WorldWideScience

Sample records for chemical soil properties

  1. chemical properties of soil in rivers state, nigeria *ch

    African Journals Online (AJOL)

    Osondu

    chemical properties and the spatial extent ... the core and decreased with increasing distance from the core. ... Key words: Charcoal, Soil, Change index, Niger Delta, Nigeria ..... practices. References. Agbenin, J.O. (1995), Laboratory manual for Soil.

  2. Chemical Properties of Paddy Soils in Thailand and Malaysia

    OpenAIRE

    Kai, Hideaki; Masayna, Wittaya; Aibe, Toshiharu; Hamada, Eisuke; Jiraporncharoen, Suchart; Yamada, Yoshio; Vacharotayan, Sorasith; Cholitkul, Wisit; Kanareugsa, Chob

    1981-01-01

    As a part of International Cooperative Studies on the Increasing Productivity of Soils in Tropical Area (1976-1978). chemical properties of paddy soils in Thailand and Malaysia were studied for the purpose of elucidation of the fundamental characteristics of the soils so as to evaluate soil fertility and to implement advanced technical practices for higher production of rice. Each several soil samples were collected from the central, northern, northeastern and southern regions of Thailand and...

  3. Linkages between aggregate formation, porosity and soil chemical properties

    NARCIS (Netherlands)

    Regelink, I.C.; Stoof, C.R.; Rousseva, S.; Weng, L.; Lair, G.J.; Kram, P.; Nikolaidis, N.P.; Kercheva, M.; Banwart, S.; Comans, R.N.J.

    2015-01-01

    Linkages between soil structure and physical–chemical soil properties are still poorly understood due to the wide size-range at which aggregation occurs and the variety of aggregation factors involved. To improve understanding of these processes, we collected data on aggregate fractions, soil

  4. Surface Chemical Properties of Colloids in Main Soils of China

    Institute of Scientific and Technical Information of China (English)

    MAYI-JIE; YUANCHAO-LIANG

    1991-01-01

    Surface chemical properties of soil colloids are the important factor affecting soil fertility and genesis.To provide scientific basis for soil genetic classification,promotion of soil fertility and reasonable fertilizqation,the specific surface area and electric charge of soil colloids in relation to clay minerals and organic matter are further discussed on the basis of the results obtained from the studies on surface chemical properties of soil colloids in five main soils of China.Results from the studies show that the effect of clay minerals and organic matter on the surface chemical properties of soil colloids is very complicated because the siloxane surface,hydrated oxide surface and organic matter surface do not exist separately,but they are always mixed together and influenced each other.The understanding of the relationship among clay minerals,organic matter and surface chemical properties of soil colloids depends upon further study of the relevant disciplines of soil science,especially the study on the mechanisms of organo-mineral complexes.

  5. [Relationship among soil enzyme activities, vegetation state, and soil chemical properties of coal cinder yard].

    Science.gov (United States)

    Wang, Youbao; Zhang, Li; Liu, Dengyi

    2003-01-01

    From field investigation and laboratory analysis, the relationships among soil enzyme activities, vegetation state and soil chemical properties of coal cinder yard in thermal power station were studied. The results showed that vegetation on coal cinder yard was distributed in scattered patch mainly with single species of plant, and herbs were the dominant species. At the same time, the activity of three soil enzymes had a stronger relativity to environment conditions, such as vegetation state and soil chemical properties. The sensitivity of three soil enzymes to environmental stress was in order of urease > sucrase > catalase. The relativity of three soil enzymes to environmental factor was in order of sucrase > urease > catalase. Because of urease being the most susceptible enzyme to environmental conditions, and it was marked or utmost marked interrelated with vegetation state and soil chemical properties, urease activity could be used as an indicator for the reclamation of wasteland.

  6. Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress.

    Science.gov (United States)

    Chodak, Marcin; Gołębiewski, Marcin; Morawska-Płoskonka, Justyna; Kuduk, Katarzyna; Niklińska, Maria

    Reaction of soil bacteria to drought and rewetting stress may depend on soil chemical properties. The objectives of this study were to test the reaction of different bacterial phyla to drought and rewetting stress and to assess the influence of different soil chemical properties on the reaction of soil bacteria to this kind of stress. The soil samples were taken at ten forest sites and measured for pH and the contents of organic C (Corg) and total N (Nt), Zn, Cu, and Pb. The samples were kept without water addition at 20 - 30 °C for 8 weeks and subsequently rewetted to achieve moisture equal to 50 - 60 % of their maximum water-holding capacity. Prior to the drought period and 24 h after the rewetting, the structure of soil bacterial communities was determined using pyrosequencing of 16S rRNA genes. The drought and rewetting stress altered bacterial community structure. Gram-positive bacterial phyla, Actinobacteria and Firmicutes, increased in relative proportion after the stress, whereas the Gram-negative bacteria in most cases decreased. The largest decrease in relative abundance was for Gammaproteobacteria and Bacteroidetes. For several phyla the reaction to drought and rewetting stress depended on the chemical properties of soils. Soil pH was the most important soil property influencing the reaction of a number of soil bacterial groups (including all classes of Proteobacteria, Bacteroidetes, Acidobacteria, and others) to drought and rewetting stress. For several bacterial phyla the reaction to the stress depended also on the contents of Nt and Corg in soil. The effect of heavy metal pollution was also noticeable, although weaker compared to other chemical soil properties. We conclude that soil chemical properties should be considered when assessing the effect of stressing factors on soil bacterial communities.

  7. Robinia pseudoacacia leaves improve soil physical and chemical properties

    Institute of Scientific and Technical Information of China (English)

    Babar; KHAN; Abdukadir; Ablimit; Rashed; MAHMOOD; Muhammad; QASIM

    2010-01-01

    The role of the leaves of Robinia pseudoacacia L., which is widely distributed in the arid lands, on improving soil physical and chemical properties was analyzed at various incubation periods. The incubated soils added with 0, 25, 50 and 75 g Robinia pseudoacacia leaves were tested after consecutive incubation intervals of 6, 8 and 10 months and the different soil parameters were measured. The results showed the increases in organic matter (OM), extractable K, cation exchange capacity (CEC), aggregate stability and water holding capacity, but the decreases in pH value and bulk density after 6 months’ incubation. The gradual decrease in change rates of soil properties indicated less microbial population and organic residual mineralization under acidic conditions, which were resulted from fast decomposition of leaves after the first 6 months incubation. The increases in soil organic matter content, extractable K, CEC, aggregate stability and water holding capacity and the decreases in soil pH and bulk density provide favorable conditions for crop’s growth.

  8. Robinia pseudoacacia leaves improve soil physical and chemical properties

    Institute of Scientific and Technical Information of China (English)

    Babar KHAN; Abdukadir Ablimit; Rashed MAHMOOD; Muhammad QASIM

    2010-01-01

    The role of the leaves of Robinia pseudoacacia L.,which is widely distributed in the arid lands,on improving soil physical and chemical properties was analyzed at various incubation periods.The incubated soils added with 0,25,50 and 75 g Robinia pseudoacacia leaves were tested after consecutive incubation intervals of 6,8 and 10 months and the different soil parameters were measured.The results showed the increases in organic matter (OM),extractable K,cation exchange capacity (CEC),aggregate stability and water holding capacity,but the decreases in pH value and bulk density after 6 months' incubation.The gradual decrease in change rates of soil properties indicated less microbial population and organic residual mineralization under acidic conditions,which were resulted from fast decomposition of leaves after the first 6 months incubation.The increases in soil organic matter content,extractable K,CEC,aggregate stability and water holding capacity and the decreases in soil pH and bulk density provide favorable conditions for crop's growth.

  9. EFFECT OF ALTERNATIVE MULTINUTRIENT SOURCES ON SOIL CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Vanessa Martins

    2015-02-01

    Full Text Available The current high price of potassium chloride and the dependence of Brazil on imported materials to supply the domestic demand call for studies evaluating the efficiency of alternative sources of nutrients. The aim of this work was to evaluate the effect of silicate rock powder and a manganese mining by-product, and secondary materials originated from these two materials, on soil chemical properties and on brachiaria production. This greenhouse experiment was conducted in pots with 5 kg of soil (Latossolo Vermelho-Amarelo distrófico - Oxisol. The alternative nutrient sources were: verdete, verdete treated with NH4OH, phonolite, ultramafic rock, mining waste and the proportion of 75 % of these K fertilizers and 25 % lime. Mixtures containing 25 % of lime were heated at 800 ºC for 1 h. These sources were applied at rates of 0, 150, 300, 450 and 600 kg ha-1 K2O, and incubated for 45 days. The mixtures of heated silicate rocks with lime promoted higher increases in soil pH in decreasing order: ultramafic rock>verdete>phonolite>mining waste. Applying the mining waste-lime mixture increased soil exchangeable K, and available P when ultramafic rock was incorporated. When ultramafic rock was applied, the release of Ca2+ increased significantly. Mining subproduct released the highest amount of Zn2+ and Mn2+ to the soil. The application of alternative sources of K, with variable chemical composition, altered the nutrient availability and soil chemical properties, improving mainly plant development and K plant uptake, and are important nutrient sources.

  10. CHEMICAL PROPERTIES.

    African Journals Online (AJOL)

    However, the amount of soil organic matter and total nitrogen content was. T DIFFERENT HOURS ... burning such as improvement in soil physical ... chemical properties. The aim is to find .... Humid Tropics with particular reference to. Nigeria.

  11. Cover Crops Effects on Soil Chemical Properties and Onion Yield

    Directory of Open Access Journals (Sweden)

    Rodolfo Assis de Oliveira

    2016-01-01

    Full Text Available ABSTRACT Cover crops contribute to nutrient cycling and may improve soil chemical properties and, consequently, increase crop yield. The aim of this study was to evaluate cover crop residue decomposition and nutrient release, and the effects of these plants on soil chemical properties and on onion (Allium cepa L. yield in a no-tillage system. The experiment was carried out in an Inceptisol in southern Brazil, where cover crops were sown in April 2012 and 2013. In July 2013, shoots of weeds (WD, black oats (BO, rye (RY, oilseed radish (RD, oilseed radish + black oats (RD + BO, and oilseed radish + rye (RD + RY were cut at ground level and part of these material from each treatment was placed in litter bags. The litter bags were distributed on the soil surface and were collected at 0, 30, 45, 60, 75, and 90 days after distribution (DAD. The residues in the litter bags were dried, weighed, and ground, and then analyzed to quantify lignin, cellulose, non-structural biomass, total organic carbon (TOC, N, P, K, Ca, and Mg. In November 2012 and 2013, onion crops were harvested to quantify yield, and bulbs were classified according to diameter, and the number of rotted and flowering bulbs was determined. Soil in the 0.00-0.10 m layer was collected for chemical analysis before transplanting and after harvesting onion in December 2012 and 2013. The rye plant residues presented the highest half-life and they released less nutrients until 90 DAD. The great permanence of rye residue was considered a protection to soil surface, the opposite was observed with spontaneous vegetation. The cultivation and addition of dry residue of cover crops increased the onion yield at 2.5 Mg ha-1.

  12. Chemical, Mineralogical, and Physical Properties of Martian Dust and Soil

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2017-01-01

    Global and regional dust storms on Mars have been observed from Earth-based telescopes, Mars orbiters, and surface rovers and landers. Dust storms can be global and regional. Dust is material that is suspended into the atmosphere by winds and has a particle size of 1-3 micrometer. Planetary scientist refer to loose unconsolidated materials at the surface as "soil." The term ''soil'' is used here to denote any loose, unconsolidated material that can be distinguished from rocks, bedrock, or strongly cohesive sediments. No implication for the presence or absence of organic materials or living matter is intended. Soil contains local and regional materials mixed with the globally distributed dust by aeolian processes. Loose, unconsolidated surface materials (dust and soil) may pose challenges for human exploration on Mars. Dust will no doubt adhere to spacesuits, vehicles, habitats, and other surface systems. What will be the impacts on human activity? The objective of this paper is to review the chemical, mineralogical, and physical properties of the martian dust and soil.

  13. [Relationships between soil microbial ecological characteristics and physical-chemical properties of vegetable garden soil].

    Science.gov (United States)

    Li, Ning; Li, Huaxing; Zhu, Fengjiao; Liu, Yuanjin; Kuang, Peirui

    2006-02-01

    The study on the 64 vegetable garden soil samples in the Baiyuan District of Guangzhou City showed that there were significantly positive correlations of soil microbial biomass carbon (Cmic) with soil total N, alkali-hydrolygable N, available K, cation exchange capacity (CEC) and organic matter (OM), of soil microbial biomass nitrogen (Nmic) with soil total N, total P, CEC and OM, of soil basal respiration (SBR) with soil total N, alkali-hydrolygable N, available K, CEC and OM, of AWCD with soil total N and OM, and of Shannon diversity index with soil total N and CEC. Low alkali-hydrolygable N increased Cmic SBR, and metabolic quotient (qCO2), while high alkali-hydrolygable N decreased qCO2. High available P decreased Cmic, Nmic and microbial quotient, and a high ratio of available P to alkali-hydrolygable N was related to the decrease of Cmic, Nmic, Cmic/Nmic and SBR. It was suggested that there were significant correlations between soil microbial ecological characteristics and physico-chemical properties, and excessive available nutrients or inappropriate ratios of alkali-hydrolygable N to available P in soil were harmful to soil microbes.

  14. Geochemistry Of Lead In Contaminated Soils: Effects Of Soil Physico-Chemical Properties

    Science.gov (United States)

    Saminathan, S.; Sarkar, D.; Datta, R.; Andra, S. P.

    2006-05-01

    Lead (Pb) is an environmental contaminant with proven human health effects. When assessing human health risks associated with Pb, one of the most common exposure pathways typically evaluated is soil ingestion by children. However, bioaccessibility of Pb primarily depends on the solubility and hence, the geochemical form of Pb, which in turn is a function of site specific soil chemistry. Certain fractions of ingested soil-Pb may not dissociate during digestion in the gastro-intestinal tract, and hence, may not be available for transport across the intestinal membrane. Therefore, this study is being currently performed to assess the geochemical forms and bioaccessibility of Pb in soils with varying physico-chemical properties. In order to elucidate the level of Pb that can be ingested and assimilated by humans, an in-vitro model that simulates the physiological conditions of the human digestive system has been developed and is being used in this study. Four different types of soils from the Immokalee (an acid sandy soil with minimal Pb retention potential), Millhopper (a sandy loam with high Fe/Al content), Pahokee (a muck soil with more than 80% soil organic matter), and Tobosa series (an alkaline soil with high clay content) were artificially contaminated with Pb as lead nitrate at the rate equivalent to 0, 400, 800, and 1200 mg/kg dry soil. Analysis of soils by a sequential extraction method at time zero (immediately after spiking) showed that Immokalee and Millhopper soils had the highest amount of Pb in exchangeable form, whereas Pahokee and Tobosa soils had higher percentages of carbonate-bound and Fe/Al-bound Pb. The results of in-vitro experiment at time zero showed that majority of Pb was dissolved in the acidic stomach environment in Immokalee, Millhopper, and Tobosa, whereas it was in the intestinal phase in Pahokee soils. Because the soil system is not in equilibrium at time zero, the effect of soil properties on Pb geochemistry is not clear as yet. The

  15. Streptococcus suis sorption on agricultural soils: role of soil physico-chemical properties.

    Science.gov (United States)

    Zhao, Wenqiang; Liu, Xing; Huang, Qiaoyun; Cai, Peng

    2015-01-01

    Understanding pathogen sorption on natural soil particles is crucial to protect public health from soilborne and waterborne diseases. Sorption of pathogen Streptococcus suis on 10 agricultural soils was examined, and its correlations with soil physico-chemical properties were also elucidated. S. suis sorption isotherms conformed to the linear equation, with partition coefficients (Ks) ranging from 12.7 mL g(-1) to 100.1 mL g(-1). Bacteria were observed to sorb on the external surfaces of soil aggregates by scanning electron microscopy. Using Pearson correlation and linear regression analysis, solution pH was found to have significant negative correlations with Ks. Stepwise multiple regression and path analysis revealed that pH and cation exchange capacity (CEC) were the main factors influencing sorption behaviors. The obtained overall model (Ks=389.6-45.9×pH-1.3×CEC, R(2)=0.943, PKs values. However, the variability in Ks was less dependent on soil organic matter, specific surface area, soil texture and zeta potential, probably due to the internal-surface shielding phenomenon of soil aggregates. Additionally, the sorption trends cannot be interpreted by interaction energy barriers calculated using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, suggesting the limits of DLVO theory in describing pathogen sorption on natural soils. Our results also indicated soil pH and CEC should be preferentially considered when modeling S. suis sorption process.

  16. THE INFLUENCE OF SOME SOIL CHEMICAL PROPERTIES ON THEIR ERODABILITY

    Directory of Open Access Journals (Sweden)

    I. C. Stanga

    2005-10-01

    Full Text Available Soils from de hills and tableland regions, as well as those from subcarpathian area are characterized through higher erodability. The soils from mountain area present the lowest erodability, especially districambosol, due to the upper horizons properties. The erodabilidydepends on the ratio of historical geological erosion and surface erosion.

  17. Effect of Organic Fertilizers on Soil Chemical Properties on Vineyard Calcareous Soil

    Directory of Open Access Journals (Sweden)

    Tomislav Karažija

    2015-12-01

    Full Text Available Organic fertilizers are an important contribution of organic matter that modify the physical, chemical and microbiological characteristics of the soil. The aim of investigation was to determine the effect of different organic fertilization on soil chemical properties on vineyard calcareous soil. Two-year fertilization trial was carried out in the Plešivica wine-growing region, in a 10-year old vineyard, cv. Sauvignon White grafted on Kobber 5BB rootstock, planted on soil with quite high pH for grapevine growing. The trial was performed according to randomize complete block design with 6 treatments (unfertilized, farmyard manure 20 t ha-1 and 40 t ha-1, peat 20 000 L ha-1 and 40 000 L ha-1, NPK 5-20-30 500 kg ha-1+200 kg UREA ha-1 in 4 repetitions. Statistically significant differences in soil reaction (pH in plowing layer (0-30 cm were found among fertilization treatments in the second year of studies. In the plowing layer (0-30 cm in both years of the study significant differences between the values of average total nitrogen content and available phosphorus as well were found, while there were no significant differences in the subplowing layer (30-60cm. Regarding to average value of fertilization treatment, statistically significant difference in the content of available potassium in plowing layer were found in the both investigated years, while in subplowing layer statistical differences were found in the first year of investigation only. Therefore, fertilization with different organic fertilizers significantly influenced the most of studied chemical properties of the soil, especially in plowing layer (0-30 cm.

  18. Relationships between some soil physical and chemical properties with magnetic properties in different soil moisture regimes in Golestan province

    Directory of Open Access Journals (Sweden)

    M. Valaee

    2016-09-01

    mm and 846 mm in Touskstan uplands (Udic regime, respectively. this study was conducted in four soil moisture regimes (Aridic, Xeric, Udic and Aquic, for exploring the relationships between soil properties and magnetic measures. In each regimes, 25 soil profiles were drug, described and soil samples were collected from each of soil horizons. Soil samples were air-dried and sieved using a 2 mm sieve. The dithionite-citrate bicarbonate (DCB method was used to measure Fed and acid ammonium oxalate for Feo. In this study, a set of environmental magnetic parameters including magnetic susceptibility at low frequency (χlf, saturation isothermal remnant magnetization (SIRM, isothermal remnant magnetization (IRM100 mT were measured. Magnetic susceptibility (χ was measured at low frequency (0.47 kHz; χlf and high frequency (4.7 kHz; χhf using a Bartington MS2 dual frequency sensor using approximately 20 g of soil held in a four-dram clear plastic vial (2.3 cm diameter. Frequency dependent susceptibility (χfd was determined by the difference between the high and low frequency measurements as a percentage of χ at low frequency. IRM was measured at the field of 100 mT generated in a Molspin pulse magnetizer (IRM100mT and at the back field of 100mT (IRM−100mT. The IRM acquired in the maximum field of 1000 mT was measured and defined as the saturation isothermal remnant magnetization (SIRM of the soil sample. Results and Discussion: The results showed that moisture regime induced significant differences for soil physical and chemical properties. Diversities in genetic soil horizons and soil development degree have been increased from Aridic to Udic soil moisture regime. The results also indicated that selected properties including magnetic measures and physical and chemical properties were significantly different in four soil moisture regimes. With increasing rainfall and reducing temperature from aridic to udic soil moisture regime, soil organic matter was increased

  19. Chemical properties and toxicity of soils contaminated by mining activity.

    Science.gov (United States)

    Agnieszka, Baran; Tomasz, Czech; Jerzy, Wieczorek

    2014-09-01

    This research is aimed at assessing the total content and soluble forms of metals (zinc, lead and cadmium) and toxicity of soils subjected to strong human pressure associated with mining of zinc and lead ores. The research area lay in the neighbourhood of the Bolesław Mine and Metallurgical Plant in Bukowno (Poland). The study obtained total cadmium concentration between 0.29 and 51.91 mg, zinc between 7.90 and 3,614 mg, and that of lead between 28.4 and 6844 mg kg(-1) of soil d.m. The solubility of the heavy metals in 1 mol dm(-3) NH4NO3 was 1-49% for zinc, 5-45% for cadmium, and Toxicity assessment of the soil samples was performed using two tests, Phytotoxkit and Microtox(®). Germination index values were between 22 and 75% for Sinapis alba, between 28 and 100% for Lepidium sativum, and between 10 and 28% for Sorghum saccharatum. Depending on the studied soil sample, Vibrio fischeri luminescence inhibition was 20-96%. The sensitivity of the test organisms formed the following series: S. saccharatum > S. alba = V. fischeri > L. sativum. Significant positive correlations (p ≤ 0.05) of the total and soluble contents of the metals with luminescence inhibition in V. fischeri and root growth inhibition in S. saccharatum were found. The general trend observed was an increase in metal toxicity measured by the biotest with increasing available metal contents in soils. All the soil samples were classified into toxicity class III, which means that they are toxic and present severe danger. Biotest are a good complement to chemical analyses in the assessment of quality of soils as well as in properly managing them.

  20. Principal Chemical Properties of Artificial Soil Composed of Fly Ash and Furfural Residue

    Institute of Scientific and Technical Information of China (English)

    FENG Yong-Jun; LI Fen; WANG Xiao-Ling; LIU Xi-Min; ZHANG Lei-Na

    2006-01-01

    To solve soil shortage in reclaiming subsided land of coal mines, the principal chemical properties of artificial soil formed by mixing organic furfural residue and inorganic fly ash were examined. The results indicated that the artificial soil was suitable for agriculture use after irrigation and desalination, the available nutrients in the artificial soil could satisfy the growth demand of plants, and the pH tended to the neutrality.

  1. Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2016-06-01

    The results obtained show that, application of the investigated hydrogels positively affects bio-chemical properties of the soil. These effects are assembled in the following: (a slightly decreasing soil pH, (b increasing cation exchange capacity (CEC of the soil indicating improvement in activating chemical reactions in the soil, (c increasing organic matter (OM, organic carbon, total nitrogen percent in the soil. Because the increase in organic nitrogen surpassed that in organic carbon, a narrower CN ratio of treated soils was obtained. This indicated the mineralization of nitrogen compounds and hence the possibility to save and provide available forms of N to growing plants, (d increasing available N, P and K in treated soil, and (e improving biological activity of the soil expressed as total count of bacteria and counts of Azotobacter sp., phosphate dissolving bacteria (PDB, fungi and actinomycetes/g soil as well as the activity of both dehydrogenase and phosphatase.

  2. the effect of rubber effluent on some chemical properties of soil and ...

    African Journals Online (AJOL)

    DR. AMINU

    on some soil chemical properties as well as early growth and nutrient uptake by ... plant were significantly higher (P<0.05) in rubber effluent treated plant than the .... The electrical conductivity ... (creep, crumb and concentrate latex) the effluent.

  3. Solid waste disposal in the soil: effects on the physical, chemical, and organic properties of soil

    Directory of Open Access Journals (Sweden)

    Vanessa Regina Lasaro Mangieri

    2015-04-01

    Full Text Available Currently, there is growing concern over the final destination of the solid waste generated by society. Landfills should not be considered the endpoint for substances contained or generated in solid waste. The sustainable use of natural resources, especially soil and water, has become relevant, given the increase in anthropogenic activities. Agricultural use is an alternative to solid waste (leachate, biosolid disposal, considering the hypothesis that the agricultural use of waste is promising for reducing waste treatment costs, promoting nutrient reuse and improving the physical and chemical conditions of soil. Thus, this literature review, based on previously published data, seeks to confirm or disprove the hypothesis regarding the promising use of solid waste in agriculture to decrease the environmental liability that challenges public administrators in the development of efficient management. The text below addresses the following subtopics after the introduction: current solid waste disposal and environmental issues, the use of solid waste in agriculture, and the effect on the physical and chemical properties of soil and on organic matter, ending with final considerations.

  4. Effects of Long-term Located Fertilization on the Physico-chemical Property of Soil Humus

    Institute of Scientific and Technical Information of China (English)

    SHI Ji-ping; ZHANG Fu-dao; LIN Bao

    2002-01-01

    A systematic study concerning the effects of a long-term stationary fertilization on content and property of soil humus in fluvo-aquic soil sampled from Malan Farm, Xinji City, Hebei, and arid red soil and paddy red soil sampled from the Institute of Red Soil, Jinxian County, Jiangxi was conducted. The results showed that long-term fertilization had effects not only on the content and composition of soil humus, but also on the physico-chemical property of humus. With applying organic manure or combined application of organic manure and chemical fertilizer, E4 and E6 values of humic acid decreased in fluvo-aquic soil and arid red soil,but increased in paddy red soil. In paddy red soil, E4 and E6 values of humic acid increased also with a single application of chemical fertilizer, but E4 and E6 values had less change of humic acid in fluvo-aquic soil and arid red soil. The effects on the visible spectroscopic property of fulvic acid were different from that of humic acid. Long-term application of organic manure or combined application of organic manure and chemical fertilizer could increase E4 and E6 values of fulvic acid in three types of soil. Single application of chemical fertilizer had less effect on the E4 and E6. Long-term fertilization could also influence the ultraviolet spectroscopic property of humus. With a single application of organic manure or combined application of organic manure and chemical fertilizer, the ultraviolet absorbance of humic acid and fulvic acid increased in the three types of soil.But this effect was obvious only in short wave length, and the effect could decrease if the wave length increased. With a single application of chemical fertilizer the ultraviolet absorbance of fulvic acid could increase, but it of humic acid increased only in fluvo-aquic soil. Long-term application of organic manure or combined application of organic manure and chemical fertilizer could increase the content of total acidic groups, carboxy groups and

  5. Soil physical and chemical properties of cacao farms in the south western region of cameroon

    Science.gov (United States)

    The low macro nutrient content (K, Ca and Mg) in soils under cacao is one of the major causes of the poor cacao (Theobroma cacao L) yields. Efforts were made to assess the major physical and chemical properties of soils from some important cacao zones of the South West Region of Cameroon in order t...

  6. Spatial Variability of Soil Chemical Properties in the Reclaiming Marine Foreland to Yellow Sea of China

    Institute of Scientific and Technical Information of China (English)

    WEI Yi-chang; BAI You-lu; JIN Ji-yun; ZHANG Fang; ZHANG Li-ping; LIU Xiao-qiang

    2009-01-01

    Precise information about the spatial variability of soil properties is essential in developing site-specific soil management,such as variable rate application of fertilizers.In this study the sampling grid of 100 m×100 m was established to collect 1703 soil samples at the depth of 0-20 cm,and examine spatial patterns including 13 soil chemical properties (pH,OM,NH4+,PK,Ca,Mg,S,B,Cu,Fe,Mn,and Zn) in a 1760 ha rice field in Haifeng farm,China,from 6th to 22nd of April,2006,before fertilizer application and planting.Soil analysis was performed by ASI (Agro Services International) and data were analyzed both statistically and geostatistically.Results showed that the contents of soil OM,NH4+,and Zn in Haifeng farm were very low for rice production and those of others were enough to meet the need for rice cultivation.The spatial distribution model and spatial dependence level for 13 soil chemical properties varied in the field.Soil Mg and B showed strong spatial variability on both descriptive statistics and geostatistics,and other properties showed moderate spatial variability.Themaximum ranges for K,Ca,Mg,S,Cu and Mn were all~3990.6m and the minimum ranges for soil pH,OM,NH4+,P,Fe,and Zn ranged from 516.7 to 1166.2 m.Clearpatchy distribution of N,P,K,Mg,S,B,Mn,and Zn were found from their spatial distribution maps.This proved that sampling strategy for estimating variability should be adapted to the different soil chemical properties and field management.Therefore,the spatial variability of soil chemical properties with strong spatial dependence could be readily managed and a site-specific fertilization scheme for precision farming could be easily developed.

  7. Effects of pig slurry application on soil physical and chemical properties and glyphosate mobility

    Directory of Open Access Journals (Sweden)

    Daniela Aparecida de Oliveira

    2014-10-01

    Full Text Available Pig slurry applied to soil at different rates may affect soil properties and the mobility of chemical compounds within the soil. The purpose of this study was to evaluate the effects of rates of pig slurry application in agricultural areas on soil physical and chemical properties and on the mobility of glyphosate through the soil profile. The study was carried out in the 12th year of an experiment with pig slurry applied at rates of 0 (control, 50, 100 and 200 m³ ha-1 yr-1 on a Latossolo Vermelho distrófico (Hapludox soil. In the control, the quantities of P and K removed by harvested grains were replaced in the next crop cycle. Soil physical properties (bulk density, porosity, texture, and saturated hydraulic conductivity and chemical properties (organic matter, pH, extractable P, and exchangeable K were measured. Soil solution samples were collected at depths of 20, 40 and 80 cm using suction lysimeters, and glyphosate concentrations were measured over a 60-day period after slurry application. Soil physical and chemical properties were little affected by the pig slurry applications, but soil pH was reduced and P levels increased in the surface layers. In turn, K levels were increased in sub-surface layers. Glyphosate concentrations tended to decrease over time but were not affected by pig slurry application. The concentrations of glyphosate found in different depths show that the pratice of this application in agricultural soils has the potential for contamination of groundwater, especially when the water table is the surface and heavy rains occur immediately after application.

  8. Heterogeneity of Physico-Chemical Properties in Structured Soils and Its Consequences

    Institute of Scientific and Technical Information of China (English)

    E. JASINSKA; H. WETZEL; T. BAUMGARTL; R. HORN

    2006-01-01

    Structured soils are characterized by the presence of inter- and intra-aggregate pore systems and aggregates, which show varying chemical, physical, and biological properties depending on the aggregate type and land use system. How far these aspects also affect the ion exchange processes and to what extent the interaction between the carbon distribution and kind of organic substances affect the internal soil strength as well as hydraulic properties like wettability are still under discussion. Thus, the objective of this research was to clarify the effect of soil aggregation on physical and chemical properties of structured soils at two scales: homogenized material and single aggregates. Data obtained by sequentially peeling off soil aggregates layers revealed gradients in the chemical composition from the aggregate surface to the aggregatecore. In aggregates from long term untreated forest soils we found lower amounts of carbon in the external layer, while in arable soils the differentiation was not pronounced. However, soil aggregates originating from these sites exhibited a higher concentration of microbial activity in the outer aggregate layer and declined towards the interior. Furthermore,soil depth and the vegetation type affected the wettability. Aggregate strength depended on water suction and differences in tillage treatments.

  9. USE OF SCALED SEMIVARIOGRAMS IN THE PLANNING SAMPLE OF SOIL CHEMICAL PROPERTIES IN SOUTHERN AMAZONAS, BRAZIL

    Directory of Open Access Journals (Sweden)

    Ivanildo Amorim de Oliveira

    2015-02-01

    Full Text Available The lack of information concerning the variability of soil properties has been a major concern of researchers in the Amazon region. Thus, the aim of this study was to evaluate the spatial variability of soil chemical properties and determine minimal sampling density to characterize the variability of these properties in five environments located in the south of the State of Amazonas, Brazil. The five environments were archaeological dark earth (ADE, forest, pasture land, agroforestry operation, and sugarcane crop. Regular 70 × 70 m mesh grids were set up in these areas, with 64 sample points spaced at 10 m distance. Soil samples were collected at the 0.0-0.1 m depth. The chemical properties of pH in water, OM, P, K, Ca, Mg, H+Al, SB, CEC, and V were determined at these points. Data were analyzed by descriptive and geostatistical analyses. A large part of the data analyzed showed spatial dependence. Chemical properties were best fitted to the spherical model in almost all the environments evaluated, except for the sugarcane field with a better fit to the exponential model. ADE and sugarcane areas had greater heterogeneity of soil chemical properties, showing a greater range and higher sampling density; however, forest and agroforestry areas had less variability of chemical properties.

  10. Minimum quantity of urban refuse compost affecting physical and chemical soil properties

    Directory of Open Access Journals (Sweden)

    Paolo Bazzoffi

    Full Text Available The increasing production of urban waste requires urgent responses because of various environmental problems that arise when urban refuse is stored in landfills or incinerated. Recycling of domestic waste and composting of its organic fraction has been indicated as a possible disposal solution. A three-year experiment was conducted to quantify the minimum rate of urban refuse compost (URC addition able to improve some physical and chemical soil properties at the lowest cost and environmental impact. URC was added to a silty clay soil and to a sandy loam soil 0%, 3%, 6%, 9% rate (w/w. Samplings were made 12, 24 and 36 months after URC application. To study the only effect of compost on soil due to its interaction with the soil matrix, each soil-compost mixture was divided into three boxes and kept outdoors weed free. After 12 months, 3% URC resulted the minimum quantity able to ameliorate several soil properties. In silty clay soil this rate significantly ameliorated microaggregate stability and hydraulic conductivity, but negative effects were observed on electrical conductivity. After 24 months, 3% rate significantly increased soil organic matter content. In the sandy loam soil, after 12 months, 3% rate of URC determined a positive effect on organic matter and cone resistance in dry soil condition. Electrical conductivity increased at 3% URC addition. The minimum URC quantity affecting hydraulic conductivity and plastic limit was 6%, and 9% for the liquid limit. Under these experimental conditions, the lowest rate (3% of URC incorporation to soils appears to be the minimum quantity able to improve most of the soil properties influencing fertility. What the results show is that, to achieve sustainability of urban refuse compost application to agricultural soil, further research is needed to investigate soil property changes in the range between 0% and 3%.

  11. Minimum quantity of urban refuse compost affecting physical and chemical soil properties

    Directory of Open Access Journals (Sweden)

    Andrea Rocchini

    2011-02-01

    Full Text Available The increasing production of urban waste requires urgent responses because of various environmental problems that arise when urban refuse is stored in landfills or incinerated. Recycling of domestic waste and composting of its organic fraction has been indicated as a possible disposal solution. A three-year experiment was conducted to quantify the minimum rate of urban refuse compost (URC addition able to improve some physical and chemical soil properties at the lowest cost and environmental impact. URC was added to a silty clay soil and to a sandy loam soil 0%, 3%, 6%, 9% rate (w/w. Samplings were made 12, 24 and 36 months after URC application. To study the only effect of compost on soil due to its interaction with the soil matrix, each soil-compost mixture was divided into three boxes and kept outdoors weed free. After 12 months, 3% URC resulted the minimum quantity able to ameliorate several soil properties. In silty clay soil this rate significantly ameliorated microaggregate stability and hydraulic conductivity, but negative effects were observed on electrical conductivity. After 24 months, 3% rate significantly increased soil organic matter content. In the sandy loam soil, after 12 months, 3% rate of URC determined a positive effect on organic matter and cone resistance in dry soil condition. Electrical conductivity increased at 3% URC addition. The minimum URC quantity affecting hydraulic conductivity and plastic limit was 6%, and 9% for the liquid limit. Under these experimental conditions, the lowest rate (3% of URC incorporation to soils appears to be the minimum quantity able to improve most of the soil properties influencing fertility. What the results show is that, to achieve sustainability of urban refuse compost application to agricultural soil, further research is needed to investigate soil property changes in the range between 0% and 3%.

  12. [Impact of reclaimed water irrigation on soil chemical properties and culturable microorganisms ].

    Science.gov (United States)

    Gong, Xue; Wang, Ji-hua; Guan, Jian-fei; Yang, Xue-chen; Chen, Dai-ci

    2014-09-01

    This research used batch soil column experiment to study the effects of irrigating with reclaimed water and tap water on the soil chemical properties and culturable microorganisms. The results indicated that reclaimed water could markedly increase the soil organic material (OM) and total nitrogen (TN) content, but it had no obvious effect on total phosphorus (TP), available phosphorus (AP) and pH value. Reclaimed water irrigation could significantly enhance the amounts of surface soil bacteria and actinomycetes at a depth of 0-20 cm, but it had little effect on the biomass of 20-40 cm and 40-60 cm soil layers. The dominant bacteria in tap water irrigation area was the genus Bacillus whereas that of reclaimed water irrigation area was the genus Acinetobacter. Tap water irrigation area had four endemic genera and reclaimed water irrigation area had six endemic genera. Reclaimed water had no obvious effect on the microbial community Shannon diversity of 0-20 cm soil layer, while it decreased Pielou evenness index, and improved Margalef richness index. Through SPSS 17. 0 correlation analysis between soil microbes quantity and soil chemical properties, it was shown that the soil microbes quantity was positively correlated with OM, TN, TP and AP, but negatively correlated with soil water content (SWC) and pH value. Based on CANOCO 4.5 detrended correspondence analysis (DCA) and redundancy analysis (RDA) between soil microbes species and soil chemical properties, it was shown that AP had the strongest correlation with the microbial community (P = 0.002). TN and TP had larger impact on Streptococcus, Aeromonas and Neisseria. OM and AP had larger impact on Aerococcus, Planococcus and Halobacterium.

  13. Organic and inorganic amendment application on mercury-polluted soils: effects on soil chemical and biochemical properties.

    Science.gov (United States)

    García-Sánchez, Mercedes; Klouza, Martin; Holečková, Zlata; Tlustoš, Pavel; Száková, Jiřina

    2016-07-01

    On the basis of a previous study performed in our laboratory, the use of organic and inorganic amendments can significantly modify the Hg mobility in soil. We have compared the effectiveness of organic and inorganic amendments such as digestate and fly ash, respectively, reducing the Hg mobility in Chernozem and Luvisol soils differing in their physicochemical properties. Hence, the aim of this work was to compare the impact of digestate and fly ash application on the chemical and biochemical parameters in these two mercury-contaminated soils in a model batch experiment. Chernozem and Luvisol soils were artificially contaminated with Hg and then incubated under controlled conditions for 21 days. Digestate and fly ash were applied to both soils in a dose of 10 and 1.5 %, respectively, and soil samples were collected after 1, 7, 14, and 21 days of incubation. The presence of Hg in both soils negatively affected to processes such as nitrification, provoked a decline in the soil microbial biomass C (soil microbial biomass C (MBC)), and the microbial activities (arylsulfatase, and β-glucosaminidase) in both soils. Meanwhile, the digestate addition to Chernozem and Luvisol soils contaminated with Hg improved the soil chemical properties (pH, dissolved organic carbon (DOC), N (Ntot), inorganic-N forms (N-NH4 (+) and N-NO3 (-))), as consequence of high content in C and N contained in digestate. Likewise, the soil MBC and soil microbial activities (dehydrogenase, arylsulfatase, and β-glucosaminidase) were greatly enhanced by the digestate application in both soils. In contrast, fly ash application did not have a remarkable positive effect when compared to digestate in Chernozem and Luvisol soil contaminated with mercury. These results may indicate that the use of organic amendments such as digestate considerably improved the soil health in Chernozem and Luvisol compared with fly ash, alleviating the detrimental impact of Hg. Probably, the chemical properties present in

  14. Chemical fractionation of Cu and Zn and their impacts on microbial properties in slightly contaminated soils

    Directory of Open Access Journals (Sweden)

    Liu Aiju

    2013-06-01

    Full Text Available Chemical fractionation of Cu and Zn in bulk soil and its effects on soil microbial properties were determined in Cu and Zn contaminated soils (Cu: 35.57~46.37 mg•kg-1, Zn: 74.33~127.20 mg•kg-1 sampled from an agricultural field in outskirts of Zibo, China during the month of September, 2011. A sequential extraction technique (SET was used for metals chemical fractionation analysis in soils and a correlation analysis was applied to determinate the effects of metal on soil microbial properties. Chemical speciation showed that Cu and Zn were mostly present in the residual fraction and their concentrations in the most labile fraction (acid soluble fraction were the lowest in the investigated soils. However, the correlation analysis indicated that the labile forms of Cu/Zn, such as its acid soluble, reducible or oxidizable fractions, were usually significantly negatively correlated with the tested microbial activities at 0.05 or 0.01 probability levels. These results indicate that the metal labile fractions could exert an inhibitory effect on the soil microbial parameters even in the minor contaminated soils.

  15. Fauna-associated Changes in Chemical and Biochemical Properties of Soil

    Institute of Scientific and Technical Information of China (English)

    G. TRIPATHI; B. M. SHARMA

    2006-01-01

    Objective To study the impacts of abundance of woodlice, termites, and mites on some functional aspects of soil in order to elucidate the specific role of soil fauna in improving soil fertility in desert. Methods Fauna-rich sites were selected as experimental sites and adjacent areas were taken as control. Soil samples were collected from both sites. Soil respiration was measured at both sites. The soil samples were sent to laboratory, their chemical and biochemical properties were analyzed.Results Woodlice showed 25% decrease in organic carbon and organic matter as compared to control site. Whereas termites and mites showed 58% and 16% decrease in organic carbon and organic matter. In contrast, available nitrogen (nitrate and ammonical both) and phosphorus exhibited 2-fold and 1.2-fold increase, respectively. Soil respiration and dehydrogenase activity at the sites rich in woodlice, termites and mites produced 2.5-, 3.5- and 2-fold increases, respectively as compared to their control values. Fauna-associated increase in these biological parameters clearly reflected fauna-induced microbial activity in soil. Maximum decrease in organic carbon and increase in nitrate-nitrogen and ammonical-nitrogen, available phosphorus, soil respiration and dehydrogenase activity were produced by termites and minimum by mites reflecting termite as an efficient soil improver in desert environment. Conclusion The soil fauna-associated changes in chemical (organic carbon, nitrate-nitrogen, ammonical-nitrogen, phosphorus) and biochemical (soil respiration, dehydrogenase activity) properties of soil improve soil health and help in conservation of desert pedoecosystem.

  16. Effect of biosolids application on soil chemical properties and uptake ...

    African Journals Online (AJOL)

    Administrator

    2010-11-01

    Nov 1, 2010 ... promising ways for the reclamation of soils with low organic matter content ... been achieved in the context of restoration with sewage sludge, municipal ..... Sanjurjo MJ (2003). Heavy metals in the dump of an abandoned mine.

  17. Soils on historic charcoal hearths - chemical properties and terminology

    Science.gov (United States)

    Hirsch, Florian; Raab, Thomas; Ouimet, William; Dethier, David; Schneider, Anna; Raab, Alexandra

    2017-04-01

    Charcoal hearths are a unique archive for the long term interaction between biochar, soil development and plant growth. Charcoal as raw material was crucial for the production of iron in iron works and hence numerous charcoal hearths can be found in the forests near historic iron works in Europe as well as the Eastern United States. Charcoal hearths are round to elliptical forms often around 10 m in diameter, and consisting of a several decimeter thick layer containing charcoal fragments, ash, and burnt soil. We studied the soil chemistry of 24 charcoal hearths and compared them to the surrounding 'natural' soils in Litchfield County, Connecticut. The thickness of the organic rich horizons on the charcoal hearths and their carbon content is remarkably higher than in the surrounding topsoils. The wide distribution of charcoal hearths, their usually high quantity, and their occurrence in different ecosystems underlines their importance for further pedological research.

  18. Effect of phosphogypsum amendment on soil physico-chemical properties, microbial load and enzyme activities.

    Science.gov (United States)

    Nayak, Soumya; Mishra, C S K; Guru, B C; Rath, Monalisa

    2011-09-01

    Phosphogypsum (PG) is produced as a solid waste from phosphatic fertilizer plants. The waste slurry is disposed off in settling ponds or in heaps. This solid waste is now increasingly being used as a calcium supplement in agriculture. This study reports the effectof PG amendmenton soil physico chemical properties, bacterial and fungal count and activities of soil enzymes such as invertase, cellulase and amylase over an incubation period of 28 days. The highest mean percent carbon loss (55.98%) was recorded in 15% PG amended soil followed by (55.28%) in 10% PG amended soil and the minimum (1.68%) in control soil. The highest number of bacterial colonies (47.4 CFU g(-1) soil), fungal count (17.8 CFU g(-1) soil), highest amylase activity (38.4 microg g(-1) soil hr(-1)) and cellulase activity (38.37 microg g(-1) soil hr(-1)) were recorded in 10% amended soil. Statistically significant difference (p<0.05) has been recorded in the activities of amylase and cellulase over the period of incubation irrespective of amendments. Considering the bacterial and fungal growth and the activities of the three soil enzymes in the control and amended sets, it appears that 10% PG amendment is optimal for microbial growth and soil enzyme activities.

  19. [Heidaigou Opencast Coal Mine: Soil Enzyme Activities and Soil Physical and Chemical Properties Under Different Vegetation Restoration].

    Science.gov (United States)

    Fang, Ying; Ma, Ren-tian; An, Shao-shan; Zhao, Jun-feng; Xiao, Li

    2016-03-15

    Choosing the soils under different vegetation recovery of Heidaigou dump as the research objects, we mainly analyzed their basic physical and chemical properties and enzyme activities with the method of Analysis of Variance as well as their relations using Pearson correlation analysis and path analysis hoping to uncover the driving factors of the differences between soil enzyme activities under different vegetation restoration, and provide scientific suggestions for the plant selection as well as make a better evaluation to the reclamation effect. The results showed that: (1) Although the artificial vegetation restoration improved the basic physical and chemical properties of the soils while increasing their enzyme activities to a certain extent, the soil conditions still did not reach the level of the natural grassland; (2) Contents of soil organic carbon (SOC) and soil total nitrogen (TN) of the seabuckthorns were the nearest to those of the grassland, which reached 54. 22% and 70. 00% of those of the grassland. In addition, the soil bulk density of the seabuckthorns stand was 17. 09% lower than the maximum value of the amorpha fruitcosa land. The SOC and TN contents as well as the bulk density showed that seabuckthorns had advantages as the species for land reclamation of this dump; Compared with the seabuckthorn, the pure poplar forest had lower contents of SOC and TN respectively by 35.64% and 32.14% and displayed a 16.79% higher value of soil bulk density; (3) The activities of alkaline phosphotase under different types of vegetation rehabilitation had little variation. But soil urease activities was more sensitive to reflect the effects of vegetation restoration on soil properties; (4) Elevation of the SOC and TN turned out to be the main cause for soil fertility restoration and increased biological activities of the dump.

  20. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    Directory of Open Access Journals (Sweden)

    Edward Ayres

    Full Text Available BACKGROUND: Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. METHODOLOGY/PRINCIPAL FINDINGS: We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid

  1. Influence of land cover changes on the physical and chemical properties of alpine meadow soil

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Taking the alpine cold meadow grassland in the southeastern part of the Qinghai-Tibetan Plateau as an example, this research deals with the characteristics of alpine meadow soil property changes, including soil nutrients, soil physical properties and soil moisture content under different land coverage conditions. With the degradation of grassland vegetation and the decline of vegetation coverage, soil compactness reduces, gravel content increases and bulk density increases. The originally dense root-system layer is gradually denuded, making the soil coarse and gravel. The change of the organic matter contents with the vegetation coverage change in the surface soil layer (0-20 cm) has shown an obvious cubic polynomial curve process. The organic matter contents increase rapidly when land coverage is above 60%, contrarily decreases on a large scale when land coverage is below 30%. Between 30%-60% of land coverage the organic matter contents remain stable. The total N and organic matter contents in soil have shown quite similar change regularity. Following this the mathematic equations are derived to describe such change processes. Moisture content in soil changes sharply with the vegetation coverage change. Soil moisture content change with the vegetation coverage change has shown a quadratic parabola process. Results have shown that organic matter content and the total N content of the alpine meadow soil decrease by 14890 kg/hm2 and 5505 kg/hm2 respectively as the vegetation coverage reduces from 90% to less than 30%. The heavy changes of soil physical and chemical properties with grassland degradation have made the recovery of alpine meadow ecological system impossible. The protection of alpine meadow vegetation is of vital importance to the maintenance of the regional soil environment and the regional ecological system.

  2. Impacts of land use changes on physical and chemical soil properties in the Central Pyrenees

    Science.gov (United States)

    Nadal Romero, Estela; Hoitinga, Leo; Valdivielso, Sergio; Pérez Cardiel, Estela; Serrano Muela, Pili; Lasanta, Teodoro; Cammeraat, Erik

    2015-04-01

    Soils and vegetation tend to evolve jointly in relation to climate evolution and the impacts of human activity. Afforestation has been one of the main policies for environmental management of forest landscapes in Mediterranean areas. Afforestation has been based mainly on conifers because they are fast-growing species, and also because it was believed that this would lead to rapid restoration of soil properties and hydrological processes, and the formation of protective vegetation cover. This study analyses the effects of afforestation on physical and chemical soil properties. Specifically, we addressed this research question: (i) How do soil properties change after land abandonment? The 11 microsites considered were: Afforestation Pinus sylvestris (escarpment, terrace and close to the stem), Afforestation Pinus nigra (escarpment, terrace and close to the stem), natural shrubland, grasslands, bare lands, and undisturbed forest site (pine cover and close to the stem). An extensive single sampling was carried out in September 2014. We systematically collected 5 top soil samples (0-10 cm) and 3 deep soil samples (10-20 cm) per microsite (88 composite samples in total). These properties were analysed: (i) soil texture, (ii) bulk density, (iii) pH and electrical conductivity, (iv) total SOC, (v) Total Nitrogen, (vi) organic matter, (vii) CaCO3 and (viii) aggregate stability. Statistical tests have been applied to determine relationships between the different soil properties and are used to assess differences between different soil samples, land use areas and soil depths. Implications of reafforestation for soil development and environmental response are discussed. Acknowledgments This research was supported by a Marie Curie Intra-European Fellowship in the project "MED-AFFOREST" (PIEF-GA-2013-624974).

  3. Effect of soil type and soil management on soil physical, chemical and biological properties in commercial organic olive orchards in Southern Spain

    Science.gov (United States)

    Gomez, Jose Alfonso; Auxiliadora Soriano, Maria; Montes-Borrego, Miguel; Navas, Juan Antonio; Landa, Blanca B.

    2014-05-01

    One of the objectives of organic agriculture is to maintain and improve soil quality, while simultaneously producing an adequate yield. A key element in organic olive production is soil management, which properly implemented can optimize the use of rainfall water enhancing infiltration rates and controlling competition for soil water by weeds. There are different soil management strategies: eg. weed mowing (M), green manure with surface tillage in spring (T), or combination with animal grazing among the trees (G). That variability in soil management combined with the large variability in soil types on which organic olive trees are grown in Southern Spain, difficult the evaluation of the impact of different soil management on soil properties, and yield as well as its interpretation in terms of improvement of soil quality. This communications presents the results and analysis of soil physical, chemical and biological properties on 58 soils in Southern Spain during 2005 and 2006, and analyzed and evaluated in different studies since them. Those 58 soils were sampled in 46 certified commercial organic olive orchards with four soil types as well as 12 undisturbed areas with natural vegetation near the olive orchards. The four soil types considered were Eutric Regosol (RGeu, n= 16), Eutric Cambisol (CMeu, n=16), Calcaric Regosol (RGca, n=13 soils sampled) and Calcic Cambisol (CMcc), and the soil management systems (SMS) include were 10 light tillage (LT), 16 sheep grazing (G), 10 tillage (T), 10 mechanical mowing (M), and 12 undisturbed areas covered by natural vegetation (NV-C and NV-S). Our results indicate that soil management had a significant effect on olive yield as well as on key soil properties. Among these soil properties are physical ones, such as infiltration rate or bulk density, chemical ones, especially organic carbon concentration, and biological ones such as soil microbial respiration and bacterial community composition. Superimpose to that soil

  4. Effects of digestate on soil chemical and microbiological properties: A comparative study with compost and vermicompost.

    Science.gov (United States)

    Gómez-Brandón, María; Juárez, Marina Fernández-Delgado; Zangerle, Matthias; Insam, Heribert

    2016-01-25

    Anaerobic digestion has become increasingly popular as an alternative for recycling wastes from different origins. Consequently, biogas residues, most of them with unknown chemical and biological composition, accrue in large quantities and their application into soil has become a widespread agricultural practise. The aim of this study was to evaluate the effects of digestate application on the chemical and microbiological properties of an arable soil in comparison with untreated manure, compost and vermicompost. Once in the soil matrix either the addition of compost or digestate led to an increased nitrification rate, relative to unamended and manure-treated soil, after 15 and 60 days of incubation. Faecal coliform and E. coli colony forming units (CFUs) were not detected in any of the amended soils after 60 days. The highest number of Clostridium perfringens CFUs was recorded in manure-amended soil at the beginning of the experiment and after 15 days; whilst after 60 days the lowest CFU number was registered in digestate-treated soil. Denaturing gradient gel electrophoresis patterns also showed that besides the treatment the date of sampling could have contributed to modifications in the soil ammonia-oxidising bacteria community, thereby indicating that the soil itself may influence the community diversity more strongly than the treatments.

  5. Soil uses during the sugarcane fallow period: influence on soil chemical and physical properties and on sugarcane productivity

    Directory of Open Access Journals (Sweden)

    Roniram Pereira da Silva

    2014-04-01

    Full Text Available The planting of diversified crops during the sugarcane fallow period can improve the chemical and physical properties and increase the production potential of the soil for the next sugarcane cycle. The primary purpose of this study was to assess the influence of various soil uses during the sugarcane fallow period on soil chemical and physical properties and productivity after the first sugarcane harvest. The experiment was conducted in two areas located in Jaboticabal, São Paulo State, Brazil (21º 14' 05'' S, 48º 17' 09'' W with two different soil types, namely: an eutroferric Red Latosol (RLe with high-clay texture (clay content = 680 g kg-1 and an acric Red Latosol (RLa with clayey texture (clay content = 440 g kg-1. A randomized block design with five replications and four treatments (crop sequences was used. The crop sequences during the sugarcane fallow period were soybean/millet/soybean, soybean/sunn hemp/soybean, soybean/fallow/soybean, and soybean. Soil use was found not to affect chemical properties and sugarcane productivity of RLe or RLa. The soybean/millet/soybean sequence improved aggregation in the acric Latosol.

  6. COMPARISON OF THE PHYSICAL AND CHEMICAL PROPERTIES OF THE DISPERSIVE AND SODIC SOILS

    Directory of Open Access Journals (Sweden)

    G. NAGY

    2016-03-01

    Full Text Available Some cohesive soils show very little resistance when it comes to interaction with relatively pure water, however the water flow itself does not have to necessarily cause any damage in the soil structure. These soils are so poorly bonded, that this small amount of water flow can lead to structural breakdown. The effect caused several dike and earth dam damages and failures in the past years, therefore the behavior itself is considered as a geotechnical risk in the process of design. The dike breaches lead to the emergence of knowing how to identify and locate the areas and soil types, where the hazardous soils occur. In geotechnical engineering these soils are referred as dispersive soils, and their properties are known since the 1960s. In the recent years researches were carried out to get a better point of view of the reasons of these kind of behavior. Therefore the investigation of physical and chemical properties were made. The results showed that the dispersive behavior can be connected with the amount of dissolved salts in the soil extract. Since these are known as the origin of sodic soils, the relationship was investigated.

  7. Invasive scotch broom alters soil chemical properties in Douglas-fir forests of the Pacific Northwest, USA

    Science.gov (United States)

    Robert A. Slesak; Timothy B. Harrington; Anthony W. D′Amato

    2016-01-01

    Backgrounds and aims Scotch broom is an N-fixing invasive species that has high potential to alter soil properties. We compared soil from areas of Scotch broom invasion with nearby areas that had no evidence of invasion to assess the influence of broom on soil P fractions and other chemical properties. Methods The study was...

  8. Effects of Land Use Changes on Some Soil Chemical Properties in Khoy, West Azerbaijan Province

    Directory of Open Access Journals (Sweden)

    Arezoo Taghipour

    2016-02-01

    Full Text Available Introduction: Intensified agriculture over a long-term is an important factor in soil change phenomena that can cause some unwanted effects on soil properties. To examine this hypothesis, chemical properties of the soils under sunflower cultivation over five decades and adjoining virgin lands were investigated in order to monitor changes caused by long-term cropping. The studied soils are influenced by continuous sunflower cultivation along with flooding irrigation and using chemical fertilizers for over five decades Materials and Methods: This research was undertaken at Khoy area (38o 10′ to 38o 40′ N latitude and 44o 15′ to 45o 10′ E latitude as the northern part of western-Azarbaijan province in the north-west Iran. The Khoy area is characterized by a semi-arid climate (mean annual rainfall of 300 mm linked with soil moisture and temperature regimes of xeric and mesic, respectively. Agriculturally, the studied area is cropped continuously by sunflower-wheat or barley rotations for over five decades and has received irrigation water from rainfall, groundwater, or seasonal river water. Forty soil surface samples (0-30 cm belonging to 10 soil series from the cultivated soils and the adjoining uncultivated soils were samplied and analyzed for the different chemical properties. In each soil serie, the samples (cultivated soil and adjacent virgin land were selected in similar slope, aspect, drainage condition, and parent materials. Soil analyses were involved soil pH and electrical conductivity (EC, soil organic carbon (SOC, Calcium carbonate equivalent (CCE, cation exchange capacity (CEC, total N, soluble K, exchangeable K, and available K. Potassium absorption ration (PAR was calculated by the concentration of solution K, Ca, Mg and exchangeable potassium percentage (EPP was calculated by exchangeable Na and CEC values Results and Discussion: This study illustrate that long-term continuous sunflower cropping had considerable effects on

  9. CHANGES IN SOIL CHEMICAL PROPERTIES OF ORGANIC PADDY FIELD WITH AZOLLA APPLICATION

    Directory of Open Access Journals (Sweden)

    Jauhari Syamsiyah

    2016-12-01

    Full Text Available The use of organic fertilizer is a way to improve soil fertility. Azolla can be used as organic fertilizer. This study aims to determine the effect of Azolla (Azolla mycrophylla. L on some soil chemical properties on organic paddy field. The field experiments used factorial complete randomized block design of three factors, namely Azolla (0 and 2 tons/ha, Manure (0 and 10 tons/ha and Rice Varieties (Mira1, Mentik Wangi and Merah Putih, with three times replication. Using Azolla on an organic paddy field does not significantly increase the levels of soil N, organic C, Cation Exchange Capacity and soil pH. However Azolla’s influence on soil available P is significant.

  10. Characterization of soil chemical properties of strawberry fields using principal component analysis

    Directory of Open Access Journals (Sweden)

    Gláucia Oliveira Islabão

    2013-02-01

    Full Text Available One of the largest strawberry-producing municipalities of Rio Grande do Sul (RS is Turuçu, in the South of the State. The strawberry production system adopted by farmers is similar to that used in other regions in Brazil and in the world. The main difference is related to the soil management, which can change the soil chemical properties during the strawberry cycle. This study had the objective of assessing the spatial and temporal distribution of soil fertility parameters using principal component analysis (PCA. Soil sampling was based on topography, dividing the field in three thirds: upper, middle and lower. From each of these thirds, five soil samples were randomly collected in the 0-0.20 m layer, to form a composite sample for each third. Four samples were taken during the strawberry cycle and the following properties were determined: soil organic matter (OM, soil total nitrogen (N, available phosphorus (P and potassium (K, exchangeable calcium (Ca and magnesium (Mg, soil pH (pH, cation exchange capacity (CEC at pH 7.0, soil base (V% and soil aluminum saturation(m%. No spatial variation was observed for any of the studied soil fertility parameters in the strawberry fields and temporal variation was only detected for available K. Phosphorus and K contents were always high or very high from the beginning of the strawberry cycle, while pH values ranged from very low to very high. Principal component analysis allowed the clustering of all strawberry fields based on variables related to soil acidity and organic matter content.

  11. Impact of the post fire management in some soil chemical properties. First results.

    Science.gov (United States)

    Francos, Marcos; Pereira, Paulo; Alcañiz, Meritxell; Úbeda, Xavi

    2016-04-01

    Post-fire management after severe wildfires has impact on soil properties. In Mediterranean environments management of fire affected areas is a common practice. This intervention may change soil chemical properties of the soil such as major cations. The aim of this work is to study the impact of different types of forest management in soil extractable calcium, magnesium, sodium and potassium after a severe wildfire. The study area is located in Ódena (Catalonia, Spain). The wildfire occurred at July 27th of 2015 and burned 1235 ha. After the fire an experimental plot was designed 9 plots with 2x2 meters (4 square meters). The different managements were: a) clear-cuted area and wood removed, b) no treatment); and c) clear-cutted. The results of the first sampling showed significant differences among all treatments in extractable calcium, sodium and potassium. The amount of these extractable elements was high in clear-cutted treatment in comparison to the others. No differences were identified in extractable magnesium. Overall, in the immediate period after the fire, burned area management, changed the studied soil properties. We are currently studying the evolution of this soil properties in these plots with the time

  12. Visualization of physico-chemical properties and microbial distribution in soil and root microenvironments

    Science.gov (United States)

    Eickhorst, Thilo; Schmidt, Hannes

    2016-04-01

    Plant root development is influenced by soil properties and environmental factors. In turn plant roots can also change the physico-chemical conditions in soil resulting in gradients between roots and the root-free bulk soil. By releasing a variety of substances roots facilitate microbial activities in their direct vicinity, the rhizosphere. The related microorganisms are relevant for various ecosystem functions in the root-soil interface such as nutrient cycling. It is therefore important to study the impact and dynamics of microorganisms associated to different compartments in root-soil interfaces on a biologically meaningful micro-scale. The analysis of microorganisms in their habitats requires microscopic observations of the respective microenvironment. This can be obtained by preserving the complex soil structure including the root system by resin impregnation resulting in high quality thin sections. The observation of such sections via fluorescence microscopy, SEM-EDS, and Nano-SIMS will be highlighted in this presentation. In addition, we will discuss the combination of this methodological approach with other imaging techniques such as planar optodes or non-invasive 3D X-ray CT to reveal the entire spatial structure and arrangement of soil particles and roots. When combining the preservation of soil structure via resin impregnation with 16S rRNA targeted fluorescence in situ hybridization (FISH) single microbial cells can be visualized, localized, and quantified in the undisturbed soil matrix including the root-soil interfaces. The simultaneous use of multiple oligonucleotide probes thereby provides information on the spatial distribution of microorganisms belonging to different phylogenetic groups. Results will be shown for paddy soils, where management induced physico-chemical dynamics (flooding and drying) as well as resulting microbial dynamics were visualized via correlative microscopy in resin impregnated samples.

  13. Multivariate analysis of the chemical properties of the eroded brown soils

    Directory of Open Access Journals (Sweden)

    Juan Alejandro Villazón Gómez

    2017-01-01

    Full Text Available The work was carried out with the data obtained of 30 profiles of Brown soils classified according to the effect of erosion. With the objective of determining, by means of a multivariate analysis, the effect of the erosion on the chemicals properties of the Brown soils was carried out a Discriminant and Principals Components Analysis. It was evaluated the chemicals variables pH in water, pH in KCl, organic matter, calcium, magnesium, potassium, sodium and S, T and V values. The Multivariate Analysis allowed establishing that magnesium is the only chemical property that evidence contraposition with the other variables, due to the harmful effect that this base exerts on the soil aggregates, which can accelerate or stressing the action of the erosive processes in the Brown soils. In the Principals Components Analysis, then components represented by the influence of the soil reaction, the absorbing complex and magnesium accumulate 78.75 % of the variance. The Discriminant Analysis explains the 97.06 % of the total of the variation in the two first axes, with the 93.33 % of good classification, with all the groups conformed by the categories of erosion well told apart among themselves.

  14. Temporal changes of soil physic-chemical properties at different soil depths during larch afforestation by multivariate analysis of covariance.

    Science.gov (United States)

    Wang, Hui-Mei; Wang, Wen-Jie; Chen, Huanfeng; Zhang, Zhonghua; Mao, Zijun; Zu, Yuan-Gang

    2014-04-01

    Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg(-1)·year(-1) for SOM, 438.9 mg·g(-1)·year(-1) for C:P, 5.3 mg·g(-1)·year(-1) for C:K, and -3.23 mg·cm(-3)·year(-1) for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0-80-cm soil profile (P: -4.10 mg·kg(-1)·year(-1); pH: -0.0061 unit·year(-1); C:N: 167.1 mg·g(-1)·year(-1); K:P: 371.5 mg·g(-1) year(-1); N:K: -0.242 mg·g(-1)·year(-1); EC: 0.169 μS·cm(-1)·year(-1)), but without significant differences at different soil depths (P > 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance.

