the pitting resistance. However, the TiN films deposited at too high RF powers, even though the Cl concentration in TiN film is very small, show inferior pitting resistance, which is due to the formation of the network type microvoids structure. ((orig.))

  19. Selective chemical vapor deposition of tungsten films on titanium-ion-irradiated silicon dioxide

    International Nuclear Information System (INIS)

    Selective area deposition of adherent tungsten (W) film on titanium (Ti)-ion-irradiated silicon dioxide (SiO2 is achieved. First, Ti-ion irradiation through a stencil mask is performed at 600 eV for 1.1 x 1016 atoms/cm2 in a reaction chamber. Next, ArF excimer laser (λ = 193 nm) chemical vapor deposition (CVD) with tungsten hexafluoride (WF6) and hydrogen (H2) is carried out for 40 seconds at 400 K. Finally, low-pressure (LP) CVD is carried out at 600 K and then W films are deposited selectively on the ion-irradiated SiO2. Without the laser CVD step, the ion-irradiation pattern disappears during LPCVD and no W film deposition occurs

  20. Laser chemical vapor deposition of W on Si and SiO2/Si

    International Nuclear Information System (INIS)

    Direct write of W on bare Si and native SiO2/Si substrates has been investigated in an laser chemical vapor deposition (LCVD) system. W deposits on bare Si surface via the Si and/or H2 reduction of WF6 were self-limited in thickness to 200 - 600 Angstrom in both cases. Auger electron spectroscopic analysis showed that Si-H bonds could be poisoning the further growth of W. W deposits on native SiO2/Si were only obtainable via the H2 reduction WF6 in our laser direct-write system. The authors' experimental kinetic study indicates that HF desorption from the surface is the rate-controlling step for W deposition via the H2 reduction WF6

  1. Synthesis of low leakage current chemical vapour deposited (CVD) diamond films for particle detection

    International Nuclear Information System (INIS)

    We report on synthesis of diamond films by direct current glow discharge chemical vapour deposition (CVD) prepared at different deposition conditions, for application in high energy physics. The synthesis apparatus is briefly described. Continuous undoped diamond samples have been grown onto Mo substrates with a deposition area up to 1 cm2 and an electrical resistivity as high as 1013 Ωcm. The deposition parameters are related to the material properties of the diamonds, investigated by optical spectroscopy, electron microscopy and diffraction analysis. Decreasing the linear growth rate results in good quality films with small remnants of graphite-like phases. The high crystalline quality and phase purity of the films are related to very low values of leakage currents. The particle induced conductivity of these samples is also studied and preliminary results on charge collection efficiency are presented. (orig.)

  2. Plasma Assisted Chemical Vapour Deposition – Technological Design Of Functional Coatings

    Directory of Open Access Journals (Sweden)

    Januś M.

    2015-06-01

    Full Text Available Plasma Assisted Chemical Vapour Deposition (PA CVD method allows to deposit of homogeneous, well-adhesive coatings at lower temperature on different substrates. Plasmochemical treatment significantly impacts on physicochemical parameters of modified surfaces. In this study we present the overview of the possibilities of plasma processes for the deposition of diamond-like carbon coatings doped Si and/or N atoms on the Ti Grade2, aluminum-zinc alloy and polyetherketone substrate. Depending on the type of modified substrate had improved the corrosion properties including biocompatibility of titanium surface, increase of surface hardness with deposition of good adhesion and fine-grained coatings (in the case of Al-Zn alloy and improving of the wear resistance (in the case of PEEK substrate.

  3. Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    We present a simple, low-cost and high-effective method for synthesizing high-quality, large-area graphene using radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) on SiO2/Si substrate covered with Ni thin film at relatively low temperatures (650 deg. C). During deposition, the trace amount of carbon (CH4 gas flow rate of 2 sccm) is introduced into PECVD chamber and the deposition time is only 30 s, in which the carbon atoms diffuse into the Ni film and then segregate on its surface, forming single-layer or few-layer graphene. After deposition, Ni is removed by wet etching, and the obtained single continuous graphene film can easily be transferred to other substrates. This investigation provides a large-area, low temperature and low-cost synthesis method for graphene as a practical electronic material.

  4. Sputter deposition of transition-metal carbide films — A critical review from a chemical perspective

    International Nuclear Information System (INIS)

    Thin films based on transition-metal carbides exhibit many interesting physical and chemical properties making them attractive for a variety of applications. The most widely used method to produce metal carbide films with specific properties at reduced deposition temperatures is sputter deposition. A large number of papers in this field have been published during the last decades, showing that large variations in structure and properties can be obtained. This review will summarise the literature on sputter-deposited carbide films based on chemical aspects of the various elements in the films. By considering the chemical affinities (primarily towards carbon) and structural preferences of different elements, it is possible to understand trends in structure of binary transition-metal carbides and the ternary materials based on these carbides. These trends in chemical affinity and structure will also directly affect the growth process during sputter deposition. A fundamental chemical perspective of the transition-metal carbides and their alloying elements is essential to obtain control of the material structure (from the atomic level), and thereby its properties and performance. This review covers a wide range of materials: binary transition-metal carbides and their nanocomposites with amorphous carbon; the effect of alloying carbide-based materials with a third element (mainly elements from groups 3 through 14); as well as the amorphous binary and ternary materials from these elements deposited under specific conditions or at certain compositional ranges. Furthermore, the review will also emphasise important aspects regarding materials characterisation which may affect the interpretation of data such as beam-induced crystallisation and sputter-damage during surface analysis

  5. Solvent Control of Surface Plasmon-Mediated Chemical Deposition of Au Nanoparticles from Alkylgold Phosphine Complexes.

    Science.gov (United States)

    Muhich, Christopher L; Qiu, Jingjing; Holder, Aaron M; Wu, Yung-Chien; Weimer, Alan W; Wei, Wei David; McElwee-White, Lisa; Musgrave, Charles B

    2015-06-24

    Bottom-up approaches to nanofabrication are of great interest because they can enable structural control while minimizing material waste and fabrication time. One new bottom-up nanofabrication method involves excitation of the surface plasmon resonance (SPR) of a Ag surface to drive deposition of sub-15 nm Au nanoparticles from MeAuPPh3. In this work we used density functional theory to investigate the role of the PPh3 ligands of the Au precursor and the effect of adsorbed solvent on the deposition process, and to elucidate the mechanism of Au nanoparticle deposition. In the absence of solvent, the calculated barrier to MeAuPPh3 dissociation on the bare surface is deposition by the light induced SPR heating of the surface and nearby solution. PMID:26036274

  6. Synthesis of carbon nanotubes using the cobalt nanocatalyst by thermal chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Madani, S.S. [Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Zare, K. [Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Department of Chemistry, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Ghoranneviss, M. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Salar Elahi, A., E-mail: Salari_phy@yahoo.com [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-11-05

    The three main synthesis methods of Carbon nanotubes (CNTs) are the arc discharge, the laser ablation and the chemical vapour deposition (CVD) with a special regard to the latter one. CNTs were produced on a silicon wafer by Thermal Chemical Vapor Deposition (TCVD) using acetylene as a carbon source, cobalt as a catalyst and ammonia as a reactive gas. The DC-sputtering system was used to prepare cobalt thin films on Si substrates. A series of experiments was carried out to investigate the effects of reaction temperature and deposition time on the synthesis of the nanotubes. The deposition time was selected as 15 and 25 min for all growth temperatures. Energy Dispersive X-ray (EDX) measurements were used to investigate the elemental composition of the Co nanocatalyst deposited on Si substrates. Atomic Force Microscopy (AFM) was used to characterize the surface topography of the Co nanocatalyst deposited on Si substrates. The as-grown CNTs were characterized under Field Emission Scanning Electron Microscopy (FESEM) to study the morphological properties of CNTs. Also, the grown CNTs have been investigated by High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. The results demonstrated that increasing the temperature leads to increasing the diameter of CNTs. The ideal reaction temperature was 850 °C and the deposition time was 15 min. - Graphical abstract: FESEM images of CNTs grown on the cobalt catalyst at growth temperatures of (a) 850 °C, (b) 900 °C, (c) 950 °C and (d) 1000 °C during the deposition time of 15 min. - Highlights: • Carbon nanotubes (CNTs) were produced on a silicon wafer by TCVD technique. • EDX and AFM were used to investigate the elemental composition and surface topography. • FESEM was used to study the morphological properties of CNTs. • The grown CNTs have been investigated by HRTEM and Raman spectroscopy.

  7. Synthesis of carbon nanotubes using the cobalt nanocatalyst by thermal chemical vapor deposition technique

    International Nuclear Information System (INIS)

    The three main synthesis methods of Carbon nanotubes (CNTs) are the arc discharge, the laser ablation and the chemical vapour deposition (CVD) with a special regard to the latter one. CNTs were produced on a silicon wafer by Thermal Chemical Vapor Deposition (TCVD) using acetylene as a carbon source, cobalt as a catalyst and ammonia as a reactive gas. The DC-sputtering system was used to prepare cobalt thin films on Si substrates. A series of experiments was carried out to investigate the effects of reaction temperature and deposition time on the synthesis of the nanotubes. The deposition time was selected as 15 and 25 min for all growth temperatures. Energy Dispersive X-ray (EDX) measurements were used to investigate the elemental composition of the Co nanocatalyst deposited on Si substrates. Atomic Force Microscopy (AFM) was used to characterize the surface topography of the Co nanocatalyst deposited on Si substrates. The as-grown CNTs were characterized under Field Emission Scanning Electron Microscopy (FESEM) to study the morphological properties of CNTs. Also, the grown CNTs have been investigated by High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. The results demonstrated that increasing the temperature leads to increasing the diameter of CNTs. The ideal reaction temperature was 850 °C and the deposition time was 15 min. - Graphical abstract: FESEM images of CNTs grown on the cobalt catalyst at growth temperatures of (a) 850 °C, (b) 900 °C, (c) 950 °C and (d) 1000 °C during the deposition time of 15 min. - Highlights: • Carbon nanotubes (CNTs) were produced on a silicon wafer by TCVD technique. • EDX and AFM were used to investigate the elemental composition and surface topography. • FESEM was used to study the morphological properties of CNTs. • The grown CNTs have been investigated by HRTEM and Raman spectroscopy

