WorldWideScience

Sample records for chemical shift calculations

  1. Calculations of NMR chemical shifts with APW-based methods

    Science.gov (United States)

    Laskowski, Robert; Blaha, Peter

    2012-01-01

    We present a full potential, all electron augmented plane wave (APW) implementation of first-principles calculations of NMR chemical shifts. In order to obtain the induced current we follow a perturbation approach [Pickard and Mauri, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.63.245101 63, 245101 (2001)] and extended the common APW + local orbital (LO) basis by several LOs at higher energies. The calculated all-electron current is represented in traditional APW manner as Fourier series in the interstitial region and with a spherical harmonics representation inside the nonoverlapping atomic spheres. The current is integrated using a “pseudocharge” technique. The implementation is validated by comparison of the computed chemical shifts with some “exact” results for spherical atoms and for a set of solids and molecules with available published data.

  2. Accurate calculation of (31)P NMR chemical shifts in polyoxometalates.

    Science.gov (United States)

    Pascual-Borràs, Magda; López, Xavier; Poblet, Josep M

    2015-04-14

    We search for the best density functional theory strategy for the determination of (31)P nuclear magnetic resonance (NMR) chemical shifts, δ((31)P), in polyoxometalates. Among the variables governing the quality of the quantum modelling, we tackle herein the influence of the functional and the basis set. The spin-orbit and solvent effects were routinely included. To do so we analysed the family of structures α-[P2W18-xMxO62](n-) with M = Mo(VI), V(V) or Nb(V); [P2W17O62(M'R)](n-) with M' = Sn(IV), Ge(IV) and Ru(II) and [PW12-xMxO40](n-) with M = Pd(IV), Nb(V) and Ti(IV). The main results suggest that, to date, the best procedure for the accurate calculation of δ((31)P) in polyoxometalates is the combination of TZP/PBE//TZ2P/OPBE (for NMR//optimization step). The hybrid functionals (PBE0, B3LYP) tested herein were applied to the NMR step, besides being more CPU-consuming, do not outperform pure GGA functionals. Although previous studies on (183)W NMR suggested that the use of very large basis sets like QZ4P were needed for geometry optimization, the present results indicate that TZ2P suffices if the functional is optimal. Moreover, scaling corrections were applied to the results providing low mean absolute errors below 1 ppm for δ((31)P), which is a step forward in order to confirm or predict chemical shifts in polyoxometalates. Finally, via a simplified molecular model, we establish how the small variations in δ((31)P) arise from energy changes in the occupied and virtual orbitals of the PO4 group. PMID:25738630

  3. AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules

    International Nuclear Information System (INIS)

    We evaluate the performance of the automated fragmentation quantum mechanics/molecular mechanics approach (AF-QM/MM) on the calculation of protein and nucleic acid NMR chemical shifts. The AF-QM/MM approach models solvent effects implicitly through a set of surface charges computed using the Poisson–Boltzmann equation, and it can also be combined with an explicit solvent model through the placement of water molecules in the first solvation shell around the solute; the latter substantially improves the accuracy of chemical shift prediction of protons involved in hydrogen bonding with solvent. We also compare the performance of AF-QM/MM on proteins and nucleic acids with two leading empirical chemical shift prediction programs SHIFTS and SHIFTX2. Although the empirical programs outperform AF-QM/MM in predicting chemical shifts, the differences are in some cases small, and the latter can be applied to chemical shifts on biomolecules which are outside the training set employed by the empirical programs, such as structures containing ligands, metal centers, and non-standard residues. The AF-QM/MM described here is implemented in version 5 of the SHIFTS software, and is fully automated, so that only a structure in PDB format is required as input

  4. AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Swails, Jason [Rutgers University, Department of Chemistry and Chemical Biology and BioMaPS Institute (United States); Zhu, Tong; He, Xiao, E-mail: xiaohe@phy.ecnu.edu.cn [East China Normal University, State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science (China); Case, David A., E-mail: case@biomaps.rutgers.edu [Rutgers University, Department of Chemistry and Chemical Biology and BioMaPS Institute (United States)

    2015-10-15

    We evaluate the performance of the automated fragmentation quantum mechanics/molecular mechanics approach (AF-QM/MM) on the calculation of protein and nucleic acid NMR chemical shifts. The AF-QM/MM approach models solvent effects implicitly through a set of surface charges computed using the Poisson–Boltzmann equation, and it can also be combined with an explicit solvent model through the placement of water molecules in the first solvation shell around the solute; the latter substantially improves the accuracy of chemical shift prediction of protons involved in hydrogen bonding with solvent. We also compare the performance of AF-QM/MM on proteins and nucleic acids with two leading empirical chemical shift prediction programs SHIFTS and SHIFTX2. Although the empirical programs outperform AF-QM/MM in predicting chemical shifts, the differences are in some cases small, and the latter can be applied to chemical shifts on biomolecules which are outside the training set employed by the empirical programs, such as structures containing ligands, metal centers, and non-standard residues. The AF-QM/MM described here is implemented in version 5 of the SHIFTS software, and is fully automated, so that only a structure in PDB format is required as input.

  5. Parameter-free calculation of K alpha chemical shifts for Al, Si, and Ge oxides

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2001-01-01

    The chemical shifts of the K alpha radiation line from Al, Si, and Ge ions between their elemental and oxide forms are calculated within the framework of density functional theory using ultrasoft pseudopotentials. It is demonstrated that this theoretical approach yields quantitatively accurate re...... implanted in silica are found to be in excellent agreement with experimental data, providing support for the proposed atomic geometry....

  6. Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines

    DEFF Research Database (Denmark)

    Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.;

    2011-01-01

    Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation. This me...

  7. Identifying Stereoisomers by ab-initio Calculation of Secondary Isotope Shifts on NMR Chemical Shieldings

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Böhm

    2014-04-01

    Full Text Available We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2Hethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  8. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method

    Science.gov (United States)

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  9. Four-Component Relativistic DFT Calculations of (13)C Chemical Shifts of Halogenated Natural Substances.

    Science.gov (United States)

    Casella, Girolamo; Bagno, Alessandro; Komorovsky, Stanislav; Repisky, Michal; Saielli, Giacomo

    2015-12-14

    We have calculated the (13)C NMR chemical shifts of a large ensemble of halogenated organic molecules (81 molecules for a total of 250 experimental (13)C NMR data at four different levels of theory), ranging from small rigid organic compounds, used to benchmark the performance of various levels of theory, to natural substances of marine origin with conformational degrees of freedom. Carbon atoms bonded to heavy halogen atoms, particularly bromine and iodine, are known to be rather challenging when it comes to the prediction of their chemical shifts by quantum methods, due to relativistic effects. In this paper, we have applied the state-of-the-art four-component relativistic density functional theory for the prediction of such NMR properties and compared the performance with two-component and nonrelativistic methods. Our results highlight the necessity to include relativistic corrections within a four-component description for the most accurate prediction of the NMR properties of halogenated organic substances. PMID:26541625

  10. Protein Chemical Shift Prediction

    CERN Document Server

    Larsen, Anders S

    2014-01-01

    The protein chemical shifts holds a large amount of information about the 3-dimensional structure of the protein. A number of chemical shift predictors based on the relationship between structures resolved with X-ray crystallography and the corresponding experimental chemical shifts have been developed. These empirical predictors are very accurate on X-ray structures but tends to be insensitive to small structural changes. To overcome this limitation it has been suggested to make chemical shift predictors based on quantum mechanical(QM) calculations. In this thesis the development of the QM derived chemical shift predictor Procs14 is presented. Procs14 is based on 2.35 million density functional theory(DFT) calculations on tripeptides and contains corrections for hydrogen bonding, ring current and the effect of the previous and following residue. Procs14 is capable at performing predictions for the 13CA, 13CB, 13CO, 15NH, 1HN and 1HA backbone atoms. In order to benchmark Procs14, a number of QM NMR calculatio...

  11. Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins

    NARCIS (Netherlands)

    Tamiola, Kamil; Mulder, Frans A. A.

    2012-01-01

    NMR spectroscopy offers the unique possibility to relate the structural propensities of disordered proteins and loop segments of folded peptides to biological function and aggregation behaviour. Backbone chemical shifts are ideally suited for this task, provided that appropriate reference data are a

  12. Chemical Shifts in Nucleic Acids Studied by Density Functional Theory Calculations and Comparison with Experiment

    Czech Academy of Sciences Publication Activity Database

    Fonville, J. M.; Swart, M.; Vokáčová, Zuzana; Sychrovský, Vladimír; Šponer, Judit E.; Šponer, Jiří; Hilbers, C. W.; Bickelhaupt, F. M.; Wijmenga, S. S.

    2012-01-01

    Roč. 18, č. 39 (2012), s. 12372-12387. ISSN 0947-6539 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50040702; CEZ:AV0Z50040507 Keywords : density functional calculations * NMR spectroscopy * nucleic acids * structure elucidation Subject RIV: CF - Physical ; Theoretical Chemistry; BO - Biophysics (BFU-R) Impact factor: 5.831, year: 2012

  13. Toward Reproducing Sequence Trends in Phosphorus Chemical Shifts for Nucleic Acids by MD/DFT Calculations

    Czech Academy of Sciences Publication Activity Database

    Přecechtělová, J.; Munzarová, M. L.; Vaara, J.; Novotný, J.; Dračínský, Martin; Sklenář, V.

    2013-01-01

    Roč. 9, č. 3 (2013), s. 1641-1656. ISSN 1549-9618 Grant ostatní: GA MŠk(CZ) LM2010005; GA MŠk(CZ) LC06030 Institutional support: RVO:61388963 Keywords : density-funtional calculations * molecular-dynamics simulations * phosphate group * B-DNA Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013

  14. Molecular structure and vibrational and chemical shift assignments of 3‧-chloro-4-dimethylamino azobenzene by DFT calculations

    Science.gov (United States)

    Toy, Mehmet; Tanak, Hasan

    2016-01-01

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of azo compound 3‧-chloro-4-dimethlamino azobenzene are reported. The molecular geometry, vibrational wavenumbers and the first order hyperpolarizability of the title compound were calculated with the help of density functional theory computations. The optimized geometric parameters obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The vibrational transitions were identified based on the recorded FT-IR spectra in the range of 4000-400 cm-1 for solid state. The 1H isotropic chemical shifts with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and good agreement is determined with the experimental ones. To investigate the NLO properties of the title compound, the polarizability and the first hyperpolarizability were calculated using the density functional B3LYP method with the 6-311++G(d,p) basis set. According to results, the title compound exhibits non-zero first hyperpolarizability value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential and frontier molecular orbitals were also performed at 6-311++G(d,p) level of theory.

  15. On the calculation of Mossbauer isomer shift

    NARCIS (Netherlands)

    Filatov, Michael

    2007-01-01

    A quantum chemical computational scheme for the calculation of isomer shift in Mossbauer spectroscopy is suggested. Within the described scheme, the isomer shift is treated as a derivative of the total electronic energy with respect to the radius of a finite nucleus. The explicit use of a finite nuc

  16. The Effect of Molecular Conformation on the Accuracy of Theoretical (1)H and (13)C Chemical Shifts Calculated by Ab Initio Methods for Metabolic Mixture Analysis.

    Science.gov (United States)

    Chikayama, Eisuke; Shimbo, Yudai; Komatsu, Keiko; Kikuchi, Jun

    2016-04-14

    NMR spectroscopy is a powerful method for analyzing metabolic mixtures. The information obtained from an NMR spectrum is in the form of physical parameters, such as chemical shifts, and construction of databases for many metabolites will be useful for data interpretation. To increase the accuracy of theoretical chemical shifts for development of a database for a variety of metabolites, the effects of sets of conformations (structural ensembles) and the levels of theory on computations of theoretical chemical shifts were systematically investigated for a set of 29 small molecules in the present study. For each of the 29 compounds, 101 structures were generated by classical molecular dynamics at 298.15 K, and then theoretical chemical shifts for 164 (1)H and 123 (13)C atoms were calculated by ab initio quantum chemical methods. Six levels of theory were used by pairing Hartree-Fock, B3LYP (density functional theory), or second order Møller-Plesset perturbation with 6-31G or aug-cc-pVDZ basis set. The six average fluctuations in the (1)H chemical shift were ±0.63, ± 0.59, ± 0.70, ± 0.62, ± 0.75, and ±0.66 ppm for the structural ensembles, and the six average errors were ±0.34, ± 0.27, ± 0.32, ± 0.25, ± 0.32, and ±0.25 ppm. The results showed that chemical shift fluctuations with changes in the conformation because of molecular motion were larger than the differences between computed and experimental chemical shifts for all six levels of theory. In conclusion, selection of an appropriate structural ensemble should be performed before theoretical chemical shift calculations for development of an accurate database for a variety of metabolites. PMID:26963288

  17. Effect of spectra recording conditions on the example of chemical shifts calculation in CMR spectra of 1-pentylbenzoylformate

    OpenAIRE

    Mizyuk, Volodymyr; Shibanov, Volodymyr

    2011-01-01

    The concept of "compatible" and "incompatible" CMR spectra has been introduced. Application of compatibility increments (IC) allows to calculate the chemical shifts of C and C3 atoms of pentyloxyl fragment in 1-pentylbenzoylformate with a sufficiently good accuracy. Введено поняття "сумісних " і "несумісних " ЯМР спектрів. Застосування "інкрементів узгодження " дало можливість з достатньою точністю розрахувати хімічні зсуви атомів С2 і С пентилоксильного фрагменту в 1-пентилбензоїлформіаті....

  18. Phosphorus Chemical Shifts in Drew-Dickerson Dodecamer and DNA Hairpin from MD-DFT Calculations: NMR Based Force Field Validation

    Czech Academy of Sciences Publication Activity Database

    Přecechtělová, J.; Munzarová, M. L.; Vaara, J.; Novák, P.; Dračínský, Martin; Sklenář, V.

    Ireland : University College Dublin, 2012. s. 72-72. [EUROMAR 2012. Magnetic Resonance Conference. 01.07.2012-05.07.2012, Dublin] Institutional research plan: CEZ:AV0Z40550506 Keywords : NMR spectroscopy * phosphorus chemical shift * DFT calculations Subject RIV: CC - Organic Chemistry

  19. First-principles calculation of spectral features, chemical shift and absolute threshold of ELNES and XANES using a plane wave pseudopotential method

    International Nuclear Information System (INIS)

    Spectral features, chemical shifts, and absolute thresholds of electron energy loss near-edge structure (ELNES) and x-ray absorption near-edge structure (XANES) for selected compounds, i.e. TiO2 (rutile), TiO2 (anatase), SrTiO3, Ti2O3, Al2O3, AlN and β-Ga2O3, were calculated by a plane wave pseudopotential method. Experimental ELNES/XANES of those compounds were well reproduced when an excited pseudopotential, which includes a core hole, was used. In addition to the spectral features, it was found that chemical shifts among different compounds were also reproduced by correcting the contribution of the excited pseudopotentials to the energy of the core orbital.

  20. Geometric effects on carbon-13 chemical shifts

    International Nuclear Information System (INIS)

    In the course of our investigations on carbon-13 chemical shifts of tetracyclic dodecanes, we managed to show that a large number of chemical shift differences between members of the series and models provided by bicyclic analogs could be attributed to steric effects. There are examples, however, where this is clearly not the case. In order to investigate apparent anomalies we calculated structures of interest and looked into the relationships between molecular geometry and chemical shifts. As the assignment of some of the key structures in these analysis were made by comparison with model compounds and crucial experiments that could remove ambiguities were missing, we prepared and interpreted two spectra which are presented

  1. Toward calculations of the 129Xe chemical shift in Xe@C60 at experimental conditions: Relativity, correlation, and dynamics

    Czech Academy of Sciences Publication Activity Database

    Straka, Michal; Lantto, P.; Vaara, J.

    2008-01-01

    Roč. 112, č. 12 (2008), s. 2658-2668. ISSN 1089-5639 Institutional research plan: CEZ:AV0Z40550506 Keywords : NMR * theoretical calculations * role of dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.871, year: 2008

  2. Effects of structural differences on the NMR chemical shifts in cinnamic acid derivatives: Comparison of GIAO and GIPAW calculations

    Science.gov (United States)

    Szeleszczuk, Łukasz; Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Wawer, Iwona

    2016-06-01

    In this article we report the results of combined theoretical and experimental structural studies on cinnamic acid derivatives (CADs), one of the main groups of secondary metabolites present in various medicinal plant species and food products of plant origin. The effects of structural differences in CADs on their spectroscopic properties were studied in detail by both: solid-state NMR and GIAO/GIPAW calculations. Theoretical computations were used in order to perform signal assignment in 13C CP/MAS NMR spectra of the cinnamic, o-coumaric, m-coumaric, p-coumaric, caffeic, ferulic, sinapic and 3,4-dimethoxycinnamic acids, and to evaluate the accuracy of GIPAW and GIAO methodology.

  3. Accessible surface area from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hafsa, Noor E.; Arndt, David; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-07-15

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  4. Accessible surface area from NMR chemical shifts

    International Nuclear Information System (INIS)

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation

  5. A Short History of Three Chemical Shifts

    Science.gov (United States)

    Nagaoka, Shin-ichi

    2007-01-01

    A short history of chemical shifts in nuclear magnetic resonance (NMR), electron spectroscopy for chemical analysis (ESCA) and Mossbauer spectroscopy, which are useful for chemical studies, is described. The term chemical shift is shown to have originated in the mistaken assumption that nuclei of a given element would all undergo resonance at the…

  6. Determination of the configuration in six-membered saturated heterocycles (N, P, S, Se) and their oxidation products using experimental and calculated NMR chemical shifts

    Czech Academy of Sciences Publication Activity Database

    Buděšínský, Miloš; Vaněk, Václav; Dračínský, Martin; Pohl, Radek; Poštová Slavětínská, Lenka; Sychrovský, Vladimír; Pícha, Jan; Císařová, I.

    2014-01-01

    Roč. 70, č. 25 (2014), s. 3871-3886. ISSN 0040-4020 R&D Projects: GA ČR GA203/09/1919; GA ČR GA13-24880S Institutional support: RVO:61388963 Keywords : six-membered saturated heterocycles (N, P, S, Se) * oxidation products * configuration * NMR * quantum chemical calculations * X-ray structures Subject RIV: CC - Organic Chemistry Impact factor: 2.641, year: 2014

  7. MR chemical shift imaging of human atheroma

    International Nuclear Information System (INIS)

    The lipid content of atheromatous plaques has been measured with chemical shift MR imaging by taking advantage of the different resonance frequencies of protons in lipid and water. Fifteen postmortem aortic specimens of the human descending aorta and the aortae of seven patients with documented peripheral vascular disease were studied at 0.5 T. Spin-echo images were used to localize the lesions before acquisition of the chemical shift images. The specimens were examined histologically, and the lipid distribution in the plaque showed good correlation with the chemical shift data. Validation in vivo and clinical applications remain to be established

  8. An evaluation of chemical shift index-based secondary structure determination in proteins: Influence of random coil chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Mielke, S.P.; Krishnan, V.V. [Biophysics Graduate Group, University of California, Davis (United States)], E-mail: krish@llnl.gov

    2004-10-15

    Random coil chemical shifts are commonly used to detect protein secondary structural elements in chemical shift index (CSI) calculations. Though this technique is widely used and seems reliable for folded proteins, the choice of reference random coil chemical shift values can significantly alter the outcome of secondary structure estimation. In order to evaluate these effects, we present a comparison of secondary structure content calculated using CSI, based on five different reference random coil chemical shift value sets, to that derived from three-dimensional structures. Our results show that none of the reference random coil data sets chosen for evaluation fully reproduces the actual secondary structures. Among the reference values generally available to date, most tend to be good estimators only of helices. Based on our evaluation, we recommend the experimental values measured by Schwarzinger et al. (2000), and statistical values obtained by Lukin et al. (1997), as good estimators of both helical and sheet content.

  9. Plakilactones G and H from a marine sponge. Stereochemical determination of highly flexible systems by quantitative NMR-derived interproton distances combined with quantum mechanical calculations of 13C chemical shifts

    Directory of Open Access Journals (Sweden)

    Simone Di Micco

    2013-12-01

    Full Text Available In this paper the stereostructural investigation of two new oxygenated polyketides, plakilactones G and H, isolated from the marine sponge Plakinastrella mamillaris collected at Fiji Islands, is reported. The stereostructural studies began on plakilactone H by applying an integrated approach of the NOE-based protocol and quantum mechanical calculations of 13C chemical shifts. In particular, plakilactone H was used as a template to extend the application of NMR-derived interproton distances to a highly flexible molecular system with simultaneous assignment of four non-contiguous stereocenters. Chemical derivatization and quantum mechanical calculations of 13C on plakilactone G along with a plausible biogenetic interconversion between plakilactone G and plakilactone H allowed us to determine the absolute configuration in this two new oxygenated polyketides.

  10. Bayesian inference of protein structure from chemical shift data

    Directory of Open Access Journals (Sweden)

    Lars A. Bratholm

    2015-03-01

    Full Text Available Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model, and a bias is introduced which might result in incorrect structures. In the inferential structure determination framework, both the unknown structure and the disagreement between experimental and back-calculated data are formulated as a joint probability distribution, thus utilizing the full information content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term, the simulations suggests that sampling both the structure and the uncertainties in chemical shift prediction leads more accurate structures compared to conventional methods using empirical determined weights. The Cauchy distribution, using either sampled uncertainties or predetermined weights, did, however, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction.

  11. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    International Nuclear Information System (INIS)

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method

  12. Relativistic calculations of isotope shifts in highly charged ions

    OpenAIRE

    Tupitsyn, I. I.; Shabaev, V. M.; Lopez-Urrutia, J. R. Crespo; Draganic, I.; Orts, R. Soria; Ullrich, J.

    2003-01-01

    The isotope shifts of forbidden transitions in Be- and B-like argon ions are calculated. It is shown that only using the relativistic recoil operator can provide a proper evaluation of the mass isotope shift, which strongly dominates over the field isotope shift for the ions under consideration. Comparing the isotope shifts calculated with the current experimental uncertainties indicates very good perspectives for a first test of the relativistic theory of the recoil effect in middle-Z ions.

  13. Determination of the configuration in six-membered saturated heterocycles (N, P, S, Se) and their oxidation products using experimental and calculated NMR chemical shifts

    Czech Academy of Sciences Publication Activity Database

    Buděšínský, Miloš; Vaněk, Václav; Dračínský, Martin; Pohl, Radek; Poštová Slavětínská, Lenka; Sychrovský, Vladimír; Pícha, Jan; Císařová, I.

    Hersonissos: -, 2013. s. 612-612. [EUROMAR 2013. A European Magnetic Resonance Meeting. 30.06.2013-05.07.2013, Hersonissos] R&D Projects: GA ČR GA13-24880S Institutional support: RVO:61388963 Keywords : NMR * 1H * 13C * six-membered saturated heterocycles * oxidation * DFT and HF calculations Subject RIV: CB - Analytical Chemistry, Separation

  14. Random coil chemical shift for intrinsically disordered proteins

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin

    2011-01-01

    Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins. The quality of the secondary chemical shifts is dependent on an appropriate choice of random coil chemical shifts. We report random coil chemical....... Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series...

  15. Protein Structure Determination Using Chemical Shifts

    DEFF Research Database (Denmark)

    Christensen, Anders Steen

    In this thesis, a protein structure determination using chemical shifts is presented. The method is implemented in the open source PHAISTOS protein simulation framework. The method combines sampling from a generative model with a coarse-grained force field and an energy function that includes che...... residues. For Rhodopsin (225 residues) a structure is found at 2.5 Å CA-RMSD from the experimental X-ray structure, and a structure is determined for the Savinase protein (269 residues) with 2.9 Å CA-RMSD from the experimental X-ray structure....

  16. Estimation of optical chemical shift in nuclear spin optical rotation

    International Nuclear Information System (INIS)

    Highlights: • Analytical theory of nuclear spin optical rotation (NSOR) is further developed. • Derive formula of NSOR ratio R between different nuclei in a same molecule. • Calculated results of R agree with the experiments. • Analyze influence factors on R and chemical distinction by NSOR. - Abstract: A recently proposed optical chemical shift in nuclear spin optical rotation (NSOR) is studied by theoretical comparison of NSOR magnitude between chemically non-equivalent or different element nuclei in the same molecule. Theoretical expressions of the ratio R between their NSOR magnitudes are derived by using a known semi-empirical formula of NSOR. Taking methanol, tri-ethyl-phosphite and 2-methyl-benzothiazole as examples, the ratios R are calculated and the results approximately agree with the experiments. Based on those, the important influence factors on R and chemical distinction by NSOR are discussed

  17. Calculation of isotope shifts and relativistic shifts in CI, CII, CIII and CIV

    OpenAIRE

    Berengut, J. C.; Flambaum, V. V.; Kozlov, M. G.

    2005-01-01

    We present an accurate ab initio method of calculating isotope shifts and relativistic shifts in atomic spectra. We test the method on neutral carbon and three carbon ions. The relativistic shift of carbon lines may allow them to be included in analyses of quasar absorption spectra that seek to measure possible variations in the fine structure constant, alpha, over the lifetime of the Universe. Carbon isotope shifts can be used to measure isotope abundances in gas clouds: isotope abundances a...

  18. Chemical shift MR imaging of the skin

    International Nuclear Information System (INIS)

    MR imaging with conventional spin-echo pulse sequences has not found wide application in the evaluation of skin pathology. This paper reports that this study was designed to determine the value of chemical shift imaging (CSI) compared with conventional pulse sequences for the noninvasive evaluation of connective tissue and neoplastic disease of the skin and underlying fascia. The studies were acquired in patients and volunteers on a whole-body system at 1.5 T and small surface coils. Comparisons were made between T1- and T2-weighted gradient-echo, spin-echo, and hybrid lipid and water-suppressed CSI series (Chopper-Dixon combined with frequency-selective pulse). CSI improves detail in the hypodermis by eliminating unwanted (lipid) signal and chemical shift misregistration artifact. The detail of water-based signal is improved in the deeper layers of the skin by improved tissue contrast and elimination of the disturbing adjacent dominant fat-based signal. MR imaging has the potential to provide information that can complement skin biopsy. A more optimal choice of pulse sequences can improve the sensitivity of MR imaging to water-based pathology and allow noninvasive visualization of deep layers. The CSI sequences may be useful in the evaluation of infiltrative and neoplastic disease of the skin, particularly as they are adapted into microimaging methods with local gradient coils

  19. Improving 3D structure prediction from chemical shift data

    International Nuclear Information System (INIS)

    We report advances in the calculation of protein structures from chemical shift nuclear magnetic resonance data alone. Our previously developed method, CS-Rosetta, assembles structures from a library of short protein fragments picked from a large library of protein structures using chemical shifts and sequence information. Here we demonstrate that combination of a new and improved fragment picker and the iterative sampling algorithm RASREC yield significant improvements in convergence and accuracy. Moreover, we introduce improved criteria for assessing the accuracy of the models produced by the method. The method was tested on 39 proteins in the 50–100 residue size range and yields reliable structures in 70 % of the cases. All structures that passed the reliability filter were accurate (<2 Å RMSD from the reference)

  20. Improving 3D structure prediction from chemical shift data

    Energy Technology Data Exchange (ETDEWEB)

    Schot, Gijs van der [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Zhang, Zaiyong [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany); Vernon, Robert [University of Washington, Department of Biochemistry (United States); Shen, Yang [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Vranken, Wim F. [VIB, Department of Structural Biology (Belgium); Baker, David [University of Washington, Department of Biochemistry (United States); Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Lange, Oliver F., E-mail: oliver.lange@tum.de [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany)

    2013-09-15

    We report advances in the calculation of protein structures from chemical shift nuclear magnetic resonance data alone. Our previously developed method, CS-Rosetta, assembles structures from a library of short protein fragments picked from a large library of protein structures using chemical shifts and sequence information. Here we demonstrate that combination of a new and improved fragment picker and the iterative sampling algorithm RASREC yield significant improvements in convergence and accuracy. Moreover, we introduce improved criteria for assessing the accuracy of the models produced by the method. The method was tested on 39 proteins in the 50-100 residue size range and yields reliable structures in 70 % of the cases. All structures that passed the reliability filter were accurate (<2 A RMSD from the reference)

  1. Magnetic shift of the chemical freezeout and electric charge fluctuations

    CERN Document Server

    Fukushima, Kenji

    2016-01-01

    We discuss the effect of a strong magnetic field on the chemical freezeout points in the ultra-relativistic heavy-ion collision. As a result of the inverse magnetic catalysis or the magnetic inhibition, the crossover onset to hot and dense matter out of quarks and gluons should be shifted to a lower temperature. To quantify this shift we employ the hadron resonance gas model and an empirical condition for the chemical freezeout. We point out that the charged particle abundances are significantly affected by the magnetic field so that the electric charge fluctuation is largely enhanced especially at high baryon density. The charge conservation partially cancels the enhancement but our calculation shows that the electric charge fluctuation could serve as a magnetometer.

  2. Inferential protein structure determination and refinement using fast, electronic structure based backbone amide chemical shift predictions

    CERN Document Server

    Christensen, Anders S

    2015-01-01

    This report covers the development of a new, fast method for calculating the backbone amide proton chemical shifts in proteins. Through quantum chemical calculations, structure-based forudsiglese the chemical shift for amidprotonen in protein has been parameterized. The parameters are then implemented in a computer program called Padawan. The program has since been implemented in protein folding program Phaistos, wherein the method andvendes to de novo folding of the protein structures and to refine the existing protein structures.

  3. Infrared lens thermal effect: equivalent focal shift and calculating model

    Science.gov (United States)

    Zhang, Cheng-shuo; Shi, Zelin; Feng, Bin; Xu, Bao-shu

    2014-11-01

    It's well-know that the focal shift of infrared lens is the major factor in degeneration of imaging quality when temperature change. In order to figure out the connection between temperature change and focal shift, partial differential equations of thermal effect on light path are obtained by raytrace method, to begin with. The approximately solution of the PDEs show that focal shift is proportional to temperature change. And a formula to compute the proportional factor is given. In order to understand infrared lens thermal effect deeply, we use defocus by image plane shift at constant temperature to equivalently represent thermal effect on infrared lens. So equivalent focal shift (EFS) is defined and its calculating model is proposed at last. In order to verify EFS and its calculating model, Physical experimental platform including a motorized linear stage with built-in controller, blackbody, target, collimator, IR detector, computer and other devices is developed. The experimental results indicate that EFS make the image plane shift at constant temperature have the same influence on infrared lens as thermal effect and its calculating model is correct.

  4. Probabilistic Approach to Determining Unbiased Random-coil Carbon-13 Chemical Shift Values from the Protein Chemical Shift Database

    International Nuclear Information System (INIS)

    We describe a probabilistic model for deriving, from the database of assigned chemical shifts, a set of random coil chemical shift values that are 'unbiased' insofar as contributions from detectable secondary structure have been minimized (RCCSu). We have used this approach to derive a set of RCCSu values for 13Cα and 13Cβ for 17 of the 20 standard amino acid residue types by taking advantage of the known opposite conformational dependence of these parameters. We present a second probabilistic approach that utilizes the maximum entropy principle to analyze the database of 13Cα and 13Cβ chemical shifts considered separately; this approach yielded a second set of random coil chemical shifts (RCCSmax-ent). Both new approaches analyze the chemical shift database without reference to known structure. Prior approaches have used either the chemical shifts of small peptides assumed to model the random coil state (RCCSpeptide) or statistical analysis of chemical shifts associated with structure not in helical or strand conformation (RCCSstruct-stat). We show that the RCCSmax-ent values are strikingly similar to published RCCSpeptide and RCCSstruct-stat values. By contrast, the RCCSu values differ significantly from both published types of random coil chemical shift values. The differences (RCCSpeptide-RCCSu) for individual residue types show a correlation with known intrinsic conformational propensities. These results suggest that random coil chemical shift values from both prior approaches are biased by conformational preferences. RCCSu values appear to be consistent with the current concept of the 'random coil' as the state in which the geometry of the polypeptide ensemble samples the allowed region of (φ,ψ)-space in the absence of any dominant stabilizing interactions and thus represent an improved basis for the detection of secondary structure. Coupled with the growing database of chemical shifts, this probabilistic approach makes it possible to refine

  5. Probabilistic validation of protein NMR chemical shift assignments

    International Nuclear Information System (INIS)

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data. ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/ http://areca.nmrfam.wisc.edu/

  6. Probabilistic validation of protein NMR chemical shift assignments

    Energy Technology Data Exchange (ETDEWEB)

    Dashti, Hesam [University of Wisconsin-Madison, Graduate Program in Biophysics, Biochemistry Department (United States); Tonelli, Marco; Lee, Woonghee; Westler, William M.; Cornilescu, Gabriel [University of Wisconsin-Madison, Biochemistry Department, National Magnetic Resonance Facility at Madison (United States); Ulrich, Eldon L. [University of Wisconsin-Madison, BioMagResBank, Biochemistry Department (United States); Markley, John L., E-mail: markley@nmrfam.wisc.edu, E-mail: jmarkley@wisc.edu [University of Wisconsin-Madison, Biochemistry Department, National Magnetic Resonance Facility at Madison (United States)

    2016-01-15

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data. ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/ http://areca.nmrfam.wisc.edu/.

  7. A procedure to validate and correct the 13C chemical shift calibration of RNA datasets

    International Nuclear Information System (INIS)

    Chemical shifts reflect the structural environment of a certain nucleus and can be used to extract structural and dynamic information. Proper calibration is indispensable to extract such information from chemical shifts. Whereas a variety of procedures exist to verify the chemical shift calibration for proteins, no such procedure is available for RNAs to date. We present here a procedure to analyze and correct the calibration of 13C NMR data of RNAs. Our procedure uses five 13C chemical shifts as a reference, each of them found in a narrow shift range in most datasets deposited in the Biological Magnetic Resonance Bank. In 49 datasets we could evaluate the 13C calibration and detect errors or inconsistencies in RNA 13C chemical shifts based on these chemical shift reference values. More than half of the datasets (27 out of those 49) were found to be improperly referenced or contained inconsistencies. This large inconsistency rate possibly explains that no clear structure–13C chemical shift relationship has emerged for RNA so far. We were able to recalibrate or correct 17 datasets resulting in 39 usable 13C datasets. 6 new datasets from our lab were used to verify our method increasing the database to 45 usable datasets. We can now search for structure–chemical shift relationships with this improved list of 13C chemical shift data. This is demonstrated by a clear relationship between ribose 13C shifts and the sugar pucker, which can be used to predict a C2′- or C3′-endo conformation of the ribose with high accuracy. The improved quality of the chemical shift data allows statistical analysis with the potential to facilitate assignment procedures, and the extraction of restraints for structure calculations of RNA.

  8. Detection of initiation sites in protein folding of the four helix bundle ACBP by chemical shift analysis

    DEFF Research Database (Denmark)

    Modig, K.; Jürgensen, Vibeke Würtz; Lindorff-Larsen, K.;

    2007-01-01

    A simple alternative method for obtaining "random coil" chemical shifts by intrinsic referencing using the protein's own peptide sequence is presented. These intrinsic random coil backbone shifts were then used to calculate secondary chemical shifts, that provide important information on the resi...

  9. Calculations of the shifts of an X-ray line in the nonrelativistic and relativistic approximations

    International Nuclear Information System (INIS)

    A technique is suggested for calculation of chemical shifts of hard X-ray lines accompanying the formation of one or several vacancies in electron shells when the electrons are either removed from an atom or transit in other states. The containing both additive and non-additive terms with respect to the number of removed electrons are obtained. Such expressions have been derived first in the non-relativistic approximation and then generalized for the relativistic case. The application is discussed of the expressions obtained for interpretation of experimental values of chemical shifts and for extracting information from these results concerning valency configurations and charged states of atoms in compounds

  10. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    DEFF Research Database (Denmark)

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael;

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...... QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift...

  11. Prediction of proton chemical shifts in RNA - Their use in structure refinement and validation

    International Nuclear Information System (INIS)

    An analysis is presented of experimental versus calculated chemical shifts of the non-exchangeable protons for 28 RNA structures deposited in the Protein Data Bank, covering a wide range of structural building blocks. We have used existing models for ring-current and magnetic-anisotropy contributions to calculate the proton chemical shifts from the structures. Two different parameter sets were tried: (i) parameters derived by Ribas-Prado and Giessner-Prettre (GP set) [(1981) J. Mol. Struct.,76, 81-92.]; (ii) parameters derived by Case [(1995) J. Biomol. NMR, 6, 341-346]. Both sets lead to similar results. The detailed analysis was carried using the GP set. The root-mean-square-deviation between the predicted and observed chemical shifts of the complete database is 0.16 ppm with a Pearson correlation coefficient of 0.79. For protons in the usually well-defined A-helix environment these numbers are, 0.08 ppm and 0.96, respectively. As a result of this good correspondence, a reliable analysis could be made of the structural dependencies of the 1H chemical shifts revealing their physical origin. For example, a down-field shift of either H2' or H3' or both indicates a high-syn/syn χ-angle. In an A-helix it is essentially the 5'-neighbor that affects the chemical shifts of H5, H6 and H8 protons. The H5, H6 and H8 resonances can therefore be assigned in an A-helix on the basis of their observed chemical shifts. In general, the chemical shifts were found to be quite sensitive to structural changes. We therefore propose that a comparison between calculated and observed 1H chemical shifts is a good tool for validation and refinement of structures derived from NOEs and J-couplings

  12. Conformational propensities of intrinsically disordered proteins from NMR chemical shifts

    International Nuclear Information System (INIS)

    The realization that a protein can be fully functional even in the absence of a stable three-dimensional structure has motivated a large number of studies describing the conformational behaviour of these proteins at atomic resolution. Here, we review recent advances in the determination of local structural propensities of intrinsically disordered proteins (IDPs) from experimental NMR chemical shifts. A mapping of the local structure in IDPs is of paramount importance in order to understand the molecular details of complex formation, in particular, for IDPs that fold upon binding or undergo structural transitions to pathological forms of the same protein. We discuss experimental strategies for the spectral assignment of IDPs, chemical shift prediction algorithms and the generation of representative structural ensembles of IDPs on the basis of chemical shifts. Additionally, we highlight the inherent degeneracies associated with the determination of IDP sub-state populations from NMR chemical shifts alone. (authors)

  13. Bayesian inference of protein structure from chemical shift data

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen; Christensen, Anders Steen; Hamelryck, Thomas Wim; Jensen, Jan Halborg

    2015-01-01

    Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model...... chain Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term, the......, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction....

  14. Counterion influence on chemical shifts in strychnine salts

    Energy Technology Data Exchange (ETDEWEB)

    Metaxas, Athena E.; Cort, John R.