  15. Organic and Nitrogen Fertilization of Soil under ‘Syrah’ Grapevine: Effects on Soil Chemical Properties and Nitrate Concentration

    Directory of Open Access Journals (Sweden)

    Davi José Silva

    2016-01-01

    Full Text Available ABSTRACT Viticulture is an activity of great social and economic importance in the lower-middle region of the São Francisco River valley in northeastern Brazil. In this region, the fertility of soils under vineyards is generally poor. To assess the effects of organic and nitrogen fertilization on chemical properties and nitrate concentrations in an Argissolo Vermelho-Amarelo (Typic Plinthustalf, a field experiment was carried out in Petrolina, Pernambuco, on Syrah grapevines. Treatments consisted of two rates of organic fertilizer (0 and 30 m3 ha-1 and five N rates (0, 10, 20, 40, and 80 kg ha-1, in a randomized block design arranged in split plots, with five replications. The organic fertilizer levels represented the main plots and the N levels, the subplots. The source of N was urea and the source of organic fertilizer was goat manure. Irrigation was applied through a drip system and N by fertigation. At the end of the third growing season, soil chemical properties were determined and nitrate concentration in the soil solution (extracted by porous cups was determined. Organic fertilization increased organic matter, pH, EC, P, K, Ca, Mg, Mn, sum of bases, base saturation, and CEC, but decreased exchangeable Cu concentration in the soil by complexation of Cu in the organic matter. Organic fertilization raised the nitrate concentration in the 0.20-0.40 m soil layer, making it leachable. Nitrate concentration in the soil increased as N rates increased, up to more than 300 mg kg-1 in soil and nearly 800 mg L-1 in the soil solution, becoming prone to leaching losses.

  16. Organic and nitrogen fertilization of soil under Syrah grapevine: effects on soil chemical properties and nitrate concentration.

    OpenAIRE

    Davi José Silva; Luís Henrique Bassoi; Marlon Gomes da Rocha; Alexsandro Oliveira da Silva; Magnus Dall’Igna Deon

    2016-01-01

    ABSTRACT Viticulture is an activity of great social and economic importance in the lower-middle region of the São Francisco River valley in northeastern Brazil. In this region, the fertility of soils under vineyards is generally poor. To assess the effects of organic and nitrogen fertilization on chemical properties and nitrate concentrations in an Argissolo Vermelho-Amarelo (Typic Plinthustalf), a field experiment was carried out in Petrolina, Pernambuco, on Syrah grapevines. Treatments cons...

  17. Organic and Nitrogen Fertilization of Soil under ‘Syrah’ Grapevine: Effects on Soil Chemical Properties and Nitrate Concentration

    OpenAIRE

    Silva,Davi José; Bassoi,Luís Henrique; Rocha,Marlon Gomes da; Silva, Alexsandro Oliveira da [UNESP; Deon,Magnus Dall'Igna

    2016-01-01

    ABSTRACT Viticulture is an activity of great social and economic importance in the lower-middle region of the São Francisco River valley in northeastern Brazil. In this region, the fertility of soils under vineyards is generally poor. To assess the effects of organic and nitrogen fertilization on chemical properties and nitrate concentrations in an Argissolo Vermelho-Amarelo (Typic Plinthustalf), a field experiment was carried out in Petrolina, Pernambuco, on Syrah grapevines. Treatments cons...

  18. Adsorption properties and degradation dynamics of endocrine-disrupting chemical levonorgestrel in soils.

    Science.gov (United States)

    Tang, Tao; Shi, Tianyu; Li, Deguang; Xia, Jinming; Hu, Qiongbo; Cao, Yongsong

    2012-04-25

    Levonorgestrel, a synthetic progesterone used as an oral contraceptive or emergency contraceptive pill, has been shown to be an endocrine-disrupting chemical. To assess the environmental risk of levonorgestrel, batch experiments and laboratory microcosm studies were conducted to investigate the adsorption and degradation of levonorgestrel in five contrasting soils of China. Freundlich and Langmuir models were applied to sorption data to examine the affinity of levonorgestrel for soils with varying physical and chemical properties. The K(f) of levonorgestrel in the tested soils ranged from 10.79 to 60.92 mg(1-n) L(n) kg(-1) with N between 0.69 and 1.23, and the Q(m) ranged from 18.18 to 196.08 mg/kg. The multiple regression analysis was conducted between K(f) and soil properties. Results indicate that total organic carbon plays a dominant role in the adsorption process. Gibbs free energy values less than 40 kJ/mol demonstrate that levonorgestrel sorption on soils could be considered as a physical adsorption. The degradation of levonorgestrel in five soils was fitted by the first-order reaction kinetics model. The half-lives of levonorgestrel were between 4.32 and 11.55 days. The initial concentration and sterilization experiments illustrated that the degradation rate of levonorgestrel in soil was concentration-dependent and microbially mediated. The low mobility potential of levonorgestrel in soils was predicted by the groundwater ubiquity score (GUS) and retardation factor (R(f)).

  19. Effect of shifting cultivation on soil physical and chemical properties in Bandarban hill district, Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Khandakar Showkat Osman; M. Jashimuddin; S. M. Sirajul Haque; Sohag Miah

    2013-01-01

    This study reports the effects of shifting cultivation at slashing stage on soil physicochemical properties at Bandarban Sadar Upazila in Chittagong Hill Tracts of Bangladesh. At this initial stage of shifting cultivation no general trend was found for moisture content, maximum water holding capacity, field capacity, dry and moist bulk density, parti-cle density for some chemical properties between shifting cultivated land and forest having similar soil texture. Organic matter was significantly (p≤0.05) lower in 1-year and 3-year shifting cultivated lands and higher in 2-year shifting cultivation than in adjacent natural forest. Significant differences were also found for total N, exchangeable Ca, Mg and K and in CEC as well as for available P. Slashed area showed higher soil pH. Deterioration in land quality starts from burning of slashing materials and continues through subsequent stages of shifting cultivation.

  20. Potassium fertilization for pineapple: effects on soil chemical properties and plant nutrition

    OpenAIRE

    Luiz Antonio Junqueira Teixeira; José Antonio Quaggio; Heitor Cantarella; Estêvão Vicari Mellis

    2011-01-01

    A field experiment was carried out on an Ultisol located at the city of Agudos (22º30'S; 49º03'W), in the state of São Paulo, Brazil, in order to determine the effects of rates and sources of potassium fertilizer on nutritional status of 'Smooth Cayenne' pineapple and on some soil chemical properties. The experiment was a complete factorial design with four rates (0, 175, 350, and 700 kg ha-1 of K2O) and three combinations of K sources (100% KCl, 100% K2SO4 and 40% K2SO4 + 60% KCl). Soil samp...

  1. Effects of Organic Fertilizer on Fruit Quality and Acidified Soil Chemical Properties in Yantai Orchard

    Institute of Scientific and Technical Information of China (English)

    Yao SUN; Yiming WANG; Peiping ZHANG

    2016-01-01

    Objective] This study aimed to investigate the improving effect of organic fertilizer on acidified soil as wel as their ef-fects on fruit quality and quantity in Yantai orchard. [Method] Plot experiment was conducted to investigate the effects of organic fertilizer on fruit yield and quality of Red Fuji and chemical properties of acidified soil. [Result] The apple yield in acidified soil applied with organic fertilizer al increased. Under the application of biological organic fertilizer, the apple yield was higher, and it was 8.92% higher than that in the control group. Under the mixed application of chemical fertilizer and biological organic fertiliz-er, the growth and development of apple trees were improved, and the total soluble solid (TSS) content, vitamin C (Vc) content and TSS-acid ratio in mature apples al increased. The application of organic fertilizer significantly reduced soil acidity. Compared with those in the control group, the soil pH value, organic matter content and alkali-hydrolyzable nitrogen content under the ap-plication of biological organic fertilizer were increased by 8.33%, 15.10% and 30.80%, respectively. [Conclusion] The application of biological organic fertilizer could improve the yield of apple in acidified soil.

  2. Analysis of the Engineering Restoration Effect of Abandoned Yongledian Quarry in Beijing City Based on Soil Physical and Chemical Properties

    Institute of Scientific and Technical Information of China (English)

    Liwei; CAI

    2014-01-01

    The improvement of the soil physical and chemical properties is the most important foundation for mine ecological restoration.The experiment is aimed at undisturbed area,restored area,and damaged area of abandoned Yongledian Quarry in Beijing.Through determination and analysis of soil physical and chemical properties,it shows that there are significant differences in the composite effects of soil physical and chemical properties between restored area,and undisturbed area,damaged area,and engineering restoration effectively improves the composite effects of soil physical and chemical properties in the restored area.The single factor hypothesis test shows that soil pH value,organic matter,alkali-hydrolyzable nitrogen,and total nitrogen traits are the key targets to be restored in this mining area.

  3. Influence of the Organic Fertilizer Conditon the Content of Heavy Metals and Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    Ján Hecl

    2012-10-01

    Full Text Available Effect of amendment Condit on the mobility and uptake of Cd, Pb and Ni by crops, such as peas, spring barley, carrot and red beet, and selected chemical soil properties was tested in a field trial in years 2006–2008. Experimental field was situated close by sources of pollution, chemical factory Chemko Strážske and waste dump. The soil at experimental area was highly contaminated mainly by Cd. Heavy metals content was tested in the following parts of the crops: pea seed, spring barley green mater, carrot root and red beet root. Heavy metals content in soil and plant samples was detected in 2M HNO3 solution by the AAS method. It was found that Condit reduced Cd content in the soil under each cultivated crop. The most considerable Cd reducing (77.2% was at treatment with pea. The reduction of Pb and Ni content in the soil after Condit application was markedly lower as in the case of Cd, in comparison with control treatment. Positive effect of tested amendment Condit on reduction of Cd uptake was found by all crops under test. The best effect of Condit was found in carrot. Content of Cd in the carrot root was lower for about 55% compared with control treatment without amendment. Soil organic carbon content was significantly higher at treatment with Condit in comparison with control treatment. Measured content of soil organic carbon was higher by 1.16 g kg-1. The changes of soil carbon were insignificant at control treatment. Tested amendment Condit had significant impact on uptake of all measured heavy metals by plants. The result suggests that most significant impact had Condit on uptake of Cd. The measured amounts were the lowest of evaluated heavy metals.

  4. Physical and chemical properties of the Martian soil: Review of resources

    Science.gov (United States)

    Stoker, C. R.; Gooding, James L.; Banin, A.; Clark, Benton C.; Roush, Ted

    1991-01-01

    The chemical and physical properties of Martian surface materials are reviewed from the perspective of using these resources to support human settlement. The resource potential of Martian sediments and soils can only be inferred from limited analyses performed by the Viking Landers (VL), from information derived from remote sensing, and from analysis of the SNC meteorites thought to be from Mars. Bulk elemental compositions by the VL inorganic chemical (x ray fluorescence) analysis experiments have been interpreted as evidence for clay minerals (possibly smectites) or mineraloids (palagonite) admixed with sulfate and chloride salts. The materials contained minerals bearing Fe, Ti, Al, Mg and Si. Martian surface materials may be used in many ways. Martian soil, with appropriate preconditioning, can probably be used as a plant growth medium, supplying mechanical support, nutrient elements, and water at optimal conditions to the plants. Loose Martian soils could be used to cover structures and provide radiation shielding for surface habitats. Martian soil could be wetted and formed into abode bricks used for construction. Duricrete bricks, with strength comparable to concrete, can probably be formed using compressed muds made from martian soil.

  5. Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties

    DEFF Research Database (Denmark)

    Debosz, K.; Petersen, S.O.; Kure, L.K.

    2002-01-01

    Recycling of organic wastes within agriculture may help maintain soil fertility via effects on physical, chemical and biological properties. Efficient use, however, requires an individual assessment of waste products, and effects should be compared with natural variations due to climate and soil...... the fluctuating climatic conditions in the field. To evaluate accumulated effects of repeated waste applications, soil was also sampled from a field trial, in which the sewage sludge and household compost had been applied at the same rates as in the incubation study for three consecutive years. Sampling took...... place after the final harvest, i.e. 5 months after the final waste application. Compost amendment had increased potentially mineralizable N by a factor of 1.8, and sludge amendment had increased the amount of resin-extractable P-i by a factor of 1.6. However, there were no accumulated effects of waste...

  6. Chemical, Biochemical, and Microbiological Properties of Soils from Abandoned and Extensively Cultivated Olive Orchards

    Directory of Open Access Journals (Sweden)

    A. M. Palese

    2013-01-01

    Full Text Available The abandonment of olive orchards is a phenomenon of great importance triggered mainly by economic and social causes. The aim of this study was to investigate some chemical, biochemical, and microbiological properties in a soil of a southern olive grove abandoned for 25 years. In order to define the effect of the long-term land abandonment on soil properties, an adjacent olive grove managed according to extensive practices was taken as reference (essentially minimum tillage and no fertilization. Soil organic matter, total nitrogen, and pH were significantly higher in the abandoned olive grove due to the absence of tillage and the natural inputs of organic matter at high C/N ratio which, inter alia, increased the number of cellulolytic bacteria and stimulated the activity of β-glucosidase, an indicator of a more advanced stage of soil evolution. The soil of the abandoned olive orchard showed a lower number of total bacteria and fungi and a lower microbial diversity, measured by means of the Biolog method, as a result of a sort of specialization trend towards low quality organic substrates. From this point of view, the extensive cultivation management seemed to not induce a disturbance to microbiological communities.

  7. Chemical, biochemical, and microbiological properties of soils from abandoned and extensively cultivated olive orchards.

    Science.gov (United States)

    Palese, A M; Magno, R; Casacchia, T; Curci, M; Baronti, S; Miglietta, F; Crecchio, C; Xiloyannis, C; Sofo, A

    2013-01-01

    The abandonment of olive orchards is a phenomenon of great importance triggered mainly by economic and social causes. The aim of this study was to investigate some chemical, biochemical, and microbiological properties in a soil of a southern olive grove abandoned for 25 years. In order to define the effect of the long-term land abandonment on soil properties, an adjacent olive grove managed according to extensive practices was taken as reference (essentially minimum tillage and no fertilization). Soil organic matter, total nitrogen, and pH were significantly higher in the abandoned olive grove due to the absence of tillage and the natural inputs of organic matter at high C/N ratio which, inter alia, increased the number of cellulolytic bacteria and stimulated the activity of β -glucosidase, an indicator of a more advanced stage of soil evolution. The soil of the abandoned olive orchard showed a lower number of total bacteria and fungi and a lower microbial diversity, measured by means of the Biolog method, as a result of a sort of specialization trend towards low quality organic substrates. From this point of view, the extensive cultivation management seemed to not induce a disturbance to microbiological communities.

  8. Dryland soil chemical properties and crop yields affected by long-term tillage and cropping sequence.

    Science.gov (United States)

    Sainju, Upendra M; Allen, Brett L; Caesar-TonThat, Thecan; Lenssen, Andrew W

    2015-01-01

    Information on the effect of long-term management on soil nutrients and chemical properties is scanty. We examined the 30-year effect of tillage frequency and cropping sequence combination on dryland soil Olsen-P, K, Ca, Mg, Na, SO4-S, and Zn concentrations, pH, electrical conductivity (EC), and cation exchange capacity (CEC) at the 0-120 cm depth and annualized crop yield in the northern Great Plains, USA. Treatments were no-till continuous spring wheat (Triticum aestivum L.) (NTCW), spring till continuous spring wheat (STCW), fall and spring till continuous spring wheat (FSTCW), fall and spring till spring wheat-barley (Hordeum vulgare L., 1984-1999) followed by spring wheat-pea (Pisum sativum L., 2000-2013) (FSTW-B/P), and spring till spring wheat-fallow (STW-F, traditional system). At 0-7.5 cm, P, K, Zn, Na, and CEC were 23-60% were greater, but pH, buffer pH, and Ca were 6-31% lower in NTCW, STCW, and FSTW-B/P than STW-F. At 7.5-15 cm, K was 23-52% greater, but pH, buffer pH, and Mg were 3-21% lower in NTCW, STCW, FSTCW, FSTW-B/P than STW-F. At 60-120 cm, soil chemical properties varied with treatments. Annualized crop yield was 23-30% lower in STW-F than the other treatments. Continuous N fertilization probably reduced soil pH, Ca, and Mg, but greater crop residue returned to the soil increased P, K, Na, Zn, and CEC in NTCW and STCW compared to STW-F. Reduced tillage with continuous cropping may be adopted for maintaining long-term soil fertility and crop yields compared with the traditional system.

  9. Effects of Irrigation Practices on Some Soil Chemical Properties on OMI Irrigation Scheme

    Directory of Open Access Journals (Sweden)

    M.A. Adejumobi

    2014-10-01

    Full Text Available Irrigation practices have been observed to impact scheme soil properties and other parameters negatively. These could be as a result of irrigation water quality, method of application and nature of scheme soil. This study was therefore conducted to study the effects of irrigation practices on the soils of Omi irrigation scheme Kogi state, Nigeria after 13years of operation. Soil samples were taken at depths 0 – 20 cm (A1, 20 – 80 cm (A2 and 80 – 120 cm (A3 from two operating lands (OL; OL 5 and OL 18 of the study area. The samples were analysed for chemical parameters (pH, CEC, ESP, Mg2+, Ca2+, OM, and OC. The soil pH which was in the neutral range (pH=6.65 to 7.00 at inception of scheme, has become slightly acidic (pH=6.53 to 6.60. Cation exchange capacity (CEC levels have also increased from 10cmol+kg-1 to 35cmol+kg-1. While Organic matter (OM and Organic carbon (OC also have marked increase in their levels (baseline as 0.93 to 1.08; for year 2013 as 9.52 to 9.79. Generally, the analysis indicated a need for proper monitoring of the scheme soil to prevent further deterioration.

  10. Estimation of soil profile physical and chemical properties using a VIS-NIR-EC-force probe

    Science.gov (United States)

    Combining data collected in-field from multiple soil sensors has the potential to improve the efficiency and accuracy of soil property estimates. Optical diffuse reflectance spectroscopy (DRS) has been used to estimate many important soil properties, such as soil carbon, water content, and texture. ...

  11. Effects of a Wildfire on Selected Physical, Chemical and Biochemical Soil Properties in a Pinus massoniana Forest in South China

    Directory of Open Access Journals (Sweden)

    Li Xue

    2014-11-01

    Full Text Available Pinus massoniana forests bordering South China are often affected by wildfires. Fires cause major changes in soil properties in many forest types but little is known about the effects of fire on soil properties in these P. massoniana forests. Such knowledge is important for providing a comprehensive understanding of wildfire effects on soil patterns and for planning appropriate long-term forest management in these forests. Changes in soil physical properties, carbon, nutrients, and enzymes were investigated in a P. massoniana forest along a wildfire-induced time span consisting of an unburned soil, and soils 0, one, four, and seven years post-fire. Soil (0–10 cm was collected from burned and unburned sites immediately and one, four, and seven years after a wildfire. The wildfire effects on soil physical and chemical properties and enzyme activities were significantly different among treatment variation, time variation, and treatment-by-time interaction. Significant short-term effects on soil physical, chemical, and biological properties were found, which resulted in a deterioration of soil physical properties by increasing soil bulk density and decreasing macropores and capillary moisture. Soil pH increased significantly in the soil one-year post-fire. Carbon, total nitrogen (N and phosphorus (P, and available N and P increased significantly immediately and one year after the wildfire and decreased progressively to concentrations lower than in the unburned soil. Total potassium (K and exchangeable K increased immediately after the wildfire and then continuously decreased along the burned time-span. Urease, acid phosphatase, and catalase activities significantly decreased compared to those in the unburned soil. In fire-prone P. massoniana forests, wildfires may significantly influence soil physical properties, carbon, nutrients, and enzyme activity.

  12. Effects of Biochar on Chemical Properties of Three Types of Soil and Nutrient Uptake of Maize under Drought Stress

    Directory of Open Access Journals (Sweden)

    ThiHuong Nguyen

    2015-09-01

    Full Text Available This study was conducted to determine the effects of biochar on the chemical properties of three types of soils and the nutrient uptake and yield of the maize plant grown on the soils. The experimental results are as follows: (i In Loess soil, when the biochar application rate was 15 t/ha, the soil chemical properties was barely improved, but the nutrient uptake of maize was obviously improved. The amount of biochar application was at 30 t/ha, the result was just on the contrary and 60 t/ha application of biochar performed a poor effect on the soil chemical properties as well as on the nutrient uptake of maize. (ii In sandy soil, when the application of biochar reached to 15 t/ha, there were not remarkable effects on soil chemical properties and moderate promoting effect on nutrient uptake of maize. Additionally, the biochar application at a rate of 30 t/ha led to a small effect on the both, but 60 t/ha amount made a significant improvement in both. (iii In loessal soil, applying 15 t/ha biochar to soil had a moderate effect on chemical properties’ improvement, but the promotional effect on nutrient uptake of maize is poor. When the amount of biochar application was at 30 t/ha, soil chemical properties were significantly improved but the effect on nutrient uptake of maize was moderate. However, 60 t/ha biochar application obviously improved nutrient uptake of maize, but the effect of chemical properties improvement was poor.

  13. Decoupling the deep: crop rotations, fertilization and soil physico-chemical properties down the profile

    Science.gov (United States)

    Hobley, Eleanor; Honermeier, Bernd; Don, Axel; Amelung, Wulf; Kögel-Knabner, Ingrid

    2017-04-01

    . This resulted in a reduction of N density at depth, which was not mirrored in C densities, indicating that fava beans decouple C and N cycles in the deep soil profile. We then tested whether these effects are a result of plant (i.e. enhanced rooting depth associated with lowered subsoil bulk density) or microbial (i.e. N-cycling and denitrification processes) activities, by investigating the isotopic signatures of C and N down the profile. Our results indicate that the selection of crop rotation influences soil C and N cycling and depth distribution. Although mineral N fertilizer has significant benefits for yield, the choice of crop rotation has a greater influence on soil C and N cycling and specifically the addition of leguminous plants into rotation can provide additional yield benefits and stability. Incorporating legumes into crop rotations affects soil physical and chemical properties and decouples C and N cycles in the deep soil profile, indicating different nutrient and water cycling processes in the deep soil profile.

  14. Spatial heterogeneity of soil chemical properties between Haloxylon persicum and Haloxylon ammodendron populations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Spatial heterogeneity is a ubiquitous feature in natural ecosystems, especially in arid regions. Different species and their discontinuous distribution, accompanied by varied topographic characteristics, result in soil resources distributed differently in different locations, and present significant spatial heterogeneity in desert ecosystems. In this study, conventional and geostatistical methods were used to identify the heterogeneity of soil chemical properties in two desert populations, Haloxylon persicum Bunge ex Boss., which dominates on the slopes and tops of sand dunes and Haloxylon ammodendron (C. A. Mey.) Bunge, which inhabits interdunes in the Gurbantunggut Desert of Xinjiang, China. The results showed that soil pH, electrical conductivity (EC), soil organic carbon (SOC), available nitrogen (AN) and available phosphorus (AP) were significantly higher in H. ammodendron populations than that in H. persicum. The coefficient of variation (CV) indicated that (1) most parameters presented a moderate degree of variability (10% < CV < 100%) except pH in both plots, (2) the variability of soil pH, EC and AP in H. ammodendron populations was higher than that in H. persicum populations, and (3) SOC and AN in H. ammodendron populations were lower than that in H. persicum populations. Geostatistical analysis revealed a strong spatial dependence (C0/(C0+C) < 25%) within the distance of ranges for all tested parameters in both plots. The Kriging-interpolated figures showed that the soil spatial distribution was correlated with the vegetation distribution, individual size of plants, and the topographic features, especially with the plants nearest to sampling points and the topographic features. In each plot, soil EC, SOC, AN and AP presented similar distributions, and fertile islands and salt islands occurred in both plots but did not affect every individual plant, since the sampling distance was larger than the size of such fertile islands. The results of topographic

  15. Spatial heterogeneity of soil chemical properties between Haloxylon persicum and Haloxylon mmodendron populations

    Institute of Scientific and Technical Information of China (English)

    CongJuan LI; Yan LI; Jian MA; LianLian FAN; QinXue WANG

    2010-01-01

    Spatial heterogeneity is a ubiquitous feature in natural ecosystems,especially in arid regions.Different species and their discontinuous distribution,accompanied by varied topographic characteristics,result in soil resources distributed differently in different locations,and present significant spatial heterogeneity in desert ecosystems.In this study,conventional and geostatistical methods were used to identify the heterogeneity of soil chemical properties in two desert populations,Haloxylon persicum Bunge ex Boss.,which dominates on the slopes and tops of sand dunes and Haloxylon ammodendron (C.A.Mey.) Bunge,which inhabits interdunes in the Gurbantunggut Desert of Xinjiang,China.The results showed that soil pH,electrical conductivity (EC),soil organic carbon (SOC),available nitrogen (AN) and available phosphorus (AP) were significantly higher in H.ammodendron populations than that in H.persicum.The coefficient of variation (CV) indicated that (1) most parameters presented a moderate degree of variability (10%<CV<100%) except pH in both plots,(2) the variability of soil pH,EC and AP in H.ammodendron populations was higher than that in H.persicum populations,and (3) SOC and AN in H.ammodendron populations were lower than that in H.persicurn populations.Geostatistical analysis revealed a strong spatial dependence (Co/(Co+C)<25%) within the distance of ranges for all tested parameters in both plots.The Kriging-interpolated figures showed that the soil spatial distribution was correlated with the vegetation distribution,individual size of plants,and the topographic features,especially with the plants nearest to sampling points and the topographic features.In each plot,soil EC,SOC,AN and AP presented similar distributions,and fertile islands and salt islands occurred in both plots but did not affect every individual plant,since the sampling distance was larger than the size of such fertile islands.The results of topographic effects on soil heterogeneity suggested

  16. The effects of the physical and chemical properties of soils on the spectral reflectance of soils

    Science.gov (United States)

    Montgomery, O. L.; Baumgardner, M. F.

    1974-01-01

    The effects of organic matter, free iron oxides, texture, moisture content, and cation exchange capacity on the spectral reflectance of soils were investigated along with techniques for differentiating soil orders by computer analysis of multispectral data. By collecting soil samples of benchmark soils from the different climatic regions within the United States and using the extended wavelength field spectroradiometer to obtain reflectance values and curves for each sample, average curves were constructed for each soil order. Results indicate that multispectral analysis may be a valuable tool for delineating and quantifying differences between soils.

  17. Impact of ancient charcoal kilns on chemical properties of several forest soils after 2 centuries

    Science.gov (United States)

    Dufey, Joseph; Hardy, Brieuc; Cornelis, Jean-Thomas

    2014-05-01

    negative charge of charcoal results from surface oxidation processes over time. This charge varies over quite a wide range of values according to soil type, which might be explained by the nature of the charred wood. The surface soil horizons at kiln site show a completely desaturated exchange complex, comparable to the reference soils. However, the raise of the base saturation in the underlying horizons reflects the past liming effect of ashes produced by wood charring that has been completely erased from the topsoil in 200 years. Exchangeable K+ in the topsoil layers of kiln sites is very low, which can be related to an enhanced selectivity for Mg++ and Ca++ on the exchange complex of old charred material. Similarly, very little Pav is extracted from charcoal-enriched horizons, suggesting that Pav is either reduced in quantity or in availability. Our data clearly highlight the long-term effect of the accumulation of charred material on the evolution of soil chemical properties due to charcoal ageing and nutrient leaching.

  18. Effects of anthropogenic particles on the chemical and geophysical properties of urban soils, Detroit, Michigan

    Science.gov (United States)

    Orlicki, Katharine M.

    There is a great need in many cities for a better quality of urban soil maps. This is due to the increasing interest in repurposing vacant land for urban redevelopment, agriculture, and green infrastructure. Mapping vacant urban land in Detroit can be very difficult because anthropogenic soils were often highly variable and frequently contained demolition debris (such as brick), making it difficult to use a hand auger. This study was undertaken in Detroit, MI to create a more efficient way to map urban soils based on their geophysical and chemical properties. This will make the mapping process faster, less labor intensive, and therefore more cost effective. Optical and chemical criteria for the identification and classification of microartifacts (MAs) were made from a set of reference artifacts of a known origin. These MAs were then observed and tested in urban topsoil samples from sites in Detroit, Michigan that represent three different land use types (residential demolition, fly ash-impacted, and industrial). Optical analyses, SEM, EDAX, and XRD showed that reference MAs may be classified into five basic compositional types (carbonaceous, calcareous, siliceous, ferruginous and miscellaneous). Reference MAs were generally distinguishable using optical microscopy by color, luster, fracture and microtexture. MAs that were more difficult to classify were further differentiable when using SEM, EDAX, and XRD. MAs were found in all of the anthropogenic soils studied, but were highly variable. All three study sites had concentrations coal-related wastes were the most common types of MAs observed and often included coal, ash (microspheres, microagglomerate), cinders, and burnt shale. MAs derived from waste building materials such as brick, mortar, and glass, were typically found on residential demolition sites. Manufacturing waste MAs, which included iron-making slag and coked coal were commonly observed on industrial sites. Fly ash-impacted sites were composed of only

  19. PHOSPHOGYPSUM AND VINASSE APPLICATION: SOIL CHEMICAL PROPERTIES AND ALFALFA PRODUCTIVITY AND NUTRITIONAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    RONALDO DO NASCIMENTO

    2017-01-01

    Full Text Available The objective of this work was to evaluate the effects of the application of phosphogypsum and vinasse on soil chemical properties and productivity and nutritional characteristics of alfalfa (Medicago sativa. The experiment was conducted in a randomized block design, using a 3×5 factorial arrangement, with three vinasse rates (0, 150 and 300 m3 ha-1 and five phosphogypsum rates (0, 3, 6, 9 and 12 Mg ha-1. The alfalfa chemical composition and shoot dry matter (SDW and soil chemical properties (in the layers 0.0-0.2 and 0.21-0.4 m were evaluated. The vinasse rates increased the soil potassium contents, while the phosphogypsum rates promoted linear increases in soil calcium and sulfur contents. The base saturation was increased and the magnesium content showed a quadratic response on the layer 0.21-0.4 m with the increase in phosphogypsum rates. The calcium, magnesium and phosphorus contents in the alfalfa leaves were lower with vinasse application. The phosphogypsum rates promoted linear increases in alfalfa SDW. Vinasse rated 150 m3 ha-1 was been enough to SDW increase. Calcium and magnesium contents in the leaves fitted a quadratic model, with maximum calcium content in the phosphogypsum rate of 9.5 Mg ha-1 and the minimum magnesium content in the phosphogypsum rate of 8.7 Mg ha-1. The leaf sulfur contents in all vinasse rates and leaf potassium contents in the highest vinasse rate showed maximum accumulation at near 9 Mg ha-1 of phosphogypsum.

  20. Potassium fertilization for pineapple: effects on soil chemical properties and plant nutrition

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Junqueira Teixeira

    2011-06-01

    Full Text Available A field experiment was carried out on an Ultisol located at the city of Agudos (22º30'S; 49º03'W, in the state of São Paulo, Brazil, in order to determine the effects of rates and sources of potassium fertilizer on nutritional status of 'Smooth Cayenne' pineapple and on some soil chemical properties. The experiment was a complete factorial design with four rates (0, 175, 350, and 700 kg ha-1 of K2O and three combinations of K sources (100% KCl, 100% K2SO4 and 40% K2SO4 + 60% KCl. Soil samples were taken from the depths 0-20 cm, 20-40 cm and 40-60 cm at planting and 14 months after. Nutritional status of pineapple plants was assessed by means of tissue analysis. Soil K availability increased with application of K fertilizer, regardless of K sources. Soil chlorine and Cl concentration in pineapple leaves increased with application of KCl or K2SO4+KCl. Plant uptake of potassium was shaped by soil K availability and by the application rates of K fertilizer, independently of K sources.

  1. Effects of serpentinite fertilizer on the chemical properties and enzyme activity of young spruce soils

    Science.gov (United States)

    Błońska, Ewa; Januszek, Kazimierz; Małek, Stanisław; Wanic, Tomasz

    2016-10-01

    The experimental plots used in the study were located in the middle forest zone (elevation: 900-950 m a.s.l.) on two nappes of the flysch Carpathians in southern Poland. The aim of this study was to assess the effects of serpentinite in combination with nitrogen, phosphorus, and potassium fertilizers on selected chemical properties of the soil and activity of dehydrogenase and urease in the studied soils. All fertilizer treatments significantly enriched the tested soils in magnesium. The use of serpentinite as a fertilizer reduced the molar ratio of exchangeable calcium to magnesium, which facilitated the uptake of magnesium by tree roots due to competition between calcium and magnesium. After one year of fertilization on the Wisła experimental plot, the pH of the Ofh horizon increased, while the pH of the mineral horizons significantly decreased. Enrichment of serpentinite with nitrogen, phosphorus, and potassium fertilizers stimulated the dehydrogenase activity in the studied organic horizon. The lack of a negative effect of the serpentinite fertilizer on enzyme activity in the spruce stand soil showed that the concentrations of the heavy metals added to the soil were not high enough to be toxic and indicated the feasibility of using this fertilizer in forestry.

  2. Physico-chemical properties and fertility status of water eroded soils of Sharkul area of district Mansehra, Pakistan

    Directory of Open Access Journals (Sweden)

    Farmanullah Khan, A. Iqbal

    2011-11-01

    Full Text Available Soil degradation is the major threat to agricultural sustainability because it affects the soil productivity. Present study was conducted in 2008 to evaluate physico-chemical properties and fertility status of some eroded soil series of Sharkul area district Manshera, Hazara division, Khyber Pakhtunkhwa, Pakistan. Six soil series including slightly eroded (Dosera and Girari, moderately eroded (Nakholi and Sharkul and severely eroded (Ahl and Banser were selected. Soil samples were collected from surface (0-15 cm, subsurface (30-45 cm and substrata soil (60-75cm depths and were analyzed for various soil properties. Due to severity of erosion, bulk density increased, while total porosity, saturation percentage and organic matter decreased significantly. AB-DTPA extractable P, K, Fe, Cu, Zn, and Mn concentrations were decreased due to the severity of erosion in surface and sub surface soils, whereas in the substrata soils (60-75 cm depth, the effect of erosion was almost non significant. Sub-surface and sub-strata soils were found deficient in available P ( Zn > Fe > Mn. The physical and chemical properties of eroded soils varied significantly and the increasing severity of erosion resulted in corresponding deterioration of soil quality.

  3. The chemical properties of soil for alfalfa production after biofertiliser application

    OpenAIRE

    Rodrigo Luis Lemes; Cecílio Viega Soares Filho; Manoel Garcia Neto; Reges Heinrichs

    2013-01-01

    The objective of this study was to evaluate the use of biofertilisers for the production of alfalfa shoot, root and nodule dry matter, and also, to evaluate the chemical properties of the soil. This study was conducted in the greenhouse of the Support Department, Animal Production and Health, Faculty of Veterinary Medicine/UNESP, Araçatuba – SP, from May to October 2010. The experimental design was completely randomised with six biofertiliser doses (0, 25, 50, 100, 200 and 400 m3 ha-1) and fi...

  4. Impact of a low intensity controlled-fire in some chemical soil properties.

    Science.gov (United States)

    Martínez-Murillo, Juan F.; Hueso-González, Paloma; Aranda-Gómez, Francisco; Damián Ruiz-Sinoga, José

    2014-05-01

    Some changes in chemical soil properties can be observed after fires of low intensities. pH and electric conductivity tend to increase, while C/N ratio decrease. In the case of organic matter, the content can increase due to the massive incorporation of necromass including, especially, plants and roots. The aim of this study is to assess the impact of low intensity and controlled fire in some soil properties in field conditions. El Pinarillo experimental area is located in South of Spain. Two set of closed plots were installed (24 m2: 12 m length x 2 m width). One of them was remained as control with the original vegetation cover (Mediterranean matorral: Rosmarinus officinalis, Cistus clusii, Lavandula stoechas, Chamaeropos humilis, Thymus baetica), and the other one was burnt in a controlled-fire in 2011. Weather conditions and water content of vegetation influenced in the intensity of fire (low). After the controlled-fire, soil surface sample (0-5 cm) were taken in both set of plots (B, burnt soil samples; C, control soil samples). Some soil chemical properties were analysed: organic matter content (OM), C/N ratio, pH and electrical conductivity (EC). Some changes were observed in B corroborating a controlled-fire of low intensity. pH remained equal after fire (B: pH=7.7±0.11; C: pH=7.7±0.04). An increment was obtained in the case of EC (B: EC=0.45 mScm-1±0.08 mScm-1; C: EC=0.35 mScm-1±0.07 mScm-1) and OM (B: OM=8.7%±3.8%; C: pH=7.3%±1.5%). Finally, C/N ratio decreased after fire respect to the control and initial conditions (B: C/N=39.0±14.6; C: C/N =46.5±10.2).

  5. Physical, chemical, and biological properties of soils in the city of Mariupol, Ukraine

    Science.gov (United States)

    Shekhovtseva, O. G.; Mal'tseva, I. A.

    2015-12-01

    Physicochemical and biological properties of urbanized soils in the city of Mariupol have been considered in comparison with the background soils. The parametrical characteristics (abundance and biomass) of soil algal groups, the content of humus, the reaction of soil solution, the content of heavy metals, and the particle size distributions of soils under different anthropogenic impacts have been assessed. The physicochemical properties of soils developing under urboecosystem conditions affect the number of structure-forming species, biomass, and proportions of soil algae. According to the particle size distribution, urban soils are classified among the medium and heavy loamy soils with the predominance of the clay and coarse silt fractions. The fractions of physical clay and clay are of highest importance for the existence of algae. The accumulation of heavy metals in the surface horizons of soils can stimulate or inhibit the development of algae depending on the metal concentration.

  6. Geotechnical evaluation of some properties of the physical and chemical soil selected sites in Najaf – Iraq

    Directory of Open Access Journals (Sweden)

    Kamal R. Mauff

    2017-05-01

    Full Text Available This study was conducted on selected soil in the governorate of Al- Najaf, for the purpose of identifying some of the physical and chemical properties and its importance to the establishment of engineering at the site, and based on the investigation of the engineering. For soil investigation, with a 10-borehole test. It was found from the results obtained from field and laboratory work that soil study area like the soil Mesopotamian plain areas where silty clay is high plasticity interspersed with shallow sandy soils of some sites, which need some engineering treatments to improve their quality

  7. Investigation into the Physico-Chemical Properties of Soils of Caspian Sea Coastal Area in Mangystau Province

    Directory of Open Access Journals (Sweden)

    Samal Syrlybekkyzy

    2014-12-01

    Full Text Available The article discusses the results of investigation into physico-chemical properties of coastal soils in the areas of oil fields. it has been established that the considered soils are characterized with low content of organics, alkaline reaction of soil solutions, high salinity and weak resistance against anthropogenic impacts. The obtained data can be applied for further studies and monitoring of environment in oil field areas.

  8. Effect of byproducts of flue gas desulfurization on the soluble salts composition and chemical properties of sodic soils.

    Science.gov (United States)

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2013-01-01

    The byproducts of flue gas desulfurization (BFGD) are a useful external source of Ca(2+) for the reclamation of sodic soils because they are comparatively cheap, generally available and have high gypsum content. The ion solution composition of sodic soils also plays an important role in the reclamation process. The effect of BFGD on the soluble salts composition and chemical properties of sodic soils were studied in a soil column experiment. The experiment consisted of four treatments using two different sodic soils (sodic soil I and sodic soil II) and two BFGD rates. After the application of BFGD and leaching, the soil soluble salts were transformed from sodic salts containing Na2CO3 and NaHCO3 to neutral salts containing NaCl and Na2SO4. The sodium adsorption ratio (SAR), pH and electrical conductivity (EC) decreased at all soil depths, and more significantly in the top soil depth. At a depth of 0-40 cm in both sodic soil I and sodic soil II, the SAR, EC and pH were less than 13, 4 dS m(-1) and 8.5, respectively. The changes in the chemical properties of the sodic soils reflected the changes in the ion composition of soluble salts. Leaching played a key role in the reclamation process and the reclamation effect was positively associated with the amount of leaching. The soil salts did not accumulate in the top soil layer, but there was a slight increase in the middle and bottom soil depths. The results demonstrate that the reclamation of sodic soils using BFGD is promising.

  9. Effect of byproducts of flue gas desulfurization on the soluble salts composition and chemical properties of sodic soils.

    Directory of Open Access Journals (Sweden)

    Jinman Wang

    Full Text Available The byproducts of flue gas desulfurization (BFGD are a useful external source of Ca(2+ for the reclamation of sodic soils because they are comparatively cheap, generally available and have high gypsum content. The ion solution composition of sodic soils also plays an important role in the reclamation process. The effect of BFGD on the soluble salts composition and chemical properties of sodic soils were studied in a soil column experiment. The experiment consisted of four treatments using two different sodic soils (sodic soil I and sodic soil II and two BFGD rates. After the application of BFGD and leaching, the soil soluble salts were transformed from sodic salts containing Na2CO3 and NaHCO3 to neutral salts containing NaCl and Na2SO4. The sodium adsorption ratio (SAR, pH and electrical conductivity (EC decreased at all soil depths, and more significantly in the top soil depth. At a depth of 0-40 cm in both sodic soil I and sodic soil II, the SAR, EC and pH were less than 13, 4 dS m(-1 and 8.5, respectively. The changes in the chemical properties of the sodic soils reflected the changes in the ion composition of soluble salts. Leaching played a key role in the reclamation process and the reclamation effect was positively associated with the amount of leaching. The soil salts did not accumulate in the top soil layer, but there was a slight increase in the middle and bottom soil depths. The results demonstrate that the reclamation of sodic soils using BFGD is promising.

  10. Effcet of Long—Term Application of Compost on Some Chemical Properties of Wheat Rhizosphere and NonRhizosphere Soils

    Institute of Scientific and Technical Information of China (English)

    SHENALIN; LIXUEYUAN; 等

    1996-01-01

    Compost of different rates was applied to artificial field plots of a low humic andosol at National Agriculture Research Center (NARC)of Japan for 15 or 28 years,and their effects on the chemical properties of wheat rhizosphere soil and nonrhizosphere soil were measured.Contiuous application of compost for 28 years resulted in raise of soil C,N,P,pH and exchangeable based.The building up of compost for 28 years resulted in raise of soil C,N,P,pH and exchangeale bases,The building up of organic matter in the soil occureed slowly.A residual effect of the compost on soil chemical properties was still present after 13 years of no application,but this effect was weaker in comparison with that of the continuous application treatments.In the rhizosphere soil,NaHCO3-extracted P and exchangeable Ca were higher than those in the bulk soil.The removal of free organic acid slightly affected the soil pH,especially,the rhizosphere soil pH.The raise of soil pH may result from the increase of exchangeable base by the application of compost.

  11. Soil Chemical Properties and Soybean Yield Due to Application Biochar and Compost of Plant Waste

    Directory of Open Access Journals (Sweden)

    Junita Barus

    2016-01-01

    Full Text Available he importance to return organic matter to the soil has been widely recognized, especially to agricultural lands that are low in organic matter and nutrients contents that will decrease the productivity of food crops. This study aimed to study the effect of biochar (rice husk and corn cob biochar and straw compost on soil chemical properties and yield of soybean (Glycine max (L. Merr. The experiments were done in the laboratory and the field experiment at February–July 2015. The first study was laboratory test using a randomized block design with three replicates. Soil samples were ground and sieved to obtain the less than 4 mm fraction for the incubation experiment. A five kg soil was mixtured with amandement treatments (A: control; B: Rice husk biochar 10 Mg ha-1 ; C: corn cob 10 Mg ha-1; D: straw compost 10 Mg ha-1; and E. Rice husk biochar 10 Mg ha-1 + straw compost 10 Mg ha-1 ; F. corn cob biochar 10 Mg ha-1 + straw compost 10 Mg ha-1 were filled into plastic pots. The treatments were incubated for 1 and 2 months. Soil samples measured were pH, Organic-C, Total-N, P2O5 (Bray-1, K2O (Morgan, Na, Ca, Mg, S, and CEC. The field experiment was conducted at Sukaraja Nuban Village, Batanghari Nuban sub district, East Lampung Regency. The treatments (similar too laboratory experiment were arranged in a randomized block design with four replicates. Plot size was 10 m × 20 m, and soybean as crop indicators. The parameters observed were plant heigh, number of branches , number of pods per plant , number of seeds per plant, grain weight, and stover. The results of laboratory experiment showed that application of biochar and compost improve soil fertility due to the increase in soil pH and nutrient availability for plant especially P2O5 and K2O available. The treatment of a rice husk biochar and compost mixture was better than single application to improve soil fertility and soybean yield. Apllication mixture husk biochar 10 Mg ha-1and straw compost

  12. Soil Chemical Properties and Soybean Yield Due to Application of Biochar and Compost of Plant Waste

    Directory of Open Access Journals (Sweden)

    Junita Barus

    2016-01-01

    Full Text Available The importance to return organic matter to the soil has been widely recognized, especially to agricultural lands that are low in organic matter and nutrients contents that will decrease the productivity of food crops. This study aimed to study the effect of biochar (rice husk and corn cob biochar and straw compost on soil chemical properties and yield of soybean (Glycine max (L. Merr. The experiments were done in the laboratory and the field experiment at February–July 2015. The first study was laboratory test using a randomized block designwith three replicates. Soil samples were ground and sieved to obtain the less than 4 mm fraction for the incubation experiment. A five kg soil was mixtured with amandement treatments (A: control; B: Rice husk biochar 10 Mg ha-1 ; C: corn cob 10 Mg ha-1; D: straw compost 10 Mg ha-1; and E. Rice husk biochar 10 Mg ha-1 + straw compost 10 Mg ha-1 ; F. corn cob biochar 10 Mg ha-1 + straw compost 10 Mg ha-1 were filled into plastic pots. The treatments were incubated for 1 and 2 months. Soil samples measured were pH, Organic-C, Total-N, P2O5 (Bray-1, K2O (Morgan, Na, Ca, Mg, S, and CEC. The field experiment was conducted at Sukaraja Nuban Village, Batanghari Nuban sub district, East Lampung Regency. The treatments (similar too laboratory experiment were arranged in a randomized block design with four replicates. Plot size was 10 m× 20 m, and soybean as crop indicators. The parameters observed were plant heigh, number of branches , number of pods per plant , number of seeds per plant, grain weight, and stover. The results of laboratory experiment showed that application of biochar and compost improve soil fertility due to the increase in soil pH and nutrient availability for plant especially P2O5 and K2O available. The treatment of a rice husk biochar and compost mixture was better than single application to improve soil fertility and soybean yield. Apllication mixture husk biochar 10 Mg ha-1and straw compost 10

  13. Impact of forest fire on physical, chemical and biological properties of soil: A review

    Directory of Open Access Journals (Sweden)

    Satyam Verma

    2012-09-01

    Full Text Available Forest fire is very common to all the ecosystems of the world. It affects both vegetation and soil. It is also helpful in maintaining diversity and stability of ecosystems. Effect of forest fire and prescribed fire on forest soil is very complex. It affects soil organic matter, macro and micro-nutrients, physical properties of soil like texture, colour, pH, Bulk Density as well as soil biota. The impact of fire on forest soil depends on various factors such as intensity of fire, fuel load and soil moisture. Fire is beneficial as well as harmful for the forest soil depending on its severity and fire return interval. In low intensity fires, combustion of litter and soil organic matter increase plant available nutrients, which results in rapid growth of herbaceous plants and a significant increase in plant storage of nutrients. Whereas high intensity fires can result into complete loss of soil organic matter, volatilization of N, P, S, K, death of microbes, etc. Intense forest fire results into formation of some organic compounds with hydrophobic properties, which results into high water repellent soils. Forest fire also causes long term effect on forest soil. The purpose of this paper is to review the effect of forest fire on various properties of soil, which are important in maintaining healthy ecosystem.

  14. Impact of vetch cover crop on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia

    Science.gov (United States)

    Demelash, Nigus; Klik, Andreas; Holzmann, Hubert; Ziadat, Feras; Strohmeier, Stefan; Bayu, Wondimu; Zucca, Claudio; Abera, Atikilt

    2016-04-01

    Cover crops improve the sustainability and quality of both natural system and agro ecosystem. In Gumara-Maksegnit watershed which is located in Lake Tana basin, farmers usually use fallow during the rainy season for the preceding chickpea production system. The fallowing period can lead to soil erosion and nutrient losses. A field experiment was conducted during growing seasons 2014 and 2015 to evaluate the effect of cover crops on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia. The plot experiment contained four treatments arranged in Randomized Complete Block Design with three replications: 1) Control plot (Farmers' practice: fallowing- without cover crop), 2) Chickpea planted with Di-ammonium phosphate (DAP) fertilizer with 46 k ha-1 P2O5 and 23 k ha-1 nitrogen after harvesting vetch cover crop, 3) Chick pea planted with vetch cover crop incorporated with the soil as green manure without fertilizer, 4) Chick pea planted with vetch cover crop and incorporated with the soil as green manure and with 23 k ha-1 P2O5 and 12.5 k ha-1 nitrogen. Each plot with an area of 36 m² was equipped with a runoff monitoring system. Vetch (Vicia sativa L.) was planted as cover crop at the onset of the rain in June and used as green manure. The results of the experiment showed statistically significant (P 0.05) on average plant height, average number of branches and hundred seed weight. Similarly, the results indicated that cover crop has a clear impact on runoff volume and sediment loss. Plots with vetch cover crop reduce the average runoff by 65% and the average soil loss decreased from 15.7 in the bare land plot to 8.6 t ha-1 with plots covered by vetch. In general, this result reveales that the cover crops, especially vetch, can be used to improve chickpea grain yield in addition to reduce soil erosion in the watershed.

  15. Chemical properties of soils treated with biological sludge from gelatin industry

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Melo Guimarães

    2012-04-01

    Full Text Available The impact of agro-industrial organic wastes in the environment can be reduced when used in agriculture. From the standpoint of soil fertility, residue applications can increase the organic matter content and provide nutrients for plants. This study evaluated the effect of biological sludge from gelatin industry on the chemical properties of two Ultisols (loamy sand and sandy clay and an Oxisol (clay. The experiment lasted 120 days and was carried out in laboratory in a completely randomized design with factorial arrangement, combining the three soils and six biological sludge rates (0, 100, 200, 300, 400, and 500 m³ ha-1, with three replications. Biological sludge rates of up to 500 m³ ha-1 decreased soil acidity and increased the effective cation exchange capacity (CEC and N, Ca, Mg, and P availability, without exceeding the tolerance limit for Na. The increase in exchangeable base content, greater than the effective CEC, indicates that the major part of cations added by the sludge remains in solution and can be lost by leaching.

  16. Impact of forest fire on physical, chemical and biological properties of soil: A review

    OpenAIRE

    Satyam Verma; S Jayakumar

    2012-01-01

    Forest fire is very common to all the ecosystems of the world. It affects both vegetation and soil. It is also helpful in maintaining diversity and stability of ecosystems. Effect of forest fire and prescribed fire on forest soil is very complex. It affects soil organic matter, macro and micro-nutrients, physical properties of soil like texture, colour, pH, Bulk Density as well as soil biota. The impact of fire on forest soil depends on various factors such as intensity of fire, fuel load and...

  17. Key indicator tools for shallow slope failure assessment using soil chemical property signatures and soil colour variables.

    Science.gov (United States)

    Othman, Rashidi; Hasni, Shah Irani; Baharuddin, Zainul Mukrim; Hashim, Khairusy Syakirin Has-Yun; Mahamod, Lukman Hakim

    2017-07-18

    Slope failure has become a major concern in Malaysia due to the rapid development and urbanisation in the country. It poses severe threats to any highway construction industry, residential areas, natural resources and tourism activities. The extent of damages that resulted from this catastrophe can be lessened if a long-term early warning system to predict landslide prone areas is implemented. Thus, this study aims to characterise the relationship between Oxisols properties and soil colour variables to be manipulated as key indicators to forecast shallow slope failure. The concentration of each soil property in slope soil was evaluated from two different localities that consist of 120 soil samples from stable and unstable slopes located along the North-South Highway (PLUS) and East-West Highway (LPT). Analysis of variance established highly significant difference (P < 0.0001) between the locations, the total organic carbon (TOC), soil pH, cation exchange capacity (CEC), soil texture, soil chromaticity and all combinations of interactions. The overall CIELAB analysis leads to the conclusion that the CIELAB variables lightness L*, c* (Chroma) and h* (Hue) provide the most information about soil colour and other related soil properties. With regard to the relationship between colour variables and soil properties, the analysis detected that soil texture, organic carbon, iron oxide and aluminium concentration were the key factors that strongly correlate with soil colour variables at the studied area. Indicators that could be used to predict shallow slope failure were high value of L*(62), low values of c* (20) and h* (66), low concentration of iron (53 mg kg(-1)) and aluminium oxide (37 mg kg(-1)), low soil TOC (0.5%), low CEC (3.6 cmol/kg), slightly acidic soil pH (4.9), high amount of sand fraction (68%) and low amount of clay fraction (20%).

  18. Chemical soil properties in the river basin of Vacacaí-Mirim

    Directory of Open Access Journals (Sweden)

    Pedro Daniel da Cunha Kemerich

    2013-09-01

    Full Text Available The levels of metals in soils have increased gradually with the modernization of agriculture which has occurred in recent years. The human action performed by man in nature is the main cause of this phenomenon. On this basis, the present study’s aim is to evaluate changes in soil chemical properties due to different uses and occupations in the river basin of Vacacaí-Mirim. The technique used for analysis was EDXRF, where the values were spacialized with the aid of the software Surfer 10. Values for Barium ranged from the detection limit (DL to 7,608.27 mg/kg -1 with an average of 1,286.71± 2,295.18 mg/kg-1, the concentration of Phosphorus ranged from DL to 2,327.02 mg/kg -1 with an average of 676.45±700.05 mg/kg-1, Manganese anged from DL to 5,533.51 mg/kg -1 with an average of 1,057.34 ±1,380.81 mg/kg-1, the values for Silicon ranged 229,114.70 to 832,568.70 mg/kg-1 with a mean of 696,134.25±144,950.56 mg/kg -1, Zinc concentration ranged from DL to 429.98 mg/kg-1 with an average of 145.725±123.78 mg/kg-1. Based on these results, it is possible to identify that the concentrations of the metals studied and the land use are closely linked, since concentrations are higher in areas that have agricultural uses, which require larger amounts of chemicals. Thus, it can be observed that the soils under the uses of rice, soybeans and pasture had greater influence on the concentration of the element barium, phosphorus, however, had most influence by the land use in pasture and soybeans.

  19. Exploring functional relationships between post-fire soil water repellency, soil structure and physico-chemical properties

    Science.gov (United States)

    Quarfeld, Jamie; Brook, Anna; Keestra, Saskia; Wittenberg, Lea

    2016-04-01

    Soil water repellency (WR) and aggregate stability (AS) are two soil properties that are typically modified after burning and impose significant influence on subsequent hydrological and geomorphological dynamics. The response of AS and soil WR to fire depends upon how fire has influenced other key soil properties (e.g. soil OM, mineralogy). Meanwhile, routine thinning of trees and woody vegetation may alter soil properties (e.g. structure and porosity, wettability) by use of heavy machinery and species selection. The study area is situated along a north-facing slope of Mount Carmel national park (Israel). The selected sites are presented as a continuum of management intensity and fire histories. To date, the natural baseline of soil WR has yet to be thoroughly assessed and must be investigated alongside associated soil aggregating parameters in order to understand its overall impact. This study examines (i) the natural baseline of soil WR and physical properties compared to those of disturbed sites in the immediate (controlled burn) and long-term (10-years), and (ii) the interactions of soil properties with different control factors (management, surface cover, seasonal-temporal, burn temperature, soil organic carbon (OC) and mineralogy) in Mediterranean calcareous soils. Analysis of surface soil samples before and after destruction of WR by heating (200-600°C) was implemented using a combination of traditional methods and infrared (IR) spectroscopy. Management and surface cover type conditioned the wettability, soil structure and porosity of soils in the field, although this largely did not affect the heat-induced changes observed in the lab. A positive correlation was observed along an increasing temperature gradient, with relative maxima of MWD and BD reached by most soils at the threshold of 400-500°C. Preliminary analyses of soil OC (MIR) and mineralogical composition (VIS-NIR) support existing research regarding: (i) the importance of soil OC quality and

  20. Influence of biochar on the physical, chemical and retention properties of an amended sandy soil

    Science.gov (United States)

    Baiamonte, Giorgio; De Pasquale, Claudio; Parrino, Francesco; Crescimanno, Giuseppina

    2017-04-01

    Soil porosity plays an important role in soil-water retention and water availability to crops, potentially affecting both agricultural practices and environmental sustainability. The pore structure controls fluid flow and transport through the soil, as well as the relationship between the properties of individual minerals and plants. Moreover, the anthropogenic pressure on soil properties has produced numerous sites with extensive desertification process close to residential areas. Biochar (biologically derived charcoal) is produced by pyrolysis of biomasses under low oxygen conditions, and it can be applied for recycling organic waste in soils and increase soil fertility, improving soil structure and enhancing soil water storage and soil water movement. Soil application of biochar might have agricultural, environmental and sustainability advantages over the use of organic manures or compost, as it is a porous material with a high inner surface area. The main objectives of the present study were to investigate the possible application of biochar from forest residues, derived from mechanically chipped trunks and large branches of Abies alba M., Larix decidua Mill., Picea excelsa L., Pinus nigra A. and Pinus sylvestris L. pyrolysed at 450 °C for 48h, to improve soil structural and hydraulic properties (achieving a stabilization of soil). Different amount of biochar were added to a desertic sandy soil, and the effect on soil porosity water retention and water available to crops were investigated. The High Energy Moisture Characteristic (HEMC) technique was applied to investigate soil-water retention at high-pressure head levels. The adsorption and desorption isotherms of N2 on external surfaces were also determined in order to investigate micro and macro porosity ratio. Both the described model of studies on adsorption-desorption experiments with the applied isotherms model explain the increasing substrate porosity with a particular attention to the macro and micro

  1. Relationship between soil oxidizable carbon and physical, chemical and mineralogical properties of umbric ferralsols

    Directory of Open Access Journals (Sweden)

    Flávio Adriano Marques

    2011-02-01

    Full Text Available The occurrence of Umbric Ferralsols with thick umbric epipedons (> 100 cm thickness in humid Tropical and Subtropical areas is a paradox since the processes of organic matter decomposition in these environments are very efficient. Nevertheless, this soil type has been reported in areas in the Southeast and South of Brazil, and at some places in the Northeast. Aspects of the genesis and paleoenvironmental significance of these Ferralsols still need a better understanding. The processes that made the umbric horizons so thick and dark and contributed to the preservation of organic carbon (OC at considerable depths in these soils are of special interest. In this study, eight Ferralsols with a thick umbric horizon (UF under different vegetation types were sampled (tropical rain forest, tropical seasonal forest and savanna woodland and their macromorphological, physical, chemical and mineralogical properties studied to detect soil characteristics that could explain the preservation of high carbon amounts at considerable depths. The studied UF are clayey to very clayey, strongly acidic, dystrophic, and Al-saturated and charcoal fragments are often scattered in the soil matrix. Kaolinites are the main clay minerals in the A and B horizons, followed by abundant gibbsite and hydroxyl-interlayered vermiculite. The latter was only found in UFs derived from basalt rock in the South of the country. Total carbon (TC ranged from 5 to 101 g kg-1 in the umbric epipedon. Dichromate-oxidizable organic carbon represented nearly 75 % of TC in the thick A horizons, while non-oxidizable C, which includes recalcitrant C (e.g., charcoal, contributed to the remaining 25 % of TC. Carbon contents were not related to most of the inorganic soil variables studied, except for oxalate-extractable Al, which individually explained 69 % (P < 0.001 of the variability of TC in the umbric epipedon. Clay content was not suited as predictor of TC or of the other studied C forms. Bulk

  2. Physico-Chemical Properties and Laboratory Hyperspectral Reflectance of Coastal Saline Soil in Shangyu City of Zhejiang Province,China

    Institute of Scientific and Technical Information of China (English)

    SHI ZHOU; HUANG MINGXIANG; LI YAN

    2003-01-01

    45 and 50 composite soil samples were collected, respectively, from two agricultural fields, that wereenclosed and reclaimed fron coastal tidal-flat areas in 1996 and 1984 respectively, in Shangyu of ZhejiangProvince, China, to investigate the physico-chemical properties and the hyperspectral characteristics of thesaline soils and to make an assessment on their relationships. The reflectance spectra of saline soils weremeasured using a spectroradiometer in laboratory. The mean spectral curves of the saline soils from thetwo sites different in reclamation year showed that the saline soil taken from the recently reclaimed landwith higher salinity demonstrated a lower reflectance intensity in the spectral region from about 550 nm to2300 nm. In addition, nine absorption bands, i.e., 488 nm, 530 nm, 670 nm, 880 nm, 940 nm, 1400 nm,1 900 nm, 2 200 nm and 2 300 nm, were chosen as the spectral bands to investigate the relationships betweensoil physico-chemical properties by means of Pearson correlation analysis. Finally, the first two principalcomponents were calculated from nine absorption bands and used to discriminate the saline soil samplestaken from two sampled fields. The results indicate that it is feasible to detect physico-chemical propertiesof saline soils from fields reclaimed for varying time periods on the basis of the hyperspectral data.

  3. Effects of Chlorination on Soil Chemical Properties and Nitrogen Uptake for Tomato Drip Irrigated with Secondary Sewage Eflfuent

    Institute of Scientific and Technical Information of China (English)

    LI Yan-feng; LI Jiu-sheng; ZHANG Hang

    2014-01-01

    Chlorination is usually an economical method for treating clogging in drip emitters during sewage application. Appropriate assessment of the responses of soil and crop is essential for determining an optimal chlorination scheme. During 2008 to 2009, ifeld experiments were conducted in a solar-heated greenhouse for tomato drip irrigated with secondary sewage eflfuent, to investigate the inlfuences of chlorine injection intervals and levels on soil chemical properties and nitrogen uptake. Injection intervals ranging from two to eight weeks and injection concentrations ranging from 2 to 50 mg L-1 were used. A salinity factor and a nutrient factor were extracted from the pool of the nine soil chemical constituents using factor analysis method. The results demonstrated that chlorination practices increased the residual Cl in the soil, resulting in an increased salinity factor, especially for the frequent chlorination at a high injection concentration. Chlorination weakened the accumulation of nutrients factor in the upper soil layer. Nitrogen uptake of the tomato plants also was inhibited by the increased salinity in the upper soil layer caused by high chlorination levels. In order to reduce the unfavorable effect on soil chemical properties and nitrogen uptake, chlorination scheme with concentrations of lower than 20 mg L-1 was recommended.

  4. Influence of perennial plants on chemical properties of arid calcareous soils in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Karimian, N.; Razmi, K. (Shiraz Univ. (Iran))

    1990-10-01

    The authors conducted a study in Bajgah to determine the influence of perennial plants on some selected properties of soils formed on the highly calcareous parent material. The major plant genera were determined to be Agropyron, Artemisia, Astragalus, Dianthus, Eryngium, Peganum, Polygonum, Stipa, and Thymus. Tops of plants genera were found to be significantly different in ash, N, P, K, Ca, Mg, Na, Mn, Zn, and Cu; the concentration of Fe was not significantly different. The authors found the plants to differ significantly in their influence on soil properties. Peganum caused an accumulation of organic matter (OM) as high as 7% in the soil, in an environment where the soils typically contain less than 1% OM. Soil concentrations of P, K, Mn, Zn, and Cu were also found to vary significantly beneath different plant genera. They suggest these differences in OM accumulation were caused by plant litter. Concentration of Fe in the soils formed beneath different plant genera was statistically unchanged.

  5. Soil chemical properties and nutrients in maize fertilized with urban waste compost

    Directory of Open Access Journals (Sweden)

    José Ricardo Mantovani

    2017-06-01

    Full Text Available Urban waste compost has a potential to be used as an organic fertilizer in agriculture, but field studies are required to define the recommendable rates for crops. This study aimed at evaluating the effect of fertilization with urban waste compost on the soil chemical properties, yield, nutrient and heavy metal contents, in maize leaves and grains. The field experiment was carried out in a randomized complete block design, with seven treatments and four replications. The treatments consisted of six urban waste compost doses (0 Mg ha-1, 5 Mg ha-1, 10 Mg ha-1, 20 Mg ha-1, 30 Mg ha-1 and 40 Mg ha-1, applied in the planting furrow, plus an additional control treatment, with NPK mineral fertilization and no waste compost application. Fertilization with up to 40 Mg ha-1 of urban waste compost improves soil fertility. Fertilization with urban waste compost increases grain yield and the N, P and K contents in leaf tissue and maize grains, without inducing plant contamination with heavy metals. The application of 30 Mg ha-1 of urban waste compost can replace mineral fertilization in maize cultivation.

  6. Long Term Effects of Poultry Litter on Soil Physical and Chemical Properties in Cotton Plots

    Science.gov (United States)

    Surrency, J.; Tsegaye, T.; Coleman, T.; Fahsi, A.; Reddy, C.