  8. Quantum Chemical Simulation of Carbon Nanotube Nucleation on Al2O3 Catalysts via CH4 Chemical Vapor Deposition.

    Science.gov (United States)

    Page, Alister J; Saha, Supriya; Li, Hai-Bei; Irle, Stephan; Morokuma, Keiji

    2015-07-29

    We present quantum chemical simulations demonstrating how single-walled carbon nanotubes (SWCNTs) form, or "nucleate", on the surface of Al2O3 nanoparticles during chemical vapor deposition (CVD) using CH4. SWCNT nucleation proceeds via the formation of extended polyyne chains that only interact with the catalyst surface at one or both ends. Consequently, SWCNT nucleation is not a surface-mediated process. We demonstrate that this unusual nucleation sequence is due to two factors. First, the π interaction between graphitic carbon and Al2O3 is extremely weak, such that graphitic carbon is expected to desorb at typical CVD temperatures. Second, hydrogen present at the catalyst surface actively passivates dangling carbon bonds, preventing a surface-mediated nucleation mechanism. The simulations reveal hydrogen's reactive chemical pathways during SWCNT nucleation and that the manner in which SWCNTs form on Al2O3 is fundamentally different from that observed using "traditional" transition metal catalysts. PMID:26148208

  9. Inhalation solutions: which one are allowed to be mixed? Physico-chemical compatibility of drug solutions in nebulizers.

    Science.gov (United States)

    Kamin, Wolfgang; Schwabe, Astrid; Krämer, Irene

    2006-12-01

    Therapy of chronic respiratory diseases often involves inhalation therapy with nebulizers. Patients often attempt to shorten the time consuming administration procedure by mixing drug solutions/suspensions for simultaneous inhalation. This article considers the issue of physico-chemical compatibility of admixtures of drug solutions/suspensions in nebulizers. A search of databases, prescribing information and primary literature was conducted to locate literature concerning the physico-chemical compatibility of inhalation solutions/suspensions. This was supplemented by telephone interviews. Admixtures of albuterol with ipratropium and/or cromolyn, of albuterol and budesonide, or tobramycin, or colistin are physico-chemically compatible. Physico-chemical compatibility has been demonstrated for admixtures of cromolyn with albuterol and/or ipratropium and for admixtures of cromolyn and budesonide. Admixtures of budesonide with ipratropium and/or fenoterol, and admixtures of budesonide and albuterol, or cromolyn are physico-chemically compatible. Both cromolyn and colistin are incompatible with benzalkonium chloride. Admixtures should be prepared from inhalation solutions/suspensions formulated without preservatives. Besides studies of the physico-chemical compatibility, the aerodynamic behaviour of physico-chemical mixtures needs to be studied before a final recommendation of simultaneous nebulization of compatible admixtures can be made. PMID:16678502

  10. Indium sulfide thin films as window layer in chemically deposited solar cells

    International Nuclear Information System (INIS)

    Indium sulfide (In2S3) thin films have been synthesized by chemical bath deposition technique onto glass substrates using In(NO3)3 as indium precursor and thioacetamide as sulfur source. X-ray diffraction studies have shown that the crystalline state of the as-prepared and the annealed films is β-In2S3. Optical band gap values between 2.27 and 2.41 eV were obtained for these films. The In2S3 thin films are photosensitive with an electrical conductivity value in the range of 10−3–10−7 (Ω cm)−1, depending on the film preparation conditions. We have demonstrated that the In2S3 thin films obtained in this work are suitable candidates to be used as window layer in thin film solar cells. These films were integrated in SnO2:F/In2S3/Sb2S3/PbS/C–Ag solar cell structures, which showed an open circuit voltage of 630 mV and a short circuit current density of 0.6 mA/cm2. - Highlights: • In2S3 thin films were deposited using the Chemical Bath Deposition technique. • A direct energy band gap between 2.41 to 2.27 eV was evaluated for the In2S3 films. • We made chemically deposited solar cells using the In2S3 thin films

  11. Characterization of Si:O:C:H films fabricated using electron emission enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (VS) and of the proportion of TEOS in the mixture (XT) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on VS and XT are presented

  12. Electric field assisted aerosol assisted chemical vapour deposition of nanostructured metal oxide thin films

    International Nuclear Information System (INIS)

    Nanostructured thin films of tungsten, vanadium and titanium oxides were deposited on gas sensor substrates from the electric field assisted chemical vapour deposition reaction of tungsten hexaphenoxide, vanadyl acetylacetonate and titanium tetraisopropoxide respectively. The electric fields were generated by applying a potential difference between the inter-digitated electrodes of the gas sensor substrates during the deposition. The deposited films were characterised using scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The application of an electric field, encouraged the formation of interesting and unusual nanostructured morphologies, with a change in scale length and island packing. It was also noted that crystallographic orientation of the films could be controlled as a function of electric field type and strength. The gas sensor properties of the films were also examined; it was found that a two to three fold enhancement in the gas response could be observed from sensors with enhanced morphologies compared to control sensors grown without application of an electric field. - Highlights: • Electric field assisted chemical vapour deposition method • Ability to create high surface area film architectures • Can produce enhanced sensor response • Good control over film properties

  13. Electric field assisted aerosol assisted chemical vapour deposition of nanostructured metal oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Anupriya J.T.; Bowman, Christopher; Panjwani, Naitik [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ (United Kingdom); Warwick, Michael E.A. [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ (United Kingdom); UCL Energy Institute, Central House, 14 Upper Woburn Place, London WC1H 0HY (United Kingdom); Binions, Russell, E-mail: r.binions@qmul.ac.uk [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ (United Kingdom); School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2013-10-01

    Nanostructured thin films of tungsten, vanadium and titanium oxides were deposited on gas sensor substrates from the electric field assisted chemical vapour deposition reaction of tungsten hexaphenoxide, vanadyl acetylacetonate and titanium tetraisopropoxide respectively. The electric fields were generated by applying a potential difference between the inter-digitated electrodes of the gas sensor substrates during the deposition. The deposited films were characterised using scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The application of an electric field, encouraged the formation of interesting and unusual nanostructured morphologies, with a change in scale length and island packing. It was also noted that crystallographic orientation of the films could be controlled as a function of electric field type and strength. The gas sensor properties of the films were also examined; it was found that a two to three fold enhancement in the gas response could be observed from sensors with enhanced morphologies compared to control sensors grown without application of an electric field. - Highlights: • Electric field assisted chemical vapour deposition method • Ability to create high surface area film architectures • Can produce enhanced sensor response • Good control over film properties.

  14. Chemical vapour deposition diamond coating on tungsten carbide dental cutting tools

    International Nuclear Information System (INIS)

    Diamond coatings on Co cemented tungsten carbide (WC-Co) hard metal tools are widely used for cutting non-ferrous metals. It is difficult to deposit diamond onto cutting tools, which generally have a complex geometry, using a single step growth process. This paper focuses on the deposition of polycrystalline diamond films onto dental tools, which possess 3D complex or cylindrical shape, employing a novel single step chemical vapour deposition (CVD) growth process. The diamond deposition is carried out in a hot filament chemical vapour deposition (HFCVD) reactor with a modified filament arrangement. The filament is mounted vertically with the drill held concentrically in between the filament coils, as opposed to the commonly used horizontal arrangement. This is a simple and inexpensive filament arrangement. In addition, the problems associated with adhesion of diamond films on WC-Co substrates are amplified in dental tools due to the very sharp edges and unpredictable cutting forces. The presence of Co, used as a binder in hard metals, generally causes poor adhesion. The amount of metallic Co on the surface can be reduced using a two step pre-treatment employing Murakami etching followed by an acid treatment. Diamond films are examined in terms of their growth rate, morphology, adhesion and cutting efficiency. We found that in the diamond coated dental tool the wear rate was reduced by a factor of three as compared to the uncoated tool

  15. Chemically deposited TiO2/CdS bilayer system for photoelectrochemical properties

    Indian Academy of Sciences (India)

    P R Deshmukh; U M Patil; K V Gurav; S B Kulkarni; C D Lokhande

    2012-12-01

    In the present investigation, TiO2, CdS and TiO2/CdS bilayer system have been deposited on the fluorine doped tin oxide (FTO) coated glass substrate by chemical methods. Nanograined TiO2 was deposited on FTO coated glass substrates by successive ionic layers adsorption and reaction (SILAR) method. Chemical bath deposition (CBD)method was employed to deposit CdS thin film on pre-deposited TiO2 film. A further study has beenmade for structural, surface morphological, optical and photoelectrochemical (PEC) properties of FTO/TiO2, FTO/CdS and FTO/TiO2/CdS bilayers system. PEC behaviour of FTO/TiO2/CdS bilayers was studied and compared with FTO/CdS single system. FTO/TiO2/CdS bilayers system showed improved performance of PEC properties over individual FTO/CdS thin films.