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here we characterize the relative influence of different counterions on 1H and 13C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD) and chloroform-d (CDCl3) solvents. In organic solvents, but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. The observed effects are much greater in organic solvents than in water. Slight concentration-dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared to the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts.

  15. Counterion influence on chemical shifts in strychnine salts.

    Science.gov (United States)

    Metaxas, Athena E; Cort, John R

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here, we characterize the relative influence of different counterions on (1)H and (13)C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD), and chloroform-d (CDCl3) solvents. In organic solvents but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. Slight concentration dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared with the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts. PMID:23495106

  16. Method for evaluating chemical shifts of x-ray emission lines in molecules and solids

    Science.gov (United States)

    Lomachuk, Yuriy V.; Titov, Anatoly V.

    2013-12-01

    A method of evaluating chemical shifts of x-ray emission lines for period four and heavier elements is developed. This method is based on the relativistic pseudopotential model and one-center restoration approach [Int. J. Quantum Chem.IJQCB20020-760810.1002/qua.20418 104, 223 (2005)] to recover a proper electronic structure in heavy-atom cores after the pseudopotential simulation of chemical compounds. The approximations of instantaneous transition and frozen core are presently applied to derive an expression for chemical shift as a difference between mean values of certain effective operator. The method allows one to avoid evaluation of small quantities (chemical shifts ˜0.01-1 eV) as differences of very large values (transition energies ˜1-100 keV in various compounds). The results of our calculations of chemical shifts for the Kα1, Kα2, and L transitions of group-14 metal cations with respect to neutral atoms are presented. Calculations of Kα1-line chemical shifts for the Pb core transitions in PbO and PbF2 with respect to those in the Pb atom are also performed and discussed. The accuracy of approximations used is estimated and the quality of the calculations is analyzed.

  17. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

    International Nuclear Information System (INIS)

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the 1H NMR and 13C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and 1H and 13C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA 1H and 13C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides

  18. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression.

    Science.gov (United States)

    Brown, Joshua D; Summers, Michael F; Johnson, Bruce A

    2015-09-01

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the (1)H NMR and (13)C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and (1)H and (13)C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA (1)H and (13)C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides. PMID:26141454

  19. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Joshua D.; Summers, Michael F. [University of Maryland Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce.johnson@asrc.cuny.edu [University of Maryland Baltimore County, Department of Chemistry and Biochemistry (United States)

    2015-09-15

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR and {sup 13}C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and {sup 1}H and {sup 13}C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA {sup 1}H and {sup 13}C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides.

  20. Method of evaluating chemical shifts of X-ray emission lines in molecules and solids

    CERN Document Server

    Lomachuk, Yuriy V

    2013-01-01

    Method of evaluating chemical shifts of X-ray emission lines for sufficiently heavy atoms (beginning from period 4 elements) in chemical compounds is developed. This method is based on the pseudopotential model and one-center restoration method (to reconstruct the proper electronic structure in heavy-atom cores). The approximations of instantaneous transition and frozen inner core spinors of the atom are used for derivation of an expression for chemical shift as a difference between mean values of some effective operator. The method allows one to avoid evaluating small values (chemical shifts ~ 0.01{\\div}1 eV) as differences of very large values (transition energies ~ 1{\\div}100 keV in various compounds). The results of our calculations of chemical shifts for the K_{\\alpha1,2} and L transitions of the group 14 metal cations with respect to neutral atoms are presented. The calculations of chemical shift of K_{\\alpha1}-line in the Pb-core transition within PbO and PbF_2 with respect to the neutral Pb are also p...

  1. From NMR chemical shifts to amino acid types: Investigation of the predictive power carried by nuclei

    International Nuclear Information System (INIS)

    An approach to automatic prediction of the amino acid type from NMR chemical shift values of its nuclei is presented here, in the frame of a model to calculate the probability of an amino acid type given the set of chemical shifts. The method relies on systematic use of all chemical shift values contained in the BioMagResBank (BMRB). Two programs were designed, one (BMRB stats) for extracting statistical chemical shift parameters from the BMRB and another one (RESCUE2) for computing the probabilities of each amino acid type, given a set of chemical shifts. The Bayesian prediction scheme presented here is compared to other methods already proposed: PROTYP (Grzesiek and Bax, J. Biomol. NMR, 3, 185-204, 1993) RESCUE (Pons and Delsuc, J. Biomol. NMR, 15, 15-26, 1999) and PLATON (Labudde et al., J. Biomol. NMR, 25, 41-53, 2003) and is found to be more sensitive and more specific. Using this scheme, we tested various sets of nuclei. The two nuclei carrying the most information are Cβ and Hβ, in agreement with observations made in Grzesiek and Bax, 1993. Based on four nuclei: Hβ, Cβ, Cα and C', it is possible to increase correct predictions to a rate of more than 75%. Taking into account the correlations between the nuclei chemical shifts has only a slight impact on the percentage of correct predictions: indeed, the largest correlation coefficients display similar features on all amino acids

  2. Enhanced conformational space sampling improves the prediction of chemical shifts in proteins.

    Science.gov (United States)

    Markwick, Phineus R L; Cervantes, Carla F; Abel, Barrett L; Komives, Elizabeth A; Blackledge, Martin; McCammon, J Andrew

    2010-02-01

    A biased-potential molecular dynamics simulation method, accelerated molecular dynamics (AMD), was combined with the chemical shift prediction algorithm SHIFTX to calculate (1)H(N), (15)N, (13)Calpha, (13)Cbeta, and (13)C' chemical shifts of the ankyrin repeat protein IkappaBalpha (residues 67-206), the primary inhibitor of nuclear factor kappa-B (NF-kappaB). Free-energy-weighted molecular ensembles were generated over a range of acceleration levels, affording systematic enhancement of the conformational space sampling of the protein. We have found that the predicted chemical shifts, particularly for the (15)N, (13)Calpha, and (13)Cbeta nuclei, improve substantially with enhanced conformational space sampling up to an optimal acceleration level. Significant improvement in the predicted chemical shift data coincides with those regions of the protein that exhibit backbone dynamics on longer time scales. Interestingly, the optimal acceleration level for reproduction of the chemical shift data has previously been shown to best reproduce the experimental residual dipolar coupling (RDC) data for this system, as both chemical shift data and RDCs report on an ensemble and time average in the millisecond range. PMID:20063881

  3. Data requirements for reliable chemical shift assignments in deuterated proteins

    International Nuclear Information System (INIS)

    The information required for chemical shift assignments in large deuterated proteins was investigated using a Monte Carlo approach (Hitchens et al., 2002). In particular, the consequences of missing amide resonances on the reliability of assignments derived from Cα and CO or from Cα and Cβ chemical shifts was investigated. Missing amide resonances reduce both the number of correct assignments as well as the confidence in these assignments. More significantly, a number of undetectable errors can arise when as few as 9% of the amide resonances are missing from the spectra. However, the use of information from residue specific labeling as well as local and long-range distance constraints improves the reliability and extent of assignment. It is also shown that missing residues have only a minor effect on the assignment of protein-ligand complexes using Cα and CO chemical shifts and Cα inter-residue connectivity, provided that the known chemical shifts of the unliganded protein are utilized in the assignment process

  4. Differential diagnosis of adrenal masses by chemical shift and dynamic gadolinium enhanced MR imaging

    International Nuclear Information System (INIS)

    Chemical shift MRI is widely used for identifying adenomas, but it is not a perfect method. We determined whether combined dynamic MRI methods can lead to improved diagnostic accuracy. Fifty-seven adrenal masses were examined by chemical shift and dynamic MR imaging using 2 MR systems. The masses included 38 adenomas and 19 non-adenomas. In chemical shift MRI studies, the signal intensity index (SI) was calculated, and the lesions classified into 5 types in the dynamic MRI studies. Of the 38 adenomas studied, 37 had an SI greater than 0. In the dynamic MRI, 34 of 38 adenomas showed a benign pattern (type 1). If the SI for the adenomas in the chemical shift MRI was considered to be greater than 0, the positive predictive value was 0.9, and the negative predictive value was 0.94 and κ=0.79. If type 1 was considered to indicate adenomas in the dynamic MRI, the corresponding values were 0.94, 0.81 and κ=0.77 respectively. The results obtained when the 2 methods were combined were 1, 0.95 and κ=0.96 respectively. The chemical shift MRI was found to be useful for identifying adenomas in most cases. If the adrenal mass had a low SI (0< SI<5), dynamic MRI was also found to be helpful for making a differential diagnosis. (author)

  5. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics.

    Directory of Open Access Journals (Sweden)

    Anders S Christensen

    Full Text Available We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts--sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94. ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond ((h3J(NC' spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to obtain this agreement. The ProCS method thus offers a powerful new tool for refining the structures of hydrogen bonding networks to high accuracy with many potential applications such as protein flexibility in ligand binding.

  6. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    CERN Document Server

    Christensen, Anders S; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to refine protein structures to this...

  7. Anisotropy of the fluorine chemical shift tensor in UF6

    International Nuclear Information System (INIS)

    An 19F magnetic resonance study of polycrystalline UF6 is presented. The low temperature complex line can be analyzed as the superposition of two distinct lines, which is attributed to a distortion of the UF6 octahedron in the solid. The shape of the two components is studied. Their width is much larger than the theoretical dipolar width, and must be explained by large anisotropies of the fluorine chemical shift tensors. The resulting shape functions of the powder spectra are determined. The values of the parameters of the chemical shift tensors yield estimates of the characters of the U-F bonds, and this gives some information on the ground state electronic wave function of the UF6 molecule in the solid. (author)

  8. Chemical-shift MRI of exogenous lipoid pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Cox, J.E.; Choplin, R.H.; Chiles, C. [Wake Forest Univ., Winston-Salem, NC (United States)

    1996-05-01

    Exogenous lipoid pneumonia results from the aspiration or inhalation of fatty substances, such as mineral oil found in laxatives or nasal medications containing liquid paraffin. We present standard and lipid-sensitive (chemical-shift) MR findings in a patient with histologically confirmed lipoid pneumonia. The loss of signal intensity in an area of airspace disease on opposed-phase imaging was considered specific for the presence of lipid. 14 refs., 3 figs.

  9. THE PERMANENT DETECTION OF SHIFTS IN THE PROBLEM OF CALCULATION AUTOMATION OF THE CORRECTION RAIL CURVES

    Directory of Open Access Journals (Sweden)

    V. V. Lahuta

    2008-01-01

    Full Text Available The numerical method of solution of a differential equation of railway shifts is presented allowing to calculate the quantity of shifts in any point of a railway curve during its straightening. Shifts calculated between the points of measurement of bend arrows can be used as control ones.

  10. Pulse NMR in solids: chemical shift, lead fluoride, and thorium hydride

    International Nuclear Information System (INIS)

    The fluorine chemical shift of a single crystal CaF2 was measured up to 4 kilobar at room temperature using multiple pulse NMR. The pressure dependence of the shift is found to be --1.7 +- 1 ppM/kbar, while an overlap model predicts a shift of --0.46 ppM/kbar.The chemical shift tensor is separated into ''geometrical'' and ''chemical'' contributions, and comparison of the proposed model calculations with recent data on hydroxyl proton chemical shift tensors shows that the geometrical portion accounts for the qualitative features of the measured tensors. A study of fluoride ion motion in β-PbF2 doped with NaF was conducted by measurement of the 19F transverse relaxation time (T2), spin lattice relaxation time (T1) and the spin lattice relaxation time in the rotating frame (T/sub 1r). Two samples of Th4H15, prepared under different conditions but both having the proper ratio of H/Th (to within 1 percent), were studied. The structure of the Th4H15 suggested by x-ray measurements is confirmed through a moment analysis of the rigid lattice line shape

  11. Substituent effects on 61Ni NMR chemical shifts

    OpenAIRE

    Bühl, Michael; Peters, Dietmund; Herges, Rainer

    2009-01-01

    Ni-61 chemical shifts of Ni(all-trans-cdt) L (cdt = cyclododecatriene, L = none, CO, PMe3), Ni(CO)(4), Ni(C2H4)(2)(PMe3), Ni(cod)(2) (cod = cyclooctadiene) and Ni(PX3)(4) (X = Me, F, Cl) are computed at the GIAO (gauge-including atomic orbitals), BPW91, B3LYP and BHandHLYP levels, using BP86-optimised geometries and an indirect referencing scheme. For this set of compounds, substituent effects on delta(Ni-61) are better described with hybrid functionals than with the pure BPW91 functional. On...

  12. Reactivity of Tourmaline by Quantum Chemical Calculations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    ZnAb initio calculations on reactivity of tourmaline were performed using both Gaussian and density function theory discrete variation method (DFT-DVM). The HF, B3LYP methods and basis sets STO-3G(3d,3p),6-31G(3d,3p) and 6-311++G(3df,3pd) were used in the calculations. The experimental results show energy value obtained from B3LYP and 6-31++1G(3df,3pd) basis sets is more accurate than those from other methods. The highest occupied molecular orbital (HOMO) of the tourmaline cluster mainly consists of O atom of hydroxyl group with relative higher energy level, suggesting that chemical bond between those of electron acceptor and this site may readily form, indicating the higher reactivity of hydroxyl group. The lowest unoccupied molecular orbital (LUMO) of the tourmaline cluster are dominantly composed of Si, O of tetrahedron and Na with relative lower energy level, suggesting that these atoms may tend to form chemical bond with those of electron donor. The results also prove that the O atoms of the tourmaline cluster have stronger reactivity than other atoms.

  13. Synthesis and GIAO NMR Calculations for Some Novel 4-Heteroarylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-one Derivatives: Comparison of Theoretical and Experimental 1Hand 13C- Chemical Shifts

    Directory of Open Access Journals (Sweden)

    Haci Baykara

    2005-08-01

    Full Text Available Abstract: 3-Alkyl(aryl-4-amino-4,5-dihydro-1H-1,2,4-triazol-5-ones (1 reacted with 5-methylfuran-2-carboxyaldehyde to afford the corresponding 3-alkyl(aryl-4-(5-methyl-2-furylmethylenamino-4,5-dihydro-1H-1,2,4-triazol-5-ones (2. Four newly synthesized compounds have been characterized by elemental analyses, IR, 1H-NMR, 13C-NMR and UV spectral data. In addition, isotropic 1H- and 13C-nuclear magnetic shielding constants of compounds 3 were calculated by employing the direct implementation of the gaugeincluding-atomic-orbital (GIAO method at the B3LYP density functional and HF levels of the theory. The geometry of each compound has been optimized using a 6-311G basis set. Nuclear shielding constants were also calculated by using 6-311G basis set. Theoretical values are compared to the experimental data.

  14. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    Science.gov (United States)

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  15. Relativistic calculations of the isotope shifts in highly charged Li-like ions

    CERN Document Server

    Zubova, N A; Shabaev, V M; Tupitsyn, I I; Volotka, A V; Plunien, G; Brandau, C; Stöhlker, Th

    2014-01-01

    Relativistic calculations of the isotope shifts of energy levels in highly charged Li-like ions are performed. The nuclear recoil (mass shift) contributions are calculated by merging the perturbative and large-scale configuration-interaction Dirac-Fock-Sturm (CI-DFS) methods. The nuclear size (field shift) contributions are evaluated by the CI-DFS method including the electron-correlation, Breit, and QED corrections. The nuclear deformation and nuclear polarization corrections to the isotope shifts in Li-like neodymium, thorium, and uranium are also considered. The results of the calculations are compared with the theoretical values obtained with other methods.

  16. Molecular orbital calculations using chemical graph theory

    CERN Document Server

    Dias, Jerry Ray

    1993-01-01

    Professor John D. Roberts published a highly readable book on Molecular Orbital Calculations directed toward chemists in 1962. That timely book is the model for this book. The audience this book is directed toward are senior undergraduate and beginning graduate students as well as practicing bench chemists who have a desire to develop conceptual tools for understanding chemical phenomena. Although, ab initio and more advanced semi-empirical MO methods are regarded as being more reliable than HMO in an absolute sense, there is good evidence that HMO provides reliable relative answers particularly when comparing related molecular species. Thus, HMO can be used to rationalize electronic structure in 1t-systems, aromaticity, and the shape use HMO to gain insight of simple molecular orbitals. Experimentalists still into subtle electronic interactions for interpretation of UV and photoelectron spectra. Herein, it will be shown that one can use graph theory to streamline their HMO computational efforts and to arrive...

  17. Lamb shift calculations for high-Z lithium like ions

    International Nuclear Information System (INIS)

    We present ab initio calculations of the complete gauge invariant set of the self energy and vacuum polarization screening diagrams for the 2p2p1/2-2s transition in Li like ions. Various contributions to the transition energy are collected. The accuracy of theoretical predictions is discussed

  18. Elucidating the Link between NMR Chemical Shifts and Electronic Structure in d(0) Olefin Metathesis Catalysts.

    Science.gov (United States)

    Halbert, Stéphanie; Copéret, Christophe; Raynaud, Christophe; Eisenstein, Odile

    2016-02-24

    The nucleophilic carbon of d(0) Schrock alkylidene metathesis catalysts, [M] = CHR, display surprisingly low downfield chemical shift (δiso) and large chemical shift anisotropy. State-of-the-art four-component relativistic calculations of the chemical shift tensors combined with a two-component analysis in terms of localized orbitals allow a molecular-level understanding of their orientations, the magnitude of their principal components (δ11 > δ22 > δ33) and associated δiso. This analysis reveals the dominating influence of the paramagnetic contribution yielding a highly deshielded alkylidene carbon. The largest paramagnetic contribution, which originates from the coupling of alkylidene σMC and π*MC orbitals under the action of the magnetic field, is analogous to that resulting from coupling σCC and π*CC in ethylene; thus, δ11 is in the MCH plane and is perpendicular to the MC internuclear direction. The higher value of carbon-13 δiso in alkylidene complexes relative to ethylene is thus due to the smaller energy gap between σMC and π*MC vs this between σCC and π*CC in ethylene. This effect also explains why the highest value of δiso is observed for Mo and the lowest for Ta, the values for W and Re being in between. In the presence of agostic interaction, the chemical shift tensor principal components orientation (δ22 or δ33 parallel or perpendicular to πMX) is influenced by the MCH angle because it determines the orientation of the alkylidene CHR fragment relative to the MC internuclear axis. The orbital analysis shows how the paramagnetic terms, understood with a localized bond model, determine the chemical shift tensor and thereby δiso. PMID:26787258

  19. Computational Assignment of Chemical Shifts for Protein Residues

    CERN Document Server

    Bratholm, Lars A

    2013-01-01

    Fast and accurate protein structure prediction is one of the major challenges in structural biology, biotechnology and molecular biomedicine. These fields require 3D protein structures for rational design of proteins with improved or novel properties. X-ray crystallography is the most common approach even with its low success rate, but lately NMR based approaches have gained popularity. The general approach involves a set of distance restraints used to guide a structure prediction, but simple NMR triple-resonance experiments often provide enough structural information to predict the structure of small proteins. Previous protein folding simulations that have utilised experimental data have weighted the experimental data and physical force field terms more or less arbitrarily, and the method is thus not generally applicable to new proteins. Furthermore a complete and near error-free assignment of chemical shifts obtained by the NMR experiments is needed, due to the static, or deterministic, assignment. In this ...

  20. On the bathochromic shift of the absorption by astaxanthin in crustacyanin: a quantum chemical study

    Science.gov (United States)

    Durbeej, Bo; Eriksson, Leif A.

    2003-06-01

    The structural origin of the bathochromic shift assumed by the electronic absorption spectrum of protein-bound astaxanthin, the carotenoid that upon binding to crustacyanin is responsible for the blue colouration of lobster shell, is investigated by means of quantum chemical methods. The calculations suggest that the bathochromic shift is largely due to one of the astaxanthin C4 keto groups being hydrogen-bonded to a histidine residue of the surrounding protein, and that the effect of this histidine is directly dependent on its protonation state. Out of the different methodologies (CIS, TD-DFT, and ZINDO/S) employed to calculate wavelengths of maximum absorption, the best agreement with experimental data is obtained using the semiempirical ZINDO/S method.

  1. Random coil chemical shifts in acidic 8 M urea: Implementation of random coil shift data in NMRView

    International Nuclear Information System (INIS)

    Studies of proteins unfolded in acid or chemical denaturant can help in unraveling events during the earliest phases of protein folding. In order for meaningful comparisons to be made of residual structure in unfolded states, it is necessary to use random coil chemical shifts that are valid for the experimental system under study. We present a set of random coil chemical shifts obtained for model peptides under experimental conditions used in studies of denatured proteins. This new set, together with previously published data sets, has been incorporated into a software interface for NMRView, allowing selection of the random coil data set that fits the experimental conditions best

  2. Pitfalls of adrenal imaging with chemical shift MRI

    International Nuclear Information System (INIS)

    Chemical shift (CS) MRI of the adrenal glands exploits the different precessional frequencies of fat and water protons to differentiate the intracytoplasmic lipid-containing adrenal adenoma from other adrenal lesions. The purpose of this review is to illustrate both technical and interpretive pitfalls of adrenal imaging with CS MRI and emphasize the importance of adherence to strict technical specifications and errors that may occur when other imaging features and clinical factors are not incorporated into the diagnosis. When performed properly, the specificity of CS MRI for the diagnosis of adrenal adenoma is over 90%. Sampling the in-phase and opposed-phase echoes in the correct order and during the same breath-hold are essential requirements, and using the first echo pair is preferred, if possible. CS MRI characterizes more adrenal adenomas then unenhanced CT but may be non-diagnostic in a proportion of lipid-poor adenomas; CT washout studies may be able to diagnose these lipid-poor adenomas. Other primary and secondary adrenal tumours and supra-renal disease entities may contain lipid or gross fat and mimic adenoma or myelolipoma. Heterogeneity within an adrenal lesion that contains intracytoplasmic lipid could be due to myelolipoma, lipomatous metaplasia of adenoma, or collision tumour. Correlation with previous imaging, other imaging features, clinical history, and laboratory investigations can minimize interpretive errors

  3. Diagnostic value of chemical shift artifact in distinguishing benign lymphadenopathy

    International Nuclear Information System (INIS)

    Purpose: Today, distinguishing metastatic lymph nodes from secondary benign inflammatory ones via using non-invasive methods is increasingly favorable. In this study, the diagnostic value of chemical shift artifact (CSA) in magnetic resonance imaging (MRI) was evaluated to distinguish benign lymphadenopathy. Subjects and methods: A prospective intraindividual internal review board-approved study was carried out on 15 men and 15 women having lymphadenopathic lesions in different locations of the body who underwent contrast-enhanced dynamic MR imaging at 1.5 T. Then, the imaging findings were compared with pathology reports, using the statistics analyses. Results: Due to the findings of the CSA existence in MRI, a total of 56.7% of the studied lesions (17 of 30) were identified as benign lesions and the rest were malignant, whereas the pathology reports distinguished twelve malignant and eighteen benign cases. Furthermore, the CSA findings comparing the pathology reports indicated that CSA, with confidence of 79.5%, has a significant diagnostic value to differentiate benign lesions from malignant ones. Conclusion: Our study demonstrated that CSA in MR imaging has a suitable diagnostic potential nearing readiness for clinical trials. Furthermore, CSA seems to be a feasible tool to differentiate benign lymph nodes from malignant ones; however, further studies including larger numbers of patients are required to confirm our results.

  4. Applications of Chemical Shift Imaging to Marine Sciences

    Directory of Open Access Journals (Sweden)

    Haakil Lee

    2010-08-01

    Full Text Available The successful applications of magnetic resonance imaging (MRI in medicine are mostly due to the non-invasive and non-destructive nature of MRI techniques. Longitudinal studies of humans and animals are easily accomplished, taking advantage of the fact that MRI does not use harmful radiation that would be needed for plain film radiographic, computerized tomography (CT or positron emission (PET scans. Routine anatomic and functional studies using the strong signal from the most abundant magnetic nucleus, the proton, can also provide metabolic information when combined with in vivo magnetic resonance spectroscopy (MRS. MRS can be performed using either protons or hetero-nuclei (meaning any magnetic nuclei other than protons or 1H including carbon (13C or phosphorus (31P. In vivo MR spectra can be obtained from single region ofinterest (ROI or voxel or multiple ROIs simultaneously using the technique typically called chemical shift imaging (CSI. Here we report applications of CSI to marine samples and describe a technique to study in vivo glycine metabolism in oysters using 13C MRS 12 h after immersion in a sea water chamber dosed with [2-13C]-glycine. This is the first report of 13C CSI in a marine organism.

  5. Using Neural Networks for 13C NMR Chemical Shift Prediction-Comparison with Traditional Methods

    Science.gov (United States)

    Meiler, Jens; Maier, Walter; Will, Martin; Meusinger, Reinhard

    2002-08-01

    Interpretation of 13C chemical shifts is essential for structure elucidation of organic molecules by NMR. In this article, we present an improved neural network approach and compare its performance to that of commonly used approaches. Specifically, our recently proposed neural network ( J. Chem. Inf. Comput. Sci. 2000, 40, 1169-1176) is improved by introducing an extended hybrid numerical description of the carbon atom environment, resulting in a standard deviation (std. dev.) of 2.4 ppm for an independent test data set of ˜42,500 carbons. Thus, this neural network allows fast and accurate 13C NMR chemical shift prediction without the necessity of access to molecule or fragment databases. For an unbiased test dataset containing 100 organic structures the accuracy of the improved neural network was compared to that of a prediction method based on the HOSE code ( hierarchically ordered spherical description of environment) using S PECI NFO. The results show the neural network predictions to be of quality (std. dev.=2.7 ppm) comparable to that of the HOSE code prediction (std. dev.=2.6 ppm). Further we compare the neural network predictions to those of a wide variety of other 13C chemical shift prediction tools including incremental methods (C HEMD RAW, S PECT OOL), quantum chemical calculation (G AUSSIAN, C OSMOS), and HOSE code fragment-based prediction (S PECI NFO, ACD/CNMR, P REDICTI T NMR) for the 47 13C-NMR shifts of Taxol, a natural product including many structural features of organic substances. The smallest standard deviations were achieved here with the neural network (1.3 ppm) and S PECI NFO (1.0 ppm).

  6. Core correlation effects in multiconfiguration calculations of isotope shifts in Mg I

    CERN Document Server

    Filippin, Livio; Ekman, Jörgen; Jönsson, Per

    2016-01-01

    The present work reports results from systematic multiconfiguration Dirac-Hartree-Fock calculations of isotope shifts for several well-known transitions in neutral magnesium. Relativistic normal and specific mass shift factors as well as the electronic probability density at the origin are calculated. Combining these electronic quantities with available nuclear data, energy and transition level shifts are determined for the $^{26}$Mg$-^{24}$Mg pair of isotopes. Different models for electron correlation are adopted. It is shown that although valence and core-valence models provide accurate values for the isotope shifts, the inclusion of core-core excitations in the computational strategy significantly improves the accuracy of the transition energies and normal mass shift factors.

  7. 19-Fluorine nuclear magnetic resonance chemical shift variability in trifluoroacetyl species

    OpenAIRE

    Sloop, Joseph

    2013-01-01

    Joseph C SloopSchool of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USAAbstract: This review examines the variability of chemical shifts observed in 19-fluorine (19F) nuclear magnetic resonance spectra for the trifluoroacetyl (TFA) functional group. The range of 19F chemical shifts reported spectra for the TFA group varies generally from −85 to −67 ppm relative to CFCl3. The literature revealed several factors that impact chemical shifts of the TFA...

  8. Light-shift calculation in the ns-states of hydrogenic systems

    NARCIS (Netherlands)

    Jungmann, Klaus-Peter; Yakhontov, Victor

    1996-01-01

    We present the results of the light-shift calculations in the as-states of hydrogenic systems in the presence of a weak laser field. This is done by means of analytical calculations of the scalar dynamic polarizabilities (DP) of the corresponding levels. In contrast to the usual technique, our analy

  9. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    International Nuclear Information System (INIS)

    We introduce a Python-based program that utilizes the large database of 13C and 15N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D 13C–13C, 15N–13C, or 3D 15N–13C–13C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D 13C–13C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the Cα and Cβ chemical shifts, the highest-ranked PLUQ assignments were 40–60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO–Cα–Cβ or N–Cα–Cβ), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  10. Fragment-based (13)C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods.

    Science.gov (United States)

    Hartman, Joshua D; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J O

    2015-09-14

    We assess the quality of fragment-based ab initio isotropic (13)C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic (13)C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits. PMID:26374002

  11. Fragment-based 13C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods

    International Nuclear Information System (INIS)

    We assess the quality of fragment-based ab initio isotropic 13C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic 13C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits

  12. Stereoelectronic effects on 1H nuclear magnetic resonance chemical shifts in methoxybenzenes

    DEFF Research Database (Denmark)

    Lambert, Maja; Olsen, Lars; Jaroszewski, Jerzy W

    2006-01-01

    differences are due to different conformational behavior of the OH and OCH3 groups; while the ortho-disubstituted OH group remains planar in polyphenols due to hydrogen bonding and conjugative stabilization, the steric congestion in ortho-disubstituted anisoles outweighs the conjugative effects and forces the......Investigation of all O-methyl ethers of 1,2,3-benzenetriol and 4-methyl-1,2,3-benzenetriol (3-16) by 1H NMR spectroscopy and density-functional calculations disclosed practically useful conformational effects on 1H NMR chemical shifts in the aromatic ring. While the conversion of phenol (2) to...... Ar-OCH3 torsion out of the ring plane, resulting in large stereoelectronic effects on the chemical shift of Hpara. Conformational searches and geometry optimizations for 3-16 at the B3LYP/6-31G** level, followed by B3LYP/6-311++G(2d,2p) calculations for all low-energy conformers, gave excellent...

  13. A simple graphical approach to predict local residue conformation using NMR chemical shifts and density functional theory.

    Science.gov (United States)

    Shaghaghi, Hoora; Ebrahimi, Hossein Pasha; Fathi, Fariba; Bahrami Panah, Niloufar; Jalali-Heravi, Mehdi; Tafazzoli, Mohsen

    2016-05-30

    The dependency of amino acid chemical shifts on φ and ψ torsion angle is, independently, studied using a five-residue fragment of ubiquitin and ONIOM(DFT:HF) approach. The variation of absolute deviation of (13) C(α) chemical shifts relative to φ dihedral angle is specifically dependent on secondary structure of protein not on amino acid type and fragment sequence. This dependency is observed neither on any of (13) C(β) , and (1) H(α) chemical shifts nor on the variation of absolute deviation of (13) C(α) chemical shifts relative to ψ dihedral angle. The (13) C(α) absolute deviation chemical shifts (ADCC) plots are found as a suitable and simple tool to predict secondary structure of protein with no requirement of highly accurate calculations, priori knowledge of protein structure and structural refinement. Comparison of Full-DFT and ONIOM(DFT:HF) approaches illustrates that the trend of (13) C(α) ADCC plots are independent of computational method but not of basis set valence shell type. © 2016 Wiley Periodicals, Inc. PMID:26940760

  14. Carbon-13 magnetic resonance chemical shift additivity relationships of clinically used furocoumarins and furchromones

    International Nuclear Information System (INIS)

    The natural abundance carbon-13 nuclear magnetic resonance spectra of various clinically used furocoumarins and furochromones have been studied. The assignments of carbon chemical shift values were based on the theory of chemical shift, additivity rules, SFORD spectra and model compounds. (author)

  15. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.

    Science.gov (United States)

    Arcisauskaite, Vaida; Melo, Juan I; Hemmingsen, Lars; Sauer, Stephan P A

    2011-07-28

    We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL(2) (L = Cl, Br, I, CH(3)) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH(3))(2) within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr(2) and HgI(2) when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. PMID:21806118

  16. Development of Continuous-Energy Eigenvalue Sensitivity Coefficient Calculation Methods in the Shift Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, Christopher M [ORNL; Martin, William R [University of Michigan; Rearden, Bradley T [ORNL; Williams, Mark L [ORNL

    2012-01-01

    Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the SHIFT Monte Carlo code within the Scale code package. The methods were used for several simple test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods.

  17. Method of evaluating chemical shifts of X-ray emission lines in molecules and solids

    OpenAIRE

    Lomachuk, Yuriy V.; Titov, Anatoly V.

    2013-01-01

    Method of evaluating chemical shifts of X-ray emission lines for sufficiently heavy atoms (beginning from period 4 elements) in chemical compounds is developed. This method is based on the pseudopotential model and one-center restoration method (to reconstruct the proper electronic structure in heavy-atom cores). The approximations of instantaneous transition and frozen inner core spinors of the atom are used for derivation of an expression for chemical shift as a difference between mean valu...

  18. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins

    International Nuclear Information System (INIS)

    There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder

  19. A robust algorithm for optimizing protein structures with NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-11-15

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca.

  20. A robust algorithm for optimizing protein structures with NMR chemical shifts

    International Nuclear Information System (INIS)

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca

  1. Mineral Moessbauer spectroscopy: correlations between chemical shift and quadrupole splitting parameters

    International Nuclear Information System (INIS)

    The variety of coordination numbers, symmetries, distortions and ligand environments in thermally-stable iron-bearing minerals provide wide ranges of chemical shift (δ) and quadrupole splitting (Δ) parameters, which serve to characterize the crystal chemistries and site occupancies of Fe2+ and Fe3+ ions in minerals of terrestrial and extraterrestrial origins. Correlations between ferrous and ferric chemical shifts enable thermally-induced electron delocalization behavior in mixed-valence Fe2+-Fe3+ minerals to be identified, while chemical shift versus quadrupole splitting correlations serve to identify nanophase ferric oxides and oxyhydroxides in oxidized minerals and in meteorites subjected to aqueous oxidation before and after they arrived on Earth. (orig.)

  2. Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    Energy Technology Data Exchange (ETDEWEB)

    Nazé, C.; Verdebout, S. [Service de Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, B 1050 Brussels (Belgium); Rynkun, P.; Gaigalas, G. [Vilnius University, Institute of Theoretical Physics and Astronomy, LT-01108 Vilnius (Lithuania); Godefroid, M., E-mail: mrgodef@ulb.ac.be [Service de Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, B 1050 Brussels (Belgium); Jönsson, P. [Group for Materials Science and Applied Mathematics, Malmö University, 205-06 Malmö (Sweden)

    2014-09-15

    Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wavefunctions that account for valence, core–valence, and core–core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.

  3. Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    International Nuclear Information System (INIS)

    Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wavefunctions that account for valence, core–valence, and core–core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available

  4. Calculations of hydrogen atom multiphoton energy level shifts, transition amplitudes and ionization probabilities

    International Nuclear Information System (INIS)

    Analyses of the resonant multiphoton ionization of atoms require knowledge of ac Stark energy shifts and of multiphoton, bound-to-bound state, transition amplitudes. In this paper, we consider the three-photon photoionization of hydrogen atoms at frequencies that are at and surrounding the two-photon 1s to 2s resonance. AC energy shift sums of both the 1s and 2s states are calculated as a function of the laser frequency along with two-photon 1s → 2s resonant transition amplitude sums. These quantities are calculated using an extended version of a method, which has often been employed in a variety of ways, of calculating these sums by expressing them in terms of solutions to a variety of differential equations that are derived from the different sums being evaluated. We demonstrate how exact solutions are obtained to these differential equations, which lead to exact evaluations of the corresponding sums. A variety of different cases are analysed, some involving analytic continuation, some involving real number analysis and some involving complex number analysis. A dc Stark sum calculation of the 2s state is carried out to illustrate the case where analytic continuation, pole isolation and pole subtraction are required and where the calculation can be carried out analytically; the 2s state, ac Stark shift sum calculations involve a case where no analytic continuation is required, but where the solution to the differential equation produces complex numbers owing to the finite photoionization lifetime of the 2s state. Results from these calculations are then used to calculate three-photon ionization probabilities of relevance to an analysis of the multiphoton ionization data published by Kyrala and Nichols (1991 Phys. Rev. A 44, R1450)

  5. Comparison of Computed Tomography Histogram Analysis and Chemical-Shift Magnetic Resonance Imaging for Adrenal Mass Characterization

    International Nuclear Information System (INIS)

    Background: Computed tomography (CT) histogram analysis and chemical-shift magnetic resonance imaging (MRI) are currently used modalities for adrenal mass characterization. However, it is not yet clear which modality can be regarded as most sensitive in terms of adrenal mass characterization. Purpose: To prospectively compare CT histogram analysis and chemical-shift MRI in the characterization of adrenal masses. Material and Methods: Between May 2007 and November 2008, 93 patients (45 males, 48 females; mean age 56.7 years, range 22-85 years) with 109 adrenal masses prospectively underwent both unenhanced CT and chemical-shift MRI examinations. These masses consisted of 67 adenomas and 42 metastases. Histogram analysis was applied with a circular region of interest (ROI) that recorded mean attenuation, total number of pixels, number of negative pixels, and the percentage of negative pixels on unenhanced CT images for each adrenal mass. In the CT histogram analysis, a 10% negative pixel threshold for unenhanced CT was calculated. In chemical-shift MRI, signal intensity drop between in-phase and opposed-phase images was quantitatively calculated so that adrenal-to-spleen chemical-shift ratios and adrenal signal intensity indexes were determined for each of the adrenal masses. A mass was regarded as an adenoma if it contained more than 10% negative pixels by CT histogram analysis, showed an adrenal-to-spleen chemical-shift ratio of less than 0.71, and had an adrenal signal intensity index of more than 16.5% by chemical-shift MRI. The results were compared to reveal which method was most sensitive in the diagnosis of adrenal masses and whether or not a correlation exists between these two modalities. Final diagnoses were based on imaging follow-up of minimum 6 months, biopsy, surgery, and adrenal washout study. Results: On unenhanced CT examinations, all of the 67 adenomas and 21 out of 42 metastases exhibited negative pixels. None of the metastases showed more than 10

  6. Comparison of Computed Tomography Histogram Analysis and Chemical-Shift Magnetic Resonance Imaging for Adrenal Mass Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Halefoglu, A.M.; Yasar, A.; Bas, N.; Ozel, A.; Erturk, S.M.; Basak, M. (Dept. of Radiology, Sisli Etfal Training and Research Hospital, Sisli, Istanbul (Turkey))

    2009-11-15

    Background: Computed tomography (CT) histogram analysis and chemical-shift magnetic resonance imaging (MRI) are currently used modalities for adrenal mass characterization. However, it is not yet clear which modality can be regarded as most sensitive in terms of adrenal mass characterization. Purpose: To prospectively compare CT histogram analysis and chemical-shift MRI in the characterization of adrenal masses. Material and Methods: Between May 2007 and November 2008, 93 patients (45 males, 48 females; mean age 56.7 years, range 22-85 years) with 109 adrenal masses prospectively underwent both unenhanced CT and chemical-shift MRI examinations. These masses consisted of 67 adenomas and 42 metastases. Histogram analysis was applied with a circular region of interest (ROI) that recorded mean attenuation, total number of pixels, number of negative pixels, and the percentage of negative pixels on unenhanced CT images for each adrenal mass. In the CT histogram analysis, a 10% negative pixel threshold for unenhanced CT was calculated. In chemical-shift MRI, signal intensity drop between in-phase and opposed-phase images was quantitatively calculated so that adrenal-to-spleen chemical-shift ratios and adrenal signal intensity indexes were determined for each of the adrenal masses. A mass was regarded as an adenoma if it contained more than 10% negative pixels by CT histogram analysis, showed an adrenal-to-spleen chemical-shift ratio of less than 0.71, and had an adrenal signal intensity index of more than 16.5% by chemical-shift MRI. The results were compared to reveal which method was most sensitive in the diagnosis of adrenal masses and whether or not a correlation exists between these two modalities. Final diagnoses were based on imaging follow-up of minimum 6 months, biopsy, surgery, and adrenal washout study. Results: On unenhanced CT examinations, all of the 67 adenomas and 21 out of 42 metastases exhibited negative pixels. None of the metastases showed more than 10

  7. Carbon Footprint Calculations: An Application of Chemical Principles

    Science.gov (United States)

    Treptow, Richard S.