    1998-01-01

    Poultry litter and compost can alter the moisture holding capacity of a soil. These organic materials can also increase the nutrient status of a soil during the decomposition process by microbial actions. The objective of this study was to evaluate the effect of poultry litter and compost on the dielectric constant and moisture holding capacity of soil. The Delta-T theta-probe was used to measure volumetric soil water content and the apparent dielectric constant of the upper 6-cm of the soil profile. Soil texture, pH, and organic matter were also determined for each plot. Results of these analyses indicated that the pH of the soil ranged from 6.4 to 7.7 and the volumetric soil moisture content ranged from 0.06 to 0.18 cu m/cu m for the upper 6-cm of the soil profile. The effect of poultry litter and compost on soil properties resulted in an increase in the volumetric moisture content and dielectric constant of the soil due to the improvement of the soil structure.

  7. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth.

    Science.gov (United States)

    Gong, Zongqiang; Li, Peijun; Wilke, B M; Alef, Kassem

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soil for a remediation purpose, with some of the oil remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soil was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soil properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soil, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth of A. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oil addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oil in the soils was proved by the soil organic carbon content.

  8. Accelerated detection of brown-rot decay : comparison of soil block test, chemical analysis, mechanical properties, and immunodetection

    Science.gov (United States)

    C. A. Clausen; S. N. Kartal

    2003-01-01

    Early detection of wood decay is critical because decay fungi can cause rapid structural failure. The objective of this study was to compare the sensitivity of different methods purported to detect brown-rot decay in the early stages of development. The immunodiagnostic wood decay (IWD)test, soil block test/cake pan test, mechanical property tests, and chemical...

  9. Effects of different land use on soil chemical properties, decomposition rate and earthworm communities in tropical Mexico

    NARCIS (Netherlands)

    Geissen, V.; Peña-Peña, K.; Huerta, E.

    2009-01-01

    The effects of land use on soil chemical properties were evaluated, and earthworm communities and the decomposition rate of three typical land use systems in tropical Mexico, namely banana plantations (B), agroforestry systems (AF) and a successional forest (S) were compared. The study was carried o

  10. Spatial Variability of Soil Morphorlogical and Physico-Chemical ...

    African Journals Online (AJOL)

    Spatial Variability of Soil Morphorlogical and Physico-Chemical Properties in ... the spatial variability of soil morphological, physical and chemical properties in the ... organic matter (g/kg), and available phosphorus were extremely variable soil ...

  11. Determining soil redistribution in Dian Lake catchment by combined use of caesium-137 and selected chemical properties

    Institute of Scientific and Technical Information of China (English)

    Zhang Mingli; Yang Hao; Xu Congan; Wang Yihong

    2009-01-01

    Recent development in the use of the environmental radionuclide caesium-137 for documenting rates and patterns of soil redistribution on the cultivated or uncultivated land and estimating rates of sediment deposition on floodplains represents an important advance that overcomes many of the limitations' of the conventional techniques commonly applied in such investigations.A study on soil redistribution (including soil erosion and deposition) was carried out in the Dian Lake catchment,Yunnan Province,using 137Cs and selected chemical properties.The average soil erosion rate was 1,280.2 t km-2yr-1.Soil erosion rate occurring on different parts of the slope was significantly different on different parts of the slope,increasing from the top,the bottom to the middle slope.The average soil erosion rate is also different with the land use type and that of the cultivated land (1,672.8 t km-2 yr-1) is higher than of the uncultivated land (1,161.2 t km-2yr-1).The result shows that landform,slope gradient and land use type are key factors that influence the size of soil erosion.In addition,we also find the SOC and TN contents and amount of the soil erosion to be correlated in the soil.With the soil erosion occurring,there are land degradation and the local eco-environmental problems,such as water eutrophication in Dian Lake

  12. Effects of changes in straw chemical properties and alkaline soils on bacterial communities engaged in straw decomposition at different temperatures.

    Science.gov (United States)

    Zhou, Guixiang; Zhang, Jiabao; Zhang, Congzhi; Feng, Youzhi; Chen, Lin; Yu, Zhenghong; Xin, Xiuli; Zhao, Bingzi

    2016-02-26

    Differences in the composition of a bacterial community engaged in decomposing wheat straw in a fluvo-aquic soil at 15 °C, 25 °C, and 35 °C were identified using barcode pyrosequencing. Functional carbon groups in the decomposing wheat straw were evaluated by (13)C-NMR (nuclear magnetic resonance). Actinobacteria and Firmicutes were more abundant, whereas Alphaproteobacteria and Bacteroidetes were less abundant, at higher temperatures during the later stages of decomposition. Differences in the chemical properties of straw accounted for 19.3% of the variation in the community composition, whereas soil properties accounted for more (24.0%) and temperature, for less (7.4%). Carbon content of the soil microbial biomass and nitrogen content of straw were significantly correlated with the abundance of Alphaproteobacteria, Actinobacteria, and Bacteroidetes. The chemical properties of straw, especially the NCH/OCH3, alkyl O-C-O, and O-alkyl functional groups, exercised a significant effect on the composition of the bacterial community at different temperatures during decomposition-results that extend our understanding of bacterial communities associated with the decomposition of straw in agro-ecosystems and of the effects of temperature and chemical properties of the decomposing straw and soil on such communities.

  13. The Influence of Bean Rhizosphere on Some Chemical and Biological Properties in Soils Amended with Municipal Sewage Sludge

    Directory of Open Access Journals (Sweden)

    T. Raiesi

    2016-02-01

    Full Text Available Introduction: The biological and chemical conditions of the rhizosphere are known to considerably differ from those of the bulk soil, as a consequence of a range of processes that are induced either directly by the activity of plant roots or by the activity of rhizosphere microflora (16. Municipal sewage sludge (MSS applied to agricultural soils is a well known reusable source of phosphorus (P, nitrogen (N and other macro- and micro-nutrients (33. Sludge provides a short-term input of plant-available nutrients and stimulation of microbial activity, and it contributes to long term maintenance of nutrient and organic matter pools (33. Availability of P following application of MSS can be influenced by microbial and chemical properties of the soil, MSS composition, and rhizosphere processes. The specific interrelationships between these components have proven to be complex and, despite continued study, a thorough understanding of the interactions among plant roots, manure P, and P solubility has yet to be achieved (42. Little quantitative information is available about the chemical and biological properties in the rhizosphere of bean plant growing in soils un-amended and amended with MSS. Therefore, the objectives of this research were to evaluate the rhizospheric effects of bean on chemical and biological properties in 10 calcareous soils as amended with municipal sewage sludge (MSS or unamended (control under rhizobox conditions. Materials and Methods: Ten surface soil samples (0–30 cm were collected from Chaharmahal-Va-Bakhtiari province, in the central Iran. Municipal sewage sludge was used from the refinery of Shahrekord city, central Iran. Air dried and sieved (

  14. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth

    Institute of Scientific and Technical Information of China (English)

    GONG Zongqiang; LI Peijun; B.M.Wilke; Kassem Alef

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soft for a remediation purpose, with some of the oft remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soft was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soft properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soft, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth ofA. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oft addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oft in the soils was proved by the soft organic carbon content.

  15. Few effects of invasive plants Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea on soil physical and chemical properties.

    Science.gov (United States)

    Stefanowicz, Anna M; Stanek, Małgorzata; Nobis, Marcin; Zubek, Szymon

    2017-01-01

    Biological invasions are an important problem of human-induced changes at a global scale. Invasive plants can modify soil nutrient pools and element cycling, creating feedbacks that potentially stabilize current or accelerate further invasion, and prevent re-establishment of native species. The aim of this study was to compare the effects of Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea, invading non-forest areas located within or outside river valleys, on soil physical and chemical parameters, including soil moisture, element concentrations, organic matter content and pH. Additionally, invasion effects on plant species number and total plant cover were assessed. The concentrations of elements in shoots and roots of invasive and native plants were also measured. Split-plot ANOVA revealed that the invasions significantly reduced plant species number, but did not affect most soil physical and chemical properties. The invasions decreased total P concentration and increased N-NO3 concentration in soil in comparison to native vegetation, though the latter only in the case of R. japonica. The influence of invasion on soil properties did not depend on location (within- or outside valleys). The lack of invasion effects on most soil properties does not necessarily imply the lack of influence of invasive plants, but may suggest that the direction of the changes varies among replicate sites and there are no general patterns of invasion-induced alterations for these parameters. Tissue element concentrations, with the exception of Mg, did not differ between invasive and native plants, and were not related to soil element concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Chemical and biological properties of phosphorus-fertilized soil under legume and grass cover (Cerrado region, Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Fernando Pereira Souza

    2013-12-01

    Full Text Available The use of cover crops has been suggested as an effective method to maintain and/or increase the organic matter content, while maintaining and/or enhancing the soil physical, chemical and biological properties. The fertility of Cerrado soils is low and, consequently, phosphorus levels as well. Phosphorus is required at every metabolic stage of the plant, as it plays a role in the processes of protein and energy synthesis and influences the photosynthetic process. This study evaluated the influence of cover crops and phosphorus rates on soil chemical and biological properties after two consecutive years of common bean. The study analyzed an Oxisol in Selvíria (Mato Grosso do Sul, Brazil, in a randomized block, split plot design, in a total of 24 treatments with three replications. The plot treatments consisted of cover crops (millet, pigeon pea, crotalaria, velvet bean, millet + pigeon pea, millet + crotalaria, and millet + velvet bean and one plot was left fallow. The subplots were represented by phosphorus rates applied as monoammonium phosphate (0, 60 and 90 kg ha-1 P2O5. In August 2011, the soil chemical properties were evaluated (pH, organic matter, phosphorus, potential acidity, cation exchange capacity, and base saturation as well as biological variables (carbon of released CO2, microbial carbon, metabolic quotient and microbial quotient. After two years of cover crops in rotation with common bean, the cover crop biomass had not altered the soil chemical properties and barely influenced the microbial activity. The biomass production of millet and crotalaria (monoculture or intercropped was highest. The biological variables were sensitive and responded to increasing phosphorus rates with increases in microbial carbon and reduction of the metabolic quotient.

  17. Physical, chemical, and biological properties of soil under soybean cultivation and at an adjacent rainforest in Amazonia

    Directory of Open Access Journals (Sweden)

    Troy Patrick Beldini

    2015-11-01

    Full Text Available Land-use change in the Amazon basin has occurred at an accelerated pace during the last decade, and it is important that the effects induced by these changes on soil properties are better understood. This study investigated the chemical, physical, and biological properties of soil in a field under cultivation of soy and rice, and at an adjacent primary rain forest. Increases in soil bulk density, exchangeable cations and pH were observed in the soy field soil. In the primary forest, soil microbial biomass and basal respiration rates were higher, and the microbial community was metabolically more efficient. The sum of basal respiration across the A, AB and BA horizons on a mass per area basis ranged from 7.31 to 10.05 Mg CO2-C ha-1yr-1, thus yielding estimates for total soil respiration between 9.6 and 15.5 Mg CO2-C ha-1yr-1 across sites and seasons. These estimates are in good agreement with literature values for Amazonian ecosystems. The estimates of heterotrophic respiration made in this study help to further constrain the estimates of autotrophic soil respiration and will be useful for monitoring the effects of future land-use in Amazonian ecosystems.

  18. The Changes of Earthworm Population and Chemical Properties of Tropical Soils under Different Land Use Systems

    Directory of Open Access Journals (Sweden)

    Sri Yusnaini

    2008-05-01

    Full Text Available Hilly area Sumberjaya, West Lampung Province, South Sumatra, Indonesia, is one of the Province where deforestation increasing in the past 30 years as a result of the implementation of agricultural systems, especially coffee plantation. it is important to study the soil fauna in these natural relicts. Six sites (3 naturals and 3 managed systems were studied in order to identify earthworm species communities, using the hand sorting method and soil chemical parameters (pH, avail-P, org-C., tot-N, and cation exchange capacity (CEC. Two species were found (Pheretima sp. and Pontoscolex sp.. All land use systems had very similar soil chemical characteristics, there can be characterised as acidic (pH between 3.6 and 5.0. A high content of organic carbon was in natural sites (bush 4.0% and primary forest 3.9%, and a low content was in managed sites (coffee plantation 2.1%. Total nitrogen (0.37% and CEC (21.84 Cmol-c kg-1 was in primary forest. However, the earthworm densities were significantly lower under primary forest than in the other sites. The acidity component explained mainly the lowest earthworm population at the primary forest (soil pH 3.6. The use of succession forest (bush and mix farming showed a positive effect on soil fertility.

  19. Chemical properties of organic soils developed from lacustrine chalk near the lakes Strzeszowskie, Sitno, and Sierakowo (Western Pomerania, north Poland

    Directory of Open Access Journals (Sweden)

    Jarnuszewski Grzegorz

    2015-12-01

    Full Text Available The genesis of organic soils is closely connected with water. The occurrence of carbonate deposits in the central and lower part of organic soil profile points to the link between their genesis and post-glacial lakes. The studies conducted in the years 2009–2012 focused on organic soils near lakes: Strzeszowskie, Sitno (Myśliborskie Lakeland and Sierakowo (Ińskie Lakeland, north Poland. The goal of the present study was to characterize chemical properties of organic soils developed on carbonate deposits. The examined soils belonged to organic muck and sapric peat soils. They contained variable amount of organic matter (32,4–66,6%. The C/N ratio depended on the degree of mineralization. The soils under study, had a high level of available forms of Ca and low level of P, K, Cu, and Zn. Both in surface and subsurface horizons of muck and sapric peat soils the content of exchangeable cations may be ranked as follows: Ca > Mg > K > Na. Basic cations total in organic horizons was distinctly higher than in calcareous sediments. In organic horizons and limnic deposits, the share of exchangeable form of Ca in the sum of basic cations exceeded 95%.

  20. THE DISTRIBUTION OF SOIL CHEMICAL PROPERTIES UNDER THE EFECT OF LAND RECLAMATION WORKS, FROM BAIA DRAINAGE SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Moca

    2007-10-01

    Full Text Available In the pedo-climatic conditions of Suceava County that extends on a total surface of 855 300 ha, the balance of agricultural land affected by humidity excess with temporar or permanent character is differenciated from south to north and from east to west, between 30 % till 40%, which means almost 100 000 ha. On these soils with underground water or pluvial excess hydro ameliorative drainage systems have been installed, associated to a complex agroameliorative works. For long effect estimation of the underground drainage asociated with the agropedoameliorative works upon the some chemical properties, there were analyzed the soil and the environment conditions from Baia field.

  1. Changes in chemical composition and engineering properties of gypseous soils through leaching: an example from Mashhad, Iran

    DEFF Research Database (Denmark)

    Asghari, Somaye; Ghafoori, Mohammad; Tabatabai, Salman

    2017-01-01

    Gypseous soils are considered problematic when used as the foundation in civil engineering structures such as roads, buildings and dams, due to their solubility. These soils are resistant and have good engineering properties in their dry state. However, when saturated by rainwater or a rising...... groundwater table, the soluble minerals are washed out, resulting in the subsidence of the structures built on them. In the recent decades, buildings constructed in the Southern Mashhad Metropolitan Area, Iran, have been widely faced with this problem. Since the changes in chemical composition and engineering...

  2. Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires

    Science.gov (United States)

    Araya, Samuel N.; Meding, Mercer; Asefaw Berhe, Asmeret

    2016-07-01

    Fire is a common ecosystem perturbation that affects many soil properties. As global fire regimes continue to change with climate change, we investigated thermal alteration of soils' physical and chemical properties after they are exposed to a range of temperatures that are expected during prescribed and wildland fires. For this study, we used topsoils collected from a climosequence transect along the western slope of the Sierra Nevada that spans from 210 to 2865 m a.s.l. All the soils we studied were formed on a granitic parent material and had significant differences in soil organic matter (SOM) concentration and mineralogy owing to the effects of climate on soil development. Topsoils (0-5 cm depth) from the Sierra Nevada climosequence were heated in a muffle furnace at six set temperatures that cover the range of major fire intensity classes (150, 250, 350, 450, 550 and 650 °C). We determined the effects of heating temperature on soil aggregate strength, aggregate size distribution, specific surface area (SSA), mineralogy, pH, cation exchange capacity (CEC), and carbon (C) and nitrogen (N) concentrations. With increasing temperature, we found significant reduction of total C, N and CEC. Aggregate strength also decreased with further implications for loss of C protected inside aggregates. Soil pH and SSA increased with temperature. Most of the statistically significant changes (p < 0.05) occurred between 350 and 450 °C. We observed relatively smaller changes at temperature ranges below 250 °C. This study identifies critical temperature thresholds for significant physico-chemical changes in soils that developed under different climate regimes. Our findings will be of interest to studies of inferences for how soils are likely to respond to different fire intensities under anticipated climate change scenarios.

  3. Physical, Chemical and Engineering Properties of Residual Limestone Soils and Clays.

    Science.gov (United States)

    1980-01-02

    the comprehensive publication issued by the U. S. Department of Agriculture entitled "Soil Classification, 7th Approxi- mation (1960)" contains not one...locations in the Tropics (Bahamas, Jamaica, Guadeloupe , Costa Rica, etc.). Examination of the data matrix indicated that chemical differences in the residual...Bahamas, Guadeloupe , Costa Rica and the Cayman Islands. The marked difference in overall composition of the major oxides was also seen when the

  4. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Zarei, Mehdi [Department of Soil Science, College of Agriculture, University of Shiraz, Shiraz (Iran, Islamic Republic of); Hempel, Stefan, E-mail: hempel.stefan@googlemail.co [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany); Freie Universitaet Berlin, Institut fuer Biologie, Okologie der Pflanzen, Altensteinstrasse 6, 14195 Berlin (Germany); Wubet, Tesfaye; Schaefer, Tina [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany); Savaghebi, Gholamreza [Department of Soil Science Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj (Iran, Islamic Republic of); Jouzani, Gholamreza Salehi; Nekouei, Mojtaba Khayam [Agricultural Biotechnology Research Institute of Iran (ABRII), P.O. Box 31535-1897, Karaj (Iran, Islamic Republic of); Buscot, Francois [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany)

    2010-08-15

    Abundance and diversity of arbuscular mycorrhizal fungi (AMF) associated with dominant plant species were studied along a transect from highly lead (Pb) and zinc (Zn) polluted to non-polluted soil at the Anguran open pit mine in Iran. Using an established primer set for AMF in the internal transcribed spacer (ITS) region of rDNA, nine different AMF sequence types were distinguished after phylogenetic analyses, showing remarkable differences in their distribution patterns along the transect. With decreasing Pb and Zn concentration, the number of AMF sequence types increased, however one sequence type was only found in the highly contaminated area. Multivariate statistical analysis revealed that further factors than HM soil concentration affect the AMF community at contaminated sites. Specifically, the soils' calcium carbonate equivalent and available P proved to be of importance, which illustrates that field studies on AMF distribution should also consider important environmental factors and their possible interactions. - The molecular diversity of AMF was found to be influenced by a combination of soil heavy metal and other soil chemical parameters.

  5. Dose and frequency dependent effects of olive mill wastewater treatment on the chemical and microbial properties of soil.

    Science.gov (United States)

    Magdich, Salwa; Ben Ahmed, Chedlia; Jarboui, Raja; Ben Rouina, Béchir; Boukhris, Makki; Ammar, Emna

    2013-11-01

    Olive mill wastewater (OMW) is a problematic by-product of olive oil production. While its high organic load and polyphenol concentrations are associated with troublesome environmental effects, its rich mineral and organic matter contents represent valuable nutrients. This study aimed to investigate the valorization of this waste biomass as a potential soil conditioner and fertilizer in agriculture. OMW was assayed at three doses 50, 100, and 200 m(3) ha(-1) year(-1)) over three successive years in olive fields. The effects of the effluent on the physico-chemical and microbial properties of soil-layers were assessed. The findings revealed that the pH of the soil decreased but electrical conductivity and organic matter, total nitrogen, sodium, and potassium soil contents increased in proportion with OMW concentration and frequency of application. While no variations were observed in phosphorus content, slow increases were recorded in calcium and magnesium soil contents. Compared to their control soil counterparts, aerobic bacteria and fungi increased in proportion with OMW spreading rates. The models expressing the correlation between progress parameters and OMW doses were fitted into a second degree polynomial model. Principal component analysis showed a strong correlation between soil mineral elements and microorganisms. These parameters were not related to phosphorus and pH.

  6. Chemical and biochemical properties of Araucaria angustifolia (Bert. Ktze. forest soils in the state of São Paulo

    Directory of Open Access Journals (Sweden)

    Fernanda de Carvalho

    2012-08-01

    Full Text Available Araucaria angustifolia, commonly named Araucaria, is a Brazilian native species that is intensively exploited due to its timber quality. Therefore, Araucaria is on the list of species threatened by extinction. Despite the importance of soil for forest production, little is known about the soil properties of the highly fragmented Araucaria forests. This study was designed to investigate the use of chemical and biological properties as indicators of conservation and anthropogenic disturbance of Araucaria forests in different sampling periods. The research was carried out in two State parks of São Paulo: Parque Estadual Turístico do Alto do Ribeira and Parque Estadual de Campos de Jordão. The biochemical properties carbon and nitrogen in microbial biomass (MB-C and MB-N, basal respiration (BR, the metabolic quotient (qCO2 and the following enzyme activities: β-glucosidase, urease, and fluorescein diacetate hydrolysis (FDA were evaluated. The sampling period (dry or rainy season influenced the results of mainly MB-C, MB-N, BR, and qCO2. The chemical and biochemical properties, except K content, were sensitive indicators of differences in the conservation and anthropogenic disturbance stages of Araucaria forests. Although these forests differ in biochemical and chemical properties, they are efficient in energy use and conservation, which is shown by their low qCO2, suggesting an advanced stage of succession.

  7. Induced heterogeneity of soil water content and chemical properties by treated wastewater irrigation and its reclamation by freshwater irrigation

    Science.gov (United States)

    Rahav, Matan; Brindt, Naaran; Yermiyahu, Uri; Wallach, Rony

    2017-06-01

    The recognition of treated wastewater (TWW) as an alternative water resource is expanding in areas with a shortage of freshwater (FW) resources. Today, most orchards in Israel are irrigated with TWW. While the benefits of using TWW for irrigation are apparent, evidence of its negative effects on soil, trees, and yield is accumulating. This study, performed in a commercial TWW-irrigated citrus orchard in central Israel, examined the effects of (1) soil-wettability decrease due to prolonged TWW irrigation on the spatial and temporal distribution of water content and associated chemical properties in the root zone; (2) the conversion of irrigation in half of the TWW-irrigated research plot to FW (2012) for soil reclamation. Electrical resistivity tomography surveys in the substantially water repellent soils revealed that water flow is occurring along preferential flow paths in both plots, leaving behind a considerably nonuniform water-content distribution. This was despite the gradual relief in soil water repellency measured in the FW plots. Four soil-sampling campaigns (spring and fall, 2014-2016), performed in 0-20 and 20-40 cm layers of the research plot, revealed bimodal gravimetrically measured water-content distribution. The preferential flow led to uneven chemical-property distribution, with substantially high concentrations in the dry spots, and lower concentrations in the wet spots along the preferential flow paths. The average salt and nutrient concentrations, which were initially high in both plots, gradually dispersed with time, as concentrations in the FW plots decreased. Nevertheless, the efficiency of reclaiming TWW soil by FW irrigation appears low.

  8. Variability of Some soil physical and chemical properties along a transect under wind erosion processes in Segzi district, Isfahan

    Directory of Open Access Journals (Sweden)

    F. Ghiesari

    2016-10-01

    Full Text Available Introduction: Arid and semiarid environment is the main climatic condition in central Iran, as well as 80 million km 2 of Iran (> 50% is affected by wind erosion. During the last decades, the area affected by wind erosion and desertification processes has increased as a result of human activity, climate change and recent drought (Karimzadeh, 2001. Thus, it is crucial to control wind erosion in the arid regions of Iran as the most serious environmental problem. In this regard, the information on the rate of soil erosion is needed for developing management practices and making strategic decisions.. Soil erosion rate has increased as a result of improper gypsum and clay mining operations In the Segzi region of Isfahan,. coarsening of the soil texture (as a result of the loss of fine textured materials, depletion of soil organic matter and degeneration of vegetation are wind erosion damages occurred widely. The objective of this study was to estimate wind erosion rates with 137Cs technique, and also to determine changes in soil physical and chemical properties by wind erosion process, along the wind erosion transect across the Segzi district, east of Isfahan. Materials and Methods: This study was conducted in arid region of east of Isfahan Province. sixteen sites were selected along a northeast- southwest transect with 42 km length. Eighty soil samples were taken from 0-30 cm in 5 cm layer depth sections. Some physical and chemical properties were measured and a reference site with lowest rate of soil erosion and sedimentation was also studied. 137-Cs technique was used for determination of erosional and depositional sites. Analysis of variance was used to compare physical and chemical properties sites to reference site. Results and Discussion: The results showed that sites of 1 to 8, 10 and 12-16 were identified as erosional sites and two sites of 9 and 11 were recognized as depositional sites. Soil organic matter and total nitrogen contents were

  9. Soil chemicals properties and wheat genotype impact on micronutrient and toxic elements content in wheat integral flour

    Directory of Open Access Journals (Sweden)

    Krunoslav Karalić

    2012-02-01

    Full Text Available Aim To determine impact of soil chemical properties and different wheat genotypes in Croatia on micronutrient and toxic elements content in wheat integral flour. Methods Research was conducted and soil samples were collected from two different production areas in the Republic of Croatia: Ovčara and Dalj. Besides soil samples, grain samples of four different Croatian wheat genotypes were also collected and analyzed. In total, 40 samples of soil and 40 samples of wheat grain were analysed for total (aqua regia and plant available (EDTA extraction heavy metal content of Fe, Mn, Zn, Cu, Pb, Cd. Results Determined soil pHKCl ranged from 5.63 to 6.25 at Ovčara and from 6.95 to 7.37 at Dalj sampling sites. The highest total concentration of heavy metals in soil were determined for Fe, followed by Mn, Zn, Cu, Pb and the lowest total concentration wasrecorded for Cd. The highest EDTA concentrations in soil were determined for Mn, than followed by Fe, Cu, Pb, and the lowest EDTA concentration was recorded for Cd. The highest concentration in integral wheat flour was found for Fe, than lower for Mn, Zn, Cu, Pb and the lowest concentration was found for Cd. If consumers in Croatia used daily 203 g of bread made of integral flour, they would take 2.31 to 8.44 µg Cd daily, depending on soil and wheat genotype.Conclusion The analysed soil and winter wheat genotypes have significant impact on potential daily intake of toxic and essentialheavy metals by integral flour or bread.

  10. Root-inhabiting fungi in alien plant species in relation to invasion status and soil chemical properties.

    Science.gov (United States)

    Majewska, Marta L; Błaszkowski, Janusz; Nobis, Marcin; Rola, Kaja; Nobis, Agnieszka; Łakomiec, Daria; Czachura, Paweł; Zubek, Szymon

    In order to recognize interactions between alien vascular plants and soil microorganisms and thus better understand the mechanisms of plant invasions, we examined the mycorrhizal status, arbuscular mycorrhizal fungi (AMF) colonization rate, arbuscular mycorrhiza (AM) morphology and presence of fungal root endophytes in 37 non-native species in Central Europe. We also studied the AMF diversity and chemical properties of soils from under these species. The plant and soil materials were collected in southern Poland. We found that 35 of the species formed AM and their mycorrhizal status depended on species identity. Thirty-three taxa had AM of Arum-type alone. Lycopersicon esculentum showed intermediate AM morphology and Eragrostis albensis developed both Arum and Paris. The mycelia of dark septate endophytes (DSE) were observed in 32 of the species, while sporangia of Olpidium spp. were found in the roots of 10. Thirteen common and worldwide occurring AMF species as well as three unidentified spore morphotypes were isolated from trap cultures established with the soils from under the plant species. Claroideoglomus claroideum, Funneliformis mosseae and Septoglomus constrictum were found the most frequently. The presence of root-inhabiting fungi and the intensity of their colonization were not correlated with soil chemical properties, plant invasion status, their local abundance and habitat type. No relationships were also found between the presence of AMF, DSE and Olpidium spp. These suggest that other edaphic conditions, plant and fungal species identity or the abundance of these fungi in soils might have an impact on the occurrence and intensity of fungal root colonization in the plants under study.

  11. Soil uses in the sugarcane fallow period to improve chemical and physical properties of two latosols (oxisols

    Directory of Open Access Journals (Sweden)

    Carolina Fernandes

    2012-02-01

    Full Text Available Sugarcane production should be integrated with crop diversification with a view to competitive and sustainable results in economic, social and environmental aspects. The purpose of this study was to assess the influence of different soil uses during the sugarcane fallow period on the chemical and physical properties of eutroferric Red Latosol - LVef (Oxisol and Acric Latosol - LVw (Acric Oxisol, in Jaboticabal, São Paulo State, Brazil (21º14'05'' S, 48º17'09'' W, 600 m asl. A randomized block design was used with five replications and four treatments, consisting of different soil uses (crops in the sugarcane fallow period: soybean only, soybean/fallow/soybean, soybean/millet/soybean, and soybean/sunn hemp/soybean. After two soybean crops, the LVef chemical properties remained at intermediate to high levels; while those of the LVw, classified as intermediate to high in the beginning, increased to high levels. Thus, the different soil uses during the sugarcane fallow period allowed the maintenance of LVef fertility levels and the improvement of those of the LVw. Two soybean crops increased macroporosity in the 0.0-0.1 m layer of the LVef; reduced soil aggregates in the 0.0-0.1 and 0.1-0.2 m layers of both soils, and reduced aggregate stability in these two layers of the LVw. Planting pearl millet or sunn hemp between the two soybean growing seasons promoted the formation of larger soil aggregates in the surface layer (0.0-0.1 m of the LVw.

  12. Effect of Fresh Poultry Litter and Compost on Soil Physical and Chemical Properties

    Science.gov (United States)

    Carr, Stacy; Tsegaye, Teferi; Coleman, Tommy

    1998-01-01

    Application of poultry litter and compost as a substitute for fertilizer not only uses unwanted waste and decreases expenditures for commercial fertilizer, it adds nutrients to soil for plant uptake. The properties of soil affected by poultry litter were analyzed to determine the positive and negative aspects of using this substitute fertilizer. This study focused on changes associated with saturated hydraulic conductivity, bulk density, nitrate concentrations, and pH after application of varying concentrations of poultry litter and compost. Soil samples from Tennessee Valley Substation in Alabama were analyzed in a laboratory at Alabama A&M University. As a result of the application of fresh poultry litter and compost, we found that the saturated hydraulic conductivity increased and the bulk density decreased, while the pH was generally not affected. Using poultry litter and compost as an alternative commercial fertilizers could be adapted by the farming community to protect the sustainability of our environment. Unwanted waste is used productively and soil is enriched for farming.

  13. Impact of Waste Materials Resulting from the Refining of Crude Oil on Some Soil Physico-Chemical Properties

    Directory of Open Access Journals (Sweden)

    pari asadi alasvand

    2017-02-01

    unpolluted soils were mostly gypseous and/or calcareous especially in the middle parts. Considering the surface and subsurface diagnostic horizons and the aridic-thermic soil moisture and temperature regimes, the studied soils were classified as Gypsids, Calcids or Cambids (Soil Survey Staff, 2014. However, due to the added oil waste compounds and presence of impermeable geomembrane in some of the polluted pedons, they were classified as Technosols in the WRB system (FAO, 2014. Noticeable effects of Pollutants in the soil were decreasing pH and increasing OM and EC. The surface horizons of the unpolluted soils contained less than 2 percent organic matter which regularly decreased by depth. However, In some horizons of the polluted soils, soil organic matter exceeded 12 percent. pH decreased by increasing organic matter (oil waste compounds possibly due to H+ dissociation from the oil compounds (Laurent et al., 2012. Electrical conductivity throughout the polluted soil horizons showed more limited variability than the unpolluted ones, probably due to their higher capability in water and liquid dynamics. Liquid limit and plasticity limit in polluted soils are higher than unpolluted soils . Plasticity index in polluted soils decreased with increasing the amount of pollutants. The results of mineralogical studies corroborated that dominant clay mineral in this soils is Smectite. Smectites have high swelling and shrinking capacity.So, the pollutants can intercalate between soil mineral layers and then increase d-spacing of clay minerals. The micromorphology of the polluted soils showed that low dielectric constant of petroleum caused flocculation and formation granular aggregates in soil. Studied soils are inactive in terms of activity of clay. Conclusion: As observed in the studied soils, their physico-chemical properties such as pH and electrical conductivity (EC of saturated paste extract, organic matter content, mineralogical and micro-morphological properties were severely

  14. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil

    Science.gov (United States)

    Liu, Zhanjun; Rong, Qinlei; Zhou, Wei; Liang, Guoqing

    2017-01-01

    Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK), NPK plus green manure (NPKG), NPK plus pig manure (NPKM), and NPK plus straw (NPKS) on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC), activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI) and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72) was comparable to that of the NPK (0.77), NPKG (0.81) and NPKS (0.79) treatments but significantly lower compared with NPKM (0.85). The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil. PMID:28263999

  15. Estimation of Some Chemical Properties of an Agricultural Soil by Spectroradiometric Measurements

    Institute of Scientific and Technical Information of China (English)

    T.JARMER; M.VOHLAND; H.LILIENTHAL; E.SCHNUG

    2008-01-01

    The contents of nitrogen and organic carbon in an agricultural soil were analyzed using reflectance measurements (n = 52) performed with an ASD FieldSpec-Ⅱspectroradiometer.For parameter prediction,empirical models based on partial least squares (PLS) regression were defined from the measured reflectance spectra (0.4 to 2.4 μm).Here,reliable estimates were obtained for nitrogen content,but prediction accuracy was only moderate for organic carbon.For nitrogen,the real spatial pattern of within-field variability was reproduced with high accuracy.The results indicate the potential of this method as a quick screening tool for the spatial assessment of nitrogen and organic carbon,and therefore an appropriate alternative to time-and cost-intensive chemical analysis in the laboratory.

  16. Modelling of habitat conditions by self-organizing feature maps using relations between soil, plant chemical properties and type of basaltoides

    Directory of Open Access Journals (Sweden)

    Piotr Kosiba

    2011-01-01

    Full Text Available The paper shows the use of Kohonen's network for classification of basaltoides on the base of chemical properties of soils and Polypodium vulgare L. The study area was Lower Silesia (Poland. The archival data were: chemical composition of types of basaltoides from 89 sites (Al2O3, CaO, FeO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SiO2 and TiO2, elements contents in soils (Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, S, Ti and Zn and leaves of P. vulgare (Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Mo, N, Ni, P, Pb, S, Ti and Zn from 20 sites. Descriptive statistical parameters of soils and leaves chemical properties have been shown, statistical analyses using ANOVA and relationships between chemical elements were carried out, and SOFM models have been constructed. The study revealed that the ordination of individuals and groups of neurons in topological maps of plant and soil chemical properties are similar. The constructed models are related with significantly different contents of elements in plants and soils. These models represent different chemical types of soils and are connected with ordination of types of basaltoides worked out by SOFM model of TAS division. The SOFM appeared to be a useful technique for ordination of ecological data and provides a novel framework for the discovery and forecasting of ecosystem properties.

  17. Improvement in the biochemical and chemical properties of badland soils by thorny bamboo

    Science.gov (United States)

    Shiau, Yo-Jin; Wang, Hsueh-Ching; Chen, Tsai-Huei; Jien, Shih-Hau; Tian, Guanglong; Chiu, Chih-Yu

    2017-01-01

    Badland soils—which have high silt and clay contents, bulk density, and soil electric conductivity— cover a large area of Southern Taiwan. This study evaluated the amelioration of these poor soils by thorny bamboo, one of the few plant species that grows in badland soils. Soil physiochemical and biological parameters were measured from three thorny bamboo plantations and nearby bare lands. Results show that bamboo increased microbial C and N, soil acid-hydrolysable C, recalcitrant C, and soluble organic C of badland soils. High microbial biomass C to total organic C ratio indicates that soil organic matter was used more efficiently by microbes colonizing bamboo plantations than in bare land soils. High microbial respiration to biomass C ratio in bare land soils confirmed environmentally induced stress. Soil microbes in bare land soils also faced soil organic matter with the high ratio of recalcitrant C to total organic C. The high soil acid-hydrolysable C to total organic C ratio at bamboo plantations supported the hypothesis that decomposition of bamboo litter increased soil C in labile fractions. Overall, thorny bamboo improved soil quality, thus, this study demonstrates that planting thorny bamboo is a successful practice for the amelioration of badland soils.

  18. Improvement in the biochemical and chemical properties of badland soils by thorny bamboo

    Science.gov (United States)

    Shiau, Yo-Jin; Wang, Hsueh-Ching; Chen, Tsai-Huei; Jien, Shih-Hau; Tian, Guanglong; Chiu, Chih-Yu

    2017-01-01

    Badland soils—which have high silt and clay contents, bulk density, and soil electric conductivity— cover a large area of Southern Taiwan. This study evaluated the amelioration of these poor soils by thorny bamboo, one of the few plant species that grows in badland soils. Soil physiochemical and biological parameters were measured from three thorny bamboo plantations and nearby bare lands. Results show that bamboo increased microbial C and N, soil acid-hydrolysable C, recalcitrant C, and soluble organic C of badland soils. High microbial biomass C to total organic C ratio indicates that soil organic matter was used more efficiently by microbes colonizing bamboo plantations than in bare land soils. High microbial respiration to biomass C ratio in bare land soils confirmed environmentally induced stress. Soil microbes in bare land soils also faced soil organic matter with the high ratio of recalcitrant C to total organic C. The high soil acid-hydrolysable C to total organic C ratio at bamboo plantations supported the hypothesis that decomposition of bamboo litter increased soil C in labile fractions. Overall, thorny bamboo improved soil quality, thus, this study demonstrates that planting thorny bamboo is a successful practice for the amelioration of badland soils. PMID:28102291

  19. Influence of Physical and Chemical Soil Properties on the Adsorption of Escherichia coli in Mollisols and Alfisols of Argentina.

    OpenAIRE

    Behrends Kraemer, Filipe; Chagas, Celio Ignácio; Morrás, Héctor; Juan A. Moretton; Paz, Marta; Garibaldi, Lucas Alejandro

    2016-01-01

    Bacterial adsorption on soils and sediments is one of the main factors that control bacterial transport to water bodies. In this work, 32 soil samples representative of the most important arable areas of the Rolling Pampa region (Argiudolls) and bottomlands devoted to livestock production (Natraqualfs) were analyzed in order to evaluate bacterial-soil adsorption. The first axis of a principal component analysis explained 45% of the total variation among soils in 11 physical and chemical prope...

  20. The Effect of Fertilization and Limingon Some Soil Chemical Properties of Eutric Gleysol

    Directory of Open Access Journals (Sweden)

    Ivica Kisić

    2004-09-01

    Full Text Available The effect of different rates of mineral and organic fertilizers, liming and twotypes of zeolite tuffs upon the changes in the soil chemical complex were monitored in an exact field trial set up on Eutric Gleysol near Karlovac in Central Croatia. The trial was set up according to the randomized block method with four replications. The four-year investigations revealed a significant increase in pH values in treatments with hydrated lime, as well as in variants in which special natural amendments based on zeolite tuffs were applied. The applied rates of liming materials led to a significant increase in the base saturation of the cation exchange capacity as well as in content of investigation nutrients - phosphorus and potassium. While organic fertilizers and zeolite tuffs had less effect on changes of the studied parameters, significantly greater changes of the studied parameters (pH, cation exchange capacity, content of phosphorus and potassium were recorded in treatments in which the hydrated lime was combined with mineral fertilizers.

  1. Changes in soil physical and chemical properties in long term improved natural and traditional agroforestry management systems of cacao genotypes in Peruvian Amazon.

    Science.gov (United States)

    Arévalo-Gardini, Enrique; Canto, Manuel; Alegre, Julio; Loli, Oscar; Julca, Alberto; Baligar, Virupax

    2015-01-01

    Growing cacao (Theobroma cacao L.) in an agroforestry system generates a productive use of the land, preserves the best conditions for physical, chemical and biological properties of tropical soils, and plays an important role in improving cacao production and fertility of degraded tropical soils. The aim of this study was to evaluate the impact of two long term agroforestry systems of cacao management on soil physical and chemical properties in an area originally inhabited by 30 years old native secondary forest (SF). The two agroforestry systems adapted were: improved natural agroforestry system (INAS) where trees without economic value were selectively removed to provide 50% shade and improved traditional agroforestry system (ITAS) where all native trees were cut and burnt in the location. For evaluation of the changes of soil physical and chemical properties with time due to the imposed cacao management systems, plots of 10 cacao genotypes (ICS95, UF613, CCN51, ICT1112, ICT1026, ICT2162, ICT2171, ICT2142, H35, U30) and one plot with a spontaneous hybrid were selected. Soil samples were taken at 0-20, 20-40 and 40-60 cm depths before the installation of the management systems (2004), and then followed at two years intervals. Bulk density, porosity, field capacity and wilting point varied significantly during the years of assessment in the different soil depths and under the systems assessed. Soil pH, CEC, exchangeable Mg and sum of the bases were higher in the INAS than the ITAS. In both systems, SOM, Ext. P, K and Fe, exch. K, Mg and Al+H decreased with years of cultivation; these changes were more evident in the 0-20 cm soil depth. Overall improvement of SOM and soil nutrient status was much higher in the ITAS than INAS. The levels of physical and chemical properties of soil under cacao genotypes showed a marked difference in both systems.

  2. Paddy Soil Stability and Mechanical Properties as Affected by Long-Term Application of Chemical Fertilizer and Animal Manure in Subtropical China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Wet stability, penetration resistance (PR), and tensile strength (TS) of paddy soils under a fertilization experiment for 22 years were determined to elucidate the function of soil organic matter in paddy soil stabilization. The treatments included no fertilization (CK), normal chemical fertilization (NPK), double the NPK application rates (2NPK), and NPK mixed with organic manure (NPK+OM). Compared with CK, fertilization increased soil organic carbon (SOC) and soil porosity. The results of soil aggregate fragmentation degree (SAFD) showed that fast wetting by water was the key fragmentation mechanism. Among the treatments, the NPK+OM treatment had the largest size of water-stable aggregates and greatest normal mean weight diameter (NMWD) (P ≤ 0.05), but the lowest PR and TS in both cultivated horizon (Ap) and plow pan. The CK and 2NPK treatments were measured with PR > 2.0 MPa and friability index < 0.20,respectively, in the Ap horizon, suggesting that the soils was mechanically unfavourable to root growth and tillage. In the plow pan, the fertilization treatments had greater TS and PR than in CK. TS and PR of the tested soil aggregates were negatively correlated to SOC content and soil porosity. This study suggested that chemical fertilization could cause deterioration of mechanical properties while application of organic manure could improve soil stability and mechanical properties.

  3. Management systems in irrigated rice affect physical and chemical soil properties

    NARCIS (Netherlands)

    Rodrigues de Lima, A.C.; Hoogmoed, W.B.; Pauletto, E.A.; Pinto, L.F.S.

    2009-01-01

    Lowland soils are commonly found in the state of Rio Grande do Sul, Southern of Brazil, where they represent around 20% of the total area. Deficient drainage is the most important natural characteristic of these soils which therefore are mainly in use for irrigated rice (Oriza sativa). Degradation i

  4. Soil chemical properties under kauri (Agathis australis) in The Waitakere Ranges, New Zealand

    NARCIS (Netherlands)

    Jongkind, A.G.; Velthorst, E.J.; Buurman, P.

    2007-01-01

    Kauri is known to cause low soil pH and loss of Al from the Al-hydroxy-interlayers from interlayered vermiculite. Kauri is also associated with intense podzolisation and therefore we studied the Al and Fe phases in soil under kauri and under adjacent broadleaf/treefern vegetation for comparison. Kau

  5. Comparison of the Chemical Properties of Forest Soil from the Silesian Beskid, Poland

    Directory of Open Access Journals (Sweden)

    Maria Zołotajkin

    2014-01-01

    Full Text Available There is spruce forests degradation observed in the Silesian Beskid. The aim of the work was the assessment of parameters diversifying organic layers of soils in two forest areas: degraded and healthy spruce forests of Silesian Beskid. 23 soil samples were collected from two fields—14 soil samples from a degraded forest and 9 soil samples from a forest, where pandemic dying of spruce is not observed. Implementation of hierarchical clustering to experimental data analysis allowed drawing a conclusion that the two forest areas vary significantly in terms of content of aluminium extracted with solutions of barium chloride (Alexch, sodium diphosphate (Alpyr, and pHKCl and in the amount of humus in soil.

  6. Effects of reclaimed water irrigation and nitrogen fertilization on the chemical properties and microbial community of soil

    DEFF Research Database (Denmark)

    Guo, Wei; Andersen, Mathias Neumann; Qi, Xue-bin

    2017-01-01

    of microbial communities using either clean or reclaimed water for irrigation indicated that the type of irrigation water may have a greater influence on the structure of soil microbial community than N fertilizer treatment. Based on a canonical correspondence analysis (CCA) between the species of soil......The ecological effect of reclaimed water irrigation and fertilizer application on the soil environment is receiving more attention. Soil microbial activity and nitrogen (N) levels are important indicators of the effect of reclaimed water irrigation on environment. This study evaluated soil...... physicochemical properties and microbial community structure in soils irrigated with reclaimed water and receiving varied amounts of N fertilizer. The results indicated that the reclaimed water irrigation increased soil electrical conductivity (EC) and soil water content (SWC). The N treatment has highly...

  7. Effects of rumen digesta on the physico-chemical properties of soils ...

    African Journals Online (AJOL)

    IFEOMA EDEH

    2015-06-03

    Jun 3, 2015 ... African Journal of Biotechnology ... urban and industrial wastes in Nigeria, as compiled by ... soil samples were kept moist with distilled water (200 ml daily) ..... Duruigbo CJ, Obiefuna JC, Onweremmadu EU, Ogbede KO, ...

  8. Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland

    Institute of Scientific and Technical Information of China (English)

    Ximei Zhang; Xingguo Han

    2012-01-01

    Nitrogen deposition has dramatically altered biodiversity and ecosystem functioning on the earth; however,its effects on soil bacterial community and the underlying mechanisms of these effects have not been thoroughly examined.Changes in ecosystems caused by nitrogen deposition have traditionally been attributed to increased nitrogen content.In fact,nitrogen deposition not only leads to increased soil total N content,but also changes in the NH4+-N content,NO3--N content and pH,as well as changes in the heterogeneity of the four indexes.The soil indexes for these four factors,their heterogeneity and even the plant community might be routes through which nitrogen deposition alters the bacterial community.Here,we describe a 6-year nitrogen addition experiment conducted in a typical steppe ecosystem to investigate the ecological mechanism by which nitrogen deposition alters bacterial abundance,diversity and composition.We found that various characteristics of the bacterial community were explained by different environmental factors.Nitrogen deposition decreased bacterial abundance that is positively related to soil pH value.In addition,nitrogen addition decreased bacterial diversity,which is negatively related to soil total N content and positively related to soil NO3--N heterogeneity.Finally,nitrogen.addition altered bacterial composition that is significantly related to soil NH4+-N content.Although nitrogen deposition significantly altered plant biomass,diversity and composition,these characteristics of plant community did not have a significant impact on processes of nitrogen deposition that led to alterations in bacterial abundance,diversity and composition.Therefore,more sensitive molecular technologies should be adopted to detect the subtle shifts of microbial community structure induced by the changes of plant community upon nitrogen deposition.

  9. Oxidation of FGD-CaSO{sub 3} and effect on soil chemical properties when applied to the soil surface

    Energy Technology Data Exchange (ETDEWEB)

    Liming Chen; Cliff Ramsier; Jerry Bigham; Brian Slater; David Kost; Yong Bok Lee; Warren A. Dick [Ohio State University, Wooster, OH (United States). School of Environment and Natural Resources

    2009-07-15

    Use of high-sulfur coal for power generation in the United States requires the removal of sulfur dioxide (SO{sub 2}) produced during burning in order to meet clean air regulations. If SO{sub 2} is removed from the flue gas using a wet scrubber without forced air oxidation, much of the S product created will be sulfite (SO{sub 3}{sup 2-}). Plants take up S in the form of sulfate (SO{sub 2}{sup 2-}). Sulfite may cause damage to plant roots, especially in acid soils. For agricultural uses, it is thought that SO{sub 4}{sup 2-} in flue gas desulfurization (FGD) products must first oxidize to SO{sub 4}{sup 2-} in soils before crops are planted. However, there is little information about the oxidation of SO{sub 3}{sup 2-} in FGD product to SO{sub 4}{sup 2-} under field conditions. An FGD-CaSO{sub 3} was applied at rates of 0, 1.12, and 3.36 Mg ha{sup -1} to the surface of an agricultural soil (Wooster silt loam, Oxyaquic Fragiudalf). The SO{sub 4}{sup 2-} in the surface soil (0-10 cm) was analyzed on days 3, 7, 17, 45, and 61. The distribution of SO{sub 4}{sup 2-} and Ca in the 0-90 cm soil layer was also determined on day 61. Results indicated that SO{sub 3}{sup 2-} in the FGD-CaSO{sub 3} rapidly oxidized to SO{sub 4}{sup 2-} on the field surface during the first week and much of the SO{sub 4}{sup 2-} and Ca moved downward into the 0-50 cm soil layer during the experimental period of two months. It is safe to grow plants in soil treated with FGD-CaSO{sub 3} if the application is made at least three days to several weeks before planting. 20 refs., 6 figs., 4 tabs.

  10. Physico-Chemical Properties of Three Salt-Affected Soils in the ...

    African Journals Online (AJOL)

    komla

    The study sites are located between longitudes 0° 29' 54” and 1° 4' 47” E and .... brown (7.5 yr 5/6) and brownish yellow (10 yr 6/8) mottles throughout the profile. ..... When clay particles disperse within soil water, the dispersed clay particles ...

  11. Relationship between soil oxidizable carbon and physical, chemical and mineralogical properties of umbric ferralsols

    NARCIS (Netherlands)

    Marques, F.A.; Calegari, M.R.; Vidal-Torrado, P.; Buurman, P.

    2011-01-01

    The occurrence of Umbric Ferralsols with thick umbric epipedons (> 100 cm thickness) in humid Tropical and Subtropical areas is a paradox since the processes of organic matter decomposition in these environments are very efficient. Nevertheless, this soil type has been reported in areas in the

  12. Utilizing Palm Oil Mill Effluent Compost for Improvement of Acid Mineral Soil Chemical Properties and Soybean Yield

    Directory of Open Access Journals (Sweden)

    Ermadani Ermadani

    2013-09-01

    Full Text Available Effluent from a palm oil mill contains organic matters and nutrients. It can result in water pollution when it is discharged into river without treatment. One way to manage this effluent is through composting that has potential to allow the recycling of effluent nutrients in a sustainable and environmentally friendly manner so that it can be used as organic fertilizer. This study wasintended to evaluate the benefit of effluent compost application to improve soil chemical properties and soybean yield. Effluent wascomposted with chicken manure and lime for eight weeks. A pot experiment of which each pot was filled with 10 kg of soil (Ultisolwas conducted in a screen house from April to November 2012 at the Experimental Farm, University of Jambi, Muaro JambiResidency. The treatments were without compost (adding 0,25 g Urea, 0,75 g SP-36 and 0,50 g KCl and compost application with amounts of 12,5 ml, 25 ml, 37,5 ml, 50 ml, 62,5 ml, and 75 ml. The indicator plant was soybean. The treatments were arranged in acompletely randomized design and replicated four times. Results of study showed a significant improvement of soil chemicalproperties with compost application in which application of 75 ml compost resulted in the highest increase of pH, organic C, cationexchange capacity, total N, available P, exchangeable cations (K, Ca, Mg. Furthermore, the dry weight of shoot, pod number and dryweight of seed increased significantly with compost application. The highest dry weight of seed was 28 g (equivalent to 2, 82 t ha-1obtained by compost application of 75 ml (equivalent to 15 t ha -1.

  13. Incorporation of digestate selectively affects physical, chemical and biochemical properties along with CO2 emissions in two contrasting agricultural soils in the Mediterranean area.

    Science.gov (United States)

    Badagliacca, Giuseppe; Petrovičová, Beatrix; Zumbo, Antonino; Romeo, Maurizio; Gullì, Tommaso; Martire, Luigi; Monti, Michele; Gelsomino, Antonio

    2017-04-01

    Soil incorporation of digestate represents a common practice to dispose the solid residues from biogas producing plants. Although the digestate constitutes a residual biomass rich in partially decomposed organic matter and nutrients, whose content is often highly variable and unbalanced, its potential fertilizer value can vary considerably depending on the recipient soil properties. The aim of the work was to assess short-term changes in the fertility status of two contrasting agricultural soils in Southern Italy (Calabria), olive grove on a clay acid soil (Typic Hapludalfs) and citrus grove on a sandy loam slightly calcareous soil (Typic Xerofluvents), respectively located along the Tyrrhenian or the Ionian coast. An amount of 30 t ha-1 digestate was incorporated into the soil by ploughing. Unamended tilled soil was used as control. The following soil physical, chemical and biochemical variables were monitored during the experimental period: aggregate stability, pH, electrical conductivity, organic C, total N, Olsen-P, N-NH4+, N-NO3-, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and the mineralization quotient (qM). Moreover, in the olive grove soil CO2 emissions have been continuously measured at field scale for 5 months after digestate incorporation. Digestate application in both site exerted a significant positive effect on soil aggregate stability with a greater increase in clay than in sandy loam soil. Over the experimental period, digestate considerably affected the nutrient availability, namely Olsen-P, N-NH4+, N-NO3-, along with the electrical conductivity. The soil type increased significantly the soil N-NH4+ content, which was always higher in the olive than in citrus grove soil. N-NO3- content was markedly increased soon after the organic amendment, followed by a seasonal decline more evident in the sandy loam soil. Moreover, soil properties as CaCO3 content and the pH selectively affected the Olsen-P dynamics. No appreciable

  14. Impact of Addition of FGDB as a Soil Amendment on Physical and Chemical Properties of an Alkali Soil and Crop Yield of Maize in Northern China Coastal Plain

    Directory of Open Access Journals (Sweden)

    H.-L. Yu

    2015-01-01

    Full Text Available To evaluate the effect of Flue gas desulfurization byproduct( FGDB as a soil amendment on growth and yield of maize (Zea mays and to determine the impact of FGDB additions on soil fertility characteristics in alkaline clayey soils, a 2-year field experiment was conducted in Huanghua, in Northern China Coastal Plain. The experiment included five treatments in which the soil was amended with FGDB at 15 cm depth at the rates of 0 t·hm−2, 4.50 t·hm−2, 9.00 t·hm−2, 13.5 t·hm−2, and 18.00 t·hm−2, respectively, before maize was planted. The values of soil pH, exchangeable sodium percentage (ESP, and bulk density (BD of the soil decreased; however, values of electrical conductivity (EC, water holding capacity (WHC, and plant nutrients increased with FGDB application in the soil. Crop plants grow more readily in FGDB amended soils because of improved soil properties. The best ameliorative effect was obtained at the rate of 13.5 t·hm−2. The germination percentage, plant height, and crop yield successively increased in both years. The results indicated FGDB was an effective soil amendment for improving the physicochemical properties and nutrient balance, and enhancing crop germination, growth, and yield, particularly when applied at a suitable application rate.

  15. Between and within-field variation in physico-chemical soil properties of vineyards: implications for terroir zoning and management in Heuvelland, Belgium

    Science.gov (United States)

    Tavernier, Emma; Verdoodt, Ann; Cornelis, Wim; Delbecque, Nele; Tiebergijn, Lynn; Seynnaeve, Marleen; Gabriels, Donald

    2015-04-01

    The 'Heuvelland' region with a surface area of 94 km² is situated in the Province of West Flanders, Belgium, bordering with France. The region comprises a number of hills ("heuvel") on which a fast growing 'wine culture' is developing. Both professional as well as non-professional wine makers together cultivate about 19 ha of vineyards, and are still expanding. Grapes cultivated include Chardonnay, Pinot gris and Pinot noir among others. The small-scale, strongly dispersed vineyards are located in different landscape positions of variable aspect. The objective of our preliminary study was to assess the between-field and within-field variation in physico-chemical soil properties of these vineyards with the aim to better characterise the terroir(s) in Heuvelland and provide guidelines for soil management. Fourteen vineyards from five different wineries were selected for detailed soil sampling. Twenty-five sampling sites were chosen according to the topography, soil map units and observed variability in grape growth. The soil was sampled using 15 cm depth increments up to a depth of 60 cm or a shallower lithic contact. Composite samples of 5 sampling locations along the contour lines were taken per within-field zone. Besides the texture, pH, organic carbon, total nitrogen, available phosphorous and exchangeable base cations (Ca, Mg, K), also some micronutrients (Fe, B, Cu, Mn) were determined using standard laboratory procedures. The soils developed on Quaternary niveo-eolian sandy loam and loamy sediments of variable thickness covering marine sandy and clayey sediments of the Tertiary. Where the Tertiary clayey sediments occur at shallow depth, they can strongly influence the internal drainage. At higher positions in the landscape, iron-rich sandstone layers are found at shallow depth. Fragments of this iron-rich sandstone can also be found at lower positions (colluvial material). This iron sandstone is claimed to contribute to the unique character of this wine

  16. Physical and chemical properties of soils under some wild Pistachio (Pistacia atlantica Desf) canopies in a semi-arid ecosystem, southwestern Iran.

    Science.gov (United States)

    Owliaie, Hamidreza

    2010-05-01

    Pistacia atlantica Desf. is one of the most important wild species in Zagros forests which is of high economical and environmental value. Sustainability of these forests primarily depends on soil quality and water availability. Study the relationships between trees and soil is one of the basic factors in management and planning of forests. Hence, this study was undertaken with the objective of assessing the effect of tree species on soil physical and chemical properties in a semi-arid region (Kohgilouye Province) in the southwestern part of Iran. The experimental design was a factorial 4×2 (4 depths and 2 distances) in a randomized complete block design with six replications. Soil samples (0-20, 20-40, 40-60 and 60-80 cm depth) were taken from beneath the tree crowns and adjacent open areas. Soil samples were analyzed for physical and chemical properties. The results showed that wild pistachio canopy increased mostly organic carbon, hydraulic conductivity, total N, SP, available K+, P (olsen), EC, EDTA extractable Fe2+ and Mn2+, while bulk density, CCE and DTPA extractable Cu2+ were decreased. Pistachio canopy had no significant effect on soil texture, Zn2+ and pH.

  17. Impacts of Woody Invader Dillenia suffruticosa (Griff. Martelli on Physio-chemical Properties of Soil and, Below and Above Ground Flora

    Directory of Open Access Journals (Sweden)

    B.A.K. Wickramathilake

    2014-01-01

    Full Text Available Dillenia suffruticosa (Griffith Martelli, that spreads fast in low-lying areas in wet zone of Sri Lanka is currently listed as a nationally important Invasive Alien Species that deserves attention in ecological studies. Thus, impact of this woody invader on physical, chemical properties of soil and below and above ground flora was investigated. Five sampling sites were identified along a distance of 46km from Avissawella to Ratnapura. At each site, two adjacent plots [1m x10m each for D. suffruticosa present (D+ and absent (D-] were outlined. Physical and chemical soil parameters, microbial biomass and number of bacterial colonies in soil were determined using standard procedures and compared between D+ and D- by ANOVA using SPSS. Rate of decomposition of D. suffruticosa leaves was also determined using the litter bag technique at 35% and 50% moisture levels. Above ground plant species richness in sample stands was compared using Jaccard and Sorenson diversity indices.  Decomposition of D. suffruticosa leaves was slow, but occurred at a more or less similar rate irrespective of moisture content of soil. Particle size distribution in D+ soil showed a much higher percentage of large soil particles.  Higher % porosity in D+ sites was a clear indication that the soil was aerated.  The pH was significantly lower for D+ than D- thus developing acidic soils whereas conductivity has been significantly high making soil further stressed. The significant drop in Cation Exchange Capacity (CEC in D+ soil was a remarkable finding to be concerned with as it correlated with fertility of soil. Significantly higher values of phosphates reported in D+ soil support the idea that plant invaders are capable to increase phosphates in soil. Higher biomass values recorded for D+ sites together with higher number of bacterial colonies could be related to the unexpectedly recorded higher Organic Carbon. Both  the  Jaccard  and  Sorenson   indices indicated  that

  18. Specific features of the morphology and chemical properties of coarse-textured postagrogenic soils of the southern taiga, Kostroma oblast

    Science.gov (United States)

    Telesnina, V. M.; Vaganov, I. E.; Karlsen, A. A.; Ivanova, A. E.; Zhukov, M. A.; Lebedev, S. M.

    2016-01-01

    The properties of loamy sandy postagrogenic soils in the course of their natural overgrowing were studied in the southeastern part of Kostroma oblast. Micromorphological indications of tillage were preserved in these soils at least 35-40 years after the cessation of their agricultural use. In the course of the soil overgrowing with forest vegetation, the bulk density of the upper part of the former plow horizon decreased, the pH and the ash content of the litter horizon somewhat lowered with a simultaneous increase in the acidity of the upper mineral horizon, especially at the beginning of the formation of the tree stand. In 5-7 years after the cessation of tillage, the former plow horizon was differentiated with respect to the organic carbon content. The total pool of organic carbon in the upper 30 cm increased. In the course of the further development, in the postagrogenic soil under the 90to 100-year-old forest, the organic carbon pool in this layer became lower. The soil of the young fallow (5-7 years) was characterized by the higher values of the microbial biomass in the upper mineral horizon in comparison with that in the plowed soil. In general, the microbial biomass in the studied postagrogenic ecosystems (the soils of the fields abandoned in 2005 and 2000 and the soil under the secondary 40-year-old forest) was lower than that in the soil of the subclimax 90to 100-year-old forest. The enzymatic activity of the soils tends to increase during the succession. The restoration of the invertase and, partly, catalase activities to the values typical of the soils under mature forests takes place in about 40 years.

  19. [Effects of litterfall and root input on soil physical and chemical properties in Pinus massoniana plantations in Three Gorges Reservoir Area, China].

    Science.gov (United States)

    Ge, Xiao-Gai; Huang, Zhi-Lin; Cheng, Rui-Mei; Zeng, Li-Xiong; Xiao, Wen-Fa; Tan, Ben-Wang

    2012-12-01

    An investigation was made on the soil physical and chemical properties in different-aged Pinus massoniana plantations in Three Gorges Reservoir Area under effects of litterfall and roots. The annual litter production in mature stand was 19.4% and 65.7% higher than that in nearly mature and middle-aged stands, respectively. The litter standing amount was in the sequence of mature stand > middle-aged stand > nearly mature stand, while the litter turnover coefficient was in the order of nearly mature stand (0.51) > mature stand (0.40) > middle-aged stand (0.36). The total root biomass, live root biomass, and dead root biomass were the highest in middle-aged stand, and the lowest in nearly mature stand. In middle-aged stand, soil total porosity was the highest, and soil bulk density was the lowest. Soil organic matter and total nitrogen contents were in the order of mature stand > middle-aged stand > nearly mature stand, soil nitrate nitrogen occupied a larger proportion of soil mineral N in nearly mature stand, while ammonium nitrogen accounted more in middle-aged and mature stands. In nearly mature stand, litter production was moderate but turnover coefficient was the highest, and soil nutrient contents were the lowest. In middle-aged stand, root biomass and soil total porosity were the highest, and soil bulk density were the lowest. In mature stand, root biomass was lower while soil nutrient contents were the highest. The increase of root biomass could improve soil physical properties.

  20. Impacts of Rangeland Degradation on Soil Physical, Chemical and ...

    African Journals Online (AJOL)

    Based on the results, soil texture showed a shift from clay type to silt clay, while soil .... chemical properties (Gemedo et al., 2006) as well as the rangeland biological resources mainly the ... Soil sample collection for soil and seed bank analysis.

  1. Effect of soil texture and chemical properties on laboratory-generated dust emissions from SW North America

    Science.gov (United States)

    Mockford, T.; Zobeck, T. M.; Lee, J. A.; Gill, T. E.; Dominguez, M. A.; Peinado, P.

    2012-12-01

    Understanding the controls of mineral dust emissions and their particle size distributions during wind-erosion events is critical as dust particles play a significant impact in shaping the earth's climate. It has been suggested that emission rates and particle size distributions are independent of soil chemistry and soil texture. In this study, 45 samples of wind-erodible surface soils from the Southern High Plains and Chihuahuan Desert regions of Texas, New Mexico, Colorado and Chihuahua were analyzed by the Lubbock Dust Generation, Analysis and Sampling System (LDGASS) and a Beckman-Coulter particle multisizer. The LDGASS created dust emissions in a controlled laboratory setting using a rotating arm which allows particle collisions. The emitted dust was transferred to a chamber where particulate matter concentration was recorded using a DataRam and MiniVol filter and dust particle size distribution was recorded using a GRIMM particle analyzer. Particle size analysis was also determined from samples deposited on the Mini-Vol filters using a Beckman-Coulter particle multisizer. Soil textures of source samples ranged from sands and sandy loams to clays and silts. Initial results suggest that total dust emissions increased with increasing soil clay and silt content and decreased with increasing sand content. Particle size distribution analysis showed a similar relationship; soils with high silt content produced the widest range of dust particle sizes and the smallest dust particles. Sand grains seem to produce the largest dust particles. Chemical control of dust emissions by calcium carbonate content will also be discussed.