  16. Models of Gas-phase and Surface Chemistry for Plasma Enhanced Chemical Vapor Deposition

    Science.gov (United States)

    Meeks, Ellen

    1996-10-01

    Plasma enhanced chemical vapor deposition for inter-metal-layer gap-fill processes are increasingly important in semiconductor device manufacture, as the devices include increasing numbers of metal layers with decreasing linewidth and spacing. Optimization of these processes requires knowledge of the microscopic consequences of variations in reactor operating conditions. Topographical simulation can address the gap-fill performance of a depositing film, but the predictive capabiliities are limited by the ability of the model user to accurately supply ion and radical fluxes at a gas/surface interface. Critical to determining this information are the chemical kinetics between gas-phase species and the deposition surfaces. Recent improvements and extensions to the CHEMKIN and Surface CHEMKIN software allow general inclusion of detailed chemical mechanisms in plasma simulations and in models of plasma-surface interactions. In the results presented here (This work represents a collaboration with R. Larson and P. Ho at Sandia, J. Rey and J. Li at TMA, S. M. Han and E. Aydil of UCSB, and S. Huang at Lam Research Corporation), we have used a CHEMKIN-based well mixed reactor model of a high-density SiH_4/O_2/Ar plasma to predict and characterize species fluxes, oxide-deposition rates, and ion-milling rates on a flat surface. These calculated rates can be used as direct input to a topographical simulator. The gas-phase chemistry in the plasma reactor model is comprised of electron impact reactions with silane, oxygen, hydrogen, and argon, as well as neutral radical recombination, abstraction, and oxidation reactions. The surface reaction mechanism contains four classes of reactions: silicon-containing radical deposition, radical abstraction, ion-induced desorption, and physical ion sputtering. We include relative thermochemistry of the surface and gas species to allow reversible reaction dynamics. The plasma model results show good agreement with measured ion densities, as

  17. Microstructural characterization and chemical compatibility of pulsed laser deposited yttria coatings on high density graphite

    International Nuclear Information System (INIS)

    Yttria coatings were deposited on high density (HD) graphite substrate by pulsed laser deposition method and subsequently annealing in vacuum at 1373 K was carried out to evaluate the thermal stability of the coatings. Yttria deposited on HD graphite samples were exposed to molten LiCl–KCl salt at 873 K for 3 h to evaluate the corrosion behavior of the coating for the purpose of pyrochemical reprocessing applications. The microstructure and the corrosion behavior of the yttria coating deposited on HD graphite in molten LiCl–KCl salt were evaluated by several characterization techniques. X-ray diffraction and Laser Raman patterns confirmed the presence of cubic phase of yttria in the coating. The surface morphology of yttria coating on HD graphite examined by scanning electron microscope and atomic force microscopy revealed the agglomeration of oxide particles and formation of clusters. After annealing at 1373 K, no appreciable grain growth of yttria particles could be observed. X-ray photoelectron spectroscopy analysis was carried out for elemental analysis before and after chemical compatibility test of the coated samples in molten LiCl–KCl salt to identify the corrosive elements present on the yttria coatings. The chemical compatibility and thermal stability of the yttria coating on HD graphite in molten LiCl–KCl salt medium have been established. - Highlights: • Y2O3 coating was deposited on graphite by pulsed laser deposition method. • Chemical compatibility of Y2O3 coating in LiCl–KCl salt at 873 K was studied. • Gibbs free energy change was positive for Y2O3 reaction with Cl2, U and UCl3. • Y2O3 coating exhibited better corrosion performance in molten LiCl–KCl salt

  18. Microstructural characterization and chemical compatibility of pulsed laser deposited yttria coatings on high density graphite

    Energy Technology Data Exchange (ETDEWEB)

    Sure, Jagadeesh [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India); Mishra, Maneesha [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102 (India); Tarini, M. [SRM University, Kattankulathur-603 203 (India); Shankar, A. Ravi; Krishna, Nanda Gopala [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India); Kuppusami, P. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102 (India); Mallika, C. [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India); Mudali, U. Kamachi, E-mail: kamachi@igcar.gov.in [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India)

    2013-10-01

    Yttria coatings were deposited on high density (HD) graphite substrate by pulsed laser deposition method and subsequently annealing in vacuum at 1373 K was carried out to evaluate the thermal stability of the coatings. Yttria deposited on HD graphite samples were exposed to molten LiCl–KCl salt at 873 K for 3 h to evaluate the corrosion behavior of the coating for the purpose of pyrochemical reprocessing applications. The microstructure and the corrosion behavior of the yttria coating deposited on HD graphite in molten LiCl–KCl salt were evaluated by several characterization techniques. X-ray diffraction and Laser Raman patterns confirmed the presence of cubic phase of yttria in the coating. The surface morphology of yttria coating on HD graphite examined by scanning electron microscope and atomic force microscopy revealed the agglomeration of oxide particles and formation of clusters. After annealing at 1373 K, no appreciable grain growth of yttria particles could be observed. X-ray photoelectron spectroscopy analysis was carried out for elemental analysis before and after chemical compatibility test of the coated samples in molten LiCl–KCl salt to identify the corrosive elements present on the yttria coatings. The chemical compatibility and thermal stability of the yttria coating on HD graphite in molten LiCl–KCl salt medium have been established. - Highlights: • Y{sub 2}O{sub 3} coating was deposited on graphite by pulsed laser deposition method. • Chemical compatibility of Y{sub 2}O{sub 3} coating in LiCl–KCl salt at 873 K was studied. • Gibbs free energy change was positive for Y{sub 2}O{sub 3} reaction with Cl{sub 2}, U and UCl{sub 3}. • Y{sub 2}O{sub 3} coating exhibited better corrosion performance in molten LiCl–KCl salt.

  19. Characterization of Boron Carbonitride (BCN Thin Films Deposited by Radiofrequency and Microwave Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    M. A. Mannan

    2008-01-01

    Full Text Available Boron carbonitride (BCN thin films with a thickness of ~4 µ­m were synthesized on Si (100 substrate by radiofrequency and microwave plasma enhanced chemical vapor deposition using trimethylamine borane [(CH33N.BH3] as a molecular precursor. The microstructures of the films were evaluated using field emission scanning electron microscopy (FE-SEM and X-ray diffractometry (XRD. Fourier transform infrared spectroscopy (FT-IR and X-ray photoelectron spectroscopy (XPS were used to analyze the chemical bonding state and composition of the films. It has been observed that the films were adhered well to the silicon substrate even after being broken mechanically. XRD and FE-SEM results showed that the films were x-ray amorphous, rough surface with inhomogeneous microstructure. The micro hardness was measured by nano-indentation tester and was found to be approximately 2~7 GPa. FT-IR suggested the formation of the hexagonal boron carbonitride (h-BCN phase in the films. Broadening of the XPS peaks revealed that B, C and N atoms have different chemical bonds such as B-N, B-C and C-N. The impurity oxygen was detected (13~15 at.% as B-O and/or N-O.

  20. Synthesis of Nanocrystalline SnOx (x = 1–2 Thin Film Using a Chemical Bath Deposition Method with Improved Deposition Time, Temperature and pH

    Directory of Open Access Journals (Sweden)

    Zulkarnain Zainal

    2011-09-01

    Full Text Available Nanocrystalline SnOx (x = 1–2 thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnOx thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnOx nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnOx. Photosensitivity was detected in the positive region under illumination with white light.

  1. Chemical deposition of La0.7Ca0.3MnO3±δ films on ceramic substrates

    Directory of Open Access Journals (Sweden)

    Cássio Morilla-Santos

    2011-01-01

    Full Text Available In this paper, it is reported the growth of La0.7Ca0.3MnO3±δ films using a chemical solution deposition method (CSD by the spin-coating technique. Such solution was prepared through a route based on modified polymeric precursor method. Spin-coating deposition on different ceramic substrates was performed and analyzed by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. The magnetic response of the prepared specimens was studied using a SQUID magnetometer. The obtained results indicated uniform deposition on SrTiO3 and LaAlO3 substrates with similar characteristics. Furthermore, significant differences were detected in the Mn3+/Mn4+ valence ratio and a corresponding diverse magnetic response was observed. The sample prepared on SrTiO3 and LaAlO3 presented a critical temperature around 270 K as expected.

  2. Integration of polymer electrolytes in dye sensitized solar cells by initiated chemical vapor deposition

    International Nuclear Information System (INIS)

    The mesoporous titanium dioxide electrode of dye sensitized solar cells (DSSC) has been successfully filled with polymer electrolyte to replace the conventional liquid electrolyte. Polymer electrolyte was directly synthesized and deposited using the initiated chemical vapor deposition (iCVD) process, and an iodide-triiodide redox couple in different redox solvents was then incorporated into the polymer. We have investigated different candidate polymer electrolytes, including poly(2-hydroxyethyl methacrylate) (PHEMA). The open circuit voltage of cells fabricated with iCVD PHEMA was found to be higher when compared with a liquid electrolyte that is attributed to a lower rate of electron recombination.

  3. The pyrolytic decomposition of ATSB during chemical vapour deposition of thin alumina films

    OpenAIRE

    Haanappel, V.A.C.; Corbach, van, H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    The effect of the deposition temperature and the partial pressure of water on the thermal decomposition chemistry of aluminium-tri-sec-butoxide (ATSB) during metal organic chemical vapour deposition (MOCVD) is reported. The MOCVD experiments were performed in nitrogen at atmospheric pressure. The partial pressure of ATSB was 0.026 kPa (0.20 mmHg) and that of water was between 0 and 0.026 kPa (0–0.20 mmHg). The pyrolytic decomposition chemistry of ATSB was studied by mass spectrometry at tempe...

  4. Preparation of Dispersed Platinum Nanoparticles on a Carbon Nanostructured Surface Using Supercritical Fluid Chemical Deposition

    Directory of Open Access Journals (Sweden)

    Mineo Hiramatsu

    2010-03-01

    Full Text Available We have developed a method of forming platinum (Pt nanoparticles using a metal organic chemical fluid deposition (MOCFD process employing a supercritical fluid (SCF, and have demonstrated the synthesis of dispersed Pt nanoparticles on the surfaces of carbon nanowalls (CNWs, two-dimensional carbon nanostructures, and carbon nanotubes (CNTs. By using SCF-MOCFD with supercritical carbon dioxide as a solvent of metal-organic compounds, highly dispersed Pt nanoparticles of 2 nm diameter were deposited on the entire surface of CNWs and CNTs. The SCF-MOCFD process proved to be effective for the synthesis of Pt nanoparticles on the entire surface of intricate carbon nanostructures with narrow interspaces.