    2010-01-01

    Topics commonly taught in a general chemistry course can be used to calculate the quantity of carbon dioxide emitted into the atmosphere by various human activities. Each calculation begins with the balanced chemical equation for the reaction that produces the CO[subscript 2] gas. Stoichiometry, thermochemistry, the ideal gas law, and dimensional…

  8. Combined Effects of Noise and Shift Work on Workers’ Physiological Parameters in a Chemical Industry

    OpenAIRE

    M. Motamedzade; S. Ghazaiee

    2003-01-01

    This study was conducted to determine the combined effects of noise and shift work on physiological parameters including body temperature, heart rate and blood pressure. This study was performed in a chemical industry in Tehran in 1993. The workers’ physiological parameters was recorded at the beginning and at the end of all work shifts. Groups under study included : day workers (n=115) , day workers with continuous noise exposure (n=44) , two-shift workers without...

  9. Multiple pancreatic metastases from clear cell renal carcinoma: diagnosis with chemical shift magnetic resonance imaging before surgery

    International Nuclear Information System (INIS)

    We present a case in which multiple pancreatic tumours were diagnosed as metastatic clear cell renal carcinomas with chemical shift MRI (CSI) before surgery. Radiologists may be unable to recognize the loss of intensity on CSI macroscopically. We believe that it is useful to make subtraction images and calculate signal intensity on CSI, even if the lesions are multiple metastatic tumours Copyright (2005) Blackwell Publishing Asia Pty Ltd

  10. PPM-One: a static protein structure based chemical shift predictor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dawei; Brüschweiler, Rafael, E-mail: bruschweiler.1@osu.edu [The Ohio State University, Campus Chemical Instrument Center (United States)

    2015-07-15

    We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM-One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain protons and it is found that the prediction accuracy is at a level allowing an independent assessment of stereospecific assignments. For a previously established set of test proteins some overall improvement was achieved over current top-performing chemical shift prediction programs.

  11. Chemical shifts and coupling constants of C8H10N4O2

    Science.gov (United States)

    Jain, M.

    This document is part of Subvolume D3 `Chemical Shifts and Coupling Constants for Carbon-13: Heterocycles' of Volume 35 `Nuclear Magnetic Resonance (NMR) Data' of Landolt-Börnstein Group III `Condensed Matter'

  12. Quantitative chemical-shift MR imaging cutoff value: Benign versus malignant vertebral compression – Initial experience

    Directory of Open Access Journals (Sweden)

    Dalia Z. Zidan

    2014-09-01

    Conclusion: Quantitative chemical shift MR imaging could be a valuable addition to standard MR imaging techniques and represent a rapid problem solving tool in differentiating benign from malignant vertebral compression, especially in patients with known primary malignancies.

  13. PPM-One: a static protein structure based chemical shift predictor

    International Nuclear Information System (INIS)

    We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM-One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain protons and it is found that the prediction accuracy is at a level allowing an independent assessment of stereospecific assignments. For a previously established set of test proteins some overall improvement was achieved over current top-performing chemical shift prediction programs

  14. Supramolecular chemical shift reagents inducing conformational transitions: NMR analysis of carbohydrate homooligomer mixtures

    DEFF Research Database (Denmark)

    Beeren, Sophie; Meier, Sebastian

    2015-01-01

    We introduce the concept of supramolecular chemical shift reagents as a tool to improve signal resolution for the NMR analysis of homooligomers. Non-covalent interactions with the shift reagent can constrain otherwise flexible analytes inducing a conformational transition that results in signal...

  15. Chemical Bond Calculations of Crystal Growth of KDP and ADP

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel method was proposed to calculate the crystal morphology (or growth habit) on the basis of chemical bond analysis. All constituent chemical bonds were distinguished as relevant and independent bonds according to their variations during the crystallization process. By employing the current method, the influence of specific growth conditions on the crystal morphology can be considered in the structure analysis process. The ideal morphologies of both KDP (KH2PO4) and ADP (NH4H2PO4) crystals were calculated and compared with our obtained crystallites at room temperature, which validates the present calculation method very well.

  16. Modern ab initio valence bond theory calculations reveal charge shift bonding in protic ionic liquids.

    Science.gov (United States)

    Patil, Amol Baliram; Bhanage, Bhalchandra Mahadeo

    2016-06-21

    The nature of bonding interactions between the cation and the anion of an ionic liquid is at the heart of understanding ionic liquid properties. A particularly interesting case is a special class of ionic liquids known as protic ionic liquids. The extent of proton transfer in protic ionic liquids has been observed to vary according to the interacting species. Back proton transfer renders protic ionic liquids volatile and to be considered as inferior ionic liquids. We try to address this issue by employing modern ab initio valence bond theory calculations. The results indicate that the bonding in the cation and the anion of a prototypical ionic liquid, ethylammonium nitrate, is fundamentally different. It is neither characteristic of covalent/polar covalent bonding nor ionic bonding but rather charge shift bonding as a resonance hybrid of two competing ionic molecular electronic structure configurations. An investigation of other analogous protic ionic liquids reveals that this charge shift bonding seems to be a typical characteristic of protic ionic liquids while the ionic solid analogue compound ammonium nitrate has less charge shift bonding character as compared to protic ionic liquids. Further the extent of charge shift bonding character has been found to be congruent with the trends in many physicochemical properties such as melting point, conductivity, viscosity, and ionicity of the studied ionic liquids indicating that percentage charge shift character may serve as a key descriptor for large scale computational screening of ionic liquids with desired properties. PMID:27229870

  17. Chemical shift MRI can aid in the diagnosis of indeterminate skeletal lesions of the spine

    Energy Technology Data Exchange (ETDEWEB)

    Douis, H. [University Hospital Birmingham, Department of Radiology, Birmingham (United Kingdom); Royal Orthopaedic Hospital, Department of Radiology, Birmingham (United Kingdom); Davies, A.M. [Royal Orthopaedic Hospital, Department of Radiology, Birmingham (United Kingdom); Jeys, L. [Royal Orthopaedic Hospital, Department of Orthopaedic Oncology, Birmingham (United Kingdom); Sian, P. [Royal Orthopaedic Hospital, Department of Spinal Surgery and Spinal Oncology, Birmingham (United Kingdom)

    2016-04-15

    To evaluate the role of chemical shift MRI in the characterisation of indeterminate skeletal lesions of the spine as benign or malignant. Fifty-five patients (mean age 54.7 years) with 57 indeterminate skeletal lesions of the spine were included in this retrospective study. In addition to conventional MRI at 3 T which included at least sagittal T1WI and T2WI/STIR sequences, patients underwent chemical shift MRI. A cut-off value with a signal drop-out of 20 % was used to differentiate benign lesions from malignant lesions (signal drop-out <20 % being malignant). There were 45 benign lesions and 12 malignant lesions. Chemical shift imaging correctly diagnosed 33 of 45 lesions as benign and 11 of 12 lesions as malignant. In contrast, there were 12 false positive cases and 1 false negative case based on chemical shift MRI. This yielded a sensitivity of 91.7 %, a specificity of 73.3 %, a negative predictive value of 97.1 %, a positive predictive value of 47.8 % and a diagnostic accuracy of 82.5 %. Chemical shift MRI can aid in the characterisation of indeterminate skeletal lesions of the spine in view of its high sensitivity in diagnosing malignant lesions. Chemical shift MRI can potentially avoid biopsy in a considerable percentage of patients with benign skeletal lesions of the spine. (orig.)

  18. Chemical shift MRI can aid in the diagnosis of indeterminate skeletal lesions of the spine

    International Nuclear Information System (INIS)

    To evaluate the role of chemical shift MRI in the characterisation of indeterminate skeletal lesions of the spine as benign or malignant. Fifty-five patients (mean age 54.7 years) with 57 indeterminate skeletal lesions of the spine were included in this retrospective study. In addition to conventional MRI at 3 T which included at least sagittal T1WI and T2WI/STIR sequences, patients underwent chemical shift MRI. A cut-off value with a signal drop-out of 20 % was used to differentiate benign lesions from malignant lesions (signal drop-out <20 % being malignant). There were 45 benign lesions and 12 malignant lesions. Chemical shift imaging correctly diagnosed 33 of 45 lesions as benign and 11 of 12 lesions as malignant. In contrast, there were 12 false positive cases and 1 false negative case based on chemical shift MRI. This yielded a sensitivity of 91.7 %, a specificity of 73.3 %, a negative predictive value of 97.1 %, a positive predictive value of 47.8 % and a diagnostic accuracy of 82.5 %. Chemical shift MRI can aid in the characterisation of indeterminate skeletal lesions of the spine in view of its high sensitivity in diagnosing malignant lesions. Chemical shift MRI can potentially avoid biopsy in a considerable percentage of patients with benign skeletal lesions of the spine. (orig.)

  19. Development of continuous-energy eigenvalue sensitivity coefficient calculation methods in the shift Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, C.; Martin, W. [Univ. of Michigan, Dept. of Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109-2104 (United States); Rearden, B.; Williams, M. [Oak Ridge National Laboratory, Reactor and Nuclear Systems Div., Bldg. 5700, P.O. Box 2008, Oak Ridge, TN 37831-6170 (United States)

    2012-07-01

    Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the Shift Monte Carlo code within the SCALE code package. The methods were used for two small-scale test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods. (authors)

  20. Ontogenetic shift in response to prey-derived chemical cues in prairie rattlesnakes Crotalus viridis viridis

    Directory of Open Access Journals (Sweden)

    Anthony J. SAVIOLA, David CHISZAR, Stephen P. MACKESSY

    2012-08-01

    Full Text Available Snakes often have specialized diets that undergo a shift from one prey type to another depending on the life stage of the snake. Crotalus viridis viridis (prairie rattlesnake takes different prey at different life stages, and neonates typically prey on ectotherms, while adults feed almost entirely on small endotherms. We hypothesized that elevated rates of tongue flicking to chemical stimuli should correlate with particular prey consumed, and that this response shifts from one prey type to another as individuals age. To examine if an ontogenetic shift in response to chemical cues occurred, we recorded the rate of tongue flicking for 25 neonate, 20 subadult, and 20 adult (average SVL = 280.9, 552, 789.5 mm, respectively wild-caught C. v. viridis to chemical stimuli presented on a cotton-tipped applicator; water-soluble cues from two ectotherms (prairie lizard, Sceloporus undulatus, and house gecko, Hemidactylus frenatus, two endotherms (deer mouse, Peromyscus maniculatus and lab mouse, Mus musculus, and water controls were used. Neonates tongue flicked significantly more to chemical cues of their common prey, S. undulatus, than to all other chemical cues; however, the response to this lizard’s chemical cues decreased in adult rattlesnakes. Subadults tongue flicked with a higher rate of tongue flicking to both S. undulatus and P. maniculatus than to all other treatments, and adults tongue flicked significantly more to P. maniculatus than to all other chemical cues. In addition, all three sub-classes demonstrated a greater response for natural prey chemical cues over chemical stimuli of prey not encountered in the wild (M. musculus and H. frenatus. This shift in chemosensory response correlated with the previously described ontogenetic shifts in C. v. viridis diet. Because many vipers show a similar ontogenetic shift in diet and venom composition, we suggest that this shift in prey cue discrimination is likely a general phenomenon among viperid

  1. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  2. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.K. [University of Durham, Durham (United Kingdom). Dept. of Chemistry; Becker, E.D. [National Institutes of Health, Bethesda, MD (United States); Menezes, S.M. Cabral de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Granger, P. [University Louis Pasteur, Strasbourg (France). Inst. of Chemistry; Hoffman, R.E. [The Hebrew University of Jerusalem, Safra Campus, Jerusalem (Israel). Dept. of Organic Chemistry; Zilm, K.W., E-mail: r.k.harris@durham.ac.uk [Yale University, New Haven, CT (United States). Dept. of Chemistry

    2008-07-01

    IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the {sup 1}H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3- (trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating {sup 13}C NMR chemical shifts in solids to the scales used for high resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice. (author)

  3. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008)

    International Nuclear Information System (INIS)

    IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the 1H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3- (trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating 13C NMR chemical shifts in solids to the scales used for high resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice. (author)

  4. A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in {sup 19}F NMR studies of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Libin; Larda, Sacha Thierry; Frank Li, Yi Feng [University of Toronto, UTM, Department of Chemistry (Canada); Manglik, Aashish [Stanford University School of Medicine, Department of Molecular and Cellular Physiology (United States); Prosser, R. Scott, E-mail: scott.prosser@utoronto.ca [University of Toronto, UTM, Department of Chemistry (Canada)

    2015-05-15

    The elucidation of distinct protein conformers or states by fluorine ({sup 19}F) NMR requires fluorinated moieties whose chemical shifts are most sensitive to subtle changes in the local dielectric and magnetic shielding environment. In this study we evaluate the effective chemical shift dispersion of a number of thiol-reactive trifluoromethyl probes [i.e. 2-bromo-N-(4-(trifluoromethyl)phenyl)acetamide (BTFMA), N-(4-bromo-3-(trifluoromethyl)phenyl)acetamide (3-BTFMA), 3-bromo-1,1,1-trifluoropropan-2-ol (BTFP), 1-bromo-3,3,4,4,4-pentafluorobutan-2-one (BPFB), 3-bromo-1,1,1-trifluoropropan-2-one (BTFA), and 2,2,2-trifluoroethyl-1-thiol (TFET)] under conditions of varying polarity. In considering the sensitivity of the {sup 19}F NMR chemical shift to the local environment, a series of methanol/water mixtures were prepared, ranging from relatively non-polar (MeOH:H{sub 2}O = 4) to polar (MeOH:H{sub 2}O = 0.25). {sup 19}F NMR spectra of the tripeptide, glutathione ((2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl] -2-sulfanylethyl]carbamoyl}butanoic acid), conjugated to each of the above trifluoromethyl probes, revealed that the BTFMA tag exhibited a significantly greater range of chemical shift as a function of solvent polarity than did either BTFA or TFET. DFT calculations using the B3LYP hybrid functional and the 6-31G(d,p) basis set, confirmed the observed trend in chemical shift dispersion with solvent polarity.

  5. Effect of shifting cultivation on soil physical and chemical properties in Bandarban hill district, Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Khandakar Showkat Osman; M. Jashimuddin; S. M. Sirajul Haque; Sohag Miah

    2013-01-01

    This study reports the effects of shifting cultivation at slashing stage on soil physicochemical properties at Bandarban Sadar Upazila in Chittagong Hill Tracts of Bangladesh. At this initial stage of shifting cultivation no general trend was found for moisture content, maximum water holding capacity, field capacity, dry and moist bulk density, parti-cle density for some chemical properties between shifting cultivated land and forest having similar soil texture. Organic matter was significantly (p≤0.05) lower in 1-year and 3-year shifting cultivated lands and higher in 2-year shifting cultivation than in adjacent natural forest. Significant differences were also found for total N, exchangeable Ca, Mg and K and in CEC as well as for available P. Slashed area showed higher soil pH. Deterioration in land quality starts from burning of slashing materials and continues through subsequent stages of shifting cultivation.

  6. Chemical Potential Calculations In Dense Liquids Using Metadynamics

    CERN Document Server

    Perego, Claudio; Parrinello, Michele

    2016-01-01

    The calculation of chemical potential has traditionally been a challenge in atomistic simulations. One of the most used approaches is Widom's insertion method in which the chemical potential is calculated by periodically attempting to insert an extra particle in the system. In dense systems this method fails since the insertion probability is very low. In this paper we show that in a homogeneous fluid the insertion probability can be increased using metadynamics. We test our method on a supercooled high density binary Lennard-Jones fluid. We find that we can obtain efficiently converged results even when Widom's method fails.

  7. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology

    International Nuclear Information System (INIS)

    Chemical shifts of nuclei in or attached to a protein backbone are exquisitely sensitive to their local environment. A computer program, SPARTA, is described that uses this correlation with local structure to predict protein backbone chemical shifts, given an input three-dimensional structure, by searching a newly generated database for triplets of adjacent residues that provide the best match in φ/ψ/χ1 torsion angles and sequence similarity to the query triplet of interest. The database contains 15N, 1HN, 1Hα, 13Cα, 13Cβ and 13C' chemical shifts for 200 proteins for which a high resolution X-ray (≤2.4 A) structure is available. The relative importance of the weighting factors for the φ/ψ/χ1 angles and sequence similarity was optimized empirically. The weighted, average secondary shifts of the central residues in the 20 best-matching triplets, after inclusion of nearest neighbor, ring current, and hydrogen bonding effects, are used to predict chemical shifts for the protein of known structure. Validation shows good agreement between the SPARTA-predicted and experimental shifts, with standard deviations of 2.52, 0.51, 0.27, 0.98, 1.07 and 1.08 ppm for 15N, 1HN, 1Hα, 13Cα, 13Cβ and 13C', respectively, including outliers

  8. RefDB: A database of uniformly referenced protein chemical shifts

    International Nuclear Information System (INIS)

    RefDB is a secondary database of reference-corrected protein chemical shifts derived from the BioMagResBank (BMRB). The database was assembled by using a recently developed program (SHIFTX) to predict protein 1H, 13C and 15N chemical shifts from X-ray or NMR coordinate data of previously assigned proteins. The predicted shifts were then compared with the corresponding observed shifts and a variety of statistical evaluations performed. In this way, potential mis-assignments, typographical errors and chemical referencing errors could be identified and, in many cases, corrected. This approach allows for an unbiased, instrument-independent solution to the problem of retrospectively re-referencing published protein chemical shifts. Results from this study indicate that nearly 25% of BMRB entries with 13C protein assignments and 27% of BMRB entries with 15N protein assignments required significant chemical shift reference readjustments. Additionally, nearly 40% of protein entries deposited in the BioMagResBank appear to have at least one assignment error. From this study it evident that protein NMR spectroscopists are increasingly adhering to recommended IUPAC 13C and 15N chemical shift referencing conventions, however, approximately 20% of newly deposited protein entries in the BMRB are still being incorrectly referenced. This is cause for some concern. However, the utilization of RefDB and its companion programs may help mitigate this ongoing problem. RefDB is updated weekly and the database, along with its associated software, is freely available at http://redpoll.pharmacy.ualberta.ca and the BMRB website

  9. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Labudde, D.; Leitner, D.; Krueger, M.; Oschkinat, H. [Forschungsinstitut fuer Molekulare Pharmakologie (Germany)], E-mail: oschkinat@fmp-berlin.de

    2003-01-15

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the {alpha}-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely {alpha}-helix, {beta}-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.

  10. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts

    International Nuclear Information System (INIS)

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the α-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely α-helix, β-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time

  11. Calculations of the vibrational frequency and isotopic shift of UF6 and U2F6

    Institute of Scientific and Technical Information of China (English)

    Zhang Yun-Guang; Zha Xin-Wei

    2012-01-01

    Molecular structure,vibrational frequency and infrared intensity of UF6 are investigated by using the revised Perdew-Burke-Enzerhof function with the triple-zeta polarized basis set.The calculation results are in good agreement with the experimental values and indicate the existence of a stable U2F6 molecule with a multiple bonded U2 unit.The calculation results also predict that the D3d symmetry of U2F6 is more stable than D3h.The optimized geometries,vibrational frequencies,and infrared intensities are also reported for U2F6 molecules in D3d symmetry.In addition,the isotopic shift of vibrational frequencies of the two molecules under isotopic substitution of uranium atom are also investigated with the same method.The U2F6 molecule is predicted to be better than UF6 for laser uranic isotope separation.

  12. Isotope effects on chemical shifts in the study of intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    2015-01-01

    The paper deals with the use of isotope effects on chemical shifts in characterizing intramolecular hydrogen bonds. Both so-called resonance-assisted (RAHB) and non-RAHB systems are treated. The importance of RAHB will be discussed. Another very important issue is the borderline between “static......” and tautomeric systems. Isotope effects on chemical shifts are particularly useful in such studies. All kinds of intramolecular hydrogen bonded systems will be treated, typical hydrogen bond donors: OH, NH, SH and NH+, typical acceptors C=O, C=N, C=S C=N−. The paper will be deal with both secondary...... and primary isotope effects on chemical shifts. These two types of isotope effects monitor the same hydrogen bond, but from different angles...

  13. What can we learn by computing 13Cα chemical shifts for X-ray protein models?

    International Nuclear Information System (INIS)

    The room-temperature X-ray structures of two proteins, solved at 1.8 and 1.9 Å resolution, are used to investigate whether a set of conformations, rather than a single X-ray structure, provides better agreement with both the X-ray data and the observed 13Cα chemical shifts in solution. The room-temperature X-ray structures of ubiquitin and of the RNA-binding domain of nonstructural protein 1 of influenza A virus solved at 1.8 and 1.9 Å resolution, respectively, were used to investigate whether a set of conformations rather than a single X-ray structure provides better agreement with both the X-ray data and the observed 13Cα chemical shifts in solution. For this purpose, a set of new conformations for each of these proteins was generated by fitting them to the experimental X-ray data deposited in the PDB. For each of the generated structures, which show R and Rfree factors similar to those of the deposited X-ray structure, the 13Cα chemical shifts of all residues in the sequence were computed at the DFT level of theory. The sets of conformations were then evaluated by their ability to reproduce the observed 13Cα chemical shifts by using the conformational average root-mean-square-deviation (ca-r.m.s.d.). For ubiquitin, the computed set of conformations is a better representation of the observed 13Cα chemical shifts in terms of the ca-r.m.s.d. than a single X-ray-derived structure. However, for the RNA-binding domain of nonstructural protein 1 of influenza A virus, consideration of an ensemble of conformations does not improve the agreement with the observed 13Cα chemical shifts. Whether an ensemble of conformations rather than any single structure is a more accurate representation of a protein structure in the crystal as well as of the observed 13Cα chemical shifts is determined by the dispersion of coordinates, in terms of the all-atom r.m.s.d. among the generated models; these generated models satisfy the experimental X-ray data with accuracy as good as

  14. Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups

    Directory of Open Access Journals (Sweden)

    Ricardo Infante-Castillo

    2012-01-01

    Full Text Available This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO charge and 15N NMR chemical shifts of the nitro groups (15NNitro as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation results show that the model is significant and stable and that the predicted accuracy is within 0.146 MJ kg−1, with an overall root mean squared error of prediction (RMSEP below 0.183 MJ kg−1. Strong correlations were observed between the heat of explosion and the charges (R2 = 0.9533 and 15N NMR chemical shifts (R2 = 0.9531 of the studied compounds. In addition, the dependence of the heat of explosion on the presence of activating or deactivating groups of nitroaromatic explosives was analyzed. All calculations, including optimizations, NBO charges, and 15NNitro NMR chemical shifts analyses, were performed using density functional theory (DFT and a 6-311+G(2d,p basis set. Based on these results, this practical quantitative model can be used as a tool in the design and development of highly energetic materials (HEM based on nitroaromatic compounds.

  15. Distinguishing between cystic teratomas and endometriomas of the ovary using chemical shift gradient echo magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ishijima Hideyuki; Ishizaka Hiroshi; Inoue Tomio [Gunma University Hospital, Gunma (Japan). Depts. of Diagnostic Radiaology and Nuclear Medicine

    1996-02-01

    The purpose of this study was to evaluate the efficacy of chemical shift gradient echo magnetic resonance imaging (MRI) in distinguishing between cystic teratomas and endometriomas of the ovary, using a 1.5 T magnet. The study included 22 patients with 31 ovarian lesions (15 cystic teratomas and 16 endometriomas), which showed high signal intensity on T1-weighted spin echo images. Chemical shift gradient echo images with three different echo times (TE = 2.5, 4.5 and 6.5 ms) were obtained in all cases. Indices were calculated on the basis of the signal intensities of lesions on the chemical shift gradient echo images. All endometriomas had signal intensity indices of less than 2.1, while all cystic teratomas had signal intensity indices of 18.1 or greater. It was concluded that the method used in this study presents the following advantages: the acquisition time is short; it needs no special software; and it does not depend on magnetic field homogeneity. 11 refs., 4 figs.

  16. Proton Magnetic Resonance and Human Thyroid Neoplasia III. Ex VivoChemical-Shift Microimaging

    Science.gov (United States)

    Rutter, Allison; Künnecke, Basil; Dowd, Susan; Russell, Peter; Delbridge, Leigh; Mountford, Carolyn E.

    1996-03-01

    Magnetic-resonance chemical-shift microimaging, with a spatial resolution of 40 × 40 μm, is a modality which can detect alterations to cellular chemistry and hence markers of pathological processes in human tissueex vivo.This technique was used as a chemical microscope to assess follicular thyroid neoplasms, lesions which are unsatisfactorily investigated using standard histopathological techiques or water-based magnetic-resonance imaging. The chemical-shift images at the methyl frequency (0.9 ppm) identify chemical heterogeneity in follicular tumors which are histologically homogeneous. The observed changes to cellular chemistry, detectable in foci of approximately 100 cells or less, support the existence of a preinvasive state hitherto unidentified by current pathological techniques.

  17. Repeatability of long and short echo-time in vivo proton chemical-shift imaging

    International Nuclear Information System (INIS)

    We carried out long (145 ms) and short (25 ms) echo time spectroscopic imaging of the brain (chemical-shift imaging, CSI) on two occasions 1 week apart on 15 healthy individuals. We found coefficients of variation (CVs) generally in the range 10-25% for long and 15-30% for short echo-time measurements. The CVs of metabolite ratios were higher by about 5-10%. Limits of agreement (defined as mean±2 SD of the week 1-week 2 differences) were wider at the shorter echo time. The modest repeatability may be due in part to the difficulty of repositioning spectroscopic voxels at a scale of 1 mm. The generally higher CVs and wider limits of agreement at TE25 ms suggest that the increased spectral complexity more than offsets the theoretical advantage of increased signal at short echo-times. Analysis of variance general linear modelling of metabolites and metabolite ratios showed that, in general, the subject, region of the brain and hemisphere were more important than the occasion in explaining the variability of results. Unless information on short-T2 metabolites is specifically required, better results can probably be achieved with longer echo-times. The magnitude of the CVs needs to be taken into account in the calculation of sample size for cross-sectional or linear studies. (orig.)

  18. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin

    2011-01-01

    this study, we use random coil peptides containing glutamine instead of glycine to determine the random coil chemical shifts and the neighbor correction factors. The resulting correction factors correlate to changes in the populations of the major wells in the Ramachandran plot, which demonstrates that...... changes in the conformational ensemble are an important source of neighbor effects in disordered proteins. Glutamine derived random coil chemical shifts and correction factors modestly improve our ability to predict (13)C chemical shifts of intrinsically disordered proteins compared to existing datasets......Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues...

  19. Database proton NMR chemical shifts for RNA signal assignment and validation

    International Nuclear Information System (INIS)

    The Biological Magnetic Resonance Data Bank contains NMR chemical shift depositions for 132 RNAs and RNA-containing complexes. We have analyzed the 1H NMR chemical shifts reported for non-exchangeable protons of residues that reside within A-form helical regions of these RNAs. The analysis focused on the central base pair within a stretch of three adjacent base pairs (BP triplets), and included both Watson–Crick (WC; G:C, A:U) and G:U wobble pairs. Chemical shift values were included for all 43 possible WC-BP triplets, as well as 137 additional triplets that contain one or more G:U wobbles. Sequence-dependent chemical shift correlations were identified, including correlations involving terminating base pairs within the triplets and canonical and non-canonical structures adjacent to the BP triplets (i.e. bulges, loops, WC and non-WC BPs), despite the fact that the NMR data were obtained under different conditions of pH, buffer, ionic strength, and temperature. A computer program (RNAShifts) was developed that enables convenient comparison of RNA 1H NMR assignments with database predictions, which should facilitate future signal assignment/validation efforts and enable rapid identification of non-canonical RNA structures and RNA-ligand/protein interaction sites.

  20. Chemical shifts in transition metal dithiocarbamates from infrared and X-ray photoelectron spectroscopies

    Science.gov (United States)

    Payne, R.; Magee, R. J.; Liesegang, J.

    1982-11-01

    Measurements of the IR stretching frequencies of the NC and MS bonds in transition-metal (M) dithiocarbamates show significant correlation with measurement of core level XPS chemical shifts. This is believed to be the first demonstration of such a correlation for a series of solid-phase compounds.

  1. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra.

    Science.gov (United States)

    Trautwein, Matthias; Fredriksson, Kai; Möller, Heiko M; Exner, Thomas E

    2016-08-01

    Apart from their central role during 3D structure determination of proteins the backbone chemical shift assignment is the basis for a number of applications, like chemical shift perturbation mapping and studies on the dynamics of proteins. This assignment is not a trivial task even if a 3D protein structure is known and needs almost as much effort as the assignment for structure prediction if performed manually. We present here a new algorithm based solely on 4D [(1)H,(15)N]-HSQC-NOESY-[(1)H,(15)N]-HSQC spectra which is able to assign a large percentage of chemical shifts (73-82 %) unambiguously, demonstrated with proteins up to a size of 250 residues. For the remaining residues, a small number of possible assignments is filtered out. This is done by comparing distances in the 3D structure to restraints obtained from the peak volumes in the 4D spectrum. Using dead-end elimination, assignments are removed in which at least one of the restraints is violated. Including additional information from chemical shift predictions, a complete unambiguous assignment was obtained for Ubiquitin and 95 % of the residues were correctly assigned in the 251 residue-long N-terminal domain of enzyme I. The program including source code is available at https://github.com/thomasexner/4Dassign . PMID:27484442

  2. Identification of helix capping and {beta}-turn motifs from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2012-03-15

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and {sup 13}C{sup {beta}} chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of {beta}-turns: I, II, I Prime , II Prime and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and {beta}-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7-0.9 for the Matthews correlation coefficient of its predictions far exceed those attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures.

  3. Three-body calculation of the $1s$ level shift in kaonic deuterium with realistic $\\bar{K}N$ potentials

    CERN Document Server

    Révai, János

    2016-01-01

    The $1s$ level shift in kaonic deuterium was calculated using Coulomb Sturmian expansion of Faddeev equations. The convergence of the method yields an $\\sim\\ 1\\ eV$ accuracy for the level shifts. We used three different, realistic, multichannel $\\bar{K}N$ interactions reproducing all known experimental two-body $\\bar{K}N$ data. The different results suggest, that the level shift should be in the range $\\Delta E\\sim(800\\pm30)-(480\\pm20){\\rm i}\\ \\ eV$. The (almost) exact level shifts were compared with values, given by the commonly used approximations.

  4. Evaluation of vertebral bone marrow fat content by chemical-shift MRI in osteoporosis

    International Nuclear Information System (INIS)

    To quantitatively evaluate vertebral bone marrow fat content and investigate its association with osteoporosis with chemical-shift magnetic resonance imaging (CS-MRI). Fifty-six female patients (age range 50-65 years) with varying bone mineral densities as documented with dual x-ray absorptiometry (DXA) were prospectively included in the study. According to the DXA results, the patients were grouped as normal bone density, osteopenic, or osteoporotic. In order to calculate fat content, the lumbar region was visualized in the sagittal plane by CS-MRI sequence. ''Region of interest'' (ROI)s were placed within L3 vertebral bodies and air (our reference point) at different time points by different radiologists. Fat content was calculated through ''signal intensity (SI) suppression rate'' and ''SI Index''. The quantitative values were compared statistically with those obtained from DXA examinations. Kruskal-Wallis, and Mann-Whitney U tests were used for comparisons between groups. The reliability of the measurements performed by two radiologists was evaluated with the ''intraclass correlation coefficient''. This study was approved by an institutional review board and all participants provided informed consent to participate in the study. Eighteen subjects with normal bone density (mean T score, 0.39 ± 1.3 [standard deviation]), 20 subjects with osteopenia (mean T score, -1.79 ± 0.38), and 18 subjects with osteoporosis (mean T score, -3 ± 0.5) were determined according to DXA results. The median age was 55.9 (age range 50-64 years) in the normal group, 55.5 (age range 50-64 years) in the osteopenic group, and 55.1 (age range 50-65 years) in the osteoporotic group (p = 0.872). In the CS-MRI examination, the values of ''SI suppression ratio'' and ''SI Index'' (median [min:max]) were calculated by the first and second reader, independently. There was no statistically significant difference between the groups with regard to vertebral bone marrow fat content (p > 0

  5. Noninvasive Temperature Mapping With MRI Using Chemical Shift Water-Fat Separation

    OpenAIRE

    Soher, Brian J.; Wyatt, Cory; Reeder, Scott B.; MacFall, James R.

    2010-01-01

    Tissues containing both water and lipids, e.g., breast, confound standard MR proton reference frequency-shift methods for mapping temperatures due to the lack of temperature-induced frequency shift in lipid protons. Generalized Dixon chemical shift–based water-fat separation methods, such as GE’s iterative decomposition of water and fat with echo asymmetry and least-squares estimation method, can result in complex water and fat images. Once separated, the phase change over time of the water s...

  6. Accuracy and precision of protein–ligand interaction kinetics determined from chemical shift titrations

    International Nuclear Information System (INIS)

    NMR-monitored chemical shift titrations for the study of weak protein–ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (KD) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the KD value of a 1:1 protein–ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125–138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of 1H–15N 2D HSQC NMR spectra acquired using precise protein–ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (koff). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, koff ∼ 3,000 s−1 in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for koff from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise koff values over a wide range, from 100 to 15,000 s−1. The validity of line shape analysis for koff values approaching intermediate exchange (∼100 s−1), may be facilitated by more accurate KD measurements from NMR-monitored chemical shift

  7. Quantification of fat using chemical shift imaging and 1H-MR spectroscopy in phantom model

    International Nuclear Information System (INIS)

    Objective: To evaluate the accuracy of chemical shift imaging (CSI) and MR spectroscopy (MRS) for fat quantification in phantom model. Methods: Eleven phantoms were made according to the volume percentage of fat ranging from 0 to 100% with an interval of 10%. The fat concentration in the phantoms were measured respectively by CSI and MRS and compared using one-sample t test. The correlation between the two methods was also analyzed. The concentration of saturated fatty acids (FS), unsaturated fatty acids (FU) and the poly, unsaturation degree (PUD) were calculated by using MRS. Results: The fat concentration was (48.0±1.0)%, (57.0±0.5)%, (67.3±0.6)%, (77.3± 0.6)%, (83.3±0.6)% and (91.0±1.0)% respectively with fat volume of 50% to 100% by CSI. The fat concentration was (8.3±0.6)%, (16.3±0.7)%, (27.7±0.6)%, (36.0±1.0)%, (43.5± 0.6)% and (56.5±1.0)% respectively with fat volume of 10% to 60% by MRS, the fat concentration were underestimated by CSI and MRS (P<0.05), and had high linear correlation with the real concentration in phantoms (CSI: r=0.998, MRS: r=0.996, P<0.01). There was also a linear correlation between two methods (r=0.992, P<0.01) but no statistically significant difference (paired- samples t test, t=-0.125, P=0.903). By using MRS, the relative ratio of FS and FU in fat were 0. 15 and 0.85, the PUD was 0.0325, respectively, and highly consistent with these in phantoms. Conclusion: Both CSI and MRS are efficient and accurate methods in fat quantification at 7.0 T MR. (authors)

  8. PACSY, a relational database management system for protein structure and chemical shift analysis

    International Nuclear Information System (INIS)

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.eduhttp://pacsy.nmrfam.wisc.edu.

  9. Substituent Chemical Shifts of (E)-1-Aryl-3-thienylpropen-1-ones

    International Nuclear Information System (INIS)

    Substituent chemical shifts were examined for the 2- and 3-thiophene derivatives of chalcone and compared to the thiophene series of derivatives with the phenyl series. The chemical shift values for the α-carbons of the enones showed and inverse correlation with the Hammett σ values, but the correlation coefficients were moderate (r = 0.836 - 0.878). On the other hand, the β-carbons showed a normal correlation with excellent correlation coefficients (r = 0.994). The absolute magnitude of the ρ values for the α-carbon are about half of those of the β-carbon. The observation may be the result of a through-space transition of the electronic effect of the substituents in addition to the through bond transition

  10. 1H chemical shift imaging characterization of human brain tumor and edema

    International Nuclear Information System (INIS)

    Longitudinal (T1) and transverse (T2) relaxation times of metabolites in human brain tumor, peritumoral edema, and unaffected brain tissue were assessed from point resolved spectroscopy (PRESS) 1H chemical shift imaging results at different repetition times (TR=1500 and 5000 ms; T1: n=19) and echo times (TE=135 and 270 ms; T2: n=7). Metabolite T1 and T2 relaxation times in unaffected brain tissue corresponded with those published for healthy volunteers. T2 relaxation times were reduced in tumor (choline, N-acetyl aspartate) and edema (choline, creatine) compared with unaffected brain tissue (p1H chemical shift imaging is most suited in the use of choline elevation as tumor marker. (orig.)

  11. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    International Nuclear Information System (INIS)

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (φ, ψ) torsion angles of ca 12º. TALOS-N also reports sidechain χ1 rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts

  12. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2013-07-15

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, {>=}90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed ({phi}, {psi}) torsion angles of ca 12 Masculine-Ordinal-Indicator . TALOS-N also reports sidechain {chi}{sup 1} rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.

  13. Relationship between electrophilicity index, Hammett constant and nucleus-independent chemical shift

    Indian Academy of Sciences (India)

    M Elango; R Parthasarathi; G Karthik Narayanan; A Md Sabeelullah; U Sarkar; N S Venkatasubramaniyan; V Subramanian; P K Chattaraj

    2005-01-01

    Inter-relationships between the electrophilicity index (), Hammett constant (ó) and nucleusindependent chemical shift (NICS (1) - NICS value one å ngstrom above the ring centre) have been investigated for a series of meta- and para-substituted benzoic acids. Good linear relationships between Hammett constant vs electrophilicity and Hammett constant vs NICS (1) values have been observed. However, the variation of NICS (1) against shows only a low correlation coefficient.