  2. Soil chemical properties as affected by plant derived ash to replace potassium fertilizer and its conversion value

    Directory of Open Access Journals (Sweden)

    John Bako Baon

    2011-08-01

    Full Text Available Potassium chloride (KCl presently used as main source of K, tends to become more expensive, therefore, there is a need for a breakthrough in finding alternative materials to replace KCl. The aim of this paper is to present recent research on the use of plant derived ash to replace KCl fertilizer, especially in relation with soil chemical characteristics and its conversion value. Plant derived ash coming from palm sugar processing unit which use farm waste as main fuel was used in this experiment. Treatments investigated were no K2O application (control, applied with K2O in forms of both KCl and plant derived ash in dosages of 100, 200, 300, 400, 500 and 600 mg kg-1 air dry soil. The mixture of soil with those treatments were then incubated for one year. After incubation period, the soil in pots were divided into two parts, first part was added with 2g urea, while other part was added with 2 g SP 36. Both parts were incubated for two months. Results of this experiment showed that plant derived ash can be used to replaced KCl. To obtain similar soil K content, the amount of K2O in form of plant derived ash needed to be added or its conversion value is 1.44 times the amount of K2O in form of KCl. Use of plant derived ash also increased the content of soil Ca, available P, ratio of Ca/Mg and pH. Plant derived ash did not caused nitrogen loss. Key words: Potassium, fertilizer, plant derived ash, pH, soil.

  3. Characterization of some physical and chemical properties of post-bog soils developed from limnic deposits in vicinity of lake Dubie (Western Pomerania, NW Poland

    Directory of Open Access Journals (Sweden)

    Jarnuszewski Grzegorz

    2016-03-01

    Full Text Available Post-bog soils developed from limnic calcareous sediments are closely related to a young-glacial landscape and postglacial lakes in Northern Poland. The studies conducted in 2010–2012 on post-bog soils near lake Dubie (Równina Drawska, NW Poland, partially used as an arable land. The goal of research was to characterise some chemical and physical properties of post-bog soils developed from carbonate deposits near lake Dubie. The soils of the analysed area developed from lacustrine chalk and calcareous gyttja belong to black earth and mucky soils. Organic matter content in surface horizons ranged from 5.0 to 14.2%, content of CaCO3 from 27.2 to 55.2%, the highest carbonate content was found in arable soil. The soils of the study area were characterised by a narrow C/N ratio, low level of total form of P and a high content of Ca. Specific density of surface horizons was in the range 2.49 to 2.58 Mg · m−3, bulk density from 0.445 to 1.212 Mg · m−3. High porosity was also found in the examined formations, from 0.826 in surface horizons and 0.700 m3 · m−3 in limnic deposits.

  4. The effect of intrinsic soil properties on soil quality assessments

    Directory of Open Access Journals (Sweden)

    Alessandro Samuel-Rosa

    2013-10-01

    Full Text Available The assessment of soil quality is based on indicators and indices derived from soil properties. However, intrinsic soil properties may interfere with other soil properties that vary under different land uses and are used to calculate the indices. The aim of this study was to assess the extent to which intrinsic soil properties (clay and iron oxide contents explain variable soil properties (sum of bases, potential acidity, organic carbon, total porosity, and bulk density under different land uses (native forest, no-tillage and conventional agriculture on small family farms in Southern Brazil. The results showed that the five properties evaluated can be included in soil quality assessments and are not influenced by the clay and iron oxide contents. It was concluded that for little weathered 1:1 and 2:1 phyllosilicate rich-soils, if the difference between the maximum and the minimum clay content under the different land uses is less than about 200 g kg-1 and the iron oxide content less than about 15 g kg-1, the physico-chemical soil properties in the surface layer are determined mostly by the land use.

  5. Amendment of Tephrosia Improved Fallows with Inorganic Fertilizers Improves Soil Chemical Properties, N Uptake, and Maize Yield in Malawi

    Directory of Open Access Journals (Sweden)

    Maggie G. Munthali

    2014-01-01

    Full Text Available Maize production in Malawi is limited mainly by low soil N and P. Improved fallows of N-fixing legumes such as Tephrosia and Sesbania offer options for improving soil fertility particularly N supply. The interactions of Tephrosia fallows and inorganic fertilizers on soil properties, N uptake, and maize yields were evaluated at Chitedze Research Station in Malawi. The results indicated that the level of organic matter and pH increased in all the treatments except for the control. Total N remained almost unchanged while available P decreased in all plots amended with T. vogelii but increased in T. candida plots where inorganic P was applied. Exchangeable K increased in all the plots irrespective of the type of amendment. The interaction of N and P fertilizers with T. vogelii fallows significantly increased the grain yield. The treatment that received 45 kg N ha−1 and 20 kg P ha−1 produced significantly higher grain yields (6.8 t ha−1 than all the other treatments except where 68 kg N ha−1 and 30 kg P ha−1 were applied which gave 6.5 t ha−1 of maize grain. T. candida fallows alone or in combination with N and P fertilizers did not significantly affect grain yield. However, T. candida fallows alone can raise maize grain yield by 300% over the no-input control. Based on these results we conclude that high quality residues such as T. candida and T. vogelii can be used as sources of nutrients to improve crop yields and soil fertility in N-limited soils. However, inorganic P fertilizer is needed due to the low soil available P levels.

  6. A Greenhouse Study on Lead Uptake and Antioxidant Enzyme Activities in Vetiver Grass (Vetiveria zizanioides) as a Function of Lead Concentration and Soil Physico-Chemical Properties

    Science.gov (United States)

    Andra, S. P.; Datta, R.; Sarkar, D.; Saminathan, S. K.

    2006-05-01

    enzymes activity in vetiver grass is dependent on soil physico-chemical properties and phytoavailable Pb concentrations.

  7. Effect of Treated MSWC Leachate with Different Salts on Growth Parameters, Chemical Composition of Barley Plant and Soil Properties

    Directory of Open Access Journals (Sweden)

    A.R Astaraei

    2013-08-01

    Full Text Available Natural organic wastes contain considerable amounts of nutritional elements. The availability and uptake of nutrient elements in soil especially in alkali and calcareous soils increase due to high content of organic matter, and reduce the micro-elements deficiencies. Organic wastes have pathogenic contaminations that come from waste type and transmitted by microorganisms such as bacteria, fungi, etc. This research was conducted to study the effect of MSWC leachate treated with three salts, 1 cupper sulphate, 2 iron chloride and 3 sodium benzoate each with two levels of 40 and 80 mg.l-1 on growth parameters of barley and soil properties in a completely randomized design (factorial with three replications under laboratory and pot conditions in college of agriculture, Ferdowsi university of Mashhad during 2009-2010 cropping season. Results showed that plant total dry weight in three different salts were not significant. Maximum N and K concentrations in plant were observed in cupper sulphate treated MSWC leachate and plant P concentration in cupper sulphate and iron chloride treated MSWC leachate treatments. The effect of sodium benzoate, due to its positive impact and benzoic acid produced, as plant metabolite was superior to iron chloride. Increasing amount of salt from 40 to 80 mg.l-1, increased soil ECe, reduced plant height and total dry weight, N and P concentrations. Plant height, total dry weight, plant P and K concentrations were maximum and N concentration ranked second in 40 mg.l-1 cupper sulphate salt. Maximum reduction in plant height and total dry weight was noted in iron chloride with increasing salt amount, and minimum N concentration was noted in this treatment. Soil ECe in cupper sulphate ranked third and soil total N in sodium benzoate 80 and cupper sulphate 40 mg.l-1 treatments ranked first and soil available K in cupper sulphate 40 mg.l-1 ranked second. Our results showed that cupper sulphate 40 mg.l-1 treatment is suitable

  8. Relationships between microbial activity and soil physical and chemical properties in native and reforested Araucaria angustifolia forests in the state of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Jamil de Morais Pereira

    2013-06-01

    Full Text Available Araucaria angustifolia (Bert. O. Kuntze is the main component of the Mixed Ombrophilous forest and, in the State of São Paulo, it is associated with a high diversity of soil organisms, essential for the maintenance of soil quality, making the conservation of this ecosystem a major and pressing challenge. The objective of this study was to identify the physical and chemical properties that are most closely correlated with dehydrogenase enzyme activity, basal respiration and microbial biomass under native (NF and replanted (RF Araucaria angustifolia forests in three regions of the state of São Paulo, in winter and summer. The main differentiating factors between the areas were also determined. Each forest was represented by three true replications; at each site, from around the araucaria trees, 15 soil samples (0-20 cm were collected to evaluate the soil physical, chemical and microbiological properties. At the same points, forest litter was sampled to assess mass and chemical properties. The following microbiological properties were evaluated: microbial biomass carbon (MBC, basal respiration (CO2-C, metabolic quotient (Q: CO2, dehydrogenase enzyme activity (DHA as well as the physical properties (moisture, bulk density, macroporosity and total porosity, soil chemical properties [pH, organic carbon (org-C, P, Ca, K, Mg, Al, H+Al], litter dry mass, and C, N and S contents. The data were subjected to analysis of variance (TWO-WAY: ANOVA. A Canonical Discriminant Analysis (CDA and a Canonical Correlation Analysis (CCA were also performed. In the soil under NF, the values of K, P, soil macroporosity, and litter dry mass were higher and Q: CO2 and DHA lower, regardless of the sampling period, and DHA was lower in winter. In the RF areas, the levels of moisture, porosity and Q: CO2 were higher in both sampling periods, and DHA was higher in winter. The MBC was only higher under NF in the summer, while the litter contents of C, N and S were greater in

  9. Soil properties, soil functions and soil security

    Science.gov (United States)

    Poggio, Laura; Gimona, Alessandro

    2017-04-01

    Soil plays a crucial role in the ecosystem functioning such as food production, capture and storage of water, carbon and nutrients and in the realisation of a number of UN Sustainable Developments Goals. In this work we present an approach to spatially and jointly assess the multiple contributions of soil to the delivery of ecosystem services within multiple land-use system. We focussed on the modelling of the impact of soil on sediment retention, carbon storage, storing and filtering of nutrients, habitat for soil organisms and water regulation, taking into account examples of land use and climate scenarios. Simplified models were used for the single components. Spatialised Bayesian Belief networks were used for the jointly assessment and mapping of soil contribution to multiple land use and ecosystem services. We integrated continuous 3D soil information derived from digital soil mapping approaches covering the whole of mainland Scotland, excluding the Northern Islands. Uncertainty was accounted for and propagated across the whole process. The Scottish test case highlights the differences in roles between mineral and organic soils and provides an example of integrated study assessing the contributions of soil. The results show the importance of the multi-functional analysis of the contribution of soils to the ecosystem service delivery and UN SDGs.

  10. A greenhouse study on arsenic remediation potential of Vetiver grass (Vetiveria Zizanioides) as a function of soil physico-chemical properties

    Science.gov (United States)

    Quispe, M. A.; Datta, R.; Sarkar, D.; Sharma, S.

    2006-05-01

    Arsenic is one of the most harmful and toxic metals, being a Group A human carcinogen. Mining activities as well as the use of arsenic-containing pesticides have resulted in the contamination of a wide variety of sites including mine tailings, cattle dip sites, wood treatment sites, pesticide treatment areas, golf courses, etc. Phytoremediation has emerged as a novel and promising technology, which uses plants to clean up contaminated soil and water taking advantage of plant's natural abilities to extract and accumulate various contaminants. This method has distinct advantages, since it maintains the biological properties and physical structure of the soil, is environment friendly, and above all, inexpensive. However, effective remediation of contaminated residential soils using a specific plant species is an immensely complex task whose success depends on a multitude of factors including the ability of the target plant to uptake, translocate, detoxify, and accumulate arsenic in its system. One of the major challenges in phytoremediation lies in identifying a fast- growing, high biomass plant that can accumulate the contaminant in its harvestable parts. vetiver grass (Vetiveria zizanioides) is a fast-growing perennial grass with strong ecological adaptability and large biomass. While this plant is not a hyperaccumulator of arsenic, it has been reported to be able to tolerate and accumulate considerable amounts of arsenic. Being a high biomass, fast-growing plant, vetiver has the potential to be used for arsenic remediation. The present study investigates the potential of vetiver grass to tolerate and accumulate arsenic in soils with varying physico-chemical properties. A greenhouse study is in progress to study the uptake, tolerance and stress response of vetiver grass to inorganic arsenical pesticide. A column study was set up using 5 soils (Eufaula, Millhopper, Orelia, Orla, and Pahokee Muck) contaminated with sodium arsenite at 4 different concentrations of

  11. Comparison the Efficiency of Aquasorb and Accepta Superabsorbent Polymers in Improving Physical, Chemical, and Biological Properties of Soil and Tomato Turnover under Greenhouse Condition

    Directory of Open Access Journals (Sweden)

    mehdi nourzadeh haddad

    2017-06-01

    Full Text Available Introduction: Water shortage in arid and semiarid regions is the most serious factor in limiting agricultural activities as it leads to the rapid reduction of yields from both a quantitative and qualitative perspective. Under conditions of water scarcity, leaf temperature rises, which causes plant wilting and premature senescence of leaves and, eventually, severes reduction of dry matter production. Use of high-efficient irrigation practices, improvement of soil's physical properties, and use of soil amendments such as superabsorbent polymers are some ways of compensating for water shortage, especially during the growing season. Some materials such as plant residues, manure, various types of compost, and superabsorbent polymeric hydrogels can store various amounts of water and thus increase water retention and storage capacity of soils. Superabsorbent hydrogels, which are also called superabsorbent polymers (SAPs or hydrophilic polymeric gels, are hydrogels that can absorb substantial quantities of water. Hydrogels are a class of polymeric materials having network structures (with physical or chemical crosslinks that are very capable of swelling and absorbing large amounts of water. These materials are formed from water-solublepolymers by crosslinking them either using radiation or a crosslinker. Superabsorbents are widely used in many products such as disposable diapers, feminine napkins, soils for agricultural and horticultural purposes, gel actuators, water blocking tapes, medicine for the drug delivery systems and absorbent pads where water absorbency or water retention is important. Water is a major constraint for crop growth in arid and semi-arid regions, as the precipitation is low and uncertain in these areas. Efficient utilization of meager soil and water resources necessitates the adaptation of appropriate water management techniques. Suitable soil moisture increases the biological activities as result of physical and chemical

  12. The influence of liming on soil chemical properties and on the alleviation of manganese and copper toxicity in Juglans regia, Robinia pseudoacacia, Eucalyptus sp. and Populus sp. plantations.

    Science.gov (United States)

    Chatzistathis, T; Alifragis, D; Papaioannou, A

    2015-03-01

    Juglans regia, Robinia pseudoacacia, Eucalyptus sp. and Populus sp. plantations, suffering from Mn and Cu toxicity, were limed in order to reduce Cu and Mn solubility in soil. The purposes of the present work were: i) to study the changes in soil chemical properties after the addition of CaCO3, ii) to investigate the influence of liming on the reduction of Mn and Cu toxicity. After the addition of CaCO3 (three applications, during three successive years), pH and CaCO3 content were significantly increased, while organic C and N were significantly reduced. Exchangeable Ca concentrations have been slightly, or significantly, increased, while those of Mg have been decreased; in addition, ratios Ca/Mg and C/N have been significantly increased after liming. Impressive reductions of DTPA extractable Cu and Mn concentrations (more than 10 times in most cases) were recorded. It was also found that trees without Mn and Cu toxicity symptoms (healthy tress) before liming did not have, in many cases, significantly greater leaf Mn, Cu and Fe concentrations, than trees after soil liming (all the trees were healthy). This probably happened because excess Mn and Cu quantities had been accumulated into their root system. Finally, leaf Mn, Cu and Zn concentrations of trees suffering from toxicity were significantly decreased after soil liming, while leaf Fe concentrations, in all the plant species studied, were increased.

  13. Impacts of Different Management Practices on Physico-Chemical Properties of Soil in Mid-Hill, Sub-Humid Zone-II of Himachal Pradesh

    Directory of Open Access Journals (Sweden)

    Tanvi Kapoor

    2015-12-01

    Full Text Available A study was conducted at Hill Agricultural Research and Extension centre Bajaura of CSK HP Krishi Vishvavidayalaya, Palampur, Himachal Pradesh to investigate the Impacts of different management practices on physical as well as chemical properties of the soil. Sample analysis of three management practices i.e. organic, inorganic and integrated revealed that, water holding capacity was found to be highest in organic treatment (50.8%, followed by integrated (44.9% and least in inorganic (40.2% whereas field capacity of the three farming systems followed an order as integrated > organic> inorganic treatment. The bulk density of the soil was in the range of 1.36-1.58 Mg cm-2 in the three farming systems and the value was highest in inorganic treatment and lowest in organic treatment. The organic carbon content of soil was highest (1.8 Kg g-1 in organic treatment followed by integrated and lowest (0.75 Kg g-1 in inorganic treatment. The available nitrogen was found to be lowest in integrated treatment followed by organic and inorganic. Cation exchange capacity was found to be highest (16.58 c mol (+ kg‑1 in organic and lowest (10.82 c mol(+ kg‑1 in inorganic practice. Hence organic agriculture practice is best for the restoration of agricultural lands and an environmentally sound and inexpensive way to sustainably intensify crop production on marginal land as well as improving the ecology of the soil environment.

  14. A harmonized vocabulary for soil observed properties

    Science.gov (United States)

    Simons, Bruce; Wilson, Peter; Cox, Simon; Vleeshouer, Jamie

    2014-05-01

    Interoperability of soil data depends on agreements concerning models, schemas and vocabularies. However, observed property terms are often defined during different activities and projects in isolation of one another, resulting in data that has the same scope being represented with different terms, using different formats and formalisms, and published in various access methods. Significantly, many soil property vocabularies conflate multiple concepts in a single term, e.g. quantity kind, units of measure, substance being observed, and procedure. Effectively, this bundles separate information elements into a single slot. We have developed a vocabulary for observed soil properties by adopting and extending a previously defined water quality vocabulary. The observed property model separates the information elements, based on the Open Geospatial Consortium (OGC) Observations & Measurements model and extending the NASA/TopQuadrant 'Quantities, Units, Dimensions and Types' (QUDT) ontology. The imported water quality vocabulary is formalized using the Web Ontology Language (OWL). Key elements are defined as sub-classes or sub-properties of standard Simple Knowledge Organization System (SKOS) elements, allowing use of standard vocabulary interfaces. For the soil observed property vocabulary, terms from QUDT and water quality are used where possible. These are supplemented with additional unit of measure (Unit), observed property (ScaledQuantityKind) and substance being observed (SubstanceOrTaxon) vocabulary entries required for the soil properties. The vocabulary terms have been extracted from the Australian Soil and Land Survey Field Handbook and Australian Soil Information Transfer and Evaluation System (SITES) vocabularies. The vocabulary links any chemical substances to items from the Chemical Entities of Biological Interest (ChEBI) ontology. By formalizing the model for observable properties, and clearly labelling the separate elements, soil property observations may

  15. Changes in soil physical and chemical properties following organic matter removal and compaction: 20-year response of the aspen Lake-States Long Term Soil Productivity installations

    Science.gov (United States)

    Robert A. Slesak; Brian J. Palik; Anthony W. D' Amato; Valerie J. Kurth

    2017-01-01

    Soil functions that control plant resource availability can be altered by management activities such as increased organic matter (OM) removal and soil compaction during forest harvesting. The Long Term Soil Productivity study was established to evaluate how these practices influence soil and site productivity using experimental treatments that span a range of forest...

  16. Effect of Fire Disturbance on Soil Physical & Chemical Properties of Forest%火干扰对森林土壤理化性质的影响

    Institute of Scientific and Technical Information of China (English)

    王艳霞; 杨桂英; 张政

    2012-01-01

    主要针对2006年3月29日安宁火灾后1年的森林土壤理化性质进行研究,结果表明,与未过火区相比,火烧后1年,过火区域的土壤密度明显增加,土壤自然含水量明显下降;淋溶层土壤的pH值略有上升,有机质、水解N、全P含量有所下降,全K与速效K含量明显上升,其余指标变化不明显;淀积层土壤除pH值、全P下降外,其余各指标均有不同程度的提高。%Physical & chemical properties of forest soil were studied one year after "3 · 29 forest fires" in 2006 in Anning city. Result shows that compared with unburned area, soil bulk density significantly increases after being burned;soil water content reduces after being burned. In eluvial horizon of soil, pH value raise slightly ; the contents of organic matter, availa- ble nitrogen & total phosphorus decline somewhat;the contents of total potassium and available potassium increase obvious- ly; the rest indexes did not change significantly. In illuvial horizon of soil, except of pH value and total phosphorus, Other traits increase in varying degrees.

  17. Engineering Properties of Expansive Soil

    Institute of Scientific and Technical Information of China (English)

    DAI Shaobin; SONG Minghai; HUANG Jun

    2005-01-01

    The components of expansive soil were analyzed with EDAX, and it is shown that the main contents of expansive soil in the northern Hubei have some significant effects on engineering properties of expansive soil. Furthermore, the soil modified by lime has an obvious increase of Ca2+ and an improvement of connections between granules so as to reduce the expansibility and contractility of soil. And it also has a better effect on the modified expansive soil than the one modified by pulverized fuel ash.

  18. 南芬细河河岸带土壤理化性质分析%Soil Physical and Chemical Properties of Riparian Zone Along Xi River

    Institute of Scientific and Technical Information of China (English)

    杨春璐; 马溪平; 侯伟; 李法云; 刘强; 李悦; 程志辉; 孔维静

    2012-01-01

    为揭示人为扰动对河岸带土壤造成的影响,以近年来频繁受到人为干扰的、辽宁省本溪市南芬区的细河河岸带为研究对象,采用野外调查和实验室分析测定的方法,对研究区27个点位,0-20cm、20-30cm、30-40cm 3个不同采样深度的土壤进行了多项理化性质的分析.结果表明,南芬细河河岸带土壤基质较硬,容重普遍较大而孔隙率较小,土壤结构性差;土壤呈中性或碱性;河岸带土壤全磷质量比普遍较高,而速效磷质量比极低;有机质和全氮质量比随采样点不同差异较大,二者之间存在极显著的相关性;不同理化指标数值普遍在研究区域的不同采样点表现出明显差异,而在同一点位的不同采样深度上的数值差异不显著.研究结果说明,频繁的人为干扰对南芬细河河岸带土壤层次性造成了较为严重的影响,其恢复过程尚需较长时间.%To reveal the impact of human disturbance on the riparian zone soil, the riparian zone of Xi River, where is frequently disturbed by human in recent years, and is located in Benxi City, Liaoning Province, has been selected as the research object. By using field investigation and laboratory analysis methods, the soil physical and chemical properties of the 27 points at three different sampling depths of 0-20cm, 20-30cm, and 30-40cm were studied. The results indicate that the riparian zone soil of Xi River has a hard soil matrix and a poor soil structure. The values of bulk densities are generally high, and total porosity of that is generally low. The soils are neutral or alkalescent. Contents of soil total phosphorus are generally high; however, the available phosphorus is extremely low. The value of organic matter and total nitrogen is very different in different points, and there is. A significant relationship between the two properties. In the general, the property values in different points is significantly different, however it is insignificantly

  19. Changes in Soil Chemical Properties and Lettuce Yield Response Following Incorporation of Biochar and Cow Dung to Highly Weathered Acidic Soils

    DEFF Research Database (Denmark)

    Agyei Frimpong, Kwame; Amoakwah, Emmanuel; Osei, Benjamin A

    2016-01-01

    Soil fertility decline is a major biophysical constraint to crop production in Sub-Saharan Africa. Therefore, there is an urgent need for sustainable soil fertility replenishment strategies to improve soil quality for enhanced crop production. In a laboratory incubation experiment, biochar (2......% and 5%) and cow dung (20 tons ha-1) were applied singly, and 2% biochar was applied in combination with two rates of cow dung (10 and 20 tons ha-1) in a coastal savanna soil repacked at a bulk density of 1.4 g cm-3 at a constant soil water filled capacity of 60% for 40 days. The same treatments were...... imposed on two highly weathered, acidic soils from the coastal savanna and tropical rainforest agroecological zones of Ghana, respectively, to elucidate their effect on yield of lettuce. The study showed that application of biochar solely or in combination with cow dung increased soil pH, total organic...

  20. Biological and biochemical properties in evaluation of forest soil quality

    OpenAIRE

    Błońska Ewa; Lasota Jarosław

    2014-01-01

    The aim of this study was to assess the possibility of using biological and biochemical parameters in the evaluation of forest soil quality and changes caused by land use. The study attempted to determine a relationship between the enzymatic activity of soil, the number of earthworms and soil physico-chemical properties. The study was carried out in central Poland in adjoining Forest Districts (Przedbórz and Smardzewice). In soil samples taken from 12 research plots, basic physico-chemical pr...

  1. EFFECT OF ELECTRIC FERTILIZER ON SOIL PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    WANG Ya-qin; WANG Ji-hong

    2004-01-01

    Electric fertilizer, I. E. Exerting electric field on plants during growing season instead of chemical fertilizer, is a kind of physical fertilizer, and the third kind of fertilizer with developmental prospect after inorganic fertilizer and organic fertilizer. For the purpose of studying the changes of physical and chemical properties of soil after exerting electric field, five treatments with different applications of chemical fertilizer were arranged on the black soil in Yushu City of Jilin Province by randomized block method, and electric field was exerted on plants every ten days during the growing season. Through sample analysis the paper arrives at following conclusions: 1) Exerting electric field can make soil's granular structure increase, bulk density decrease, moisture capacity increase,thus improving the perviousness of soil. 2) Exerting electric field can make microorganism's number increase and activity strengthen, thus activating nutrient and increasing organic matter content. 3) Exerting electric field with 0.1A medium has the best effect. So the chemical fertilizer can be saved. Therefore, we can say that the application of electric fertilizer is favorable for decreasing chemical poison, improving soil, relaxing the contradiction between the supply and demand of chemical fertilizer, and decreasing production cost of agriculture and forestry.

  2. Thermal Properties of Soils

    Science.gov (United States)

    1981-12-01

    plagio - clase feldspar and pyroxene. The tine fraction may Surface area and its effects contain the clay "sheet" minerals (i.e. kaolinite. illite...Pyroxene, Kaoliniwe Unified By By Ortho. Plagio . amphibole, Basic clay min. Hematite Soil Soil soil petrogr. X.ray clase clase and Igneous and clay and no

  3. 土壤调理剂对设施菜田土壤理化性状的影响及环境效应%Influence of Soil Conditioner on Soil Physical and Chemical Properties and Environmental Effect in Greenhouse

    Institute of Scientific and Technical Information of China (English)

    王凯; 孙碧恺; 姚颖; 张明洁; 李凤鸣; 刘继璇; 毛振娟; 翁福军; 卢树昌

    2015-01-01

    The decline of greenhouse soil quality restricted the sustainable development of vegetable industry. The influence of different conditioner on the physical and chemical properties and the nutrients environmental effect were studied by experiment. The result showed that the experiment treatments had lower surface soil bulk density and higher field moisture capacity by applying test materials, and soil improvement effect of woody conditioner was better than the humic acid potassium and herb source conditioner. By applying test materials, the contents of soil organic matter were improved, the contents of nitrogen, phosphorus and potassium were also improved, the contents of the total nitrogen were decreased, soil carbon and nitrogen ratio was risen. Using woody source and herb source conditioners would reduce soil nitrogen movement. In addition, using potassium humate and woody source conditioner to cucumber made higher output than other treatments. This study would have some reference value for improving soil properties and soil quality.%设施菜田土壤质量下降制约着蔬菜产业持续发展. 采用不同调理剂对设施土壤理化性状及氮磷环境效应进行试验研究.结果表明,施用试验材料的表层土壤容重均低于对照,田间持水量均高于对照,其中木本调理剂改土作用优于腐植酸钾和草本源调理剂处理;施用试验材料土壤有机质含量有所上升,土壤有效氮磷钾含量均有所提高,全氮含量有所下降,土壤C/N比有所增加;施用木本源和草本源调理剂对减缓土壤氮下移有一定作用. 另外,腐植酸钾和木本源调理剂处理黄瓜产量均显著高于其他处理. 该研究对改善土壤性状与提升设施土壤质量具有一定参考价值.

  4. Effects of organic amendments and irrigation waters on the physical and chemical properties of two calcareous soils in Bahrain.

    Science.gov (United States)

    Raveendran, E; Grieve, I C; Madany, I M

    1994-04-01

    The present investigation studies the effects of cow and chicken manure and sewage sludge at different rates of addition and with two irrigation waters of different salinities on two major calcareous soils in Bahrain. The aim was to quantify potential improvements in soil quality, the accumulation of trace metals, and quality of leachates.From the pot experiments it was found that soil waterholding capacity did not change significantly after addition of organic amendments, except in the case of sewage sludge. Total organic carbon and total Kjeldhal nitrogen content increased in the 0-5 cm layer. Low salinity water and sewage applications improved aggregate stability. Extractable phosphorus was enhanced by the chicken manure treatment more than others. Addition of different organic amendments did not affect exchangeable cations. pH values did not show appreciable changes and soils were neutral. Trace metals studied were present at non-toxic levels in the 0-5 cm layer. Zinc and copper were the only metal showing a tendency to leach to the lower soil layer. In all cases metal levels in the surface layer were proportional to the quantities added in the amendments and their levels in the leachate were very low.

  5. Effect of Excess Fertilizer Phosphorus on Some Chemical Properties of Paddy Soil Drived from Red Soil and Its Relation to Rice Growth

    Institute of Scientific and Technical Information of China (English)

    NIWUZHONG; HENIANZU

    1997-01-01

    A filed experiment with an early rice-late rice rotation was carried out on a paddy soil derived from red soil in the southern part of Zhejing Province to elucidate the effect of excess P application on some important characteristics of soil properies and its relation to nutrient status and grain yields of rice crops.The experimental results indicated that adequate fertilizer P(15 kg P hm-2)could increase the content of soil available P at the tillering stage of early rice,the contents of N,P and K in the shoots of early rice at primary growth stages,and the grain yield of early rice by increasing valid ears per hectare and weight per thousand grains,which,was mainly related to the higher contents of reduced,non-reduced and total sugar in the shoot at the heading stage, And early rice supplied with excessive P could not yield more than that applied with adequate, P de to the reduction in the valid grain percentage and weight per thousead grains. In addition,one-time excess P supply at a rate as high as 90 kg P hm-2 could not improve the soil P fertility in case the soil available P content was lower than the initial(3.74mg kg-1 soil) after an early rice-late rice rotaion,and made a decline in the grain yield increased by per kilogram fertilzer P.Thus,one-time excess P supply should not be adopted for soils with a large P fixation capacity like the paddy soils derived from red soils.

  6. Chemical properties of mendelevium

    Energy Technology Data Exchange (ETDEWEB)

    Hulet, E.K.

    1980-11-01

    Even with the most intense ion beams and the largest available quantities of target isotope, about 10/sup 6/ atoms at a time is all the Md that can be produced for chemical studies. This lack of sufficient sample size coupled with the very short lifetimes of the few atoms produced has severely restricted the gathering and the broadness of our knowledge concerning the properties of Md and the heavier elements. To illustrate, the literature contains a mere eleven references to the chemical studies of Md, and none of these deal with bulk properties associated with the element bound in solid phases. Some of these findings are: Md was found to be more volatile than other actinide metals which lead to the belief that it is divalent in the metallic state; separation of Md from the other actinides can be accomplished either by reduction of Md/sup 3 +/ to the divalent state or by chromatographic separations with Md remaining in the tripositive state; extraction of Md/sup 2 +/ with bis(2-ethylhexyl)phosphoric acid is much poorer than the extraction of the neighboring tripositive actinides; attempts to oxidize Md/sup 3 +/ with sodium bismuthate failed to show any evidence for Md/sup 4 +/; reduction potential of Md/sup 3 +/ was found to be close to -0.1 volt; Md/sup 3 +/ can be reduced to Md(Hg) by sodium amalgams and by electrolysis; the electrochemical behavior of Md is very similar to that of Fm and can be summarized in the equation, Md/sup 2 +/ + 2e/sup -/ = Md(Hg) and E/sup 0/ = -1.50 V.; and Md cannot be reduced to a monovalent ion with Sm/sup 2 +/.

  7. Effect of Organic Manure and Chemical Amendments on Soil Properties and Crop Yield on a Salt Affected Entisol

    Institute of Scientific and Technical Information of China (English)

    A.U.BHATTI; Q.KHAN; A.H.GURMANI; M.J.KHAN

    2005-01-01

    A field experiment was conducted for two consecutive years in a farmer's field at Haji Mora Village, Dera Ismail Khan(D.I. Khan) in the Northwest Frontier Province (NWFP) of Pakistan to compare various management practices, such as the effect of various organic manures and gypsum in a rice-wheat cropping system on a saline-sodic Entisol (Zindani soil series). The treatments consisted of 1) a control (rice-wheat), 2) gypsum, 3) farmyard manure (FYM), 4) berseem(Trifolium alexandrinum L.) as green manure (GM), and 5) dhancha (Sesbania sp.) as GM. All treatments increased yields of both rice and wheat significantly (P < 0.01) over the control, with the green manure treatments proving more economical than the others; while they decreased pH, electrical conductivity (EC), and sodium adsorption ratio (SAR) of the soil. Saturation percentage and available water of the soil were raised for all treatments due to an increase in organic matter content of the soil.

  8. Land use change in a temperate grassland soil: Afforestation effects on chemical properties and their ecological and mineralogical implications

    Energy Technology Data Exchange (ETDEWEB)

    Cespedes-Payret, Carlos, E-mail: carlos.cespedespayret@gmail.com [UNCIEP, Instituto de Ecologia y Ciencias Ambientales (IECA), Facultad de Ciencias, Universidad de la Republica, Igua 4225, C.P. 11.400, Montevideo (Uruguay); Pineiro, Gustavo, E-mail: estudiosgeologicos@gmail.com [Departamento de Evolucion de Cuencas, Instituto de Ciencias Geologicas, Facultad de Ciencias, Universidad de la Republica, Igua 4225, C.P. 11.400, Montevideo (Uruguay); Gutierrez, Ofelia, E-mail: gutierrez.ofelia@gmail.com [UNCIEP, Instituto de Ecologia y Ciencias Ambientales (IECA), Facultad de Ciencias, Universidad de la Republica, Igua 4225, C.P. 11.400, Montevideo (Uruguay); Panario, Daniel, E-mail: daniel.panario@gmail.com [UNCIEP, Instituto de Ecologia y Ciencias Ambientales (IECA), Facultad de Ciencias, Universidad de la Republica, Igua 4225, C.P. 11.400, Montevideo (Uruguay)

    2012-11-01

    The current change in land use of grassland in the temperate region of South America is a process associated with the worldwide expansion of annual crops and afforestation with fast growing exotic species. This last cultivation has particularly been the subject of numerous studies showing its negative effects on soil (acidification, loss of organic matter and base cations, among others). However its effects on the mineral fraction are not yet known, as it is generally considered as one of the slowest responses to changes. This stimulated the present study in order to assess whether the composition of clay minerals could be altered together with some of the physicochemical parameters affected by afforestation. This study compares the mineralogical composition of clays by X-ray diffraction (XRD) in a grassland soil (Argiudolls) under natural coverage and under Eucalyptus grandis cultivation implanted 25 years ago in a sector of the same grassland. The tendency of some physicochemical parameters, common to other studies was also compared. XRD results showed, as a most noticeable difference in A{sub 11} and A{sub 12} subhorizons ({approx} 20 cm) under eucalyptus, the fall of the 10 A spectrum minerals (illite-like minerals), which are the main reservoir of K in the soil. Meanwhile, the physicochemical parameters showed significant changes (p < 0.01) to highly significant ones under eucalyptus, particularly in these subhorizons, where on average soil organic matter decreased by 43%; K{sup +} by 34%; Ca{sup 2+} by 44%, while the pH dropped to this level by half a point. Our results show that the exportation of some nutrients is not compensated due to the turnover of organic forestry debris; the process of soil acidification was not directly associated with the redistribution of cations, but with an incipient podzolization process; the loss of potassium together with soil acidification, leads to a drastic change in clay mineralogy, which would be irreversible. Highlights

  9. INFLUENCE OF VERMICOMPOST ON THE PHYSICO-CHEMICAL AND BIOLOGICAL PROPERTIES IN DIFFERENT TYPES OF SOIL ALONG WITH YIELD AND QUALITY OF THE PULSE CROP-BLACKGRAM

    Directory of Open Access Journals (Sweden)

    K. Parthasarathi, M. Balamurugan, L. S. Ranganathan

    2008-01-01

    Full Text Available Field experiments were conducted during 2002-2003 on clay loam, sandy loam and red loam soil at Sivapuri, Chidambaram, Tamil Nadu, to evaluate the efficacy of vermicompost on the physico-chemical and biological characteristics of the soils and on the yield and nutrient content of blackgram - Vigna mungo, in comparison to inorganic fertilizers nitrogen, phosphorous, potassium. Vermicompost had increased the pore space, reduced particle and bulk density, increased water holding capacity, cation exchange capacity, reduced pH and electrical conductivity, increased organic carbon content, available nitrogen, phosphorous, potassium and microbial population and activity in all the soil types, particularly clay loam. The yield and quality (protein and sugar content in seed of blackgram was enhanced in soils, particularly clay loam soil. On the contrary, the application of inorganic fertilizers has resulted in reduced porosity, compaction of soil, reduced carbon and reduced microbial activity.

  10. The Effect of Soil Properties on Metal Bioavailability: Field Scale Validation to Support Regulatory Acceptance

    Science.gov (United States)

    2014-06-01

    speciation of the metals in the soil with the use of X-ray absorption spectroscopy including synchrotron X-ray fluorescence microprobe mapping, microbeam X...its chemical speciation and IVBA solubility will depend on the mining waste mineral not soil property. The ability of soil properties (i.e...by soil properties was found for the Cherry Point soil . Differences in Cr chemical speciation in soil may offer an explanation. Water or wastewater

  11. Biochemical activity and chemical-structural properties of soil organic matter after 17 years of amendments with olive-mill pomace co-compost.

    Science.gov (United States)

    Aranda, V; Macci, C; Peruzzi, E; Masciandaro, G

    2015-01-01

    This study evaluates soil fertility, biochemical activity and the soil's ability to stabilize organic matter after application of composted olive-mill pomace. This organic amendment was applied in two different olive groves in southern Spain having different soil typologies (carbonated and silicic). Olive grove soils after 17 years of organic management with application of olive-mill pomace co-compost were of higher quality than those with conventional management where no co-compost had been applied. The main chemical parameters studied (total organic carbon, total nitrogen, available phosphorus, exchangeable bases, cation exchange capacity, total extractable carbon (TEC), and humic-to-fulvic acids ratio), significantly increased in soils treated with the organic amendment. In particular, the more resistant pool of organic matter (TEC) enhanced by about six and eight fold in carbonated and silicic soils, respectively. Moreover, the amended silicic soils showed the most significant increases in enzyme activities linked to C and P cycles (β-glucosidase twenty-five fold higher and phosphatase seven fold higher). Organic management in both soils induced higher organic matter mineralization, as shown by the higher pyrrole/phenol index (increasing 40% and 150% in carbonated and silicic soils, respectively), and lower furfural/pyrrole index (decreasing 27% and 71% in carbonated and silicic soils, respectively). As a result of mineralization, organic matter incorporated was also more stable as suggested by the trend of the aliphatic/aromatic index (decreasing 36% and 30% in carbonated and silicic soils, respectively). Therefore, management system and soil type are key factors in increasing long-term C stability or sequestration in soils. Thus application of olive-oil extraction by-products to soils could lead to important mid-to -long-term agro-environmental benefits, and be a valuable alternative use for one of the most widespread polluting wastes in the Mediterranean

  12. VARIABILITY OF ARABLE AND FOREST SOILS PROPERTIES ON ERODED SLOPES

    Directory of Open Access Journals (Sweden)

    Paweł Wiśniewski

    2014-10-01

    Full Text Available The basic method of reducing soil and land erosion is a change of land use, for example, from arable to forest. Particularly effective as a protective role – according to the Polish law – soil-protecting forests. The thesis presents differences in the deformation of the basic soil properties on moraine slopes, depending on land use. There has been presented the function and the efficiency of the soil-protecting forests in erosion control. The soil cross section transects and soil analysis displayed that soil-protecting forests are making an essential soil cover protection from degradation, inter alia, limiting the decrease of humus content, reduction of upper soil horizons and soil pedons layer. On the afforested slopes it was stated some clear changes of grain size and chemical properties of soils in relation to adjacent slopes agriculturally used.

  13. Comment on: Shukla, M.K. et al., 2006: Physical and chemical properties of soils under some pinon-juniper-oak canopies in a semi-arid ecosystem in New Mexico

    DEFF Research Database (Denmark)

    Mollerup, Mikkel; Jensen, Jens Raunsø

    2008-01-01

    The paper by Shukla et al. [2006. Physical and chemical properties of soils under some pinon-juniper-oak canopies in an semi-arid ecosystem in New Mexico. Journal of Arid Environment 66, 673-685] treats interesting topics of sustainability of different ecosystems and their water availability...

  14. Application of organic amendments to a coastal saline soil in north China: effects on soil physical and chemical properties and tree growth.

    Directory of Open Access Journals (Sweden)

    Linlin Wang

    Full Text Available The ability of the following four organic amendments to ameliorate saline soil in coastal northern China was investigated from April 2010 to October 2012 in a field experiment: green waste compost (GWC, sedge peat (SP, furfural residue (FR, and a mixture of GWC, SP and FR (1∶1∶1 by volume (GSF. Compared to a non-amended control (CK, the amendments, which were applied at 4.5 kg organic matter m(-3, dramatically promoted plant growth; improved soil structure; increased the cation exchange capacity (CEC, organic carbon, and available nutrients; and reduced the salt content, electrical conductivity (EC, and exchangeable sodium percentage (ESP. At the end of the experiment in soil amended with GSF, bulk density, EC, and ESP had decreased by 11, 87, and 71%, respectively, and total porosity and organic carbon had increased by 25 and 96% respectively, relative to the CK. The GSF treatment resulted in a significantly lower Na(++K(+ content than the other treatments. CEC and the contents of available N, P, and K were significantly higher in the GSF-treated soil than in the CK and were the highest in all treatments. The FR treatment resulted in the lowest pH value and Ca(2+ concentration, which decreased by 8% and 39%, respectively, relative to the CK. Overall, the results indicate that a combination of green waste compost, sedge peat and furfural residue (GSF treatment has substantial potential for ameliorating saline soils in the coastal areas of northern China, and it works better than each amendment alone. Utilization of GWC and FR can be an alternative organic amendment to substitute the nonrenewable SP in saline soil amelioration.

  15. Effect of pineapple cropping on soil chemical and physical changes in Tha-yang soil series, Petchaburi province

    Directory of Open Access Journals (Sweden)

    Isuwan, A.

    2007-03-01

    Full Text Available The experiment was conducted to investigate the effect of pineapple cropping on chemical and physical property changes of Tha-yang soil series, located on Tumbon Nong-ya-plong, Amphor Nong-yaplong,Petchaburi province. The experimental treatments were the different pineapple cropping soil ages arranged in a completely randomized design, consisting of undisturbed soil (year 0 and pineapple croppingsoil ages of 1, 4 and 8 years with 4 replications each. Soil samples were separated according to the soil level, namely Top-soil (0-15 cm. and Sub-soil (15-30 cm. for chemical and physical evaluation. The results showedthat soil chemical properties such as pH, OM, CEC, exchangeable Ca and Mg were decreased significantly (in both Top- and Sub-soil level, whereas available P and S were increased significantly in the 4-year soilsamples when compared with undisturbed soil. However, soil physical properties were not significantly different among cropping age treatments, except for clay particle in Top-soil which increased in the 4-year soil samples when compared with the 1-year soil samples and undisturbed soil. The results revealed thatpineapple cropping notably reduced soil fertility. As a result, soil resource management and plant nutrient management strategies must be carefully planned and implemented for sustainable pineapple production.

  16. Determination of the desertification processes by means of the some soil physico-chemical properties analysis along a climate gradient. (South of Spain).

    Science.gov (United States)

    Ruiz Sinoga, J. D.; Martinez Murillo, J. F.; Romero Diaz, A.

    2009-04-01

    The pluviometric gradient located in the South of Spain shows one of the European areas affected by desertification processes. In most of the cases, desertification processes are related directly with the hydrological erosion processes, when from the functional point of view could be the consequence. The erosional dynamic along a hillslopes with these soil particles movements generated processes lead to important changes of some properties. Such changes can modify the soil hydrological behaviour with a soil productivity loss and consequently a vegetation cover reduction, favouring the soil erosion processes what have been termed feedback processes, which final will be the appear of non-return situations. Mainly, such soil properties are aggregate stability, porosity, gravels, clay, organic matter, soluble salt, carbonate content, soil organic carbon, cationic exchange capacity and saturated hydraulic conductivity. Also the soil erodibility was calculate through the K factor of USLE. The investigation boards the study of the mentioned processes through the methodology of the analogue situations reproduction in the South of Spain (Bethics Chain) and along a climatic gradient. They are areas with metamorphic rocks (schists anf filithes), high slope gradient and very shallow soils due to a historical management in the most of the cases. Has been defined a climatic gradient at this area, which fluctuates from 1100 mm/y-1 at Gaucin, 750 mm/y-1 al Marbella, 590 mm/y-1 at Almogia, 330 mm/y-1 at Berja and 240 mm/y-1. at Gergal. The soils samples were collected in the south facing slopes, of each field site, and the amount of soil were 60 in each field site, with one total amount of 300 soils samples. We have selected a representative hillslopes with a similar exposition and length in every one of each area. The final results shown modifications in the soil and hydrological properties studied with the increasing of the aridity, and the protector role of vegetation cover

  17. Effects of Soil Conditioners on Soil Physical and Chemical Properties of Tea Garden and Quality of Tea%土壤调理剂对茶园土壤理化性质和茶叶品质的影响

    Institute of Scientific and Technical Information of China (English)

    张青; 王煌平; 栗方亮; 孔庆波; 扈亲怀; 罗涛

    2014-01-01

    通过田间小区试验,研究不同土壤调理剂对土壤理化性质和茶叶品质的影响。结果表明,施入土壤调理剂的处理土壤容重均降低,孔隙度均增加,腐殖酸和风化煤处理土壤容重分别比化肥处理降低12.5%和5.7%,腐殖酸+风化煤处理土壤容重低于腐殖酸处理高于风化煤处理。茶叶中氮、磷、钾矿质养分含量以腐殖酸处理最高,这与腐殖酸处理土壤中速效氮、磷、钾含量较高有关。茶青产量增加,以腐殖酸的效果较好,增产11.5%;腐殖酸处理茶叶中茶多酚和水浸出物含量都高于其他处理,分别比化肥处理提高20.8%和9.4%。可见,土壤调理剂的施入既能改善土壤结构,对植物生长提供良好的土壤环境,又能增加茶青产量,提高茶叶品质。%The effects of soil conditioners on soil physical and chemical properties of tea garden and tea quality were studied through field experiments. The results showed that the bulk density decreased and the specific weight of soil and porosity increased after applying soil conditioners. Soil bulk density of humic acid and weathered coal treatments were decreased by 12.5% and 5.7%, respectively compared with the fertilizer treatment. Soil bulk density of humic acid and weathered coal co-application treatment varied between them. The contents of nitrogen, phosphorus and potassium in tea of humic acid treatment were all higher than those of other treatments due to the high contents of available nitrogen, phosphorus and potassium in soil treated by humic acid. Humic acid treatment had the highest yield with increase of 11.5%. Tea polyphenols and water extractive contents of humic acid treatment were higher than those of other treatments with increase of 20.8% and 9.4%, respectively compared with chemical fertilizer treatment. Soil conditioners can improve soil structure, provide good soil environment for plant growth, and increase the yield of improve

  18. Impact of soil properties on selected pharmaceuticals adsorption in soils

    Science.gov (United States)

    Kodesova, Radka; Kocarek, Martin; Klement, Ales; Fer, Miroslav; Golovko, Oksana; Grabic, Roman; Jaksik, Ondrej

    2014-05-01

    The presence of human and veterinary pharmaceuticals in the environment has been recognized as a potential threat. Pharmaceuticals may contaminate soils and consequently surface and groundwater. Study was therefore focused on the evaluation of selected pharmaceuticals adsorption in soils, as one of the parameters, which are necessary to know when assessing contaminant transport in soils. The goals of this study were: (1) to select representative soils of the Czech Republic and to measure soil physical and chemical properties; (2) to measure adsorption isotherms of selected pharmaceuticals; (3) to evaluate impact of soil properties on pharmaceutical adsorptions and to propose pedotransfer rules for estimating adsorption coefficients from the measured soil properties. Batch sorption tests were performed for 6 selected pharmaceuticals (beta blockers Atenolol and Metoprolol, anticonvulsant Carbamazepin, and antibiotics Clarithromycin, Trimetoprim and Sulfamethoxazol) and 13 representative soils (soil samples from surface horizons of 11 different soil types and 2 substrates). The Freundlich equations were used to describe adsorption isotherms. The simple correlations between measured physical and chemical soil properties (soil particle density, soil texture, oxidable organic carbon content, CaCO3 content, pH_H2O, pH_KCl, exchangeable acidity, cation exchange capacity, hydrolytic acidity, basic cation saturation, sorption complex saturation, salinity), and the Freundlich adsorption coefficients were assessed using Pearson correlation coefficient. Then multiple-linear regressions were applied to predict the Freundlich adsorption coefficients from measured soil properties. The largest adsorption was measured for Clarithromycin (average value of 227.1) and decreased as follows: Trimetoprim (22.5), Metoprolol (9.0), Atenolol (6.6), Carbamazepin (2.7), Sulfamethoxazol (1.9). Absorption coefficients for Atenolol and Metoprolol closely correlated (R=0.85), and both were also

  19. Linking watershed terrain and hydrology to soil chemical properties, microbial communities and impacts on soil organic C in a humid mid-latitude forested watershed

    Science.gov (United States)

    Watson, D. B.; Brooks, S. C.; Schadt, C. W.; Tang, G.; Collier, N.; Earles, J. E.; Mehlhorn, T. L.; Lowe, K. A.; Brandt, C. C.; koo Yang, Z.; Phillips, D.; Li, P.; Yuan, F.

    2014-12-01

    Understanding the response of humid mid-latitude forests to changes in precipitation, temperature, nutrient cycling, and disturbance is critical to improving our predictive understanding of changes in the surface-subsurface energy balance due to climate change. Mechanistic understanding of the effects of long-term and transient moisture conditions are needed to quantify linkages between changing redox conditions, microbial activity, and soil mineral and nutrient interactions on C cycling and greenhouse gas releases. To illuminate relationships between the soil chemistry, microbial communities and organic C we established transects across hydraulic and topographic gradients in a small watershed with transient moisture conditions. Valley bottoms tend to be more frequently saturated than ridge tops and side slopes which generally are only saturated when shallow storm flow zones are active. Fifty shallow (~36") soil cores were collected during timeframes representative of low CO2, soil winter conditions and high CO2, soil summer conditions. Cores were subdivided into 240 samples based on pedology and analyses of the geochemical (moisture content, metals, pH, Fe species, N, C, CEC, AEC) and microbial (16S rRNA gene amplification with Illumina MiSeq sequencing) characteristics were conducted and correlated to watershed terrain and hydrology. To associate microbial metabolic activity with greenhouse gas emissions we installed 17 soil gas probes, collected gas samples for 16 months and analyzed them for CO2 and other fixed and greenhouse gasses. Parallel to the experimental efforts our data is being used to support hydrobiogeochemical process modeling by coupling the Community Land Model (CLM) with a subsurface process model (PFLOTRAN) to simulate processes and interactions from the molecular to watershed scales. Including above ground processes (biogeophysics, hydrology, and vegetation dynamics), CLM provides mechanistic water, energy, and organic matter inputs to the

  20. Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties

    Directory of Open Access Journals (Sweden)

    C. A. Quesada

    2009-04-01

    Full Text Available Forest structure and dynamics have been noted to vary across the Amazon Basin in an east-west gradient in a pattern which coincides with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates.

    To test this hypothesis and assess the importance of edaphic properties in affect forest structure and dynamics, soil and plant samples were collected in a total of 59 different forest plots across the Amazon Basin. Samples were analysed for exchangeable cations, C, N, pH with various P fractions also determined. Physical properties were also examined and an index of soil physical quality developed.

    Overall, forest structure and dynamics were found to be strongly and quantitatively related to edaphic conditions. Tree turnover rates emerged to be mostly influenced by soil physical properties whereas forest growth rates were mainly related to a measure of available soil phosphorus, although also dependent on rainfall amount and distribution. On the other hand, large scale variations in forest biomass could not be explained by any of the edaphic properties measured, nor by variation in climate.

    A new hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining forest disturbance levels, species composition and forest productivity on a Basin wide scale.

  1. Chemical properties of volcanic soil affected by seven-year rotations Propiedades químicas del suelo volcánico afectado por rotaciones de siete años

    Directory of Open Access Journals (Sweden)

    Juan Hirzel

    2011-06-01

    Full Text Available Long-term crop rotation systems can benefit soil chemical-physical properties and crop productivity. The lack of information on the effect of long-term crop rotations on soil chemical-physical properties for volcanic soils in Chile could restrict reaping real benefits, and make it difficult to take agricultural management decisions, which could lead to possible negative consequences on some soil chemical-physical properties and the environment. The development of information associated with the effect on soil chemical-physical properties with respect to long-term rotation systems and their fertilization management contribute to improving agronomic management decisions for these soils. A study was carried out to assess the effect of six rotation systems replicating fertilization management used by farmers, especially N and P application, and eventually low rates of K, Ca and Mg on soil chemical properties in a volcanic soil after 7 yr in Central South Chile. Affected chemical properties were pH, inorganic N, and available K, along with a general decrease of pH related to fertilization used, which was insufficient in Ca, K, and Mg. Moreover, this soil exhibited high P adsorption capacity (90.2 to 97.5%. Hence, crop rotations that included pasture legumes and crops with high nutrient inputs such as sugar beet (Beta vulgaris L. generated a less negative effect on soil chemical properties. This study indicates that fertilization management in crop rotation systems must consider the input and output nutrient balances to prevent the negative effect on some soil chemical properties.Los sistemas de rotación de cultivos de largo plazo pueden tener varios beneficios sobre las propiedades físico-químicas del suelo y productividad de los cultivos. La falta de información sobre el efecto de rotaciones de largo plazo en las propiedades físico-químicas para suelos volcánicos en Chile podría limitar la obtención de beneficios reales, dificultando

  2. Chemical speciation of heavy metals in sandy soils in relation to availability and mobility

    NARCIS (Netherlands)

    Temminghoff, E.J.M.

    1998-01-01

    The environmental risk of heavy metals which are present in soil at a certain total content is highly dependent on soil properties. Chemical speciation is a comprehensive term for the distribution of heavy metals over all possible chemical forms (species) in soil solution and in the solid

  3. Chemical speciation of heavy metals in sandy soils in relation to availability and mobility.

    NARCIS (Netherlands)

    Temminghoff, E.J.M.

    1998-01-01

    The environmental risk of heavy metals which are present in soil at a certain total content is highly dependent on soil properties. Chemical speciation is a comprehensive term for the distribution of heavy metals over all possible chemical forms (species) in soil solution and in the solid phase. The

  4. The impact of ants on mineral soil properties and processes at different spatial scales

    NARCIS (Netherlands)

    Cammeraat, E.L.H.; Risch, A.C.

    2008-01-01

    Soil dwelling ants are important soil engineers that have a large impact on the soil ecosystem. This is reflected in the alteration of soil properties by ants due to burrowing activities, the accumulation of organic matter and other nutrients in the soil, which, in turn, alters soil physical, chemic

  5. Biological and biochemical properties in evaluation of forest soil quality

    OpenAIRE

    Błońska, Ewa; Lasota, Jarosław

    2014-01-01

    The aim of this study was to assess the possibility of using biological and biochemical parameters in the evaluation of forest soil quality and changes caused by land use. The study attempted to determine a relationship between the enzymatic activity of soil, the number of earthworms and soil physico-chemical properties. The study was carried out in central Poland in adjoining Forest Districts (Przedbórz and Smardzewice). In soil samples taken from 12 research plots, basic physico-chem...

  6. Soil properties discriminating Araucaria forests with different disturbance levels.

    Science.gov (United States)

    Bertini, Simone Cristina Braga; Azevedo, Lucas Carvalho Basilio; Stromberger, Mary E; Cardoso, Elke Jurandy Bran Nogueira

    2015-04-01

    Soil biological, chemical, and physical properties can be important for monitoring soil quality under one of the most spectacular vegetation formation on Atlantic Forest Biome, the Araucaria Forest. Our aim was to identify a set of soil variables capable of discriminating between disturbed, reforested, and native Araucaria forest soils such that these variables could be used to monitor forest recovery and maintenance. Soil samples were collected at dry and rainy season under the three forest types in two state parks at São Paulo State, Brazil. Soil biological, chemical, and physical properties were evaluated to verify their potential to differentiate the forest types, and discriminant analysis was performed to identify the variables that most contribute to the differentiation. Most of physical and chemical variables were sensitive to forest disturbance level, but few biological variables were significantly different when comparing native, reforested, and disturbed forests. Despite more than 20 years following reforestation, the reforested soils were chemically and biologically distinct from native and disturbed forest soils, mainly because of the greater acidity and Al3+ content of reforested soil. Disturbed soils, in contrast, were coarser in texture and contained greater concentrations of extractable P. Although biological properties are generally highly sensitive to disturbance and amelioration efforts, the most important soil variables to discriminate forest types in both seasons included Al3+, Mg2+, P, and sand, and only one microbial attribute: the NO2- oxidizers. Therefore, these five variables were the best candidates, of the variables we employed, for monitoring Araucaria forest disturbance and recovery.

  7. SOIL CHEMICAL PROPERTIES AND GROWTH OF SUNFLOWER (HELIANTHUS ANNUUS L. AS AFFECTED BY THE APPLICATION OF ORGANIC FERTILIZERS AND INOCULATION WITH ARBUSCULAR MYCORRHIZAL FUNGI

    Directory of Open Access Journals (Sweden)

    Apolino José Nogueira da Silva

    2015-02-01

    Full Text Available The use of organic fertilizers and the inoculation of mycorrhizal fungi in the cultivation of oil crops is essential to reduce production costs and minimize negative impacts on natural resources. A field experiment was conducted in an Argissolo Amarelo (Ultisol with the aim of evaluating the effects of fertilizer application and inoculation of arbuscular mycorrhizal fungi on the growth attributes of sunflower (Helianthus annuus L. and on soil chemical properties. The experiment was conducted at the Federal University of Rio Grande do Norte, Brazil, using a randomized block design with three replicates in a 4 × 2 factorial arrangement consisting of four treatments in regard to application of organic fertilizer (liquid biofertilizer, cow urine, mineral fertilizer, and unfertilized control and two treatments in regard to arbuscular mycorrhizal fungi (with and without mycorrhizal fungi. The results showed that the physiological attributes of relative growth rate and leaf weight ratio were positively influenced by fertilization, compared to the control treatment, likely brought about by the supply of nutrients from the fertilizers applied. The growth and productivity attributes were positively affected by mycorrhization.

  8. The assessment of treated wastewater quality and the effects of mid-term irrigation on soil physical and chemical properties (case study: Bandargaz-treated wastewater)

    Science.gov (United States)

    Kaboosi, Kami

    2016-05-01

    This study was conducted to investigate the characteristics of inflow and outflow wastewater of the Bandargaz wastewater treatment plant on the basis of the data collection of operation period and the samples taken during the study. Also the effects of mid-term use of the wastewater for irrigation (from 2005 to 2013) on soil physical and chemical characteristics were studied. For this purpose, 4 samples were taken from the inflow and outflow wastewater and 25 quality parameters were measured. Also, the four soil samples from a depth of 0-30 cm of two rice field irrigated with wastewater in the beginning and middle of the planting season and two samples from one adjacent rice field irrigated with fresh water were collected and their chemical and physical characteristics were determined. Average of electrical conductivity, total dissolved solids, sodium adsorption ratio, chemical oxygen demand and 5 days biochemical oxygen demand in treated wastewater were 1.35 dS/m, 707 ppm, 0.93, 80 ppm and 40 ppm, respectively. Results showed that although some restrictions exist about chlorine and bicarbonate, the treated wastewater is suitable for irrigation based on national and international standards and criteria. In comparison with fresh water, the mid-term use of wastewater caused a little increase of soil salinity. However, it did not lead to increase of soil salinity beyond rice salinity threshold. Also, there were no restrictions on soil in the aspect of salinity and sodium hazard on the basis of many irrigated soil classifications. In comparison with fresh water, the mid-term use of wastewater caused the increase of total N, absorbable P and absorbable K in soil due to high concentration of those elements in treated wastewater.

  9. The assessment of treated wastewater quality and the effects of mid-term irrigation on soil physical and chemical properties (case study: Bandargaz-treated wastewater)

    Science.gov (United States)

    Kaboosi, Kami

    2017-09-01

    This study was conducted to investigate the characteristics of inflow and outflow wastewater of the Bandargaz wastewater treatment plant on the basis of the data collection of operation period and the samples taken during the study. Also the effects of mid-term use of the wastewater for irrigation (from 2005 to 2013) on soil physical and chemical characteristics were studied. For this purpose, 4 samples were taken from the inflow and outflow wastewater and 25 quality parameters were measured. Also, the four soil samples from a depth of 0-30 cm of two rice field irrigated with wastewater in the beginning and middle of the planting season and two samples from one adjacent rice field irrigated with fresh water were collected and their chemical and physical characteristics were determined. Average of electrical conductivity, total dissolved solids, sodium adsorption ratio, chemical oxygen demand and 5 days biochemical oxygen demand in treated wastewater were 1.35 dS/m, 707 ppm, 0.93, 80 ppm and 40 ppm, respectively. Results showed that although some restrictions exist about chlorine and bicarbonate, the treated wastewater is suitable for irrigation based on national and international standards and criteria. In comparison with fresh water, the mid-term use of wastewater caused a little increase of soil salinity. However, it did not lead to increase of soil salinity beyond rice salinity threshold. Also, there were no restrictions on soil in the aspect of salinity and sodium hazard on the basis of many irrigated soil classifications. In comparison with fresh water, the mid-term use of wastewater caused the increase of total N, absorbable P and absorbable K in soil due to high concentration of those elements in treated wastewater.

  10. Soil Chemical and Microbial Properties in a Mixed Stand of Spruce and Birch in the Ore Mountains (Germany—A Case Study

    Directory of Open Access Journals (Sweden)

    Karoline Schua

    2015-06-01

    Full Text Available A major argument for incorporating deciduous tree species in coniferous forest stands is their role in the amelioration and stabilisation of biogeochemical cycles. Current forest management strategies in central Europe aim to increase the area of mixed stands. In order to formulate statements about the ecological effects of mixtures, studies at the stand level are necessary. In a mixed stand of Norway spruce (Picea abies (L. Karst. and silver birch (Betula pendula Roth in the Ore Mountains (Saxony, Germany, the effects of these two tree species on chemical and microbial parameters in the topsoil were studied at one site in the form of a case study. Samples were taken from the O layer and A horizon in areas of the stand influenced by either birch, spruce or a mixture of birch and spruce. The microbial biomass, basal respiration, metabolic quotient, pH-value and the C and N contents and stocks were analysed in the horizons Of, Oh and A. Significantly higher contents of microbial N were observed in the Of and Oh horizons in the birch and in the spruce-birch strata than in the stratum containing only spruce. The same was found with respect to pH-values in the Of horizon and basal respiration in the Oh horizon. Compared to the spruce stratum, in the birch and spruce-birch strata, significantly lower values were found for the contents of organic C and total N in the A horizon. The findings of the case study indicated that single birch trees have significant effects on the chemical and microbial topsoil properties in spruce-dominated stands. Therefore, the admixture of birch in spruce stands may distinctly affect nutrient cycling and may also be relevant for soil carbon sequestration. Further studies of these functional aspects are recommended.