  5. Chemical vapor deposition of tungsten (CVD W) as submicron interconnection and via stud

    International Nuclear Information System (INIS)

    Blanket-deposited chemical vapor deposition of tungsten (CVD W) has been developed and implemented in a 4-Mbit DRAM and equivalent submicron VLSI technologies. CVD W was applied as contact stud, interconnect, and interlevel via stud. The technologies have been proven reliable under several reliability stress conditions. Major technical problems involved in CVD W processing, such as adhesion, contact resistance, etchability, and hole fill are discussed. A novel technique that uses TiN as a contact and adhesion layer is presented. This technique has lead to the resolution of the above technical problem and significantly improved the manufacturability of blanket CVD W processes

  6. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Durmazucar, Hasan H.; Guenduez, Guengoer E-mail: ggunduz@metu.edu.tr

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  7. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    International Nuclear Information System (INIS)

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed

  8. Growth and Characteristics of Freestanding Hemispherical Diamond Films by Microwave Plasma Chemical Vapor Deposition

    International Nuclear Information System (INIS)

    Freestanding hemispherical diamond films have been fabricated by microwave plasma chemical vapor deposition using graphite and molybdenum (Mo) as substrates. Characterized by Raman spectroscopy and scanning electron microscopy, the crystalline quality of the films deposited on Mo is higher than that on graphite, which is attributed to the difference in intrinsic properties of the two substrates. By decreasing the methane concentration, the diamond films grown on the Mo substrate vary from black to white, and the optical transparency is enhanced. After polishing the growth side, the diamond films show an infrared transmittance of 35–60% in the range 400–4000 cm−1

  9. Growth and Characteristics of Freestanding Hemispherical Diamond Films by Microwave Plasma Chemical Vapor Deposition

    Science.gov (United States)

    Wang, Qi-Liang; Lü, Xian-Yi; Li, Liu-An; Cheng, Shao-Heng; Li, Hong-Dong

    2010-04-01

    Freestanding hemispherical diamond films have been fabricated by microwave plasma chemical vapor deposition using graphite and molybdenum (Mo) as substrates. Characterized by Raman spectroscopy and scanning electron microscopy, the crystalline quality of the films deposited on Mo is higher than that on graphite, which is attributed to the difference in intrinsic properties of the two substrates. By decreasing the methane concentration, the diamond films grown on the Mo substrate vary from black to white, and the optical transparency is enhanced. After polishing the growth side, the diamond films show an infrared transmittance of 35-60% in the range 400-4000 cm-1.

  10. CdS thin films growth by ammonia free chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Jaber, A.Y.; Alamri, S.N.; Aida, M.S., E-mail: aida_salah2@yahoo.fr

    2012-02-29

    Cadmium Sulfide CdS thin films were deposited by chemical bath deposition technique using ethanolamine as complexing agent instead of commonly used ammonia to avoid its toxicity and volatility during film preparation. In order to investigate the film growth mechanism samples were prepared with different deposition times. A set of substrates were dropped in the same bath and each 30 minutes a sample is withdrawn from the bath, by this way all the obtained films were grown in the same condition. The films structure was analyzed by X rays diffraction. In early stage of growth the obtained films are amorphous, with increasing the deposition time, the films exhibits a pure hexagonal structure with (101) preferential orientation. The film surface morphology was studied by atomic force microscopy. From these observations we concluded that the early growth stage starts in the 3D Volmer-Weber mode, followed by a transition to the Stransky-Krastanov mode with increasing deposition time. The critical thickness of this transition is 120 nm. CdS quantum dots were formed at end of the film growth. The optical transmittance characterization in the UV-Visible range shows that the prepared films have a high transparency ranging from 60 to 80% for photons having wavelength greater than 600 nm. - Highlights: Black-Right-Pointing-Pointer CdS thin films are deposited by ammonia-free chemical bath deposition. Black-Right-Pointing-Pointer Films have hexagonal structure with (101) preferential orientation. Black-Right-Pointing-Pointer Growth begins in the Volmer-Weber mode and changes to the Stransky-Krastanov mode. Black-Right-Pointing-Pointer CdS quantum dots are formed in the late stage of growth.

  11. Using different chemical methods for deposition of copper selenide thin films and comparison of their characterization.

    Science.gov (United States)

    Güzeldir, Betül; Sağlam, Mustafa

    2015-11-01

    Different chemical methods such as Successive Ionic Layer Adsorption and Reaction (SILAR), spin coating and spray pyrolysis methods were used to deposite of copper selenide thin films on the glass substrates. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDX) spectroscopy and UV-vis spectrophotometry. The XRD and SEM studies showed that all the films exhibit polycrystalline nature and crystallinity of copper selenide thin films prepared with spray pyrolysis greater than spin coating and SILAR methods. From SEM and AFM images, it was observed copper selenide films were uniform on the glass substrates without any visible cracks or pores. The EDX spectra showed that the expected elements exist in the thin films. Optical absorption studies showed that the band gaps of copper selenide thin films were in the range 2.84-2.93 eV depending on different chemical methods. The refractive index (n), optical static and high frequency dielectric constants (ε0, ε∞) values were calculated by using the energy bandgap values for each deposition method. The obtained results from different chemical methods revealed that the spray pyrolysis technique is the best chemical deposition method to fabricate copper selenide thin films. This absolute advantage was lead to play key roles on performance and efficiency electrochromic and photovoltaic devices. PMID:26037495

  12. The effects of chemical oxide on the deposition of tungsten by the silicon reduction of tungsten hexaflouride

    International Nuclear Information System (INIS)

    The effects of thin (chemical) oxide grown during the chemical cleaning of silicon wafers on the silicon reduction of tungsten hexaflouride have been investigated. Unlike tungsten deposition on samples without the chemical oxide, deposition thickness on those with the chemical oxide was found to be substantially thicker. Inspection by cross sectional SEM and TEM revealed the existence of micro-channels penetrating the tungsten film, reaching all the way from the surface of the film to the tungsten/silicon interface. These channels enable tungsten hexaflouride to reach the substrate, thus causing unlimited tungsten growth. Because the silicon surface participates directly in the reaction, it should be expected that the reaction itself be influenced by the chemical treatment of the surface prior to tungsten deposition. Under certain deposition conditions, and for properly prepared silicon surfaces, silicon reduction is known to result in self limiting tungsten deposition

  13. Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition

    OpenAIRE

    Alpuim, P.; Chu, Virginia; Conde, João Pedro

    1999-01-01

    The effect of hydrogen dilution on the optical, transport, and structural properties of amorphous and microcrystalline silicon thin films deposited by hot-wire (HW) chemical vapor deposition and radio-frequency (rf) plasma-enhanced chemical vapor deposition using substrate temperatures (T-sub) of 100 and 25 degrees C is reported. Microcrystalline silicon (mu c-Si:H) is obtained using HW with a large crystalline fraction and a crystallite size of similar to 30 nm for hydrogen dilutions above 8...

  14. Detecting Chemical Weapons: Threats, Requirements, Solutions, and Future Challenges

    Science.gov (United States)

    Boso, Brian

    2011-03-01

    Although chemicals have been reportedly used as weapons for thousands of years, it was not until 1915 at Ypres, France that an industrial chemical, chlorine, was used in World War I as an offensive weapon in significant quantity, causing mass casualties. From that point until today the development, detection, production and protection from chemical weapons has be an organized endeavor of many of the world's armed forces and in more recent times, non-governmental terrorist organizations. The number of Chemical Warfare Agents (CWAs) has steadily increased as research into more toxic substances continued for most of the 20 th century. Today there are over 70 substances including harassing agents like tear gas, incapacitating agents, and lethal agents like blister, blood, chocking, and nerve agents. The requirements for detecting chemical weapons vary depending on the context in which they are encountered and the concept of operation of the organization deploying the detection equipment. The US DoD, for example, has as a requirement, that US forces be able to continue their mission, even in the event of a chemical attack. This places stringent requirements on detection equipment. It must be lightweight (chemical warfare agents and toxic industrial chemicals, detect and warn at concentration levels and time duration to prevent acute health effects, meet military ruggedness specifications and work over a wide range of temperature and humidity, and have a very high probability of detection with a similarly low probability of false positives. The current technology of choice to meet these stringent requirements is Ion Mobility Spectrometry. Many technologies are capable of detecting chemicals at the trace levels required and have been extensively developed for this application, including, but not limited to: mass spectroscopy, IR spectroscopy, RAMAN spectroscopy, MEMs micro-cantilever sensors, surface acoustic wave sensors, differential mobility spectrometry, and

  15. Thin film cadmium telluride solar cells by two chemical vapor deposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L.

    1988-01-15

    Cadmium telluride (CdTe) has long been recognized as a promising thin film photovoltaic material. In this work, polycrystalline p-CdTe films have been deposited by two chemical vapor deposition techniques, namely the combination of vapors of elements (CVE) and close-spaced sublimation (CSS). The CVE technique is more flexible in controlling the composition of deposited films while the CSS technique can provide very high deposition rates. The resistivity of p-CdTe films deposited by the CVE and CSS techniques can be controlled by intrinsic (cadmium vacancies) or extrinsic (arsenic or antimony) doping, and the lowest resistivity obtainable is about 200 ..cap omega.. cm. Both front-wall (CdTe/TCS/glass) and back-wall (TCS/CdTe/substrate) cells have been prepared. The back-wall cells are less efficient because of the high and irreproducible p-CdTe-substrate interface resistance. The CSS technique is superior to the CVE technique because of its simplicity and high deposition rates; however, the cleaning of the substrate in situ is more difficult. The interface cleanliness is an important factor determining the electrical and photovoltaic characteristics of the heterojunction. Heterojunction CdS/CdTe solar cells of area 1 cm/sup 2/ with conversion efficiencies higher than 10% have been prepared and junction properties characterized.