  14. Chemical shifts and EXAFS in some rare-earth metals and compounds

    International Nuclear Information System (INIS)

    The positions of the Lsub(111) absorption edge and accompanying Kossel and EXAFS oscillations of terbium, dysprosium and holmium in metals and compounds (acetate, carbonate, chloride, fluoride, nitrate, oxalate, oxide, phosphate and sulphate) have been measured. The chemical shifts of the main edge range from about 1 eV to about 10 eV and the EXAFS are observed up to about 150 eV. (author)

  15. Can quantum-chemical NMR chemical shifts be used as criterion for force-field development

    Czech Academy of Sciences Publication Activity Database

    Exner, T. E.; Frank, A.; Möller, H. M.; Dračínský, Martin

    Chemistry Central. Roč. 6, Suppl 1 (2014), O2. ISSN 1758-2946. [German Conference on Chemoinformatics /9./. 10.11.2013-12.11.2013, Fulda] Institutional support: RVO:61388963 Keywords : molecular dynamics * DFT calculations * NMR spectroscopy Subject RIV: CC - Organic Chemistry

  16. Molecular structure and vibrational bands and 13C chemical shift assignments of both enmein-type diterpenoids by DFT study

    Science.gov (United States)

    Wang, Tao; Wu, Yi fang; Wang, Xue liang

    2014-01-01

    We report here theoretical and experimental studies on the molecular structure and vibrational and NMR spectra of both natural enmein type diterpenoids molecule (6, 7-seco-ent-kaurenes enmein type), isolated from the leaves of Isodon japonica (Burm.f.) Hara var. galaucocalyx (maxin) Hara. The optimized geometry, total energy, NMR chemical shifts and vibrational wavenumbers of epinodosinol and epinodosin have been determined using B3LYP method with 6-311G (d,p) basis set. A complete vibrational assignment is provided for the observed IR spectra of studied compounds. The calculated wavenumbers and 13C c.s. are in an excellent agreement with the experimental values. Quantum chemical calculations at the B3LYP/6-311G (d,p) level of theory have been carried out on studied compounds to obtain a set of molecular electronic properties (MEP,HOMO, LUMO and gap energies ΔEg). Electrostatic potential surfaces have been mapped over the electron density isosurfaces to obtain information about the size, shape, charge density distribution and chemical reactivity of the molecules.

  17. Phase correction method for least-squares wavefront calculation in statistical generalized phase-shifting digital holography

    Science.gov (United States)

    Yoshikawa, Nobukazu; Kajihara, Kazuki

    2015-09-01

    When phase-shifting digital holography with a continuous fringe-scanning scheme is implemented using a PC-based measurement system without any synchronous circuit, nonuniform phase-shifted interference fringes are captured because of the fluctuation in the image-capturing interval. To cope with the nonuniform phase shifts, a statistical generalized phase-shifting approach is employed. Because the algorithm is designed to use an arbitrary phase shift, the nonuniform phase shifts do not obstruct object-wave retrieval. Moreover, multiple interference fringes can be obtained in a short time owing to the continuous fringe-scanning scheme. However, the wavefront calculation method is not designed for sequentially recorded interference fringes. To use multiple interference fringes appropriately, we develop a least-squares wavefront calculation method combined with corrections for the initial phase and the direction of phase rotation. We verify the proposed method by numerical simulations and optical experiments. The results show that the object wave with the same initial phase can be correctly reconstructed by using both phase correction methods simultaneously.

  18. Calculating the mean time to capture for tethered ligands and its effect on the chemical equilibrium of bound ligand pairs.

    Science.gov (United States)

    Shen, Lu; Decker, Caitlin G; Maynard, Heather D; Levine, Alex J

    2016-09-01

    We present here the calculation of the mean time to capture of a tethered ligand to the receptor. This calculation is then used to determine the shift in the partitioning between (1) free, (2) singly bound, and (3) doubly bound ligands in chemical equilibrium as a function of the length of the tether. These calculations are used in the research article Fibroblast Growth Factor 2 Dimer with Superagonist in vitro Activity Improves Granulation Tissue Formation During Wound Healing (Decker et al., in press [1]) to explain quantitatively how changes in polymeric linker length in the ligand dimers modifies the efficacy of these molecules relative to that of free ligands. PMID:27408925

  19. Insertion of the force applied to handles into centre of pressure calculation modifies the amplitude of centre of pressure shifts.

    Science.gov (United States)

    Noé, Frédéric; Quaine, Franck

    2006-11-01

    This study examined situations where handles were used as additional postural supports. It aimed at determining the amplitude of centre of pressure (COP) shifts when considering or not the vertical handles reaction force. Eight healthy male subjects (24+/-6 years, body mass 65+/-5kg and height 175+/-7cm) voluntarily took part in the experiment. Subjects had to voluntarily rock on their heels or rise on their toe-tips while using handles. The vertical component of the handles forces and ground reaction force was measured and the shifts of the COP were calculated while inserting or not the handles forces. Significant differences were observed when comparing the amplitude of COP shifts calculated with or without the insertion of the handles forces. This study shows that the measurement of the handles forces should not be omitted, for a rigorous analysis of postural tasks performed in conditions including additional postural supports like handles. PMID:16300948

  20. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsching, Keith J., E-mail: kfritzsc@brandeis.edu [Brandeis University, Department of Chemistry (United States); Hong, Mei [Massachusetts Institute of Technology, Department of Chemistry (United States); Schmidt-Rohr, Klaus, E-mail: srohr@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2016-02-15

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ({sup 13}C–{sup 13}C, {sup 15}N–{sup 13}C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 {sup 13}C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the {sup 13}C NMR data and almost all {sup 15}N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the {sup 13}C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra

  1. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    International Nuclear Information System (INIS)

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations (13C–13C, 15N–13C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 13C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the 13C NMR data and almost all 15N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the 13C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided

  2. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria.

    Science.gov (United States)

    Fritzsching, Keith J; Hong, Mei; Schmidt-Rohr, Klaus

    2016-02-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ((13)C-(13)C, (15)N-(13)C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 (13)C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited "hand-picked" data sets, we show that ~94% of the (13)C NMR data and almost all (15)N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6% of the (13)C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. -2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided

  3. Automated prediction of 15N, 13Cα, 13Cβ and 13C' chemical shifts in proteins using a density functional database

    International Nuclear Information System (INIS)

    A database of peptide chemical shifts, computed at the density functional level, has been used to develop an algorithm for prediction of 15N and 13C shifts in proteins from their structure; the method is incorporated into a program called SHIFTS (version 4.0). The database was built from the calculated chemical shift patterns of 1335 peptides whose backbone torsion angles are limited to areas of the Ramachandran map around helical and sheet configurations. For each tripeptide in these regions of regular secondary structure (which constitute about 40% of residues in globular proteins) SHIFTS also consults the database for information about sidechain torsion angle effects for the residue of interest and for the preceding residue, and estimates hydrogen bonding effects through an empirical formula that is also based on density functional calculations on peptides. The program optionally searches for alternate side-chain torsion angles that could significantly improve agreement between calculated and observed shifts. The application of the program on 20 proteins shows good consistency with experimental data, with correlation coefficients of 0.92, 0.98, 0.99 and 0.90 and r.m.s. deviations of 1.94, 0.97, 1.05, and 1.08 ppm for 15N, 13Cα, 13Cβ and 13C', respectively. Reference shifts fit to protein data are in good agreement with 'random-coil' values derived from experimental measurements on peptides. This prediction algorithm should be helpful in NMR assignment, crystal and solution structure comparison, and structure refinement

  4. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.go [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2010-09-15

    NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structures and nearly complete backbone and {sup 13}C{sup {beta}} chemical shifts are available. The neural network is trained to establish quantitative relations between chemical shifts and protein structures, including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects. The trained neural network yields rapid chemical shift prediction for backbone and {sup 13}C{sup {beta}} atoms, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for {delta}{sup 15}N, {delta}{sup 13}C', {delta}{sup 13}C{sup {alpha}}, {delta}{sup 13}C{sup {beta}}, {delta}{sup 1}H{sup {alpha}} and {delta}{sup 1}H{sup N}, respectively, between the SPARTA+ predicted and experimental shifts for a set of eleven validation proteins. These results represent a modest but consistent improvement (2-10%) over the best programs available to date, and appear to be approaching the limit at which empirical approaches can predict chemical shifts.

  5. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network

    International Nuclear Information System (INIS)

    NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structures and nearly complete backbone and 13Cβ chemical shifts are available. The neural network is trained to establish quantitative relations between chemical shifts and protein structures, including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects. The trained neural network yields rapid chemical shift prediction for backbone and 13Cβ atoms, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for δ15N, δ13C', δ13Cα, δ13Cβ, δ1Hα and δ1HN, respectively, between the SPARTA+ predicted and experimental shifts for a set of eleven validation proteins. These results represent a modest but consistent improvement (2-10%) over the best programs available to date, and appear to be approaching the limit at which empirical approaches can predict chemical shifts.

  6. Clouds Composition in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    Science.gov (United States)

    Kempton, Eliza M.-R.; Mbarek, Rostom

    2015-12-01

    Attempts to determine the composition of super-Earth atmospheres have so far been plagued by the presence of clouds. Yet the theoretical framework to understand these clouds is still in its infancy. For the super-Earth archetype GJ 1214b, KCl, Na2S, and ZnS have been proposed as condensates that would form under the condition of chemical equilibrium, if the planet’s atmosphere has a bulk composition near solar. Condensation chemistry calculations have not been presented for a wider range of atmospheric bulk composition that is to be expected for super-Earth exoplanets. Here we provide a theoretical context for the formation of super-Earth clouds in atmospheres of varied composition by determining which condensates are likely to form, under the assumption of chemical equilibrium. We model super-Earth atmospheres assuming they are formed by degassing of volatiles from a solid planetary core of chondritic material. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3,000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculations. The super-Earth atmospheres that we study range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a diverse range of atmospheric composition that is appropriate for low-mass exoplanets. Some condensates appear across all of our models. However, the majority of condensed species appear only over specific ranges of H:O and C:O ratios. We find that for GJ 1214b, KCl is the primary cloud-forming condensate at solar composition, in agreement with previous work. However, for oxidizing atmospheres, where H:O is less than unity, K2SO4 clouds form instead. For carbon-rich atmospheres with super-solar C:O ratios, graphite clouds additionally appear. At

  7. Simulations of Xe-129 NMR chemical shift of atomic xenon dissolved in liquid benzene

    Czech Academy of Sciences Publication Activity Database

    Standara, Stanislav; Kulhánek, P.; Marek, R.; Horníček, Jan; Bouř, Petr; Straka, Michal

    2011-01-01

    Roč. 129, 3/5 (2011), s. 677-684. ISSN 1432-881X R&D Projects: GA ČR GA203/09/2037; GA ČR GAP208/11/0105 Grant ostatní: AV ČR(CZ) M200550902; European Reintegration Grant(XE) 230955; European Community(XE) 205872 Institutional research plan: CEZ:AV0Z40550506 Keywords : Xe-129 NMR chemical shift * dynamical averaging * density functional theory * Breit-Pauli perturbation theory * relativistic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.162, year: 2011

  8. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    Science.gov (United States)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  9. Model analysis of influences of the high-temperature reactor on location shifting in chemical industry

    International Nuclear Information System (INIS)

    An analysis is presented of the influences of High-Temperature Reactor on probable location shifting of big chemical plants, in the future. This is done by a spatial location model, that includes an investigation on 116 industrial locations within the first six countries of Common Market. The results of a computerized program show differences in location qualities when furnished either with traditional or with nuclear energy systems. In addition to location factor energy some other important factors, as subventions, taxes, labour, and transport costs are analysed, and their influence on industrial location is quantified. (orig.)

  10. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents.

    Science.gov (United States)

    Görling, Benjamin; Bräse, Stefan; Luy, Burkhard

    2016-01-01

    Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored. PMID:27598217

  11. Liver fat quantification: Comparison of dual-echo and triple-echo chemical shift MRI to MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Satkunasingham, Janakan; Besa, Cecilia [Department of Radiology, Body MRI, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Bane, Octavia [Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Shah, Ami [Department of Radiology, Body MRI, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Oliveira, André de; Gilson, Wesley D.; Kannengiesser, Stephan [Siemens AG, Healthcare Sector, Erlangen (Germany); Taouli, Bachir, E-mail: bachir.taouli@mountsinai.org [Department of Radiology, Body MRI, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States)

    2015-08-15

    Highlights: • We present a large cohort of patients who underwent dual and triple echo chemical shift imaging against multi-echo T{sub 2} corrected MR spectroscopy (MRS) for liver fat quantification. • Our data suggests that a triple-echo sequence is highly accurate for detection of liver fat, even in the presence of T{sub 2}{sup *} shortening, with minor discrepancies when compared with the advanced fat quantification method. - Abstract: Purpose: To assess the diagnostic value of MRI using dual-echo (2PD) and triple-echo (3PD) chemical shift imaging for liver fat quantification against multi-echo T{sub 2} corrected MR spectroscopy (MRS) used as the reference standard, and examine the effect of T{sub 2}{sup *} imaging on accuracy of MRI for fat quantification. Materials and methods: Patients who underwent 1.5 T liver MRI that incorporated 2PD, 3PD, multi-echo T{sub 2}{sup *} and MRS were included in this IRB approved prospective study. Regions of interest were placed in the liver to measure fat fraction (FF) with 2PD and 3PD and compared with MRS-FF. A random subset of 25 patients with a wide range of MRS-FF was analyzed with an advanced FF calculation method, to prove concordance with the 3PD. The statistical analysis included correlation stratified according to T{sub 2}{sup *}, Bland-Altman analysis, and calculation of diagnostic accuracy for detection of MRS-FF > 6.25%. Results: 220 MRI studies were identified in 217 patients (mean BMI 28.0 ± 5.6). 57/217 (26.2%) patients demonstrated liver steatosis (MRS-FF > 6.25%). Bland-Altman analysis revealed strong agreement between 3PD and MRS (mean ± 1.96 SD: −0.5% ± 4.6%) and weaker agreement between 2PD and MRS (4.7% ± 16.0%). Sensitivity of 3PD for diagnosing FF> 6.25% was higher than that of 2PD. 3PD-FF showed minor discrepancies (coefficient of variation <10%) from FF measured with the advanced method. Conclusion: Our large series study validates the use of 3PD chemical shift sequence for detection of

  12. Liver fat quantification: Comparison of dual-echo and triple-echo chemical shift MRI to MR spectroscopy

    International Nuclear Information System (INIS)

    Highlights: • We present a large cohort of patients who underwent dual and triple echo chemical shift imaging against multi-echo T2 corrected MR spectroscopy (MRS) for liver fat quantification. • Our data suggests that a triple-echo sequence is highly accurate for detection of liver fat, even in the presence of T2* shortening, with minor discrepancies when compared with the advanced fat quantification method. - Abstract: Purpose: To assess the diagnostic value of MRI using dual-echo (2PD) and triple-echo (3PD) chemical shift imaging for liver fat quantification against multi-echo T2 corrected MR spectroscopy (MRS) used as the reference standard, and examine the effect of T2* imaging on accuracy of MRI for fat quantification. Materials and methods: Patients who underwent 1.5 T liver MRI that incorporated 2PD, 3PD, multi-echo T2* and MRS were included in this IRB approved prospective study. Regions of interest were placed in the liver to measure fat fraction (FF) with 2PD and 3PD and compared with MRS-FF. A random subset of 25 patients with a wide range of MRS-FF was analyzed with an advanced FF calculation method, to prove concordance with the 3PD. The statistical analysis included correlation stratified according to T2*, Bland-Altman analysis, and calculation of diagnostic accuracy for detection of MRS-FF > 6.25%. Results: 220 MRI studies were identified in 217 patients (mean BMI 28.0 ± 5.6). 57/217 (26.2%) patients demonstrated liver steatosis (MRS-FF > 6.25%). Bland-Altman analysis revealed strong agreement between 3PD and MRS (mean ± 1.96 SD: −0.5% ± 4.6%) and weaker agreement between 2PD and MRS (4.7% ± 16.0%). Sensitivity of 3PD for diagnosing FF> 6.25% was higher than that of 2PD. 3PD-FF showed minor discrepancies (coefficient of variation <10%) from FF measured with the advanced method. Conclusion: Our large series study validates the use of 3PD chemical shift sequence for detection of liver fat in the clinical environment, even in the presence of

  13. Algorithms for calculating mass-velocity and Darwin relativistic corrections with n-electron explicitly correlated Gaussians with shifted centers.

    Science.gov (United States)

    Stanke, Monika; Palikot, Ewa; Adamowicz, Ludwik

    2016-05-01

    Algorithms for calculating the leading mass-velocity (MV) and Darwin (D) relativistic corrections are derived for electronic wave functions expanded in terms of n-electron explicitly correlated Gaussian functions with shifted centers and without pre-exponential angular factors. The algorithms are implemented and tested in calculations of MV and D corrections for several points on the ground-state potential energy curves of the H2 and LiH molecules. The algorithms are general and can be applied in calculations of systems with an arbitrary number of electrons. PMID:27155619

  14. Quantum-Chemical Calculation of Carbododecahedron Formation in Carbon Plasma.

    Science.gov (United States)

    Poklonski, Nikolai A; Ratkevich, Sergey V; Vyrko, Sergey A

    2015-08-27

    The ground state of the molecule consisting of 10 carbon atoms in C10(rg) "ring" conformation and the energy of its metastable C10(st) "star" conformation are reported. The reaction coordinate for the isomeric transition C10(st) → C10(rg) was calculated using density functional theory (DFT) with UB3LYP/6-31G(d,p). It was established that a 5-fold symmetry axis is conserved in this isomeric transition. The total energy of the ring isomer is by 10.33 eV (9.16 eV as zero-point energy corrected) lower than that of the star isomer. The energy barrier for the transition from the metastable star state to the ring state is 2.87 eV (3.57 eV as zero-point energy corrected). An analysis of possible chemical reactions in carbon plasma involving C10(st) and C10(rg) and leading to the formation of C20 fullerenes was performed. It was revealed that the presence of the C10(st) conformation in the reaction medium is a necessary condition for C20 fullerene formation. It was shown that the presence of hydrogen atoms in carbon plasma and UV radiation accelerate the C10(st) → C10(rg) transition and thus suppress the C20 fullerene formation. PMID:26267290

  15. Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging

    DEFF Research Database (Denmark)

    Hanson, Lars Peter Grüner; Adalsteinsson, E; Pfefferbaum, A;

    2000-01-01

    Quantification of gray and white matter levels of spectroscopically visible metabolites can provide important insights into brain development and pathological conditions. Chemical shift imaging offers a gain in efficiency for estimation of global gray and white matter metabolite concentrations co...

  16. Paradigm shift in LUNG SBRT dose calculation associated with Heterogeneity correction

    International Nuclear Information System (INIS)

    Treatment of lung injury SBRT requires great dosimetric accuracy, the increasing clinical importance of dose calculation heterogeneities introducing algorithms that adequately model the transport of particles narrow beams in media of low density, as with Monte Carlo calculation. (Author)

  17. Qualitative Study of Substituent Effects on NMR 15N and 17O Chemical Shifts

    Science.gov (United States)

    Contreras, Rubén H.; Llorente, Tomás; Pagola, Gabriel I.; Bustamante, Manuel G.; Pasqualini, Enrique E.; Melo, Juan I.; Tormena, Cláudio F.

    2009-08-01

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-β substituent effects on both 15N and 17O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and σ-hyperconjugative interactions in saturated multicyclic compounds.

  18. Qualitative study of substituent effects on NMR (15)N and (17)O chemical shifts.

    Science.gov (United States)

    Contreras, Rubén H; Llorente, Tomás; Pagola, Gabriel I; Bustamante, Manuel G; Pasqualini, Enrique E; Melo, Juan I; Tormena, Cláudio F

    2009-09-10

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-beta substituent effects on both (15)N and (17)O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and sigma-hyperconjugative interactions in saturated multicyclic compounds. PMID:19685922

  19. Calculation of the density shift and broadening of the transition lines in pionic helium: Computational problems

    Energy Technology Data Exchange (ETDEWEB)

    Bakalov, Dimitar, E-mail: dbakalov@inrne.bas.bg [Bulgarian Academy of Sciences, INRNE (Bulgaria)

    2015-08-15

    The potential energy surface and the computational codes, developed for the evaluation of the density shift and broadening of the spectral lines of laser-induced transitions from metastable states of antiprotonic helium, fail to produce convergent results in the case of pionic helium. We briefly analyze the encountered computational problems and outline possible solutions of the problems.

  20. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts

    Science.gov (United States)

    Lu, W.; Chou, I.-Ming; Burruss, R.C.; Song, Y.

    2007-01-01

    A unified equation has been derived by using all available data for calculating methane vapor pressures with measured Raman shifts of C-H symmetric stretching band (??1) in the vapor phase of sample fluids near room temperature. This equation eliminates discrepancies among the existing data sets and can be applied at any Raman laboratory. Raman shifts of C-H symmetric stretching band of methane in the vapor phase of CH4-H2O mixtures prepared in a high-pressure optical cell were also measured at temperatures between room temperature and 200 ??C, and pressures up to 37 MPa. The results show that the CH4 ??1 band position shifts to higher wavenumber as temperature increases. We also demonstrated that this Raman band shift is a simple function of methane vapor density, and, therefore, when combined with equation of state of methane, methane vapor pressures in the sample fluids at elevated temperatures can be calculated from measured Raman peak positions. This method can be applied to determine the pressure of CH4-bearing systems, such as methane-rich fluid inclusions from sedimentary basins or experimental fluids in hydrothermal diamond-anvil cell or other types of optical cell. ?? 2007 Elsevier Ltd. All rights reserved.

  1. Water-fat imaging and general chemical shift imaging with spectrum modeling

    Science.gov (United States)

    An, Li

    Water-fat chemical shift imaging (CSI) has been an active research area in magnetic resonance imaging (MRI) since the early 1980's. There are two main reasons for water- fat imaging. First, water-fat imaging can serve as a fat- suppression method. Removing the usually bright fatty signals not only extends the useful dynamic range of an image, but also allows better visualization of lesions or injected contrast, and removes chemical shift artifacts, which may contribute to improved diagnosis. Second, quantification of water and fat provides useful chemical information for characterizing tissues such as bone marrow, liver, and adrenal masses. A milestone in water- fat imaging is the Dixon method that can produce separate water and fat images with only two data acquisitions. In practice, however, the Dixon method is not always successful due to field inhomogeneity problems. In recent years, many variations of the Dixon method have been proposed to overcome the field inhomogeneity problem. In general, these methods can at best separate water and fat without identifying the two because the water and fat magnetization vectors are sampled symmetrically, only parallel and anti-parallel. Furthermore, these methods usually depend on two-dimensional phase unwrapping which itself is sensitive to noise and artifacts, and becomes unreliable when the images have disconnected tissues in the field-of-view (FOV). We will first introduce the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) in chapter 1, and briefly review the existing water-fat imaging techniques in chapter 2. In chapter 3, we will introduce a new method for water-fat imaging. With three image acquisitions, a general direct phase encoding (DPE) of the chemical shift information is achieved, which allows an unambiguous determination of water and fat on a pixel by pixel basis. Details of specific implementations and noise performance will be discussed. Representative results

  2. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    Science.gov (United States)

    Nagamura, Naoka; Kitada, Yuta; Tsurumi, Junto; Matsui, Hiroyuki; Horiba, Koji; Honma, Itaru; Takeya, Jun; Oshima, Masaharu

    2015-06-01

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO2 (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying -30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping.

  3. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    International Nuclear Information System (INIS)

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO2 (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying −30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping

  4. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nagamura, Naoka, E-mail: NAGAMURA.Naoka@nims.go.jp; Kitada, Yuta; Honma, Itaru [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Tsurumi, Junto; Matsui, Hiroyuki; Takeya, Jun [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Horiba, Koji [Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Oshima, Masaharu [Synchrotron Radiation Research Organization, The University of Tokyo, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2015-06-22

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO{sub 2} (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying −30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping.

  5. Nuclear magnetic resonance, vibrational spectroscopic studies, physico-chemical properties and computational calculations on (nitrophenyl) octahydroquinolindiones by DFT method.

    Science.gov (United States)

    Pasha, M A; Siddekha, Aisha; Mishra, Soni; Azzam, Sadeq Hamood Saleh; Umapathy, S

    2015-02-01

    In the present study, 2'-nitrophenyloctahydroquinolinedione and its 3'-nitrophenyl isomer were synthesized and characterized by FT-IR, FT-Raman, (1)H NMR and (13)C NMR spectroscopy. The molecular geometry, vibrational frequencies, (1)H and (13)C NMR chemical shift values of the synthesized compounds in the ground state have been calculated by using the density functional theory (DFT) method with the 6-311++G (d,p) basis set and compared with the experimental data. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution using GAR2PED programme. Isotropic chemical shifts for (1)H and (13)C NMR were calculated using gauge-invariant atomic orbital (GIAO) method. The experimental vibrational frequencies, (1)H and (13)C NMR chemical shift values were found to be in good agreement with the theoretical values. On the basis of vibrational analysis, molecular electrostatic potential and the standard thermodynamic functions have been investigated. PMID:25440584

  6. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations.

    Science.gov (United States)

    Suhasini, M; Sailatha, E; Gunasekaran, S; Ramkumaar, G R

    2015-04-15

    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the (13)C and (1)H NMR chemical shifts of Carbamazepine. PMID:25682215

  7. Comparison of experimental and theoretical calculations of backscattering amplitude and phase shift functions for a number of fcc metals

    International Nuclear Information System (INIS)

    Extended x-ray absorption fine structure (EXAFS) spectra have been acquired experimentally for a number of fcc metals with atomic number Z between 28 (Ni) and 90 (Th). The backscattering amplitude and phase shift functions have been extracted from the data and compared with calculations based on a single scattering theory, using for the ejected electron, the exact curved wave function. The calculated functions obtained with the curved wave formalism provide increased accuracy, particularly at low k, i.e. k < 4 A/sup -1/, compared to those obtained with the plane wave approximation

  8. Diffusion-weighted imaging of the liver at 3 T using section-selection gradient reversal: emphasis on chemical shift artefacts and lesion conspicuity

    International Nuclear Information System (INIS)

    Aim: To assess the value of section-selection gradient reversal (SSGR) in liver diffusion-weighted imaging (DWI) by comparing it to conventional DWI with an emphasis on chemical shift artefacts and lesion conspicuity. Materials and methods: Forty-eight patients (29 men and 19 women; age range 33–80 years) with 48 liver lesions underwent two DWI examinations using spectral presaturation with inversion recovery fat suppression with and without SSGR at 3 T. Two reviewers evaluated each DWI (b = 100 and b = 800 image) with respect to chemical shift artefacts and liver lesion conspicuity using five-point scales and performed pairwise comparisons between the two DWIs. The signal-to-noise ratio (SNR) of the liver and the lesion and the lesion–liver contrast-to-noise ratio (CNR) were also calculated. Results: SSGR-DWI was significantly better than conventional DWI with respect to chemical shift artefacts and lesion conspicuity in both separate reviews and pairwise comparisons (p < 0.05). There were significant differences in the SNR of the liver (b = 100 and b = 800 images) and lesion (b = 800) between SSGR-DWI and conventional DWI (p < 0.05). Conclusion: Applying the SSGR method to DWI using SPIR fat suppression at 3 T could significantly reduce chemical shift artefacts without incurring additional acquisition time or SNR penalties, which leads to increased conspicuity of focal liver lesions. - Highlights: • Chemical shift artefact in liver DWI is markedly decreased by applying SSGR. • Liver lesion conspicuity is improved by applying SSGR to DWI. • In SNR of the liver, SSGR-DWI is better than conventional DWI

  9. Improving the chemical shift dispersion of multidimensional NMR spectra of intrinsically disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bermel, Wolfgang [Bruker BioSpin GmbH (Germany); Bruix, Marta [Consejo Superior de Investigaciones Cientificas, Instituto de Quimica Fisica ' ' Rocasolano' ' (Spain); Felli, Isabella C., E-mail: felli@cerm.unifi.it [University of Florence, Department of Chemistry ' Ugo Shiff' (Italy); Kumar, M.V. Vasantha [University of Florence, Magnetic Resonance Center (Italy); Pierattelli, Roberta, E-mail: pierattelli@cerm.unifi.it [University of Florence, Department of Chemistry ' Ugo Shiff' (Italy); Serrano, Soraya [Consejo Superior de Investigaciones Cientificas, Instituto de Quimica Fisica ' ' Rocasolano' ' (Spain)

    2013-03-15

    Intrinsically disordered proteins (IDPs) have recently attracted the attention of the scientific community challenging the well accepted structure-function paradigm. In the characterization of the dynamic features of proteins nuclear magnetic resonance spectroscopy (NMR) is a strategic tool of investigation. However the peculiar properties of IDPs, with the lack of a unique 3D structure and their high flexibility, have a strong impact on NMR observables (low chemical shift dispersion, efficient solvent exchange broadening) and thus on the quality of NMR spectra. Key aspects to be considered in the design of new NMR experiments optimized for the study of IDPs are discussed. A new experiment, based on direct detection of {sup 13}C{sup {alpha}}, is proposed.

  10. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sweany, M; Bernstein, A; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, S M

    2011-09-21

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 {+-} 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 {+-} 0.03 for Carbostyril-124, and 1.20 {+-} 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.

  11. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    International Nuclear Information System (INIS)

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultraviolet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as 1.88±0.02 for 4-Methylumbelliferone, stable within 0.5% over 50 days, 1.37±0.03 for Carbostyril-124, and 1.20±0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.

  12. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    CERN Document Server

    Sweany, M; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, M

    2011-01-01

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 $\\pm$ 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 $\\pm$ 0.03 for Carbostyril-124, and 1.20 $\\pm$ 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modele...

  13. DFT Studies on Thermal Stabilities,Electronic Structures, and 13C Chemical Shifts of C24O2 Based on Fullerene C24(D6)

    Institute of Scientific and Technical Information of China (English)

    WANG Zhen; ZHANG Jing

    2011-01-01

    Quantum chemical calculations on some possible equilibrium geometries of C2402 isomers derived from C24 (D6) and C240 have been performed using density functional theory (DFT) method. The geometric and electronic structures as well as the relative energies and thermal stabilities of various C2402 isomers at the ground state have been calculated at the B3LYP/6-31G(d) level of theory. And the 1,4,2,5-C2402 isomer was found to be the most stable geometry where two oxygen atoms were added to the longest carbon-carbon bonds in the same pentagon from a thermodynamic point of view. Based on the optimized neutral geometries, the vertical ionization potential and vertical electron affinity have been obtained. Meanwhile, the vibrational frequencies,IR spectrum, and 13C chemical shifts of various C2402 isomers have been calculated and analyzed.

  14. Clinical application of 1H-chemical-shift imaging (CSI) to brain diseases

    International Nuclear Information System (INIS)

    An H-1 chemical shift imaging (CSI) was developed as part of the clinical MRI system, by which magnetic resonance spectra (MRS) can be obtained from multiple small voxels and metabolite distribution in the brain can be visualized. The present study was to determine the feasibility and clinical potential of using an H-1 CSI. The device used was a Magnetom H 15 apparatus. The study population was comprised of 25 healthy subjects, 20 patients with brain tumor, 4 with ischemic disease, and 6 with miscellaneous degenerative disease. The H-1 CSI was obtained by the 3-dimensional Fourier transformation. After suppressing the lipid signal by the inversion-recovery method and the water signal by the chemical-shift selective pulse with a following dephasing gradient, 2-directional 16 x 16 phase encodings were applied to the 16 x 16∼18 x 18 cm field of view, in which a 8 x 8 x 2∼10 x 10 x 2 cm area was selected by the stimulated echo or spin-echo method. The metabolite mapping and its contour mapping were created by using the curve-fitted area, with interpolation to the 256 x 256 matrix. In the healthy group, high resolution spectra for N-acetyl aspartate (NAA), creatine, choline (Cho), and glutamine/glutamate were obtained from each voxel; and metabolite mapping and contour mapping also clearly showed metabolite distribution in the brain. In the group of brain tumor, an increased Cho and lactate and loss of NAA were observed, along with heterogeneity within the tumor and changes in the surrounding tissue; and there was a good correlation between lactate peak and tumor malignancy. The group of ischemic and degenerative disease had a decreased NAA and increased lactate on both spectra and metabolite mapping, depending on disease stage. These findings indicated that H-1 CSI is helpful for detecting spectra over the whole brain, as well as for determining metabolite distribution. (N.K.)

  15. Chemical shift measurements of chlorine K X-ray spectra using a high-resolution PIXE system

    International Nuclear Information System (INIS)

    A high-efficiency high-resolution wavelength-dispersive spectrograph with a von-Hamos configuration was developed for chemical state identification of elements in environmental samples using PIXE analysis. To evaluate the performance of this system, chlorine K X-ray spectra for NaCl, NH4Cl and polyvinylchloride (PVC) targets were measured and compared. Also, to study the applicability to environmental mixed samples, mixtures of NaCl and NH4Cl with different mixing ratios were measured. Through observation of Cl Kα1 X-ray from NaCl, the energy resolution of the system was determined to be 1.1 eV. For the NaCl sample, a Kβx line was observed at an energy, which is higher than that of the Kβ main peak by 2 eV, whereas no Kβx emission was observed for the NH4Cl sample. The chemical shift of the Kβ main peak for PVC relative to that for NaCl was about 1.2 eV. For NaCl-NH4Cl mixture targets, the relative intensity of Kβx satellite to the Kβ main line provided an indication of mixing ratio. Energies and relative intensity of Cl Kβ X-ray satellites for NaCl and NH4Cl samples calculated by a simple molecular-orbital method agreed only qualitatively with the experimental results

  16. Doppler-shifted auroral H β emission: a comparison between observations and calculations

    Directory of Open Access Journals (Sweden)

    K. Aarsnes

    Full Text Available Two sounding rockets equipped with photometers and particle detectors have been flown into proton auroras. The measured altitude dependence of the proton flux is compared with calculations based upon known energy-range relations for protons in air. Expressions suitable for numerical calculations of Doppler profiles at arbitrary angles to the geomagnetic field and at different heights within an aurora are developed. Profiles due to some typical proton spectra have been calculated and it is shown that altitude profiles at some wavelengths are more sensitive to the shape of the proton spectrum than are profiles at other wavelengths. Variations in the Hβ Doppler profile versus height for several angles with the magnetic field is studied. Profiles, as generated by the actually measured protons in the energy range 1 keV to 1 MeV, have been calculated and are compared with direct optical measurements made by ground and rocket photometers. The rocket photometers took measurements at different wavelengths within the Doppler profile. The correspondence between calculations and measurements is generally good. The total Hβ is calculated and fair agreement with the measured intensity is found.

  17. Correlation between 1H NMR chemical shifts of hydroxyl protons in n-hexanol/cyclohexane and molecular association properties investigated using density functional theory

    Science.gov (United States)

    Flores, Mario E.; Shibue, Toshimichi; Sugimura, Natsuhiko; Nishide, Hiroyuki; Moreno-Villoslada, Ignacio

    2016-01-01

    Association of n-hexanol molecules in cyclohexane forming clusters is studied by DFT and 1H NMR. Geometry optimization, corrected binding energies, charge distributions, charge transfer energies, and 1H NMR chemical shifts have been obtained. The calculated chemical shifts of hydroxyl protons have been correlated to experimental data obtained in the range of n-hexanol molar fraction between 0.002 and 0.2, showing that n-hexanol molecules at a molar fraction around 0.1, where well-structured hydrogen bond networks are observed, tend to form linear pentamers and hexamers. The experimental data are consistent with the continuous linear association thermodynamic model, showing a dimensionless association constant of 284.

  18. A technique for calculating ionospheric Doppler shifts from standard ionograms suitable for scientific, HF communication, and OTH radar applications

    Science.gov (United States)

    Lynn, K. J. W.

    2009-12-01

    High-resolution Doppler ionograms taken at 5 min intervals were obtained from a KEL IPS 71 ionosonde operating over a full ionosonde sweep range. The ionograms were converted into true height profiles using the program POLAN. POLAN also produced an equivalent parabolic layer model of best fit to the true height profile. A parabolic layer model of the ionosphere is defined by three parameters, namely, peak height, maximum electron density/critical frequency, and parabolic thickness. Equations for calculating Doppler shift from a time-varying parabolic layer model have long been known but have seen remarkably little use in the absence of suitable input data and a means of verifying the results. This paper shows that these equations can provide an accurate means of calculating ionospheric Doppler shift based on standard ionospheric ionograms taken at a 5 min rate over a 24 h period when compared with actual Doppler measurements. Apart from its scientific interest, the demonstrated technique will prove particularly valuable in deriving Doppler shift and associated signal fading for the real-time control of over-the-horizon radar and HF communication links.

  19. A Successive Shift Box-Counting Method for Calculating Fractal Dimensions and Its Application in Identification of Faults

    Institute of Scientific and Technical Information of China (English)

    沈晓华; 邹乐君; 李宏升; 沈忠悦; 杨树峰

    2002-01-01

    Fractal dimensions of a terrain quantitatively describe the self-organized structure of the terrain geometry. However, the local topographic variation cannot be illustrated by the conventional box-counting method. This paper proposes a successive shift box-counting method, in which the studied object is divided into small sub-objects that are composed of a series of grids according to its characteristic scaling. The terrain fractal dimensions in the grids are calculated with the successive shift box-counting method and the scattered points with values of fractal dimensions are obtained. The present research shows that the planar variation of fractal dimensions is well consistent with fault traces and geological boundaries.

  20. Intramolecular hydrogen bonding in 5-nitrosalicylaldehyde: IR spectrum and quantum chemical calculations

    Science.gov (United States)

    Moosavi-Tekyeh, Zainab; Taherian, Fatemeh; Tayyari, Sayyed Faramarz

    2016-05-01

    The structural parameters, and vibrational frequencies of 5-nitrosalicylaldehyde (5NSA) were studied by the FT-IR and Raman spectra and the quantum chemical calculations carried out at the B3LYP/6-311++G(d,p) level of theory in order to investigate the intramolecular hydrogen bonding (IHB) present in its structure. The strength and nature of IHB in the optimized structure of 5NSA were studied in detail by means of the atoms in molecules (AIM) and the natural bond orbital (NBO) approaches. The results obtained were then compared with the corresponding data for its parent molecule, salicylaldehyde (SA). Comparisons made between the geometrical structures for 5NSA and SA, their OH/OD stretching and out-of-plane bending modes, their enthalpies for the hydrogen bond, and their AIM parameters demonstrated a stronger H-bonding in 5NSA compared with that in SA. The calculated binding enthalpy (ΔHbind) for 5NSA was -10.92 kcal mol-1. The observed νOH and γOH appeared at about 3120 cm-1 and 786 cm-1 respectively. The stretching frequency shift of H-bond formation was 426 cm-1 which is consistent with ΔHbind and the strength of H-bond in 5NSA. The delocalization energies and electron delocalization indices derived by the NBO and AIM approaches indicate that the resonance effects were responsible for the stronger IHB in 5NSA than in SA.