  11. Physico-chemical and Bio-chemical Controls on Soil C Saturation Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Six, Johan [Univ. of California, Davis, CA (United States); Plante, Alain F. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2011-05-31

    In this project, we tested through a multitude of lab and field experiments the concept of soil C stabilization and determined metrics for the level of C saturation across soils and soil organic matter fractions. The basic premise of the soil C saturation concept is that there is a maximum amount of C that can be stabilized within a soil, even when C input is further increased. In a first analysis, our results showed that linear regression models do not adequately predict maximal organic C stabilization by fine soil particles. Soil physical and chemical properties associated with soil clay mineralogy, such as specific surface area and organic C loading, should be incorporated into models for predicting maximal organic C stabilization. In a second analysis, we found significantly greater maximal C stabilization in the microaggregate-protected versus the non-microaggregate protected mineral fractions, which provides independent validation that microaggregation plays an important role in increasing the protection and stabilization of soil C leading to greater total soil C accumulation in these pools. In a third study, our results question the role of biochemical preference in mineral C stabilization and of the chemical recalcitrance of specific plant-derived compounds in non-protected soil C accumulation. Because C biochemical composition of slowly turning over mineral protected C pools does not change with C saturation, input C composition is unlikely to affect long-term C stabilization. Rather, C saturation and stabilization in soil is controlled only by the quantity of C input to the soil and the physical and chemical protection mechanisms at play in long-term C stabilization. In conclusion, we have further corroborated the concept of soil C saturation and elucidated several mechanisms underlying this soil C saturation.

  12. Terrestrial gamma dose rates and physical-chemical properties of ...

    African Journals Online (AJOL)

    Terrestrial gamma dose rates and physical-chemical properties of farm soils ... African Journal of Environmental Science and Technology ... left a legacy derelict landscapes and impoverished agricultural farm lands in the Jos, Plateau Nigeria.

  13. Chemical evaluation of soil-solution in acid forest soils

    Science.gov (United States)

    Lawrence, G.B.; David, M.B.

    1996-01-01

    Soil-solution chemistry is commonly studied in forests through the use of soil lysimeters.This approach is impractical for regional survey studies, however, because lysimeter installation and operation is expensive and time consuming. To address these problems, a new technique was developed to compare soil-solution chemistry among red spruce stands in New York, Vermont, New Hampshire, Maine. Soil solutions were expelled by positive air pressure from soil that had been placed in a sealed cylinder. Before the air pressure was applied, a solution chemically similar to throughfall was added to the soil to bring it to approximate field capacity. After the solution sample was expelled, the soil was removed from the cylinder and chemically analyzed. The method was tested with homogenized Oa and Bs horizon soils collected from a red spruce stand in the Adirondack Mountains of New York, a red spruce stand in east-central Vermont, and a mixed hardwood stand in the Catskill Mountains of New York. Reproducibility, effects of varying the reaction time between adding throughfall and expelling soil solution (5-65 minutes) and effects of varying the chemical composition of added throughfall, were evaluated. In general, results showed that (i) the method was reproducible (coefficients of variation were generally reaction-time did not affect expelled solution concentrations, and (iii) adding and expelling solution did not cause detectable changes in soil exchange chemistry. Concentrations of expelled solutions varied with the concentrations of added throughfall; the lower the CEC, the more sensitive expelled solution concentrations were to the chemical concentrations of added throughfall. Addition of a tracer (NaBr) showed that the expelled solution was a mixture of added solution and solution that preexisted in the soil. Comparisons of expelled solution concentrations with concentrations of soil solutions collected by zero-tension and tension lysimetry indicated that expelled

  14. Chemical reactivity of the Martian soil

    Science.gov (United States)

    Zent, A. P.; Mckay, C. P.

    1992-01-01

    The Viking life sciences experimental packages detected extraordinary chemical activity in the martian soil, probably the result of soil-surface chemistry. At least one very strong oxidant may exist in the martian soil. The electrochemical nature of the martian soil has figured prominently in discussions of future life sciences research on Mars. Putative oxidants in the martian soil may be responsible for the destruction of organic material to considerable depth, precluding the recovery of reducing material that may be relic of early biological forms. Also, there have been serious expressions of concern regarding the effect that soil oxidants may have on human health and safety. The concern here has centered on the possible irritation of the respiratory system due to dust carried into the martian habitat through the air locks.

  15. Field Spectra of Suaeda salsa in Response to Soil Chemical Properties%翅碱蓬野外光谱对土壤化学性质的响应

    Institute of Scientific and Technical Information of China (English)

    刘庆生; 刘高焕; 张敏; 黄种; 宁吉才; 谢传节

    2011-01-01

    Suaeda salsa is familiar in soil salinization area. Through studying Suaeda salsa community characteristics, soil chemical properties can be inferred. Suaeda salsa spectra and soil chemical property data were gotten through measuring seventeen paired-samples, which were used to study field spectra of Suaeda salsa in response to changes of soil chemical properties. The results showed that second derivative spectrum of 1 121 nm could be used to indicate changes of soil organic matter and soil total nitrogen, and second derivative spectrum of 1 208 nm could be used to commendably indicate changes of soil total phosphorus, and first derivative spectrum of 353 nm could be used to indicate changes of soil available potassium, and second derivative spectrum of 724 nm could be used to indicate changes of soil pH, and first derivative spectrum of 950 nm could be used to commendably indicate changes of soil salt content, which were the useful information for monitoring soil salinization using remote sensing technology in area covered with Suaeda salsa.%翅碱蓬(Suaeda salsa)是土壤盐渍化较为严重的地区常见的植被类型,研究翅碱蓬群落特征可以间接反映下方土壤的化学性质.通过野外采集的17个翅碱蓬野外光谱数据和相应土壤样品的理化分析数据,探讨了土壤化学性质和翅碱蓬野外光谱之间的关系.结果表明,翅碱蓬二阶导数光谱1 121 nm波段可用来反映土壤有机质和全氮的含量变化,二阶导数光谱1 208 nm波段可以很好地反映土壤全磷的含量变化,一阶导数光谱353 nm波段可以很好地反映土壤速效钾的含量变化最好,二阶导数光谱724 nm波段可以很好地反映土壤pH值的变化,而反映土壤盐分含量变化最好的为一阶导数光谱950 nm,这为翅碱蓬覆盖的区域利用遥感技术进行土壤化学性质监测奠定了基础.

  16. Effect of Soil and Water Conservation Measures on Physical and Chemical Properties of Black Soil Erosion Area%水土保持措施对黑土流失区土壤理化性质的影响

    Institute of Scientific and Technical Information of China (English)

    田野宏; 屈远强; 满秀玲; 刘斌; 张维江; 于舒

    2011-01-01

    A study was conducted to explore the difference of various soil and water conservation measures by measuring soil physical and chemical properties of slope farmland under four soil and water conservation measures in Muling County of Mudanjiang, Heilongjiang Province. Results indicated that the average organic content of hedgerow (115.66 g/kg) in the 0-50 cm soil layer was the highest, followed by check dam, removal lands from cultivation to afforestation, removal lands from cultivation to grassland (69.43 g/kg). The non-capillary porosity of soil ranked as hedgerow (10. 56% ) , removal lands from cultivation to afforestation (7.70% ) , check dam (5. 82% ) and removal lands from cultivation to grassland (2.14% ) in high-to-low order. Hedgerow ameliorated the soil physical and chemical properties most obviously. Compared with the farmland, the soil density of hedgerow in the 0-50 cm soil layer reduced by 18.99% ; the maximum water capacity, capillary water capacity and minimum water capacity increased by 11.93% , 9.37% and 15.31% , respectively. The effective phosphorus content in hedgerow was 93. 11 mg/kg, and hydrolyzed nitrogen content was similar to that of the farmland. Check dam could effectively intercept the surface soil eroded from the upstream region, and the capillary water capacity and minimum water capacity in the 0-50 cm soil layer were 16.90% and 12. 14% higher than that of the farmland respectively. The removal lands from cultivation to afforestation exhibited a higher capability of soil improvement than removal lands from cultivation to grassland due to its higher contents of soil organic, effective phosphorus and available potassium as well as lower contents of total nitrogen and hydrolysis nitrogen.%针对黑龙江省东南部黑土区坡耕地所采取的4种水土保持措施的土壤进行了理化性质研究,分析了不同水土保持措施之间的差异.结果表明:0~50 cm黑土层有机质平均质量分数排序为植物篱>谷坊

  17. How soil organic matter composition controls hexachlorobenzene-soil-interactions: adsorption isotherms and quantum chemical modeling.

    Science.gov (United States)

    Ahmed, Ashour A; Kühn, Oliver; Aziz, Saadullah G; Hilal, Rifaat H; Leinweber, Peter

    2014-04-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soilsoil+3 HWE<soil+6 HWE. For the latter three samples this order was also valid for the HCB adsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HCB adsorption. To obtain a molecular level understanding, a test set has been developed on the basis of elemental analysis which comprises 32 representative soil constituents. The calculated binding energy for HCB with each representative system shows that HCB binds to SOM stronger than to soil minerals. For SOM, HCB binds to alkylated aromatic, phenols, lignin monomers, and hydrophobic aliphatic compounds stronger than to polar aliphatic compounds confirming the above adsorption isotherms. Moreover, quantitative structure-activity relationship (QSAR) of the binding energy with independent physical properties of the test set systems for the first time indicated that the polarizability, the partial charge on the carbon atoms, and the molar volume are the most important properties controlling HCB-SOM interactions.

  18. Comment on: Shukla, M.K. et al., 2006: Physical and chemical properties of soils under some pinon-juniper-oak canopies in a semi-arid ecosystem in New Mexico

    DEFF Research Database (Denmark)

    Mollerup, Mikkel; Jensen, Jens Raunsø

    2008-01-01

    The paper by Shukla et al. [2006. Physical and chemical properties of soils under some pinon-juniper-oak canopies in an semi-arid ecosystem in New Mexico. Journal of Arid Environment 66, 673-685] treats interesting topics of sustainability of different ecosystems and their water availability....... However, the physical-based infiltration theories by Green and Ampt [1911. Studies on soil physics, I, flow of air and water through soils. Journal of Agricultural Science 4, 1-24] and Philip [1957. The theory of infiltration: 1. The infiltration equation and its solution. Soil Science 83, 345-357] seems...... to be applied without necessary reflections. The actual analysis can have resulted in coefficients without their original physical significance...

  19. Recharge in northern clime calcareous sandy soils: soil water chemical and carbon-14 evolution

    Science.gov (United States)

    Reardon, E. J.; Mozeto, A. A.; Fritz, P.

    1980-11-01

    Chemical analyses were performed on soil water extracted from two cores taken from a sandy calcareous soil near Delhi, Ontario. Calcite saturation is attained within the unsaturated zone over short distances and short periods of time, whereas dolomite undersaturation persists to the groundwater table. The progressive dissolution of dolomite by soil water, within the unsaturated zone, after calcite saturation is reached results in calcite supersaturation. Deposition of iron and manganese oxyhydroxide phases occurs at the carbonate leached/unleached zone boundary. This is a result of soil water neutralization due to carbonate dissolution during infiltration but may also reflect the increased rate of oxidation of dissolved ferrous and manganous ions at higher pH's. The role of bacteria in this process has not been investigated. The depth of the carbonate leached/unleached zone boundary in a calcareous soil has important implications for 14C groundwater dating. The depth of this interface at the study site (-2 m) does not appear to limit 14C diffusion from the root zone to the depth at which carbonate dissolution occurs. Thus, soil water achieves open system isotopic equilibrium with the soil CO 2 gas phase. It is calculated that in soils with similar physical properties to the study soil but with depths of leaching of 5 m or more, complete 14C isotopic equilibration of soil water with soil gas would not occur. Soil water, under these conditions would recharge to the groundwater exhibiting some degree of closed system 14C isotopic evolution.

  20. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years.

    Science.gov (United States)

    Fernández-Fernández, M; Gómez-Rey, M X; González-Prieto, S J

    2015-05-15

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil-plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS+Fo), Firesorb (BS+Fi) and ammonium polyphosphate (BS+Ap). Soils (0-2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ(15)N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH₄(+)-N and NO₃(-)-N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS+Ap had the highest levels of soil available P, Na and Al. Plants from BS+Ap plots had higher values of δ(15)N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS+Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS+Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS+Fi) or had a distorted trunk. BS+Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil-plant system after 10 years.

  1. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Fernández, M., E-mail: mariafernandez@iiag.csic.es; Gómez-Rey, M.X., E-mail: mxgomez@iiag.csic.es; González-Prieto, S.J., E-mail: serafin@iiag.csic.es

    2015-05-15

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil–plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS + Fo), Firesorb (BS + Fi) and ammonium polyphosphate (BS + Ap). Soils (0–2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ{sup 15}N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH{sub 4}{sup +}–N and NO{sub 3}{sup −}–N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS + Ap had the highest levels of soil available P, Na and Al. Plants from BS + Ap plots had higher values of δ{sup 15}N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS + Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS + Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS + Fi) or had a distorted trunk. BS + Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil–plant system after 10 years

  2. Short-term impact of olive mill wastewater (OMWW) applications on the physico-chemical and microbiological soil properties of an olive grove in Argentina.

    Science.gov (United States)

    Pierantozzi, Pierluigi; Torres, Mariela; Verdenelli, Romina; Basanta, María; Maestri, Damián M; Meriles, José M

    2013-01-01

    The purpose of this work was to investigate the effects of spreading olive oil mill wastewater (OMWW) on soil biochemical parameters and olive production in an organically managed olive orchard. The experiment was carried out with three different doses of OMWW (80, 160 and 500 m(3) ha(-1)) and a control (untreated soil). Three samplings were done at 10, 30 and 90 days after the administration of the byproduct. OMWW application differentially modified the biochemical properties of the soil analyzed. Organic matter, organic carbon, total nitrogen and extractable phosphorus soil contents increased proportionally with each increasing dose. The values of these parameters decreased gradually with time. Total microbial activity was altered and the OMWW 500 m(3) ha(-1) treatment proved to be the most active when compared with the other applied doses. OMWW agricultural application also modified the structure of soil microbial communities, particularly affecting Gram positive and negative bacteria, while fungal biomass did not show consistent changes. Although there was a salinity increase in the treated soil, especially at the highest dose, the productive parameters analyzed (fruit and oil tree(-1)) were not affected. In light of the obtained results, we consider that low dose of OMWW could be considered an alternative farming practice for semiarid regions.

  3. 不同复层次群落下土壤理化性质分析%Analysis on Soil Physical and Chemical Properties of Multiple Level Community

    Institute of Scientific and Technical Information of China (English)

    王洪涛; 金研铭; 马丽华; 李世荣

    2011-01-01

    [目的]研究复层次群落下的油松-早熟禾、云杉-早熟禾以及落叶松-白三叶3种乔草群落的土壤理化性质,为复层次群落的乔草配置提供理论依据.[方法]对土壤含水量、pH、有机质含量进行测定.[结果]落叶松乔草群落下的土壤含水量高于其他2种乔草群落;土壤pH的排序为落叶松群落>云杉群落>油松群落;土壤有机质含量排序与土壤pH排序相同.[结论]土壤有机质含量越高,土壤pH越高,呈正相关性.这与底层地被植物的种类有着直接关系.豆科白三叶能够提高土壤pH和土壤有机质含量.%[Objective] The research aimed to study the soil physical and properties of multiple level community under Chinese pinebluegrass,spruce-bluegrass and larch-white clover communities,and provide the basic theory for multiple levelcommunities of tree-grass ploying.[Method] The soil water content,pH and soil organic conterts were determined.[Result]The soil water content of larch tree-grass communities was higher than the other.pH sequence was larch communities>spruce communities>Chinese pine communities.The sequence of soil organic content was as the same as soil pH. [Conclusion]The higher soil organic content,the higher was pH and soil organic content.

  4. Influence of ionic liquid 1-butyl-3-methylimidazolium chloride on soil physic-chemical property and soil microbiological community%离子液体[BMIM]Cl对土壤理化性质及其微生物的影响

    Institute of Scientific and Technical Information of China (English)

    童彦杰; 王启军; 马亚丽; 吕椰子; 刘洋洋; 张瑞; 吴元欣; 朱圣东

    2011-01-01

    Development and exploitation of ionic liquids had become a significant research realm of green chemistry and their toxic research was an important part in their development and exploitation. This research investigated the influence of ionic liquid l-butyl-3-methylimidazolium chloride ([BMIM]Cl) on the physic - chemical property and microbiological community of the uncultured soil and nursery garden soil. The results showed that the contents of soluble salts and organic mass in the uncultured soil samples and nursery garden soil samples increased with the concentration of [BMIM]C1 increasing, but their pH value decreased. Furthermore, activity and numbers of soil microbiological community were inhibited by the increased concentration of [BMIM]C1. The median effect concentration (EC50) of [BMIM]C1 on bacteria was 0. 032 5 g · kg-1 and actinomycetes was 0. 043 8 g · kg-1 in the uncultured soil samples, and the EC50 of [BMIM]C1 on bacteria was 0.486 g· kg"1 and actinomycetes was 0. 447 g · kg-1 in the nursery garden soil samples.%针对离子液体的毒性研究是离子液体开发与利用研究的一个重要环节,对目前研究最为深入的离子液体1-丁基-3-甲基咪唑氯化盐对荒地和苗圃两种土壤理化性质以及土壤微生物群落影响进行研究.结果表明:随着土壤中加入1 -丁基-3-甲基咪唑氯化盐的含量逐渐增大,土壤pH值逐渐降低、有机质含量和可溶盐含量逐渐增大.土壤微生物群落的生长和代谢随着1-丁基-3-甲基咪唑氯化盐浓度的增大有着逐渐增强的抑制作用,1 -丁基-3-甲基咪唑氯化盐对荒地土壤样品中细菌和放线菌的半有效浓度分别为0.032 5 g· kg-1和0.043 8 g·kg-1,1 -丁基-3-甲基咪唑氯化盐对苗圃土壤样品中细菌和放线菌的半有效浓度分别为0.486g·kg-1和0.447g· kg-1.

  5. 皖南山区生态型沟渠对土壤理化性质的影响%Effect of Ecological Ditch on Soil Physical and Chemical Properties in the South Mountain Area of Anhui Province

    Institute of Scientific and Technical Information of China (English)

    黄界颍; 何方; 胡宏祥; 张震

    2013-01-01

    The ecological ditches and lining ditches were set up in the farmland of mountain area,soil physical and chemical properties of different types ditches were determined,and the relationship between ditch types and soil properties was analyzed.The results showed that the ecological ditch increased the content of clay in lower layer of soil profile and promoted the formation of >0.25 mm soil water-stable aggregates(WR0.25) in soil.There was a very significantly positive correlation between soil stable infiltration rate and the content of WR0.25(R=0.925 1* *).It indicated that ecological ditch could increase the soil infiltration capacity.Meanwhile,the ecological ditch also increased soil water content,organic matter content,soil total nitrogen content,alkalihydrolysable nitrogen content in soil profile layers,and it had no significant effect on soil available potassium and phosphorus content.Therefore,the ecological ditch could improve soil structure,soil fertility,raise the soil infiltration capacity and promote the improvement of the farmland ecological environment of mountain area.%通过在山区农田中设置生态型沟渠及衬砌硬化渠道,测定不同沟渠类型旁土壤的理化性质,分析沟渠类型与土壤性质之间的关系.结果表明,生态型渠道增加了土壤剖面下层的黏粒含量;促进了土壤中>0.25 mm水稳性团聚体(WR0.25)的形成,且土壤稳定入渗速率与WR0.25含量达到极显著正相关(R=0.925 1**),生态型沟渠提高了土壤入渗能力;同时,生态型沟渠也提高了土壤剖面层次中土壤含水量、有机质、全氮、碱解氮的含量;而对土壤速效钾、速效磷含量没有显著效果.可见,生态型沟渠改善了土壤结构、土壤肥力,提高了土壤入渗性能,促进了山区农田生态环境的改善.

  6. Atributos químicos e produção de milho em um latossolo vermelho eutroférrico tratado com lodo de esgoto Soil chemical properties and corn production in a sewage sludge-amended soil

    Directory of Open Access Journals (Sweden)

    M. V. Galdos

    2004-06-01

    .The application of sewage sludge into agricultural soils, as organic fertilizer or soil conditioner, is becoming an increasingly more attractive alternative. It is occurring because of the high costs and environmental impacts caused by other sludge disposal methods, besides the presence of plant nutrients and organic matter in the sludge and the need to reduce costs in agriculture. However, sewage sludge can contain heavy metals, pathogenic microorganisms, and toxic organic compounds. In order to study the impact of sewage sludge application in agricultural areas, a two-year experiment was implemented to determine the changes in soil chemical properties, mainly in the P, Cu, Ni and Zn contents, in an eutroferric clayey Red Latosol (Rhodic Eutrustox cropped with corn. The experiment consisted of two application rates of sewage sludge and a control with chemical fertilization. Soil samples were collected at the 0-0.05; 0.05-0.10, and 0.10-0.20 m depths after the corn harvest in both years for a routine chemical analysis and the Ni content. Additionally, a sequential P extraction for samples of the 0 to 0.05 m layer was carried out in the following order: CaCl2 (P biologically most available; NaHCO3 (available P; NaOH (P adsorbed to the Fe and Al oxides; HCl (P adsorbed to Ca and nitric-perchloric digestion (residual P . Corn yield was higher in the treatments with sludge application. The available P content in soils that received sludge application was similar to those of the treatment without sludge and with chemical fertilizer. However, sludge application increased the labile and moderately labile P fractions in the surface soil layer. The data suggested, however, increased Cu, Ni, and Zn concentration in soil and Zn concentration in plants. Thus, a constant monitoring of soils that receive application of sewage sludge is required for an adequate control of the metal levels.

  7. Plant uptake of non-ionic organic chemicals from soils

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J.A.; Bell, R.M.; Davidson, J.M.; O' Connor, G.A.

    1988-01-01

    There are over 200 industrial waste land treatment sites in the United States, and a larger number of land treatment sites for municipal wastewater and sludge. Land disposal of wastes has increased during the past decade and is projected to continue to increase in the future. The study of organic chemicals in the soil environment has been dominated by agricultural chemicals (e.g., insecticides, nematicides and herbicides) and specific compounds that persist in the soil (e.g., PCB's, PBB's etc.). Therefore the document discusses methodologies utilizing simple properties of chemicals - half-life (T(sub 1/2)), log octanolwater partition coefficient (log K(sub ow)) and Henry's Law constant (Hc) - are developed to screen organic chemicals for potential plant uptake.

  8. Effect of pineapple cropping on soil chemical and physical changes in Tha-yang soil series, Petchaburi province

    OpenAIRE

    Isuwan, A.

    2007-01-01

    The experiment was conducted to investigate the effect of pineapple cropping on chemical and physical property changes of Tha-yang soil series, located on Tumbon Nong-ya-plong, Amphor Nong-yaplong,Petchaburi province. The experimental treatments were the different pineapple cropping soil ages arranged in a completely randomized design, consisting of undisturbed soil (year 0) and pineapple croppingsoil ages of 1, 4 and 8 years with 4 replications each. Soil samples were separated according to ...

  9. Predicting soil properties in the tropics

    NARCIS (Netherlands)

    Minasny, B.; Hartemink, A.E.

    2011-01-01

    It is practically impossible to measure soil properties continuously at each location across the globe. Therefore, it is necessary to have robust systems that can predict soil properties at a given location. That is needed in many tropical countries where the dearth of soil property measurements is

  10. Impact of soil types and management practices on soil microbiological properties - a case study in salt affected area of Hungary

    Science.gov (United States)

    Gangwar, Ravi Kumar; Makádi, Marianna; Michéli, Erika; Weldmichael, Tsedekech G.; Szegi, Tamás

    2017-04-01

    The impact of different land use systems on soil microbiological properties in salt affected soils were investigated in the Nádudvar region of Hajdu-Bihar County, Hungary. The study area is characterized by associations of Solonetz and Chernozem soils. Soils were collected from both arable (cultivated) and pasture (non-cultivated) land from the upper 15 cm, in May, 2016. Besides soil physical and chemical properties (SOM, pH, CaCO3, EC, E4/E6, available macro, meso and micro nutrients and moisture content), soil microbiological properties were also investigated, phosphatase and dehydrogenase activities of the samples were measured, as well as soil microbial biomass carbon (MBC) and soil microbiological respiration. The results were statistically compared on the different soil types and land uses. It was concluded that land management has greater impact on soil microbiology than inherent properties or soil types.

  11. Physico-Chemical Properties of Kaolin-Organic Acid

    Directory of Open Access Journals (Sweden)

    Yeo S.W.

    2017-01-01

    Full Text Available Soil with more than 20% of organic content is classified as organic soil in Malaysia. Contents of organic soil consist of different types of organic and inorganic matter. Each type of organic matter has its own characteristic and its effect on the properties of the soil is different. Hence, a good understanding on the effect of specific organic and inorganic matter on the physico-chemical characteristic of organic soils can serve as a guide for predicting the properties of organic soils. The main objective is to unveil the effect of organic acid on the physico-chemical properties of soil. Artificial organic soil (kaolin mixed with organic acid was utilized in order to minimize the geochemical variability of studied soil. The organic acid which consists of humic acid and fulvic acid was extracted from highly humificated plant–based compost. The effect of organic acid on the physico-chemical properties of soil was determined by varying the concentration of organic acid. The specific gravity, Atterberg limits, pH, bulk chemical composition and the functional group of kaolin-organic acid were determined. It was found that the plasticity index, specific gravity and pH value were decreased with lowered concentration of organic acid. However, the liquid limits and plastic limits were found to be increased with the concentration decrement of organic acid. The analysis of XRF on the bulk chemical composition and analysis of FTIR spectra on the functional group of artificial organic soils with different concentration have confirmed little geochemical variability between samples.

  12. Towards an improved modeling of chemical weathering in the SoilGen soil evolution model

    Science.gov (United States)

    Opolot, Emmanuel; Finke, Peter

    2014-05-01

    As the need for soil information particularly in the fields of agriculture, land evaluation, hydrology, biogeochemistry and climate change keeps increasing, models for soil evolution are increasingly becoming valuable tools to provide such soil information. Although still limited, such models are progressively being developed. The SoilGen model is one of such models with capabilities to provide soil information such as soil texture, pH, base saturation, organic carbon, CEC, etc over multi-millennia time scale. SoilGen is a mechanistic water flow driven pedogenetic model describing soil forming processes such as carbon cycling, clay migration, decalcification, bioturbation, physical weathering and chemical weathering. The model has been calibrated and confronted with field measurements in a number of case studies, giving plausible results. Discrepancies between measured and simulated soil properties as concluded from case studies have been mainly attributed to (i) the simple chemical weathering system (ii) poor estimates of initial data inputs such as bulk density and element fluxes, and (iii) incorrect values of variables that describe boundary conditions such as precipitation and potential evapotranspiration. This study focuses on extending the chemical weathering system, such that it can deal with a more heterogeneous composition of primary minerals and includes more elements such as Fe and Si. We propose and discuss here an extended description of chemical weathering in the model that is based on more primary minerals, taking into account the role of the specific area of these minerals, and the effect of physical weathering on these specific areas over time. In the initial stage, the proposed chemical weathering mechanism is also implemented in PHREEQC (a widely applied geochemical code with capabilities to simulate equilibrium reactions involving water and minerals, surface complexes and ion exchangers, etc.) to facilitate comparison with the model results

  13. Soil information requirements for humanitarian demining: the case for a soil properties database

    Science.gov (United States)

    Das, Yogadhish; McFee, John E.; Russell, Kevin L.; Cross, Guy; Katsube, T. John

    2003-09-01

    Landmines are buried typically in the top 30 cm of soil. A number of physical, chemical and electromagnetic properties of this near-surface layer of ground will potentially affect the wide range of technologies under development worldwide for landmine detection and neutralization. Although standard soil survey information, as related to conventional soil classification, is directed toward agricultural and environmental applications, little or no information seems to exist in a form that is directly useful to humanitarian demining and the related R&D community. Thus, there is a general need for an information database devoted specifically to relevant soil properties, their geographic distribution and climate-driven variability. A brief description of the various detection technologies is used to introduce the full range of related soil properties. Following a general description of the need to establish a comprehensive soil property database, the discussion is then narrowed to soil properties affecting electromagnetic induction metal detectors - a problem of much restricted scope but of immediate and direct relevance to humanitarian demining. In particular, the complex magnetic susceptibility and, to a lesser degree, electrical conductivity of the host soil influence the performance of these widely used tools, and in the extreme instance, can render detectors unusable. A database comprising these properties for soils of landmine-affected countries would assist in predicting local detector performance, planning demining operations, designing and developing improved detectors and establishing realistic and representative test-evaluation facilities. The status of efforts made towards developing a database involving soil electromagnetic properties is reported.

  14. Hydrological properties of natural and reconstituted soils: compared methods.

    Science.gov (United States)

    Manfredi, Paolo; Cassinari, Chiara; Giupponi, Luca; Trevisan, Marco

    2014-05-01

    Among the physical parameters of soil, the hydrological properties fulfil an important role in illustrating its quality. The trend of the water retention curve indicates the condition of the soil and allows us to define, together with chemical parameters, its eventual state of decline. This work aims to describe the hydrological properties of different types of soils using various techniques and to compare the results. The soils examined can be subdivided into two types: natural soils and reconstituted soils obtained by a chemical mechanical treatment (patented by m.c.m. Ecosistemi s.r.l.) where an initial disgregation is followed by a reconstitution incorporating soil improvers,by a further polycondensation with humic acids and a final restoration. This study is part of a LIFE+ project, co-financed by the European Union and is entitled "Environmental recovery of degraded soils and desertified by a new treatment technology for land reconstruction" (Life 10 ENV IT 400 "New Life"). It aims to test the effectiveness of the reconstitution treatment of the soils in combatting their decline. Natural soils, on which this work is concentrated, are extreme soils: sandy soil (86.2% sand), silt loam soil (42.5% sand, 49.9% silt), clayey soil (54.6% clay, 38.5% silt); reconstituted soils were produced from these. Samples were taken to carry out analyses on water retention through the use of Richards pressure plates. Other samples were used to determine the saturation point and to carry out trials in pots in order to determine the moisture at the permanent wilting point. The information obtained from these laboratory tests were compared to the results of soil pedofunctions. Keywords: Reconstructed soils, Water retention, Permanent wilting point

  15. Predicion of Chemical Element Contents in Soils

    Institute of Scientific and Technical Information of China (English)

    KESHAN-ZHE; QIANJUN-LONG; 等

    1994-01-01

    Assuming that the regularity for the dynamic changes of the chrono-sequences of chemical element contents in tree rings follows a k-order constant coefficient differential equation and substituting the differential with the difference,we could obtain the inferred value ym+k+1 by the formula:ym+k+1=c1ym+1+c2Ym+2+…ckym+kEach coefficient ci in the formula may be ascertained by use of the measured data in the chrono-sequences,Extending the chrono-sequences on the assumption that the regularity of dynamic changes wouldn't change in the near future,the contents of chemical elements in the soils may be predicted in terms of a logarithmic linear correlation model.Also,this extension method could be used for the reproduction of the contents of chemical elemets in soils during different periods of time in the past.

  16. Biotic and abiotic soil properties influence survival of Listeria monocytogenes in soil.

    Directory of Open Access Journals (Sweden)

    Aude Locatelli

    Full Text Available Listeria monocytogenes is a food-borne pathogen responsible for the potentially fatal disease listeriosis and terrestrial ecosystems have been hypothesized to be its natural reservoir. Therefore, identifying the key edaphic factors that influence its survival in soil is critical. We measured the survival of L. monocytogenes in a set of 100 soil samples belonging to the French Soil Quality Monitoring Network. This soil collection is meant to be representative of the pedology and land use of the whole French territory. The population of L. monocytogenes in inoculated microcosms was enumerated by plate count after 7, 14 and 84 days of incubation. Analysis of survival profiles showed that L. monocytogenes was able to survive up to 84 days in 71% of the soils tested, in the other soils (29% only a short-term survival (up to 7 to 14 days was observed. Using variance partitioning techniques, we showed that about 65% of the short-term survival ratio of L. monocytogenes in soils was explained by the soil chemical properties, amongst which the basic cation saturation ratio seems to be the main driver. On the other hand, while explaining a lower amount of survival ratio variance (11%, soil texture and especially clay content was the main driver of long-term survival of L. monocytogenes in soils. In order to assess the effect of the endogenous soils microbiota on L. monocytogenes survival, sterilized versus non-sterilized soils microcosms were compared in a subset of 9 soils. We found that the endogenous soil microbiota could limit L. monocytogenes survival especially when soil pH was greater than 7, whereas in acidic soils, survival ratios in sterilized and unsterilized microcosms were not statistically different. These results point out the critical role played by both the endogenous microbiota and the soil physic-chemical properties in determining the survival of L. monocytogenes in soils.

  17. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Vos, de O.J.; Korthals, G.W.; Bruggen, van A.H.C.

    2006-01-01

    A comparative study of organic and conventional arable farming systems was conducted in The Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils from thirteen accredited organic farms and conventionally managed neighboring farm

  18. Effects of soil conditioners on soil physical-chemical properties and yield and quality of vegetable in solar greenhouse%土壤调理剂对日光温室土壤理化性质和蔬菜产量、 品质的影响

    Institute of Scientific and Technical Information of China (English)

    廉晓娟; 路遥; 王艳; 梁鸣早; 杨军; 路森; 张余良; 王正祥

    2015-01-01

    The experiments were conducted to study the effects of soil conditioners on soil physical-chemical properties and yield and quality of vegetable in greenhouse. The results showed that soil conditioners obviously improved soil structure and soil retention capacity. Compared with the control treatment, when soil conditioners were applied twice, soil bulk density was reduced by 6. 36%, soil porosity was increased by 4. 97%, soil permeability coefficient was increased by 46. 28%, and soil field capacity was increased by 6. 75%. Soil conditioners also increased soil nutrient contents and improved the ability of soil fertility maintenance. And soil conditioners had improved yield and quality of vegetable, especially in quality of tomato. Co-application of soil conditioners and straw would obtain better effect.%试验研究了土壤调理剂对日光温室土壤理化性质和蔬菜产量、 品质的影响. 结果表明, 施用土壤调理剂能够明显改善土壤结构, 增强土壤保水能力, 与对照相比, 施用2次调理剂后土壤容重降低6. 36%, 土壤总孔隙度增加4. 97%, 田间持水量增加6. 75%, 渗透系数提高46. 28%; 调理剂还能增加土壤养分含量, 提高土壤保肥能力; 调理剂能够提高蔬菜的产量和品质, 对番茄品质的改善效果尤为明显; 调理剂与秸秆配合施用效果更佳.

  19. CHEMICAL EQUILIBRIUM OF SOIL SOLUTION IN STEPPE ZONE SOIL

    Directory of Open Access Journals (Sweden)

    A. A. Batukaev

    2014-01-01

    Full Text Available Dynamics of material composition, migration and accumulation of salts is determined by chemical equilibrium in soil solution. Soil solution contains associated electrically neutral ion pairs CaCO30; CaSO40, MgCO30, MgSO40, charged ion pairs CaHCO3+, MgHCO3+, NaCO3-, NaSO4-, CaOH+, MgOH+. Calculation method is proposed for quantitative assessment of real ion forms in the soil solution of chestnut solonetz soil complex. Were proposed equations to calculate free and associated forms of ions. To solve the equations were used an iteration, a linear interpolation of equilibrium constants, a Method of Ionic Pairs including a law of initial concentration preservation, a law of the operating masses of equilibrium system, the concentration constants of ion pair dissociation on the law of operating masses. Was determined the quantity of ion free form and a coefficient of ion association as ratio of ions free form to analytical content ?e = Cass/Can. The association of ions varies in individual soils and soil layer. Increasing soil solution salinity amplifies the ions association. In form of ionic pairs in soil solution are: 11.8-53.8% of Ca2+; 9.4-57.3% of Mg2+; 0.7-11.9% of Na+; 2.2-22.3% of HCO3-, 11.8-62.7% of SO42-. The ion CO32- is high associated, the share of ions in associated form is up to 92.7%. The degree of soil solution saturation was obtained for three level of approximation accounting on analytical concentration, calculated association coefficient, calculated coefficient of association. Relating to thermodynamic solubility product S0, the mathematical product of analytical ionic pairs

  20. Vital Soil: Function, Value and Properties.

    Science.gov (United States)

    This article is a review of the book, Vital Soil: Function, Value and Properties. Soil vitality has been defined as the ability of soil ecosystems to stay in balance in a changing world. The soil environment and the life that it supports developed over centuries and millennia, but careless human ac...

  1. 连续多年秸秆还田对土壤理化性状的影响%Effect of Continuous Straw Returning on Physical and Chemical Properties in Soil

    Institute of Scientific and Technical Information of China (English)

    刘宇庆; 刘燕; 杨晓东; 陈静; 李文西

    2014-01-01

    In order to study the effect on continuous total straws returning to field on soil physical and chemical properties under conventional tillage, the long-term located trials with eight years were conducted to study effect of two measures with conventional fertilization and total straws returning to field on soil bulk density, porosity and soil organic matter, extractable phosphorus, available potassium in soil. The results showed that the total straws returning to field could improve physical properties in soil, and also increase the contents of nutrients in soil significantly. Compared to the control, the content of soil organic matter, extractable phosphorus, available potassium increased by 6.7 g/kg, 2.6 mg/kg and 33.1 mg/kg, respectively, and it was a positive meaning for management and improvement of the farmland quality.%为研究传统耕作方式下连续秸秆全量还田对土壤理化性状的影响,通过对8年田间定位试验的大田土壤研究常规施肥和秸秆全量还田2种处理对土壤密度、孔隙度和土壤有机质、有效磷、速效钾的影响。结果表明,秸秆全量还田不仅能改善土壤物理性状,还能显著提高土壤的养分状况,相比对照土壤有机质、有效磷、速效钾分别提高了6.7 g/kg、2.6 mg/kg、33.1 mg/kg,对耕地质量管理和提升具有积极意义。

  2. 柑橘园种植将军菊苣对土壤理化性状的影响%Effects of Interplanting Cichorium intybus in Citrus Orchard on Soil Physical and Chemical Properties

    Institute of Scientific and Technical Information of China (English)

    梁小玉; 季杨; 易军

    2015-01-01

    为探讨种植菊苣后对柑橘果园土壤性质的影响,探明清耕和生草2种种植模式下柑橘果园土壤理化性状的差异。结果表明:柑橘园种植将军菊苣后,0~15 cm 土层土壤温度较对照均显著降低,且表层土壤表现更显著;生草园0~20 cm 土层 pH 和有机质含量均提高,表土层增加幅度一般较深层土壤差异更显著,土壤容重显著降低。说明,果园生草可有效改善果园小气候及土壤物理性状,产量略降低,但生草果园总的经济效益大幅度提高。%Two cultivation patterns of clean tillage and growing grass were compared in citrus orchard to study the effects of interplanting C.intybus in citrus orchard on soil physical and chemical properties. The results showed that interplanting C.intybus can reduce soil temperature of the soil layer with 0~15 cm significantly,increase soil pH value and organic matter content of the soil layer with 0 ~ 20 cm and reduce soil bulk density significantly compared with CK.In conclusion,interplanting C.intybus in citrus orchard can effectively improve microclimate of citrus orchard and soil physical property,and the fruit yield of citrus orchard under interplanting C.intybus pattern decreases slightly but its total economic benefit is increased by a large margin.

  3. Effect of soil property on evaporation from bare soils

    Science.gov (United States)

    Zhang, Chenming; Li, Ling; Lockington, David

    2015-04-01

    Quantifying the actual evaporation rate from bare soils remains a challenging task as it not only associates with the atmospheric demand and liquid water saturation on the soil surface, but also the properties of the soils (e.g., porosity, pore size distribution). A physically based analytical model was developed to describe the surface resistance varying with the liquid water saturation near the soil surface. This model considers the soil pore size distribution, hydraulic connection between the main water cluster and capillary water in the soil surface when the soil surface is wet and the thickness of the dry soil layer when the soil surface is dry. The surface resistance model was then integrated to a numerical model based on water balance, heat balance and surface energy balance equations. The integrated model was validated by simulating water and heat transport processes during six soil column drying experiments. The analysis indicates that the when soil surface is wet, the consideration of pore size distribution in the surface resistance model offers better estimation of transient evaporation among different soil types than the estimations given by empirically based surface resistance models. Under fixed atmospheric boundary condition and liquid water saturation, fine sand has greater evaporation rate than coarse sand as stronger capillary force devlivers more water from the main water cluster. When the soil surface becomes dry, the impact of soil property to evaporation becomes trivial as the thickness of the dry soil layer turns to be the key factor to determine the evaporation rate.

  4. Improvement of Soil Physical Properties with Soil Conditioners

    Institute of Scientific and Technical Information of China (English)

    ZHAOBING-ZI; XUFU-AN

    1995-01-01

    Effects of non-ionic polyacrylamide(PAM),anionic polyacrylamide(PHP),cationic polyacrylamide(PCAM),non-ionic polyvinylalcohol(PVA),anionic hydrolyzed polyacrylonitrile(HPAN)and polyethleneoxide(PEO)on the physical properties of three different soil stpes were studied.content of water-stable aggregates larger than 0.25mm increased to varying extents for different soils and soil conditioners,Among the six kinds of condiftioners,non-ionic polyacrylamide(PAM) was the most effective for red soil while polyethyleneoxide(PEO)the least effective for Chao soil,red soil and yellow-brown soil.Water-stable aggregates with the molecular weight of PEO within a certain range.Only evaporation rate of Chao soil decreased after aplication of PAM and HPAN to Chao soil and red soil.

  5. [Correlations between standing trees trunk decay degree and soil physical-chemical properties in Korean pine-broadleaved mixed forest in Xiao Xing'an Mountains of Northeast China].

    Science.gov (United States)

    Sun, Tian-Yong; Wang, Li-Hai; Sun, Mo-Long

    2013-07-01

    Standing trees decay often causes vast loss of timber resources. To investigate the correlations between the standing trees decay and the site conditions is of importance to scientifically and reasonably manage forests and to decrease wood resources loss. By using Resistograph and meter ruler, a measurement was made on the decay degree of the trunk near root and the diameter at breast height (DBH) of 15 mature Korean pine standing trees in a Korean pine-broadleaved mixed forest in Xiao Xing' an Mountains in May, 2011. In the meantime, soil samples were collected from the root zones of standing trees and the upslope and downslope 5 meters away from the trunks, respectively. Five physical-chemical properties including moisture content, bulk density, total porosity, pH value, and organic matter content of the soil samples were tested. The regression equations concerning the trunk decay degree of the standing trees, their DBH, and the 5 soil properties were established. The results showed that the trunk decay degree of the mature Korean pine standing trees had higher correlations with the bulk density, total porosity, pH value, and organic matter content (R = 0.687), and significant positive correlation with the moisture content (R = 0.507) of the soils at the root zones of standing trees, but less correlation with the 5 properties of the soils at both upslope and downslope 5 meters away from the trunks. The trunk decay degree was decreased when the soil moisture content was below 18.4%. No significant correlation was observed between the trunk decay degree of mature Korean pine standing trees and the tree age.

  6. Inter-laboratory variation in the chemical analysis of acidic forest soil reference samples from eastern North America

    Science.gov (United States)

    D.S. Ross; S.W. Bailey; R.D. Briggs; J. Curry; I.J. Fernandez; G. Fredriksen; C.L. Goodale; P.W. Hazlett; P.R. Heine; C.E. Johnson; J.T. Larson; G.B. Lawrence; R.K. Kolka; R. Ouimet; D. Pare; D. deB. Richter; C.D. Schirmer; R.A. Warby

    2015-01-01

    Long-term forest soil monitoring and research often requires a comparison of laboratory data generated at different times and in different laboratories. Quantifying the uncertainty associated with these analyses is necessary to assess temporal changes in soil properties. Forest soil chemical properties, and methods to measure these properties, often differ from...

  7. Chemical Processes and Thresholds in Hawaiin Soils

    Science.gov (United States)

    Chadwick, O.

    2007-12-01

    and aluminum oxides tend to move rapidly from poorly crystalline to crystalline forms, which in turn leads to formation of Oxisols under an arid climate regimes - Torrox formation without substantial climate change. By contrast, soils forming in humid environments along the same time trajectory take much longer to go through the same transformations (allophane to halloysite; poorly crystalline goethite to well crystallized goethite; poorly crystalline gibbsite to well crystallized gibbsite). The longer time required for transformation is related to wet rather than wet- dry cycles and interference by organic carbon in the transformation process. Thus whereas it takes about 400,000 years to form a Torrox, it takes more than three times that long to form a humid-zone Oxisol. In Hawaii we have identified several important thresholds in soil properties that have universal applicability: 1. the shift from udic to perudic soil moisture regime is accompanied by reduction related changes in soil properties particularly accumulation of organic matter and loss of iron-bound phosphorus; 2. shift from ustic to udic moisture leads to rapid loss of nutrients with far reaching implications for soil exchange properties and prehistoric land use, 3. the shift from from ustic to aridic soil conditions leads to greater losses of plant nutrients (bases, P, Si) due to greater wind erosion. Based on archeological evidence, it is clear that Polynesians made land-use decisions that incorporated observations of the soil properties associated with these thresholds.

  8. Effects of Two Mineral Conditioners on Soil Physico-chemical Property of Garlic Fields%两种矿物源土壤调理剂对大蒜田土壤理化性质的影响

    Institute of Scientific and Technical Information of China (English)

    周红梅; 王春兰; 杨淑娟; 范建芝; 李艳霞

    2013-01-01

    研究了两种不同类型的土壤调理剂对大蒜田土壤理化性质和大蒜产量的影响.结果表明:两种调理剂均能降低土壤容重,提高土壤孔隙度.两种调理剂对速效养分的影响则有所不同:蒙脱石提高了土壤速效氮和钾含量,降低了土壤速效磷含量,麦饭石对土壤速效氮和磷影响不大,对土壤速效钾影响表现为先升高后降低.蒙脱石、麦饭石均能提高土壤有机质,对大蒜产量亦有所提高.综合比较两种土壤调理剂,应用蒙脱石效果较好.%The effects of two kinds of representative soil conditioners on soil physico - chemical properties and yield of garlic were studied in this paper. The results showed that the two conditioners could reduce the soil bulk density but improve the soil porosity. There were some differences between the two soil conditioners on soil available nutrients. The montmorillonite conditioner increased the content of available N and K, but reduced the content of available P. The medical stone had no obvious impact on available N and P, but made the soil available K increased firstly and then decreased. Both of them could increase the soil organic matter and garlic yield. Comprehensively considering the effect, the montmorillonite conditioner was better.

  9. Dependence of sand soil compressibility on soil physical properties

    Institute of Scientific and Technical Information of China (English)

    I.S.Vakhrin; G.P.Kuzmin

    2014-01-01

    A relationship between soil physical properties and its compressibility has been analyzed. The formulae to determine soil density and porosity have been substantiated in compression tests. The regularity of changes in compressibility of thawed sand soils with various degrees of water content has been experimentally identified.

  10. Hydro-physical processes and soil properties correlated with origin of soil hydrophobicity

    Directory of Open Access Journals (Sweden)

    Eduardo Saldanha Vogelmann

    2013-09-01

    Full Text Available Hydrophobicity is the phenomenon where the soil has reduced wettability, usually associated with coating of soil particles by hydrophobic organic substances. This study aimed to provide a description of the hydrophobicity occurrence, highlight recent discoveries about the origin of phenomenon and discuss the main hydro-physical properties and chemical processes linked to the development of hydrophobic behavior in soils. Hydrophobicity is associated with other factors such as soil moisture, presence of some fungi species, particle size, soil pH and occurrence of burnings. The causative substances may be provided by local vegetation, through deposition or decomposition. The dependence and combination of different factors that influence hydrophobicity in soils lead to a spatial and temporal variability of the phenomenon, with negative consequences in the processes of infiltration and water percolation, affecting the three-dimensional distribution and dynamics of soil moisture. Thus, the occurrence of a hydrophobic character requires special attention, especially regarding soil use and management.

  11. Geotehnical Properties of Plastic Stabilized Lateritic Soil

    OpenAIRE

    Akinola Johnson Olarewaju

    2016-01-01

    Stabilization is the combination of soils and additives to change its properties and remain in its stable compacted state without undergoing any change under effect of exposure to weather and traffic. Soil stabilization through the reinforced soil construction is an efficient and reliable technique for improving the strength and stability of soils. The lateritic soil used in this study was taken along Papa-Ilaro road Ajegunle at Abalabi, Ogun State, Nigeria and the solid plastic wastes were t...

  12. Hazard assessment of chemical contaminants in soil.

    Science.gov (United States)

    Poels, C L; Veerkamp, W

    1992-12-01

    Disposal practices, accidental spills, leakages and local aerial deposition occurring in the past have led to local soil pollution in many cases. Especially in situations where people live on or nearby such locations this has created concern about possible adverse effects on human health. A stepped approach to the hazard assessment of polluted soil, as developed by a Task Force from the European Chemical Industry Ecology and Toxicology Centre (ECETOC), is described. In an early phase in the assessment process the potential exposure of humans is estimated. The Human Exposure to Soil Pollutants (HESP) model can be applied for this purpose. The model calculates the total exposure of adults and children resulting from pollutants present in soil, via 10 different exposure routes. The estimated exposure can be used to indicate the potential significant exposure routes and to carry out a preliminary hazard assessment. The model is also able to predict pollutant concentrations in soil which do not exceed accepted maximum exposure levels for humans in both standardised and site specific situations. The stepped approach is cost-effective and provides an objective basis for decisions and priority setting.

  13. The impact of 90 years of drainage works on some chemical properties of raised peat bog organic soils - case study from valley of the Upper San river in Polish Bieszczady Mts. (Eastern Carpathians).

    Science.gov (United States)

    Stolarczyk, Mateusz

    2016-04-01

    Wetland ecosystems, including raised peat bogs are characterized by a specific water conditions and unique vegetation, which makes peatland highly important habitats due to protection of biodiversity. Transformation of peat bog areas is particularly related to changes in the environment e.g. according to reclamation works. Drainage of peatlands is directly associated to the decrease of groundwater levels and lead to a number of changes in the chemical and physical properties of peat material, included contents of exchangeable cations in the surface layers of peat soils in the decession phase of peat development and release above compounds from the soil to ground or surface waters. The aim of the research was to determine the impact of extended drainage works on chemical composition of sorption complex of raised peat bog organic soils and identification the potential environmental effects of alkaline cations leaching to the surface waters. Research was carried out on the peat bogs located in the Upper San valley in Polish Bieszczady Mts. (Eastern Carpathians). Soil samples used in this study were collected from 3 soil profiles in 10 or 20 cm intervals to the approximately 130 cm depth. Laboratory analyses included determination of basic properties of organic material such as the degree of peat decomposition, ash content, soil pH and carbon, hydrogen, nitrogen concentrations. Additionally the amount of alkaline cations, exchangeable and extractable acidity was determined. Furthermore, the degree of saturation of the sorption complex with alkaline cations (V) and cation exchange capacity (CEC) are calculated. In order to evaluate the impact of the examined peat bog to the environment, also water samples were collected and ions composition was measured. The obtained results show that studied organic soils are oligotrophic and strongly acidic. In the case of organic material related to decession phase of peat development, as a result of the lengthy drainage works

  14. Modeling cation exchange capacity and soil water holding capacity from basic soil properties

    Directory of Open Access Journals (Sweden)

    Idowu Olorunfemi

    2016-10-01

    Full Text Available Cation exchange capacity (CEC is a good indicator of soil productivity and is useful for making recommendations of phosphorus, potassium, and magnesium for soils of different textures. Soil water holding capacity (SWHC defines the ability of a soil to hold water at a particular time of the season. This research predicted CEC and SWHC of soils using pedotransfer models developed (using Minitab 17 statistical software from basic soil properties (Sand(S, Clay(C, soil pH, soil organic carbon (SOC and verify the model by comparing the relationship between measured and estimated (obtained by PTFs CEC and SWHC in the Forest Vegetative Zone of Nigeria. For this study, a total of 105 sampling points in 35 different locations were sampled in the study areas. Three sampling points were randomly selected per location and three undisturbed samples were collected at each sampling point. The results showed success in predicting CEC and SWHC from basic soil properties. In this study, five linear regression models for predicting soil CEC and seven linear regression models for predicting SWHC from some soil physical and chemical properties were suggested. Model 5 [CEC = -13.93+2.645 pH +0.0446 C (%+2.267 SOC (%] was best for predicting CEC while model 12 [SWHC (%=36.0- 0.215 S (%+0.113 C (%+10.36 SOC (%] is the most acceptable model for predicting SWHC.

  15. Changes in physico-chemical properties of soil by adding organic amendments in a tomato crop; Cambios en la propiedades fisico-quimicas del suelo por adicion de enmiendas organicas en cultivo de tomate

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Navarro, A.; Marin Salneandro, P.; Delgado Iniesta, M. J.

    2009-07-01

    This study possible changes in the physico-chemical properties of soil under intensive cultivation of tomatoes after the addition of two different types of organic amendments: a natural as sheep manure and synthetic made. Trial plots that were designed are located in the NE of the province of Granada, in Puebla de Trial plots that were designed are located in the NE of the province of Granada, in Puebla de Don Fadrique, in the are that in recent years, change are very important in agriculture, from traditional farms extensive cultivation of rain-fed cereal crops such as intensive vegetale broccoli or tomatoes. (Author) 16 refs.

  16. 退化高寒草旬土壤有机碳分布特征及与土壤理化性质的关系%Distribution of soil organic carbon and its relationship with soil physical and chemical properties on degraded alpine meadows

    Institute of Scientific and Technical Information of China (English)

    曹丽花; 刘合满; 赵世伟

    2011-01-01

    Soil organic carbon, soil active organic carbon, soil alkali-hydrolysable nitrogen, soil available phosphorus, soil available potassium, soil water content and soil bulk density were determined to study the distribution of soil organic carbon and soil physical and chemical properties on degraded alpine meadows in Dangxiong,Tibet. Results showed that the change orders of soil organic carbon content and its density both in the 0-10 cm and 10-20 cm soil layers were normal meadow〉slightiy degraded meadow〉serious degraded meadow; soil organic carbon content and its density in the 0-10 cm soil layer were higher than those in the 10-20 cm soil layer. There were correlations between soil organic carbon and other soil nutrients. The regression analysis showed that there were significantly positive linear relationships between soil organic carbon and soil active organic carbon (y-0. 074 3x-0. 026 1, R^2=0. 913 9), soil alkali-hydrolysable nitrogen (y=2. 676 8 x-F14. 425 O, Rz =0. 977 1), soil available P (y=0. 245 9x+3. 347 9, R2- 0. 931 4), soil available K (y=4. 296 5x-F71. 667 0, RZ=O. 665 3) and soil water content (y-=0. 790 8x -F 5. 424 5, R^A2-0. 715 6),respectively. A significant negative linear correlation existed between soil organic carbon and soil bulk density (y=--0. 016 7x+l. 553 1, RZ=0. 773 5). The loss of soil organic carbon re- sulted in reduction of soil nutrients and moisture and increasing soil bulk density. Path analysis indicated that the change of soil organic carbon had the most significant effect on the soil alkali-hydrolysable nitrogen.%本研究对西藏当雄不同退化程度高寒草甸土壤有机碳分布特征及其与土壤理化性质演变进行分析,结果表明,土壤有机碳及有机碳密度均为正常草甸土壤〉轻度退化草甸土壤〉严重退化草甸土壤,且0~10cm土层中有机碳含量及其密度均高于10~20cm土层土壤。回归分析表明,土壤有机碳与土壤活

  17. Effect of land use change on soil properties and functions

    Science.gov (United States)

    Tonutare, Tonu; Kõlli, Raimo; Köster, Tiina; Rannik, Kaire; Szajdak, Lech; Shanskiy, Merrit

    2014-05-01

    For good base of sustainable land management and ecologically sound protection of soils are researches on soil properties and functioning. Ecosystem approach to soil properties and functioning is equally important in both natural and cultivated land use conditions. Comparative analysis of natural and agro-ecosystems formed on similar soil types enables to elucidate principal changes caused by land use change (LUC) and to elaborate the best land use practices for local pedo-ecological conditions. Taken for actual analysis mineral soils' catena - rendzina → brown soils → pseudopodzolic soils → gley-podzols - represent ca 1/3 of total area of Estonian normal mineral soils. All soils of this catena differ substantially each from other by calcareousness, acidity, nutrition conditions, fabric and humus cover type. This catena (representative to Estonian pedo-ecological conditions) starts with drought-prone calcareous soils. Brown (distributed in northern and central Estonia) and pseudopodzolic soils (in southern Estonia) are the most broadly acknowledged for agricultural use medium-textured high-quality automorphic soils. Dispersedly distributed gley-podzols are permanently wet and strongly acid, low-productivity sandy soils. In presentation four complex functions of soils are treated: (1) being a suitable soil environment for plant cover productivity (expressed by annual increment, Mg ha-1 yr-1); (2) forming adequate conditions for decomposition, transformation and conversion of fresh falling litter (characterized by humus cover type); (3) deposition of humus, individual organic compounds, plant nutrition elements, air and water, and (4) forming (bio)chemically variegated active space for soil type specific edaphon. Capacity of soil cover as depositor (3) depends on it thickness, texture, calcareousness and moisture conditions. Biological activity of soil (4) is determined by fresh organic matter influx, quality and quantity of biochemical substances and humus

  18. Effect of High Concentration of CO2 Invasion on Soil Physical and Chemical Properties%高浓度二氧化碳入侵对土壤理化性质的影响

    Institute of Scientific and Technical Information of China (English)

    裴宇; 赵晓红; 邓红章; 李春荣; 韩枫; 张青海; 张徽

    2016-01-01

    In the impact of the leakage of CO2 geological storage on the ecological environment, especially, the soil, it is the main medium of the exchange of substances and energy in ecological system, so studying the soil physical and chemical properties are very significant. This experiment artificially simulated the leakage of CO2 to the soil surface, and then the changes in soil organic carbon, nitrogen, phosphorus, potassium and water-soluble salts and the responses of plants were analyzed. The results show that, after the invasion of CO2, compared with the controlled area, the soil total organic carbon increases by 1.56%~43.75%, total nitrogen decreases by 0.88%~13.25%, ammonia and nitrate reduce as well, phosphorus, potassium and water-soluble salts also decline in general, while the pH of the soil is up,and every plant grows well, particularly, peas and radish. Conclusion:the invasion of high concentration of CO2 has some impacts on soil physical and chemical properties, in addition, can promote the growth of plants.%在地质储存CO2(GCS)泄漏对生态环境的影响中,土壤作为生态系统中物质与能量交换的主要介质,其理化性质的变化研究尤为重要。采用人工模拟CO2泄漏地表的方式,并分析土壤pH值、总有机碳、氮、磷、钾、水溶性盐浓度的变化及地表植物响应。结果表明:CO2入侵使土壤总有机碳相比于对照增加了1.56%~43.75%,总氮下降了0.88%~13.25%,氨氮与硝氮也同比下降,磷、钾、水溶性盐总体也是减少的,但土壤pH值有所上升,且各植物长势均较好,尤其是豌豆与萝卜的生长较好。结论:高浓度CO2入侵会对土壤理化性质产生一定影响,而且对植物的生长有促进作用。

  19. Effect of wildfire on soil physical and chemical properties in a Nothofagus glauca forest, Chile Efecto del fuego en las propiedades físicas y químicas en un bosque de Nothofagus glauca en Chile

    Directory of Open Access Journals (Sweden)

    CREIGHTON M. LITTON

    2003-12-01

    Full Text Available Effects of a wildfire on soil chemical and physical properties in a Nothofagus glauca (Phil. Krasser forest in the Coastal Mountain Range of south-central Chile were investigated. Response of the soil during the first two years following a wildfire was examined, where data from soil in a burned forest were compared to that in an adjacent, unburned stand. The effects that wildfire have on soil properties in this highly fragmented ecosystem are not well understood, but results from this study suggest similar responses to those found in other mediterranean forest systems. Both physical (bulk density, percent soil moisture, and soil organic matter content and chemical properties (exchangeable inorganic nitrogen, extractable phosphorus, exchangeable potassium, and soil pH were examined, and data presented here suggest that soil properties vary in their initial response to fire in this ecosystem. Soil organic matter content and soil moisture decreased following fire and remained lower than values from unburned plots for the duration of the study. Exchangeable potassium increased initially after burning, but values in burned plots decreased with time and by the end of two years were significantly lower than in unburned soil. In turn, extractable phosphorus and soil pH both increased immediately following wildfire and values in burned plots remained significantly higher than unburned plots for the entire measurement period. Exchangeable inorganic nitrogen reached higher levels in soil of burned plots for the autumn measurements (April 1997 and 1998 and lower values in burned plots for the spring measurements (November 1997 and 1998. Soil bulk density remained unchanged following fire. In general, changes in soil properties following fire were greatest at the 0-5 cm layer and more modest at the 5-10 cm sampling depth. These changes were related primarily to oxidation of the detrital layer during fire and concurrent changes in the soil environment

  20. 水稻连续免耕抛栽对土壤理化和生物学性状的影响%EFFECTS OF CONTINUOUS NO TILLAGE AND CAST TRANSPLANTING ON SOIL PHYSICAL, CHEMICAL AND BIOLOGICAL PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    吴建富; 潘晓华; 石庆华; 漆英雪; 刘宗发; 胡金和

    2009-01-01

    A three year (2005~2007) experiment was conducted in paddy fields under a double rice cropping system to study effects of continuous no tillage and cast-transplanting on soil physical, chemical and biological properties. Results show that no-tillage treatment for one year (two crops)improved soil physical properties, but no-tillage treatment for three years (six crops), worsened soil physical properties. However, the effect of no tillage treatment for two years varied. In the soil incorporated with milk vetch and rice straw, it decreased soil density of the cultivated horizon, but increased total porosity and non-capillary porosity therein, and helped nutrient enrichment in the surface soil layer. Soil analysis showed that the no-tillage field was less than the control, plowed field in total amount of three groups of soil microbes. However, in no-tillage field, the amount of soil bacteria increased, while that of soil actinomycosis and fungi reduced, and urease activity in surface layer soil increased, while catalase and peroxidase activity reduced. Significantly positive correlations were observed of soil organic matter and total N with urease, catalase and polyphenol oxidase activity and, significantly positive correlations of soil total N and available K with peroxidase activity and. The findings provide a valuable reference for popularization and application of the technology of no-tillage and cast transplantation of rice in the future.%于2005~2007年在双季稻田以翻耕处理为对照,研究了水稻连续免耕抛栽对土壤理化和生物学性质的影响.结果表明,稻田免耕1年(2季),有利于土壤物理性状的改善,随着免耕时间(3年6季)的延长,土壤物理性质变差.但免耕2年后,采用紫云英和稻草还田能降低免耕稻田的土壤容重,提高总孔隙度和非毛管孔隙度.免耕有利于土壤养分在表层土壤富集.土壤中三大类微生物总量免耕处理小于翻耕处理,免耕土壤细菌的数

  1. Relationship between Soil Properties and Plant Diversity in Semiarid Grassland

    Directory of Open Access Journals (Sweden)

    Melda Dölarslan

    2017-07-01

    Full Text Available In ecological studies, soil-plant interaction is an important environmental factor. Soil chemical and physical properties affect plant richness and diversity. This study was carried out to investigate the relationship between soil physical and chemical properties, and plant diversity indexes (Shannon-Weiner and Simpson in semiarid grassland. Plant diversity indexes and soil properties were determined using 34 quadrats (5x5m on different parent materials (chrome, marble, serpentine, red chalk and red chalk mostra in semiarid grasslands in the Central Anatolia Region in Turkey. Plant samples were collected and recorded periodically from April to September (the vegetation period in 2014 for each quadrat. In order to determine the plant richness and diversity indexes, 3 sub-quadrats (1x1m were randomly added into each of 34 (5x5 m quadrats. To evaluate the relationship between plant diversity indexes and soil properties, composite soil samples were collected from the four corners, and the center of each quadrat 0-30 cm in depth, and which was mixing of those subsamples. Soil sand-silt-clay contents, soil reaction (pH, bulk density (BD, electrical conductivity (EC, CaCO3 and soil organic matter (SOM contents were measured. Relationship between plant diversity indexes measured in different months during vegetation period and soil properties of different parent material was statistically analysed using correlation analysis in SPSS 20.0. Modest correlation coefficient was found between the Simpson diversity index and SOM content, sand-silt-clay content, pH and EC for different months in vegetation period.

  2. Research on lunar materials. [optical, chemical, and electrical properties

    Science.gov (United States)

    Gold, T.

    1978-01-01

    Abstracts of 14 research reports relating to investigations of lunar samples are presented. The principal topics covered include: (1) optical properties of surface and core samples; (2) chemical composition of the surface layers of lunar grains: Auger electron spectroscopy of lunar soil and ground rock samples; (3) high frequency electrical properties of lunar soil and rock samples and their relevance for the interpretation of lunar radar observations; (4) the electrostatic dust transport process; (5) secondary electron emission characteristics of lunar soil samples and their relevance to the dust transportation process; (6) grain size distribution in surface soil and core samples; and (7) the optical and chemical effects of simulated solar wind (2keV proton and a particle radiation) on lunar material.