  16. Process development for the manufacture of an integrated dispenser cathode assembly using laser chemical vapor deposition

    Science.gov (United States)

    Johnson, Ryan William

    2005-07-01

    Laser Chemical Vapor Deposition (LCVD) has been shown to have great potential for the manufacture of small, complex, two or three dimensional metal and ceramic parts. One of the most promising applications of the technology is in the fabrication of an integrated dispenser cathode assembly. This application requires the deposition of a boron nitride-molybdenum composite structure. In order to realize this structure, work was done to improve the control and understanding of the LCVD process and to determine experimental conditions conducive to the growth of the required materials. A series of carbon fiber and line deposition studies were used to characterize process-shape relationships and study the kinetics of carbon LCVD. These studies provided a foundation for the fabrication of the first high aspect ratio multi-layered LCVD wall structures. The kinetics studies enabled the formulation of an advanced computational model in the FLUENT CFD package for studying energy transport, mass and momentum transport, and species transport within a forced flow LCVD environment. The model was applied to two different material systems and used to quantify deposition rates and identify rate-limiting regimes. A computational thermal-structural model was also developed using the ANSYS software package to study the thermal stress state within an LCVD deposit during growth. Georgia Tech's LCVD system was modified and used to characterize both boron nitride and molybdenum deposition independently. The focus was on understanding the relations among process parameters and deposit shape. Boron nitride was deposited using a B3 N3H6-N2 mixture and growth was characterized by sporadic nucleation followed by rapid bulk growth. Molybdenum was deposited from the MoCl5-H2 system and showed slow, but stable growth. Each material was used to grow both fibers and lines. The fabrication of a boron nitride-molybdenum composite was also demonstrated. In sum, this work served to both advance the

  17. Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells

    International Nuclear Information System (INIS)

    In this work, we prepared zinc sulfide thin films on glass substrates by ammonia-free chemical bath deposition method using thioacetamide as the sulfide source and Ethylene Diamine Tetra Acetic Acid disodium salt as the complexing agent in a solution of pH = 6.0. Thin films of ZnS with different thicknesses of 18-450 nm were prepared. The effect of film thickness and annealing temperature in atmospheric air, on optical properties, band gap energy and grain size of nanocrystals were studied. The X-ray diffraction analysis showed a cubic zinc blend structure and a diameter of about 2-5 nm for ZnS nanocrystals. The Fourier Transform Infrared spectrum of films revealed no peaks due to impurities. The as-deposited ZnS films had more than 70% transmittance in the visible region. The direct band gap of as-deposited films ranged from 3.68 to 3.78 eV and those of annealed films varied from 3.60 to 3.70 eV

  18. Flexible Electronics: High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells (Adv. Mater. 28/2016).

    Science.gov (United States)

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    On page 5939, J. V. Badding and co-workers describe the unrolling of a flexible hydrogenated amorphous silicon solar cell, deposited by high-pressure chemical vapor deposition. The high-pressure deposition process is represented by the molecules of silane infiltrating the small voids between the rolled up substrate, facilitating plasma-free deposition over a very large area. The high-pressure approach is expected to also find application for 3D nanoarchitectures. PMID:27442970

  19. Excimer laser recrystallization of nanocrystalline-Si films deposited by inductively coupled plasma chemical vapour deposition at 150 deg. C

    International Nuclear Information System (INIS)

    Polycrystalline silicon thin film transistors (poly-Si TFTs) fabricated at low temperature (under 200 deg. C) have been widely investigated for flexible substrate applications such as a transparent plastic substrate. Unlike the conventional TFT process using glass substrate, the maximum process temperature should be kept less than 200 deg. C in order to avoid thermal damage on flexible substrates. We report the characteristics of nanocrystalline silicon (nc-Si) irradiated by an excimer laser. Nc-Si precursors were deposited on various buffer layers by inductively coupled plasma chemical vapour deposition (ICP-CVD) at 150 deg. C. We employed various buffer layers, such as silicon nitride (SiNX) and silicon dioxide (SiO2), in order to report recrystallization characteristics in connection with a buffer layer of a different thermal conductivity. The dehydrogenation and recrystallization was performed by step-by-step excimer laser annealing (ELA) (XeCl,λ=308 nm) in order to prevent the explosive release of hydrogen atoms. The grain size of the poly-Si film, which was recrystallized on the various buffer layers, was measured by scanning electron microscopy (SEM) at each laser energy density. The process margin of step-by-step ELA employing the SiNX buffer layer is wider than SiO2 and the maximum grain size slightly increased

  20. Excimer laser recrystallization of nanocrystalline-Si films deposited by inductively coupled plasma chemical vapour deposition at 150 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joong-Hyun [School of Electrical Engineering (50), Seoul National University, Shinlim-Dong, Gwanak-Gu, Seoul (Korea, Republic of); Han, Sang-Myeon [School of Electrical Engineering (50), Seoul National University, Shinlim-Dong, Gwanak-Gu, Seoul (Korea, Republic of); Park, Sang-Geun [School of Electrical Engineering (50), Seoul National University, Shinlim-Dong, Gwanak-Gu, Seoul (Korea, Republic of); Han, Min-Koo [School of Electrical Engineering (50), Seoul National University, Shinlim-Dong, Gwanak-Gu, Seoul (Korea, Republic of); Shin, Moon-Young [LTPS Team, AMLCD Business, Samsung Electronics Co., Giheung, Yongin City (Korea, Republic of)

    2006-09-01

    Polycrystalline silicon thin film transistors (poly-Si TFTs) fabricated at low temperature (under 200 deg. C) have been widely investigated for flexible substrate applications such as a transparent plastic substrate. Unlike the conventional TFT process using glass substrate, the maximum process temperature should be kept less than 200 deg. C in order to avoid thermal damage on flexible substrates. We report the characteristics of nanocrystalline silicon (nc-Si) irradiated by an excimer laser. Nc-Si precursors were deposited on various buffer layers by inductively coupled plasma chemical vapour deposition (ICP-CVD) at 150 deg. C. We employed various buffer layers, such as silicon nitride (SiN{sub X}) and silicon dioxide (SiO{sub 2}), in order to report recrystallization characteristics in connection with a buffer layer of a different thermal conductivity. The dehydrogenation and recrystallization was performed by step-by-step excimer laser annealing (ELA) (XeCl,{lambda}=308 nm) in order to prevent the explosive release of hydrogen atoms. The grain size of the poly-Si film, which was recrystallized on the various buffer layers, was measured by scanning electron microscopy (SEM) at each laser energy density. The process margin of step-by-step ELA employing the SiN{sub X} buffer layer is wider than SiO{sub 2} and the maximum grain size slightly increased.

  1. Aerosol assisted atmospheric pressure chemical vapor deposition of silicon thin films using liquid cyclic hydrosilanes

    International Nuclear Information System (INIS)

    Silicon (Si) thin films were produced using an aerosol assisted atmospheric pressure chemical vapor deposition technique with liquid hydrosilane precursors cyclopentasilane (CPS, Si5H10) and cyclohexasilane (CHS, Si6H12). Thin films were deposited at temperatures between 300 and 500 °C, with maximum observed deposition rates of 55 and 47 nm/s for CPS and CHS, respectively, at 500 °C. Atomic force microscopic analyses of the films depict smooth surfaces with roughness of 4–8 nm. Raman spectroscopic analysis indicates that the Si films deposited at 300 °C and 350 °C consist of a hydrogenated amorphous Si (a-Si:H) phase while the films deposited at 400, 450, and 500 °C are comprised predominantly of a hydrogenated nanocrystalline Si (nc-Si:H) phase. The wide optical bandgaps of 2–2.28 eV for films deposited at 350–400 °C and 1.7–1.8 eV for those deposited at 450–500 °C support the Raman data and depict a transition from a-Si:H to nc-Si:H. Films deposited at 450 oC possess the highest photosensitivity of 102–103 under AM 1.5G illumination. Based on the growth model developed for other silanes, we suggest a mechanism that governs the film growth using CPS and CHS. - Highlights: • Si films via AA-APCVD are realized using cyclopentasilane (CPS) and cyclohexasilane (CHS). • Low activation energies of CPS and CHS allow Si thin films at low temperatures (300 °C). • High growth rates of 47–55 nm/s were obtained at 500 °C • Near device quality Si thin films with 2–3 orders of photosensitivity • Si thin films via AA-APCVD are amenable to continuous roll-to-roll manufacturing

  2. Effect of protic solvents on CdS thin films prepared by chemical bath deposition

    International Nuclear Information System (INIS)

    In this study, cadmium sulfide (CdS) thin films are grown on glass substrates by chemical bath deposition (CBD) in an aqueous bath containing 10–20 vol.% alcohol. The roles of ethanol as a protic solvent that substantially improves the quality of films are explored extensively. The deposited films in an alcohol bath are found to be more compact and smoother with smaller CdS grains. The X-ray diffractograms of the samples confirm that all films were polycrystalline with mixed wurtzite (hexagonal) and zinkblende (cubic) phases. Raman spectra indicate that, for a film deposited in an alcohol bath, the position of 1LO is closer to the value for single crystal CdS, indicating that these films have a high degree of crystallinity. The as-deposited CdS thin films in a 10 vol.% alcohol bath were found to have the highest visible transmittance of 81.9%. XPS analysis reveals a stronger signal of C1s for samples deposited in the alcohol baths, indicating that there are more carbonaceous residues on the films with protic solvent than on the films with water. A higher XPS S/Cd atomic ratio for films deposited in an alcohol bath indicates that undesirable surface reactions (leading to sulfur containing compounds other than CdS) occur less frequently over the substrates. - Highlights: • Study of CBD-CdS films grown in an alcohol-containing aqueous bath is reported. • The deposited films in an alcohol bath are more compact with smaller CdS grains. • Raman spectra show that in an alcohol bath, the CdS film has a better crystallinity. • XPS reveals more carbon residues remain on the films deposited using alcohol bath. • In an alcohol bath, the undesirable surface reactions with Cd ions were hindered

  3. DEPOSITION TANK CORROSION TESTING FOR ENHANCED CHEMICAL CLEANING POST OXALIC ACID DESTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.