  1. Chemical shifts of the X-ray L3 absorption edge of europium in its trivalent halides

    International Nuclear Information System (INIS)

    Position of the Eu-L3 absorption edge has been studied in pure metal and in its trivalent halides, EuF3, EuCl3, EuBr3, and EuI3, employing a simple X-ray spectrometer with an LiF single crystal as the analyser. A linear relationship was established between the chemical shift and the effective charge on the absorbing rare earth atom. The chemical shifts have also been correlated to Moessbauer isomer shifts. The results have been discussed in terms of nature of chemical bonding, effective atomic charge on the absorbing atom and some other parameters relevant to the immediate local environment of the absorbing atom. (author)

  2. Attainable entanglement of unitary transformed thermal states in liquid-state nuclear magnetic resonance with the chemical shift

    CERN Document Server

    Ota, Y; Ohba, I; Yoshida, N; Mikami, Shuji; Ohba, Ichiro; Ota, Yukihiro; Yoshida, Noriyuki

    2006-01-01

    Recently, Yu, Brown, and Chuang [Phys. Rev. A {\\bf 71}, 032341 (2005)] investigated the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance (NMR). Their research gave an insight into the role of the entanglement in a liquid-state NMR quantum computer. Moreover, they attempted to reveal the role of mixed-state entanglement in quantum computing. However, they assumed that the Zeeman energy of each nuclear spin which corresponds to a qubit takes a common value for all; there is no chemical shift. In this paper, we research a model with the chemical shifts and analytically derive the physical parameter region where unitary transformed thermal states are entangled, by the positive partial transposition (PPT) criterion with respect to any bipartition. We examine the effect of the chemical shifts on the boundary between the separability and the nonseparability, and find it is negligible.

  3. Helping Students Develop a Critical Attitude towards Chemical Process Calculations.

    Science.gov (United States)

    de Nevers, Noel; Seader, J. D.

    1992-01-01

    Discusses the use of computer-assisted programs that allow chemical engineering students to study textbook thermodynamics problems from different perspectives, including the classical graphical method, while utilizing more than one property correlation and/or operation model so that comparisons can be made and sensitivities determined more…

  4. Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak.

    Science.gov (United States)

    Webster, Nicole S; Xavier, Joana R; Freckelton, Marnie; Motti, Cherie A; Cobb, Rose

    2008-12-01

    The microbial community composition in affected and unaffected portions of diseased sponges and healthy control sponges of Aplysina aerophoba was assessed to ascertain the role of microbes in the disease process. Sponge secondary metabolites were also examined to assess chemical shifts in response to infection. The microbial profile and aplysinimine levels in unaffected tissue near the lesions closely reflected those of healthy sponge tissue, indicating a highly localized disease process. DGGE detected multiple sequences that were exclusively present in diseased sponges. Most notably, a Deltaproteobacteria sequence with high homology to a coral black band disease strain was detected in all sponge lesions and was absent from all healthy and unaffected regions of diseased sponges. Other potential pathogens identified by DGGE include an environmental Cytophaga strain and a novel Epsilonproteobacteria strain with no known close relatives. The disease process also caused a major shift in prokaryote community structure at a very high taxonomic level. Using 16S rRNA gene sequence analysis, only the diseased sponges were found to contain sequences belonging to the Epsilonproteobacteria and Firmicutes, and there was a much greater number of Bacteroidetes sequences within the diseased sponges. In contrast, only the healthy sponges contained sequences corresponding to the cyanobacteria and 'OP1' candidate division, and the healthy sponges were dominated by Chloroflexi and Gammaproteobacteria sequences. Overall bacterial diversity was found to be considerably higher in diseased sponges than in healthy sponges. These results provide a platform for future cultivation-based experiments to isolate the putative pathogens from A. aerophoba and perform re-infection trials to define the disease aetiology. PMID:18783385

  5. SENVAR: a code for handling chemical uncertainties in solubility calculations

    International Nuclear Information System (INIS)

    In the planning for a repository for spent nuclear fuel it is important to know the solubility of some important solid phases in order to, for example, predict migration of radionuclides from the repository. The method presented in the present paper investigates the effect of uncertainties in thermodynamical data, i.e. stability and solubility constants, for the calculated solubility of a solid phase. The adopted approach is simple Monte Carlo sampling. The investigation is mainly made in three steps. First a preliminary sensitivity analysis where the important parameters are determined. This is done by holding each of the parameters at a fixed value for a given number of solubility calculations. During this time all other parameters are varied according to a pre-set random matrix. The variance for each stationary parameter is then calculated and the one with the smallest variance is deemed the most important one and so on. The parameters that are deemed important are then transferred into the uncertainty analysis. There, each parameter may be given a separate interval for the uncertainty and then a couple of thousand solubility calculations are made where the values of the parameters are varied according to the Monte Carlo method. The results from these calculations are used to estimate the effect of the uncertainties in a plot showing the density function of the solubility and some statistical estimators. The solubility calculations are also used to give data to a stepwise regression program which estimates the importance of each parameter entered into the uncertainty analysis. The regression error is also shown in order to make it easy to determine which values may be correct or not

  6. Calculation of transition probabilities and ac Stark shifts in two-photon laser transitions of antiprotonic helium

    OpenAIRE

    HORI, MASAKI; Korobov, Vladimir I.

    2010-01-01

    Numerical ab initio variational calculations of the transition probabilities and ac Stark shifts in two-photon transitions of antiprotonic helium atoms driven by two counter-propagating laser beams are presented. We found that sub-Doppler spectroscopy is in principle possible by exciting transitions of the type (n,L)->(n-2,L-2) between antiprotonic states of principal and angular momentum quantum numbers n~L-1~35, first by using highly monochromatic, nanosecond laser beams of intensities 10^4...

  7. The nature of chemical bonds from PNOF5 calculations.

    Science.gov (United States)

    Matxain, Jon M; Piris, Mario; Uranga, Jon; Lopez, Xabier; Merino, Gabriel; Ugalde, Jesus M

    2012-06-18

    Natural orbital functional theory (NOFT) is used for the first time in the analysis of different types of chemical bonds. Concretely, the Piris natural orbital functional PNOF5 is used. It provides a localization scheme that yields an orbital picture which agrees very well with the empirical valence shell electron pair repulsion theory (VSEPR) and Bent's rule, as well as with other theoretical pictures provided by valence bond (VB) or linear combination of atomic orbitals-molecular orbital (LCAO-MO) methods. In this context, PNOF5 provides a novel tool for chemical bond analysis. In this work, PNOF5 is applied to selected molecules that have ionic, polar covalent, covalent, multiple (σ and π), 3c-2e, and 3c-4e bonds. PMID:22615195

  8. Clouds in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    OpenAIRE

    Mbarek, Rostom; Kempton, Eliza M. -R.

    2016-01-01

    Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres (Kreidberg et al. 2014). Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer & Fegley (2010). The super-Earth atmosphe...

  9. First principle calculations of core-level binding energy and Auger kinetic energy shifts in metallic solids

    Energy Technology Data Exchange (ETDEWEB)

    Olovsson, Weine, E-mail: weine.olovsson@gmail.co [Department of Materials Science and Engineering, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Marten, Tobias [Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83 Linkoeping (Sweden); Holmstroem, Erik [Instituto de Fisica, Universidad Austral de Chile, Valdivia (Chile); Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Johansson, Boerje [Department of Physics and Materials Science, Uppsala University, P.O. Box 530, SE-751 21 Uppsala (Sweden); Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Abrikosov, Igor A. [Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2010-05-15

    We present a brief overview of recent theoretical studies of the core-level binding energy shift (CLS) in solid metallic materials. The focus is on first principles calculations using the complete screening picture, which incorporates the initial (ground state) and final (core-ionized) state contributions of the electron photoemission process in X-ray photoelectron spectroscopy (XPS), all within density functional theory (DFT). Considering substitutionally disordered binary alloys, we demonstrate that on the one hand CLS depend on average conditions, such as volume and overall composition, while on the other hand they are sensitive to the specific local atomic environment. The possibility of employing layer resolved shifts as a tool for characterizing interface quality in fully embedded thin films is also discussed, with examples for CuNi systems. An extension of the complete screening picture to core-core-core Auger transitions is given, and new results for the influence of local environment effects on Auger kinetic energy shifts in fcc AgPd are presented.

  10. Calculation of transition probabilities and ac Stark shifts in two-photon laser transitions of antiprotonic helium

    International Nuclear Information System (INIS)

    Numerical ab initio variational calculations of the transition probabilities and ac Stark shifts in two-photon transitions of antiprotonic helium atoms driven by two counter-propagating laser beams are presented. We found that sub-Doppler spectroscopy is, in principle, possible by exciting transitions of the type (n,L)→(n-2,L-2) between antiprotonic states of principal and angular momentum quantum numbers n∼L-1∼35, first by using highly monochromatic, nanosecond laser beams of intensities 104-105 W/cm2, and then by tuning the virtual intermediate state close (e.g., within 10-20 GHz) to the real state (n-1,L-1) to enhance the nonlinear transition probability. We expect that ac Stark shifts of a few MHz or more will become an important source of systematic error at fractional precisions of better than a few parts in 109. These shifts can, in principle, be minimized and even canceled by selecting an optimum combination of laser intensities and frequencies. We simulated the resonance profiles of some two-photon transitions in the regions n=30-40 of the p4He+ and p3He+ isotopes to find the best conditions that would allow this.

  11. Exact trajectory in semiclassical line broadening and line shifting calculation test for H2-He Q(1) line

    International Nuclear Information System (INIS)

    The semiclassical model RB (Robert, D. and Bonamy, J. (Journal de Physique (Paris), 1979, 40, 923 for calculation of line width and line shift has been used in many applications. It contains an approximate 'parabolic' trajectory. Bykov, A.D. et al, Atmospheric and Oceanic Optics (1992) 5, 587, have recently proposed an analytical expression for an exact treatment of the classical path. This paper analyses the consequence of introducing the exact trajectory within the RB model for the H2-He Q(1) line chosen as a simple test. Moreover, a comparison with results of exact close-coupling calculations is also given for this molecular system. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Quantum Chemical Calculations Resolved Identification of Methylnitrocatechols in Atmospheric Aerosols.

    Science.gov (United States)

    Frka, Sanja; Šala, Martin; Kroflič, Ana; Huš, Matej; Čusak, Alen; Grgić, Irena

    2016-06-01

    Methylnitrocatechols (MNCs) are secondary organic aerosol (SOA) tracers and major contributors to atmospheric brown carbon; however, their formation and aging processes in atmospheric waters are unknown. To investigate the importance of aqueous-phase electrophilic substitution of 3-methylcatechol with nitronium ion (NO2(+)), we performed quantum calculations of their favorable pathways. The calculations predicted the formation of 3-methyl-5-nitrocatechol (3M5NC), 3-methyl-4-nitrocatechol (3M4NC), and a negligible amount of 3-methyl-6-nitrocatechol (3M6NC). MNCs in atmospheric PM2 samples were further inspected by LC/(-)ESI-MS/MS using commercial as well as de novo synthesized authentic standards. We detected 3M5NC and, for the first time, 3M4NC. In contrast to previous reports, 3M6NC was not observed. Agreement between calculated and observed 3M5NC/3M4NC ratios cannot unambiguously confirm the electrophilic mechanism as the exclusive formation pathway of MNCs in aerosol water. However, the examined nitration by NO2(+) is supported by (1) the absence of 3M6NC in the ambient aerosols analyzed and (2) the constant 3M5NC/3M4NC ratio in field aerosol samples, which indicates their common formation pathway. The magnitude of error one could make by incorrectly identifying 3M4NC as 3M6NC in ambient aerosols was also assessed, suggesting the importance of evaluating the literature regarding MNCs with special care. PMID:27136117

  13. Chemical shift imaging and localised magnetic resonance spectroscopy in full-term asphyxiated neonates

    International Nuclear Information System (INIS)

    Diagnosis of brain lesions after birth anoxia-ischemia is essential for appropriate management. Clinical evaluation is not sufficient. MRI has been proven to provide useful information. To compare abnormalities observed with MRI, including diffusion-weighted imaging (DWI), localised magnetic resonance spectroscopy (MRS) and chemical shift imaging (CSI) and correlate these findings with the clinical outcome. Fourteen full-term neonates with birth asphyxia were studied. MRI, MRS and CSI were performed within the first 4 days of life. Lesions observed with DWI were correlated with outcome, but the apparent diffusion coefficient (ADC) did improve diagnostic confidence. The mean value of Lac/Cr for the neonates with a favourable outcome was statically lower than for those who died (0.22 vs 1.04; P = 0.01). The same results were observed for the Lac/NAA ratio (0.21 vs 1.23; P = 0.01). Data obtained with localised MRS and CSI were correlated for the ratio N-acetyl-aspartate/choline, but not for the other metabolites. No correlation was found between the ADC values and the metabolite ratios. Combination of these techniques could be helpful in our understanding of the physiopathological events occurring in neonates with asphyxia. (orig.)

  14. Clinical evaluation of the cerebral energy metabolism with 31P chemical shift imaging in neurosurgical disorders

    International Nuclear Information System (INIS)

    Cerebral energy metabolism was evaluated by means of 31P chemical shift imaging (CSI) using the 2.0 T whole-body MRIS system. 31P CSI was carried out by means of Spectroscopic Imaging by Dephasing Amplitude Changing method, four-dimensional CSI, and three-dimensional CSI. Twenty three patients with cerebral infarction and 21 patients with hypertensive intracerebral hemorrhage were examined. In cerebral infarction, an acute infarction was seen as a low-signal area in the PCr and ATP images and as a high-signal area in the Pi image. A subacute and chronic infarction was seen as a low-signal area in all the images -- 31P, PCr, ATP, Pi, PDE and PME. Intracellular acidosis was noticed within 2 days after onset. The intracellular pH became alkaline at the subacute and chronic stages of infarction. The chronological changes in the phosphorus metabolites were evaluated by means of these methods. In hypertensive intracerebral hemorrhage, hematoma and perifocal edema in the acute stage were seen as low-signal areas in the 31P, PCr, and ATP images, and as high-signal areas in the Pi image. In the chronic stage, a hematoma was seen as a low-signal area in all the images -- 31P, PCr, ATP and Pi. 31P CSI is thus a practical tool for studying phosphate metabolites clinically. Changes in the phosphorus metabolism relative to the anatomy of interest were detected by the use of these methods. (author)

  15. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase.

    Science.gov (United States)

    Wang, Xianwei; Zhang, John Z H; He, Xiao

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties. PMID:26567650

  16. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianwei [Center for Optics and Optoelectronics Research, College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023 (China); State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062 (China); Zhang, John Z. H.; He, Xiao, E-mail: xiaohe@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062 (China); NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 (China)

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  17. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    International Nuclear Information System (INIS)

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties

  18. Cytoplasmic fat detection utilizing chemical shift gradient. Echo MR imaging in cases of clear cell renal cell carcinoma

    International Nuclear Information System (INIS)

    We investigated whether cytoplasmic fat in clear cell renal cell carcinoma (CCC) can be identified by chemical shift gradient-echo magnetic resonance imaging (CSI). CSI was performed for 22 cases of CCC and 30 cases of other renal tumors (including 16 cases of non-CCC), all of which were surgically proven. Signal reduction in out-of-phase images of these tumors was retrospectively evaluated and compared. The signal loss ratio (SLR) was defined and calculated. Fat staining of specimens from 16 tumors was performed and correlated with SLR. SLR was found to be significantly higher in CCC than in non-CCC (p<0.002). There was a significant correlation between the degree of fat staining positively of the specimens and SLR (p<0.01). When signal reduction in out-of-phase images suggested a diagnosis of CCC, a correct diagnosis of this entity was made in the resected renal tumors with a sensitivity, specificity, and accuracy of 82%, 93%, and 88%, respectively. CSI can demonstrate cytoplasmic fat in CCC, which helps to differentiate this entity from other renal tumors. (author)

  19. The study on temporal lobe epilepsy with single-voxel proton MR spectroscopy and chemical shift imaging

    International Nuclear Information System (INIS)

    Objective: To investigate the value of different proton MR spectroscopy techniques including single-voxel spectroscopy (SVS) and chemical shift imaging (CSI) in diagnosing patients with temporal lobe epilepsy. Methods: Sixty cases (40 normal, 20 temporal lobe epilepsy) experienced SVS and CSI. The volume of interest (VOI) of SVS was placed over the anterior hippocampus formation (HF) region, including part of the head and body of the HF. The VOI of CSI encompassed bilateral HF and the head, body and tail of HF. The VOI was divided into 5 voxels from anterior to posterior. The metabolite data of both SVS and CSI were obtained and the ratios of NAA/Cr and NAA/(Cho+Cr) were recorded or calculated. Results: The ipsilateral hippocampus to the seizure of TLE patients had lower ratios of NAA/(Cho+Cr) and NAA/Cr, and the differences compared with those of the normal group and contralateral subgroup were statistically significant (F=41.958, P1HMRS study improved the diagnostic yield of MR evaluation in TLE patients. There was a correlation between the ratio of NAA/(Cho+Cr) and the location of HF. Regional variation must be considered when interpreting proton spectra of the HF. (author)

  20. Fast algorithm for calculating chemical kinetics in turbulent reacting flow

    International Nuclear Information System (INIS)

    The design of a very fast, automatic black-box code for homogeneous, gas-phase chemical kinetics problems requires an understanding of the physical and numerical sources of computational inefficiency. Some major sources reviewed in this paper are stiffness of the governing ordinary differential equations and its detection, choice of appropriate method (i.e., integration algorithm plus stepsize control strategy), nonphysical initial conditions, and too frequent evaluation of thermochemical and kinetic properties. Specific techniques are recommended (and some advised against) for improving or overcoming the identified problem areas. It is argued that, because reactive species increase exponentially with time during induction and early heat release, and all species exhibit asymptotic, exponential decay with time during late heat release and equilibration, exponential-fitted integration algorithms are inherently more accurate for kinetics modeling than classical, polynomial-interpolant methods for the same computational work

  1. 129Xe-NMR of xenon adsorbed on zeolites: determination of the dimensions of the void space from the chemical shift δ(129Xe)

    International Nuclear Information System (INIS)

    The chemical shift δS of xenon adsorbed on zeolite and extrapolated to zero concentration depends only on the internal void space of the solid. The smaller the channels or cavities, or the more restricted the diffusion, the greater δS becomes. We have calculated the theoretical values of the mean free path l-bar of xenon adsorbed in various zeolites. We deduce from them the dependence of the δS on l-bar. It is now possible to determine the dimensions of any void space in which xenon can be adsorbed. 4 refs.; 2 figs.; 3 tabs

  2. Correlation of 1H NMR Chemical Shift for Aqueous Solutions by Statistical Associating Fluid Theory Association Model

    Institute of Scientific and Technical Information of China (English)

    许波; 李浩然; 王从敏; 许映杰; 韩世钧

    2005-01-01

    1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between SAFT association model and Wilson equation shows that the former is better for dealing with aqueous solutions. Finally, the specialties of both models are discussed.

  3. Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging

    DEFF Research Database (Denmark)

    Hanson, Lars Peter Grüner; Adalsteinsson, E; Pfefferbaum, A; Spielman, D.M.

    2000-01-01

    Quantification of gray and white matter levels of spectroscopically visible metabolites can provide important insights into brain development and pathological conditions. Chemical shift imaging offers a gain in efficiency for estimation of global gray and white matter metabolite concentrations co...... concentration error (<15%). Magn Reson Med 44:10-18, 2000....

  4. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers

    DEFF Research Database (Denmark)

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek;

    2016-01-01

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for non-relativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton and xenon dimers and free atoms. Relativistic...... corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the 4-component Dirac-Coulomb Hamiltonian using Dyall’s acv4z basis sets. The relativistic corrections to the nuclear magnetic...... shieldings and chemical shifts are combined with non-relativistic CCSD(T) calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr and the AQZP basis set for Xe. For the dimers also zero-point vibrational corrections obtained at the CCSD...

  5. Clouds in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    CERN Document Server

    Mbarek, Rostom

    2016-01-01

    Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres (Kreidberg et al. 2014). Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer & Fegley (2010). The super-Earth atmospheres that we study arise from planetary cores made up of individual types of chondritic meteorites. They range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both subsolar and super-solar, thereby spanning a range of atmospheric composition that is appropriate for low-mass exoplanets. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of formation for over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temper...

  6. {sup 1}H MR chemical shift imaging detection of phenylalanine in patients suffering from phenylketonuria (PKU)

    Energy Technology Data Exchange (ETDEWEB)

    Sijens, Paul E.; Oudkerk, Matthijs [University Hospital Groningen, Department of Radiology, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); Reijngoud, Dirk-Jan; Spronsen, Francjan J. van [University Hospital Groningen, Department of Pediatrics, Groningen (Netherlands); Leenders, Klaas L. [University Hospital Groningen, Department of Neurology, Groningen (Netherlands); Valk, Harold W. de [University Medical Centre of Utrecht, Department of Internal Medicine, Utrecht (Netherlands)

    2004-10-01

    Short echo time single voxel methods were used in previous MR spectroscopy studies of phenylalanine (Phe) levels in phenylketonuria (PKU) patients. In this study, apparent T{sub 2} relaxation time of the 7.3-ppm Phe multiplet signal in the brain of PKU patients was assessed in order to establish which echo time would be optimal. {sup 1}H chemical shift imaging (CSI) examinations of a transverse plain above the ventricles of the brain were performed in 10 PKU patients and 11 persons not suffering from PKU at 1.5 T, using four echo times (TE 20, 40, 135 and 270 ms). Phe was detectable only when the signals from all CSI voxels were summarized. In patients suffering from PKU the T{sub 2} relaxation times of choline, creatine and N-acetyl aspartate (NAA) were similar to those previously reported for healthy volunteers (between 200 and 325 ms). The T{sub 2} of Phe in brain tissue was 215{+-}120 ms (standard deviation). In the PKU patients the brain tissue Phe concentrations were 141{+-}69 {mu}M as opposed to 58{+-}23 {mu}M in the persons not suffering from PKU. In the detection of Phe, MR spectroscopy performed at TE 135 or 270 ms is not inferior to that performed at TE 20 or 40 ms (all previous studies). Best results were obtained at TE=135 ms, relating to the fact that at that particular TE, the visibility of a compound with a T{sub 2} of 215 ms still is good, while interfering signals from short-TE compounds are negligible. (orig.)

  7. Female sea lamprey shift orientation toward a conspecific chemical cue to escape a sensory trap

    Science.gov (United States)

    Brant, Cory O.; Johnson, Nicholas; Li, Ke; Buchinger, Tyler J.; Li, Weiming

    2016-01-01

    The sensory trap model of signal evolution hypothesizes that signalers adapt to exploit a cue used by the receiver in another context. Although exploitation of receiver biases can result in conflict between the sexes, deceptive signaling systems that are mutually beneficial drive the evolution of stable communication systems. However, female responses in the nonsexual and sexual contexts may become uncoupled if costs are associated with exhibiting a similar response to a trait in both contexts. Male sea lamprey (Petromyzon marinus) signal with a mating pheromone, 3-keto petromyzonol sulfate (3kPZS), which may be a match to a juvenile cue used by females during migration. Upstream movement of migratory lampreys is partially guided by 3kPZS, but females only move toward 3kPZS with proximal accuracy during spawning. Here, we use in-stream behavioral assays paired with gonad histology to document the transition of female preference for juvenile- and male-released 3kPZS that coincides with the functional shift of 3kPZS as a migratory cue to a mating pheromone. Females became increasingly biased toward the source of synthesized 3kPZS as their maturation progressed into the reproductive phase, at which point, a preference for juvenile odor (also containing 3kPZS naturally) ceased to exist. Uncoupling of female responses during migration and spawning makes the 3kPZS communication system a reliable means of synchronizing mate search. The present study offers a rare example of a transition in female responses to a chemical cue between nonsexual and sexual contexts, provides insights into the origins of stable communication signaling systems.

  8. Water quality index calculated from biological, physical and chemical attributes.

    Science.gov (United States)

    Rocha, Francisco Cleiton; Andrade, Eunice Maia; Lopes, Fernando Bezerra

    2015-01-01

    To ensure a safe drinking water supply, it is necessary to protect water quality. To classify the suitability of the Orós Reservoir (Northeast of Brazil) water for human consumption, a Water Quality Index (WQI) was enhanced and refined through a Principal Component Analysis (PCA). Samples were collected bi-monthly at seven points (P1 - P7) from July 2009 to July 2011. Samples were analysed for 29 physico-chemical attributes and 4 macroinvertebrate metrics associated with the macrophytes Pistia stratiotes and Eichhornia crassipes. PCA allowed us to reduce the number of attributes from 33 to 12, and 85.32% of the variance was explained in five dimensions (C1 - C5). Components C1 and C3 were related to water-soluble salts and reflect the weathering process, while C2 was related to surface runoff. C4 was associated with macroinvertebrate diversity, represented by ten pollution-resistant families. C5 was related to the nutrient phosphorus, an indicator of the degree of eutrophication. The mean values for the WQIs ranged from 49 to 65 (rated as fair), indicating that water can be used for human consumption after treatment. The lowest values for the WQI were recorded at the entry points to the reservoir (P3, P1, P5, and P4), while the best WQIs were recorded at the exit points (P6 and P7), highlighting the reservoir's purification ability. The proposed WQI adequately expressed water quality, and can be used for monitoring surface water quality. PMID:25492707

  9. Chemical-shift tensors of heavy nuclei in network solids: a DFT/ZORA investigation of (207)Pb chemical-shift tensors using the bond-valence method.

    Science.gov (United States)

    Alkan, Fahri; Dybowski, C

    2015-10-14

    Cluster models are used in calculation of (207)Pb NMR magnetic-shielding parameters of α-PbO, β-PbO, Pb3O4, Pb2SnO4, PbF2, PbCl2, PbBr2, PbClOH, PbBrOH, PbIOH, PbSiO3, and Pb3(PO4)2. We examine the effects of cluster size, method of termination of the cluster, charge on the cluster, introduction of exact exchange, and relativistic effects on calculation of magnetic-shielding tensors with density functional theory. Proper termination of the cluster for a network solid, including approximations such as compensation of charge by the bond-valence (BV) method, is essential to provide results that agree with experiment. The inclusion of relativistic effects at the spin-orbit level for such heavy nuclei is an essential factor in achieving agreement with experiment. PMID:26345261

  10. Anomalous chemical shifts in X-ray photoelectron spectra of sulfur-containing compounds of silver (I) and (II)

    International Nuclear Information System (INIS)

    Highlights: • Ag 3d5/2 binding energy for Ag(II)SO4 is as large as 370.1 eV. • This is the largest value ever measured for a silver (II) compound. • Large shift is connected with the extreme oxidizing nature of Ag(II) species. • Ag(I)2S2O7 exhibits both positive and negative shifts with respect to metallic Ag. • Two distinct Ag(I) sites are responsible for large BE difference of 3.6 eV. - Abstract: Anomalous chemical shifts, i.e. cases when binding energy decreases with the increase of the oxidation state, have been well-documented for selected compounds of silver, and well understood based on analysis of initial- and final-state effects in the XPS spectra. Here we report two examples of even more exotic behaviour of chemical shifts for two silver compounds. The first one is Ag2S2O7 which exhibits both positive and negative substantial shifts with respect to metallic Ag for two distinct Ag(I) sites in its crystal structure, which differ by as much as 3.6 eV. Another is AgSO4, a rare example of oxo silver (II) salt, which exhibits “normal” chemical shift but the Ag 3d5/2 binding energy takes the largest value measured for a silver (II) compound (370.1 eV). This property is connected predominantly with the extremely strongly oxidizing nature of Ag(II) species

  11. Anomalous chemical shifts in X-ray photoelectron spectra of sulfur-containing compounds of silver (I) and (II)

    Energy Technology Data Exchange (ETDEWEB)

    Grzelak, A. [Faculty of Chemistry, University of Warsaw, Pasteur 1, 02093 Warsaw (Poland); Jaroń, T. [Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02089 Warsaw (Poland); Mazej, Z. [Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Michałowski, T. [Faculty of Chemistry, University of Warsaw, Pasteur 1, 02093 Warsaw (Poland); Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02089 Warsaw (Poland); Szarek, P. [Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02089 Warsaw (Poland); Grochala, W., E-mail: w.grochala@cent.uw.edu.pl [Faculty of Chemistry, University of Warsaw, Pasteur 1, 02093 Warsaw (Poland); Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02089 Warsaw (Poland)

    2015-07-15

    Highlights: • Ag 3d{sub 5/2} binding energy for Ag(II)SO{sub 4} is as large as 370.1 eV. • This is the largest value ever measured for a silver (II) compound. • Large shift is connected with the extreme oxidizing nature of Ag(II) species. • Ag(I){sub 2}S{sub 2}O{sub 7} exhibits both positive and negative shifts with respect to metallic Ag. • Two distinct Ag(I) sites are responsible for large BE difference of 3.6 eV. - Abstract: Anomalous chemical shifts, i.e. cases when binding energy decreases with the increase of the oxidation state, have been well-documented for selected compounds of silver, and well understood based on analysis of initial- and final-state effects in the XPS spectra. Here we report two examples of even more exotic behaviour of chemical shifts for two silver compounds. The first one is Ag{sub 2}S{sub 2}O{sub 7} which exhibits both positive and negative substantial shifts with respect to metallic Ag for two distinct Ag(I) sites in its crystal structure, which differ by as much as 3.6 eV. Another is AgSO{sub 4}, a rare example of oxo silver (II) salt, which exhibits “normal” chemical shift but the Ag 3d{sub 5/2} binding energy takes the largest value measured for a silver (II) compound (370.1 eV). This property is connected predominantly with the extremely strongly oxidizing nature of Ag(II) species.

  12. Relativistic many-body calculation of energies, lifetimes, polarizabilities, blackbody radiative shift and hyperfine constants in Lu2+

    CERN Document Server

    Safronova, U I; Johnson, W R

    2016-01-01

    Energy levels of 30 low-lying states of Lu2+ and allowed electric-dipole matrix elements between these states are evaluated using a relativistic all-order method in which all single, double and partial triple excitations of Dirac-Fock wave functions are included to all orders of perturbation theory. Matrix elements are critically evaluated for their accuracy and recommended values of the matrix elements are given together with uncertainty estimates. Line strengths, transition rates and lifetimes of the metastable 5d(3/2) and 5d(5/2) states are calculated. Recommended values are given for static polarizabilities of the 6s, 5d and 6p states and tensor polarizabilities of the 5d and 6p(3/2) states. Uncertainties of the polarizability values are estimated in all cases. The blackbody radiation shift of the 6s(1/2)-5d(5/2) transition frequency of the Lu2+ ion is calculated with the aid of the recommended scalar polarizabilities of the 6s(1/2) and 5d(5/2) states. Finally, A and B hyperfine constants are determined f...

  13. Ab-inito calculation of energy level alignment and vacuum level shift at CuPc/C60 interfaces

    Science.gov (United States)

    Sai, Na; Zhu, Xiaoyang; Chelikowsky, James; Leung, Kevin

    2012-02-01

    The alignment of the donor and acceptor enegy levels is of crucial importance for organic photovotaic performance. We investigate the interfaical electronic structure and energy level alignment of copper phthalocyanine (CuPc)/fullerene (C60) using ab-inito density functional theory calculations including van der Waals interactions and hybrid density functionals. We show that energy level alignment critically depends on the standing-up and lying-down orientation of the CuPc molecules relative to C60 at the interface. We calculate the magnitude of the interface dipole at different molecular orientations and compare them to the vacuum level shift observed in photoemission spectroscopy. The validity of existing theoretical models which invoke charge transfer on this organic interface will be discussed in light of our predictions. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deparment of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Predicting 15N chemical shifts in proteins using the preceding residue-specific individual shielding surfaces from φ, ψi-1, and χ1torsion angles

    International Nuclear Information System (INIS)

    Empirical shielding surfaces are most commonly used to predict chemical shifts in proteins from known backbone torsion angles, φ and ψ. However, the prediction of 15N chemical shifts using this technique is significantly poorer, compared to that for the other nuclei such as 1Hα, 13Cα, and 13Cβ. In this study, we investigated the effects from the preceding residue and the side-chain geometry, χ1, on 15N chemical shifts by statistical methods. For an amino acid sequence XY, the 15N chemical shift of Y is expressed as a function of the amino acid types of X and Y, as well as the backbone torsion angles, φ and ψi-1. Accordingly, 380 empirical 'Preceding Residue Specific Individual (PRSI)' 15N chemical shift shielding surfaces, representing all the combinations of X and Y (except for Y=Pro), were built and used to predict 15N chemical shift from φ and ψi-1. We further investigated the χ1 effects, which were found to account for differences in 15N chemical shifts by ∼5 ppm for amino acids Val, Ile, Thr, Phe, His, Tyr, and Trp. Taking the χ1 effects into account, the χ1-calibrated PRSI shielding surfaces (XPRSI) were built and used to predict 15N chemical shifts for these amino acids. We demonstrated that 15N chemical shift predictions are significantly improved by incorporating the preceding residue and χ1 effects. The present PRSI and XPRSI shielding surfaces were extensively compared with three recently published programs, SHIFTX (Neal et al., 2003), SHIFTS (Xu and Case, 2001 and 2002), and PROSHIFT (Meiler, 2003) on a set of ten randomly selected proteins. A set of Java programs using XPRSI shielding surfaces to predict 15N chemical shifts in proteins were developed and are freely available for academic users at http://www.pronmr.com or by sending email to one of the authors Yunjun Wang

  15. Calculations of physical and chemical reactions with DNA in aqueous solution from Auger cascades

    International Nuclear Information System (INIS)

    Monte Carlo calculations are performed of the physical and chemical interactions in liquid water by electrons produced during Auger cascades resulting from the decay of various radionuclides. Estimates are also made of the number of direct physical and indirect chemical interactions that would be produced on DNA located near the decay site. 13 refs., 8 figs

  16. A Paradigm Shift: Supply Chain Collaboration and Competition in and between Europe’s Chemical Clusters

    OpenAIRE

    Wassenhove, Luk; Lebreton, Baptiste; Letizia, Paolo

    2007-01-01

    textabstractWith the attention of the chemical industry focused on exploiting the low cost feedstocks in the Middle East and the growth markets of Brazil, Russia, India, China and South East Asia, this report provides a timely reminder to policy makers, chemical companies and logistics service providers of the significant opportunities for improving business potential in Europe’s chemical clusters. Europe is still the largest, most sophisticated global market for chemical products, with a wel...

  17. Determination of nuclear distances and chemical-shift anisotropy from 1H MAS NMR sideband patterns of surface OH groups

    Science.gov (United States)

    Fenzke, Dieter; Hunger, Michael; Pfeifer, Harry

    A procedure is described which allows a separate determination of the proton-aluminum distance and of the chemical-shift anisotropy for the bridging OH groups of crystalline molecular sieves from their 'H MAS NMR sideband patterns. For the bridging OH groups which point into the 6-rings of the framework (line "c"), the 1H- 27Al distance could be determined to be 0.237 ± 0.004 and 0.234 ± 0.004 nm for molecular sieves of type H-Y and SAPO-5, respectively. In contrast, for the bridging OH groups of the 12-rings (line "b"), the corresponding distances are equal and distinctly larger, 0.248 ± 0.004 nm. Within the limits of error, the values of the chemical-shift anisotropy are equal (about 19 ± 2 ppm) except for line b of SAPO-5, which exhibits a much smaller value of 14.5 ± 2 ppm.

  18. Application of data mining tools for classification of protein structural class from residue based averaged NMR chemical shifts.

    Science.gov (United States)

    Kumar, Arun V; Ali, Rehana F M; Cao, Yu; Krishnan, V V

    2015-10-01

    The number of protein sequences deriving from genome sequencing projects is outpacing our knowledge about the function of these proteins. With the gap between experimentally characterized and uncharacterized proteins continuing to widen, it is necessary to develop new computational methods and tools for protein structural information that is directly related to function. Nuclear magnetic resonance (NMR) provides powerful means to determine three-dimensional structures of proteins in the solution state. However, translation of the NMR spectral parameters to even low-resolution structural information such as protein class requires multiple time consuming steps. In this paper, we present an unorthodox method to predict the protein structural class directly by using the residue's averaged chemical shifts (ACS) based on machine learning algorithms. Experimental chemical shift information from 1491 proteins obtained from Biological Magnetic Resonance Bank (BMRB) and their respective protein structural classes derived from structural classification of proteins (SCOP) were used to construct a data set with 119 attributes and 5 different classes. Twenty four different classification schemes were evaluated using several performance measures. Overall the residue based ACS values can predict the protein structural classes with 80% accuracy measured by Matthew correlation coefficient. Specifically protein classes defined by mixed αβ or small proteins are classified with >90% correlation. Our results indicate that this NMR-based method can be utilized as a low-resolution tool for protein structural class identification without any prior chemical shift assignments. PMID:25758094

  19. Chemical shift of Mn and Cr K-edges in X-ray absorption spectroscopy with synchrotron radiation

    Indian Academy of Sciences (India)

    D Joseph; A K Yadav; S N Jha; D Bhattacharyya

    2013-11-01

    Mn and Cr K X-ray absorption edges were measured in various compounds containing Mn in Mn2+, Mn3+ and Mn4+ oxidation states and Cr in Cr3+ and Cr6+ oxidation states. Few compounds possess tetrahedral coordination in the 1st shell surrounding the cation while others possess octahedral coordination. Measurements have been carried out at the energy dispersive EXAFS beamline at INDUS-2 Synchrotron Radiation Source at Raja Ramanna Centre for Advanced Technology, Indore. Energy shifts of ∼8–16 eV were observed for Mn K edge in the Mn-compounds while a shift of 13–20 eV was observed for Cr K edge in Cr-compounds compared to values in elementalMn and Cr, respectively. The different chemical shifts observed for compounds having the same oxidation state of the cation but different anions or ligands show the effect of different chemical environments surrounding the cations in determining their X-ray absorption edges in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on Mn and Cr cations in the above compounds.

  20. Quantum chemical calculations to reveal the relationship between the chemical structure and the fluorescence characteristics of phenylquinolinylethynes and phenylisoquinolinylethynes derivatives, and to predict their relative fluorescence intensity.