  3. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  4. Pedotransfer functions estimating soil hydraulic properties using different soil parameters

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Iversen, Bo Vangsø; Jacobsen, Ole Hørbye;

    2008-01-01

    Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity...... parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic...... of the hydraulic properties of the studied soils. We found that introducing measured water content as a predictor generally gave lower errors for water retention predictions and higher errors for conductivity predictions. The best of the developed PTFs for predicting hydraulic conductivity was tested against PTFs...

  5. Soil properties from seismic intrinsic dispersion

    NARCIS (Netherlands)

    Zhubayev, A. S.

    2014-01-01

    Theoretical and experimental studies in the past have shown the sensitivity of seismic waves to soil/rock properties, such as composition, porosity, pore fluid, and permeability. However, quantitative characterization of these properties has remained challenging. In case of unconsolidated soils, the

  6. Effect of Afforestation on Soil Properties and Mycorrhizal Formation

    Institute of Scientific and Technical Information of China (English)

    P. KAHLE; C. BAUM; B. BOELCKE

    2005-01-01

    A study was conducted on Cambisols in Northern Germany to analyze the effect of fast growing trees (Salix and Populus spp.) used in agroforestry on soil chemical and physical properties and also on endo- and ectomycorrhizal colonization measure the topsoil inventories at the very beginning and after six (GUL), seven (VIP) and ten (ROS) years of afforestation with fast growing trees. The effect on soil organic carbon, plant available nutrients, reaction, bulk density, porosity and water conditions was analyzed. Arable soils without tree coppice were used as controls. Additionally, the endoand ectomycorrhizal colonization of two Salix and two Populus clones were investigated at one site (GUL) in 2002. The amounts of organic carbon in the topsoil increased significantly (P<0.01) presumably induced by leaf and root litter and also by the lack of tillage. The soil bulk density significantly decreased and the porosity of the soil increased significantly (both P<0.01). The proportion of medium pores in the soil also rose significantly (P<0.05 and 0.01). Generally,afforestation of arable soils improved soil water retention. Ectomycorrhizas dominated the mycorrhizal formation of the Salix and Populus clones, with the accumulation of organic matter in the topsoil suspected of supporting the ectomycorrhizal formation. Thus, agroforestry with Salix and Populus spp. conspicuously affected chemical and additionally physical properties of the top layer of Cambisols within a period of six years.

  7. 长期试验土壤理化性质和微生物量的研究进展%Research Progress on Soil Physical and Chemical Property and Microbial Biomass of Long-term Experiment

    Institute of Scientific and Technical Information of China (English)

    马星竹

    2013-01-01

      通过分析、总结长期试验的研究进展,研究长期试验的特点、意义和研究内容,综述了长期试验对土壤理化性质、土壤微生物量的影响,有助于该学科研究的纵深发展与广泛利用。目前,长期试验通常采取2种方法,分别是“长期”和“定位”,其具有时间的长期性和气候的重复性等特点,能够克服各种生态因素差异对试验带来的影响和制约;其与土壤理化性状和微生物特性等关系密切,对研究农业生产有着重要的科学价值,为不同措施对土壤性质的影响提供研究场所。%Through analyzing and summarizing the progress of long-tem experiment ,studying the characteris-tics ,meaning and contents of long-term experiment ,the effects of long-term experiment on soil physical and chemical property and soil microbial biomass ,long-term experiment progresses at home and abroad were ana-lyzed and summarized .At present ,long-term experiment ,which chooses methods of ‘long-term’ and ‘located’ , has the characteristics of long time and repeatability of climate ,could overcome influence and restraint of exper-iment from different ecological factors ;Long-term experiment has close relationship with soil physical and chemical property and soil microbial biomass ,which would be important for modern agriculture ,provide field for studying the effect of different measures on soil properties .

  8. Prediction of soil properties for agricultural and environmental applications from infrared and X-ray soil spectral properties

    Energy Technology Data Exchange (ETDEWEB)

    Towett, Erick Kibet

    2013-12-09

    Many of today's most pressing problems facing developing countries, such as food security, climate change, and environmental protection, require large area data on soil functional capacity. Conventional assessments (methods and measurements) of soil capacity to perform specific agricultural and environmental functions are time consuming and expensive. In addition, repeatability, reproducibility and accuracy of conventional soil analytical data are major challenges. New, rapid methods to quantify soil properties are needed, especially in developing countries where reliable data on soil properties is sparse, and to take advantage of new opportunities for digital soil mapping. Mid infrared diffuse reflectance spectroscopy (MIR) has already shown promise as a rapid analytical tool and there are new opportunities to include other high-throughput techniques, such as total X-ray fluorescence (TXRF), and X-ray diffraction (XRD) spectroscopy. In this study TXRF and XRD were tested in conjunction with IR to provide powerful diagnostic capabilities for the direct prediction of key soil properties for agricultural and environmental applications especially for Sub-Saharan Africa (SSA) soils. Optimal combinations of spectral methods for use in pedotransfer functions for low cost, rapid prediction of chemical and physical properties of African soils as well as prediction models for soil organic carbon and soil fertility properties (soil extractable nutrients, pH and exchangeable acidity) were tested in this study. This study has developed and tested a method for the use of TXRF for direct quantification of total element concentrations in soils using a TXRF (S2 PICOFOX trademark) spectrometer and demonstrated that TXRF could be used as a rapid screening tool for total element concentrations in soils assuming sufficient calibration measures are followed. The results of the current study have shown that TXRF can provide efficient chemical fingerprinting which could be further

  9. Aspects of the chemical microcompartimentation in forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, E.E.; Horsch, F.; Filby, G.; Fund, N.; Gross, S.; Hanisch, B.; Kilz, E.; Seidel, A. (comps.)

    1986-04-01

    A new arrangement for the percolation of undisturbed soil cores has been developped. Thereby it can be shown, that in forest soils exist chemical desequilibria between the surfaces of aggregates and the bulk soil. The surfaces of aggregates, which are mainly in contact with soil water of low water tension, show more intensive soil acidity parameters. When soil acidity characteristics are derived from bulk soil analysis, the loss of information, caused by the removal of chemical desequilibria, must be taken into consideration. The same is valid, if results from soil analysis are used to predict benefits or risks of forest fertilization practices. Examples of application demonstrate the scale, variation and the ecological importance of chemical desequilibria in forest soils.

  10. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    Science.gov (United States)

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Spatial patterns and controls of soil chemical weathering rates along a transient hillslope

    Science.gov (United States)

    Yoo, K.; Mudd, S.M.; Sanderman, J.; Amundson, Ronald; Blum, A.

    2009-01-01

    Hillslopes have been intensively studied by both geomorphologists and soil scientists. Whereas geomorphologists have focused on the physical soil production and transport on hillslopes, soil scientists have been concerned with the topographic variation of soil geochemical properties. We combined these differing approaches and quantified soil chemical weathering rates along a grass covered hillslope in Coastal California. The hillslope is comprised of both erosional and depositional sections. In the upper eroding section, soil production is balanced by physical erosion and chemical weathering. The hillslope then transitions to a depositional slope where soil accumulates due to a historical reduction of channel incision at the hillslope's base. Measurements of hillslope morphology and soil thickness were combined with the elemental composition of the soil and saprolite, and interpreted through a process-based model that accounts for both chemical weathering and sediment transport. Chemical weathering of the minerals as they moved downslope via sediment transport imparted spatial variation in the geochemical properties of the soil. Inverse modeling of the field and laboratory data revealed that the long-term soil chemical weathering rates peak at 5 g m- 2 yr- 1 at the downslope end of the eroding section and decrease to 1.5 g m- 2 yr- 1 within the depositional section. In the eroding section, soil chemical weathering rates appear to be primarily controlled by the rate of mineral supply via colluvial input from upslope. In the depositional slope, geochemical equilibrium between soil water and minerals appeared to limit the chemical weathering rate. Soil chemical weathering was responsible for removing 6% of the soil production in the eroding section and 5% of colluvial influx in the depositional slope. These were among the lowest weathering rates reported for actively eroding watersheds, which was attributed to the parent material with low amount of weatherable

  12. Stimulatory effects of arsenic-tolerant soil fungi on plant growth promotion and soil properties.

    Science.gov (United States)

    Srivastava, Pankaj Kumar; Shenoy, Belle Damodara; Gupta, Manjul; Vaish, Aradhana; Mannan, Shivee; Singh, Nandita; Tewari, Shri Krishna; Tripathi, Rudra Deo

    2012-01-01

    Fifteen fungi were obtained from arsenic-contaminated agricultural fields in West Bengal, India and examined for their arsenic tolerance and removal ability in our previous study. Of these, the four best arsenic-remediating isolates were tested for plant growth promotion effects on rice and pea in the present study. A greenhouse-based pot experiment was conducted using soil inocula of individual fungi. The results indicated a significant (Psoil properties in inoculated soils compared to the control. A significant increase in plant growth was recorded in treated soils and varied from 16-293%. Soil chemical and enzymatic properties varied from 20-222% and 34-760%, respectively, in inoculated soil. Plants inoculated with inocula of Westerdykella and Trichoderma showed better stimulatory effects on plant growth and soil nutrient availability than Rhizopus and Lasiodiplodia. These fungi improved soil nutrient content and enhanced plant growth. These fungi may be used as bioinoculants for plant growth promotion and improved soil properties in arsenic-contaminated agricultural soils.

  13. Compost amendment of sandy soil affects soil properties and greenhouse tomato productivity

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.; Razzaghi, Fatemeh

    2012-01-01

    Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand...... and greenhouse tomato productivity. Disturbed and intact soil samples were taken from a decade-long compost field experiment on loamy sand with three compost types at application rate of 30 m3 ha-1 yr-1 (7.5 ton ha-1 yr-1). The soils were characterized for chemical and physical properties. Tomato was planted...... in a greenhouse using soil samples from the field and vegetative and yield parameters (plant height, stem diameter, leaf number, and fruit yield), water productivity, and harvest index were evaluated. All compost types significantly increased soil total carbon, total nitrogen, pH, electrical conductivity...

  14. 粉煤灰场复垦地肥力状况及对土壤理化性质的影响%Reclaimed Soil Fertility and Its Response to the Physical-Chemical Properties in Fly Ash Disposal Sites

    Institute of Scientific and Technical Information of China (English)

    王长垒; 严家平; 陈孝杨

    2013-01-01

    选择安徽省淮南市上窑镇粉煤灰处置场覆土复垦地为研究区域,测定覆土厚度和土壤剖面各层的容重、pH、含水量、有机质等理化性质,土壤总氮、有效磷、速效钾等养分含量,以及冬小麦抽穗期的生物量,研究粉煤灰处置场复垦土壤理化性质及其与土壤养分的相关性,不同覆土厚度复垦地冬小麦生长的差异性.结果表明,粉煤灰场复垦地土壤总氮含量约0.90 g/kg,有效磷和速效钾含量分别为12~76 mg/kg、114~135 mg/kg,土壤肥力与作物生长状况和自然农业土壤相比差异不显著;除复垦土壤厚度、容重、含水量对有效磷含量影响显著外,其余土壤养分与土壤理化性质和表土厚度的相关性不强.%The reclaimed field of fly ash disposal sites was selected as the research area in Shaoyao,Huainan.The cover soil thickness,some soil physico-chemical properties (bulk density,water content,pH and organic matter),soil nutrients (total nitrogen,available phosphorus and available potassium) and winter wheat biomass in heading stage were determined,and the correlation of the reclaimed soil physico-chemical properties and its nutrient was analyzed in fly ash disposal sites.The winter wheat growth differences were also studied under different coversoil thickness conditions.The results showed that the total nitrogen content was about 900 mg/kg in reclaimed soil of fly ash disposal sites,the content of available phosphorus and available potassium was 12~76mg/kg and 114~135 mg/kg respectively.The soil fertility and crop growth conditions were not significant difference with natural agricultural soils.The available phosphorus content and reclaimed soil bulk density,water content had a significant correlation.In addition,the response relationship between the reclaimed soil fertility and its properties,topsoil thickness was not obvious.

  15. Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, C.L.

    2002-10-28

    Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence on chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.

  16. Some sensitivity studies of chemical transport simulated in models of the soil-plant-litter system

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, C.L.; Luxmoore, R.J.

    1979-09-01

    Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence on chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO/sub 2/) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO/sub 2/ and heavy metal responses were not expected but became apparent through the modeling analysis.

  17. Microbial effect on soil hydraulic properties

    Science.gov (United States)

    Furman, Alex; Rosenzweig, Ravid; Volk, Elazar; Rosenkranz, Hella; Iden, Sascha; Durner, Wolfgang

    2014-05-01

    Although largely ignored, the soil contains large amount of biofilms (attached microbes) that can affect many processes. While biochemical processes are studied, biophysical processes receive only little attention. Biofilms may occupy some of the pore space, and by that affect the soil hydraulic properties. This effect on unsaturated soils, however, was not intensively studied. In this research we directly measure the hydraulic properties, namely the soil's unsaturated hydraulic conductivity function and retention curve, for soils containing real biofilm. To do that we inoculate soil with biofilm-forming bacteria and incubate it with sufficient amounts of nutrient until biofilm is formed. The hydraulic properties of the incubated soil are then measured using several techniques, including multi-step outflow and evaporation method. The longer measurements (evaporation method) are conducted under refrigeration conditions to minimize microbial activity during the experiment. The results show a clear effect of the biofilm, where the biofilm-affected soil (sandy loam in our case) behaves like a much finer soil. This qualitatively makes sense as the biofilm generates an effective pore size distribution that is characterized by smaller pores. However, the effect is much more complex and needs to be studied carefully considering (for example) dual porosity models. We compare our preliminary results with other experiments, including flow-through column experiments and experiments with biofilm analogues. Clearly a better understanding of the way microbial activity alters the hydraulic properties may help designing more efficient bioremediation, irrigation, and other soil-related processes.

  18. Thermal properties of degraded lowland peat-moorsh soils

    Science.gov (United States)

    Gnatowski, Tomasz

    2016-04-01

    has decreased in a non-linear manner. Thermal parameters of the dry mass of the studied soils (Kdry, Cdry) were characterised by the mean value of approximately 0.11±0.028 W.m-1.K-1 and 0.781±0.220 MJ.m-3.K-1. The application of the correlation analysis showed that the most significant predictor of these properties of soils is the soil bulk density which, respectively explains: 54.6% and 67.1% of their variation. The increase of the accuracy in determining Kdry and Cdry was obtained by developing regression models, which apart from the bulk density also include the chemical properties of the peat soils. In the fully saturated soil the Ksat value ranged from 0.47 to 0.63 W.m-1.K-1, and the Csat varied from 3.200 to 3.995 MJ.m-3.K-1. The variation coefficients of these soil thermal features are at the level of approx. 5%. The obtained results allowed to conclude that the significant diversity of studied soils doesn't cause the significant differences in thermal soil parameters in fully saturated soils. The developed statistical relationships indicate that parameters Ksat and Csat were poorly correlated with saturated moisture content.

  19. Chemical-Specific Representation of Air-Soil Exchange and Soil Penetration in Regional Multimedia Models

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Bennett, D.H.

    2002-08-01

    In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.

  20. Prediction of Soil Fertility Properties from a Globally Distributed Soil Mid-Infrared Spectral Library

    NARCIS (Netherlands)

    Terhoeven-Urselmans, T.; Vagen, T.G.; Spaargaren, O.; Shepherd, K.D.

    2010-01-01

    Globally applicable calibrations to predict standard soil properties based on infrared spectra may increase the use of this reliable technique. The objective of this study was to evaluate the ability of mid-infrared diffuse reflectance spectroscopy (4000-602 cm(-1)) to predict chemical and textural

  1. Rheological properties of soil: a review

    Science.gov (United States)

    Zhu, Guangli; Zhu, Long; Yu, Chao

    2017-05-01

    Recently rheological methods have been applied to investigate the mechanical properties of soil micro-structure. Rheological techniques have a number of quantitative physically based measurements and offer a better understanding of how soil micro-structure behaves when subject to stress. Rheological material is refers to deformation properties similar to the solid and flow properties similar to the liquid of bound water and colloidal substances under stress. Soil rheology is divided into fluid rheology and plasticity rheology. Fluid rheology is produced by rheological material. Plasticity rheology mainly refers to the sliding and peristaltic between soil solid particles under shear stress. It is generally believed that the soft soil rheology mainly belongs to fluid rheology, while the rheology of sand and other coarse grained soil mainly belongs to plasticity rheology. Thus, rheology mechanisms of soft soil and sand are different. This paper introduces the methods of the research progress on the rheology of soil, in the soil rheological mechanism, rheological model and rheological numerical aspects of the research at home and abroad were summarized and analysed, discussed the problems existed in related research, and puts forward some suggestions for the future study on the rheology of soil.

  2. How Soil Organic Matter Composition Controls Hexachlorobenzene-Soil-Interactions: Adsorption Isotherms and Quantum Chemical Modelling

    CERN Document Server

    Ahmed, Ashour; Kühn, Oliver

    2013-01-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soil < original soil < soil+3 HWE < soil+6 HWE. For the latter three samples this order was also valid for the HCB adsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption behaviour combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HC...

  3. Predicting the impact of biochar additions on soil hydraulic properties

    Science.gov (United States)

    Spokas, Kurt; Lim, Tae Jun; Feyereisen, Gary; Novak, Jeff

    2015-04-01

    Different physical and chemical properties of biochar, which is made out of a variety of biomass materials, can impact water movement through amended soil. The objective of this research was to develop a decision support tool predicting the impact of biochar additions on soil saturated hydraulic conductivity (Ksat). Four different kinds of biochar were added to four different textured soils (coarse sand, fine sand, loam, and clay texture) to assess these effects at the rates of 0, 1, 2, and 5 % (w/w). The Ksat of the biochar amended soils were significantly influenced by the rate and type of biochar, as well as the original particle size of soil. The Ksat decreased when biochar was added to coarse and fine sands. Biochar with larger particles sizes (60%; >1 mm) decreased Ksat to a larger degree than the smaller particle size biochar (60%; soils. Increasing tortuosity in the amended sandy soil could explain this behavior. On the other hand, for the clay loam 1% and 2% biochar additions universally increased the Ksat with higher biochar amounts providing no further alterations. The developed model utilizes soil texture pedotransfer functions for predicting agricultural soil Ksat as a function of soil texture. The model accurately predicted the direction of the Ksat influence, even though the exact magnitude still requires further refinement.

  4. Effects of Northern red oak (Quercus rubra L. and sessile oak (Quercus petraea (Mattusch. Liebl. on the forest soil chemical properties

    Directory of Open Access Journals (Sweden)

    Miltner Stanislav

    2016-09-01

    Full Text Available Northern red oak (Quercus rubra L. is one of the most important introduced tree species in the Czech Republic, occupying about 6,000 ha with ca. 900,000 m3 of the standing volume. The presented study aims to evaluate its soil forming effects on natural oak sites. Soil chemistry of the upper soil layers (F+H, Ah, B horizons was studied in three pairs of stands of both species. In each stand, four bulk samples were taken separately for particular horizons, each consisting of 5 soil-borer cores. The soil characteristics analysed were: pH (active and potential, soil adsorption complex characteristics (content of bases, exchangeable cation capacity, base saturation, exchangeable acidity (exchangeable Al and H, total carbon and nitrogen content, and plant available nutrients content (P, K, Ca, Mg. Total macronutrient content (P, K, Ca, Mg was analysed only in holorganic horizons. Results confirmed acidification effects of red oak on the upper forest soil layers such as decreased pH, base content, base saturation, all nutrient contents in total as well as plant-available form and increased soil exchangeable acidity (exchangeable Al in comparison to the sessile oak stands, especially in holorganic horizons and in the uppermost mineral layer (Ah horizon. Northern red oak can be considered as a slightly site-soil degrading species in the studied sites and environmental conditions in comparison to native oak species.

  5. Tillage Effects on Soil Properties & Respiration

    Science.gov (United States)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  6. Spatial variability of soil chemical properties after coffee tree removal Variabilidade espacial dos atributos químicos do solo após remoção de cafezal

    Directory of Open Access Journals (Sweden)

    Sidney Rosa Vieira

    2009-10-01

    Full Text Available Assessing the spatial variability of soil chemical properties has become an important aspect of soil management strategies with a view to higher crop yields with minimal environmental degradation. This study was carried out at the Centro Experimental of the Instituto Agronomico, in Campinas, São Paulo, Brazil. The aim was to characterize the spatial variability of chemical properties of a Rhodic Hapludox on a recently bulldozer-cleaned area after over 30 years of coffee cultivation. Soil samples were collected in a 20 x 20 m grid with 36 sampling points across a 1 ha area in the layers 0.0-0.2 and 0.2-0.4 m to measure the following chemical properties: pH, organic matter, K+, P, Ca2+, Mg2+, potential acidity, NH4-N, and NO3-N. Descriptive statistics were applied to assess the central tendency and dispersion moments. Geostatistical methods were applied to evaluate and to model the spatial variability of variables by calculating semivariograms and kriging interpolation. Spatial dependence patterns defined by spherical model adjusted semivariograms were made for all cited soil properties. Moderate to strong degrees of spatial dependence were found between 31 and 60 m. It was still possible to map soil spatial variability properties in the layers 0-20 cm and 20-40 cm after plant removal with bulldozers.A avaliação da variabilidade espacial dos atributos químicos do solo tem se tornado importante ferramenta na determinação de estratégias de manejo que visam aumentar a produtividade agrícola com menor degradação ambiental. O presente trabalho foi realizado no Centro Experimental Central do Instituto Agronômico, localizado em Campinas/SP, com o objetivo de caracterizar a variabilidade espacial dos atributos químicos de um Latossolo Vermelho após a remoção de um cafezal, cultivado por mais de 30 anos, com trator de esteira. As amostras de solo foram coletadas em grade georreferenciada de 20 x 20 m, totalizando 36 pontos nas camadas de 0

  7. Effect of herbicides on microbiological properties of soil

    Directory of Open Access Journals (Sweden)

    Milošević Nada A.

    2002-01-01

    Full Text Available Microorganisms decompose herbicides and they may serve as bioindicators of soil changes following herbicide application. Certain microbial species may be used as bioherbicides. This study has shown that Azotobacter is most sensitive to herbicide application; it is, therefore, a reliable indicator of the biological value of soil. The numbers of this group of nitrogen-fixing bacteria decrease considerably in the period of 7-14 days after herbicide application. Simultaneously, the numbers of Actinomycetes and less so of fungi increase, indicating that these microorganisms use herbicides as sources of biogenous elements. Rate of herbicidal decomposition depends on the properties of the preparation applied herbicide dose as well as on the physical and chemical soil properties, soil moisture and temperature, ground cover, agrotechnical measures applied and the resident microbial population.

  8. Effects of Rhus typhina invasion into young Pinus thunbergii forests on soil chemical properties%火炬树入侵黑松幼林过程中对土壤化学性质的影响

    Institute of Scientific and Technical Information of China (English)

    黄乔乔; 许慧; 范志伟; 侯玉平

    2013-01-01

    外来植物入侵对生态系统和环境造成严重影响。成功的入侵植物常常可通过改变土壤化学性质来促进自身的竞争和入侵能力。最近几年火炬树(Rhus typhina L.)已经成为北方入侵木本植物之一,火炬树克隆繁殖形成居于绝对优势地位的单优群落已严重威胁着生物多样性和生态系统功能。在本文中,我们研究了火炬树入侵黑松(Pinus thunbergii Parlatore)幼林对土壤化学性质的影响。2011年4月,在山东烟台蓁山,于火炬树入侵程度不同的黑松幼林(在未入侵、轻度、中度、重度入侵下,火炬树盖度分别为0%、30%、50%~70%、90%以上),分别采样表层土壤并带回实验室分析其化学性质。结果表明:火炬树的入侵显著提高了土壤硝态氮(从未入侵下的0.63 mg/kg 提高到重度入侵下的0.98 mg∙kg-1)和有效磷(从未入侵下的0.589 mg∙kg-1提高到重度入侵下的1.189 mg∙kg-1)的含量,降低了土壤铵态氮(从未入侵下的9.25 mg∙kg-1降低到重度入侵下的2.97 mg∙kg-1)的含量,而对土壤pH、有机质和全氮含量没有显著影响。火炬树入侵导致铵态氮降低可能是由于火炬树更易于吸收利用土壤铵态氮;硝态氮含量升高是因为火炬树入侵提高了土壤的硝化速率。同时火炬树入侵导致土壤有效磷升高,说明火炬树能够通过活化分解土壤含磷化合物来满足自身生长的需求。本研究表明,火炬树入侵能显著改变土壤化学性质,火炬树入侵对根际土壤化学性质的影响及其自身的适应性特征等可能是其能够入侵成功和快速扩张蔓延的生态机制之一。%Exotic plant invasions severely threaten ecosystems and the environment. Successful invasive plants often promote their competitive ability and invasiveness through altering soil chemical properties. In recent years Rhus typhina has become one of the invasive woody plant species in North

  9. The effect of Eulaliopsis binata on the physi-chemical properties, microbial biomass, and enzymatic activities in Cd-Pb polluted soil.

    Science.gov (United States)

    Yu, Hui; Xiang, Yanci; Zou, Dongsheng

    2016-10-01

    Pot culture experiment using mining wasteland soil was carried out to study the effect of Eulaliopsis binata on the heavy-metal polluted soil with the growth of 90, 180, 270, and 360 days. Soil nutritional components, heavy metal, microbial biomass, and enzymatic activities were analyzed in this study, and the control group had no plants. The results showed that heavy metal contents decreased with E. binata growth, extractable Cd and Pb decreased 28 and 15 % after 1 year, but the difference was not significant compared with the control. While soil nutritional components, microbial biomass and enzymatic activities increased significantly as compared with the control. Comparing with pre-experiment, soil organic matter, N, P, K, microbial biomass C, N, P, invertase, urease, acid phosphatase, and catalase increased 0.9, 1.1, 3.0, 1.1, 0.4, 0.3, and 0.5 times, respectively. The indexes of soil nutritional components, microbial biomass, and enzymatic activities are positively correlated to each other, while they are negatively correlated to heavy metal content respectively. E. binata has positive influence on Cd-Pb pollution soil and broad application prospects in remediating heavy-metal polluted soil.

  10. [Effects of intercropping Sedum plumbizincicola and Apium graceolens on the soil chemical and microbiological properties under the contamination of zinc and cadmium from sewage sludge application].

    Science.gov (United States)

    Nai, Feng-Jiao; Wu, Long-Hua; Liu, Hong-Yan; Ren, Jing; Liu, Wu-Xing; Luo, Yong-Ming

    2013-05-01

    Taking the vegetable soil with zinc- and cadmium contamination from a long-term sewage sludge application as the object, a pot experiment was conducted to study the remediation effect of Sedum plumbizincicola and Apium graceolens under continuous monoculture and intercropping. With the remediation time increased, both S. plumbizincicola and A. graceolens under monoculture grew poorly, but S. plumbizincicola under intercropping grew well. Under intercropping, the soil organic matter, total N, extractable N, and total P contents decreased significantly while the soil extractable K content had a significant increase, the counts of soil bacteria and fungi increased by 7.9 and 18.4 times and 3.7 and 4.3 times, respectively, but the soil urease and catalase activities remained unchanged, as compared with those under A. graceolens and S. plumbizincicola monoculture. The BIOLOG ECO micro-plates also showed that the carbon sources utilization level and the functional diversity index of soil microbial communities were higher under intercropping than under monoculture, and the concentrations of soil zinc and cadmium under intercropping decreased by 5.8% and 50.0%, respectively, with the decrements being significantly higher than those under monoculture. It was suggested that soil microbial effect could be one of the important factors affecting plant growth.

  11. Assessment of physical and chemical indicators of sandy soil quality for sustainable crop production

    Science.gov (United States)

    Lipiec, Jerzy; Usowicz, Boguslaw

    2017-04-01

    Sandy soils are used in agriculture in many regions of the world. The share of sandy soils in Poland is about 55%. The aim of this study was to assess spatial variability of soil physical and chemical properties affecting soil quality and crop yields in the scale of field (40 x 600 m) during three years of different weather conditions. The experimental field was located on the post glacial and acidified sandy deposits of low productivity (Szaniawy, Podlasie Region, Poland). Physical soil quality indicators included: content of sand, silt, clay and water, bulk density and those chemical: organic carbon, cation exchange capacity, acidity (pH). Measurements of the most soil properties were done at spring and summer each year in topsoil and subsoil layer in 150 points. Crop yields were evaluated in places close to measuring points of the soil properties. Basic statistics including mean, standard deviation, skewness, kurtosis minimal, maximal and correlations between the soil properties and crop yields were calculated. Analysis of spatial dependence and distribution for each property was performed using geostatistical methods. Mathematical functions were fitted to the experimentally derived semivariograms that were used for mapping the soil properties and crop yield by kriging. The results showed that the largest variations had clay content (CV 67%) and the lowest: sand content (5%). The crop yield was most negatively correlated with sand content and most positively with soil water content and cation exchange capacity. In general the exponential semivariogram models fairly good matched to empirical data. The range of semivariogram models of the measured indicators varied from 14 m to 250 m indicate high and moderate spatial variability. The values of the nugget-to-sill+nugget ratios showed that most of the soil properties and crop yields exhibited strong and moderate spatial dependency. The kriging maps allowed identification of low yielding sub-field areas that

  12. Geoestatística na determinação da variabilidade espacial de características químicas do solo sob diferentes preparos Geostatistics to determine spatial variability of soil chemical properties using different preparation systems

    Directory of Open Access Journals (Sweden)

    José Ruy Porto de Carvalho

    2002-08-01

    Full Text Available O objetivo deste trabalho foi estudar, mediante a geoestatística, a variabilidade espacial de pH, Ca, Mg, P e K em Latossolo Vermelho-Escuro distrófico, textura argilosa, cultivado durante cinco anos consecutivos (1992-1996, em três sistemas de preparo (arado, grade e plantio direto na Embrapa-Centro Nacional de Pesquisa de Arroz e Feijão, em Santo Antônio de Goiás, GO. Das 30 combinações entre características químicas do solo, profundidades de coleta e sistemas de preparo, 14 apresentaram efeito pepita puro, indicando ausência de dependência espacial. Semivariogramas direcionais revelaram forte e moderada dependência espacial na direção de Y. Experimentos longevos com práticas culturais orientadas em uma única direção tendem a mudar a estrutura espacial das propriedades do solo, o que indica ser a razão dos resultados obtidos. A direção de anisotropia está mais associada com o tratamento arado e a mais forte dependência espacial foi verificada com relação ao pH no sistema de preparo arado na profundidade de 5-20 cm. A localização das amostras para estimar os valores das características químicas do solo deve levar em conta as operações de campo, e cuidados devem ser tomados em relação à amostragem casual.As amostras devem ser retiradas em outras direções, para que uma representação mais realista da área amostrada seja obtida.Spatial variability of pH, Ca, Mg, P and K under three soil preparation systems (moldboard plough, harrow disc and no-tillage was studied using geostatistical concepts in clayey Oxisol, in Santo Antônio de Goiás, GO, Brazil, at Embrapa-Centro Nacional de Pesquisa de Arroz e Feijão, for five consecutive years (1992-1996. Within a total of 30 combinations among soil chemical properties, soil depth and preparation system, 14 presented pure nugget effect, indicating absence of spatial dependence. Directional semivariograms revealed strong and moderate spatial dependence in the direction

  13. Mapping specific soil functions based on digital soil property maps

    Science.gov (United States)

    Pásztor, László; Fodor, Nándor; Farkas-Iványi, Kinga; Szabó, József; Bakacsi, Zsófia; Koós, Sándor

    2016-04-01

    Quantification of soil functions and services is a great challenge in itself even if the spatial relevance is supposed to be identified and regionalized. Proxies and indicators are widely used in ecosystem service mapping. Soil services could also be approximated by elementary soil features. One solution is the association of soil types with services as basic principle. Soil property maps however provide quantified spatial information, which could be utilized more versatilely for the spatial inference of soil functions and services. In the frame of the activities referred as "Digital, Optimized, Soil Related Maps and Information in Hungary" (DOSoReMI.hu) numerous soil property maps have been compiled so far with proper DSM techniques partly according to GSM.net specifications, partly by slightly or more strictly changing some of its predefined parameters (depth intervals, pixel size, property etc.). The elaborated maps have been further utilized, since even DOSoReMI.hu was intended to take steps toward the regionalization of higher level soil information (secondary properties, functions, services). In the meantime the recently started AGRAGIS project requested spatial soil related information in order to estimate agri-environmental related impacts of climate change and support the associated vulnerability assessment. One of the most vulnerable services of soils in the context of climate change is their provisioning service. In our work it was approximated by productivity, which was estimated by a sequential scenario based crop modelling. It took into consideration long term (50 years) time series of both measured and predicted climatic parameters as well as accounted for the potential differences in agricultural practice and crop production. The flexible parametrization and multiple results of modelling was then applied for the spatial assessment of sensitivity, vulnerability, exposure and adaptive capacity of soils in the context of the forecasted changes in

  14. Effects of tree species on soil properties in a forest of the Northeastern United States

    NARCIS (Netherlands)

    Dijkstra, F.A.

    2001-01-01

    Large differences in soil pH and available Ca in the surface soil exist among tree species growing in a mixed hardwood forest in northwestern Connecticut. The observed association between tree species and specific soil chemical properties within mixed-species stands implies that changes in

  15. 不同栖息环境下麋鹿活动对土壤理化特性的影响%The impact of Elaphurus davidianus in different habitats on soil physical and chemical properties

    Institute of Scientific and Technical Information of China (English)

    朱明淏; 刘艳菊; 张婷婷; 程志斌; 杨峥

    2016-01-01

    This study aims to explore how the daily life of E. davidianus affects the soil physical and chemical properties by analyzing water content, organic matter, pH, conductivity, drying salt content, hydrolysis nitrogen, available phosphorus and available potassium in soil of several typical habitats disturbed by E. davidianus activities. The results show that under the limited captive and semi loose state, E. davidianus activities reduced soil water content, increase soil organic matter content. The pH levels were raised by the animal activities. It alleviated the soil acidicity, but increased soil alkalization degree. E. davidianus′ activities raised conductivity value and drying salt content, and thus increased the degree of soil salinization. In addition, hydrolysis nitrogen, available phosphorus and available potassium in soil were increased by E.davidianus activities, leading to the increase of the plant available nutrient content in soil. Under the wild and semi wild environment with plenty of natural resources and strong capacity, high density of E.davidianus reduced soil organic matter content, while the low density of the wild population effectively slowed down the process of soil salinization.%本研究旨在通过实验分析对比有无麋鹿活动情况下,几个典型的麋鹿栖息地的含水量、有机质、pH、电导率、烘干全盐量、水解氮、有效磷、速效钾,探讨麋鹿日常生活对土壤理化性质的影响.结果发现,在有限的圈养和半散放状态下,麋鹿活动常可降低土壤含水量,提高有机质含量;提高pH值含量,利于缓解酸性土壤酸化程度,但可加剧已碱化土壤的盐碱化程度;提高电导率、烘干全盐含量和土壤盐渍化程度;麋鹿活动还使水解性氮、有效磷和速效钾含量升高,使土壤中的植物可利用的营养元素含量增加.在自然资源丰富、容纳能力强的野放和半野放环境状态下,麋鹿集群活动反而会降低土壤有机质

  16. Effects of Different Tillage Methods on Physical, Chemical Properties and Nutrient of Soil in Tea Plantation%不同耕作方式对茶园土壤理化性质和养分的影响

    Institute of Scientific and Technical Information of China (English)

    向芬; 宋志禹; 周凌云; 李维; 刘红艳; 段继华; 周品谦; 包小村; 肖宏儒

    2016-01-01

    Taking no tillage as the check, we studied the effects of different tillage methods on the physical, chemical prop-erties and nutrient of soil in tea plantation .The results indicated that:during 2~4 months after tea plantation was tilled by differ-ent methods (intertillage, deep ploughing by hand, or deep ploughing by tractor), in comparison with the check, the soil relative water content and bulk density were decreased, while the tea root dry weight, and contents of available nitrogen, available phos-phorus and available potassium in 20~40-cm soil layer of tea plantation were increased.The above results suggest that reasonable tillage is in favor of the tea root growth and tea garden soil nutrient equilibrium , and deep plowing and intertillage by using tillage machine are feasible in tea garden.%以不耕作为对照,研究了不同耕作方式对茶园土壤理化性质和养分含量的影响。结果表明:中耕、手扶深耕、拖拉机深耕2~4个月后土壤相对含水量和土壤容重较对照低,但茶园的根系干重以及20~40 cm土层的碱解氮、速效磷、速效钾含量均有所增加。说明合理耕作有利于茶树根系生长和茶园土壤养分的均衡;使用耕作机对茶园进行深耕、中耕均是可行的。

  17. Variabilidade espacial das propriedades físicas e químicas do solo em áreas intensamente cultivadas Spatial variability of physical and chemical properties of soil in intensively cultivated areas

    Directory of Open Access Journals (Sweden)

    Gláucia de Mello

    2006-06-01

    Full Text Available Neste trabalho, avaliou-se a variabilidade espacial das propriedades físicas e químicas do solo, visando fornecer subsídios ao manejo localizado de insumos. Foram analisadas as variáveis químicas: P, MO, K, Ca, Mg, pH, CTC e V(% e físicas: areia e argila. Coletaram-se amostras de solo em duas profundidades (0-0,2 e 0,6-0,8 m situadas em malha irregular de amostragem na região de Monte Alto, num Argissolo Vermelho-Amarelo (PVA, sob diferentes manejos, perfazendo 88 pontos em área total de 1465 ha; e na região de Jaboticabal, em Latossolo Vermelho (LV cultivado com cana-de-açúcar, perfazendo 128 pontos, em área total de 2597 ha. As propriedades químicas e físicas dos solos estudados apresentaram dependência espacial, com exceção da CTC na profundidade de 0,6-0,8 m para o solo LV; Ca e argila na profundidade de 0-0,2 m, e P, MO, K, Mg e argila na camada de 0,6-0,8 m, no solo PVA. As variáveis estudadas ajustaram-se aos modelos esférico e exponencial, e algumas apresentaram semivariograma sem estrutura definida. O solo PVA apresentou menor continuidade espacial das propriedades químicas e físicas, principalmente na profundidade 0,6-0,8 m, camada que sofre menor influência antrópica. O solo LV apresentou zonas mais homogêneas de fertilidade e granulometria.The spatial variability of physical and chemical properties of soil were evaluated to provide subsidies for management of the agricultural input. The chemical variables: P, organic matter (OM, K, Ca, Mg, pH, CEC and base saturation (BS; and physical variables: sand and clay were analysed. Soil samples were collected at two depths (0-0.2 and 0.6-0.8 m located at irregular mesh of sampling in the region of Monte Alto, in a Yellow-Red Podzol (Alfissolo (PVA, under different managements, resulting in 88 points in 1465 ha of total area; and at the region of Jaboticabal in a Red Latosol (LV cultivated with sugarcane, resulting in 128 points in 2597 ha of total area. The chemical

  18. Melhorias nas propriedades químicas de um solo salino-sódico e rendimento de arroz, sob diferentes tratamentos Improvement in chemical properties of saline-sodic soil and rice yield under under different treatments

    Directory of Open Access Journals (Sweden)

    Everaldo Mariano Gomes

    2000-12-01

    Full Text Available Instalou-se um experimento num solo salino-sódico no Perímetro Irrigado de São Gonçalo, com o objetivo de se avaliar o efeito de diferentes produtos condicionadores nas propriedades químicas do solo e seus reflexos nos componentes de produção e rendimento de grãos na cultura de arroz irrigado (Oryza sativa L.. O delineamento experimental foi inteiramente casualizado, com cinco tratamentos e cinco repetições. Os tratamentos estudados foram: gesso (20 Mg ha-1; casca de arroz (15 Mg ha-1; testemunha; vinhaça (40 m³ ha-1 e esterco de curral (40 Mg ha-1. Após aplicação dos tratamentos, o solo foi lixiviado durante 40 dias, mantendo uma lâmina de 8 cm de água nas parcelas. Os tratamentos mostraram efeitos positivos nas propriedades químicas do solo (percentagem de sódio trocável, condutividade elétrica do extrato de saturação e pH da pasta saturada sendo que o esterco de curral e gesso proporcionaram apreciáveis decréscimos em comparação aos outros tratamentos; entretanto, os produtos utilizados não mostraram efeitos significativos no número de panículas, peso de panículas e rendimento do arroz.An experiment was installed in a saline-sodic soil of the Irrigated Perimeter of São Gonçalo, with the objective of evaluating the effect of different amendments in the chemical properties of soil and its posterior reflexes in the components of production and grain yield of irrigated rice (Oryza sativa L.. The experiment consisted of five treatments with five replications in a completely randomized design. The treatments studied were: gypsum (20 Mg ha-1; rice husk (15 Mg ha-1; control; stillage (40 m³ ha-1 and farmyard manure (40 Mg ha-1. After incorporation of amendments, the soil was leached for 40 days, keeping an 8 cm depth of water in the plots. The treatments showed positive effects in the chemical properties of the soil (exchangeable sodium percentage, electrical conductivity of saturation extract and pH of saturation

  19. Accessing and using chemical property databases.

    Science.gov (United States)

    Hastings, Janna; Josephs, Zara; Steinbeck, Christoph

    2012-01-01

    Chemical compounds participate in all the processes of life. Understanding the complex interactions of small molecules such as metabolites and drugs and the biological macromolecules that consume and produce them is key to gaining a wider understanding in a systemic context. Chemical property databases collect information on the biological effects and physicochemical properties of chemical entities. Accessing and using such databases is key to understanding the chemistry of toxic molecules. In this chapter, we present methods to search, understand, download, and manipulate the wealth of information available in public chemical property databases, with particular focus on the database of Chemical Entities of Biological Interest (ChEBI).

  20. Geotechnical properties of Egyptian collapsible soils

    Directory of Open Access Journals (Sweden)

    Khaled E. Gaaver

    2012-09-01

    Full Text Available The risk of constructing structures on collapsible soils presents significant challenges to geotechnical engineers due to sudden reduction in volume upon wetting. Identifying collapsible soils when encountered in the field and taking the needed precautions should substantially reduce the risk of such problems usually reported in buildings and highways. Collapsible soils are those unsaturated soils that can withstand relatively high pressure without showing significant change in volume, however upon wetting; they are susceptible to a large and sudden reduction in volume. Collapsible soils cover significant areas around the world. In Egypt, collapsible soils were observed within the northern portion of the western desert including Borg El-Arab region, and around the city of Cairo in Six-of-October plateau, and Tenth-of-Ramadan city. Settlements associated with development on untreated collapsible soils usually lead to expensive repairs. One method for treating collapsible soils is to densify their structure by compaction. The ongoing study presents the effect of compaction on the geotechnical properties of the collapsible soils. Undisturbed block samples were recovered from test pits at four sites in Borg El-Arab district, located at about 20 km west of the city of Alexandria, Egypt. The samples were tested in both unsoaked and soaked conditions. Influence of water inundation on the geotechnical properties of collapsible soils was demonstrated. A comparative study between natural undisturbed and compacted samples of collapsible soils was performed. An attempt was made to relate the collapse potential to the initial moisture content. An empirical correlation between California Bearing Ratio of the compacted collapsible soils and liquid limit was adopted. The presented simple relationships should enable the geotechnical engineers to estimate the complex parameters of collapsible soils using simple laboratory tests with a reasonable accuracy.

  1. 不同板栗-农间作模式对土壤理化性质的影响%Effects of different Chinese chestnut-crop intercropping patterns on soil physical and chemical properties

    Institute of Scientific and Technical Information of China (English)

    韦宏民; 何斌; 梁运; 韦智卫; 韦雅玲; 黄承标; 刘红英

    2014-01-01

    In order to understand change status of soil physical and chemical properties in chestnut-crop intercropping, density, porosity, water-holding capacity, pH value and nutrient content of soil were studied and compared under four patterns of chestnut-crop intercropping (chestnut-maize, chestnut-peanut, chestnut-soybean and pure chestnut stand) in Donglan County of Guangxi. The results show that soil physical and chemical properties have differences among four patterns of chestnut-crop intercropping. The density of surface soil (0-20 cm) under intercropping patterns of chestnut-peanut, chestnut-maize, chestnut-soybean and pure chestnut stand are 1.11, 1.13, 1.08, 1.21 g/cm3, respectively;non-capillary porosities are 13.60%, 11.36%, 10.35%, 9.62%, respectively; total porosities are 54.04%, 52.68%, 53.73%, 50.42%, respectively. Based on contents of total N, hydrolyzable N, available P and available K in soil from high to low, the order of the four chestnut-crop intercropping pattern is chestnut-peanut, chestnut-soybean, chestnut-maize, pure chestnut stand. Therefore, chestnut-crop intercropping is beneifcial for improving soil structure and increasing effective nutrient contents in soil.%为了了解板栗-农作物间作的土壤理化性质变化状况,对广西东兰县4种板栗-农间作模式(板栗-玉米、板栗-花生、板栗-黄豆和板栗纯林)土壤密度、孔隙度、持水量、pH值和养分含量进行分析比较。研究结果表明,不同板栗-农间作模式土壤理化性质存在一定差异,其中板栗-花生、板栗-玉米、板栗-黄豆和板栗纯林表层土壤(0~20 cm)密度分别为1.11、1.13、1.08和1.21 g/cm3,非毛管隙度分别为13.60%、11.36%、10.35%和9.62%,总孔隙度分别为54.04%、52.68%、53.73和50.42%;不同板栗-农间作模式按照土壤全N、水解N、速效P和速效K含量由高到低排列依次大致为板栗-花生、板栗-黄豆、板栗-玉米、板栗纯林。因此,板栗

  2. 城乡交错带土地利用方式对土壤理化性质的影响%INFLUENCE OF LAND-USE TYPES ON SOIL PHYSICAL AND CHEMICAL PROPERTIES IN SUBURBAN AREA

    Institute of Scientific and Technical Information of China (English)

    方晰; 洪瑜; 金文芬; 陈仕栋

    2011-01-01

    以长沙市南郊山地丘陵区为研究对象,选择7种不同土地利用方式(次生林地、经济林地、杉木人工林、采伐迹地、撂荒地、苗圃地、坡耕地)研究了城乡交错带不同土地利用方式对土壤理化性质的影响。结果表明:7种土地利用方式下,土壤颗粒组成主要集中在1~0.05mm和〈0.001mm两个粒级范围内,土壤质地以重壤土和轻粘土为主。随着人为干扰程度的减弱,土壤砂粒(1.0~0.05mm)、土壤粉粒(0.05~0.01mm)百分率逐渐下降,〈0.01mm的土壤物理性粘粒百分率增加。自然、半自然状态利用方式的林地(次生林地、经济林地、杉木人工林地)土壤总孔隙度、含水量普遍较高,土壤密度低于坡耕地、苗圃地、撂荒地、采伐迹地,而土壤pH值、有机质含量及氮、磷、钾含量普遍高于坡耕地、苗圃地、撂荒地、采伐迹地。%In order to investigate the effects of land utilization types on soil physical and chemical properties in suburban area, seven kinds of different land utilization types (secondary forest-land, economic forestland, artificial forest-lands, deforested-land, abandoned farmland, nursery garden, slope farm land) in suburban area of Changsha City were chosen for studying. The results showed that the soil particle mainly concentrated in (1.00~0.05 mm and 〈0. 001 mm) two granulation scales, soil texture was light clay and heave loam. The content of soil sand (1.00~0.05 mm) and soil silt (0.05~0.01 mm) decreased, while that of soil clay (〈0.01 mm) increased with the decreased of human disturbance. Soil density in slope farm land, nursery garden, abandoned farmland and deforested-land was higher than that in woodland, such as secondary forest-land, economic forest-land, artificial forest-lands, however soil porosity and soil water content in the woodlands were universally higher. Soil pH value, organic matter

  3. Physical properties of soils in Rostov agglomeration

    Science.gov (United States)

    Gorbov, S. N.; Bezuglova, O. S.; Abrosimov, K. N.; Skvortsova, E. B.; Tagiverdiev, S. S.; Morozov, I. V.

    2016-08-01

    Physical properties of natural and anthropogenically transformed soils of Rostov agglomeration were examined. The data obtained by conventional methods and new approaches to the study of soil physical properties (in particular, tomographic study of soil monoliths) were used for comparing the soils of different functional zones of the urban area. For urban territories in the steppe zone, a comparison of humus-accumulative horizons (A, Asod, Ap, and buried [A] horizons) made it possible to trace tendencies of changes in surface soils under different anthropogenic impacts and in the buried and sealed soils. The microtomographic study demonstrated differences in the bulk density and aggregation of urban soils from different functional zones. The A horizon in the forest-park zone is characterized by good aggregation and high porosity, whereas buried humus-accumulative horizons of anthropogenically transformed soils are characterized by poor aggregation and low porosity. The traditional parameters of soil structure and texture also proved to be informative for the identification of urban pedogenesis.

  4. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties.

    Science.gov (United States)

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  5. [Effects of tillage methods on soil physicochemical properties and biological characteristics in farmland: A review].

    Science.gov (United States)

    Li, Yu-jie; Wang, Hui; Zhao, Jian-ning; Huangfu, Chao-he; Yang, Dian-lin

    2015-03-01

    Tillage methods affect soil heat, water, nutrients and soil biology in different ways. Reasonable soil management system can not only improve physical and chemical properties of the soil, but also change the ecological process of farmland soil. Conservation tillage can improve the quality of the soil to different degrees. For example, no-tillage system can effectively improve soil enzyme activity. No tillage and subsoiling tillage can provide abundant resources for soil microbe' s growth and reproduction. No tillage, minimum tillage and other conservation tillage methods exert little disturbance to soil animals, and in turn affect the quantity and diversity of the soil animals as well as their population structure. Effects of different tillage methods on soil physical and chemical properties as well as biological characteristics were reviewed in this article, with the soil physical and chemical indices, enzyme activities, soil microbe diversity and soil animals under different tillage patterns analyzed. The possibility of soil quality restoration with appropriate tillage methods and the future research direction were pointed out.

  6. Estimating soil moisture and soil thermal and hydraulic properties by assimilating soil temperatures using a particle batch smoother

    Science.gov (United States)

    Dong, Jianzhi; Steele-Dunne, Susan C.; Ochsner, Tyson E.; Giesen, Nick van de

    2016-05-01

    This study investigates the potential of estimating the soil moisture profile and the soil thermal and hydraulic properties by assimilating soil temperature at shallow depths using a particle batch smoother (PBS) using synthetic tests. Soil hydraulic properties influence the redistribution of soil moisture within the soil profile. Soil moisture, in turn, influences the soil thermal properties and surface energy balance through evaporation, and hence the soil heat transfer. Synthetic experiments were used to test the hypothesis that assimilating soil temperature observations could lead to improved estimates of soil hydraulic properties. We also compared different data assimilation strategies to investigate the added value of jointly estimating soil thermal and hydraulic properties in soil moisture profile estimation. Results show that both soil thermal and hydraulic properties can be estimated using shallow soil temperatures. Jointly updating soil hydraulic properties and soil states yields robust and accurate soil moisture estimates. Further improvement is observed when soil thermal properties were also estimated together with the soil hydraulic properties and soil states. Finally, we show that the inclusion of a tuning factor to prevent rapid fluctuations of parameter estimation, yields improved soil moisture, temperature, and thermal and hydraulic properties.

  7. Atributos químicos do solo e produtividade do milho afetados por corretivos e manejo do solo Chemical properties of soil and productivity of corn affected by amendments and soil management

    Directory of Open Access Journals (Sweden)

    José R. Santos

    2006-06-01

    Full Text Available Este trabalho foi realizado na Fazenda Experimental Lageado, pertencente à Universidade Estadual Paulista-UNESP, Campus de Botucatu, SP, em um Nitossolo distrófico, na safra de 1997/98. Avaliaram-se os efeitos da aplicação de termofosfato magnesiano; termofosfato + calcário e termofosfato + gesso + vinhaça, nas propriedades químicas do solo e na produtividade do milho (Zea mays L. cultivar XL-345 da Braskalb, cultivado nos sistemas plantio direto e preparo convencional. Foi utilizada a Crotalaria juncea como planta de cobertura sobre a qual foram estabelecidos os sistemas de preparo. As principais alterações na fertilidade do solo ocorreram devido à adubação corretiva com o termofosfato magnesiano. As produtividades da cultura do milho apresentaram diferenças significativas em relação aos sistemas de cultivo e estiveram associadas ao menor teor de N encontrado nas folhas do milho cultivado no sistema de plantio direto.A field experiment was carried out in the Lageado Experimental Farm belonging to the São Paulo State University - UNESP, Campus of Botucatu, SP, in a distrophic Nitosoil in 1997/98. The objective was to compare the effects of magnesium termophosphate; termophosphate + lime; termophosphate + phosphogypsum + sugarcane vinnace application on the chemical characteristics of the soil and on the corn (Zea mays L. yield cultivated in no-tillage and conventional tillage systems. The Crotalaria juncea was cultivated as mulch-producing to make possible the establishment of the tillage systems. The mean modifications in the soil fertility were due to aplication of the magnesium termophosphate. The differences between the two tillage systems, related to crop productivity, were associated to the smaller N content in the corn leaf in the no-tillage system.

  8. Estimation of Soil Electrical Properties in a Multilayer Earth Model with Boundary Element Formulation

    Directory of Open Access Journals (Sweden)

    T. Islam

    2012-01-01

    Full Text Available This paper presents an efficient model for estimation of soil electric resistivity with depth and layer thickness in a multilayer earth structure. This model is the improvement of conventional two-layer earth model including Wenner resistivity formulations with boundary conditions. Two-layer soil model shows the limitations in specific soil characterizations of different layers with the interrelationships between soil apparent electrical resistivity (ρ and several soil physical or chemical properties. In the multilayer soil model, the soil resistivity and electric potential at any points in multilayer anisotropic soil medium are expressed according to the variation of electric field intensity for geotechnical investigations. For most soils with varying layers, multilayer soil resistivity profile is therefore more suitable to get soil type, bulk density of compacted soil and to detect anomalous materials in soil. A boundary element formulation is implemented to show the multilayer soil model with boundary conditions in soil resistivity estimations. Numerical results of soil resistivity ratio and potential differences for different layers are presented to illustrate the application, accuracy, and efficiency of the proposed model. The nobility of the research is obtaining multilayer soil characterizations through soil electric properties in near surface soil profile.

  9. Assessment of Soil Health in Urban Agriculture: Soil Enzymes and Microbial Properties

    Directory of Open Access Journals (Sweden)

    Avanthi Deshani Igalavithana

    2017-02-01

    Full Text Available Urban agriculture has been recently highlighted with the increased importance for recreation in modern society; however, soil quality and public health may not be guaranteed because of continuous exposure to various pollutants. The objective of this study was to evaluate the soil quality of urban agriculture by soil microbial assessments. Two independent variables, organic and inorganic fertilizers, were considered. The activities of soil enzymes including dehydrogenase, β-glucosidase, arylsulfatase, urease, alkaline and acid phosphatases were used as indicators of important microbial mediated functions and the soil chemical properties were measured in the soils applied with organic or inorganic fertilizer for 10 years. Fatty acid methyl ester analysis was applied to determine the soil microbial community composition. Relatively higher microbial community richness and enzyme activities were found in the organic fertilizers applied soils as compared to the inorganic fertilizers applied soils. Principal component analysis explained the positive influence of organic fertilizers on the microbial community. The application of organic fertilizers can be a better alternative compared to inorganic fertilizers for the long-term health and security of urban agriculture.

  10. Broken branch’s mulching improving soil physical and chemical properties and enhancing quality of peach%桃园残枝粉碎还田改善土壤理化性状提高桃品质

    Institute of Scientific and Technical Information of China (English)

    李传友; 熊波; 张莉; 蒋彬; 高娇; 李治国; 王庆杰

    2016-01-01

    Cleaning peach branch residue need a great number of labor power and is also costly. The study aimed to investigate the effects of peach branch residue mulching on soil physical and chemical properties and peach quality. The field experiment was carried out from 2013 to 2015 in a peach orchard with dwarf peach trees in Ping Gu district, Beijing(116°59′E,40°11′N). Three treatments were designed including no cover (CK), rychophragmus violaceus cover (T1), and peach branch residue cover (T3). Rychophragmus violaceus was planted in April each year and cut in October for residue cover. The peach branch was crushed into pieces smaller than 5 cm, mixed with soil evenly, turned into soil 10 cm depth. During the experiment, the irrigation amount each year was 1350 L/hm2. Measured indicators included soil particle composition, soil density, moisture, organic matter, emission rate of carbon dioxide, and quality of peach fruits. The results showed that: 1) During the whole growth period of fruit trees, the residual branches cover could greatly affect soil properties. The T2 and T1 could significantly increase soil >0.25 mm aggregates compared with CK, and the T2 had larger effect on T1; 2) Overall, the soil compactness had the trend of CK>T1>T2. The compactness of CK was 30.2% higher than the T1 and 43.9% higher than T1 (P1 mm 大团聚体含量比清耕和树枝覆盖分别多31.7%、22.2%;0~20 cm 土壤紧实度,清耕无覆盖比二月兰种植大14.8%,比残枝覆盖大21.8%;与对照相比,土壤 CO2释放速率提高193.46%;果园树枝覆盖、二月兰种植、清耕稳定入渗率分别为4.22、8.41、10.01 cm/h;二月兰种植和残枝覆盖土壤有机质含量较清耕分别增加183.2%、119.8%(P<0.05);果园残枝覆盖较清耕处理可溶性固形物增加6.1%,单果质量提高7.9%。因此,果园残枝覆盖可以改善土壤理化性状,提高果实品质。

  11. Kriging analysis of soil properties: Implication to landscape management and productivity improvement

    Science.gov (United States)

    Soil as a landscape entity contains wide ranges of physical, chemical, morphological, and mineralogical properties, both laterally and vertically. Soils with similar properties and environments are expected to behave similarly. Statement of land use potential depends in part on the precision and acc...

  12. Effects of fire on properties of forest soils: a review.

    Science.gov (United States)

    Certini, Giacomo

    2005-03-01

    Many physical, chemical, mineralogical, and biological soil properties can be affected by forest fires. The effects are chiefly a result of burn severity, which consists of peak temperatures and duration of the fire. Climate, vegetation, and topography of the burnt area control the resilience of the soil system; some fire-induced changes can even be permanent. Low to moderate severity fires, such as most of those prescribed in forest management, promote renovation of the dominant vegetation through elimination of undesired species and transient increase of pH and available nutrients. No irreversible ecosystem change occurs, but the enhancement of hydrophobicity can render the soil less able to soak up water and more prone to erosion. Severe fires, such as wildfires, generally have several negative effects on soil. They cause significant removal of organic matter, deterioration of both structure and porosity, considerable loss of nutrients through volatilisation, ash entrapment in smoke columns, leaching and erosion, and marked alteration of both quantity and specific composition of microbial and soil-dwelling invertebrate communities. However, despite common perceptions, if plants succeed in promptly recolonising the burnt area, the pre-fire level of most properties can be recovered and even enhanced. This work is a review of the up-to-date literature dealing with changes imposed by fires on properties of forest soils. Ecological implications of these changes are described.

  13. Effects of Different Types of Sludge on Soil Microbial Properties: A Field Experiment on Degraded Mediterranean Soils

    Institute of Scientific and Technical Information of China (English)

    D.TARRAS(O)N; G.OJEDA; O.ORTIZ; J.M.ALCA(N)IZ

    2010-01-01

    T The recycling of suitable organic wastes can enhance soil fertility via effects on soil physical, chemical and biological properties. To compare the effects of digested (DS), thermally dried (TDS) and composted dewatered (CDS) sewage sludge on soil microbiological properties, an experiment was conducted at field sites for more than one year (401 d) when applied to two Mediterranean degraded soils (loam and loamy sand soils). All three types of sewage sludge had a significant effect on measured parameters. In a short time, the plots of both loamy sand and loam soils amended with TDS showed the highest microbial basal respiration (loam soil: P < 0.01; loamy sand soil: P < 0.001) and carbon mineralization coefficient (loam soil: P < 0.01; loamy sand soil: P < 0.001). Furthermore, on loamy sand soil, the plots amended with TDS showed the highest microbial metabolic quotient (qCO2) (P < 0.05). This study revealed that the addition of sludge caused transient non-equilibrium effects on almost all soil microbial properties. However, there were no differences one year later because the remaining organic carbon was stable and quite similar in all treatments. These results may have practical implications for the rehabilitation of degraded soils.

  14. The chemical properties of soil for alfalfa production after biofertiliser applicationAtributos químicos no solo e produção de alfafa sob doses de biofertilizante

    Directory of Open Access Journals (Sweden)

    Rodrigo Luis Lemes

    2013-10-01

    Full Text Available The objective of this study was to evaluate the use of biofertilisers for the production of alfalfa shoot, root and nodule dry matter, and also, to evaluate the chemical properties of the soil. This study was conducted in the greenhouse of the Support Department, Animal Production and Health, Faculty of Veterinary Medicine/UNESP, Araçatuba – SP, from May to October 2010. The experimental design was completely randomised with six biofertiliser doses (0, 25, 50, 100, 200 and 400 m3 ha-1 and five replicates. The biofertiliser doses were the primary treatments and the cuts (five were subplots. The cuts were performed, on average, every 27 days at 10 cm above the soil. At the end of the experiment, the roots, nodules and soil from all experimental units were collected for chemical analysis. We observed a linear increase in dry matter production of the shoots relative to the doses studied. The dry matter production of the roots and nodules was not significantly different. The chemical properties of the soil significantly improved for calcium and magnesium as well as the sum of bases and base saturation with biofertiliser application. Biofertilisers can be used for agricultural production and favourably alter the soil characteristics. O objetivo deste trabalho foi avaliar o uso de doses de biofertilizante na produção de matéria seca da parte aérea, raízes e nódulos da alfafa, e os atributos químicos do solo. O experimento foi realizado em casa de vegetação do Departamento de Apoio, Produção e Saúde Animal da Faculdade de Medicina Veterinária/UNESP, Campus de Araçatuba – SP, de maio a outubro de 2010. O delineamento experimental foi inteiramente ao acaso, sendo seis doses de biofertilizante (0, 25, 50, 100, 200 e 400 m3 ha-1 e cinco repetições. As doses de biofertilizante foram consideradas como tratamentos principais e os cortes (cinco como subparcelas. Os cortes foram realizados, em média, a cada 27 dias, a 10 cm de altura do

  15. Chemical and physical properties of opencast lignite minesoils

    Energy Technology Data Exchange (ETDEWEB)

    Varela, C.; Vazquez, C.; Gonzalez-Sangregorio, M.V.; Leiros, M.C.; Gil-Sotres, F. (Facultad de Farmacia de Santiago de Compostela, Santiago de Compostela (Spain). Dept. de Edafologia y Quimica Agricola)

    1993-09-01

    The evolution of chemical and physical properties in a series of mine soils aged between 0 and 5 years, developed from spoil materials of the Meirama opencast lignite mine in Galicia (NW Spain), was studied. The soils are recovered without use of topsoil and are subject to identical management. In the surface horizon (0-7 cm), total C and N, CEC, and pyrophosphate-extracted Al[sub 2]O[sub 3] and Fe[sub 2]O[sub 3] increased with soil age. Oxalic-oxalate-extracted Al[sub 2]O[sub 3] and Fe[sub 2]O[sub 3] on the other hand, increased with soil age in all the horizons studied. Rapid recovery in terms of physical properties was also observed: bulk density dropped, while total porosity, percentage of macropores, and hydraulic conductivity increased, and aggregates showed greater stability on immersion in water. The results indicate that mineral weathering and organometallic complexation are the dominant processes at these early stages of edaphogenesis and that properties associated with gas exchange showed more rapid development than those associated with water movement. In spite of the above rapid modifications, the characteristics of the oldest soils in the series were still very different from those of native Galician soils.

  16. X-ray microspectroscopy and chemical reactions in soil microsites.

    Science.gov (United States)

    Hesterberg, Dean; Duff, Martine C; Dixon, Joe B; Vepraskas, Michael J

    2011-01-01

    Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro- (or nano-)reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  17. SOIL QUALITY ASSESSMENT BASED ON CHEMICAL, ENZYMATIC AND BACTERIOLOGICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Sofia-Paulina BALAURE

    2012-01-01

    Full Text Available This study highlights the problem of soil pollution as the result of human activities. Soil pollutans may be either chemicals or biological in nature. microbial enzymatic activities are often proposed as indicators of environmental stress. The soil samples were submitted by chemical, microbiological and enzymatic analyses. Chemical analyses were been made for determinating the heavy metals. Heavy metals from the forest soil were represented by Cu, Zn, Mn, Ni, Pb, Cd and Cr. To evaluate the concentration in heavy metals from the filtrate, we used a acetylene-nitrous oxide flame atomic absorption spectrophotometry. Potential dehydrogenase activity, the only indicator of the possible sources of pollution, excluded the presence of either chemical or biological pollution. The number of bacteria involved in the biogeochemical cycle of nitrogen in the analyzed soil indicated a high efficiency regarding the mineralization of the organic residues of plant and animal origin.