    2011-08-29

    An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy

  4. Growth and characterization of chemical bath deposited Cd{sub 1-x}Zn{sub x}S thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mariappan, R. [Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020 (India); Ragavendar, M. [Department of Physics, RVS College of Engineering and Technology, Coimbatore 641 042 (India); Ponnuswamy, V., E-mail: marijpr@gmail.com [Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020 (India)

    2011-07-07

    Highlights: > In this study we examine the Cd{sub 1-x}Zn{sub x}S thin films prepared at Chemical bath deposition method. This method used because it is a simple and economic and viable technique, which produces films of good quality for device application. > In this study we conclude that chemical bath deposition technique is suitable for the preparation of smooth and uniform films suitable for sensors and solar cells > X-ray is a good way for crystal structure characterization > - Abstract: Cd{sub 1-x}Zn{sub x}S (0 {<=} x {<=} 1) thin films have been deposited by chemical bath deposition method on glass substrates from aqueous solution containing cadmium acetate, zinc acetate and thiourea at 80 {+-} 5 deg. C and after annealed at 350 deg. C. The structural, morphological, compositional and optical properties of the deposited Cd{sub 1-x}Zn{sub x}S thin films have been studied by X-ray diffractometer, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), photoluminescence (PL) and UV-vis spectrophotometer, respectively. X-ray diffraction analysis shows that for x < 0.8, the crystal structure of Cd{sub 1-x}Zn{sub x}S thin films was hexagonal structure. For x > 0.6, however, the Cd{sub 1-x}Zn{sub x}S films were grown with cubic structure. Annealing the samples at 350 deg. C in air for 45 min resulted in increase in intensity as well as a shift towards lower scattering angles. The parameters such as crystallite size, strain, dislocation density and texture coefficient are calculated from X-ray diffraction studies. SEM studies reveal the formation of Cd{sub 1-x}Zn{sub x}S films with uniformly distributed grains over the entire surface of the substrate. The EDX analysis shows the content of atomic percentage. Optical method was used to determine the band gap of the films. The photoluminescence spectra of films have been studied and the results are discussed.

  5. Composition and structural study of solution-processed Zn(S,O,OH) thin films grown using H{sub 2}O{sub 2} based deposition route

    Energy Technology Data Exchange (ETDEWEB)

    Buffière, M., E-mail: marie.buffiere@imec.be [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); 44Solar, 14 rue Kepler, 44240 La Chapelle-sur-Erdre (France); Gautron, E. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Hildebrandt, T. [Institut de Recherche et Développement sur l' Energie Photovoltaïque (IRDEP)-UMR 7174 EDF-CNRS-ENSCP, 6 quai Watier-78401 Chatou Cedex (France); Harel, S.; Guillot-Deudon, C.; Arzel, L. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Naghavi, N. [Institut de Recherche et Développement sur l' Energie Photovoltaïque (IRDEP)-UMR 7174 EDF-CNRS-ENSCP, 6 quai Watier-78401 Chatou Cedex (France); Barreau, N. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Kessler, J. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); 44Solar, 14 rue Kepler, 44240 La Chapelle-sur-Erdre (France)

    2013-05-01

    Recent results have revealed that the low deposition time issue of chemical bath deposited (CBD) Zn(S,O,OH) buffer layer used in Cu(In,Ga)Se{sub 2} (CIGSe) solar cells could be resolved using H{sub 2}O{sub 2} as an additive in the chemical bath solution. Although the use of this additive does not hinder the electrical properties of the resulting Zn(S,O,OH)-buffered CIGSe solar cells, the impact of H{sub 2}O{sub 2} on the Zn(S,O,OH) properties remains unclear. The present contribution aims at determining the chemical composition and the microstructure of Zn(S,O,OH) film deposited by CBD using the alternative deposition bath containing the standard zinc sulfate, thiourea, ammonia but also H{sub 2}O{sub 2} additive. Both X-ray photoemission spectroscopy and energy dispersive X-ray spectroscopy analyses reveal higher sulfur content in alternatively deposited Zn(S,O,OH), since the first step growth of the layer. According to transmission electron microscopy analyses, another consequence of the higher deposition rate achieved when adding H{sub 2}O{sub 2} in the bath is the modification of the absorber/buffer interface. This could be explained by the enhancement of the cluster growth mechanism of the layer. - Highlights: ► The Zn(S,O,OH) layer composition can vary with the chemical bath process used. ► The alternative process leads to a faster incorporation of sulfur in the layer. ► No ZnS epitaxial layer has been found at absorber/alternative buffer interface. ► The use of H{sub 2}O{sub 2} enhances the cluster-by-cluster growth mechanism.

  6. The Synthesized of Carbon Nano tubes from Palm Oil by Topas Atomizer Chemical Vapor Deposition Method

    International Nuclear Information System (INIS)

    This paper focused on preparation of Carbon Nano tubes (CNTs) based on palm oil as a natural resource precursor. The Topas Atomizer was utilized to vapor up the carbon gas into the reaction chamber of Chemical Vapor Deposition (CVD) to yield the CNTs in powder form at the inner wall of the Quartz tube. The purpose of this work was to investigate the effects of deposition temperature from 650 - 850 degree Celsius. The samples characteristics were analyzed by Raman spectroscopy. The results revealed that the increasing of the deposition temperature, the ID/IG ratio decreased from 650 - 850 degree Celsius. The results of Field Emission Scanning Electron Microscopy (FESEM) are also presented. (author)

  7. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH4/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H2 into the deposition gas chemistry. Electronically excited species of CN, C2, Ar, N2, CH, Hβ, and Hα were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T2g phonon at 1333 cm−1 peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm

  8. Annealing effect on structural and optical properties of chemical bath deposited MnS thin film

    Science.gov (United States)

    Ulutas, Cemal; Gumus, Cebrail

    2016-03-01

    MnS thin film was prepared by the chemical bath deposition (CBD) method on commercial microscope glass substrate deposited at 30 °C. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (150, 300 and 450 °C) for 1 h. The MnS thin film was characterized by using X-ray diffraction (XRD), UV-vis spectrophotometer and Hall effect measurement system. The effect of annealing temperature on the structural, electrical and optical properties such as optical constants of refractive index (n) and energy band gap (Eg) of the film was determined. XRD measurements reveal that the film is crystallized in the wurtzite phase and changed to tetragonal Mn3O4 phase after being annealed at 300 °C. The energy band gap of film decreased from 3.69 eV to 3.21 eV based on the annealing temperature.

  9. Growth of cubic boron nitride on diamond particles by microwave plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Saitoh, H.; Yarbrough, W. A.

    1991-06-01

    The nucleation and growth of cubic boron nitride (c-BN) onto diamond powder using solid NaBH4 in low pressure gas mixtures of NH3 and H2 by microwave plasma enhanced chemical vapor deposition has been studied. Boron nitride was deposited on submicron diamond seed crystals scattered on (100) silicon single crystal wafers and evidence was found for the formation of the cubic phase. Diamond powder surfaces appear to preferentially nucleate c-BN. In addition, it was found that the ratio of c-BN to turbostratic structure boron nitride (t-BN) deposited increases with decreasing NH3 concentration in H2. It is suggested that this may be due to an increased etching rate for t-BN by atomic hydrogen whose partial pressure may vary with NH3 concentration.

  10. Reactive Chemical Vapor Deposition Method as New Approach for Obtaining Electroluminescent Thin Film Materials

    Directory of Open Access Journals (Sweden)

    Valentina V. Utochnikova

    2012-01-01

    Full Text Available The new reactive chemical vapor deposition (RCVD method has been proposed for thin film deposition of luminescent nonvolatile lanthanide aromatic carboxylates. This method is based on metathesis reaction between the vapors of volatile lanthanide dipivaloylmethanate (Ln(dpm3 and carboxylic acid (HCarb orH2Carb′ and was successfully used in case of HCarb. Advantages of the method were demonstrated on example of terbium benzoate (Tb(bz3 and o-phenoxybenzoate thin films, and Tb(bz3 thin films were successfully examined in the OLED with the following structure glass/ITO/PEDOT:PSS/TPD/Tb(bz3/Ca/Al. Electroluminescence spectra of Tb(bz3 showed only typical luminescent bands, originated from transitions of the terbium ion. Method peculiarities for deposition of compounds of dibasic acids H2Carb′ are established on example of terbium and europium terephtalates and europium 2,6-naphtalenedicarboxylate.

  11. Simultaneous growth of diamond and nanostructured graphite thin films by hot-filament chemical vapor deposition

    Science.gov (United States)

    Ali, M.; Ürgen, M.

    2012-01-01

    Diamond and graphite films on silicon wafer were simultaneously synthesized at 850 °C without any additional catalyst. The synthesis was achieved in hot-filament chemical vapor deposition reactor by changing distance among filaments in traditional gas mixture. The inter-wire distance for diamond and graphite deposition was kept 5 and 15 mm, whereas kept constant from the substrate. The Raman spectroscopic analyses show that film deposited at 5 mm is good quality diamond and at 15 mm is nanostructured graphite and respective growths confirm by scanning auger electron microscopy. The scanning electron microscope results exhibit that black soot graphite is composed of needle-like nanostructures, whereas diamond with pyramidal featured structure. Transformation of diamond into graphite mainly attributes lacking in atomic hydrogen. The present study develops new trend in the field of carbon based coatings, where single substrate incorporate dual application can be utilized.

  12. A study on the dissolution of steam generator sludge deposit in EDTA based chemical cleaning formulations

    International Nuclear Information System (INIS)

    MAPS reactors faced the problem of heat exchanger failure due to the formation of pin-hole on the steam generator (SG) tubes owing to the accelerated corrosion by the impurities in the crevice between the tube sheet deposits and the SG tubes. EDTA based formulations have been evaluated for the chemical cleaning of the SG deposits with a view to select a suitable pH adjusting and oxidising agents. Based on the studies, a formulation containing EDTA and hydrogen peroxide for the dissolution of copper based constituents of the deposit and EDTA and hydrazine for the rest of the constituents have been recommended. As a pH adjusting agent either ammonia or ethylene diamine (EDA) can be used in formulations. (author)

  13. Synthesis and Growth Mechanism of Carbon Filaments by Chemical Vapor Deposition without Catalyst

    Institute of Scientific and Technical Information of China (English)

    Shuhe Liu; Feng Li; Shuo Bai

    2009-01-01

    Carbon filaments with diameter from several to hundreds micrometers were synthesized by chemical vapor deposition of methane without catalyst. The morphology, microstructure and mechanical properties of the carbon filament were investigated by scanning electronic microscopy, optical microscopy, X-ray diffraction and mechanical testing. The results show that the carbon filament is inverted cone shape and grows up along the gas flow direction. The stem of it is formed of annular carbon layers arranged in a tree ring structure while the head is made up of concentrical layers. The tensile strength of the carbon filament is increased after graphitization for the restructuring and growing large of graphene. The growth mechanism of carbon filament was proposed according to the results of two series of experiments with different deposition time and intermittent deposition cycles.