    Science.gov (United States)

    Riahi, Siavash; Beheshti, Abolghasem; Ganjali, Mohammad Reza; Norouzi, Parviz

    2009-12-01

    In this paper the relationship between the chemical structure and fluorescence characteristics of 30 phenylquinolinylethyne (PhQE), and phenylisoquinolinylethyne (PhIE) derivatives compounds employing ab initio calculations have been elucidated. Quantum chemical calculations (6-31G) were carried out to obtain: the optimized geometry, energy levels, charges and dipole moments of these compounds, in the singlet (steady and excited states) and triplet states. The relationship between quantum chemical descriptors, and wavelength of maximum excitation and emission indicated that these two parameters have the most correlation with quantum chemical hardness (eta). Also, stokes shift has the most correlation with the square of difference between the maximum of positive charges in the singlet steady and singlet excited states. The quantitative structure-property relationship (QSPR) of PhQE and PhIE was studied for relative fluorescence intensity (RFI). The genetic algorithm (GA) was applied to select the variables that resulted in the best-fit models. After the variable selection, multiple linear regression (MLR) and support vector machine (SVM) were both utilized to construct linear and non-linear QSPR models, respectively. The SVM model demonstrated a better performance than that of the MLR model. The route mean square error (RMSE) in the training and the test sets for the SVM model was 0.195 and 0.324, and the correlation coefficients were 0.965 and 0.960, respectively, thus revealing the reliability of this model. The resulting data indicated that SVM could be used as a powerful modeling tool for QSPR studies. According to the best of our knowledge, this is the first research on QSPR studies to predict RFI for a series of PhQE and PhIE derivative compounds using SVM. PMID:19854100

  1. Calculation of complex chemical equilibrium compositions of composite rocket propellants combustion products

    Directory of Open Access Journals (Sweden)

    NIKOLA KILIBARDA

    2000-11-01

    Full Text Available An adequate method for calculating chemical equilibrium in a predominantly gaseous, multi-component reactive mixture was investigated and successfully applied. This method involves the stated equilibrium reaction scheme, including, first, the formation of chemical species, of which concentrations prevail in the mixture, then the formation of gaseous atomic species by dissociation of previous ones, and, finally, the formation of complex chemical species from the atomic species. A computer program, which permits calculations of equilibrium compositions by the iteration procedure, has been developed. The results of calculations have been compared with data obtained by the programs OPHELIE, MICROPEP, and the program SPP, as documented in the NASA-Lewis Code, which is presently the world-wide standard. All comparisons gave satisfactory agreement.

  2. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated. PMID:27335085

  3. Extracting chemical information from plane wave calculations by a 3D 'fuzzy atoms' analysis

    Science.gov (United States)

    Bakó, I.; Stirling, A.; Seitsonen, A. P.; Mayer, I.

    2013-03-01

    Bond order and valence indices have been calculated by the method of the three-dimensional 'fuzzy atoms' analysis, using the numerical molecular orbitals obtained from plane wave DFT calculations, i.e., without introducing any external atom-centered functions. Weight functions of both Hirshfeld and Becke types have been applied. The results are rather close to the similar 'fuzzy atoms' ones obtained by using atom-centered basis sets and agree well with the chemical expectations, stressing the power of the genuine chemical concepts.

  4. Nucleus-independent chemical shift criterion for aromaticity in Π-extended tetraoxa[8]circulenes

    DEFF Research Database (Denmark)

    Baryshnikov, Gleb V.; Minaev, Boris F.; Pittelkow, Michael;

    2013-01-01

    Recently synthesized p-extended symmetrical tetraoxa[8]circulenes that exhibit electroluminescent properties were calculated at the density functional theory (DFT) level using the quantum theory of atoms in molecules (QTAIM) approach to electron density distribution analysis. Nucleus...

  5. X-Ray Photoelectron Spectroscopy and the Role of Relaxation Energy in Understanding Chemical Shifts

    Science.gov (United States)

    Ellison, Frank O.; White, Michael G.

    1976-01-01

    Discusses the measurement of electrons ejected from a system which is being irradiated with X-rays or ultraviolet photons, and a theoretical model for calculating core-electron ionization energies. (MLH)

  6. Linear correlation of the barriers to pyramidal inversion of phosphorus with the 31P chemical shifts of acylphosphines

    International Nuclear Information System (INIS)

    The dependence of the inversion barriers (ΔG) of phosphorus compounds directly on a parameter of the inversion center, i.e., the chemical shift of the nucleus (delta31 P) were studied. The possibility of such an approach was justified by the correlation both of ΔG, and of delta31 P for phosphorus compounds with one and the same characteristics (the bond angles and electronegativities of the substituent). The acylphosphines (I-IX) were investigated in the range of variation of ΔG, accessible to dynamic NMR and in a fairly wide range of delta31 P

  7. Gradient-echo in-phase and opposed-phase chemical shift imaging: Role in evaluating bone marrow

    International Nuclear Information System (INIS)

    Chemical shift imaging (CSI) provides valuable information for assessing the bone marrow, while adding little to total examination time. In this article, we review the uses of CSI for evaluating bone marrow abnormalities. CSI can be used for differentiating marrow-replacing lesions from a range of non-marrow-replacing processes, although the sequence is associated with technical limitations and pitfalls. Particularly at 3 T, susceptibility artefacts are prevalent, and optimal technical parameters must be implemented with appropriate choices for echo times

  8. Calculations of protective action distance for toxic chemical spills using nomographs

    International Nuclear Information System (INIS)

    This document was produced for emergency use following a spill of liquid gas or finely divided solid (<100 micron) toxic chemicals. The information on the next few pages was kept deliberately terse and is limited to data and graphic aids needed for calculation of plume distance (protective action distance). All supporting material is provided as Appendices

  9. Calculations of protective action distance for toxic chemical spills using nomographs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, L.G.; Vail, J.A.; Gibeault, G.L.

    1995-04-01

    This document was produced for emergency use following a spill of liquid gas or finely divided solid (<100 micron) toxic chemicals. The information on the next few pages was kept deliberately terse and is limited to data and graphic aids needed for calculation of plume distance (protective action distance). All supporting material is provided as Appendices.

  10. A Simple Method to Calculate the Temperature Dependence of the Gibbs Energy and Chemical Equilibrium Constants

    Science.gov (United States)

    Vargas, Francisco M.

    2014-01-01

    The temperature dependence of the Gibbs energy and important quantities such as Henry's law constants, activity coefficients, and chemical equilibrium constants is usually calculated by using the Gibbs-Helmholtz equation. Although, this is a well-known approach and traditionally covered as part of any physical chemistry course, the required…

  11. Efficient chemical equilibrium calculations for geochemical speciation and reactive transport modelling

    Science.gov (United States)

    Leal, Allan M. M.; Blunt, Martin J.; LaForce, Tara C.

    2014-04-01

    Chemical equilibrium calculations are essential for many environmental problems. It is also a fundamental tool for chemical kinetics and reactive transport modelling, since these applications may require hundreds to billions equilibrium calculations in a single simulation. Therefore, an equilibrium method for such critical applications must be very efficient, robust and accurate. In this work we demonstrate the potential effectiveness of a novel Gibbs energy minimisation algorithm for reactive transport simulations. The algorithm includes strategies to converge from poor initial guesses; capabilities to specify non-linear equilibrium constraints such as pH of an aqueous solution and activity or fugacity of a species; a rigorous phase stability test to determine the unstable phases; and a strategy to boost the convergence speed of the calculations to quadratic rates, requiring only few iterations to converge. We use this equilibrium method to solve geochemical problems relevant to carbon storage in saline aquifers, where aqueous, gaseous and minerals phases are present. The problems are formulated to mimic the ones found in kinetics and transport simulations, where a sequence of equilibrium calculations are performed, each one using the previous solution as the initial guess. The efficiency and convergence rates of the calculations are presented, which require an average of 1-2 iterations. These results indicate that critical applications such as chemical kinetics and reactive transport modelling can potentially benefit by using this multiphase equilibrium algorithm.

  12. Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis

    Science.gov (United States)

    Gordon, Sanford; Mcbride, Bonnie J.

    1994-01-01

    This report presents the latest in a number of versions of chemical equilibrium and applications programs developed at the NASA Lewis Research Center over more than 40 years. These programs have changed over the years to include additional features and improved calculation techniques and to take advantage of constantly improving computer capabilities. The minimization-of-free-energy approach to chemical equilibrium calculations has been used in all versions of the program since 1967. The two principal purposes of this report are presented in two parts. The first purpose, which is accomplished here in part 1, is to present in detail a number of topics of general interest in complex equilibrium calculations. These topics include mathematical analyses and techniques for obtaining chemical equilibrium; formulas for obtaining thermodynamic and transport mixture properties and thermodynamic derivatives; criteria for inclusion of condensed phases; calculations at a triple point; inclusion of ionized species; and various applications, such as constant-pressure or constant-volume combustion, rocket performance based on either a finite- or infinite-chamber-area model, shock wave calculations, and Chapman-Jouguet detonations. The second purpose of this report, to facilitate the use of the computer code, is accomplished in part 2, entitled 'Users Manual and Program Description'. Various aspects of the computer code are discussed, and a number of examples are given to illustrate its versatility.

  13. Conformational Sampling by Ab Initio Molecular Dynamics Simulations Improves NMR Chemical Shift Predictions

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Möller, H. M.; Exner, T. E.

    2013-01-01

    Roč. 9, č. 8 (2013), s. 3806-3815. ISSN 1549-9618 R&D Projects: GA ČR GA13-24880S Institutional support: RVO:61388963 Keywords : ab initio molecular dynamics * NMR spectroscopy * DFT calculations * hydration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013

  14. The PubChemQC Project: a large chemical database from the first principle calculations

    CERN Document Server

    Nakata, Maho

    2015-01-01

    In this research, we have been constructing a large database of molecules by {\\it ab initio} calculations. Currently, we have over 1.53 million entries of 6-31G* B3LYP optimized geometries and ten excited states by 6-31+G* TDDFT calculations. To calculate molecules, we only refer the InChI (International Chemical Identifier) representation of chemical formula by the International Union of Pure and Applied Chemistry (IUPAC), thus, no reference to experimental data. These results are open to public at http://pubchemqc.riken.jp/. The molecular data have been taken from the PubChem Project (http://pubchem.ncbi.nlm.nih.gov/) which is one of the largest in the world (approximately 63 million molecules are listed) and free (public domain) database. Our final goal is, using these data, to develop a molecular search engine or molecular expert system to find molecules which have desired properties.

  15. FragIt: A Tool to Prepare Input Files for Fragment Based Quantum Chemical Calculations

    CERN Document Server

    Steinmann, Casper; Hansen, Anne S; Jensen, Jan H

    2012-01-01

    Near linear scaling fragment based quantum chemical calculations are becoming increasingly popular for treating large systems with high accuracy and is an active field of research. However, it remains difficult to set up these calculations without expert knowledge. To facilitate the use of such methods, software tools need to be available for support, setup and lower the barrier of entry for usage by non-experts. We present a fragmentation methodology and accompanying tools called FragIt to help setup these calculations. It uses the SMARTS language to find chemically appropriate substructures in structures and is used to prepare input files for the fragment molecular orbital method in the GAMESS program package. We present patterns of fragmentation for proteins and polysaccharides, specifically D-galactopyranose for use in cyclodextrins.

  16. The PubChemQC project: A large chemical database from the first principle calculations

    Science.gov (United States)

    Maho, Nakata

    2015-12-01

    In this research, we have been constructing a large database of molecules by ab initio calculations. Currently, we have over 1.53 million entries of 6-31G* B3LYP optimized geometries and ten excited states by 6-31+G* TDDFT calculations. To calculate molecules, we only refer the InChI (International Chemical Identifier) representation of chemical formula by the International Union of Pure and Applied Chemistry (IUPAC), thus, no reference to experimental data. These results are open to public at http://pubchemqc.riken.jp/. The molecular data have been taken from the PubChem Project (http://pubchem.ncbi.nlm.nih.gov/) which is one of the largest in the world (approximately 63 million molecules are listed) and free (public domain) database. Our final goal is, using these data, to develop a molecular search engine or molecular expert system to find molecules which have desired properties.

  17. Ab Initio Calculation of 19F NMR Chemical Shielding for Alkaline-earth-metal Fluorides

    Institute of Scientific and Technical Information of China (English)

    CAI,Shu-Hui(蔡淑惠); CHEN,Zhong,(陈忠); LU,Xin(吕鑫); CHEN,Zhi-Wei(陈志伟); WAN,Hui-Lin(万惠霖)

    2001-01-01

    Gauge-independent atomic orbital (GIAO) method atHartree-Fock (HF) and density functional theory (DFr) lev-els,respectively,was employed to calculate 19F NMR chemi-cal shieldings of solid state alkaline-earth-metal fluorides MF2 (M = Mg,Ca,Sr,Ba).The results show that,although thecalculated19F chemical shieldings tend to be larger than the experinental values,they have a fairly good linear relation-ship with the observed ones.The calculated results based on different combinations of basis sets show that the B3LYP (ahybrid of DFT with HF) predictions are greatly superior tothe I-IF predictions.When a basis set of metal atom with ef- fecfive core potential (ECP) has well representation of valencewavefunction,especially wavefuncfion of d component,andproper definition of core electron nmnher,it can be applied toobtain 19F chemical shielding which is dose to that of all-elec-tron calculation.Tne variation of 19F chemical shielding of al-kaline-earth-metal fluorides correlates well with the latticefactor A/R2.``

  18. Estimating the impact of high-production-volume chemicals on remote ecosystems by toxic pressure calculation.

    Science.gov (United States)

    Harbers, Jasper V; Huijbregts, Mark A J; Posthuma, Leo; Van de Meent, Dik

    2006-03-01

    Although many chemicals are in use, the environmental impacts of only a few have been established, usually on per-chemical basis. Uncertainty remains about the overall impact of chemicals. This paper estimates combined toxic pressure on coastal North Sea ecosystems from 343 high-production-volume chemicals used within the catchment of rivers Rhine, Meuse, and Scheldt. Multimedia fate modeling and species sensitivity distribution-based effects estimation are applied. Calculations start from production volumes and emission rates and use physicochemical substance properties and aquatic ecotoxicity data. Parameter uncertainty is addressed by Monte Carlo simulations. Results suggest that the procedure is technically feasible. Combined toxic pressure of all 343 chemicals in coastal North Seawater is 0.025 (2.5% of the species are exposed to concentration levels above EC50 values), with a wide confidence interval of nearly 0-1. This uncertainty appears to be largely due to uncertainties in interspecies variances of aquatic toxicities and, to a lesser extent, to uncertainties in emissions and degradation rates. Due to these uncertainties, the results support gross ranking of chemicals in categories: negligible and possibly relevant contributions only. With 95% confidence, 283 of the 343 chemicals (83%) contribute negligibly (less than 0.1%) to overall toxic pressure, and only 60 (17%) need further consideration. PMID:16568772

  19. Anisotropy of the Chemical Shift Tensor for Fluorines in UF6 : Application to the Fluorine Atom Movement Model

    International Nuclear Information System (INIS)

    R. Blinc et al. have made an initial study of polycrystalline uranium hexafluoride using the magnetic resonance of fluorine at 40 Mc/s. The low-temperattire spectrum (t 6 octahedron has one long axis and two short axes, the fluorine atoms are divided among two different types of site. The change in the spectrum with temperature (coalescence of the two lines) suggests movement of the fluorine atoms between the two types of site. By repeating these experiments at 56.4 Mc/s and 94 Mc/s, we have been able to demonstrate the existence of considerable axial anisotropy of the chemical shift tensor (about 650 ppm). The absorption line obtained for a powder in these conditions is complex, and to study it we must envisage a line-shape function f(h), which is the probability that a grain of powder is so orientated that it resonates for the value h of the field. In the absence of movement (low-temperature spectrum) the line-shape function for each of the two lines (corresponding to the two types of site) is of the form obtained for equivalent atoms. It is known that the parameters of chemical shift tensors give information on chemical bond character. We are thus led, for example, to attribute a considerable ionic character (I ≃ 1/2) to the bonds between the uranium and the two most distant fluorine atoms. In the presence of movement the line-shape function is very different, and depends on the type of movement. For UF6, study of the shape of the single line (t > 20°C) in cases where we have anisotropy, shows that the fluorine atoms of the same molecule interchange with each other, each atom remaining in each of the positions for about 5 μsec at 30°C, with an activation energy of about 0.5 eV. (author)

  20. Calculation of reduced partition function ratios of isotopically substituted molecules on a quantum chemical base

    International Nuclear Information System (INIS)

    By means of the semiempirical quantum chemical MINDO/3- and MNDO-MO-methods it is possible to perform calculations for use in evaluation or interpretation of isotope effects to such an extent that would not be rationally fossible by corresponding experiments. But only the calculated reduced partition function ratios of isotopically substituted molecules can be applied with sufficient reliability for discussions. The temperature dependence of the reduced partition function ratios of over 100 molecules, ions, and radicals regarding the H/D, 12C/13C-, 14N/15N-, 16O/18O-, 28Si/30Si-, 32S/34S-, and 35Cl/37Cl-substitution has been calculated. From these results general conclusions concerning the dependence of isotope effects from the chemical structure of the corresponding molecules have been drawn. In particular, a relationship between the reduced partition function ratio and the electronic charge of the substituted atom has been found. In addition, examples are given for the application of the calculation algorithm used above in connection with combined isotopic substitutions, radical cations, and transition states of chemical reactions. (author)

  1. Self-consistent Green’s-function technique for bulk and surface impurity calculations: Surface core-level shifts by complete screening

    DEFF Research Database (Denmark)

    Aldén, M.; Abrikosov, I. A.; Johansson, B.;

    1994-01-01

    We have implemented an efficient self-consistent Green's-function technique, based on the tight-binding linear-muffin-tin-orbitals method, for calculating the electronic structure and total energy of a substitutional impurity located either in the bulk or at the surface. The technique makes use of...... shift obtained from a polycrystalline surface. Comparison is made with independent theoretical data for the surface core-level eigenvalue shift, and the much debated role of the so-called initial-and final-state contributions to the SCLS is discussed....

  2. Ab Initio Calculation of Rate Constants for Molecule-Surface Reactions with Chemical Accuracy.

    Science.gov (United States)

    Piccini, GiovanniMaria; Alessio, Maristella; Sauer, Joachim

    2016-04-18

    The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide-and-conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction-type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre-exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude). PMID:27008460

  3. Computational tool for phase-shift calculation in an interference pattern by fringe displacements based on a skeletonized image

    Science.gov (United States)

    Rivera-Ortega, Uriel; Pico-Gonzalez, Beatriz

    2016-01-01

    In this manuscript an algorithm based on a graphic user interface (GUI) designed in MATLAB for an automatic phase-shifting estimation between two digitalized interferograms is presented. The proposed algorithm finds the midpoint locus of the dark and bright interference fringes in two skeletonized fringe patterns and relates their displacements with the corresponding phase-shift. In order to demonstrate the usefulness of the proposed GUI, its application to simulated and experimental interference patterns will be shown. The viability of this GUI makes it a helpful and easy-to-use computational tool for educational or research purposes in optical phenomena for undergraduate or graduate studies in the field of physics.

  4. Effective method for calculating the phase shifts for the scattering of slow particles with nonzero orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Bruk, Y.M.

    1986-09-01

    Pais's functional equation for the phase shifts for scattering with nonzero angular momentum is solved for particles with low energies. It is shown that for short-range potentials with screening (in particular, of Yukawa or Thomas-Fermi type), Pais's equation reduces to transcendent equations. For potentials about/r /sup n/, n > 0, simple algebraic equations are obtained for finding the phase shifts delta /sub l/, l is identical to 0. The possibility of using Pais's approximation to find resonance situations in the case of the scattering of slow particles with nonzero angular momentum is discussed.

  5. Forming NCO(-) in Dense Molecular Clouds: Possible Gas-Phase Chemical Paths From Quantum Calculations.

    Science.gov (United States)

    Yurtsever, E; Gianturco, F A; Wester, R

    2016-07-14

    The existence of NCO(-) anions in the interstellar medium (ISM) has been suggested and searched for over the years but without any formal definitive sighting of that molecule. We discuss in this work the possible formation of either NCO(-) directly or of NCO neutral as a precursor to NCO(-) formation by electron attachment. We follow simple, gas-phase chemical reactions for which the general features are obtained from accurate quantum calculations. The results are shedding some additional light on the likely presence of this anion in the ISM environment, drawing further information from the specific features of the considered reactions on the additional chemical options that exist for its formation. PMID:26696323

  6. Characterization of interface abruptness and material properties in catalytically grown III-V nanowires: exploiting plasmon chemical shift

    International Nuclear Information System (INIS)

    We have studied the assessment of chemical composition changes in III-V heterostructured semiconductor nanowires (NWs) with nanometric spatial resolution using transmission electron microscopy methods. These materials represent a challenge for conventional spectroscopy techniques due to their high sensitivity to electron beam irradiation. Radiation damage strongly limits the exposure time to a few (5-10) s, which reduces the sensitivity of the traditionally used x-ray spectroscopy. The rather low counting statistics results in significant errors bars for EDS chemical quantification (5-10%) and interface width determination (few nanometers). Plasmon chemical shift is ideal in this situation, as its measurement requires very short exposure times (∼100 ms) and the plasmon peak energy can be measured with high precision (∼20 meV in this work). This high sensitivity allows the detection of subtle changes (1-2%) in composition or even the detection of a small plasmon energy (33 ± 7) meV change along usually assumed pure and homogeneous InAs segments. We have applied this approach to measure interface widths in heterostructure InAs/InP NWs grown using metal catalysts and also to determine the timescale (∼10 s) in which beam irradiation induces material damage in these wires. In particular, we have detected small As concentrations (4.4 ± 0.5)% in the final InP segment close to the Au catalyst, which leads to the conclusion that As diffuses through the metal nanoparticle during growth.

  7. Acetylcholinesterase(AChE)-catalyzed hydrolysis of long-chain thiocholine esters:shift to a new chemical mechanism

    International Nuclear Information System (INIS)

    The kinetic and chemical mechanisms of AChE-catalyzed hydrolysis of short-chain thiocholine esters are relatively well documented. Up to propanoylthiocholine (PrTCh) the chemical mechanism is general acid-base catalysis by the active site catalytic triad. The chemical mechanism for the enzyme-catalyzed butyrylthio-choline(BuTCh) hydrolysis shifts to a parallel mechanism in which general base catalysis by E199 of direct water attack to the carbonyl carbon of the substrate. (Selwood, T., et al. J. Am. Chem. Soc. 1993, 115, 10477-10482) The long chain thiocholine esters such as hexanoylthiocholine (HexTCh), heptanoylthiocholine (HepTCh), and octanoylthiocholine (OcTCh) are hydrolyzed by electric eel acetylcholinesterase (AChE). The kinetic parameters are determined to show that these compounds have a lower Michaelis constant than BuTCh and the pH-Rate profile showed that the mechanism is similar to that of BuTCh hydrolysis. The solvent isotope effect and proton inventory of AChE-catalyzed hydrolysis of HexTCh showed that one proton transfer is involved in the transition state of the acylation stage. The relationship between the dipole moment and the Michaelis constant of the long chain thiocholine esters showed that the dipole moment is the most important factor for the binding of a substrate to the enzyme active site

  8. Acetylcholinesterase(AChE)-catalyzed hydrolysis of long-chain thiocholine esters:shift to a new chemical mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Dai Il; Shin, Young Ju [Donga Univ., Busan (Korea, Republic of); Lee, Eun Seok; Lee, Bong Ho [Hanbat National Univ., Daejon (Korea, Republic of); Moon, Tae Sung; Yoon, Chang No [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2003-01-01

    The kinetic and chemical mechanisms of AChE-catalyzed hydrolysis of short-chain thiocholine esters are relatively well documented. Up to propanoylthiocholine (PrTCh) the chemical mechanism is general acid-base catalysis by the active site catalytic triad. The chemical mechanism for the enzyme-catalyzed butyrylthio-choline(BuTCh) hydrolysis shifts to a parallel mechanism in which general base catalysis by E199 of direct water attack to the carbonyl carbon of the substrate. (Selwood, T., et al. J. Am. Chem. Soc. 1993, 115, 10477-10482) The long chain thiocholine esters such as hexanoylthiocholine (HexTCh), heptanoylthiocholine (HepTCh), and octanoylthiocholine (OcTCh) are hydrolyzed by electric eel acetylcholinesterase (AChE). The kinetic parameters are determined to show that these compounds have a lower Michaelis constant than BuTCh and the pH-Rate profile showed that the mechanism is similar to that of BuTCh hydrolysis. The solvent isotope effect and proton inventory of AChE-catalyzed hydrolysis of HexTCh showed that one proton transfer is involved in the transition state of the acylation stage. The relationship between the dipole moment and the Michaelis constant of the long chain thiocholine esters showed that the dipole moment is the most important factor for the binding of a substrate to the enzyme active site.

  9. Aggregation of deuterodichlormethane molecules with benzene molecules. Quantum-chemical calculations and spectroscopic studies

    International Nuclear Information System (INIS)

    C-D vibration band of deuterodichlormethane CD2Cl2 at its low concentration in benzene is slitted into components with frequency 2198 and 2193 cm-1 that is related to formation of weak benzene+deuterodichlormethane complexes. Quantum-chemical calculations confirm a formation of deuterodichlormethane+benzene dimer with participation of benzene's π -electron. Steric factors lead to a difference in orientation of one of deuterium atoms from the central orientation with respect to benzene ring. According to calculations the energy of deuterodichlormethane+benzene dimer is 1.2 kcal/mole. (author)

  10. Study of molecular structure, vibrational, electronic and NMR spectra of oncocalyxone A using DFT and quantum chemical calculations

    Science.gov (United States)

    Joshi, Bhawani Datt; Srivastava, Anubha; Honorato, Sara Braga; Tandon, Poonam; Pessoa, Otília Deusdênia Loiola; Fechine, Pierre Basílio Almeida; Ayala, Alejandro Pedro

    2013-09-01

    Oncocalyxone A (C17H18O5) is the major secondary metabolite isolated from ethanol extract from the heartwood of Auxemma oncocalyx Taub popularly known as “pau branco”. Oncocalyxone A (Onco A) has many pharmaceutical uses such as: antitumor, analgesic, antioxidant and causative of inhibition of platelet activation. We have performed the optimized geometry, total energy, conformational study, molecular electrostatic potential mapping, frontier orbital energy gap and vibrational frequencies of Onco A employing ab initio Hartree-Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d, p) basis set. Stability of the molecule arising from hyperconjugative interactions and/or charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-vis spectrum of the compound was recorded in DMSO and MeOH solvent. The TD-DFT calculations have been performed to explore the influence of electronic absorption spectra in the gas phase, as well as in solution environment using IEF-PCM and 6-31G basis set. The 13C NMR chemical shifts have been calculated with the B3LYP/6-311++G(d, p) basis set and compared with the experimental values. These methods have been used as tools for structural characterization of Onco A.

  11. Chemical structure elucidation from ¹³C NMR chemical shifts: efficient data processing using bipartite matching and maximal clique algorithms.

    Science.gov (United States)

    Koichi, Shungo; Arisaka, Masaki; Koshino, Hiroyuki; Aoki, Atsushi; Iwata, Satoru; Uno, Takeaki; Satoh, Hiroko

    2014-04-28

    Computer-assisted chemical structure elucidation has been intensively studied since the first use of computers in chemistry in the 1960s. Most of the existing elucidators use a structure-spectrum database to obtain clues about the correct structure. Such a structure-spectrum database is expected to grow on a daily basis. Hence, the necessity to develop an efficient structure elucidation system that can adapt to the growth of a database has been also growing. Therefore, we have developed a new elucidator using practically efficient graph algorithms, including the convex bipartite matching, weighted bipartite matching, and Bron-Kerbosch maximal clique algorithms. The utilization of the two matching algorithms especially is a novel point of our elucidator. Because of these sophisticated algorithms, the elucidator exactly produces a correct structure if all of the fragments are included in the database. Even if not all of the fragments are in the database, the elucidator proposes relevant substructures that can help chemists to identify the actual chemical structures. The elucidator, called the CAST/CNMR Structure Elucidator, plays a complementary role to the CAST/CNMR Chemical Shift Predictor, and together these two functions can be used to analyze the structures of organic compounds. PMID:24655374

  12. NMR chemical shift analysis of the conformational transition between the monomer and tetramer of melittin in an aqueous solution.

    Science.gov (United States)

    Miura, Yoshinori

    2016-05-01

    It is known that melittin in an aqueous solution undergoes a conformational transition between the monomer and tetramer by variation in temperature. The transition correlates closely with isomers of the proline residue; monomeric melittin including a trans proline peptide bond (trans-monomer) is involved directly in the transition, whereas monomeric melittin having a cis proline peptide bond (cis-monomer) is virtually not. The transition has been explored by using nuclear magnetic resonance spectroscopy in order to clarify the stability of the tetrameric conformation and the cooperativity of the transition. In the light of temperature dependence of chemical shifts of resonances from the isomeric monomers, we qualitatively estimate the temperature-, salt-, and concentration-dependence of the relative equilibrium populations of the trans-monomer and tetramer, and show that the tetramer has a maximum conformational stability at 30-45 °C and that the transition cooperativity is very low. PMID:26658745

  13. Backbone and stereospecific (13)C methyl Ile (δ1), Leu and Val side-chain chemical shift assignments of Crc.

    Science.gov (United States)

    Sharma, Rakhi; Sahu, Bhubanananda; Ray, Malay K; Deshmukh, Mandar V

    2015-04-01

    Carbon catabolite repression (CCR) allows bacteria to selectively assimilate a preferred compound among a mixture of several potential carbon sources, thus boosting growth and economizing the cost of adaptability to variable nutrients in the environment. The RNA-binding catabolite repression control (Crc) protein acts as a global post-transcriptional regulator of CCR in Pseudomonas species. Crc triggers repression by inhibiting the expression of genes involved in transport and catabolism of non-preferred substrates, thus indirectly favoring assimilation of preferred one. We report here a nearly complete backbone and stereospecific (13)C methyl side-chain chemical shift assignments of Ile (δ1), Leu and Val of Crc (~ 31 kDa) from Pseudomonas syringae Lz4W. PMID:24496608

  14. Microscopic structures of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate in water probed by the relative chemical shift

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The relative chemical shifts (△δ) △δwere put forward to investigate the microscopic structure of 1-ethyl-3-methyl-imidazolium tetrafluoroborate (EmimBF4) during the dilution process with water.The concentration-dependent △δ(C2)H-(C4)H,△δ(C2)H-(C5)H and △δ(C4)H-(C5)H were analyzed.The results reveal that the variations of the microscopic structures of three aromatic protons are inconsistent.The strength of the H-bond between water and three aromatic protons follows the order:(C2)H···O > (C4)H···O > (C5)H···O.The concentration-dependent △δ(C6)H-(C7)H and △δ(C6)H-(C8)H indicate the formation of the H-bonds of (Calkyl)H···O is impossible,and more water is located around (C6)H than around (C7)H or (C8)H.The concentration-dependent △δ(C2)H-(C4)H and △δ(C2)H-(C5)H both increase rapidly when xwater > 0.9 or so,suggesting the ionic pairs of EmimBF4 are dissociated rapidly.The turning points of concentration-dependent △δ(C2)H-(C4)H and △δ(C2)H-(C5)H indicate that some physical properties of the EmimBF4/water mixtures also change at the corresponding concentration point.The microscopic structures of EmimBF4 in water could be clearly detected by the relative chemical shifts.

  15. Quantitative evaluation of vertebral marrow adipose tissue in postmenopausal female using MRI chemical shift-based water–fat separation

    International Nuclear Information System (INIS)

    Aim: To investigate the feasibility of assessing vertebral marrow adipose tissue using a magnetic resonance imaging (MRI) chemical shift-based water–fat separation technique at 3 T. Material and methods: A modified Dixon technique was performed to obtain the vertebral marrow fat fraction (FF) in a study of 58 postmenopausal females (age range 49.2–77.4 years), including 24 normal bone density, 19 osteopaenia, and 15 osteoporosis as documented with dual-energy X-ray absorptiometry. The reliability of FF measurements performed by two radiologists independently was evaluated with the intraclass correlation coefficient (ICC). Ten participants were scanned twice to assess the reproducibility of FF measurements. FF values were compared between each vertebral level and between groups. Results: The mean coefficient of variation of FF measurements was 2.1%. According to the ICC, the measurements were reliable (ICC = 0.900 for normal bone density, ICC = 0.937 for osteopaenia and ICC = 0.909 for osteoporosis, p < 0.001 for all). There was an inverse association between mean FF at L1–L4 vertebrae and lumbar spine BMD (r = −0.459, p = 0.006), which remained significant even after controlling for confounders (age, height, and body weight). FF values at different vertebral levels were significantly correlated to each other (r = 0.703–0.921, p < 0.05 for all). There was a general trend toward increased marrow adiposity for more inferior vertebral bodies. Patients with osteopaenia and osteoporosis had a higher marrow fat content compared with normal bone mass after adjusting for confounders, although no significant differences in each vertebral level and average marrow fat content were found between the osteopaenia and osteoporosis groups. Conclusion: Chemical shift-based water–fat separation enables the quantitation of vertebral marrow adiposity with excellent reproducibility, which appears to be a useful method to provide complementary information to osteoporosis

  16. Thickness-Dependent Binding Energy Shift in Few-Layer MoS2 Grown by Chemical Vapor Deposition.

    Science.gov (United States)

    Lin, Yu-Kai; Chen, Ruei-San; Chou, Tsu-Chin; Lee, Yi-Hsin; Chen, Yang-Fang; Chen, Kuei-Hsien; Chen, Li-Chyong

    2016-08-31

    The thickness-dependent surface states of MoS2 thin films grown by the chemical vapor deposition process on the SiO2-Si substrates are investigated by X-ray photoelectron spectroscopy. Raman and high-resolution transmission electron microscopy suggest the thicknesses of MoS2 films to be ranging from 3 to 10 layers. Both the core levels and valence band edges of MoS2 shift downward ∼0.2 eV as the film thickness increases, which can be ascribed to the Fermi level variations resulting from the surface states and bulk defects. Grainy features observed from the atomic force microscopy topographies, and sulfur-vacancy-induced defect states illustrated at the valence band spectra imply the generation of surface states that causes the downward band bending at the n-type MoS2 surface. Bulk defects in thick MoS2 may also influence the Fermi level oppositely compared to the surface states. When Au contacts with our MoS2 thin films, the Fermi level downshifts and the binding energy reduces due to the hole-doping characteristics of Au and easy charge transfer from the surface defect sites of MoS2. The shift of the onset potentials in hydrogen evolution reaction and the evolution of charge-transfer resistances extracted from the impedance measurement also indicate the Fermi level varies with MoS2 film thickness. The tunable Fermi level and the high chemical stability make our MoS2 a potential catalyst. The observed thickness-dependent properties can also be applied to other transition-metal dichalcogenides (TMDs), and facilitates the development in the low-dimensional electronic devices and catalysts. PMID:27488185

  17. Calculation of the temperature-induced frequency shifts of Raman modes as a function of pressure in phase I of S-triazine

    International Nuclear Information System (INIS)

    The temperature-induced frequency shifts 1/ω(δω/δΤ) are calculated for the Raman modes I and IV as a function of pressure in phase I (P< PC) of s-triazine. For this calculation, the Raman frequencies measured for the modes I and IV at various pressures are used in phase I of s-triazine according to the spectroscopic modifications of the Pippard relations. By determining the mode Gruneisen parameters of the Raman modes studied here, a linear variation of the temperature-induced 1/ω(δω/δΤ) with the pressure-induced frequency shifts 1/ω(δω/δP) is established in phase I (P< PC) of s-triazine.

  18. Unquenched quark-model calculation of excited $\\rho$ resonances and P-wave $\\pi\\pi$ phase shifts

    CERN Document Server

    Coito, Susana; van Beveren, Eef

    2015-01-01

    The $\\rho(770)$ vector resonance, its radial recurrences, and the corresponding P-wave $\\pi\\pi$ phase shifts are investigated in an unquenched quark model with all classes of relevant decay channels included, viz. pseudoscalar-pseudoscalar, vector-pseudoscalar, vector-vector, vector-scalar, axialvector-pseudoscalar, and axialvector-vector, totalling 26 channels. Two of the few model parameters are fixed at previously used values, whereas the other three are adjusted to the $\\rho(770)$ resonance and the lower P-wave $\\pi\\pi$ phases. Preliminary results indicate the model's capacity to reproduce these phases as well as the $\\rho$ mass and width. However, at higher energies the phase shifts tend to rise too sharply. A possible remedy is an extension of the model so as to handle resonances in the final states for most of the included decay channels. Work in progress.

  19. Hepatic steatosis assessment with {sup 1}H-spectroscopy and chemical shift imaging at 3.0 T before hepatic surgery: Reliable enough for making clinical decisions?

    Energy Technology Data Exchange (ETDEWEB)

    Koelblinger, Claus, E-mail: claus.koelblinger@meduniwien.ac.at [Department of Radiology, Medical University of Vienna (Austria); Krssak, Martin, E-mail: martin.krssak@meduniwien.ac.at [Department of Radiology, Medical University of Vienna (Austria); Maresch, Judith, E-mail: judith.maresch@meduniwien.ac.at [Department of Pathology, Medical University of Vienna (Austria); Wrba, Fritz, E-mail: fritz.wrba@meduniwien.ac.at [Department of Pathology, Medical University of Vienna (Austria); Kaczirek, Klaus, E-mail: klaus.kaczirek@meduniwien.ac.at [Department of Surgery, Medical University of Vienna (Austria); Gruenberger, Thomas, E-mail: thomas.gruenberger@meduniwien.ac.at [Department of Surgery, Medical University of Vienna (Austria); Tamandl, Dietmar, E-mail: dietmar.tamandl@meduniwien.ac.at [Department of Surgery, Medical University of Vienna (Austria); Ba-Ssalamah, Ahmed, E-mail: ahmed.ba-ssalamah@meduniwien.ac.at [Department of Radiology, Medical University of Vienna (Austria); Berger-Kulemann, Vanessa, E-mail: vanessa.berger-kulemann@meduniwien.ac.at [Department of Radiology, Medical University of Vienna (Austria); Weber, Michael, E-mail: michael.weber@meduniwien.ac.at [Department of Radiology, Medical University of Vienna (Austria); Schima, Wolfgang, E-mail: wolfgang.schima@khgh.at [Department of Radiology, KH Goettlicher Heiland and Herz-Jesu Krankenhaus, Dornbacher Strasse 20-28, 1170 Vienna (Austria)

    2012-11-15

    Purpose: To compare the accuracy of liver fat quantification using chemical shift imaging (CSI) and H1 MR-spectroscopy (MRS) at 3.0 T in patients undergoing liver resection. Methods: Totally 35 patients were included in this prospective IRB approved study. The histopathologically assessed liver fat was compared to the hepatic fat fractions calculated with CSI (with and without spleen correction) and MRS. Spearman's rank correlation and Fisher z-test were used for correlation analysis. Sensitivity and specificity regarding the detection of marked steatosis were calculated for the different modalities and compared using the McNemar test. Results: MRS (r = .85) and CSI with spleen correction (r = .85) showed a significantly better correlation (p = .03) with histology compared to CSI without spleen correction (r = .67). Sensitivity and specificity for the detection of marked steatosis was 100% (12/12) and 87% (20/23) for MRS and 92% (11/12) and 83% (19/23) for CSI with spleen correction (p > .12). Conclusion: For the assessment of hepatic steatosis both CSI with spleen correction and MRS at 3.0 T, show a good correlation with histology. CSI without spleen correction should not be used. Sensitivity and specificity for the detection of marked steatosis are high with both modalities. However, results that are scattered around the cut-off values are not reliable enough for clinical decisions.