  18. Biogeochemical features technogenic pollution of soils under the influence chemical industry

    Directory of Open Access Journals (Sweden)

    Kuraeva I.V.

    2015-09-01

    Full Text Available The physico-chemical properties of soil (pH, organic matter content, cation exchange capacity. The regularities of the distribution of total and mobile forms of heavy metals in soil sediments in the territory of Shostka Sumy region under the influence of the chemical industry and in the background areas. Biogeochemical indicators obtained content of microscopic fungi and their species, the most characteristic of the study of soils, which can be used as an additional criterion for ecological and geochemical studies.

  19. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    Groundwater risk assessment of contaminated soils implies determination of the solute concentration leaching out of the soil. Determination based on estimation techniques or simple experimental batch approach has proven inadequate. Two chemical equilibrium soil column leaching tests...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...... to measure solute phase concentration of PAHs in contaminated soils. Overall a reliable and reproducable system for determining solute concentration of a wide range of organic compounds in contaminated soils has been developed....

  20. Relationship Between Soil Properties and Different Fractions of Soil Hg

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Correlation and path analysis methods were used to study the relationship between soil properties and the distribution of different soil Hg fractions with nine representative soils from Chongqing, China. Results showed that clay (< 2 m) could increase water-soluble Hg (r = 0.700*). Soil organic matter (OM) could enhance the increase of elemental Hg (r = 0.674*). The higher the base saturation percentage (BSP), the more the residual Hg (r = 0.684*). Organic Hg, the sum of acid-soluble organic Hg. and alkali-soluble Hg, was positively affected by silt (2~20μm) but negatively affected by pH, with the direct path coefficients amounting to 1.0487 and 0.5121, respectively. The positive effect of OM and negative effect of BSP on organic Hg were the most significant, with the direct path coefficients being 0.7614 and -0.8527, respectively. The indirect effect of clay (< 2 μm) via BSP (path coefficient = 0.4186) was the highest, showing that the real influencing factor in the effect of clay (< 2 μm) on acid-soluble organic Hg was BSP. Since the available Hg fraction, water-soluble Hg, was positively affected by soil clay content, and the quite immobile and not bioavailable residual Hg by soil BSP, suitable reduction of clay content and increase of BSP would be of much help to reduce the Hg availability and Hg activity in Hg-contaminated soils.

  1. Effect of cryogel on soil properties

    Science.gov (United States)

    Altunina, L. K.; Fufaeva, M. S.; Filatov, D. A.; Svarovskaya, L. I.; Rozhdestvenskii, E. A.; Gan-Erdene, T.

    2014-05-01

    Samples from the A1 and A1A2 horizons of sandy loamy gray forest soil containing 3.1% organic matter have been mixed with a 5% solution of polyvinyl alcohol (PVA) at a ratio of 7 : 1 under laboratory conditions. The samples were frozen at -20°C in a refrigerator; after a freezing-thawing cycle, the evaporation of water from their surface, their thermal conductivity coefficient, their elasticity modulus, and other properties were studied. It has been experimentally found that the thermal conductivity coefficient of cryostructured soil is lower than that of common soil by 25%. It has been shown that the cryostructured soil retains water for a longer time and that the water evaporation rate from its surface is significantly lower compared to the control soil. Cryogel has no negative effect on the catalase activity of soil; it changes the physical properties of soils and positively affects the population of indigenous soil microflora and the growth of the sown plants.

  2. Performance of demining sensors and soil properties

    Science.gov (United States)

    Takahashi, Kazunori; Preetz, Holger; Igel, Jan

    2011-06-01

    Metal detector has commonly been used for landmine detection and ground-penetrating radar (GPR) is about to be deployed as dual sensor that is in combination with metal detector. Since both devices employ electromagnetic techniques, they are influenced by magnetic and dielectric properties of soil. To observe the influence, various soil properties as well as their spatial distributions were measured in four types of soil where a field test of metal detectors and GPRs took place. By analyzing soil properties these four types of soil were graded based on the estimated amount of influence on the detection techniques. The classification was compared to the detection performance of devices obtained from the blind test and a clear correlation between the difficulty of soil and the performance was observed; the detection and identification performance were degraded in soils that were classified as problematic. Therefore, it was demonstrated that the performance of metal detector and GPR for landmine detection can qualitatively be assessed by geophysical analyses.

  3. Measuring Disturbance Impact on Soil Hydraulic Properties

    Science.gov (United States)

    Hinshaw, S.; Mirus, B. B.

    2014-12-01

    Disturbances associated with land cover change such as forest clearing and mono-cropping can have a substantial impact on soil-hydraulic properties, which in turn have a cascading impact on surface and near-surface hydrologic response. Although disturbances and vegetation change can alter soil-water retention and conductivity relations, hydrologic models relying on traditional soil-texture based pedotransfer functions would not be able to capture the disturbance impact on infiltration and soil-moisture storage. Therefore, in-situ estimates of characteristic curves of soil water retention and hydraulic conductivity relations are needed to understand and predict hydrologic impacts of land cover change. We present a method for in-situ estimates of effective characteristic curves that capture hysteretic soil-water retention properties at the plot scale. We apply this method to two different forest treatments and in urban settings to investigate the impact of land-use disturbances on soil-hydraulic properties. We compare our in-situ estimation method to results for simple pedotransfer functions to illustrate how this approach can improve understanding of disturbance impacts on hydrologic processes and function.

  4. Influence of Long—Term Fertilization with Different Minceral Fertilizers and Farmyard Manure on Some Soil Chemical Properties and Crop Yields

    Institute of Scientific and Technical Information of China (English)

    LIUDEHUI; J.LABETOWICZ; 等

    1998-01-01

    A long-term fertiliztion experiment was carried out in an experimental field in Lyczyn near Warsaw,Poland.Application ofmineral fertilizers ,especially Nfertilizer with and without farmyard manure accel-erated the eacidification process of the soil.Application of 1.6 t CaO ha-1 every four years was essential to maintenance of the soil pHKCl at 5.5-6.6 and base saturation degree above 60% Application of 50 t farmyard manur ha-1 every 4 years,whih contained 46 kg P and 240 kg K,was sufficient to maintain boh the K and P fertility of the soil.Besides,it was beneficial to alleviating soil acidifcation. As a result of long-term unbalanced fertilization,yield responses to N,P and K fertilizers incereased significantly with time.the efficiency of N from farmyard manure was found to be comparable to that of N fertilizer during 1988-1991.

  5. Changes in soil physical and chemical properties in long term improved natural and traditional agroforestry management systems of cacao genotypes in Peruvian Amazon

    Science.gov (United States)

    Traditional slash and burn agriculture practiced in the Peruvian Amazon region is leading to soil degradation and deforestation of native forest flora. The only way to stop such destructive processes is through the adoptation of sustainable alternatives such as growing crops in agroforestry systems....

  6. Effects of sedimentation on soil physical and chemical properties and vegetation characteristics in sand dunes at the Southern Dongting Lake region, China

    Science.gov (United States)

    Pan, Ying; Zhang, Hao; Li, Xu; Xie, Yonghong

    2016-11-01

    Sedimentation is recognized as a major factor determining the ecosystem processes of lake beaches; however, the underlying mechanisms, especially in freshwater sand dunes, have been insufficiently studied. To this end, nine belt transects from nine freshwater sand dunes, classified into low (28.1 m) based on their elevations in 1972, were sampled to investigate differences in sedimentation rate and soil and vegetation characteristics in Southern Dongting Lake, China. Sedimentation rate, soil sand content, and soil pH increased, whereas soil clay, fine silt, moisture (MC), organic matter (OM), total N, and total K content, in addition to the growth and biodiversity of sand dune plants generally decreased with decreasing belt transect elevation. Regression analyses revealed that the negative effects of sedimentation on the ecosystem functions of sand dunes could be attributed to higher fine sand content in deposited sediments and stronger inhibition of plant growth. These results are consistent with previous studies performed in coastal sand dunes, which highlights the importance of sedimentation in determining ecological processes.

  7. Effects of Mikania micrantha on Plant Community and Physical-chemical Properties of Soil%薇甘菊对入侵地植物群落及土壤理化性质的影响

    Institute of Scientific and Technical Information of China (English)

    吴双桃

    2011-01-01

    The effects of Mikania micrantha on plant community and physical-chemical properties of soil in its habitat were studied through the survey of community plots and laboratory analysis. The results showed that the invasion of M. micrantha changed the structure of plant community significantly and decreased the plant diversity. Meanwhile, it increased pH value and the content of available K and soil water, while had no obviouse effect on the contents of organic matter and alkali-hy-drolyzable nitrogen. Nutrition content in soil increased after the invasion, which could favor the growth of M. micrantha.%在野外样方调查和室内试验分析的基础上,通过测定物种多样性指数与土壤理化性质指标,分析了杂草薇甘菊(Mikaina micrantha H.B.K.)对入侵地植物群落与土壤理化性质的影响.结果表明,薇甘菊入侵后明显改变了入侵地的植物群落结构,使物种多样性显著降低;薇甘菊入侵显著提高了土壤pH值、速效钾含量以及土壤含水量,对土壤有机质和碱解氮等性质的影响不明显.薇甘菊入侵后土壤养分含量增加.形成了对自身生长有利的土壤环境.

  8. Adsorption properties of subtropical and tropical variable charge soils: Implications from climate change and biochar amendment

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren-Kou; Qafoku, Nikolla; Van Ranst, Eric; Li, Jiu-yu; Jiang, Jun

    2016-01-25

    This review paper attempts to summarize the progress made in research efforts conducted over the last years to study the surface chemical properties of the tropical and subtropical soils, usually called variable charge soils, and the way they response to different management practices. The paper is composed of an introductory section that provides a brief discussion on the surface chemical properties of these soils, and five other review sections. The focus of these sections is on the evolution of surface chemical properties during the development of the variable charge properties (second section), interactions between oppositely charged particles and the resulting effects on the soil properties and especially on soil acidity (third section), the surface effects of low molecular weight organic acids sorbed to mineral surfaces and the chemical behavior of aluminum (fourth section), and the crop straw derived biochar induced changes of the surface chemical properties of these soils (fifth section). A discussion on the effect of climate change variables on the properties of the variable charge soils is included at the end of this review paper (sixth section).

  9. Research on Change of Rhizosphere Soil Properties of Chinese fir Plantation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This article emphatically reviews the difference of soil biological activities, biochemical activities and soil chemical properties between the rhizosphere and non-rhizosphere soil of first rotation of Chinese fir (Cunninghamia lanceolata (Lamb) Hook) plantation. It also reviews their dynamic patterns during Chinese fir plantation development. The results show that the contents of organic and inorganic nutrients in the rhizosphere soil of young, half-mature and near-mature Chinese fir of first-rotation ...

  10. Chemical changes in the soil and production of oat fertilized with treated wastewater

    Directory of Open Access Journals (Sweden)

    Paulo Fortes Neto

    2013-12-01

    Full Text Available The purpose of this project was to ensure the quality and impact of the application of treated sewage wastewater on the chemical properties of Dystrophic Yellow Argisol and on biomass and grain production of white oat (Avena sativa, L. After the wastewater was chemically characterized, it was applied to the soil in concentrations of 0, 30, 60 and 90 m3 ha-1 in plots of 200 m2. Doses of water were compared with mineral fertilizer doses recommended for oat. The experimental design was a split plot with four randomized blocks. The wastewater had chemical qualities useful for grain cultivation. The values of calcium, CTC, V, pH increased and acidity potential decreased in the soil after the wastewater was applied. Doses of the wastewater provided increments in biomass production and oat grains similar to that obtained with chemical fertilizers. We conclude that wastewater can be used to correct soil acidity and replace or supplement chemical fertilizers.

  11. Mechanical properties of stabilized artificial organic soil

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to study the influence of organic matter on the mechanical properties of stabilized soil and the effect of XGL2005 on stabilizing organic soil,unconfined compressive strength tests were carried out.Test results indicated that the strength of stabilized soil decreased in the form of a logarithmic function as the organic matter content increased.In contrast,the strength increased in the form of a power function as the content of the stabilization agent increased.The strength of cement stabilized organic soil was reinforced greatly by adding the stabilizer XGL2005.Based on the law obtained from the test,a strength prediction model was established by regression analysis.The model included the influence of the curing time,the content of the cement,the organic matter content and the stabilization agent on the strength of stabilized soil.

  12. X-ray Microspectroscopy and Chemical Reactions in Soil Microsites

    Energy Technology Data Exchange (ETDEWEB)

    D Hesterberg; M Duff; J Dixon; M Vepraskas

    2011-12-31

    Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro- (or nano-)reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants.

  13. Compostos orgânicos hidrossolúveis de resíduos vegetais e seus efeitos nos atributos químicos do solo Water-soluble organic compounds in plant residue and the effects on soil chemical properties

    Directory of Open Access Journals (Sweden)

    Raquel Cátia Diehl

    2008-12-01

    characteristics of a dark Red Latosol (Typic Haplortox, on soil samples in columns. The treatments consisted of: distilled water, lime incorporated in the 0-5 cm soil layer, lime and percolation of the following plant extracts: oilseed radish, black oat and wheat, maize and soybean straw. The following properties were determined in the plant extracts: the water-soluble organic ligand (WSOL by potentiometry with selective Cu2+ electrode; titration of organic anions (TOA and organic anions (OA by base addition. The OA and TOA concentrations varied from 7.0 to 32.0 mmol L-1 and WSOL from 0.60 to 2.23 mmol L-1. All plant extracts increased pH and exchangeable Ca, Mg and K and decreased the potential acidity and exchangeable Al down to a soil depth of 15 cm, while the effect of lime without plant extract was only observed down to 10 cm. The soluble organic compound concentrations of the plant residues were correlated with pH, Al3+, H+Al and soil base saturation in the 0-20 cm layer, confirming the role of these organic compounds to improve the chemical characteristics of an acid soil as well as the action of the surface-applied lime.

  14. Magnetic Properties of Different-Aged Chernozemic Soils

    Science.gov (United States)

    Fattakhova, Leysan; Shinkarev, Alexandr; Kosareva, Lina; Nourgaliev, Danis; Shinkarev, Aleksey; Kondrashina, Yuliya

    2016-04-01

    We investigated the magnetic properties and degree of mineral weathering in profiles of different-aged chernozemic soils derived from a uniform parent material. In this work, layer samples of virgin leached chernozem and chernozemic soils formed on the mound of archaeological earthy monument were used. The characterization of the magnetic properties was carried out on the data of the magnetometry and differential thermomagnetic analysis. The evaluation of the weathering degree was carried out on a loss on ignition, cation exchange capacity and X-ray phase analysis on the data of the original soil samples and samples of the heavy fraction of minerals. It was found that the magnetic susceptibility enhancement in humus profiles of newly formed chernozemic soils lagged significantly behind the organic matter content enhancement. This phenomenon is associated with differences in kinetic parameters of humus formation and structural and compositional transformation of the parent material. It is not enough time of 800-900 years to form a relatively "mature" magnetic profile. These findings are well consistent with the chemical kinetic model (Boyle et al., 2010) linking the formation of the soils magnetic susceptibility with the weathering of primary Fe silicate minerals. Different-aged chernozemic soils are at the first stage of formation of a magnetic profile when it is occur an active production of secondary ferrimagnetic minerals from Fe2+ released by primary minerals.

  15. Chemical fingerprinting of hydrocarbon-contamination in soil

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Nejrup, Jens; Jensen, Julie K.

    2015-01-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.......S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic....... Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl...

  16. Effects of olive mill wastes added to olive grove soils on erosion and soil properties

    Science.gov (United States)

    Lozano-García, Beatriz; Parras-Alcántara, Luis

    2014-05-01

    INTRODUCTION The increasing degradation of olive groves by effect of organic matter losses derived from intensive agricultural practices has promoted the use (by olive farmers) of olive mill wastes (olive leaves and alperujo) which contain large amounts of organic matter and are free of heavy metals and pathogenic microorganisms. In this work we compared the effects of these oil mill wastes on the decrease of soil erosion, also, we undertook the assessment of the organic carbon and nitrogen contents of soil, their distribution across the profile, the accumulation and Stratification ratios (SRs) of soil organic carbon (SOC) and total nitrogen (TN), and the C:N ratio, in Cambisols in Mediterranean olive groves treated with olive leaves and alperujo. MATERIALS AND METHODS The study area was a typical olive grove in southern Spain under conventional tillage (CT). Three plots were established. The first one was the control plot; the second one was treated with olive leaves (CTol) and the third one, with alperujo (CTa). 9 samples per plot were collected to examine the response of the soil 3 years after application of the wastes. Soil properties determined were: soil particle size, pH, bulk density, the available water capacity, SOC, TN and C:N ratio. SOC and N stock, expressed for a specific depth in Mg ha-1. Stratification ratios (SRs) (that can be used as an indicator of dynamic soil quality) for SOC and TN at three different depths were calculated. The erosion study was based on simulations of rain; that have been carried out in order to highlight differences in the phenomena of runoff and soil losses in the three plots considered. The effect of different treatments on soil properties was analyzed using a ANOVA, followed by an Anderson-Darling test. RESULTS Supplying the soil with the wastes significantly improved physical and chemical properties in the studied soils with respect to the control. C and N stocks increased, the SOC stock was 75.4 Mg ha-1 in CT, 91.5 Mg

  17. Degradation of Soil Properties due to Erosion on Sloping Land in Southern Jiangsu Province, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; PENG Bu-Zhuo; GAO Xiang; YANG Hao

    2004-01-01

    Soil erosion accelerates soil degradation. Some natural soils and cultivated soils on sloping land in southern Jiangsu Province, China were chosen to study soil degradation associated with erosion. Soil erosion intensity was investigated using the 137Cs tracer method. Soil particle-size distribution, soil organic matter (OM), total nitrogen (TN) and total phosphorus (TP) were measured, and the effects of erosion on soil physical and chemical properties were analyzed statistically using SYSTAT8.0. Results indicated that erosion intensity of cultivated soils was greater than that of the natural soils, suggesting that cultivation increased soil loss. Erosion also led to an increase of coarser soil particle proportion, especially in natural soils. In addition, silt was the primary soil particle lost due to erosion. However, in cultivated fields, coarser soil particles over time were attributed not only to soil erosion but also to mechanical eluviation as a result of farming activities. Moreover, erosion caused a decrease in soil OM, TN and TP as well as thinning of the soil layer.

  18. 不同类型防护林对沙漠土壤理化性质的影响%Effects of Different Types of Protection Forests on Physical and Chemical Properties of Desert Soil

    Institute of Scientific and Technical Information of China (English)

    王文彪; 冯伟

    2012-01-01

    To fully understand the effects of different types of protection forests on soil physical and chemical properties of the desert, the soil properties of elaeagnus forest, poplar forest, salix forest and poplar-white caragana mixed forest planted for similar years in Qixing Lake of Kubuqi Desert were studied. Results indicated that the salix and poplar forests had the greatest impact on water;the poplar-white caragana mixed forest had the greatest impact on soil bulk density,aver-agely reduced by 0. 042 g/cm3 compared to the bare sand; in improvement of soil pH value, the best was the elaeagnus forest,which averagely reduced it by 0. 75 compared to the bare sand;the poplar forest had the greatest impact on desert soil nutrients,with organic matter,available N and available K contents increased by 0. 41 g/kg,8. 91 mg/kg,and 86. 52 mg/kg,respectively,but a-vailable P content was decreased by 1. 09 mg/kg,compared to the bare sand. The results provided theoretical basis for improving desert soil by the vegetation measure.%为全面了解不同类型防护林对沙漠土壤理化性质的影响.对库布齐沙漠七星湖景区内种植年限相近的沙枣林、杨树林、旱柳林、杨树-大白柠条混合林4种类型防护林的土壤理化性质进行了测定和分析.结果表明,其中对水分影响最大的是杨树林和旱柳林;对土壤容重影响最大的是杨树-大白柠条混合林,与裸沙地相比,平均降低了0.042 g/cm3;在改良土壤pH值方面,沙枣林效果最好,与裸沙地相比,平均降低了0.75;对沙漠土壤养分的影响以杨树林最大,与裸沙地相比,有机质含量增加了0.41 g/kg,碱解氮含量增加了8.91 mg/kg,速效钾含量增加了86.52 mg/kg,但速效磷减少1.09 mg/kg.试验结果还表明,各类型防护林都不同程度增加了土壤有机质、碱解氮、速效钾的含量,降低了速效磷的含量.

  19. Effects of Vermicompost on Quality and Phy­chemical Properties in Rhizosphere Soil of Watermelon%施用蚯蚓粪对西瓜品质及根际土壤理化性状的影响

    Institute of Scientific and Technical Information of China (English)

    昝林生; 苏厚谊

    2014-01-01

    Vermicompost was an important organic amendment that regulated the functional properties of agricultural systems. However, there was little information on the effect of vermicompost co­applied with inorganic fertilizer on the ecological environment at rhizosphere soil and yield of watermelon. Considering the benefits of vermicompost, a field experiment was conducted to determine whether the vermicompost co­applied with inorganic fertilizer benefits the ecological environment of watermelon rhizosphere soil. There were four treatments in the field experiment, CK (neither urea nor vermicompost was applied), CF (100%of nitrogen was provided by urea), VC (100%of nitrogen was provided by vermicompost), and VC+CF (50%and 50%of nitrogen was provided by vermicompost and urea, respectively). The study was conducted to determine the effects of vermicompost co­applied with inorganic fertilizer on soil phy­chemical properties, enzyme activities at rhizosphere soil and yield as well as quality of watermelon. The results showed that compared to the CF treatment, the VC+CF treatment significantly decreased the pH value and apparently increased the contents of available N, available P and available K, as well as EC value in rhizosphere soil. At the same time, the activity of urease enzyme, catalase enzyme, polyphenol oxidase enzyme and invertase enzyme in VC+CF treatment was also improved, showing 51.13%, 17.19% and 12.84% increases on urease enzyme activity than in CK, CF and VC treatments, respectively. Additionally, the VC+CF treatment also significantly improved the yield and quality of watermelon. In comparison with the VC+CF treatment, the VC treatment had less effect on soil biological characteristics and yield as well as quality of watermelon. As a result, vermicompost co­applied with inorganic fertilizer had better effect on watermelon, which was an ideal fertilization practices.%以‘黑彤K­8’西瓜为试材,通过大田试验研究了 CK(不施肥)、CF

  20. Micronutrient Availability in Relation to Selected Soil Properties and landscape Position in Calcareous Soils of Golpayegan

    Directory of Open Access Journals (Sweden)

    Mojtaba Fathi

    2017-02-01

    Full Text Available Introduction: Variety of soil reactions govern the distribution of metal micronutrients that includes complexation with organic and inorganic ligands, ion exchange, adsorption and desorption processes, precipitation and dissolution of solids and acid-based equilibria. The relative importance of these reactions depends on many factors such as soil physical, chemical, and mineralogical properties and the nature of metal ions. Environmental factors such as climate, physiographic position, and soil development may affect variability of some soil properties and thereby nutrient availability. The present research was conducted to find relationships between Iron, manganese, zinc, and copper availability and some major soil properties, physiographic condition and soil development. Materials and Methods: Golpayegan region is located in northwest of Isfahan province in central Iran. The mean elevation of the studied area is 1790 above sea level. Annual precipitation was about 244mm and mean monthly temperature ranges from -6 in January to 34°C in August. The soils were developed on different physiographic conditions including piedmont plains, alluvial-fan, plateaus, and flood plains belonging to Entisols and Aridisols. Soil samples (0–60 cm were collected from 98 grid points with 2000m distance in the agricultural area of Golpayegan. Particle size distribution, calcium carbonate, organic carbon, available potassium and phosphorus of the soils were measured by SWRI standard methods. Available Zn, Cu, Mn, and Fe were determined by addition of 10 g soil to 20mL 0.005M diethylentriaminepentacetic‏. The solutions were shaken for 2 h at 25°C, centrifuged, filtered, and Fe, Mn, Zn, and Cu concentrations were measured by an atomic absorption spectrophotometer. Results Discussion: Studied soils were developed on calcareous material and about 60% of samples have more than 20% of calcium carbonate. Available Fe ranged from 1.4 to 6.5 mg kg-1 (mean 15.8 mg kg-1

  1. A comparison of indexing methods to evaluate quality of soils subjected to different erosion: the role of soil microbiological properties.

    Science.gov (United States)

    Romaniuk, Romina; Lidia, Giuffre; Alejandro, Costantini; Norberto, Bartoloni; Paolo, Nannipieri

    2010-05-01

    Soil quality assessment is needed to evaluate the soil conditions and sustainability of soil and crop management properties, and thus requires a systematic approach to select and interpret soil properties to be used as indicators. The aim of this work was to evaluate and compare different indexing methods to assess quality of an undisturbed grassland soil (UN), a degraded pasture soil (GL) and a no tilled soil (NT) with four different A horizon depths (25, 23, 19 and 14 cm) reflecting a diverse erosion. Twenty four soil properties were measured from 0 to10 (1) and 10 to 20 cm. (2) and a minimum data set was chosen by multivariate principal component analysis (PCA) considering all measured soil properties together (A), or according to their classification in physical, chemical or microbiological (B) properties. The measured soil properties involved either inexpensive or not laborious standard protocols, to be used in routine laboratory analysis (simple soil quality index - SSQI), or a more laborious, time consuming and expensive protocols to determine microbial diversity and microbial functionality by methyl ester fatty acids (PLFA) and catabolic response profiles (CRP), respectively (complex soil quality index - CSQI). The selected properties were linearly normalized and integrated by the weight additive method to calculate SSQI A, SSQI B, CSQI A and CSQI B indices. Two microbiological soil quality indices (MSQI) were also calculated: the MSQI 1 only considered microbiological properties according to the procedure used for calculating SQI; the MSQI 2 was calculated by considering microbial carbon biomass (MCB), microbial activity (Resp) and functional diversity determined by CPR (E). The soil quality indices were SSQI A = MCB 1 + Particulate Organic Carbon (POC)1 + Mean Weight Diameter (MWD)1; SSQI B = Saturated hydraulic conductivity (K) 1 + Total Organic Carbon (TOC) 1 + MCB 1; CSQI A = MCB 1 + POC 1 + MWD 1; CSQI B = K 1+ TOC 1+ 0.3 * (MCB 1+ i/a +POC 1) + 0

  2. 绿肥与施氮量对土壤理化性质的影响%Effects of Green Manure and Nitrogen Application on Soil Physical and Chemical Properties

    Institute of Scientific and Technical Information of China (English)

    王健波; B.Favreau; 张斐斐; 周嫱; 李银生; 邱江平; 王秀红; 林琪; F.Forest; L.Séguy

    2012-01-01

    No tillage direct seeding mulch technique is a new planting system in recent years. Based on the traditional green manure, the effecst of green manure and nitrogen application on the soil physical and chemical properties in DMC (direct seeding mulch-based cropping systems) were investigated. Astragalus sinicus Linn (LI), Medicago falcata L. (L2), Vicia faba Linn(L3), Lotuscornioulatus L. (L4) and the control were chosen as the green manure treatments. Rice nitrogen application amounts were set low (N1), middile (N2) and high (N3) levels with 15 treatments and combinations. The results showed that the green manure could decrease the soil bulk density, increase the soil carbon and improve the levels of alkali hydrolyzable nitrogen, available phosphorus and potassium. Compared with L0 treatment, during green manure season and rice season, In L3 treatment, the soil bulk density decreased by 8. 16% and 6.37%, soil organic carbon increased by 8. 2% and 22. 45%, alkali hydrolyzable nitrogen increased by 15. 10% and 25. 82%, respectively. In L2 treatment, soil available phosphorus level reached highest value of 39. 63 mg/kg. Nitrogen application can significantly increase the soil organic carbon and alkali hydrolyzable nitrogen,But more nitrogen manure won't definitely have more significant effects.%免耕覆盖直播技术是近年来发展起来的一种新型农业种植技术系统,以传统的绿肥施用为基础.本文主要研究DMC(direct seeding mulch-based cropping systems,免耕覆盖直播)技术系统下绿肥和施氮量对土壤理化性质的影响.绿肥选择紫云英(L1)、黄花苜蓿(L2)、蚕豆(L3)、百脉根(L4)及冬季休闲(Lo)作对照的5个种植模式,稻田施氮量设为低(N1)、中(N2)、高(N3)3个水平,共15个处理组合.结果表明种植绿肥能够降低土壤容重,增加土壤有机质,提高土壤碱解氮、速效磷和速效钾含量.其中在L3模式下,土壤容重在覆盖作物季和水稻季分别比L0模式降低8.16

  3. Chemical and biological rhizosphere interactions in low zinc soils

    NARCIS (Netherlands)

    Duffner, A.

    2014-01-01

    Abstract of the PhD thesis entitled “Chemical and biological rhizosphere interactions in low zinc soils” by Andreas Duffner Soil provides ecosystem services critical for life. The availability of micronutrients, such as zinc (Zn), in soils is an essenti

  4. RELATIONSHIPS BETWEEN FRACTIONATIONS OF Pb, Cd, Cu, Zn AND Ni AND SOIL PROPERTIES IN URBAN SOILS OF CHANGCHUN, CHINA

    Institute of Scientific and Technical Information of China (English)

    GUO Ping; XIE Zhong-lei; LI Jun; KANG Chun-li; LIU Jian-hua

    2005-01-01

    An extensive soil investigation was conducted in different domains of Changchun to disclose the fractionations of Pb, Cu, Cd, Zn and Ni in urban soils. Meanwhile correlation analysis and multiple stepwise regressions were used to define relationships between soil properties and metal fractions and the chief factors influencingthe fractionation of heavy metals in the soils. The results showed that Pb, Ni and Cu were mainly associated with the residual and organic forms; most of Cd was concentrated in the residual and exchangeable fractions. Zn in residual and carbonate fraction was the highest. The activities of the heavy metals probably declined in the following order: Cd, Zn,Pb, CuandNi. The chemical fractions of heavy metals in different domains in Changchun City were of significantly spatial heterogeneity. Soil properties had different influences on the chemical fractions of heavy metals to some extent and the main factors influencing Cd, Zn, Pb, Cu and Ni fractionation and transformation were apparently different.

  5. GEMAS: Unmixing magnetic properties of European agricultural soil

    Science.gov (United States)

    Fabian, Karl; Reimann, Clemens; Kuzina, Dilyara; Kosareva, Lina; Fattakhova, Leysan; Nurgaliev, Danis

    2016-04-01

    High resolution magnetic measurements provide new methods for world-wide characterization and monitoring of agricultural soil which is essential for quantifying geologic and human impact on the critical zone environment and consequences of climatic change, for planning economic and ecological land use, and for forensic applications. Hysteresis measurements of all Ap samples from the GEMAS survey yield a comprehensive overview of mineral magnetic properties in European agricultural soil on a continental scale. Low (460 Hz), and high frequency (4600 Hz) magnetic susceptibility k were measured using a Bartington MS2B sensor. Hysteresis properties were determined by a J-coercivity spectrometer, built at the paleomagnetic laboratory of Kazan University, providing for each sample a modified hysteresis loop, backfield curve, acquisition curve of isothermal remanent magnetization, and a viscous IRM decay spectrum. Each measurement set is obtained in a single run from zero field up to 1.5 T and back to -1.5 T. The resulting data are used to create the first continental-scale maps of magnetic soil parameters. Because the GEMAS geochemical atlas contains a comprehensive set of geochemical data for the same soil samples, the new data can be used to map magnetic parameters in relation to chemical and geological parameters. The data set also provides a unique opportunity to analyze the magnetic mineral fraction of the soil samples by unmixing their IRM acquisition curves. The endmember coefficients are interpreted by linear inversion for other magnetic, physical and chemical properties which results in an unprecedented and detailed view of the mineral magnetic composition of European agricultural soils.

  6. 不同土壤调理剂对盐碱地土壤理化性质及水稻产量的影响%Effects of Different Soil Conditioner on the Chemical and Physical Properties of Soil in Saline Land and Rice Yield

    Institute of Scientific and Technical Information of China (English)

    张永宏; 桂林国; 尹志荣; 雷金银; 刘富华

    2011-01-01

    [目的]探讨不同土壤调理剂对盐碱地的改良效果及水稻产量的影响.[方法]在宁夏盐碱地施用8种土壤调理剂,研究不同调理剂对盐碱地土壤的理化性质、pH、盐分离子以及水稻生长发育和产量的影响.[结果]施用土壤调理剂后,不仅降低了土壤容重、pH并对土壤盐分离子产生不同影响,而且加快了水稻生育进程,增加了水稻的总茎数和穗数,提高了水稻产量.[结论]施用不同土壤调理剂均对土壤及水稻生长有一定的积极效果,ORYKTA、丹路菌剂、丹路菌肥的增产效果较为显著.%[ Objective ] The research aimed to discuss the effects of different soil conditioner on the improvement effect of saline land and rice yield. [ Method] 8 kinds of soil conditioners were applied in saline land of Ningxia to study the effects of different soil conditioner on the chemical and physical properties,pH value and salt ions of soil in saline land and the growth and yield of rice were studied. [ Result] The application of soil conditioners not only decreased the bulk density and pH value of soil, had different effects on soil salt ions, but it also sped up the growth process of rice, increase the total rice stems, panicle number and yield. [ Conclusion] Applying different soil conditioners all had certain positive effects on soil and rice growth and ORYKTA, Danlu microbial inoculum and Danlu bacterial fertilizer had more significant effects on increasing yield.

  7. Effect of summer catch mode on root zone soil enzyme activities and soil chemical properties of continuously monocropped cucumber%夏季填闲对连作黄瓜根区土壤酶活性及土壤化学性状的影响

    Institute of Scientific and Technical Information of China (English)

    吴凤芝; 郭晓; 刘守伟; 周新刚; 衣振华

    2015-01-01

    Effects of different summer catching crops, wheat, rye, Sudan grass, sage, basil and rape, on root zone soil enzyme activities and soil chemical properties of continuously monocropped cucumber were investigated in pot experiment. Rresults showed that different summer catch crops affected cucumber root zone soil EC value, organic matter content, available N, P, K contents and enzyme activities. The treatment of wheat reduced soil EC value. Sudan grass, rape and rye treatment significantly decreased soil available N content. All catch crops effectively improved soil available P content with the rye treatment had a significant effect. Compared with other treatments, Sudan grass and rapeseed significantly reduced soil available K content. Soil urease, polyphenol oxidase and catalase activities were significantly higher in Sudan grass, rye and wheat treatments than in the control. Rapeseed treatment also had higher polyphenol oxidase activity. Except for rapeseed, all the catch crops significantly increased soil dehydrogenase activity. Overall, the order of the effectiveness of the catch crops used in this experiment in improving soil enzyme is Sudan grass, rye, wheat, basil, sage, rape; the order of the effectiveness in reducing nutrient enrichment and improving soil chemical properties is rape, Sudan grass, basil, sage, rye, wheat.%采用盆栽试验,以小麦、黑麦、苏丹草,鼠尾草、罗勒和油菜等六种植物为填闲作物,以夏季休闲为对照,研究不同夏季填闲作物对黄瓜根区土壤酶活性和化学性状的影响。结果表明,不同夏季填闲作物影响连作黄瓜根区土壤EC值、有机质含量、速效氮、磷、钾含量、土壤酶活性。其中填闲小麦处理对土壤EC值有显著降低作用;苏丹草、油菜和黑麦处理对土壤碱解氮含量具有显著降低作用;各填闲处理均能提升土壤速效磷含量,其中黑麦处理的作用效果显著高于其他处理。苏丹草和油菜

  8. Effect of summer catch mode on root zone soil enzyme activities and soil chemical properties of continuously monocropped cucumber%夏季填闲对连作黄瓜根区土壤酶活性及土壤化学性状的影响

    Institute of Scientific and Technical Information of China (English)

    吴凤芝; 郭晓; 刘守伟; 周新刚; 衣振华

    2014-01-01

    Effects of different summer catching crops, wheat, rye, Sudan grass, sage, basil and rape, on root zone soil enzyme activities and soil chemical properties of continuously monocropped cucumber were investigated in pot experiment. Rresults showed that different summer catch crops affected cucumber root zone soil EC value, organic matter content, available N, P, K contents and enzyme activities. The treatment of wheat reduced soil EC value. Sudan grass, rape and rye treatment significantly decreased soil available N content. All catch crops effectively improved soil available P content with the rye treatment had a significant effect. Compared with other treatments, Sudan grass and rapeseed significantly reduced soil available K content. Soil urease, polyphenol oxidase and catalase activities were significantly higher in Sudan grass, rye and wheat treatments than in the control. Rapeseed treatment also had higher polyphenol oxidase activity. Except for rapeseed, all the catch crops significantly increased soil dehydrogenase activity. Overall, the order of the effectiveness of the catch crops used in this experiment in improving soil enzyme is Sudan grass, rye, wheat, basil, sage, rape; the order of the effectiveness in reducing nutrient enrichment and improving soil chemical properties is rape, Sudan grass, basil, sage, rye, wheat.%采用盆栽试验,以小麦、黑麦、苏丹草,鼠尾草、罗勒和油菜等六种植物为填闲作物,以夏季休闲为对照,研究不同夏季填闲作物对黄瓜根区土壤酶活性和化学性状的影响。结果表明,不同夏季填闲作物影响连作黄瓜根区土壤EC值、有机质含量、速效氮、磷、钾含量、土壤酶活性。其中填闲小麦处理对土壤EC值有显著降低作用;苏丹草、油菜和黑麦处理对土壤碱解氮含量具有显著降低作用;各填闲处理均能提升土壤速效磷含量,其中黑麦处理的作用效果显著高于其他处理。苏丹草和油菜

  9. Relationship Between Soil Properties and Different Fractions of Soil Hg

    Institute of Scientific and Technical Information of China (English)

    WUHONGTAO; YUGUIFEN; 等

    2001-01-01

    Correlation and path analysis methods were used to study the relationship between soil properties and the distribution of different soil Hg fractions with nine representative soils from Chongqing,China,Results showed that clay(<2m) could increase water-soluble Hg(r=0.700*).Soil organic matter (OM) could enhance the increase of elemental Hg(r=0.674*),The higher the base saturation percentage (BSP) ,the more the residual Hg(R=0.684*) .Organic Hg,the sum of said-soluble organic He and alkali-soluble Hg,was positively affected by silt(2-20μm)but negatively affected by pH,with the direct path coefficients amounting to 1.0487 and 0.5121,respectively .The positive effect of OM and negative effect of BSP on organic Hg were the most significant ,with the direct path coefficients being 0.7614 and -0.8527,respectively. The indirect effect of clay(<2μm) iva BSP (path coefficient=0.4186) was the highest,showing that the real influencing factor in the effect of clay(<2μm) via BSP (path coefficient=0.4186) was the highest,showing that the real influencing factor in the effect of clay(<2μm) on acid-soluble organic Hw was BSP.since the available Hg fraction,water-soluble Hg,was positively affected by soil clay content,and the quite immobile and not bioavailable residual Hg by soil BSP,suitable reduction of clay content and increase of BSP would be of much help to reduce the Hg availability and Hg activity in Hg-contaminated soils.

  10. Review and evaluation of the effects of xenobiotic chemicals on microorganisms in soil. [139 references

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, R.J.; Van Voris, P.

    1988-02-01

    The primary objective was to review and evaluate the relevance and quality of existing xenobiotic data bases and test methods for evaluating direct and indirect effects (both adverse and beneficial) of xenobiotics on the soil microbial community; direct and indirect effects of the soil microbial community on xenobiotics; and adequacy of test methods used to evaluate these effects and interactions. Xenobiotic chemicals are defined here as those compounds, both organic and inorganic, produced by man and introduced into the environment at concentrations that cause undesirable effects. Because soil serves as the main repository for many of these chemicals, it therefore has a major role in determining their ultimate fate. Once released, the distribution of xenobiotics between environmental compartments depends on the chemodynamic properties of the compounds, the physicochemical properties of the soils, and the transfer between soil-water and soil-air interfaces and across biological membranes. Abiotic and biotic processes can transform the chemical compound, thus altering its chemical state and, subsequently, its toxicity and reactivity. Ideally, the conversion is to carbon dioxide, water, and mineral elements, or at least, to some harmless substance. However, intermediate transformation products, which can become toxic pollutants in their own right, can sometimes be formed. 139 refs., 6 figs., 11 tabs.

  11. Magnetic susceptibility properties of polluted soils

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An investigation of magnetic properties using magnetic susceptibility (X) and frequency-dependent susceptibility (Xfd) was conducted on representative modern pollutants, which include smelted slag dust, automobile exhaust dust and coal ash. Their magnetic susceptibility values are more than 500×10-8 m3/kg, and frequency-dependent susceptibility values less than 3%, indicating that ample ferrimagnetic and scanty superparamagnetic grains occurred in the studied pollutants. Similar to the artificially synthetic polluted soils, the industrially-polluted soils display a negative relationship between magnetic susceptibility and frequency-dependent susceptibility. However, the unpolluted soils, e.g. the Quaternary loess in the Chinese Loess Plateau, show a positive relationship between them. In this note, we propose a convenient and effective approach for identifying the polluted soils.

  12. MORPHOLOGICAL AND CHEMICAL PROPERTIES OF SELECTED SWEET VIOLET POPULATIONS

    Directory of Open Access Journals (Sweden)

    Renata ERHATIĆ

    2010-10-01

    Full Text Available Sweet violet (Viola odorata L. blooms in continental climate conditions in early spring (March-April with delicate flowers of attractive scent because of which it is frequently gathered from its natural habitats. Differences among the populations were established according to their morphological properties of twelve populations from Križevci area. Stated information indicates that the populations gathered from meadow – habitat are shorter and have a smaller diameter than the populations gathered from the habitat in forest, whereas the population from the orchards has the highest number of leaves and flowers. Correlation analysis shows strong (P<0.01 positive connection of the root mass, leaves mass, number of leaves with the total mass of the plants, as well as connection of the plant mass with the number of flowers. Chemical analysis established agrochemical soil properties and nutrient concentrations in plants. Correlations between the examined properties of violets and soil properties indicate that the potassium concentration in the roots is in strong (P <0.01 correlation with potassium in the soil, whereas phosphorus concentration in flower is in a considerably strong (P<0.05 positive correlation with the phosphorus in the soil.

  13. Effect of land-use types on soil enzymatic activities and chemical properties in semi-deciduous forest areas of Central-West Côte d'Ivoire

    Directory of Open Access Journals (Sweden)

    Gonnety, JT.

    2012-01-01

    Full Text Available Enzymatic activities play a key role in the biochemical functioning of soils. As a consequence, they have been proposed as indicators of soil quality. This study was conducted at the Oumé benchmark site (Central-West, Côte d'Ivoire, and aimed at measuring the enzymatic activities involved in the phosphorus (acid phosphatase and alkaline phosphatase, nitrogen (N-acetyl-β-D glucosaminidase and carbon (β-glucosidase and N-acetyl-β-D glucosaminidase cycles. Soil from four main agro-ecological units (a secondary forest, a 20 year-old cocoa plantation, a 2 year-old Chromolaena odorata-based fallow and a continuous maize crop, representative of land-use systems in the area, were sampled for the measurement of enzymatic activities and chemical characteristics. Results showed that the enzymatic activity values were the highest in the fallow soil, whereas the maize crop displayed the lowest levels of enzymatic activity in soil. Moreover, soil from C. odorata fallow displayed the highest values of C, N, exchangeable bases (Mg2+, K+ contents, and CEC, and the lowest C:N ratio, which are characteristics of good quality soil. A Principal Component Analysis revealed a marked relationship between C, N and enzymatic activity levels, showing that these enzymes are suitable for monitoring soil quality in semi-deciduous forest areas in Central-West Côte d'Ivoire.

  14. Litter decay controlled by temperature, not soil properties, affecting future soil carbon.

    Science.gov (United States)

    Gregorich, Edward G; Janzen, Henry; Ellert, Benjamin H; Helgason, Bobbi L; Qian, Budong; Zebarth, Bernie J; Angers, Denis A; Beyaert, Ronald P; Drury, Craig F; Duguid, Scott D; May, William E; McConkey, Brian G; Dyck, Miles F

    2017-04-01

    Widespread global changes, including rising atmospheric CO2 concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO2 levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices. We applied (13) C-labelled plant litter to soil at ten sites spanning a 3500-km transect across the agricultural regions of Canada and measured its decomposition over five years. Despite large differences in soil type and climatic conditions, we found that the kinetics of litter decomposition were similar once the effect of temperature had been removed, indicating no measurable effect of soil properties. A two-pool exponential decay model expressing undecomposed carbon simply as a function of thermal time accurately described kinetics of decomposition. (R(2)  = 0.94; RMSE = 0.0508). Soil properties such as texture, cation exchange capacity, pH and moisture, although very different among sites, had minimal discernible influence on decomposition kinetics. Using this kinetic model under different climate change scenarios, we projected that the time required to decompose 50% of the litter (i.e. the labile fractions) would be reduced by 1-4 months, whereas time required to decompose 90% of the litter (including recalcitrant fractions) would be reduced by 1 year in cooler sites to as much as 2 years in warmer sites. These findings confirm quantitatively the sensitivity of litter decomposition to temperature increases and demonstrate how climate change may constrain future soil carbon storage, an effect apparently not influenced by soil properties.

  15. Effect of Soil Washing for Lead and Zinc Removal on Soil Hydraulic Properties

    Science.gov (United States)

    Kammerer, Gerhard; Zupanc, Vesna; Gluhar, Simon; Lestan, Domen

    2017-04-01

    Soil washing as a metal pollution remediation process, especially part with intensive mixing of the soil slurry and soil compression after de-watering, significantly deteriorates physical properties of soil compared to those of non-remediated soil. Furthermore, changed physical characteristics of remediated soil influence interaction of plant roots with soil system and affect soil water regime. Remediated soils showed significant differences to their original state in water retention properties and changed structure due to the influence of artificial structure created during remediation process. Disturbed and undisturbed soil samples of remediated and original soils were analyzed. We evaluated soil hydraulic properties as a possible constraint for re-establishing soil structure and soil fertility after the remediation procedure.

  16. Scaling hydraulic properties of a macroporous soil

    Science.gov (United States)

    Mohanty, Binayak P.

    1999-06-01

    Macroporous soils exhibit significant differences in their hydraulic properties for different pore domains. Multimodal hydraulic functions may be used to describe the characteristics of multiporosity media. I investigated the usefulness of scaling to describe the spatial variability of hydraulic conductivity (K(-h)) functions of a macroporous soil in Las Nutrias, New Mexico. Piecewise-continuous hydraulic conductivity functions suitable for macroporous soils in conjunction with a hybrid similar media-functional normalization scaling approach were used. Results showed that gravity-dominated flow and the related hydraulic conductivity (K(minus;h) functions of the macropore region are more readily scalable than capillary-dominated flow properties of the mesopore and micropore regions. A possible reason for this behavior is that gravity-dominated flow in the larger pores is mostly influenced by the pore diameter which remains more uniform as compared to tortuous mesopores and micropores with variable neck and body sizes along the pore length.

  17. Chemical and catalytic properties of elemental carbon

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.G.; Brodzinsky, R.; Gundel, L.A.; Novakov, T.

    1980-10-01

    Elemental carbon particles resulting from incomplete combustion of fossil fuel are one of the major constituents of airborne particulate matter. These particles are a chemically and catalytically active material and can be an effective carrier for other toxic air pollutants through their adsorptive capability. The chemical, adsorptive, and catalytic behaviors of carbon particles depend very much on their crystalline structure, surface composition, and electronic properties. This paper discusses these properties and examines their relevance to atmospheric chemistry.

  18. Soil chemical sensor and precision agricultural chemical delivery system and method

    Energy Technology Data Exchange (ETDEWEB)

    Colburn, J.W. Jr.

    1991-07-23

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken. 5 figures.

  19. Chemical dispersants and pre-treatments to determine clay in soils with different mineralogy

    Directory of Open Access Journals (Sweden)

    Cristiane Rodrigues

    2011-10-01

    Full Text Available Knowledge of the soil physical properties, including the clay content, is of utmost importance for agriculture. The behavior of apparently similar soils can differ in intrinsic characteristics determined by different formation processes and nature of the parent material. The purpose of this study was to assess the efficacy of separate or combined pre-treatments, dispersion methods and chemical dispersant agents to determine clay in some soil classes, selected according to their mineralogy. Two Brazilian Oxisols, two Alfisols and one Mollisol with contrasting mineralogy were selected. Different treatments were applied: chemical substances as dispersants (lithium hydroxide, sodium hydroxide, and hexametaphosphate; pre-treatment with dithionite, ammonium oxalate, and hydrogen peroxide to eliminate organic matter; and coarse sand as abrasive and ultrasound, to test their mechanical action. The conclusion was drawn that different treatments must be applied to determine clay, in view of the soil mineralogy. Lithium hydroxide was not efficient to disperse low-CEC electropositive soils and very efficient in dispersing high-CEC electronegative soils. The use of coarse sand as an abrasive increased the clay content of all soils and in all treatments in which dispersion occurred, with or without the use of chemical dispersants. The efficiency of coarse sand is not the same for all soil classes.

  20. Spectral estimation of soil properties in siberian tundra soils and relations with plant species composition

    DEFF Research Database (Denmark)

    Bartholomeus, Harm; Schaepman-Strub, Gabriela; Blok, Daan

    2012-01-01

    yields a good prediction model for K and a moderate model for pH. Using these models, soil properties are determined for a larger number of samples, and soil properties are related to plant species composition. This analysis shows that variation of soil properties is large within vegetation classes...... will significantly impact the global carbon cycle. We explore the potential of soil spectroscopy to estimate soil carbon properties and investigate the relation between soil properties and vegetation composition. Soil samples are collected in Siberia, and vegetation descriptions are made at each sample point. First...

  1. 隔盐层对滨海盐土理化性质的影响%Effects of Salt-isolation Layer on Physico-chemical Properties of Coastal Saline Soil

    Institute of Scientific and Technical Information of China (English)

    张薇; 李素艳; 孙向阳; 张冬华; 王琳琳; 张涛; 翟鹏辉

    2013-01-01

    In this paper ,the coastal saline soil in Dagang district of Tianjin was taken as the re-search object ,ceramsite ,zeolite and vermiculite selected as insulation material to reduce salt con-tent of soil were laid both at the bottom and jamb wall of tree well respectively with the thickness of 10 cm .The results showed that :using zeolite as the salt-isolation layers made the soil bulk density decrease by 8 .05% and the soil permeability increase .Using zeolite and vermiculite as the salt-isolation layers the total porosity increase by 19.9% and 15.3% .Salt-isolation layers with ze-olite and vermiculite the non-capillary porosity of soil increase by 3 .64 times and 2 .99 times re-spectively .T he results also indicated that :three kinds of materials all could reduce the saltness and the rank of reflecting the ability of reducing saltness was as follows :zeolite>ceramsite>ver-miculite .The desalination rate with ceramsite ,zeolite and vermiculite was 60 .6% ,72 .4% ,40 .2%respectively .At last ,it demonstrated that using ceramsite ,zeolite and vermiculite as the salt-isola-tion layers all could reduce pH markedly .In the coastal saline land ,taking ceramic ,zeolite and vermiculite as salt-isolated layers can improve the physical and chemical properties of soil and op-timize the micro-environment for plants .%为探索盐碱地降盐改土的方法,以天津市大港区滨海盐土为研究对象,选取了陶粒、沸石、蛭石3种材料,分别在树穴底部和侧壁铺设10 cm厚的隔离层,研究了其对盐碱土理化性质的改良作用。结果表明:以沸石作为隔盐层可使土壤容重下降8.05%,土壤通透性增强;以沸石和蛭石作为隔盐层,土壤总孔隙度分别上升19.9%和15.3%,土壤非毛管孔隙度分别增加3.64倍和2.99倍,更有利于降水的下渗。3种材料均有降盐效果,陶粒、沸石、蛭石作为隔盐层的脱盐率分别为60.6%、72.4%、40.2%,其降盐能力表

  2. Electrical Conductivity and Chemical Composition of Soil Solution: Comparison of Solution Samplers in Tropical Soils

    Directory of Open Access Journals (Sweden)

    Davi Lopes do Carmo

    2016-01-01

    Full Text Available ABSTRACT Soil solution samplers may have the same working principle, but they differ in relation to chemical and physical characteristics, cost and handling, and these aspects exert influence on the chemical composition of the soil solution obtained. This study was carried out to evaluate, over time, the chemical composition of solutions extracted by Suolo Acqua, with the hydrophilic membrane (HM as a standard, using soils with contrasting characteristics, and to determine the relationship between electrical conductivity (EC and concentration of ions and pH of soil solution samples. This study was carried out under laboratory conditions, using three soils samples with different clay and organic matter (OM contents. Soil solution contents of F−, Cl−, NO−3, Br−, SO42−, Na+, NH4+, K+, Mg2+, Ca2+, were analyzed, as well as inorganic, organic, and total C contents, pH, and EC, in four successive sampling times. Soil solution chemical composition extracted by the Suolo Acqua sampler is similar to that collected by the HM, but the Suolo Acqua extracted more Na+ and soluble organic C than the HM solution. Solution EC, cation and anion concentrations, and soluble C levels are higher in the soil with greater clay and OM contents (Latossolo and Cambissolo in this case. Soil solution composition varied over time, with considerable changes in pH, EC, and nutrient concentrations, especially associated with soil OM. Thus, single and isolated sampling of the soil solution must be avoided, otherwise composition of the soil solution may not be correctly evaluated. Soil solution EC was regulated by pH, as well as the sum of cation and anion concentrations, and the C contents determined in the soil liquid phase.

  3. Anaerobic N mineralization in paddy soils in relation to inundation management, physicochemical soil fractions, mineralogy and soil properties

    Science.gov (United States)

    Sleutel, Steven; Kader, Mohammed Abdul; Ara Begum, Shamim; De Neve, Stefaan

    2013-04-01

    Anaerobic N mineralization measured from (saturated) repacked soil cores from 25 paddy fields in Bangladesh and was previously found to negatively related to soil N content on a relative basis. This suggests that other factors like soil organic matter (SOM) quality or abiotic factors instead control the anaerobic N mineralization process. We therefore assessed different physical and chemical fractions of SOM, management factors and various soil properties as predictors for the net anaerobic N mineralization. 1° First, we assessed routinely analyzed soil parameters (soil N and soil organic carbon, texture, pH, oxalate- and pyrophosphate-extractable Fe, Al, and Mn, fixed-NH4 content). We found no significant influences of neither soil mineralogy nor the annual length of inundation on soil N mineralization. The anaerobic N mineralization correlated positively with Na-pyrophosphate-extractable Fe and negatively with pH (both at Pisolate an oxidation-resistant OM fraction, followed by extraction of mineral bound OM with 10%HF thereby isolating the HF-resistant OM. None of the physicochemical SOM fractions were found useful predictors anaerobic N mineralization. The linkage between these chemical soil N fractions and N supplying processes actually occurring in the soil thus appears to be weak. Regardless, we hypothesize that variation in strength of N-mineral and N-OM linkages is likely to explain variation in bio-availability of organic N and proneness to mineralization. Yet, in order to separate kinetically different soil N fractions we then postulated that an alternative approach would be required, which instead isolates soil N fractions on the basis of bonding strength. In this respect bonding strength should be seen as opposite of proneness to dissolution of released N into water, the habitat of soil microorganisms mediating soil N mineralization. We hypothesize that soil N extracted by water at increasing temperatures would reflect such N fractions with increasing

  4. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    designing and operating remediation systems. Simple and accurate models for estimating soil properties from soil parameters that are easy to measure are useful in connection with preliminary remedial investigations and evaluation of remedial technologies. In this work simple models for predicting transport...

  5. Mineralogical and chemical characterization of lunar highland soils: Insights into the space weathering of soils on airless bodies

    Science.gov (United States)

    Taylor, Lawrence A.; Pieters, Carlé; Patchen, Allan; Taylor, Dong-Hwa S.; Morris, Richard V.; Keller, Lindsay P.; McKay, David S.

    2010-02-01

    With reflectance spectroscopy, one is measuring only properties of the fine-grained regolith most affected by space weathering. The Lunar Soil Characterization Consortium has undertaken the task of coordinated characterization of lunar soils, with respect to their mineralogical and chemical makeup. It is these lunar soils that are being used as “ground truth” for all airless bodies. Modal abundances and chemistries of minerals and glasses in the finest size fractions (20-45, 10-20, and <10 μm) of four Apollo 14 and six Apollo 16 highland soils have been determined, as well as their bulk chemistry and IS/FeO values. Bidirectional reflectance measurements (0.3-2.6 μm) of all samples were performed in the Reflectance Experiment Laboratory. A significant fraction of nanophase Fe0 (np-Fe0) appears to reside in agglutinitic glasses. However, as grain size of a soil decreases, the percentage of total iron present as np-Fe0 increases significantly, whereas the agglutinitic glass content rises only slightly; this is evidence for a large contribution to the IS/FeO values from the surface-correlated nanophase Fe0, particularly in the <10 μm size fraction. The compositions of the agglutinitic glasses in these fine fractions of the highland soils are different from the bulk chemistry of that size; however, compositional trends of the glasses are not the same as those observed for mare soils. It is apparent that the glasses in the highland soils contain chemical components from outside their terrains. It is proposed that the Apollo 16 soils have been adulterated by the addition of impact-transported soil components from surrounding maria.

  6. Mineralogical and Chemical Characterization of Lunar Highland Soils: Insights into the Space Weathering of Soils on Airless Bodies

    Science.gov (United States)

    Taylor, Lawrence A.; Patchen, Allan; Taylor, Dong-Hwa S.; Pieters, Carle; Morris, Richard V.; Keller, Lindsay P.; McKay, David S.

    2010-01-01

    With reflectance spectroscopy, one is measuring only properties of the fine-grained regolith, most affected by space weathering. The Lunar Soil Characterization Consortium has undertaken the task of coordinated characterization of lunar soils, with respect to their mineralogical and chemical makeup. It is these lunar soils that are being used as "ground-truth" for all air30 less bodies. Modal abundances and chemistries of minerals and glasses in the finest size fractions (20-45, 10-20, and <10 microns) of four Apollo 14 and six Apollo 16 highland soils have been determined, as well as their bulk chemistry and IS/FeO values. Bi-directional reflectance measurements (0.3-2.6 microns) of all samples were performed in the RELAB. A significant fraction of nanophase Fe(sup 0) (np-Fe(sup 0)) appears to reside in agglutinitic glasses. However, as grain size of a soil decreases, the percentage of total iron present as np-Fe0 increases significantly, whereas the agglutinitic glass content rises only slightly; this is evidence for a large contribution to the IS/FeO values from the surface-correlated nanophase Fe(sup 0), particularly in the <10 micron size fraction. The compositions of the agglutinitic glasses in these fine fractions of the highland soils are different from the bulk-chemistry of that size; however, compositional trends of the glasses are not the same as those observed for mare soils. It is apparent that the glasses in the highland soils contain chemical components from outside their terrains. It is proposed that the Apollo 16 soils have been adulterated by the addition of impact-transported soil components from surrounding maria.

  7. Technosols Made of Wastes to Improve Physico-Chemical Characteristics of a Copper Mine Soil

    Institute of Scientific and Technical Information of China (English)

    V.ASENSIO; F.A.VEGA; M.L.ANDRADE; E.F.COVELO

    2013-01-01

    Mine tailing soils created from the copper extraction in Touro Mine (Northwest Spain) are very degraded both physically and chemically.Three plots in this mine tailing were amended with Technosols in different proportions in each one to know if this mixture improved the physico-chemical characteristics of the mine soil and contaminated it with heavy metals.The Technosols were made of organic wastes,including mussel residues,wood fragments,sewage sludges and paper mill ashes.An unamended area was used as a control soil.Pseudototal and diethylenetriaminepentaacetic acid (DTPA)-extractable contents of Al,Cr,Cu,Fe,Mn,Ni,Pb and Zn were determined in soil samples.The untreated soil had significant limitations for vegetation growth.All the Technosols improved the properties of the mine soil by increasing organic carbon and pH value,but they added Ni,Pb or Zn to the soil.It is advisable to check whether the heavy metal concentrations of the wastes are hazardous or not before adding to soils.It is also necessary to study the effect of these wastes over time and in more areas to conclude if they are actually favourable to restore degraded mine soils.

  8. IMPACT OF MARBLE MINING ON SOIL PROPERTIES IN A PART ...

    African Journals Online (AJOL)

    Dr Osondu

    The effects of marble mining activities on the properties of soils of Igbeti marble area, ... occur in soil and plant as divalent cations, Ca2+ and .... The data from soil analyses of the sampled plots .... Agboola, A.A. (1982), Soil testing, soil fertilizer.

  9. Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures

    Science.gov (United States)

    Dong, Jianzhi; Steele-Dunne, Susan C.; Ochsner, Tyson E.; van de Giesen, Nick

    2016-06-01

    This study addresses two critical barriers to the use of Passive Distributed Temperature Sensing (DTS) for large-scale, high-resolution monitoring of soil moisture. In recent research, a particle batch smoother (PBS) was developed to assimilate sequences of temperature data at two depths into Hydrus-1D to estimate soil moisture as well as soil thermal and hydraulic properties. However, this approach was limited to bare soil and assumed that the cable depths were perfectly known. In order for Passive DTS to be more broadly applicable as a soil hydrology research and remote sensing soil moisture product validation tool, it must be applicable in vegetated areas. To address this first limitation, the forward model (Hydrus-1D) was improved through the inclusion of a canopy energy balance scheme. Synthetic tests were used to demonstrate that without the canopy energy balance scheme, the PBS estimated soil moisture could be even worse than the open loop case (no assimilation). When the improved Hydrus-1D model was used as the forward model in the PBS, vegetation impacts on the soil heat and water transfer were well accounted for. This led to accurate and robust estimates of soil moisture and soil properties. The second limitation is that, cable depths can be highly uncertain in DTS installations. As Passive DTS uses the downward propagation of heat to extract moisture-related variations in thermal properties, accurate estimates of cable depths are essential. Here synthetic tests were used to demonstrate that observation depths can be jointly estimated with other model states and parameters. The state and parameter results were only slightly poorer than those obtained when the cable depths were perfectly known. Finally, in situ temperature data from four soil profiles with different, but known, soil textures were used to test the proposed approach. Results show good agreement between the observed and estimated soil moisture, hydraulic properties, thermal properties, and

  10. The energetic and chemical fingerprints of persistent soil organic carbon

    Science.gov (United States)

    Barré, Pierre; Plante, Alain F.; Cécillon, Lauric; Lutfalla, Suzanne; Baudin, François; Bernard, Sylvain; Christensen, Bent T.; Fernandez, Jose M.; Houot, Sabine; Kätterer, Thomas; Macdonald, Andy; van Oort, Folkert; Le Guillou, Corentin; Chenu, Claire

    2016-04-01

    the soils at the 5 LTBF sites, organic carbon that has persisted in soils for several decades have similar and defined thermal and energetic properties: persistent SOC burns at higher temperature and its combustion generates less energy. Persistent SOC in the studied temperate soils also shares some chemical properties: it has a lower HI values and is consistently enriched in carboxyl groups. Nonetheless, the chemical trends were less obvious than the results given by thermal techniques confirming that organo-mineral interactions are the key driver of long-term SOC stabilization. The increased burning temperature and lower energy density of persistent SOC suggest that SOC stability may be a function of the high energy cost and low energy gain from decomposition of this material. It also suggests that decomposition of the stable C pool should be more temperature sensitive and thus vulnerable to increased temperature as previously observed in several incubation studies.

  11. Effects of environmental factors and soil properties on topographic variations of soil respiration

    Directory of Open Access Journals (Sweden)

    K. Tamai

    2010-03-01

    Full Text Available Soil respiration rates were measured along different parts of a slope in (a an evergreen forest with common brown forest soil and (b a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soil moisture and soil temperature. These results may be explained by the fact that different soil properties matured within different environments. It can be argued that the low soil respiration rates in the low parts of the slope in the evergreen forest resulted from soil properties and not from wet soil conditions. In the deciduous forest, soil respiration rates were more strongly affected by soil moisture and soil temperature than by soil properties. These effects were likely due to the immaturity of the forest soil.

  12. Chemical properties of peat used in balneology

    Science.gov (United States)

    Szajdak, L.; Hładoń, T.