  14. Supersaturated lysozyme solution structure studied by chemical cross-linking.

    Science.gov (United States)

    Hall, Clayton L; Clemens, John R; Brown, Amanda M; Wilson, Lori J

    2005-06-01

    Glutaraldehyde cross-linking followed by separation has been used to detect aggregates of chicken egg-white lysozyme (CEWL) in supersaturated solutions. In solutions of varying NaCl content, the number of aggregates was found to be related to the ionic strength of the solution. Separation by SDS-PAGE showed that percentage of dimer in solution ranged from 25.3% for no NaCl to 27.1% at 15% NaCl, and the aggregates larger than dimer increased from 1.9% for no NaCl to 36.8% at 15% NaCl. Conversely, the percentage of monomers decreased from 72.8% without NaCl to 36.1% at 15% NaCl. Molecular weights by capillary electrophoresis (SDS-CE) were found to be multiples of the monomer molecular weights, with the exception of trimer, which indicates a very compact structure. Native separation was accomplished using size-exclusion chromatography (SEC) and gave a lower monomer concentration and higher aggregate concentration than SDS-CE, which is a denaturing separation method. Most noticeably, trimers were absent in the SEC separation. The number of aggregates did not change with increased time between addition of NaCl and addition of cross-linking agent when separated by gel electrophoresis (SDS-PAGE). The results suggest that high ionic strength CEWL solutions are highly aggregated and that denaturing separation methods disrupt cross-linked products. PMID:15930646

  15. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Thin Films of Gallium Arsenide and Gallium Aluminum Arsenide by Metalorganic Chemical Vapor Deposition.

    Science.gov (United States)

    Look, Edward Gene Lun

    Low pressure metalorganic chemical vapor deposition (LPMOCVD) of thin films of gallium arsenide (GaAs) and gallium aluminum arsenide (GaAlAs) was performed in a horizontal cold wall chemical vapor deposition (CVD) reactor. The organometallic (group III) sources were triethylgallium (TEGa) and triethylaluminum (TEAl), used in conjunction with arsine (AsH_3) as the group V source. It was found that growth parameters such as growth temperature, pressure, source flow rates and temperatures have a profound effect on the film quality and composition. Depending on the particular combination of conditions, both the surface and overall morphologies may be affected. The films were nondestructively analyzed by Raman and photoreflectance spectroscopies, x-ray diffraction and rocking curve studies, scanning electron microscopy, energy dispersive spectroscopy, Hall measurements and film thicknesses were determined with a step profilometer.

  17. Comparison of laser-ablation and hot-wall chemical vapour deposition techniques for nanowire fabrication

    International Nuclear Information System (INIS)

    A comparison of the transport properties of populations of single-crystal, In2O3 nanowires (NWs) grown by unassisted hot-wall chemical vapour deposition (CVD) versus NWs grown by laser-ablation-assisted chemical vapour deposition (LA-CVD) is presented. For nominally identical growth conditions across the two systems, NWs fabricated at 850 deg. C with laser-ablation had significantly higher average mobilities at the 99.9% confidence level, 53.3 ± 5.8 cm2 V-1 s-1 versus 10.2 ± 1.9 cm2 V-1 s-1. It is also observed that increasing growth temperature decreases mobility for LA-CVD NWs. Transmission electron microscopy studies of CVD-fabricated samples indicate the presence of an amorphous In2O3 region surrounding the single-crystal core. Further, low-temperature measurements verify the presence of ionized impurity scattering in low-mobility CVD-grown NWs

  18. High quality antireflective ZnS thin films prepared by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tec-Yam, S.; Rojas, J.; Rejon, V. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, AP 73-Cordemex, 97310 Merida Yucatan (Mexico); Oliva, A.I., E-mail: oliva@mda.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, AP 73-Cordemex, 97310 Merida Yucatan (Mexico)

    2012-10-15

    Zinc sulfide (ZnS) thin films for antireflective applications were deposited on glass substrates by chemical bath deposition (CBD). Chemical analysis of the soluble species permits to predict the optimal pH conditions to obtain high quality ZnS films. For the CBD, the ZnCl{sub 2}, NH{sub 4}NO{sub 3}, and CS(NH{sub 2}){sub 2} were fixed components, whereas the KOH concentration was varied from 0.8 to 1.4 M. Groups of samples with deposition times from 60 to 120 min were prepared in a bath with magnetic agitation and heated at 90 Degree-Sign C. ZnS films obtained from optimal KOH concentrations of 0.9 M and 1.0 M exhibited high transparency, homogeneity, adherence, and crystalline. The ZnS films presented a band gap energy of 3.84 eV, an atomic Zn:S stoichiometry ratio of 49:51, a transmittance above 85% in the 300-800 nm wavelength range, and a reflectance below 25% in the UV-Vis range. X-ray diffraction analysis revealed a cubic structure in the (111) orientation for the films. The thickness of the films was tuned between 60 nm and 135 nm by controlling the deposition time and KOH concentration. The incorporation of the CBD-ZnS films into ITO/ZnS/CdS/CdTe and glass/Mo/ZnS heterostructures as antireflective layer confirms their high optical quality. -- Highlights: Black-Right-Pointing-Pointer High quality ZnS thin films were prepared by chemical bath deposition (CBD). Black-Right-Pointing-Pointer Better CBD-ZnS films were achieved by using 0.9 M-KOH concentration. Black-Right-Pointing-Pointer Reduction in the reflectance was obtained for ZnS films used as buffer layers.

  19. LOW PRESSURE CHEMICAL VAPOR DEPOSITION (CVD) ON OXIDE AND NONOXIDE CERAMIC CUTTING TOOLS

    OpenAIRE

    Layyous, A.; Wertheim, R.

    1989-01-01

    Cutting tools made of Al2O3+TiC, silicon nitride, carbide, and stabilized ZrO2 were coated by chemical vapor deposition (CVD) with a multilayer of TiN, TiCN, TiC and Al2O3 in different combinations. The adhesion of the coated layers to the substrate, and the structure of the layers were investigated by optical microscopy, scanning electron microscopy (SEM) and Auger spectroscopy. This made it possible to analyze the chemical interaction between the substrate and the TiN at 1000°C. The cutting...

  20. High-quality, faceted cubic boron nitride films grown by chemical vapor deposition

    Science.gov (United States)

    Zhang, W. J.; Jiang, X.; Matsumoto, S.

    2001-12-01

    Thick cubic boron nitride (cBN) films showing clear crystal facets were achieved by chemical vapor deposition. The films show the highest crystallinity of cBN films ever achieved from gas phase. Clear evidence for the growth via a chemical route is obtained. A growth mechanism is suggested, in which fluorine preferentially etches hBN and stabilizes the cBN surface. Ion bombardment of proper energy activates the cBN surface bonded with fluorine so as to enhance the bonding probability of nitrogen-containing species on the F-stabilized B (111) surface.

  1. P-type thin films transistors with solution-deposited lead sulfide films as semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo-Castillo, A.; Salas-Villasenor, A.; Mejia, I. [Department of Materials Science and Engineering, The University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Aguirre-Tostado, S. [Centro de Investigacion en Materiales Avanzados, S. C. Alianza Norte 202, Parque de Investigacion e Innovacion Tecnologica, Apodaca, Nuevo Leon, C.P. 666000 (Mexico); Gnade, B.E. [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Quevedo-Lopez, M.A., E-mail: mxq071000@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States)

    2012-01-31

    In this paper we demonstrate p-type thin film transistors fabricated with lead sulfide (PbS) as semiconductor deposited by chemical bath deposition methods. Crystallinity and morphology of the resulting PbS films were characterized using X-ray diffraction, atomic force microscopy and scanning electron microscopy. Devices were fabricated using photolithographic processes in a bottom gate configuration with Au as source and drain top contacts. Field effect mobility for as-fabricated devices was {approx} 0.09 cm{sup 2} V{sup -1} s{sup -1} whereas the mobility for devices annealed at 150 Degree-Sign C/h in forming gas increased up to {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Besides the thermal annealing, the entire fabrications process was maintained below 100 Degree-Sign C. The electrical performance of the PbS-thin film transistors was studied before and after the 150 Degree-Sign C anneal as well as a function of the PbS active layer thicknesses. - Highlights: Black-Right-Pointing-Pointer Thin film transistors with PbS as semiconductor deposited by chemical bath deposition. Black-Right-Pointing-Pointer Photolithography-based thin film transistors with PbS films at low temperatures. Black-Right-Pointing-Pointer Electron mobility for anneal-PbS devices of {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Black-Right-Pointing-Pointer Highest mobility reported in thin film transistors with PbS as the semiconductor.

  2. Some aspects of the genesis of the uranium deposits of the Morrison formation in the Grants Uranium Region, New Mexico, inferred from chemical characteristics of the deposits

    International Nuclear Information System (INIS)

    Statistical treatment of the chemical data for samples from the Church Rock, Smith Lake, Ambrosia Lake, and Laguna districts, all in the Grants uranium region, San Juan basin, indicates that primary ore-forming processes concentrated copper, iron, manganese, molybdenum, selenium, vanadium, yttrium, arsenic, organic carbon, and sulfur, along with uranium. The initial uranium and vanadium mineralization occurred before compaction of the host rocks. A barium halo associated with all of these deposits formed as a result of secondary processes. Calcium and strontium were also enriched in the ores by secondary processes. Comparison of the chemical characteristics of redistributed deposits in the Church Rock district with those of primary deposits in the Grants uranium region indicates that calcium, manganese, strontium, yttrium, copper, iron, molybdenum, lead, selenium and vanadium are chemically separated from uranium during redistribution of the deposits in the Church Rock district. Comparisons of the chemical characteristics of the Church Rock deposits with those of the secondary deposits in the Ambrosia Lake district suggest some differences in the processes that were involved in the genesis of the redistributed deposits in these two areas

  3. Growth of Aligned Carbon Nanotubes through Microwave Plasma Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    王升高; 汪建华; 马志斌; 王传新; 满卫东

    2005-01-01

    Aligned carbon nanotubes (CNTs) were synthesized on glass by microwave plasma chemical vapor deposition (MWPCVD) with a mixture of methane and hydrogen gases at the low temperature of 550 ℃. The experimental results show that both the self-bias potential and the density of the catalyst particles are responsible for the alignment of CNTs. When the catalyst particle density is high enough, strong interactions among the CNTs can inhibit CNTs from growing randomly and result in parallel alignment.