  20. Alterations in chemical shifts and exchange broadening upon peptide boronic acid inhibitor binding to α-lytic protease

    International Nuclear Information System (INIS)

    α-Lytic protease, a bacterial serine protease of 198 aminoacids (19800 Da), has been used as a model system for studies of catalytic mechanism, structure-function relationships, and more recently for studies of pro region-assisted protein folding. We have assigned the backbones of the enzyme alone, and of its complex with the tetrahedral transition state mimic N-tert-butyloxycarbonyl-Ala-Pro-boroVal, using double- and triple-resonance 3D NMR spectroscopy on uniformly15N- and 13C/15N-labeled protein.Changes in backbone chemical shifts between the uncomplexed and inhibited form of the protein are correlated with distance from the inhibitor, the displacement of backbone nitrogens, and change in hydrogen bond strength upon inhibitor binding (derived from previously solved crystal structures).A comparison of the solution secondary structure of the uninhibited enzyme with that of the X-ray structure reveals no significant differences.Significant line broadening, indicating intermediate chemical exchange, was observed in many of the active site amides (including three broadened to invisibility), and in a majority of cases the broadening was reversed upon addition of the inhibitor. Implications and possible mechanisms of this line broadening are discussed

  1. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Kanmi [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    . Furthermore, conformational details of two types of PFP were confirmed by theoretical calculation, operated by Dr. Takeshi Kobayashi. Finally, the arrangement of two surfactants, cetyltrimetylammoium bromide (CTAB) and cetylpyridinium bromide (CPB), mixed inside the MSN pores, was studied by solid-state NMR (Chapter 6). By analyzing the 1H-1H DQMAS and NOESY correlation spectra, the CTAB and CPB molecules were shown to co-exist inside the pores without forming significant monocomponent domains. A 'folded-over' conformation of CPB headgroups was proposed according to the results from 1H-29Si 2D HETCOR.

  2. Development of multicomponent hybrid density functional theory with polarizable continuum model for the analysis of nuclear quantum effect and solvent effect on NMR chemical shift

    International Nuclear Information System (INIS)

    We have developed the multicomponent hybrid density functional theory [MC-(HF+DFT)] method with polarizable continuum model (PCM) for the analysis of molecular properties including both nuclear quantum effect and solvent effect. The chemical shifts and H/D isotope shifts of the picolinic acid N-oxide (PANO) molecule in chloroform and acetonitrile solvents are applied by B3LYP electron exchange-correlation functional for our MC-(HF+DFT) method with PCM (MC-B3LYP/PCM). Our MC-B3LYP/PCM results for PANO are in reasonable agreement with the corresponding experimental chemical shifts and isotope shifts. We further investigated the applicability of our method for acetylacetone in several solvents

  3. Quantum Monte Carlo, time-dependent density functional theory, and density functional theory calculations of diamondoid excitation energies and Stokes shifts

    CERN Document Server

    Marsusi, F; Drummond, N D

    2011-01-01

    We have computed the absorption and emission energies and hence Stokes shifts of small diamondoids as a function of size using different theoretical approaches, including density functional theory and quantum Monte Carlo (QMC) calculations. The absorption spectra of these molecules were also investigated by time-dependent density functional theory (TD-DFT) and compared with experiment. We have analyzed the structural distortion and formation of a self-trapped exciton in the excited state, and we have studied the effects of these on the Stokes shift as a function of size. Compared to recent experiments, QMC overestimates the excitation energies by about 0.8(1) eV on average. Benefiting from a cancellation of errors, the optical gaps obtained in DFT calculations with the B3LYP functional are in better agreement with experiment. It is also shown that TD-B3LYP calculations can reproduce most of the features found in the experimental spectra. According to our calculations, the structures of diamondoids in the exci...

  4. Theoretical and practical aspects of chemical functionalization of carbon nanofibers (CNFs): DFT calculations and adsorption study.

    Science.gov (United States)

    Rokhina, Ekaterina V; Lahtinen, Manu; Makarova, Katerina; Jegatheesan, Veeriah; Virkutyte, Jurate

    2012-06-01

    The nitric acid-functionalized commercial carbon nanofibers (CNFs) were comprehensively studied by instrumental (XRD, BET, SEM, TGA) and theoretical (DFT calculations) methods. The detailed surface study revealed the variation in the characteristics of functionalized CNFs, such as a decreased (up to 34%) surface area and impacted structural, electronic and chemical properties. The effects of functional groups were studied by comparison with pristine nanofibers. The results showed that the C-C bond lengths of the modified CNFs varied significantly. Chemical functionalization altered the frontier orbitals of the pristine material, and therefore altered the nature of their interactions with other substances. Moreover, the pristine and modified CNFs were tested for the removal of phenol from aqueous solutions. It was observed that surface modification tuned the adsorption capacity of carbon nanofibers (up to 0.35 mmol g(-1)), whereas original fibers did not demonstrate any adsorption capacity of phenol. PMID:22209137

  5. Calculation of chemical quantities for the radioactive liquid waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Del Signore, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McClenahan, Robert L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2007-03-01

    The Radioactive Liquid Waste Treatment Facility (RLWTF) receives, stores, and treats both low-level and transuranic radioactive liquid wastes (RLW). Treatment of RLW requires the use of different chemicals. Examples include the use of calcium oxide to precipitate metals and radioactive elements from the radioactive liquid waste, and the use of hydrochloric acid to clean membrane filters that are used in the treatment process. The RL WTF is a Hazard Category 2 nuclear facility, as set forth in the LANL Final Safety Analysis Report of October 1995, and a DOE letter of March 11, 1999. A revised safety basis is being prepared for the RLWTF, and will be submitted to the NNSA in early 2007. This set of calculations establishes maximum chemical quantities that will be used in the 2007 safety basis.

  6. An optimized buffer system for NMR-based urinary metabonomics with effective pH control, chemical shift consistency and dilution minimization.

    Science.gov (United States)

    Xiao, Chaoni; Hao, Fuhua; Qin, Xiaorong; Wang, Yulan; Tang, Huiru

    2009-05-01

    NMR-based metabonomics has been widely employed to understand the stressor-induced perturbations to mammalian metabolism. However, inter-sample chemical shift variations for metabolites remain an outstanding problem for effective data mining. In this work, we systematically investigated the effects of pH and ionic strength on the chemical shifts for a mixture of 9 urinary metabolites. We found that the chemical shifts were decreased with the rise of pH but increased with the increase of ionic strength, which probably resulted from the pH- and ionic strength-induced alteration to the ionization equilibrium for the function groups. We also found that the chemical shift variations for most metabolites were reduced to less than 0.004 ppm when the pH was 7.1-7.7 and the salt concentration was less than 0.15 M. Based on subsequent optimization to minimize chemical shift variation, sample dilution and maximize the signal-to-noise ratio, we proposed a new buffer system consisting of K(2)HPO(4) and NaH(2)PO(4) (pH 7.4, 1.5 M) with buffer-urine volume ratio of 1 : 10 for human urinary metabonomic studies; we suggest that the chemical shifts for the proton signals of citrate and aromatic signals of histidine be corrected prior to multivariate data analysis especially when high resolution data were employed. Based on these, an optimized sample preparation method has been developed for NMR-based urinary metabonomic studies. PMID:19381385

  7. High accuracy NMR chemical shift corrected for bulk magnetization as a tool for structural elucidation of dilutable microemulsions. Part 1 - Proof of concept.

    Science.gov (United States)

    Hoffman, Roy E; Darmon, Eliezer; Aserin, Abraham; Garti, Nissim

    2016-02-01

    In microemulsions, changes in droplet size and shape and possible transformations occur under various conditions. They are difficult to characterize by most analytical tools because of their nano-sized structure and dynamic nature. Several methods are usually combined to obtain reliable information, guiding the scientist in understanding their physical behavior. We felt that there is a need for a technique that complements those in use today in order to provide more information on the microemulsion behavior, mainly as a function of dilution with water. The improvement of NMR chemical shift measurements independent of bulk magnetization effects makes it possible to study the very weak intermolecular chemical shift effects. In the present study, we used NMR high resolution magic angle spinning to measure the chemical shift very accurately, free of bulk magnetization effects. The chemical shift of microemulsion components is measured as a function of the water content in order to validate the method in an interesting and promising, U-type dilutable microemulsion, which had been previously studied by a variety of techniques. Phase transition points of the microemulsion (O/W, bicontinuous, W/O) and changes in droplet shape were successfully detected using high-accuracy chemical shift measurements. We analyzed the results and found them to be compatible with the previous studies, paving the way for high-accuracy chemical shifts to be used for the study of other microemulsion systems. We detected two transition points along the water dilution line of the concentrate (reverse micelles) corresponding to the transition from swollen W/O nano-droplets to bicontinuous to the O/W droplets along with the changes in the droplets' sizes and shapes. The method seems to be in excellent agreement with other previously studied techniques and shows the advantage of this easy and valid technique. PMID:25113928

  8. Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and 31P chemical shift anisotropy

    International Nuclear Information System (INIS)

    The solution structure of d(CGCGAATTCGCG)2 has been determined on the basis of an exceptionally large set of residual dipolar couplings. In addition to the heteronuclear 13C-1H and 15N-1H and qualitative homonuclear 1H-1H dipolar couplings, previously measured in bicelle medium, more than 300 quantitative 1H-1H and 22 31P-1H dipolar restraints were obtained in liquid crystalline Pf1 medium, and 22 31P chemical shift anisotropy restraints. High quality DNA structures can be obtained solely on the basis of these new restraints, and these structures are in close agreement with those calculated previously on the basis of 13C-1H and 15N-1H dipolar couplings. In the newly calculated structures, 31P-1H dipolar and 3JsubH3'Psub couplings and 31P CSA data restrain the phosphodiester backbone torsion angles. The final structure represents a quite regular B-form helix with a modest bending of ∼10 deg., which is essentially independent of whether or not electrostatic terms are used in the calculation. Combined, the number of homo- and heteronuclear dipolar couplings significantly exceeds the number of degrees of freedom in the system. Results indicate that the dipolar coupling data cannot be fit by a single structure, but are compatible with the presence of rapid equilibria between C2'-endo and C3'-endo deoxyribose puckers (sugar switching). The C2'-H2'/H2'' dipolar couplings in B-form DNA are particularly sensitive to sugar pucker and yield the largest discrepancies when fit to a single structure. To resolve these discrepancies, we suggest a simplified dipolar coupling analysis that yields N/S equilibria for the ribose sugar puckers, which are in good agreement with previous analyses of NMR JHH couplings, with a population of the minor C3'-endo form higher for pyrimidines than for purines

  9. 短波信道探测中多普勒频移的计算%Calculation of Doppler shift in HF channel sounding

    Institute of Scientific and Technical Information of China (English)

    刘月亮; 蒋宇中; 张四起

    2012-01-01

    For the purpose of exact measurement of Doppler shift, based on the pulse compression technique, this paper di the theoretical deduction of the calculation of Doppler shift, in which the signal modulated by Zadoff-Chu sequence was used a the sounding signal and a simplified Watterson model was used as the HF channel. It obtained a calculation formula of Dopple shift, carried out the simulation, of the calculation result of the formula for the case of two paths. The simulation results shoi that the calculation result of the formula is right when the Doppler difference of the two paths is less than ± 0. 3 Hz. On the ba sis of this,made the simulation of Doppler shift* s effect on the pulse compression of Zadoff-Chu sequence. The results shoi that the effect of the Doppler shift which is less than 10 Hz is negligible, which affirms that Zadoff-Chu sequence is an appro priate sequence for HF channel sounding.%为准确获取短波信道探测信号的多普勒频移,把被Zadoff-Chu序列调制的信号作为探测信号,以简化的Watterson模型作为短波信道,采用脉冲压缩技术,对多普勒频移的计算进行了理论推导,得出了一种多普勒频移的计算公式,对两条路径时公式的计算结果进行了仿真.结果表明,在两条路径的多普勒频移相差小于±0.3 Hz时,计算结果较为准确.在此基础上,仿真分析了多普勒频移对Zadoff-Chu序列的脉冲压缩的影响.分析表明,小于10 Hz的多普勒频移对Zadoff-Chu序列的脉冲压缩的影响可以忽略不计,将该序列应用在短波信道探测中比较合适.

  10. NMR spectroscopy of organic compounds of selenium and tellurium. Communication 9. Chemical shifts of 13C in isological series of unsaturated ethers, sulfides, selenides and tellurides

    International Nuclear Information System (INIS)

    The effects of heteroatoms Eh(Eh=O, S, Se, Te) on 13C chemical shifts in eleven isological series of R1-Eh-R2 unsaturated compounds are compared. A linear relation between 13C nuclei screening and tEh electronegativity is observed. An assumption is suggested that both likeness of the effects of 6A and 7A group elements on 13C chemical shifts of R1 and R2 substituents and their difference for elements of the 4A group are caused by unbonded interactions of the substituents with unshared electron pairs of heteroatoms

  11. Free energy calculations, enhanced by a Gaussian ansatz, for the "chemical work" distribution.

    Science.gov (United States)

    Boulougouris, Georgios C

    2014-05-15

    The evaluation of the free energy is essential in molecular simulation because it is intimately related with the existence of multiphase equilibrium. Recently, it was demonstrated that it is possible to evaluate the Helmholtz free energy using a single statistical ensemble along an entire isotherm by accounting for the "chemical work" of transforming each molecule, from an interacting one, to an ideal gas. In this work, we show that it is possible to perform such a free energy perturbation over a liquid vapor phase transition. Furthermore, we investigate the link between a general free energy perturbation scheme and the novel nonequilibrium theories of Crook's and Jarzinsky. We find that for finite systems away from the thermodynamic limit the second law of thermodynamics will always be an inequality for isothermal free energy perturbations, resulting always to a dissipated work that may tend to zero only in the thermodynamic limit. The work, the heat, and the entropy produced during a thermodynamic free energy perturbation can be viewed in the context of the Crooks and Jarzinsky formalism, revealing that for a given value of the ensemble average of the "irreversible" work, the minimum entropy production corresponded to a Gaussian distribution for the histogram of the work. We propose the evaluation of the free energy difference in any free energy perturbation based scheme on the average irreversible "chemical work" minus the dissipated work that can be calculated from the variance of the distribution of the logarithm of the work histogram, within the Gaussian approximation. As a consequence, using the Gaussian ansatz for the distribution of the "chemical work," accurate estimates for the chemical potential and the free energy of the system can be performed using much shorter simulations and avoiding the necessity of sampling the computational costly tails of the "chemical work." For a more general free energy perturbation scheme that the Gaussian ansatz may not be

  12. Shifts in controls on the temporal coherence of throughfall chemical flux in Acadia National Park, Maine, USA

    Science.gov (United States)

    Nelson, Sarah J.; Webster, Katherine E.; Loftin, Cynthia S.; Weathers, Kathleen C.

    2013-01-01

    Major ion and mercury (Hg) inputs to terrestrial ecosystems include both wet and dry deposition (total deposition). Estimating total deposition to sensitive receptor sites is hampered by limited information regarding its spatial heterogeneity and seasonality. We used measurements of throughfall flux, which includes atmospheric inputs to forests and the net effects of canopy leaching or uptake, for ten major ions and Hg collected during 35 time periods in 1999–2005 at over 70 sites within Acadia National Park, Maine to (1) quantify coherence in temporal dynamics of seasonal throughfall deposition and (2) examine controls on these patterns at multiple scales. We quantified temporal coherence as the correlation between all possible site pairs for each solute on a seasonal basis. In the summer growing season and autumn, coherence among pairs of sites with similar vegetation was stronger than for site-pairs that differed in vegetation suggesting that interaction with the canopy and leaching of solutes differed in coniferous, deciduous, mixed, and shrub or open canopy sites. The spatial pattern in throughfall hydrologic inputs across Acadia National Park was more variable during the winter snow season, suggesting that snow re-distribution affects net hydrologic input, which consequently affects chemical flux. Sea-salt corrected calcium concentrations identified a shift in air mass sources from maritime in winter to the continental industrial corridor in summer. Our results suggest that the spatial pattern of throughfall hydrologic flux, dominant seasonal air mass source, and relationship with vegetation in winter differ from the spatial pattern of throughfall flux in these solutes in summer and autumn. The coherence approach applied here made clear the strong influence of spatial heterogeneity in throughfall hydrologic inputs and a maritime air mass source on winter patterns of throughfall flux. By contrast, vegetation type was the most important influence on

  13. Quantitative evaluation of norcholesterol scintigraphy, CT attenuation value, and chemical-shift MR imaging for characterizing adrenal adenomas

    International Nuclear Information System (INIS)

    The objective of our study was to evaluate diagnostic ability and features of quantitative indices of three modalities: uptake rate on norcholesterol scintigraphy, computed tomography (CT) attenuation value, and fat suppression on chemical-shift magnetic resonance imaging (MRI) for characterizing adrenal adenomas. Image findings of norcholesterol scintigraphy, CT, and MRI were reviewed for 78 patients with functioning (n=48) or nonfunctioning (n=30) adrenal masses. The norcholesterol uptake rate, attenuation value on unenhanced CT, and suppression on in-phase to opposed-phase MRI were measured for adrenal masses. The norcholesterol uptake rate, CT attenuation value, and MR suppression index showed the sensitivity of 60%, 82%, and 100%, respectively, for functioning adenomas of <2.0 cm, and 96%, 79%, and 67%, respectively, for those of ≥2.0 cm. A statistically significant correlation was observed between size and norcholesterol uptake, and between CT attenuation value and MR suppression index. Regarding norcholesterol uptake, the adenoma-to-contralateral gland ratio was significantly higher in cortisol releasing than in aldosterone-releasing adenomas. The norcholesterol uptake rate was reliable for characterization of adenomas among adrenal masses of ≥2.0 cm. CT attenuation value and MR suppression index were well correlated with each other, and were useful regardless of mass size. (author)

  14. Solid state NMR chemical shift assignment and conformational analysis of a cellulose binding protein facilitated by optimized glycerol enrichment.

    Science.gov (United States)

    Ivanir, Hadar; Goldbourt, Amir

    2014-07-01

    Magic-angle spinning solid-state NMR has been applied to study CBM3b-Cbh9A (CBM3b), a cellulose binding module protein belonging to family 3b. It is a 146-residue protein having a unique nine-stranded β-sandwich fold, in which 35% of the structure is in a β-sheet conformation and the remainder of the protein is composed of loops and unstructured regions. Yet, the protein can be crystalized and it forms elongated needles. Close to complete chemical shift assignment of the protein was obtained by combining two- and three-dimensional experiments using a fully labeled sample and a glycerol-labeled sample. The use of an optimized protocol for glycerol-based sparse labeling reduces sample preparation costs and facilitates the assignment of the large number of aromatic signals in this protein. Conformational analysis shows good correlation between the NMR-predicted secondary structure and the reported X-ray crystal structure, in particular in the structured regions. Residues which show high B-factor values are situated mainly in unstructured regions, and are missing in our spectra indicating conformational flexibility rather than heterogeneity. Interestingly, long-range contacts, which could be clearly detected for tyrosine residues, could not be observed for aromatic phenylalanine residues pointing into the hydrophobic core, suggesting possible high ring mobility. These studies will allow us to further investigate the cellulose-bound form of CBM proteins. PMID:24824437

  15. Nuclear quantum effects in chemical reactions via higher-order path-integral calculations

    International Nuclear Information System (INIS)

    Highlights: • The study presents path-integral calculations for chemical reactions. • The path-integrals use higher-order factorizations of the density matrix. • The Eckart potential and the H2 + H reaction are used as test cases for the methods. • The Chin higher order factorization enhances QM transmission convergence. • The higher order factorizations enhance eigenvalue and partition function convergence. - Abstract: A practical approach to treat nuclear quantum mechanical effects in simulations of condensed phases, such as enzymes, is via Feynman path integral (PI) formulations. Typically, the standard primitive approximation (PA) is employed in enzymatic PI simulations. Nonetheless, these PI simulations are computationally demanding due to the large number of beads required to obtain converged results. The efficiency of PI simulations may be greatly improved if higher-order factorizations of the density matrix operator are employed. Herein, we compare the results of model calculations obtained employing the standard PA, the improved operator of Takahashi and Imada (TI), and a gradient-based forward corrector algorithm due to Chin (CH). The quantum transmission coefficient is computed for the Eckart potential while the partition functions and rate constant are computed for the H2 + H hydrogen transfer reaction. These potentials are simple models for chemical reactions. The study of the different factorization methods reveals that in most cases the higher-order action converges faster than the PA and TI approaches, at a moderate computational cost

  16. Stereoregularity of poly (lactic acid) and their model compounds as studied by NMR and quantum chemical calculations

    Science.gov (United States)

    In order to understand the origin of the tacticity splitting in the NMR spectrum of poly(lactic acid), monomer model compound and dimer model compounds (both isotactic and syndiotactic) were synthesized and their 1H and 13C NMR chemical shifts observed. Two energetically stable conformations were o...

  17. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    Science.gov (United States)

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations. PMID:26845204

  18. The value of 15-minute delayed contrast-enhanced CT to differentiate hyperattenuating adrenal masses compared with chemical shift MR imaging

    International Nuclear Information System (INIS)

    To investigate the diagnostic performance of 15-min delayed contrast-enhanced computed tomography (15-DECT) compared with that of chemical shift magnetic resonance (CSMR) imaging in differentiating hyperattenuating adrenal masses and to perform subgroup analysis in underlying malignancy and non-malignancy. This study included 478 adrenal masses in 453 patients examined with 15-DECT and 235 masses in 217 patients examined with CSMR. Relative percentage washout (RPW) and absolute percentage washout (APW) on 15-DECT, and signal intensity index (SII) and adrenal-to-spleen ratio (ASR) on CSMR were measured. Sensitivity, specificity and accuracy of 15-DECT and CSMR were analysed for characterisation of adrenal adenoma. Subgroup analyses were performed in patients with and without underlying malignancy. Attenuation and size of the masses on unenhanced CT correlated with the risk of non-adenoma. RPW calculated from 15-DECT showed the highest diagnostic performance for characterising hyperattenuating adrenal masses regardless of underlying malignancy, and the sensitivity, specificity and accuracy were 91.7 %, 74.8 % and 88.1 %, respectively in all patients. The risk of non-adenoma increased approximately threefold as mass size increased 1 cm or as its attenuation value increased by 10 Hounsfield units. 15-DECT was more accurate than CSMR in characterising hyperattenuating adrenal masses regardless of underlying malignancy. (orig.)

  19. The value of 15-minute delayed contrast-enhanced CT to differentiate hyperattenuating adrenal masses compared with chemical shift MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Hyun Jung; Choi, Hyuck Jae; Cho, Kyoung-Sik [Asan Medical Center, University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Kim, Hwa Jung; Kim, Sun-Ok [Asan Medical Center, University of Ulsan College of Medicine, Cancer Center, Department of Clinical Epidemiology and Biostatistics, Seoul (Korea, Republic of)

    2014-06-15

    To investigate the diagnostic performance of 15-min delayed contrast-enhanced computed tomography (15-DECT) compared with that of chemical shift magnetic resonance (CSMR) imaging in differentiating hyperattenuating adrenal masses and to perform subgroup analysis in underlying malignancy and non-malignancy. This study included 478 adrenal masses in 453 patients examined with 15-DECT and 235 masses in 217 patients examined with CSMR. Relative percentage washout (RPW) and absolute percentage washout (APW) on 15-DECT, and signal intensity index (SII) and adrenal-to-spleen ratio (ASR) on CSMR were measured. Sensitivity, specificity and accuracy of 15-DECT and CSMR were analysed for characterisation of adrenal adenoma. Subgroup analyses were performed in patients with and without underlying malignancy. Attenuation and size of the masses on unenhanced CT correlated with the risk of non-adenoma. RPW calculated from 15-DECT showed the highest diagnostic performance for characterising hyperattenuating adrenal masses regardless of underlying malignancy, and the sensitivity, specificity and accuracy were 91.7 %, 74.8 % and 88.1 %, respectively in all patients. The risk of non-adenoma increased approximately threefold as mass size increased 1 cm or as its attenuation value increased by 10 Hounsfield units. 15-DECT was more accurate than CSMR in characterising hyperattenuating adrenal masses regardless of underlying malignancy. (orig.)

  20. Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function

    OpenAIRE

    Kate, ten, F.J.W.; Jong, de, T.; Hintzen, HTJM Bert; Kolk, van der, J.P.

    2013-01-01

    Solar cells of which the efficiency is not limited by the Shockley-Queisser limit can be obtained by integrating a luminescent spectral conversion layer into the cell structure. We have calculated the maximum efficiency of state-of-the-art c-Si, pc-Si, a-Si, CdTe, GaAs, CIS, CIGS, CGS, GaSb, and Ge solar cells with and without an integrated spectral shifting, quantum cutting, or quantum tripling layer using their measured internal quantum efficiency (IQE) curves. Our detailed balance limit ca...

  1. An approach to develop chemical intuition for atomistic electron transport calculations using basis set rotations.

    Science.gov (United States)

    Borges, A; Solomon, G C

    2016-05-21

    Single molecule conductance measurements are often interpreted through computational modeling, but the complexity of these calculations makes it difficult to directly link them to simpler concepts and models. Previous work has attempted to make this connection using maximally localized Wannier functions and symmetry adapted basis sets, but their use can be ambiguous and non-trivial. Starting from a Hamiltonian and overlap matrix written in a hydrogen-like basis set, we demonstrate a simple approach to obtain a new basis set that is chemically more intuitive and allows interpretation in terms of simple concepts and models. By diagonalizing the Hamiltonians corresponding to each atom in the molecule, we obtain a basis set that can be partitioned into pseudo-σ and -π and allows partitioning of the Landuaer-Büttiker transmission as well as create simple Hückel models that reproduce the key features of the full calculation. This method provides a link between complex calculations and simple concepts and models to provide intuition or extract parameters for more complex model systems. PMID:27208940

  2. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {l_brace}in-phase and out-of phase{r_brace} MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ragab, Yasser [Radiology Department, Faculty of Medicine, Cairo University (Egypt); Radiology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yragab61@hotmail.com; Emad, Yasser [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt); Rheumatology and Rehabilitation Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yasseremad68@yahoo.com; Gheita, Tamer [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt)], E-mail: gheitamer@yahoo.com; Mansour, Maged [Oncology Department, Faculty of Medicine, Cairo University (Egypt); Oncology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: magedmansour@yahoo.com; Abou-Zeid, A. [Public Health Department, Faculty of Medicine, Cairo University, Cairo (Egypt)], E-mail: alaabouzeid@yahoo.com; Ferrari, Serge [Division of Bone Diseases, Department of Rehabilitation and Geriatrics, and WHO, Collaborating Center for Osteoporosis Prevention, Geneva University Hospital (Switzerland)], E-mail: serge.ferrari@medecine.unige.ch; Rasker, Johannes J. [Rheumatologist University of Twente, Enschede (Netherlands)], E-mail: j.j.rasker@utwente.nl

    2009-10-15

    Objective: The objective of this study was to establish the cut-off value of the signal intensity drop on chemical shift magnetic resonance imaging (MRI) with appropriate sensitivity and specificity to differentiate osteoporotic from neoplastic wedging of the spine. Patients and methods: All patients with wedging of vertebral bodies were included consecutively between February 2006 and January 2007. A chemical shift MRI was performed and signal intensity after (in-phase and out-phase) images were obtained. A DXA was performed in all. Results: A total of 40 patients were included, 20 with osteoporotic wedging (group 1) and 20 neoplastic (group 2). They were 21 males and 19 females. Acute vertebral collapse was observed in 15 patients in group 1 and subacute collapse in another 5 patients, while in group 2, 11 patients showed acute collapse and 9 patients (45%) showed subacute vertebral collapse. On the chemical shift MRI a substantial reduction in signal intensity was found in all lesions in both groups. The proportional changes observed in signal intensity of bone marrow lesions on in-phase compared with out-of-phase images showed significant differences in both groups (P < 0.05). At a cut-off value of 35%, the observed sensitivity of out-of-phase images was 95%, specificity was 100%, positive predictive value was 100% and negative predictive value was 95.2%. Conclusion: A chemical shift MRI is useful in order to differentiate patients with vertebral collapse due to underlying osteoporosis or neoplastic process.

  3. Probing the solvent shell with 195Pt chemical shifts: density functional theory molecular dynamics study of Pt(II) and Pt(IV) anionic complexes in aqueous solution.

    Science.gov (United States)

    Truflandier, Lionel A; Autschbach, Jochen

    2010-03-17

    Ab initio molecular dynamics (aiMD) simulations based on density functional theory (DFT) were performed on a set of five anionic platinum complexes in aqueous solution. (195)Pt nuclear magnetic shielding constants were computed with DFT as averages over the aiMD trajectories, using the two-component relativistic zeroth-order regular approximation (ZORA) in order to treat relativistic effects on the Pt shielding tensors. The chemical shifts obtained from the aiMD averages are in good agreement with experimental data. For Pt(II) and Pt(IV) halide complexes we found an intermediate solvent shell interacting with the complexes that causes pronounced solvent effects on the Pt chemical shifts. For these complexes, the magnitude of solvent effects on the Pt shielding constant can be correlated with the surface charge density. For square-planar Pt complexes the aiMD simulations also clearly demonstrate the influence of closely coordinated non-equatorial water molecules on the Pt chemical shift, relating the structure of the solution around the complex to the solvent effects on the metal NMR chemical shift. For the complex [Pt(CN)(4)](2-), the solvent effects on the Pt shielding constant are surprisingly small. PMID:20166712

  4. Photoinduced intramolecular charge transfer (ICT) reaction in trans-methyl p-(dimethylamino) cinnamate: A combined fluorescence measurement and quantum chemical calculations

    International Nuclear Information System (INIS)

    The photophysical behaviour of trans-methyl p-(dimethylamino) cinnamate (t-MDMAC) donor-acceptor system has been investigated by steady-state absorption and emission spectroscopy and quantum chemical calculations. The molecule t-MDMAC shows an emission from the locally excited state in non-polar solvents. In addition to weak local emission, a strong solvent dependent red shifted fluorescence in polar aprotic solvents is attributed to highly polar intramolecular charge transfer state. However, the formation of hydrogen-bonded clusters with polar protic solvents has been suggested from a linear correlation between the observed red shifted fluorescence band maxima with hydrogen bonding parameters (α). Calculations by ab initio and density functional theory show that the lone pair electron at nitrogen center is out of plane of the benzene ring in the global minimum ground state structure. In the gas phase, a potential energy surface along the twist coordinate at the donor (-NMe2) and acceptor (-CH = CHCOOMe) sites shows stabilization of S1 state and destabilization S2 and S0 states. A similar potential energy calculation along the twist coordinate in acetonitrile solvent using non-equilibrium polarized continuum model also shows more stabilization of S1 state relative to other states and supports solvent dependent red shifted emission properties. In all types of calculations it is found that the nitrogen lone pair is delocalized over the benzene ring in the global minimum ground state and is localized on the nitrogen centre at the 90 deg. twisted configuration. The S1 energy state stabilization along the twist coordinate at the donor site and localized nitrogen lone pair at the perpendicular configuration support well the observed dual fluorescence in terms of proposed twisted intramolecular charge transfer (TICT) model

  5. Accuracy of chemical shift MR imaging in diagnosing indeterminate bone marrow lesions in the pelvis: review of a single institution's experience

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, Chad A. [Mayo Clinic, Department of Radiology, Phoenix, AZ (United States); Radiology Ltd., Tucson, AZ (United States); Chivers, F.S.; Lorans, Roxanne; Roberts, Catherine C.; Kransdorf, Mark J. [Mayo Clinic, Department of Radiology, Phoenix, AZ (United States)

    2014-08-15

    To re-assess the accuracy of chemical shift imaging in diagnosing indeterminate bone marrow lesions as benign or malignant. We retrospectively reviewed our experience with MR imaging of the pelvis to assess the accuracy of chemical shift imaging in distinguishing benign from malignant bone lesions. Two musculoskeletal radiologists retrospectively reviewed all osseous lesions biopsied since 2006, when chemical shift imaging was added to our routine pelvic imaging protocol. Study inclusion criteria required (1) MR imaging of an indeterminate bone marrow lesion about the pelvis and (2) subsequent histologic confirmation. The study group included 50 patients (29 male, 21 female) with an average age of 67 years (range, 41-89 years). MR imaging results were evaluated using biopsy results as the ''gold standard.'' There were 27 malignant and 23 benign lesions. Chemical shift imaging using an opposed-phase signal loss criteria of less than 20 % to indicate a malignant lesion, correctly diagnosed 27/27 malignant lesions and 14/23 benign lesions, yielding a 100 % sensitivity, 61 % specificity, 75 % PPV, 100 % NPV, and 82 % accuracy. The area under the receiver operator characteristic (ROC) curve was 0.88. The inter-rater and intra-rater agreement K values were both 1.0. Chemical shift imaging is a useful adjunct MR technique to characterize focal and diffuse marrow abnormalities on routine non-contrast pelvic imaging. It is highly sensitive in identifying malignant disease. Despite its lower specificity, the need for biopsy could be eliminated in more than 60 % of patients with benign disease. (orig.)

  6. Accuracy of chemical shift MR imaging in diagnosing indeterminate bone marrow lesions in the pelvis: review of a single institution's experience

    International Nuclear Information System (INIS)

    To re-assess the accuracy of chemical shift imaging in diagnosing indeterminate bone marrow lesions as benign or malignant. We retrospectively reviewed our experience with MR imaging of the pelvis to assess the accuracy of chemical shift imaging in distinguishing benign from malignant bone lesions. Two musculoskeletal radiologists retrospectively reviewed all osseous lesions biopsied since 2006, when chemical shift imaging was added to our routine pelvic imaging protocol. Study inclusion criteria required (1) MR imaging of an indeterminate bone marrow lesion about the pelvis and (2) subsequent histologic confirmation. The study group included 50 patients (29 male, 21 female) with an average age of 67 years (range, 41-89 years). MR imaging results were evaluated using biopsy results as the ''gold standard.'' There were 27 malignant and 23 benign lesions. Chemical shift imaging using an opposed-phase signal loss criteria of less than 20 % to indicate a malignant lesion, correctly diagnosed 27/27 malignant lesions and 14/23 benign lesions, yielding a 100 % sensitivity, 61 % specificity, 75 % PPV, 100 % NPV, and 82 % accuracy. The area under the receiver operator characteristic (ROC) curve was 0.88. The inter-rater and intra-rater agreement K values were both 1.0. Chemical shift imaging is a useful adjunct MR technique to characterize focal and diffuse marrow abnormalities on routine non-contrast pelvic imaging. It is highly sensitive in identifying malignant disease. Despite its lower specificity, the need for biopsy could be eliminated in more than 60 % of patients with benign disease. (orig.)

  7. Reproducibility of 31P MR spectroscopy detection in human liver with two-dimensional chemical shift imaging

    International Nuclear Information System (INIS)

    Objective: To study the reproducibility of relative quantification of phosphorus metabolites in human liver with two-dimensional chemical shift imaging(2D CSI). Methods: Using 2D CSI with FOV 200 mm and average times 40, 500 ml phosphate (NaH2PO4) solution phantom with 0.05 mol/L concentration was scanned 6 times, changing FOV to 280 mm, five healthy volunteers were scanned 6 times under respiration gating. The relative quantification of metabolites was derived from the integral values of peaks on the spectra, and then the errors of metabolite detection were obtained through data analysis. Results: (1) With FOV 200 mm and average times 40, phosphate solution phantom had a good reproducibility with the error less than 5.38%. Under respiration gating, the largest detection error of metabolites within five volunteers was phosphomonoesters (PME) 39.5%, inorganic phosphate (Pi) 40.4%, phosphodiesters (PDE) 23.2%, adenosine triphosphate; γ-ATP 24.3%, α-ATP 20.1%, β-ATP 24.9%, respectively. (2) The baseline of spectra was smoother and the error was less with respiration gating than that without respiration gating. (3) During the phantom test, with average times 40, change FOV to 280 mm and 400 mm, the detection errors were 4.96% and 4.47%. With FOV 200 mm and average times 20, 40, 80, the detection errors were 8.86%, 5.38% and 4.40%, corresponding acquisition time were 1.27 min, 2.53 min and 5.06 min. Conclusion: Detection of phosphorus metabolites in human liver with 2D CSI is a stable and useful technique. Scan parameters should be carefully selected, and other influencing factors of detection must be also noticed during examination. (authors)

  8. Combining ambiguous chemical shift mapping with structure-based backbone and NOE assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard

    2011-01-01

    Chemical shift mapping is an important technique in NMRbased drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically. However, automated methods are necessary for high-throughput drug screening. We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C- labeling, to resolve the ambiguities for a one-toone mapping. On the three proteins, it achieves an average accuracy of 94% or better. Copyright © 2011 ACM.

  9. Comparison between different reference systems for the calculation of chemical exergy

    International Nuclear Information System (INIS)

    An unified evaluation of matter and energy changes for plants of chemical industries and metallurgy is necessary. This is possible by using the exergy method. The exergy as a potential function is dependent on the state of the systems and the environment. The definition of the environment especially of their composition is not possible by thermodynamical considerations alone, but required some added assumptions on technical view. There are some proposals of the definition of the environment. The paper deals with the comparison of the different proposals by numerical calculations of the exergy of elements and compounds and the exergy efficiency of technologies. To sum it up it is shown that Szargut's model has some advantages against the other proposals for the exergy analysis

  10. Systematic, efficient and consistent LCA calculations for chemical and biochemical processes

    DEFF Research Database (Denmark)

    Petchkaewkul, Kaesinee; Malakul, Pomthong; Gani, Rafiqul

    2016-01-01

    that allow a wider coverage of chemical and biochemical processes. Improvements of LCIA calculations and eco-efficiency evaluation are introduced. Also, a new model for photochemical ozone formation has been developed and implemented. Performance of LCSoft in terms of accuracy and reliability is......Life Cycle Assessment or LCA is a technique, which is applied for the study and evaluation of quantitative environmental impacts through the entire life cycle of products, processes or services in order to improve and/or evaluate the design of existing as well as new processes. The LCA factors can...... compared with another well-known LCA-software, SimaPro for a biochemical process – the production of bioethanol from cassava rhizome. The results show a very good match of new added impact categories. Also, the results from a new feature in LCSoft, which is eco-efficiency evaluation, are presented....