    2009-04-01

    The physiological activity of peats is observed in human peat-bath therapy and in the promotion of growth in some plants. Balneological peat as an ecologically clean and natural substance is perceived as being more 'human friendly' than synthetic compounds. Poland has a long tradition of using balneological peat for therapeutic purposes. Balneological peat reveals a physical effect by altering temperature and biochemical effects through biologically active substances. It is mainly used for the treatment of rheumatic diseases that are quite common in Poland. Peat represents natural product. Physico-chemical properties of peat in particular surface-active, sorption and ion exchanges, defining their biological function, depend mainly on the chemical composition and molecular structure of humic substances representing the major constituent of organic soil (peat). The carbon of organic matter of peats is composed of 10 to 20% carbohydrates, primarily of microbial origin; 20% nitrogen-containing constituents, such as amino acids and amino sugars; 10 to 20% aliphatic fatty acids, alkanes, etc.; with the rest of carbon being aromatic. For balneology peat should be highly decomposed (preferably H8), natural and clean. The content of humic acids should exceed 20% of dry weight, ash content will be less than 15 15% of dry weight, sulphur content less than 0.3% of dry weight and the amount of water more than 85%. It will not contain harmful bacteria and heavy metals. Humic substances (HS) of peat are known to be macromolecular polydisperse biphyllic systems including both hydrophobic domains (saturated hydrocarbon chains, aromatic structural units) and hydrophilic functional groups, i. e having amphiphilic character. Amphiphilic properties of FA are responsible for their solubility, viscosity, conformation, surfactant-like character and a variety of physicochemical properties of considerable biologically practical significance. The chemical composition of peats depends

  13. Soil layer condensation peak as a response to soil water properties under Sudanese climatic conditions

    Science.gov (United States)

    Valet, S.; Motelica-Heino, M.; Ozier-Lafontaine, H.

    2012-04-01

    The soil apparent density is strongly dependent on their physico-chemical properties. It can be negatively impacted by human activities such as soil work or animal pasture or natural salinity influenced by irrigation.. In contrast it can be improved for different depths by agricultural practices. A « condensation peak » defined as an increase in the apparent density was found for the heterogeneous soils of Niger for several profiles of 5 soil classes and for a very shallow depth (10 cm maximum) with a very variable extreme depth (from 35 to 150 cm) associated with extreme density values (from 1.45 to 2). The depth of this peak, for soils neither saline nor vertic, varies inversely with the proportion of soil fine elements (silts+clays). However it corresponds to an average value of useful water (AWC) of 100mm (CV=24.4%). In sodic and alkaline soils this peak can be observed at shallow depths (from 53 to 61cm with a CV from 15 to 40%), thus for much lower AWC values (from 74 to 87cm with a CV from 26 to 47%). It can be found either below or above an impermeable horizon of a maximal density of 2.. This peak is likely to be associated with a multi-annual alternance of humectation-dessication at this depth. Its occurrence is based on an interplay of intrinsic physical and hydric soil properties but also on extrisnic parameters sch as the pluviometry, the location at the scale of the watershed and the micromodelling.

  14. Short-term effects of different organic amendments on soil chemical, biochemical and biological indicators

    Science.gov (United States)

    Mondelli, Donato; Aly, Adel; Yirga Dagnachew, Ababu; Piscitelli, Lea; Dumontet, Stefano; Miano, Teodoro

    2014-05-01

    compared to control soil. Results concerning biochemical indicators revealed that phosphatase and β-glycosidase were significantly reduced, while activities of urease and FDA were improved in all amended plots in comparison to the control, regardless of amendment type. Data demonstrated the efficiency, the high sensitivity and a quick response of the biochemical indicators in assessing soil quality changes. As a conclusion, it is possible to emphasize that alternative and common soil organic amendments behave similarly in enhancing the chemical, biochemical and biological properties. The alternative soil organic amendments could, then, be candidates for substituting some commonly used one which are currently showing shortage in their supply and a lowering in their quality. Keywords: Organic agriculture, Soil quality, Enzymatic activities, Olive mill wastewater, Residues of mushroom cultivation, Coffee chaff.

  15. 模拟氮沉降对森林土壤化学性质的影响%Effects of simulated nitrogen deposition on soil chemical properties of forests

    Institute of Scientific and Technical Information of China (English)

    李秋玲; 肖辉林; 曾晓舵; 冯乙晴; 莫江明

    2013-01-01

    下,与对照相比,这3种林型的土壤交换性Na+含量分别下降了40.0%、68.4%、50.0%,差异达显著性水平(p<0.05)。氮沉降对人工幼林土壤盐基离子含量无明显的影响。由此可得出结论:在近2年至4年的时间内,氮沉降的增加能引起鼎湖山3种林型土壤尤其是阔叶林土壤加速酸化,引起交换性Na+明显淋失,以及马尾松林土壤水解性氮含量明显下降;但氮沉降的增加对木荷人工幼林土壤化学性质暂无明显的影响。后者可能与该林型模拟氮沉降时间较短、林龄较轻而处于快速生长期等因素有关。%The effects of the increasing atmospheric nitrogen deposition on forest soils have become one of the major issues in ecological research recently. The authors used the method of simulating atmospheric nitrogen deposition in situ, set up three levels of nitrogen deposition:N0 (CK, N:0 g·m-2·a-1), N5(N:5 g·m-2·a-1), and N10(N:10 g·m-2·a-1)for a monsoon evergreen broad-leaved forest (called“broad-leaved forest”for short in the following), a Pinus massoniana forest, and a coniferous and broad-leaved mixed forest (called “mixed forest” for short in the following) in Dinghushan Mountain, and for a young Schima superba plantation in Zengcheng, Guangdong province, China, collected the soil samples of 0~20 cm soil layer after simulating atmospheric nitrogen deposition for 42 months (broad-leaved forest), 31 months (Pinus massoniana forest), 50 months (mixed forest), and 20 months (the young plantation), and analysed the soil properties, to discuss the effects of different nitrogen deposition levels on the soil properties of different forest types. The results showed that, (1) the simulated nitrogen deposition appeared the similar tendency towards the effects on soil pH values of the broad-leaved forest, Pinus massoniana forest, and mixed forest in Dinghushan Mountain, forcing the pH values to drop. Among them, when the nitrogen deposition was at N10 level

  16. Application of Chemically Accelerated Biotreatment to Reduce Risk in Oil-Impacted Soils

    Energy Technology Data Exchange (ETDEWEB)

    Paterek, J.R.; Bogan, W.W.; Lahner, L.M.; Trbovic, V.

    2003-03-06

    Conducted research in the following major focus areas: (1) Development of mild extraction approaches to estimate bioavailable fraction of crude oil residues in contaminated soils; (2) Application of these methods to understand decreases in toxicity and increases in sequestration of hydrocarbons over time, as well as the influence of soil properties on these processes; (3) Measurements of the abilities of various bacteria (PAH-degraders and others more representative of typical soil bacteria) to withstand oxidative treatments (i.e. Fenton's reaction) which would occur in CBT; and (4) Experiments into the biochemical/genetic inducibility of PAH degradation by compounds formed by the chemical oxidation of PAH.

  17. The influence of termites on soil sheeting properties varies depending on the materials on which they feed

    OpenAIRE

    Jouquet, Pascal; Guilleux, N.; Chintakunta, S.; Mendez, Mercedes; Subramanian, S; Shanbhag, R. R.

    2015-01-01

    Fungus-growing termites are involved in many ecological processes and play a central role in influencing soil dynamics in the tropics. The physical and chemical properties of their nest structures have been largely described; however less information is available concerning the relatively temporary structures made above-ground to access food items and protect the foraging space (the soil 'sheetings'). This study investigated whether the soil physical and chemical properties of these construct...

  18. 茶园不同施肥方式对土壤化学性质的影响%Effect of Different Fertilization Methods on Soil Chemical Properties of Tea Garden

    Institute of Scientific and Technical Information of China (English)

    毛平生; 阮建云; 李延升; 石元值; 马立锋; 伊晓云; 方丽

    2014-01-01

    In this study, ten fertilization methods were designed , namely manual surface fertilization (treatment T1 ), manual ditching fertilization ( T2 ) , mechanical rotary plowing 10-cm-depth fertilization ( T3 ) , mechanical intermediate ploughing 10-cm-depth fertilization ( T4 ) , mechanical intermediate ploughing 20-cm-depth fertilization ( T5 ) , mechanical bilateral rotary plowing 10-cm-depth fertilization ( T6 ) , mechanical bilateral rotary plowing 20-cm-depth fertilization ( T7 ) , 10-cm-depth rotary plowing without fertilization ( T8 ) , 10-cm-depth ploughing without fertilization ( T9 ) , and 10-cm-depth bilateral rotary plowing without fertilization ( T10 ) , and the effects of different fertilization methods on soil chemical properties of tea garden were in -vestigated.The results showed that the mechanical bilateral rotary plowing fertilization significantly increased the content of inorganic nitrogen in the soil samples 15~35 cm away from tea stems , and mechanical rotary plowing obviously enhanced the content of inor -ganic nitrogen in deep -layer soil.The soil available potassium content in treatments T 1, T2 and T3 was higher, and that in treat-ment T1 was the most stable , while that in treatment T 4 was the lowest .The soil available phosphorus content in treatments T 7 , T8 , T9 and T10 was higher, while that in treatments T3, T4, T5 and T6 was lower.%设人工撒施、人工开沟施肥、机械旋耕施肥、机械中间犁耕施肥深10 cm、机械中间犁耕施肥深20 cm、机械双侧旋耕施肥深10 cm、机械双侧旋耕施肥深20 cm、不施肥旋耕、不施肥中间犁耕、不施肥双侧旋耕10个处理,研究了3种不同施肥方式对茶园土壤化学性质的影响。结果表明:机械双侧旋耕施肥显著增加了行间15~35 cm范围土壤的无机氮含量,机械旋耕使深层土壤无机氮含量明显增加;人工撒施、人工开沟施肥、机械旋施处理土壤有效钾含量均较高,其中人工撒

  19. Chemical Degradation of PCBs in Alaskan Soils

    Science.gov (United States)

    2011-04-01

    approximate 20 to 30% reduction of Aroclor concentration compared to the controls. Tests applying Tween 80 at 15% (w/w) with NaOH at 2% (w/w) indicated that...the Tween 80 increased PCB release from soil, but no significant PCB degradation was found. An experiment was then conducted to investigate the use of

  20. Soil Chemical Characteristics of Organic and Conventional Agriculture

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Aziz

    2016-01-01

    Full Text Available Use of chemical fertilizers and pesticides on intensive land of both lowland and upland food crops have been shown to increase agricultural productivity significantly. Research aimed to study soil chemical characteristics and soil pesticide residues at some crops of organic and conventional farms. The research was carried out in Laboratory of Soil Chemistry, Indonesian Soil Research Institute and in Laboratory of Agrochemical Residue, Indonesian Agricultural Environment Research Institute, Bogor from February to July 2015. Soil samples at 0-10 cm depth were taken compositely from broccoli (Brassica oleracea, carrots (Daucus carota, maize (Zea mays, and tomatoes (Solanum lycopersicum farms in Bogor Regency as well as from rice field in Tasikmalaya Regency at both organic and conventional farms. Soil chemical characteristics were analyzed include: soil organic-C (Walkey and Black, total-N (Kjeldahl, potential-P (HCl 25%, available-P (Olsen, potential-K (HCl 25%, available-K (NH4OAc 1 N pH 7, CEC (NH4OAc 1 N pH 7, and pH (soil : water = 1: 5, while pesticide residues included levels of organochlorine (lindane, aldrin, heptaklor, dieldrin, DDT, endosulfan; organophosphates (diazinon, fenitrotin, metidation, paration, profenofos; and carbamates (carbofuran, MIPC, BPMC in the soil by using Gas Chromatography method. Results showed that levels of soil organic-C, total-N, potential and available-P, potential and available-K, CEC, pH at organic farms were higher than those at conventional farms. Some pesticide residues compound (organochlorines, organophosphates, and carbamates were detected at conventional farm, while those at organic farm were not detected (trace.

  1. Estimation of Corn Yield and Soil Nitrogen via Soil Electrical Conductivity Measurement Treated with Organic, Chemical and Biological Fertilizers

    Directory of Open Access Journals (Sweden)

    H. Khalilzade

    2016-02-01

    Full Text Available Introduction Around the world maize is the second crop with the most cultivated areas and amount of production, so as the most important strategic crop, have a special situation in policies, decision making, resources and inputs allocation. On the other side, negative environmental consequences of intensive consumption of agrochemicals resulted to change view concerning food production. One of the most important visions is sustainable production of enough food plus attention to social, economic and environmental aspects. Many researchers stated that the first step to achieve this goal is optimization and improvement of resources use efficiencies. According to little knowledge on relation between soil electrical conductivity and yield of maize, beside the environmental concerns about nitrogen consumption and need to replace chemical nitrogen by ecological inputs, this study designed and aimed to evaluate agroecological characteristics of corn and some soil characteristics as affected by application of organic and biological fertilizers under field conditions. Materials and Methods In order to probing the possibility of grain yield and soil nitrogen estimation via measurement of soil properties, a field experiment was conducted during growing season 2010 at Research Station, Ferdowsi University of Mashhad, Iran. A randomized complete block design (RCBD with three replications was used. Treatments included: 1- manure (30 ton ha-1, 2-vermicompost (10 ton ha-1, 3- nitroxin (containing Azotobacter sp. and Azospirillum sp., inoculation was done according to Kennedy et al., 4- nitrogen as urea (400 kg ha-1 and 5- control (without fertilizer. Studied traits were soil pH, soil EC, soil respiration rate, N content of soil and maize yield. Soil respiration rate was measured using equation 1: CO2= (V0- V× N×22 Equation 1 In which V0 is the volume of consumed acid for control treatment titration, V is of the volume of consumed acid for sample treatment

  2. Effects of five soil conditioners on soil physical and chemical properties and yied of garlic%5种土壤调理剂对大蒜田土壤理化性质和大蒜产量的影响

    Institute of Scientific and Technical Information of China (English)

    周红梅; 孙蓟锋; 段成鼎; 王旭

    2013-01-01

    The experiments were conducted to study the effects of the two different dosage of five different soil conditioners on soil physical-chemical properties and yield of garlic.The results showed that five conditioners could all reduce soil bulk density and improve soil porosity.The medical stone could significantly reduce the soil bulk density early,then the montmorillonite conditioner showed the best effect and achieved significant level.In the early garlic growth,the soil alkali-hydro nitrogen content was significantly increased for use of high quantity oyster shell,montmorillonite and organic fertilizer,the montmorillonite reduced soil available P significantly and high quantity organic fertilizer increased soil available P obviously.The oyster shell was no impact on available K,while the other four conditioners could all improve the soil available K.Montmorillonite,calcium silicate mineral and organic fertilizer could significantly improve the content of soil organic matter in the early garlic growth,but only high quantity organic matter increased significantly later.The soil pH value was declined for use of medical stone,montmorillonite and organic fertilizer.However,the soil pH value increased by oyster shell and calcium silicon.The garlic leaf blight disease was reduced for application the five conditioners.Compared to the control,the yield could be improvded after application the 5 kinds of conditioners,but only the yields of CI,CII and EII were significantly increased.%试验研究了两个不同用量的5种土壤调理剂(麦饭石、牡蛎壳、蒙脱石、硅钙矿和有机肥)对土壤理化性质和大蒜产量的影响.结果表明,5种调理剂均能降低土壤容重,提高土壤孔隙度:施用前期麦饭石处理的土壤容重显著降低,后期则蒙脱石处理土壤容重降低明显.在大蒜生长前期,施用高量牡蛎壳、蒙脱石和有机肥均显著提高了土壤碱解氮含量;蒙脱石显著降低了

  3. 汶川地震对四川理县典型受灾区岷江柏人工林土壤理化性质的影响%Effect of Wenchuan Earthquake on Physical and Chemical Properties of Forest Soils in Li County of Sichuan Province

    Institute of Scientific and Technical Information of China (English)

    赵丽丽; 钟哲科; 史作民; 杨慧敏; 邵琼

    2016-01-01

    [Objective]In order to explore the ecological consequences caused by secondary earthquake disasters and to provide scientific evidences for disaster-affected soil restoration,the physical and chemical properties of forest soil in Li County,Sichuan Province,were investigated comparatively. [Method]Wenchuan earthquake happened on May 12 th , 2008 ,and the investigation and sampling in Cupressus chenginana plantation of disaster-affected area was conducted in November,2013. Three earthquake-affected stands and one stand as control ( no obvious damage caused by secondary earthquake disasters) were chosen in Xionger Mountain ( mountain cinnamon soil) ,and two earthquake-affected stands and one control stand were chosen in Puxi Gully ( mountain brown soil) . Soil physical properties such as soil density,total porosity and particle composition in 0 -20 cm soil layer were measured. Meanwhile,soil nutrient indices such as soil pH value,total nitrogen ( TN) ,alkali-hydrolysable nitrogen ( AN) ,available phosphorus ( AP) ,available potassium ( AK) , soil organic matter(SOM)content and cation exchange capacity (CEC) in three soil layers (0 -20,20 -40 ,and 40 -60 cm) were also analyzed. [Results]Soil density in 0 -20 cm soil layer was significantly increased in the earthquake-affected sites,the average value of earthquake-effected soils was 1. 28 g·cm -3 . In comparison with the controls,average values of soil density were increased by 6. 1% and 18. 6% in Xionger Mountain and Puxi Gully,respectively. The increased soil density caused the reduction of total soil porosity ( a significant negative relationship between them,r =-0. 998**) ,which brought in a reduction of soil water permeability and an increase of surface runoff and soil & water erosion. Affected by secondary earthquake disasters,the average soil organic matter contents were decreased by 56. 1%and 52. 2% in Xionger Mountain and Puxi Gully,respectively. Meanwhile,clay contents in surface soil (0 -20 cm) decreased by

  4. Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data

    Energy Technology Data Exchange (ETDEWEB)

    Pauget, B.; Gimbert, F., E-mail: frederic.gimbert@univ-fcomte.fr; Scheifler, R.; Coeurdassier, M.; Vaufleury, A. de

    2012-08-01

    Although soil characteristics modulate metal mobility and bioavailability to organisms, they are often ignored in the risk assessment of metal transfer. This paper aims to determine the ability of chemical methods to assess and predict cadmium (Cd), lead (Pb) and zinc (Zn) environmental bioavailability to the land snail Cantareus aspersus. Snails were exposed in the laboratory for 28 days to 17 soils from around a former smelter. The soils were selected for their range of pH, organic matter, clay content, and Cd, Pb and Zn concentrations. The influence of soil properties on environmental availability (estimated using HF-HClO{sub 4}, EDTA, CaCl{sub 2}, NH{sub 4}NO{sub 3}, NaNO{sub 3}, free ion activity and total dissolved metal concentration in soil solution) and on environmental bioavailability (modelled using accumulation kinetics) was identified. Among the seven chemical methods, only the EDTA and the total soil concentration can be used to assess Cd and Pb environmental bioavailability to snails (r Superscript-Two {sub adj} = 0.67 and 0.77, respectively). For Zn, none of the chemical methods were suitable. Taking into account the influence of the soil characteristics (pH and CEC) allows a better prediction of Cd and Pb environmental bioavailability (r Superscript-Two {sub adj} = 0.82 and 0.83, respectively). Even though alone none of the chemical methods tested could assess Zn environmental bioavailability to snails, the addition of pH, iron and aluminium oxides allowed the variation of assimilation fluxes to be predicted. A conceptual and practical method to use soil characteristics for risk assessment is proposed based on these results. We conclude that as yet there is no universal chemical method to predict metal environmental bioavailability to snails, and that the soil factors having the greatest impact depend on the metal considered. - Highlights: Black-Right-Pointing-Pointer New approach to identify chemical methods able to predict metal bioavailability

  5. Hydraulic Conductivity Functions in Relation to Some Chemical Properties in a Cultivated Oxisols of a Humid Region, Delta State, Nigeria

    Directory of Open Access Journals (Sweden)

    Egbuchua, C. N.

    2014-04-01

    Full Text Available The study was conducted to evaluate hydraulic conductivity functions in relation to some soil chemical properties in an oxisols of the tropics. Field and laboratory studies were carried out and data collected, subjected to statistical analytical procedure for computing coefficient of variability and correlation among soil properties. Results of the study showed that hydraulic conductivity functions varied spatially and temporarily across the experimental points with a moderate mean value of 0.0026 cm/h and a coefficient o variation of 31.45% soil chemical properties showed that the soils were acidic with a mean pH value of 5.12. Organic carbon, total nitrogen and available phosphorus were low with mean values of 1.29%, 0.68% and 4.43 mgkg-1. Coefficient of variability among soil properties indicated less to moderately variable. Soil pH had negative correlation with all the soil properties evaluated.

  6. Biochar physico-chemical properties as affected by environmental exposure.

    Science.gov (United States)

    Sorrenti, Giovambattista; Masiello, Caroline A; Dugan, Brandon; Toselli, Moreno

    2016-09-01

    To best use biochar as a sustainable soil management and carbon (C) sequestration technique, we must understand the effect of environmental exposure on its physical and chemical properties because they likely vary with time. These properties play an important role in biochar's environmental behavior and delivery of ecosystem services. We measured biochar before amendment and four years after amendment to a commercial nectarine orchard at rates of 5, 15 and 30tha(-1). We combined two pycnometry techniques to measure skeletal (ρs) and envelope (ρe) density and to estimate the total pore volume of biochar particles. We also examined imbibition, which can provide information about soil hydraulic conductivity. Finally, we investigated the chemical properties, surface, inner layers atomic composition and C1s bonding state of biochar fragments through X-ray photoelectron spectroscopy (XPS). Ageing increased biochar skeletal density and reduced the water imbibition rate within fragments as a consequence of partial pore clogging. However, porosity and the volume of water stored in particles remained unchanged. Exposure reduced biochar pH, EC, and total C, but enhanced total N, nitrate-N, and ammonium-N. X-ray photoelectron spectroscopy analyses showed an increase of O, Si, N, Na, Al, Ca, Mn, and Fe surface (0-5nm) atomic composition (at%) and a reduction of C and K in aged particles, confirming the interactions of biochar with soil inorganic and organic phases. Oxidation of aged biochar fragments occurred mainly in the particle surface, and progressively decreased down to 75nm. Biochar surface chemistry changes included the development of carbonyl and carboxylate functional groups, again mainly on the particle surface. However, changes were noticeable down to 75nm, while no significant changes were measured in the deepest layer, up to 110nm. Results show unequivocal shifts in biochar physical and chemical properties/characteristics over short (~years) timescales.

  7. Geotehnical Properties of Plastic Stabilized Lateritic Soil

    Directory of Open Access Journals (Sweden)

    Akinola Johnson Olarewaju

    2016-09-01

    Full Text Available Stabilization is the combination of soils and additives to change its properties and remain in its stable compacted state without undergoing any change under effect of exposure to weather and traffic. Soil stabilization through the reinforced soil construction is an efficient and reliable technique for improving the strength and stability of soils. The lateritic soil used in this study was taken along Papa-Ilaro road Ajegunle at Abalabi, Ogun State, Nigeria and the solid plastic wastes were taken from different locations in Ilaro. The plastics were grounded into pellets and substituted with laterite at 10%, 15%, 20%, 25% and 30% for compaction test and at 5%, 10%, 15%, 20%, 25% and 30% for California bearing ration (CBR test. The tests conducted in line with BS 1377 (1990 are the specific gravity, compaction and CBR. From the results, it was also observed that plastic pellets reduce the bulk densities and dry densities in the same proportion as the percentage water content increases. From the results, it is hereby suggested that plastic pellets could be mixed with lateritic material around underground pipes to mitigate the effects of accidental explosions. Consequently, environmental risk and hazards caused by plastic wastes and accidental explosions could be greatly reduced.

  8. Chemical fingerprinting of hydrocarbon-contamination in soil.

    Science.gov (United States)

    Boll, Esther S; Nejrup, Jens; Jensen, Julie K; Christensen, Jan H

    2015-03-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic aromatic compounds (PACs), (iii) diagnostic ratios of selected PACs, and (iv) multivariate data analysis of sum-normalized PAC concentrations. The assessment criteria included quantitative analysis of 19 PACs and C1-C4 alkyl-substituted homologues of naphthalene, fluorene, dibenzothiophene, phenanthrene, pyrene, and chrysene; and 13 oxygenated polycyclic aromatic compounds (O-PACs). The chemical composition of un-substituted and alkyl-substituted PACs and visual interpretation of GC-FID chromatograms were in combination successful in differentiating pyrogenic and petrogenic hydrocarbon sources and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends. Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl-substituted PACs are dominant in petrogenic sources, the evaluation of the total load of PACs based on EPAPAH16 was not representative. Likewise, the O-PACs are not

  9. The effects of different soil cover management practices on plant biodiversity and soil properties in Mediterranean ancient olive orchards

    Science.gov (United States)

    Madzaric, Suzana; Aly, Adel; Ladisa, Gaetano; Calabrese, Generosa

    2014-05-01

    The effects of different soil cover management practices on plant biodiversity and soil properties in Mediterranean ancient olive orchards Madzaric S., Aly A., Ladisa G. and Calabrese G. The loss of natural plant cover due to the inappropriate soil cover management is often a decisive factor for soil degradation in Mediterranean area. This accompanied with typical climate, characterized by cool, wet winters and hot and dry summers leads to soil erosion and loss of productivity. Due to simplification of agricultural practice and to the attempt to decrease cost of production, keeping soil bare is a widespread agricultural practice in Mediterranean ancient olive orchards (AOOs). The consequences of this are degradation of soil quality and reduction of plant biodiversity. In last year's some alternative practices are proposed in order to protect soil and biodiversity. One of these practices is the "grassing" i.e. covering the soil by selected autochthonous plant species. Objectives of our study are: (1) to evaluate impact of different soil cover management practices on soil properties and plant biodiversity in AOOs and (2) to define a minimum indicators' set (Minimum Data Set - MDS) to evaluate the effectiveness of different agricultural practices in environmental performance of AOOs. A comparison was carried on considering two management systems (conventional vs. organic) and three agricultural practices: conventional with bare soil (CON), organic with soil covered by selected autochthonous species (MIX) and organic left to the native vegetation (NAT). In general a clear positive influence of organic management system was recognized. Some soil quality indicators (physical, chemical and biological) showed responsiveness in describing the effects of management system and agricultural practices on soil properties. The both approaches with vegetation cover on the soil surface (either sowing of mixture or soil left to the natural plant cover) performed better than

  10. Changes of the properties of oil-polluted soils after recultivation (remediation) on the northern territories of the Russian Federation (the Republic of Komi)

    OpenAIRE

    Zakhar Ezhelev; Aminat Umarova; Ludmila Lysak; Julia Zavgorodnyaya

    2015-01-01

    Soil petroleum pollution is characteristic for soils of many petroleum-producing countries. The success of recultivation of such soils is determined by the speed and quality of cleaning and further propertiestransformation of recultivated soils. Our work is devoted to the examination of properties of recultivated more than 20 years ago petroleum polluted soils. We defined physical and chemical properties and regimes of soils,, fractional composition of the hydrocarbons of petroleum, the total...

  11. Correlation Between Chemical Element Contents in Tree Rings and Soils

    Institute of Scientific and Technical Information of China (English)

    QIANJUN-LONG; KESHAN-ZHE; 等

    1993-01-01

    The annual growth rings of ten trees and the soils near the tree roots were sampled from the mining ares of lead-and zinc-dominant metals in the Xixia Mountain,Nanjing,for the determination of chemical element contents.The study results showed that the elemental contents in the tree rings were correlated with those in the soils,i.e.,the elemental contents in the tree rings increased with those in the soils,even in the cases of different environments and different tree species.Therefore,a time-concentration sequence could be set up on the basis of determining the elemental contents in the successive annual growth rings of trees to qualitatively reflect the annual variations of relevant elements in the soils,and a time-concentration sequence of elemental contents in soils could also be established in terms of related model to reproduce the dynamic changes of the surroundings.

  12. Research Regarding The Impact Of Chemical Fertilizers Upon The Soil

    Directory of Open Access Journals (Sweden)

    Daniel Călugăr

    2010-06-01

    Full Text Available Chemical fertilizers need to be used according to the natural fertility of the soil, to the ecological conditions and the cultivation requirements for nourishing elements. Keeping this in mind, they will not have any negative effects over the surrounding environment. But if the optimal doses are not respected the soil will be polluted. Regarding this matter a study has been made that showed that if the correct dosage is not respected this could lead to the acidification of the soil to such a level that it won’t be suitable for agricultural purposes. Even if excess usage of fertilizers does not cause any changes in the soils texture, it can still contribute to its pure quality. If the correct dosage and the period of administration is respected than the soil will be improved with nourishing elements, this leading to a better agricultural production.

  13. Heavy metals content in degraded agricultural soils of a mountain region related to soil properties

    Science.gov (United States)

    Navarro-Pedreño, José; Belén Almendro-Candel, María; Gómez, Ignacio; Jordán, Manuel M.; Bech, Jaume; Zorpas, Antonis

    2017-04-01

    Agriculture has been practiced for long time in Mediterranean regions. Intensive agriculture and irrigation have developed mainly in the valleys and coastal areas. In the mountainous areas, dry farming has been practiced for centuries. Soils have been fertilized using mainly organic amendments. Plants extracted nutrients and other elements like heavy metals presented in soils and agricultural practices modified soil properties that could favor the presence of heavy metals. In this work, it has been checked the content of heavy metals in 100 agricultural soils samples of the NorthWest area of the province of Alicante (Spain) which has been long cultivated with cereals and olive trees, and now soils are abandoned and degraded because of the low agricultural yields. European policy has the aim to improve the sustainable agriculture and recover landscapes of mountain regions. So that, it is important to check the state of the soils (Marques et al. 2007). Soils samples (arable layer) were analyzed determining: pH (1:5, w/v, water extract), equivalent calcium carbonate content, organic matter by Walkley-Black method (Nelson and Sommers 1996), micronutrients (Cu, Fe, Mn, Zn) extracted with DTPA (Lindsay and Norvell, 1978) and measured by atomic absorption spectrometry, and total content of metals (Cd, Cr, Ni, Pb) measured in soil samples after microwave acid digestion (Moral et al. 1996), quantifying the content of metals by ICP analysis. The correlation between soil properties and metals. The results indicated that pH and carbonates are the most important properties of these soils correlated with the metals (both micronutrients and heavy metals). The available micronutrients (all of them) are close correlated with the pH and carbonates in soils. Moreover, heavy metals like Pb and Ni are related to available Mn and Zn. Keywords: pH, carbonates, heavy metals, abandoned soils. References: Lindsay,W.L., andW.A. Norvell. 1978. "Development of a DTPA Soil Test for Zinc, Iron

  14. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation

    Energy Technology Data Exchange (ETDEWEB)

    Torri, Silvana, E-mail: torri@agro.uba.ar [Catedra de Fertilidad y Fertilizantes, Facultad de Agronomia, UBA, Avda San Martin 4453, Buenos Aires (C1417 DSE) (Argentina); Lavado, Raul [Catedra de Fertilidad y Fertilizantes, Facultad de Agronomia, UBA, Avda San Martin 4453, Buenos Aires (C1417 DSE) (Argentina)

    2009-07-30

    The aim of the present study was to investigate the relationship between Lolium perenne L. uptake of Cd, Cu, Pb, and Zn in sludge amended soils and soil availability of these elements assessed by soil sequential extraction. A greenhouse experiment was set with three representative soils of the Pampas Region, Argentina, amended with sewage sludge and sewage sludge enriched with its own incinerated ash. After the stabilization period of 60 days, half of the pots were sampled for soil analysis; the rest of the pots were sown with L. perenne and harvested 8, 12, 16 and 20 weeks after sowing, by cutting just above the soil surface. Cadmium and Pb concentrations in aerial tissues of L. perenne were below detection limits, in good agreement with the soil fractionation study. Copper and Zn concentration in the first harvest were significantly higher in the coarse textured soil compared to the fine textured soil, in contrast with soil chemical speciation. In the third harvest, there was a positive correlation between Cu and Zn concentration in aerial biomass and soil fractions usually considered of low availability. We conclude that the most available fractions obtained by soil sequential extraction did not provide the best indicator of Cu and Zn availability to L. perenne.

  15. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation.

    Science.gov (United States)

    Torri, Silvana; Lavado, Raúl

    2009-07-30

    The aim of the present study was to investigate the relationship between Lolium perenne L. uptake of Cd, Cu, Pb, and Zn in sludge amended soils and soil availability of these elements assessed by soil sequential extraction. A greenhouse experiment was set with three representative soils of the Pampas Region, Argentina, amended with sewage sludge and sewage sludge enriched with its own incinerated ash. After the stabilization period of 60 days, half of the pots were sampled for soil analysis; the rest of the pots were sown with L. perenne and harvested 8, 12, 16 and 20 weeks after sowing, by cutting just above the soil surface. Cadmium and Pb concentrations in aerial tissues of L. perenne were below detection limits, in good agreement with the soil fractionation study. Copper and Zn concentration in the first harvest were significantly higher in the coarse textured soil compared to the fine textured soil, in contrast with soil chemical speciation. In the third harvest, there was a positive correlation between Cu and Zn concentration in aerial biomass and soil fractions usually considered of low availability. We conclude that the most available fractions obtained by soil sequential extraction did not provide the best indicator of Cu and Zn availability to L. perenne.

  16. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems

    Directory of Open Access Journals (Sweden)

    Rachid Caio TCC

    2012-08-01

    Full Text Available Abstract Background Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane, next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA and denitrifying (nirK genes, greenhouse gas flow and several soil physicochemical properties were evaluated. Results Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil

  17. Chemical and Biological Features of Soils of Urban Territories

    Directory of Open Access Journals (Sweden)

    Elena Vasil'evna Smirnova

    2016-04-01

    Full Text Available There have been observed chemical and biological qualities of urbanized soils and soil-like bodies of the city of Kazan. There has been given an assessment of their enzymological (urease activity of the speed of degrading of urea, of reaction of soil solution, of contents of organic carbon. It is shown that chemical and biological qualities of studied soils have been seriously transformed and significantly differ from the complex of qualities of original natural analogs. There has been discovered the increase of pH of soil solution up to 7,0-8,2, high variation in contained organic substance, available forms of elements of nutrients of plants (nitrogen, phosphorus, potassium, flexible compounds of heavy metals and variety of activity of enzyme of urease. There has been discovered the absence of dependence of enzymological activity of city soil-like compounds from their acid-alcaline conditions and contained organic body. The necessity to work out new approaches and methods of studying urban soils and with the aim to assess their ecological state and forecasting of their impact on the city environment.

  18. Survey on Physical, Chemical and Microbiological Characteristics of PAH-Contaminated Soils in Iran

    Directory of Open Access Journals (Sweden)

    M Arbabi, S Nasseri, A Mesdaghinia, S Rezaie, K Naddafi, Gh Omrani, M Yunesian

    2004-07-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are one of the important groups of organic micro pollutants (Xenobiotics due to their widespread distribution and low degradability in the environment (atmosphere, water and soil. Some PAHs exhibit carcinogenic and/or mutagenic properties and are listed by the United States Environmental Protection Agency (USEPA and European Commission (EC as priority pollutants. In this research three petroleum contaminated sites in Iran were selected in order to separate and classify PAH-degrading microorganisms. Samples were analysed for: soil physico-chemical properties, soil particle size distribution, Ultrasonic extraction of PAH (phenanthrene and microbial analysis. Ultrasonic extraction method was shown to be a reliable procedure to extract a wide range of PAH concentrations from different soils, e.g. clay, silt, and clay-silt mixtures. Results showed that the extraction rate of phenanthreen in mentioned different soils was in the range of 85 – 100 percent. Results showed that two of three selected sites were contaminated with phenanthrene in the range of 10 – 100 mg/kg of soil, and had a reasonable population of PAH-degrading bacteria, which were enable to adaptate and degradate a concentration range of phenanthrene between 10 and 1000 mg/kg of soil. According to results, it can conclude that, the bioremediation of contaminated soils in Iran may be considered as a feasible practice.

  19. CUMULATIVE EFFECTS OF DIFFERENT CULTIVATING PATTERNS ON PROPERTIES OF ALBIC SOIL IN SANJIANG PLAIN

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhao-hua; LU Xian-guo; ZHOU Jia

    2006-01-01

    This paper studied the cumulative effects of different cultivating patterns on the properties of albic soils in the Sanjiang Plain using correlation analysis. The results showed that the physical and chemical properties of the albic soil changed greatly when it was cultivated as farmland. As for physical properties of the soil, bulk density and specific gravity increased gradually, the porosity and field capacity decreased gradually year by year, but they increased after being abandoned. As for chemical properties, pH increased, organic matter and other nutrients decreased with increasing of the cultivating years. For the albic soil cultivated with forage, the cumulative effects were apparently strengthened with the increase of cultivating years, especially for the bulk density, total porosity, capillary porosity and capillary moisture capacity. Moreover, fertilization also had great effects on the albic soil. Applying magnetism fertilizer improved the physical properties such as bulk density, soil moisture and porosity, raised the utilization rate of nitrogen and phosphorus fertilizer. Compared with nutrient fertilizer, utilization of the magnetism fertilizer made production increase by 5.9%-13.9%. At the same time, using organic material and loosing the albic layer could improve not only the physical, chemical and biological properties of the cultivating layer, but also the ill properties of the albic layer, thus making organic carbon and heavy fraction carbon contents increase, and biological activity increase obviously.

  20. Tillage system affects microbiological properties of soil

    Science.gov (United States)

    Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.

    2012-04-01

    Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the

  1. Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Eyles, Jose L., E-mail: j.l.gomezeyles@reading.ac.uk [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom); Collins, Chris D.; Hodson, Mark E. [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom)

    2011-04-15

    Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability. - Research highlights: > Isotope ratios can be used to evaluate chemical methods to predict bioavailability. > Chemical methods predicted bioavailability better than exhaustive extractions. > Bioavailability to earthworms was still far from that predicted by chemical methods. - A novel method using isotope ratios to assess the ability of chemical methods to predict PAH bioavailability to soil biota.

  2. Topolitossequências de solos do Alto Paranaíba: atributos físicos, químicos e mineralógicos Topolitosequences of soils in Alto Paranaíba region: physical, chemical and mineralogical properties

    Directory of Open Access Journals (Sweden)

    Fernando Cartaxo Rolim Neto

    2009-12-01

    em sílica.Little is known bout the pedogenetic differentiation in Alto Paranaíba, western Minas Gerais, Brazil, when materials with such a variety of chemical compositions as tufite, alkaline-ultramafic igneous rocks and carbonatites are compared, which are all found in this region. The purpose of this study was to characterize the physical, chemical and mineralogical properties of three representative soil topolitosequences of the Alto Paranaíba region. Therefore, 11 soil profiles were described and collected in the Serra do Salitre, Patrocínio and Coromandel counties, representing the influence of mafic-ultramafic bodies along the geological interface between Bambuí and Araxá groups. Soil samples were routinely analyzed for physical and chemical properties, besides determinations of Fe, Al and Si after sulfuric extraction; Fe after extraction by DCB and oxalate; Fe, Ca, Mg, K, P, Ti, and other heavy metals after total digestion (triacid attack; and determination of the different components in the clay fraction by DRX. The Latosols (Oxisols of the Alto Paranaíba are extremely weathered and have very low Ki and Kr indexes, indicators of soils with high iron and aluminum oxides contents, with no defined relationship with the underlying parent materials, indicating intense pedoturbation and mixture with alloctonous materials. The geochemical signatures of the ultramafic nature are the unusual high content of Cr, Ni, Mn, Fe, and Mg. The clay fraction mineralogy of the Latosols shows the coexistence of VHE, kaolinite, gibbsite, and anatase, indicating a polycyclic genesis of the minerals from the finer fraction and the high weathering degree. In the Cambisols, the current rapid desilification indicates the coexistence of gibbsite and iron oxides with smectites and illite because of the fast weathering in the silicon-poor mafic or alkaline-ultramafic rock substrates.

  3. Effect of Irrigation Modes on Physical and Chemical Properties and Microbial Properties on Xinjiang Saline Soil%不同灌溉方式对新疆盐碱地土壤理化性质和微生物特性的影响

    Institute of Scientific and Technical Information of China (English)

    梁菊蓉

    2012-01-01

    采用大田试验,以农十师种植面积最大的食葵为研究对象,用3种不同灌溉方式对新疆种植食葵盐碱地的土壤理化性质和微生物特性的影响进行研究。结果表明:渗灌、滴灌和沟灌3个处理对土壤中总盐和pH值有明显的抑制作用,对土壤的速效养分、微生物种群数量、微生物量、碱性磷酸酶、蔗糖酶、蛋白酶、碱性磷酸酶、多酚氧化酶活性有明显的促进作用,对土壤过氧化氢酶活性没有影响。降低土壤的盐分和pH值以沟灌为宜;提高土壤的速效养分、土壤微生物特性以滴灌为宜。%A field experiment is carried out to study the effect of three different irrigation modes on the physical and chemical proper- ties of soil and microbial properties in sunflower saline soil, which is the largest agricultural planting area in the 10th Division of Xin- jiang Production and Construction Corps Agricultural. The results show that the three irrigation modes all have obvious inhibition effect on total salt in soil and pH value and were active and useful to soil nutrients, microorganisms, microbial biomass, enzyme, al- kaline phosphates, sucrose, protease, alkaline phosphates. But the three modes have no effect on soil catalase activity. The furrow irrigation is appropriate to decrease the salt and pH value of soil. The drip irrigation is the best way to increase the soil available nu- trient, soil microbial characteristics.

  4. Using 137 Cs measurements to investigate the influence of erosion and soil redistribution on soil properties.

    Science.gov (United States)

    Du, P; Walling, D E

    2011-05-01

    Information on the interaction between soil erosion and soil properties is an important requirement for sustainable management of the soil resource. The relationship between soil properties and the soil redistribution rate, reflecting both erosion and deposition, is an important indicator of this interaction. This relationship is difficult to investigate using traditional approaches to documenting soil redistribution rates involving erosion plots and predictive models. However, the use of the fallout radionuclide (137)Cs to document medium-term soil redistribution rates offers a means of overcoming many of the limitations associated with traditional approaches. The study reported sought to demonstrate the potential for using (137)Cs measurements to assess the influence of soil erosion and redistribution on soil properties (particle size composition, total C, macronutrients N, P, K and Mg, micronutrients Mn, Mo, Fe, Cu and Zn and other elements, including Ti and As). (137)Cs measurements undertaken on 52 soil cores collected within a 7 ha cultivated field located near Colebrooke in Devon, UK were used to establish the magnitude and spatial pattern of medium-term soil redistribution rates within the field. The soil redistribution rates documented for the individual sampling points within the field ranged from an erosion rate of -12.9 t ha(-1) yr(-1) to a deposition rate of 19.2 t ha(-1) yr(-1). Composite samples of surface soil (0-5 cm) were collected immediately adjacent to each coring point and these samples were analysed for a range of soil properties. Individual soil properties associated with these samples showed significant variability, with CV values generally lying in the range 10-30%. The relationships between the surface soil properties and the soil redistribution rate were analysed. This analysis demonstrated statistically significant relationships between some soil properties (total phosphorus, % clay, Ti and As) and the soil redistribution rate, but for

  5. Soil Physicochemical and Biological Properties of Paddy-Upland Rotation: A Review

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2014-01-01

    Full Text Available Paddy-upland rotation is an unavoidable cropping system for Asia to meet the increasing demand for food. The reduction in grain yields has increased the research interest on the soil properties of rice-based cropping systems. Paddy-upland rotation fields are unique from other wetland or upland soils, because they are associated with frequent cycling between wetting and drying under anaerobic and aerobic conditions; such rotations affect the soil C and N cycles, make the chemical speciation and biological effectiveness of soil nutrient elements varied with seasons, increase the diversity of soil organisms, and make the soil physical properties more difficult to analyze. Consequently, maintaining or improving soil quality at a desirable level has become a complicated issue. Therefore, fully understanding the soil characteristics of paddy-upland rotation is necessary for the sustainable development of the system. In this paper, we offer helpful insight into the effect of rice-upland combinations on the soil chemical, physical, and biological properties, which could provide guidance for reasonable cultivation management measures and contribute to the improvement of soil quality and crop yield.

  6. 白浆土高产耕层建设技术对玉米生长发育及土壤理化性状影响的研究%Effect of High Yield Topsoil Construction Technology on Maize Growth and Soil Physical and Chemical Properties of Albic Soil

    Institute of Scientific and Technical Information of China (English)

    冯延江

    2012-01-01

    为了使白浆土地区玉米生产进一步获得高产,研究了三段式犁整地技术模式对玉米农艺性状及土壤理化性状的影响。结果表明:在玉米的整个生育期,利用三段式犁整地技术模式的玉米株高、干物质重和叶面积均高于常规技术;在土壤含水量方面,三段式犁整地技术模式的15~25cm土壤含水量均高于常规技术模式的土壤含水量1.9~3.6个百分点;在土壤容重方面,三段式犁整地技术模式的20~40cm土壤容重均低于常规技术模式;在土壤养分方面,两者差异不明显;在产量方面,三段式犁整地技术模式较常规技术模式增产9.6%。%In order to obtain higher yield of maize in albic soil area,the effect of three-plow tillage on agronomic characters of maize and soil physical and chemical properties was studied.The results showed that in the whole growth period of maize,plant height,dry weight and leaf area of three-plow tillage were higher than conventional tillage;15~25 cm soil water content of the three-plow soil preparation mode was 1.9~3.6 percentage point higher than conventional tillage;20~40 cm soil bulk density of three-plow tillage were lowerr than conventional tillage;Difference was not obvious in the soil nutrient;In terms of yield,three-plow tillage increase 9.6% more than the conventional tillage.

  7. The impact of chemical pollution on the resilience of soils under multiple stresses: A conceptual framework for future research.

    Science.gov (United States)

    Schaeffer, Andreas; Amelung, Wulf; Hollert, Henner; Kaestner, Matthias; Kandeler, Ellen; Kruse, Jens; Miltner, Anja; Ottermanns, Richard; Pagel, Holger; Peth, Stephan; Poll, Christian; Rambold, Gerhard; Schloter, Michael; Schulz, Stefanie; Streck, Thilo; Roß-Nickoll, Martina

    2016-10-15

    Soils are faced with man-made chemical stress factors, such as the input of organic or metal-containing pesticides, in combination with non-chemical stressors like soil compaction and natural disturbance like drought. Although multiple stress factors are typically co-occurring in soil ecosystems, research in soil sciences on this aspect is limited and focuses mostly on single structural or functional endpoints. A mechanistic understanding of the reaction of soils to multiple stressors is currently lacking. Based on a review of resilience theory, we introduce a new concept for research on the ability of polluted soil (xenobiotics or other chemical pollutants as one stressor) to resist further natural or anthropogenic stress and to retain its functions and structure. There is strong indication that pollution as a primary stressor will change the system reaction of soil, i.e., its resilience, stability and resistance. It can be expected that pollution affects the physiological adaption of organisms and the functional redundancy of the soil to further stress. We hypothesize that the recovery of organisms and chemical-physical properties after impact of a follow-up stressor is faster in polluted soil than in non-polluted soil, i.e., polluted soil has a higher dynamical stability (dynamical stability=1/recovery time), whereas resilience of the contaminated soil is lower compared to that of not or less contaminated soil. Thus, a polluted soil might be more prone to change into another system regime after occurrence of further stress. We highlight this issue by compiling the literature exemplarily for the effects of Cu contamination and compaction on soil functions and structure. We propose to intensify research on effects of combined stresses involving a multidisciplinary team of experts and provide suggestions for corresponding experiments. Our concept offers thus a framework for system level analysis of soils paving the way to enhance ecological theory.

  8. Relationships between soil properties and community structure of soil macroinvertebrates in oak-history forests along an acidic deposition gradient

    Energy Technology Data Exchange (ETDEWEB)

    Kuperman, R.G. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-02-01

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggest that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.

  9. Remote assessment of the degree of soil degradation from radiation properties of soils

    Science.gov (United States)

    Romanov, A. N.

    2009-03-01

    The effect of the water and salt contents, the soil texture, and the groundwater level on the radiation properties of soils was studied. A methodology was developed for the remote assessment of the degree of soil degradation on the basis of measuring the brightness temperature and emissivity of soils in the microwave region. Criteria based on the remote measurements of radiation parameters of soils for recording changes in the water-physical and other properties of soils, which are necessary for detecting degradation processes at early stages, were substantiated. For the remote assessment of soil degradation, it was proposed to analyze trends in changes with time concerning the emissivities of unfrozen soils occurring at a positive temperature (depending on the soil water content and the groundwater level), the emissivities of frozen nonsaline soils (depending on the soil texture and thermodynamic temperature), and the brightness temperature (depending on the soil salinity and thermodynamic temperature).

  10. Cryo-Pedotransfer Functions for Estimating Hydraulic Properties of Soils in Cold Regions

    Science.gov (United States)

    Misra, D.; Mailapalli, D. R.; Thompson, A.

    2013-12-01

    One of the arduous tasks in engineering hydrology of cold regions is estimating the soil hydraulic properties such as soil freezing characteristics and hydraulic conductivity, which are important when studying transport process during freeze-thaw processes. Expensive data collection methods and existing isothermal models are limitations in understanding soil water dynamics in frozen soils. Pedotransfer functions (PTFs) have been effectively used in the earth and environmental related sciences to estimate soil physical and chemical properties easily, routinely, or cheaply for a specific non-frozen geographical region. Based on similarity between wetting and freezing processes in soil, we present a new approach to derive soil freezing characteristics from soil water characteristics of non-frozen soils using existing PTFs. We refer to these as the Cryo-PTFs. We consider a conventional soil water characteristic model and existing PTFs for determining the relationships; unfrozen water content vs. subzero temperature, and hydraulic conductivity vs. subzero temperature using Clapeyron equation. The proposed approach successfully simulated unfrozen water content and hydraulic conductivity for different soils including peat when compared with those reported in the literature. Furthermore, effect of soil bulk density and organic matter content on unfrozen water content and hydraulic conductivity at different subzero temperatures was analyzed for a range of soils.

  11. Efficient Way to Improve Subgrade Property of Pavement by Chemical Stabilization

    Directory of Open Access Journals (Sweden)

    Rajshekhar G Rathod

    2017-01-01

    Full Text Available There are numerous soil stabilization techniques for improving the strength of the in-situ soil especially in road construction, and one of the techniques is using chemical additive. Chemical improvement is a time saving method that enables subgrade or sub-base layer and otherwise unsatisfactory materials in-situ to obtain higher density and strength, obviating the need for costly excavation and replacement with borrow material. This paper presents some results of the preliminary stages of research program carried out to explicate the mechanism and behavior between the liquid chemical and the engineering properties of three natural residual soils at laboratory scale. Liquid-formed chemical was selected in this research due to scarcity of such findings instead of the prevalent solid chemical additive such as lime, cement or fly ash. The focus on this research is on the improvement of engineering properties of two natural residual soils and mixed with different proportions of liquid chemical. Series of laboratory test on engineering properties, such as Modified Proctor Test, Consistency limits, moisture-density relationship (compaction and California Bearing Ratio was undertaken to evaluate the effectiveness and performances of this chemical as soil stabilizing agent.

  12. Microbial, Physical and Chemical Drivers of COS and 18O-CO2 Exchange in Soils

    Science.gov (United States)

    Meredith, L. K.; Boye, K.; Whelan, M.; Pang, E.; von Sperber, C.; Brueggemann, N.; Berry, J. A.; Welander, P. V.

    2015-12-01

    Carbonyl sulfide (COS) and the oxygen isotope composition (δ18O) of CO2 are potential tools for differentiating the contributions of photosynthesis and respiration to the balance of global carbon cycling. These processes are coupled at the leaf level via the enzyme carbonic anhydrase (CA), which hydrolyzes CO2 in the first biochemical step of the photosynthetic pathway (CO2 + H2O ⇌ HCO3- + H+) and correspondingly structural analogue COS (COS + H2O → CO2 + H2S). CA also accelerates the exchange of oxygen isotopes between CO2 and H2O leading to a distinct isotopic imprint [1]. The biogeochemical cycles of these tracers include significant, yet poorly characterized soil processes that challenge their utility for probing the carbon cycle. In soils, microbial CA also hydrolyze COS and accelerate O isotope exchange between CO2 and soil water. Soils have been observed to emit COS by undetermined processes. To account for these soil processes, measurements are needed to identify the key microbial, chemical, and physical factors. In this study, we survey COS and δ18O exchange in twenty different soils spanning a variety of biomes and soil properties. By comparing COS fluxes and δ18O-CO2 values emitted from moist soils we investigate whether the same types of CA catalyze these two processes. Additionally, we seek to identify the potential chemical drivers of COS emissions by measuring COS fluxes in dry soils. These data are compared with soil physical (bulk density, volumetric water content, texture), chemical (pH, elemental analysis, sulfate, sulfur K-edge XANES), and microbial measurements (biomass and phylogeny). Furthermore, we determine the abundance and diversity of CA-encoding genes to directly link CA with measured soil function. This work will define the best predictors for COS fluxes and δ18O-CO2 values from our suite of biogeochemical measurements. The suitability of identified predictor variables can be tested in follow-up studies and applied for modeling

  13. Measuring soil physical properties to assess soil quality

    OpenAIRE

    Raczkowski, C.W.

    2007-01-01

    Soil quality is the capacity of a soil to function within ecosystem boundaries to sustain biological productivity, maintain environmental quality, and promote plant, animal and human health. A quantitative assessment of soil quality is invaluable in determining the sustainability of land management systems. Criteria for soil quality assessment are: 1) Choose indicators of soil quality based on the multiple functions of soil that maintain productivity and environmental health, 2)must include s...

  14. Characterization and nutrient release from silicate rocks and influence on chemical changes in soil

    Directory of Open Access Journals (Sweden)

    Douglas Ramos Guelfi Silva

    2012-06-01

    Full Text Available The expansion of Brazilian agriculture has led to a heavy dependence on imported fertilizers to ensure the supply of the growing food demand. This fact has contributed to a growing interest in alternative nutrient sources, such as ground silicate rocks. It is necessary, however, to know the potential of nutrient release and changes these materials can cause in soils. The purpose of this study was to characterize six silicate rocks and evaluate their effects on the chemical properties of treated soil, assessed by chemical extractants after greenhouse incubation. The experimental design consisted of completely randomized plots, in a 3 x 6 factorial scheme, with four replications. The factors were potassium levels (0-control: without silicate rock application; 200; 400; 600 kg ha-1 of K2O, supplied as six silicate rock types (breccia, biotite schist, ultramafic rock, phlogopite schist and two types of mining waste. The chemical, physical and mineralogical properties of the alternative rock fertilizers were characterized. Treatments were applied to a dystrophic Red-Yellow Oxisol (Ferralsol, which was incubated for 100 days, at 70 % (w/w moisture in 3.7 kg/pots. The soil was evaluated for pH; calcium and magnesium were extracted with KCl 1 mol L-1; potassium, phosphorus and sodium by Mehlich 1; nickel, copper and zinc with DTPA; and the saturation of the cation exchange capacity was calculated for aluminum, calcium, magnesium, potassium, and sodium, and overall base saturation. The alternative fertilizers affected soil chemical properties. Ultramafic rock and Chapada mining byproduct (CMB were the silicate rocks that most influenced soil pH, while the mining byproduct (MB led to high K levels. Zinc availability was highest in the treatments with mining byproduct and Cu in soil fertilized with Chapada and mining byproduct.

  15. Chemical Species of Aluminum Lons in Acid Soils

    Institute of Scientific and Technical Information of China (English)

    XURENKOU; JIGUOLIANG

    1998-01-01

    Soil samples collected from several acid soils in Guangdong,Fujian,Zhejiang and Anhui provinces of the southern China were employded to characterize the chemical species of aluminum ions in the soils.The proportion or monoeric inorganic Al to total Al in soil solution was in the range of 19% to 70%,that of monomeric organlic Al (Al-OM) to total Al ranged from 7.7% to 69%,and that of the acid-soluble Al to total Al was generally smaller and was lower than 20% in most of the acid soils studied ,The Al-OM concentration in soil solution was postively correlated with the content of dissolved organic carbon(DOC) and aslo affected by the concentration of Al3+,The complexes of aluminum with fluoride(Al-F) were the predominant forms of inorganic Al,and the proportion of Al-F compexes to total inorganic Al increased with pH.Under strongly acid ondition,Al3+ was also a mjaor form of inorganic Al,and the proportio of Al3+ to total inorganic Al decreased with increasing pH.The,proportions of Al-OH and Al-SO4 complexes to total inorganic Al were small and were not larger than 10% in the most acid soils.The concentration of inorganic Al in solution depended largely on pH and the concentration of total F in soil solution,The concentrations of Al-OM,Al3+,Al-F and Al-OH complexes in topsoil were higher than those in subsoil and decreased with the increase in soil depth,The chemical species of aluminum ions were influenced by pH,The concentrations of Al-OM, Al3+,Al-F complexes and Al-OH complexes decreased with the increase in pH.

  16. Measurement of soil properties in-situ. Present methods: their applicability and potential

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.K.; Guzikowski, F.; Villet, W.C.B.

    1978-03-01

    The measurement of soil properties in-situ offers the advantages of minimal disturbance, retention of the in-situ state of stress, temperature, chemical, and biological environments, and cost effectiveness relative to many types of laboratory tests for evaluation of undisturbed soil properties. This report is concerned with techniques for in-situ measurement of permeability, strength, stress-deformation properties, and volume change properties; property classes which are of interest in most geotechnical engineering problems. Emphasis is on test concepts, data analysis and interpretation, and advantages and limitations of methods, as opposed to details of apparatus and procedure.

  17. Variabilidad temporal de algunas propiedades químicas en un suelo sometido a distintas sucesiones de cultivo Temporal variability of chemical properties in a soil with three cultivation systems

    Directory of Open Access Journals (Sweden)

    Orozimbo Silveira Carvalho

    1999-12-01

    Full Text Available El presente trabajo ha sido realizado en la Finca Experimental "La Poveda" en Arganda del Rey (Madrid, con las siguientes coordenadas geográficas: latitud 40º19' N; longitud 3º19' W Gr; y altitud 550 m. El objetivo principal consiste en el estudio de la variabilidad temporal de algunas propiedades químicas en un suelo sometido a distintas sucesiones de cultivo. Para el estudio de la variabilidad temporal de las características químicas el muestreo se realizó en los meses de febrero y septiembre de 1993 y febrero y septiembre de 1994. La materia orgánica del sistema Prado/Veza-Avena presenta el menor coeficiente de variación con respecto a los sistemas monocultivo de Cebada y Veza-Avena/Girasol. El menor contenido de materia orgánica a lo largo del tiempo lo presenta el sistema Cebada/Cebada. Los sistemas Prado/Veza-Avena y Veza-Avena/Girasol presentaron contenidos de materia orgánica 42,86% y 40,54% superiores al del sistema Cebada/Cebada.This study has been carried out at the Experimental Station "La Poveda" in Arganda del Rey (Madrid, with the following geographical coordinates: latitude 40º19' N; longitude 3º19' W Gr; and altitude 550 m. The main objective was to study the temporal variability of chemical properties in a soil with three cultivation systems. In order to study variation with time of chemical characteristics, samples were taken in February and September 1993 and February and September 1994. Organic matter content in the prairie/vetch-oat system had the smallest variation coefficient with respect to barley and vetch-oat/sunflower systems. Along with the time the barley/barley system presented a lower organic matter content. The crop systems pasture/vetch-oat and vetch-oat/sunflower presented an organic matter content 42.86 and 40.54% higher than that presented by barley/barley system, respectively.

  18. Climate-driven thresholds for chemical weathering in postglacial soils of New Zealand

    Science.gov (United States)

    Dixon, Jean L.; Chadwick, Oliver A.; Vitousek, Peter M.

    2016-09-01

    Chemical weathering in soils dissolves and alters minerals, mobilizes metals, liberates nutrients to terrestrial and aquatic ecosystems, and may modulate Earth's climate over geologic time scales. Climate-weathering relationships are often considered fundamental controls on the evolution of Earth's surface and biogeochemical cycles. However, surprisingly little consensus has emerged on if and how climate controls chemical weathering, and models and data from published literature often give contrasting correlations and predictions for how weathering rates and climate variables such as temperature or moisture are related. Here we combine insights gained from the different approaches, methods, and theory of the soil science, biogeochemistry, and geomorphology communities to tackle the fundamental question of how rainfall influences soil chemical properties. We explore climate-driven variations in weathering and soil development in young, postglacial soils of New Zealand, measuring soil elemental geochemistry along a large precipitation gradient (400-4700 mm/yr) across the Waitaki basin on Te Waipounamu, the South Island. Our data show a strong climate imprint on chemical weathering in these young soils. This climate control is evidenced by rapid nonlinear changes along the gradient in total and exchangeable cations in soils and in the increased movement and redistribution of metals with rainfall. The nonlinear behavior provides insight into why climate-weathering relationships may be elusive in some landscapes. These weathering thresholds also have significant implications for how climate may influence landscape evolution and the release of rock-derived nutrients to ecosystems, as landscapes that transition to wetter climates across this threshold may weather and deplete rapidly.

  19. Atributos químicos de solos influenciados pela substituição do carbonato por silicato de cálcio Soil chemical properties influenced by the substitution of calcium carbonate by calcium silicate

    Directory of Open Access Journals (Sweden)

    Renato Ferreira de Souza

    2008-08-01

    ácia do silicato de Ca foi inferior à de carbonato de Ca na melhoria das condições químicas do solo.The application of silicates to soils can result in increased soil cation exchange capacity (CEC, displace anions, especially H2PO4- (diacid phosphate, neutralize the pH and Al toxicity and, in general, increase the nutrient availability to plants. However, calcium silicates may be less efficient than calcium carbonates. To evaluate the effect of calcium carbonate substitution by calcium silicate on the soil chemical properties, especially on phosphorus availability, four experiments were conducted in an entirely randomized design with four replications, in a greenhouse. The treatments consisted of five levels (0, 25, 50, 75, and 100 % of calcium carbonate substitution by calcium silicate, with a 4:1 Ca:Mg stoichiometric and the same amount of CaO, enough to reach a 60 % base saturation. The treatments were applied to 4 dm³ samples of a sandy orthic Quartzarenic Neosol (Quartzpsament, a sandy loam dystrophic Red-Yellow Latosol (Oxisol, sandy clay loam dystrophic Red-Yellow Latosol (Oxisol and a clayey dystrophic Red Latosol (Oxisol; each soil represented one experiment. The pH values in H2O, P, phosphorus in the equilibrium solution (P-rem, K, Ca, Mg, Si, Al, H + Al, organic matter (OM, Cu, Mn, Zn and B, sum of bases (S, effective (t ant total (T CEC, base saturation (V and Al saturation (m were submitted to analysis of variance and simple regression models fitted as a function of CaCO3 substitution by CaSiO3 levels. It was observed that carbonate substitution by silicate promoted significant increases in the values of Si, Al, H + Al and m and reduction in the values of P-rem, pH, S, t and V. The values of Mehlich 1 P, K, Mg, OM, T, Mn, Cu, and B were not influenced significantly. A reduction in Zn availability was verified in the dystrophic orthic Quartzarenic Neosol only. Calcium silicate was less efficient than calcium carbonate in the improvement of soil chemical

  20. Removal of PCBs in contaminated soils by means of chemical reduction and advanced oxidation processes.

    Science.gov (United States)

    Rybnikova, V; Usman, M; Hanna, K

    2016-09-01

    Although the chemical reduction and advanced oxidation processes have been widely used individually, very few studies have assessed the combined reduction/oxidation approach for soil remediation. In the present study, experiments were performed in spiked sand and historically contaminated soil by using four synthetic nanoparticles (Fe(0), Fe/Ni, Fe3O4, Fe3 - x Ni x O4). These nanoparticles were tested firstly for reductive transformation of polychlorinated biphenyls (PCBs) and then employed as catalysts to promote chemical oxidation reactions (H2O2 or persulfate). Obtained results indicated that bimetallic nanoparticles Fe/Ni showed the highest efficiency in reduction of PCB28 and PCB118 in spiked sand (97 and 79 %, respectively), whereas magnetite (Fe3O4) exhibited a high catalytic stability during the combined reduction/oxidation approach. In chemical oxidation, persulfate showed higher PCB degradation extent than hydrogen peroxide. As expected, the degradation efficiency was found to be limited in historically contaminated soil, where only Fe(0) and Fe/Ni particles exhibited reductive capability towards PCBs (13 and 18 %). In oxidation step, the highest degradation extents were obtained in presence of Fe(0) and Fe/Ni (18-19 %). The increase in particle and oxidant doses improved the efficiency of treatment, but overall degradation extents did not exceed 30 %, suggesting that only a small part of PCBs in soil was available for reaction with catalyst and/or oxidant. The use of organic solvent or cyclodextrin to improve the PCB availability in soil did not enhance degradation efficiency, underscoring the strong impact of soil matrix. Moreover, a better PCB degradation was observed in sand spiked with extractable organic matter separated from contaminated soil. In contrast to fractions with higher particle size (250-500 and oxidation reactions in soils and understand the impact of soil properties on remediation performance.

  1. Chemical oxidation of cable insulating oil contaminated soil

    NARCIS (Netherlands)

    Jinlan Xu,; Pancras, T.; Grotenhuis, J.T.C.

    2011-01-01

    Leaking cable insulating oil is a common source of soil contamination of high-voltage underground electricity cables in many European countries. In situ remediation of these contaminations is very difficult, due to the nature of the contamination and the high concentrations present. Chemical oxidati

  2. Chemical speciation and behaviour of cyanide in contaminated