  4. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs

  5. Corrosion resistant chemical vapor deposited coatings for SiC and Si3N4

    OpenAIRE

    Graham, David W

    1993-01-01

    Silicon carbide and silicon nitride turbine engine components are susceptible to hot corrosion by molten sodium sulfate salts which are formed from impurities in the engine's fuel and air intake. Several oxide materials were identified which may be able to protect these components from corrosion and preserve their structural properties. Ta20, coatings were identified as one of the most promising candidates. Thermochemical calculations showed that the chemical vapor deposition(CVD) of tantalum...

  6. Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition

    OpenAIRE

    Friel, I.; Clewes, S L; Dhillon, H. K.; Perkins, N.; Twitchen, D. J.; Scarsbrook, G. A.

    2009-01-01

    In order to improve the performance of existing technologies based on single crystal diamond grown by chemical vapour deposition (CVD), and to open up new technologies in fields such as quantum computing or solid state and semiconductor disc lasers, control over surface and bulk crystalline quality is of great importance. Inductively coupled plasma (ICP) etching using an Ar/Cl gas mixture is demonstrated to remove sub-surface damage of mechanically processed surfaces, whilst maintaining macro...

  7. Laser-assisted chemical liquid-phase deposition of metals for micro- and optoelectronics

    OpenAIRE

    Kordás, K. (Krisztián)

    2002-01-01

    Abstract The demands toward the development of simple and cost-effective fabrication methods of metallic structures with high lateral resolution on different substrates - applied in many fields of technology, such as in microelectronics, optoelectronics, micromechanics as well as in sensor and actuator applications - gave the idea to perform this research. Due to its simplicity, laser-assisted chemical liquid-phase deposition (LCLD) has been investigated and applied for the metallization o...

  8. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    OpenAIRE

    Sung-Jin Chang; Moon Seop Hyun; Sung Myung; Min-A Kang; Jung Ho Yoo; Lee, Kyoung G.; Bong Gill Choi; Youngji Cho; Gaehang Lee; Tae Jung Park

    2016-01-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from R...

  9. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition

    OpenAIRE

    Ma, Teng; Ren, Wencai; Zhang, Xiuyun; Liu, Zhibo; Gao, Yang; Yin, Li-Chang; Ma, Xiu-Liang; Ding, Feng; Cheng, Hui-Ming

    2013-01-01

    Controlled synthesis of wafer-sized single crystalline high-quality graphene is a great challenge of graphene growth by chemical vapor deposition because of the complicated kinetics at edges that govern the growth process. Here we report the synthesis of single-crystal graphene domains with tunable edges from zigzag to armchair via a growth–etching–regrowth process. Both growth and etching of graphene are strongly dependent on the edge structure. This growth/etching behavior is well explained...

  10. A new polarised hot filament chemical vapor deposition process for homogeneous diamond nucleation on Si(100)

    OpenAIRE

    Cojocaru, Costel Sorin; Larijani, Madjid; Misra, D. S.; Singh, Manoj K.; Veis, Pavel; Le Normand, Francois

    2004-01-01

    A new hot filament chemical vapor deposition with direct current plasma assistance (DC HFCVD) chamber has been designed for an intense nucleation and subsequent growth of diamond films on Si(100).Growth process as well as the If(V) characteristics of the DC discharge are reported. Gas phase constituents activation was obtained by a stable glow discharge between two grid electrodes coupled with two sets of parallel hot filaments settled in-between and polarised at the corresponding plasma pote...

  11. Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method

    OpenAIRE

    Mohammad Mahdi Tavakoli; Leilei Gu; Yuan Gao; Claas Reckmeier; Jin He; Rogach, Andrey L; Yan Yao; Zhiyong Fan

    2015-01-01

    Organometallic trihalide perovskites are promising materials for photovoltaic applications, which have demonstrated a rapid rise in photovoltaic performance in a short period of time. We report a facile one-step method to fabricate planar heterojunction perovskite solar cells by chemical vapor deposition (CVD), with a solar power conversion efficiency of up to 11.1%. We performed a systematic optimization of CVD parameters such as temperature and growth time to obtain high quality films of CH...

  12. Fundamental Studies of the Chemical Vapour Deposition of Graphene on Copper

    OpenAIRE

    Lewis, Amanda

    2014-01-01

    The chemical vapour deposition (CVD) of graphene is the most promising route for production of large-area graphene films. However there are still major challenges faced by the field, including control of the graphene coverage, quality, and the number of layers. These challenges can be overcome by developing a fundamental understanding of the graphene growth process. This thesis contributes to the growing body of work on graphene CVD by uniquely exploring the gas phas...

  13. Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition.

    Science.gov (United States)

    Wang, Huan; Zhou, Yu; Wu, Di; Liao, Lei; Zhao, Shuli; Peng, Hailin; Liu, Zhongfan

    2013-04-22

    Substitutionally boron-doped monolayer graphene film is grown on a large scale by using a sole phenylboronic acid as the source in a low-pressure chemical vapor deposition system. The B-doped graphene film is a homogeneous monolayer with high crystalline quality, which exhibits a stable p-type doping behavior with a considerably high room-temperature carrier mobility of about 800 cm(2) V(-1) s(-1) . PMID:23463717

  14. Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition

    OpenAIRE

    Kim, Y.; Song, W.; Lee, S. Y.; Jeon, C; Jung, W.; Kim, M.; Park, C. -Y.

    2011-01-01

    Microwave plasma chemical vapor deposition (MPCVD) was employed to synthesize high quality centimeter scale graphene film at low temperatures. Monolayer graphene was obtained by varying the gas mixing ratio of hydrogen and methane to 80:1. Using advantages of MPCVD, the synthesis temperature was decreased from 750 °C down to 450 °C. Optical microscopy and Raman mapping images exhibited that a large area monolayer graphene was synthesized regardless of the temperatures. Since the overall trans...

  15. A new doping method using metalorganics in chemical vapor deposition of 6H-SiC

    Science.gov (United States)

    Yoshida, S.; Sakuma, E.; Misawa, S.; Gonda, S.

    1984-01-01

    Aluminum doping was performed using triethylaluminum as the dopant in chemical vapor deposition of 6H-silicon carbide (SiC). Measurements on the electrical and cathodoluminescent properties of the epilayers indicate that the doping concentration of aluminum can be easily controlled by the flow rate of metalorganics. Electroluminescence was also observed for the pn junctions prepared by the successive growth of a nondoped n layer and a p layer doped with aluminum using metalorganics.

  16. Laser-induced chemical liquid deposition of discontinuous and continuous copper films

    Czech Academy of Sciences Publication Activity Database

    Ouchi, A.; Bastl, Zdeněk; Boháček, Jaroslav; Šubrt, Jan; Pola, Josef

    2007-01-01

    Roč. 201, č. 8 (2007), s. 4728-4733. ISSN 0257-8972 R&D Projects: GA AV ČR 1ET400400413 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502; CEZ:AV0Z40720504 Keywords : copper films * laser photolysis * Cu(II) acetylacetonate * chemical liquid deposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.678, year: 2007

  17. Silicon coatings on copper by chemical vapor deposition in fluidized bed reactors

    International Nuclear Information System (INIS)

    A coating technique based on (a) chemical vapor deposition, (b) fluidized bed technology and (c) subhalide chemistry was used to siliconize copper. Copper samples were siliconized in silicon beds kept at temperatures in the range 350-550degC. Alternating current (a.c.) impedance measurements indicate that the corrosion resistance of the coated samples is significantly better than that of uncoated copper. (orig.)

  18. Microstructure of boron nitride coated on nuclear fuels by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Three nuclear fuels, pure urania, 5% and 10% gadolinia containing fuels were coated with boron nitride to improve nuclear and physical properties. Coating was done by plasma enhanced chemical vapor deposition technique by using boron trichloride and ammonia. The specimens were examined under a scanning electron microscope. Boron nitride formed a grainy structure on all fuels. Gadolinia decreased the grain size of boron nitride. The fractal dimensions of fragmentation and of area-perimeter relation were determined. (orig.)

  19. Microstructure of boron nitride coated on nuclear fuels by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Durmazucar, H.H. [Cumhuriyet Univ., Sivas (Turkey). Kimya Muehendisligi Boeluemue; Guenduez, G. [Kimya Muehendisligi Boeluemue, Orta Dogu Teknik Ueniversitesi, Ankara 06531 (Turkey); Toker, C. [Elektrik-Elektronik Muehendisligi Boeluemue, Orta Dogu Teknik Ueniversitesi, Ankara 06531 (Turkey)

    1998-08-03

    Three nuclear fuels, pure urania, 5% and 10% gadolinia containing fuels were coated with boron nitride to improve nuclear and physical properties. Coating was done by plasma enhanced chemical vapor deposition technique by using boron trichloride and ammonia. The specimens were examined under a scanning electron microscope. Boron nitride formed a grainy structure on all fuels. Gadolinia decreased the grain size of boron nitride. The fractal dimensions of fragmentation and of area-perimeter relation were determined. (orig.) 19 refs.

  20. Purification of Single-walled Carbon Nanotubes Grown by a Chemical Vapour Deposition (CVD) Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A procedure for purification of single-walled carbon nanotubes(SWNTs) grown by the chemical vapour deposition (CVD) of carbon monooxide has been developed. Based on the result from TGA/DTA of as-prepared sample, the oxidation temperature was determined. The process included sonication, oxidation and acid washing steps. The purity and yield after purification were determined and estimated by TEM. Moreover, for the first time, a loop structure for CVD SWNTs has been observed.