  11. Experimental tests and validation of calculation criteria of acceptable Tk shift with respect to PTS at VVER

    International Nuclear Information System (INIS)

    The following topics were examined: (i) Methodology of fracture tests at temperature gradients and pressurized thermal shock (PTS) cooling tests on large specimens (1500x1200x140 mm) with a designed postulated crack and other smaller cracks in the cooled area (test performed on a ZZ 8000 (80MN) loading stand); (ii) simulation of radiation embrittlement of tested material near the end of the RPV designed life, the material is subjected to standard mechanical property tests and fracture tests of standard test specimens modelling the PTS regime of material loading; (iii) 100% NDT tests of a specimen before the beginning of tests and μTOFD before and after each particular test of a specimen; (iv) on-line monitoring of the test conditions based on instrumentation of a specimen with thermocouples, COD and strain gauges together with on-line monitoring of Acoustic Emission during the tests; (v) calculation of Kl at the critical points of the crack front during the test, based on monitored boundary conditions; (vi) fractographic analysis after the fracture of a specimen and evaluation of the whole test. (P.A.)

  12. Chemical shift of U L3 edges in different uranium compounds obtained by X-ray absorption spectroscopy with synchrotron radiation

    Indian Academy of Sciences (India)

    D Joseph; C Nayak; P Venu Babu; S N Jha; D Bhattacharyya

    2014-05-01

    Uranium L3 X-ray absorption edge was measured in various compounds containing uranium in U4+, U5+ and U6+ oxidation states. The measurements have been carried out at the Energy Dispersive EXAFS beamline (BL-08) at INDUS-2 synchrotron radiation source at RRCAT, Indore. Energy shifts of ∼ 2–3 eV were observed for U L3 edge in the U-compounds compared to their value in elemental U. The different chemical shifts observed for the compounds having the same oxidation state of the cation but different anions or ligands show the effect of different chemical environments surrounding the cations in determining their X-ray absorption edges in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on U cation in the above compounds.

  13. Quantum chemical calculations of bond dissociation energies for COOH scission and electronic structure in some acids

    Institute of Scientific and Technical Information of China (English)

    Zeng Hui; Zhao Jun; Xiao Xun

    2013-01-01

    Quantum chemical calculations are performed to investigate the equilibrium C-COOH bond distances and the bond dissociation energies (BDEs) for 15 acids.These compounds are studied by utilizing the hybrid density functional theory (DFT) (B3LYP,B3PW91,B3P86,PBE1PBE) and the complete basis set (CBS-Q) method in conjunction with the 6-31 lG** basis as DFT methods have been found to have low basis sets sensitivity for small and medium molecules in our previous work.Comparisons between the computational results and the experimental values reveal that CBS-Q method,which can produce reasonable BDEs for some systems in our previous work,seems unable to predict accurate BDEs here.However,the B3P86 calculated results accord very well with the experimental values,within an average absolute error of 2.3 kcal/mol.Thus,B3P86 method is suitable for computing the reliable BDEs of C-COOH bond for carboxylic acid compounds.In addition,the energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of studied compounds are estimated,based on which the relative thermal stabilities of the studied acids are also discussed.

  14. Quantum chemical calculations of bond dissociation energies for COOH scission and electronic structure in some acids

    International Nuclear Information System (INIS)

    Quantum chemical calculations are performed to investigate the equilibrium C—COOH bond distances and the bond dissociation energies (BDEs) for 15 acids. These compounds are studied by utilizing the hybrid density functional theory (DFT) (B3LYP, B3PW91, B3P86, PBE1PBE) and the complete basis set (CBS—Q) method in conjunction with the 6-311G** basis as DFT methods have been found to have low basis sets sensitivity for small and medium molecules in our previous work. Comparisons between the computational results and the experimental values reveal that CBS—Q method, which can produce reasonable BDEs for some systems in our previous work, seems unable to predict accurate BDEs here. However, the B3P86 calculated results accord very well with the experimental values, within an average absolute error of 2.3 kcal/mol. Thus, B3P86 method is suitable for computing the reliable BDEs of C—COOH bond for carboxylic acid compounds. In addition, the energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of studied compounds are estimated, based on which the relative thermal stabilities of the studied acids are also discussed. (atomic and molecular physics)

  15. Burnup calculations and chemical analysis of irradiated fuel samples studied in LWR-PROTEUS phase II

    International Nuclear Information System (INIS)

    The isotopic compositions of 5 UO2 samples irradiated in a Swiss PWR power plant, which were investigated in the LWR-PROTEUS Phase II programme, were calculated using the CASMO-4 and BOXER assembly codes. The burnups of the samples range from 50 to 90 MWd/kg. The results for a large number of actinide and fission product nuclides were compared to those of chemical analyses performed using a combination of chromatographic separation and mass spectrometry. A good agreement of calculated and measured concentrations is found for many of the nuclides investigated with both codes. The concentrations of the Pu isotopes are mostly predicted within ±10%, the two codes giving quite different results, except for 242Pu. Relatively significant deviations are found for some isotopes of Cs and Sm, and large discrepancies are observed for Eu and Gd. The overall quality of the predictions by the two codes is comparable, and the deviations from the experimental data do not generally increase with burnup. (authors)

  16. Phosphorus-31 nuclear magnetic resonance of double- and triple-helical nucleic acids. Phosphorus-31 chemical shifts as a probe of phosphorus-oxygen ester bond torsional angles

    International Nuclear Information System (INIS)

    The temperature dependence to the 31P NMR spectra of poly[d(GC)]-poly[d(GC)], d(GC)4, phenylalanine tRNA (yeast) and mixtures of poly(A) + oligo(U) is presented. The 31P NMR spectra of mixtures of complementary RNA and of the poly d(GC) self-complementary DNA provide torsional information on the phosphate ester conformation in the double, triple, and ''Z'' helix. The increasing downfield shift with temperature for the single-strand nucleic acids provides a measure of the change in the phosphate ester conformation in the single helix to coil conversion. A seperate upfield peak (20-26% of the total phosphates) is observed at lower temperatures in the oligo(U)-poly(A) mixtures which is assigned to the double helix/triple helix. Proton NMR and UV spectra confirm the presence of the multistrand forms. The 31P chemical shift for the double helix/triple helix is 0.2-0.5 ppm upfield from the chemical shift for the single helix which in turn is 1.0 ppm upfield from the chemical shift for the random coil conformation

  17. Multilayer MoS2 prepared by one-time and repeated chemical vapor depositions: anomalous Raman shifts and transistors with high ON/OFF ratio

    Science.gov (United States)

    Wu, Chong-Rong; Chang, Xiang-Rui; Chang, Shu-Wei; Chang, Chung-En; Wu, Chao-Hsin; Lin, Shih-Yen

    2015-11-01

    We show that multilayer molybdenum disulfide (MoS2) grown with the chemical vapor deposition (CVD) may exhibit quite distinct behaviors of Raman shifts from those of exfoliated ones. The anomalous Raman shifts depend on CVD growth modes and are attributed to the modified dielectric screening and interlayer coupling of MoS2 in various growth conditions. With repeated CVD growths, we demonstrated the precise control over the layer number of MoS2. A decently large drain current, high ON/OFF ratio of 105, and enhanced field-effect mobility can be achieved in transistors fabricated on the six-layer MoS2.

  18. The calculation of the chemical exergies of coal-based fuels by using the higher heating values

    International Nuclear Information System (INIS)

    This paper demonstrates the application of exergy to gain a better understanding of coal properties, especially chemical exergy and specific chemical exergy. In this study, a BASIC computer program was used to calculation of the chemical exergies of the coal-based fuels. Calculations showed that the chemical composition of the coal influences strongly the values of the chemical exergy. The exergy value of a coal is closely related to the H:C and O:C ratios. High proportions of hydrogen and/or oxygen, compared to carbon, generally reduce the exergy value of the coal. High contents of the moisture and/or the ash cause to low values of the chemical exergy. The aim of this paper is to calculate the chemical exergy of coals by using equations given in the literature and to detect and to evaluate quantitatively the effect of irreversible phenomena increased the thermodynamic imperfection of the processes. In this paper, the calculated exergy values of the fuels will be useful for energy experts studied in the coal mining area and coal-fired powerplants

  19. The Effects of Consistent Chemical Kinetics Calculations on the Pressure-Temperature Profiles and Emission Spectra of Hot Jupiters

    CERN Document Server

    Drummond, Benjamin; Baraffe, Isabelle; Amundsen, David S; Mayne, Nathan J; Venot, Olivia; Goyal, Jayesh

    2016-01-01

    In this work we investigate the impact of calculating non-equilibrium chemical abundances consistently with the temperature structure for the atmospheres of highly-irradiated, close-in gas giant exoplanets. Chemical kinetics models have been widely used in the literature to investigate the chemical compositions of hot Jupiter atmospheres which are expected to be driven away from chemical equilibrium via processes such as vertical mixing and photochemistry. All of these models have so far used pressure--temperature (P-T) profiles as fixed model input. This results in a decoupling of the chemistry from the radiative and thermal properties of the atmosphere, despite the fact that in nature they are intricately linked. We use a one-dimensional radiative-convective equilibrium model, ATMO, which includes a sophisticated chemistry scheme to calculate P-T profiles which are fully consistent with non-equilibrium chemical abundances, including vertical mixing and photochemistry. Our primary conclusion is that, in case...

  20. Experimental and Quantum Chemical Calculations of Imidazolium Appended Naphthalene Hybrid in Different Biomimicking Aqueous Interfaces.

    Science.gov (United States)

    Yenupuri, Tej Varma; Mydlova, Lucia; Agarwal, Devesh S; Sharma, Ritika; Sakhuja, Rajeev; Makowska-Janusik, Malgorzata; Pant, Debi D

    2016-08-25

    The effect of solvent polarity and micellar headgroup on a newly designed imidazolium based ionic liquid (IL) conjugated with naphthalene, 1,2-dimethyl-3-((6-(octyloxy)naphthalen-2-yl)methyl)-1H-imidazol-3-ium chloride (IN-O8-Cl), was studied using steady state and time-resolved fluorescence techniques. We observed that the dipole moment in the excited state is remarkably higher than the ground state. The effect of micellar surface charge on the photophysics of IN-O8-Cl in aqueous phase at room temperature was investigated. Formation of premicellar aggregates in sodium dodecylsulfate (SDS) was perceived; further the microenvironment of IN-O8-Cl was examined using steady-state fluorescence spectroscopy. Micropolarity of the micellar environment of SDS was found to be lower than that of cetyltrimethylammonium bromide (CTAB) and triton X-100 (TX100) following the order SDS < TX-100 < CTAB. The binding constant (Kb) and edge excitation red shift (EERS) from the emission maximum suggest that the probe binds strongly to the micelles. Multiexponential behavior was observed in time-resolved fluorescence lifetime studies in all micellar environments. We have observed an increase in rotational correlation time as we move from pure aqueous phase to solution containing surfactants of different head charge. Varieties of spectral parameters were used to justify the region in which the probe is present. The experimentally obtained dipole moment data were justified and explained by the DFT calculations of the electronic properties of IN-O8-Cl molecules in gas phase and in selected solvents. PMID:27486828

  1. Fluid Shifts

    Science.gov (United States)

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Johnston, S.; Ploutz-Snyder, R.; Smith, S.

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by

  2. Thermal Decomposition of NCN: Shock-Tube Study, Quantum Chemical Calculations, and Master-Equation Modeling.

    Science.gov (United States)

    Busch, Anna; González-García, Núria; Lendvay, György; Olzmann, Matthias

    2015-07-16

    The thermal decomposition of cyanonitrene, NCN, was studied behind reflected shock waves in the temperature range 1790-2960 K at pressures near 1 and 4 bar. Highly diluted mixtures of NCN3 in argon were shock-heated to produce NCN, and concentration-time profiles of C atoms as reaction product were monitored with atomic resonance absorption spectroscopy at 156.1 nm. Calibration was performed with methane pyrolysis experiments. Rate coefficients for the reaction (3)NCN + M → (3)C + N2 + M (R1) were determined from the initial slopes of the C atom concentration-time profiles. Reaction R1 was found to be in the low-pressure regime at the conditions of the experiments. The temperature dependence of the bimolecular rate coefficient can be expressed with the following Arrhenius equation: k1(bim) = (4.2 ± 2.1) × 10(14) exp[-242.3 kJ mol(-1)/(RT)] cm(3) mol(-1) s(-1). The rate coefficients were analyzed by using a master equation with specific rate coefficients from RRKM theory. The necessary molecular data and energies were calculated with quantum chemical methods up to the CCSD(T)/CBS//CCSD/cc-pVTZ level of theory. From the topography of the potential energy surface, it follows that reaction R1 proceeds via isomerization of NCN to CNN and subsequent C-N bond fission along a collinear reaction coordinate without a tight transition state. The calculations reproduce the magnitude and temperature dependence of the rate coefficient and confirm that reaction R1 is in the low-pressure regime under our experimental conditions. PMID:25853321

  3. Deciphering Noncovalent Interactions Accompanying 7,7,8,8-Tetracyanoquinodimethane Encapsulation within Biphene[n]arenes: Nucleus-Independent Chemical Shifts Approach.

    Science.gov (United States)

    Lande, Dipali N; Rao, Soniya S; Gejji, Shridhar P

    2016-07-18

    Binding of novel biphene[n]arene hosts to antiaromatic 7,7,8,8-tetracyanoquinodimethane (TCNQ) are investigated by DFT. Biphene[4]arene favors the inclusion complex through noncovalent interactions, such as hydrogen bonding, π-π stacking, C-H⋅⋅⋅π, and C-H⋅⋅⋅H-C dihydrogen bonding. Donor-acceptor complexation renders aromatic character to the guest through charge transfer. The formation of TCNQ anionic radicals through supramolecular π stacking significantly influences its chemical and photophysical behavior. Electron density reorganization consequent to encapsulation of TCNQ reflects in the shift of characteristic vibrations in the IR spectra. The accompanying aromaticities arising from the induced ring currents are analyzed by employing nucleus-independent chemical shifts based profiles. PMID:27028656

  4. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bellstedt, Peter [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Haefner, Sabine; Leppert, Joerg; Goerlach, Matthias; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany)

    2012-12-15

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC Prime C and 3D C Prime NCA with sequential {sup 13}C acquisitions, 3D NHH and 3D NC Prime H with sequential {sup 1}H acquisitions and 3D CANH and 3D C'NH with broadband {sup 13}C-{sup 15}N mixing are demonstrated using microcrystalline samples of the {beta}1 immunoglobulin binding domain of protein G (GB1) and the chicken {alpha}-spectrin SH3 domain.

  5. Structure, solvent, and relativistic effects on the NMR chemical shifts in square-planar transition-metal complexes: assessment of DFT approaches

    Czech Academy of Sciences Publication Activity Database

    Vícha, J.; Novotný, J.; Straka, Michal; Repisky, M.; Ruud, K.; Komorovsky, S.; Marek, R.

    2015-01-01

    Roč. 17, č. 38 (2015), s. 24944-24955. ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : NMR chemical shifts * transition metal complexes * relativistic effects * method calibration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.493, year: 2014 http://pubs.rsc.org/en/content/articlepdf/2015/cp/c5cp04214c

  6. Orientational constraints as three-dimensional structural constraints from chemical shift anisotropy: the polypeptide backbone of gramicidin A in a lipid bilayer.

    OpenAIRE

    Mai, W.; Hu, W; Wang, C; Cross, T A

    1993-01-01

    Chemical shifts observed from samples that are uniformly aligned with respect to the magnetic field can be used as very high-resolution structural constraints. This constraint takes the form of an orientational constraint rather than the more familiar distance constraint. The accuracy of these constraints is dependent upon the quality of the tensor characterization. Both tensor element magnitudes and tensor orientations with respect to the molecular frame need to be considered. Here these con...

  7. CEQCSY: a new code for chemical equilibrium calculation in multiphased systems

    International Nuclear Information System (INIS)

    As part of the CEC Chemval/mirage project, a method is presented for calculating the thermodynamic equilibrium state of a multiphase system, by minimizing its Gibbs free energy constrained by mass balances. Compared to the other algorithms available in the literature, the method has three main characteristics: - the sets of equations corresponding to the conditions of homogeneous and heterogeneous equilibria are simultaneously solved, - a mathematical criterion for bringing a new multicomponent phase in the system is rigorously demontrated. - It enables a detailed representation of the multisite solid solutions with constraints called site closure relation. The code CEQCSY (Chemical Equilibrium in Complex SYstem) uses this formalism, and works with the thermodynamic data base from the EQ3/6 code. This choice makes easier several compared tests with EQ6: quartz dissolution in water, water-atmospheric air equilibrium, theoretical re-equilibrium of seawater, hydrothermal alteration of granite including solid solutions. The test results demonstrate the high efficiency and velocity of the code CEQCSY, when working on equilibrium state of multiphase systems. This high velocity was the aim of this work, in order to couple with thermic, hydrodynamic or mechanic codes

  8. Octafluorodirhenate(III) Revisited: Solid-State Preparation, Characterization, and Multiconfigurational Quantum Chemical Calculations.

    Science.gov (United States)

    Mariappan Balasekaran, Samundeeswari; Todorova, Tanya K; Pham, Chien Thang; Hartmann, Thomas; Abram, Ulrich; Sattelberger, Alfred P; Poineau, Frederic

    2016-06-01

    A simple method for the high-yield preparation of (NH4)2[Re2F8]·2H2O has been developed that involves the reaction of (n-Bu4N)2[Re2Cl8] with molten ammonium bifluoride (NH4HF2). Using this method, the new salt [NH4]2[Re2F8]·2H2O was prepared in ∼90% yield. The product was characterized in solution by ultraviolet-visible light (UV-vis) and (19)F nuclear magnetic resonance ((19)F NMR) spectroscopies and in the solid-state by elemental analysis, powder X-ray diffraction (XRD), and infrared (IR) spectroscopy. Multiconfigurational CASSCF/CASPT2 quantum chemical calculations were performed to investigate the molecular and electronic structure, as well as the electronic absorption spectrum of the [Re2F8](2-) anion. The metal-metal bonding in the Re2(6+) unit was quantified in terms of effective bond order (EBO) and compared to that of its [Re2Cl8](2-) and [Re2Br8](2-) analogues. PMID:27171734

  9. Environmental capacity of chemical oxygen demand in the Bohai Sea: modeling and calculation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xixi; WANG Xiulin; SHI Xiaoyong; LI Keqiang; DING Dongsheng

    2011-01-01

    A three-dimensional advection-diffusion model coupled with the degradation process is established for describing the transport of chemical oxygen demand (COD). Comparison of the simulated distribution of COD at the surface in the Bohai Sea in August, 2001 with field observations, shows that the model simulates the dataset reasonably well. The Laizhou Bay, Bohai Bay, and Liaodong Bay were contaminated heavily near shore. Based on the optimal discharge flux method, the Environmental Capacity (EC) and allocated capacities of COD in the Bohai Sea are calculated. For seawater of Grades I to IV of the Chinese National Standard, the ECs of COD in the Bohai Sea were 77×104t/a, 116×l04t/a, 154×l04t/a and 193×104t/a, respectively. The Huanghe (Yellow) River pollutant discharge accounted for the largest percentage of COD at 14.3%, followed by that of from the Liugu River (11.5%), and other nine local rivers below 10%. The COD level in 2005 was worse than that of Grade II seawater and was beyond the environmental capacity. In average, 35% COD reduction is called to meet the standard of Grade I seawater.

  10. Antioxidative effect of schisanhenol on human low density lipoprotein and its quantum chemical calculation

    Institute of Scientific and Technical Information of China (English)

    Ling-hong YU; Geng-tao LIU; You-min SUN; Hong-yu ZHANG

    2004-01-01

    AIM: To investigate the effect of schisanhenol (Sal) on copper ion-induced oxidative modulation of human low density lipoprotein (LDL). METHODS: The antioxidative activity of eight schisandrins (DCL) on microsome lipid peroxidation induced by Vit C/NADPH system was first observed, and then, the effect of Sal on Cu2+-induced human LDL oxidation was studied. The generation of malondialdehyde (MDA), lipofuscin, reactive oxygen species (ROS), consumption of α-tocopherol as well as electrophoretic mobility of LDL were determined as criteria of LDL oxidation. Finally, the quantum chemical method was used to calculate the theoretical parameters of eight DCL for elucidating the difference of their antioxidant ability. RESULTS: Sal was shown to be the most active one among eight schizandrins in inhibiting microsome lipid oxidation induced by Vit C/NADPH. Sal 100, 50, and 10 μrnol/L inhibited production of MDA, lipofuscin and ROS as well as the consumption of α-tocopherol in Cu2+-induced oxidation of human LDL in a dose-dependent manner. Sal also reduced electrophoretic mobility of the oxidized human LDL. Further study of quantum chemistry found that Sal was the strongest one among eight DCL to scavenge O-2, R·, RO·, and ROO· radicals. CONCLUSION: Sal has antioxidative effect on human LDL oxidation.The mechanism of Sal against LDL oxidation may be through scavenging free radicals.

  11. The (impossible?) formation of acetaldehyde on the grain surfaces: insights from quantum chemical calculations

    CERN Document Server

    Enrique-Romero, Joan; Ceccarelli, Cecilia; Balucani, Nadia

    2016-01-01

    Complex Organic Molecules (COMs) have been detected in the interstellar medium (ISM). However, it is not clear whether their synthesis occurs on the icy surfaces of interstellar grains or via a series of gas-phase reactions. As a test case of the COMs synthesis in the ISM, we present new quantum chemical calculations on the formation of acetaldehyde (CH3CHO) from the coupling of the HCO and CH3 radicals, both in gas phase and on water ice surfaces. The binding energies of HCO and CH3 on the amorphous water ice were also computed (2333 and 734 K, respectively). Results indicate that, in gas phase, the products could be either CH3CHO, CH4 + CO, or CH3OCH, depending on the relative orientation of the two radicals. However, on the amorphous water ice, only the CH4 + CO product is possible due to the geometrical constraints imposed by the water ice surface. Therefore, acetaldehyde cannot be synthesized by the CH3 + HCO coupling on the icy grains. We discuss the implications of these results and other cases, such a...

  12. The (impossible?) formation of acetaldehyde on the grain surfaces: insights from quantum chemical calculations

    Science.gov (United States)

    Enrique-Romero, J.; Rimola, A.; Ceccarelli, C.; Balucani, N.

    2016-06-01

    Complex Organic Molecules (COMs) have been detected in the interstellar medium (ISM). However, it is not clear whether their synthesis occurs on the icy surfaces of interstellar grains or via a series of gas-phase reactions. As a test case of the COMs synthesis in the ISM, we present new quantum chemical calculations on the formation of acetaldehyde (CH3CHO) from the coupling of the HCO and CH3 radicals, both in gas phase and on water ice surfaces. The binding energies of HCO and CH3 on the amorphous water ice were also computed (2333 and 734 K, respectively). Results indicate that, in gas phase, the products could be either CH3CHO, CH4 + CO, or CH3OCH, depending on the relative orientation of the two radicals. However, on the amorphous water ice, only the CH4 + CO product is possible due to the geometrical constraints imposed by the water ice surface. Therefore, acetaldehyde cannot be synthesized by the CH3 + HCO coupling on the icy grains. We discuss the implications of these results and other cases, such as ethylene glycol and dimethyl ether, in which similar situations can occur, suggesting that formation of these molecules on the grain surfaces might be unlikely.

  13. Thermodynamic Calculation in Elimination of Water Pollutants at Hydro-geo-chemical Barriers

    Institute of Scientific and Technical Information of China (English)

    VELIKOV, B.; VELIKOV, B; PANAYOTOVA, M.; PANAYOTOVA, M

    2001-01-01

    Thermodynamic saturation coefficients (Ks) and transformation indices (It) can be used to evaluate the possibility of forming hydro-geo-chemical precipitation barriers and assess the solid phase (rodk) stability in aquifers. Calculations are made on the basis of data on water pH, Eh, conductivity (X) and some relevant ion concentrations. The dependencies of Ks and It on water pH and Eh values can be expressed graphically to estimate the barriers parameters. Barrier generation leads to a decrease in concentrations of pollutants due mainly to precipitation, co-preciptitation and/or sorption processes. Using the diagram Ks, It-f (pH, Eh), supplemented with representative data on concentrations of pollutants before and after the barrier, the elimination and migration of pollutants can be roughly evaluated (predicted) only on the basis of determining pH and Eh values of water and concentrations of ions participating in the barrier formation. The proposed method is applied to assess the migration and elimination of pollutants (U, 226Ra, β-emitters, SO42-) in Bulgarian uranium mine surroundings.

  14. A model for reliability analysis and calculation applied in an example from chemical industry

    Directory of Open Access Journals (Sweden)

    Pejović Branko B.

    2010-01-01

    Full Text Available The subject of the paper is reliability design in polymerization processes that occur in reactors of a chemical industry. The designed model is used to determine the characteristics and indicators of reliability, which enabled the determination of basic factors that result in a poor development of a process. This would reduce the anticipated losses through the ability to control them, as well as enabling the improvement of the quality of production, which is the major goal of the paper. The reliability analysis and calculation uses the deductive method based on designing of a scheme for fault tree analysis of a system based on inductive conclusions. It involves the use standard logical symbols and rules of Boolean algebra and mathematical logic. The paper eventually gives the results of the work in the form of quantitative and qualitative reliability analysis of the observed process, which served to obtain complete information on the probability of top event in the process, as well as objective decision making and alternative solutions.

  15. Reproducibility and influencing factors of 31P MR spectroscopy in rabbit liver with two-dimensional chemical shift imaging

    International Nuclear Information System (INIS)

    Objective: To investigate the reproducibility and influencing factors of relative quantification of phosphorus metabolites with two-dimensional chemical shift imaging (2D CSI) in rabbit liver. Methods: Using 2D CSI MRS, 500 ml phosphate (NaH2PO4) solution phantom with 0.05 mol/L concentration and one healthy rabbit were scanned 30 times respectively in one day and rescanned 30 times in the next day, and the stability of MR scanner and reproducibility of within-run and between-days in the same individual were analyzed. Each of thirty rabbits was scanned and rescanned one time respectively in different days, and the reproducibility of between-days in one group was analyzed. The data were statistically analyzed with t tests. Results: (1) Phosphate solution phantom had a good reproducibility of within-run with the coefficient variation (CV) of 4.92% and 5.12% respectively in different two days. No significant change of phosphorus metabolites was detected in between-days, which was 16.68±0.82 and 16.56± 0.85 respectively (t=0.665, P>0.05). (2) The CV of metabolites in one healthy rabbit ranged from 8.04% to 34.13%. Among the metabolites, β-ATP had the best reproducibility with the CV less than 10%. PME was 0.88±0.28 and 0.88±0.30, PDE was 4.35±0.66 and 4.35±0.66, Pi was 0.95±0.30 and 0.97±0.28, α-ATP was 5.58±0.60 and 5.61±0.61, β-ATP was 2.70±0.22 and 2.71± 0.22, γ-ATP was 2.20±0.63 and 2.18±0.44 respectively, no significant changes of metabolites were detected in between-days (P>0.05). (3) The CV of metabolites in 30 healthy rabbits ranged from 8.48% to 36.21%. Among the metabolites, β-ATP had the best reproducibility with CV less than 10%. PME was 0.84±0.30 and 0.79±0.28, PDE was 4.29±0.72 and 3.94±0.84, Pi was 0.91±0.28 and 0.92± 0.31, α-ATP was 5.65±0.66 and 5.36±0.60, β-ATP was 2.71±0.23 and 2.66±0.25, γ-ATP was 2.07±0.29 and 1.99±0.37 respectively, no significant changes of metabolites were detected in between-days (P>0

  16. Octafluorodirhenate(III) Revisited: Solid-State Preparation, Characterization, and Multiconfigurational Quantum Chemical Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Mariappan Balasekaran, Samundeeswari; Todorova, Tanya K.; Pham, Chien Thang; Hartmann, Thomas; Abram, Ulrich; Sattelberger, Alfred P.; Poineau, Frederic

    2016-06-06

    A simple method for the high-yield preparation of (NH4)2[Re2F8]· 2H2O has been developed that involves the reaction of (n-Bu4N)2[Re2Cl8] with molten ammonium bifluoride (NH4HF2). Using this method, the new salt [NH4]2[Re2F8]·2H2O was prepared in ~90% yield. The product was characterized in solution by ultraviolet-visible light (UV-vis) and 19F nuclear magnetic resonance (19F NMR) spectroscopies and in the solid-state by elemental analysis, powder X-ray diffraction (XRD), and infrared (IR) spectroscopy. Multiconfigurational CASSCF/CASPT2 quantum chemical calculations were performed to investigate the molecular and electronic structure, as well as the electronic absorption spectrum of the [Re2F8] 2- anion. The metal-metal bonding in the Re2 6+ unit was quantified in terms of effective bond order (EBO) and compared to that of its [Re2Cl8] 2- and [Re2Br8] 2- analogues.

  17. Transport-induced shifts in condensate dew-point and composition in multicomponent systems with chemical reaction

    Science.gov (United States)

    Rosner, D. E.; Nagarajan, R.

    1985-01-01

    Partial heterogeneous condensation phenomena in multicomponent reacting systems are analyzed taking into consideration the chemical element transport phenomena. It is demonstrated that the dew-point surface temperature in chemically reactive systems is not a purely thermodynamic quantity, but is influenced by the multicomponent diffusion and Soret-mass diffusion phenomena. Several distinct dew-points are shown to exist in such systems and, as a result of transport constraints, the 'sharp' locus between two chemically distinct condensates is systematically moved to a difference mainstream composition.

  18. Double-echo gradient chemical shift MR imaging fails to differentiate minimal fat renal angiomyolipomas from other homogeneous solid renal tumors

    International Nuclear Information System (INIS)

    Highlights: •Diagnosis of AMLs with minimal fat (mfAMLs) is still challenging with MRI. •Drop of signal on opposed-phase MR imaging is not specific of mfAMLs. •Double-echo gradient-echo sequences cannot accurately differentiate renal mfAMLs from other renal tumors. -- Abstract: Objectives: The purpose of this retrospective study was to evaluate the diagnostic performance of double-echo gradient chemical shift (GRE) magnetic resonance (MR) imaging for the differentiation of angiomyolipomas with minimal fat (mfAML) from other homogeneous solid renal tumors. Methods: Between 2005 and 2010 in two institutions, all histologically proven homogenous solid renal tumors imaged with computed tomography and MR imaging, including GRE sequences, have been retrospectively selected. A total of 118 patients (mean age: 61 years; range: 20–87) with 119 tumors were included. Two readers measured independently the signal intensity (SI) on GRE images and calculated SI index (SII) and tumor-to-spleen ratio (TSR) on in-phase and opposed-phase images. Intra- and interreader agreement was obtained. Cut-off values were derived from the receiver operating characteristic (ROC) curve analysis. Results: Twelve mfAMLs in 11 patients were identified (mean size: 2.8 cm; range: 1.2–3.5), and 107 non-AML tumors (3.2 cm; 1–7.8) in 107 patients. The intraobserver reproducibility of SII and TSR was excellent with an intraclass correlation coefficient equal to 0.99 [0.98–0.99]. The coefficient of correlation between the readers was 0.99. The mean values of TSR for mfAMLs and non-mfAMLs were −7.0 ± 22.8 versus −8.2 ± 21.2 for reader 1 and −6.7 ± 22.8 versus −8.4 ± 20.9 for reader 2 respectively. No significant difference was noticed between the two groups for SII (p = 0.98) and TSR (p = 0.86). Only 1 out of 12 mfAMLs and 11 of 107 non-AML tumors presented with a TSR inferior to −30% (p = 0.83). Conclusion: In a routine practice, GRE sequences cannot be a confident tool to

  19. Double-echo gradient chemical shift MR imaging fails to differentiate minimal fat renal angiomyolipomas from other homogeneous solid renal tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ferré, R., E-mail: kn638@yahoo.fr [Department of Radiology, Necker Hospital, 149 rue de Sèvres, 75730 Paris (France); Cornelis, F. [Department of Radiology, Pellegrin Hospital, Place Amélie Raba Léon, 33076 Bordeaux (France); Verkarre, V. [Department of Pathology, Necker Hospital, 149 rue de Sèvres, 75730 Paris (France); Eiss, D.; Correas, J.M. [Department of Radiology, Necker Hospital, 149 rue de Sèvres, 75730 Paris (France); Grenier, N. [Department of Radiology, Pellegrin Hospital, Place Amélie Raba Léon, 33076 Bordeaux (France); Hélénon, O. [Department of Radiology, Necker Hospital, 149 rue de Sèvres, 75730 Paris (France)

    2015-03-15

    Highlights: •Diagnosis of AMLs with minimal fat (mfAMLs) is still challenging with MRI. •Drop of signal on opposed-phase MR imaging is not specific of mfAMLs. •Double-echo gradient-echo sequences cannot accurately differentiate renal mfAMLs from other renal tumors. -- Abstract: Objectives: The purpose of this retrospective study was to evaluate the diagnostic performance of double-echo gradient chemical shift (GRE) magnetic resonance (MR) imaging for the differentiation of angiomyolipomas with minimal fat (mfAML) from other homogeneous solid renal tumors. Methods: Between 2005 and 2010 in two institutions, all histologically proven homogenous solid renal tumors imaged with computed tomography and MR imaging, including GRE sequences, have been retrospectively selected. A total of 118 patients (mean age: 61 years; range: 20–87) with 119 tumors were included. Two readers measured independently the signal intensity (SI) on GRE images and calculated SI index (SII) and tumor-to-spleen ratio (TSR) on in-phase and opposed-phase images. Intra- and interreader agreement was obtained. Cut-off values were derived from the receiver operating characteristic (ROC) curve analysis. Results: Twelve mfAMLs in 11 patients were identified (mean size: 2.8 cm; range: 1.2–3.5), and 107 non-AML tumors (3.2 cm; 1–7.8) in 107 patients. The intraobserver reproducibility of SII and TSR was excellent with an intraclass correlation coefficient equal to 0.99 [0.98–0.99]. The coefficient of correlation between the readers was 0.99. The mean values of TSR for mfAMLs and non-mfAMLs were −7.0 ± 22.8 versus −8.2 ± 21.2 for reader 1 and −6.7 ± 22.8 versus −8.4 ± 20.9 for reader 2 respectively. No significant difference was noticed between the two groups for SII (p = 0.98) and TSR (p = 0.86). Only 1 out of 12 mfAMLs and 11 of 107 non-AML tumors presented with a TSR inferior to −30% (p = 0.83). Conclusion: In a routine practice, GRE sequences cannot be a confident tool to

  20. Prediction of microvascular invasion of hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging: Impact of intra-tumoral fat detected on chemical-shift images

    Energy Technology Data Exchange (ETDEWEB)

    Min, Ji Hye [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Young Kon, E-mail: jmyr@dreamwiz.com [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Lim, Sanghyeok [Department of Radiology, Guri Hospital, Hanyang University College of Medicine, Guri (Korea, Republic of); Jeong, Woo Kyoung; Choi, Dongil; Lee, Won Jae [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    Highlights: • Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC. • Alfa-fetoprotein, tumor size, and fat component were associated with MVI of HCC. • Chemical shift MRI should be considered for the evaluation of HCC. - Abstract: Purpose: To investigate the impact of intra-tumoral fat detected by chemical-shift MR imaging in predicting the MVI of HCC. Materials and methods: Gadoxetic acid-enhanced MR imaging of 365 surgically proven HCCs from 365 patients (306 men, 59 women; mean age, 55.6 years) were evaluated. HCCs were classified into two groups, fat-containing and non-fat-containing, based on the presence of fat on chemical-shift images. Fat-containing HCCs were subdivided into diffuse or focal fatty change groups. Logistic regression analyses were used to identify clinical and MR findings associated with MVI. Results: Based on MR imaging, 66 tumors were classified as fat-containing HCCs and 299 as non-fat-containing HCCs. Among the 66 fat-containing HCCs, 38 (57.6%) showed diffuse fatty changes and 28 (42.4%) showed focal fatty changes. MVI was present in 18 (27.3%) fat-containing HCCs and in 117 (39.1%) non-fat-containing HCCs (P = 0.07). Univariate analysis revealed that serum alpha-fetoprotein (AFP) and tumor size were significantly associated with MVI (P < 0.001). A multiple logistic regression analysis showed that log AFP (odds ratio 1.178, P = 0.0016), tumor size (odds ratio 1.809, P < 0.001), and intra-tumoral fat (odds ratio 0.515, P = 0.0387) were independent variables associated with MVI. Conclusion: Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC and, therefore, a possibly more favorable prognosis, but the clinical value of this finding is uncertain.

  1. Secondary structural analysis of proteins based on 13C chemical shift assignments in unresolved solid-state NMR spectra enhanced by fragmented structure database

    International Nuclear Information System (INIS)

    Magic-angle-spinning solid-state 13C NMR spectroscopy is useful for structural analysis of non-crystalline proteins. However, the signal assignments and structural analysis are often hampered by the signal overlaps primarily due to minor structural heterogeneities, especially for uniformly-13C,15N labeled samples. To overcome this problem, we present a method for assigning 13C chemical shifts and secondary structures from unresolved two-dimensional 13C–13C MAS NMR spectra by spectral fitting, named reconstruction of spectra using protein local structures (RESPLS). The spectral fitting was conducted using databases of protein fragmented structures related to 13Cα, 13Cβ, and 13C′ chemical shifts and cross-peak intensities. The experimental 13C–13C inter- and intra-residue correlation spectra of uniformly isotope-labeled ubiquitin in the lyophilized state had a few broad peaks. The fitting analysis for these spectra provided sequence-specific Cα, Cβ, and C′ chemical shifts with an accuracy of about 1.5 ppm, which enabled the assignment of the secondary structures with an accuracy of 79 %. The structural heterogeneity of the lyophilized ubiquitin is revealed from the results. Test of RESPLS analysis for simulated spectra of five different types of proteins indicated that the method allowed the secondary structure determination with accuracy of about 80 % for the 50–200 residue proteins. These results demonstrate that the RESPLS approach expands the applicability of the NMR to non-crystalline proteins exhibiting unresolved 13C NMR spectra, such as lyophilized proteins, amyloids, membrane proteins and proteins in living cells.

  2. Prediction of microvascular invasion of hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging: Impact of intra-tumoral fat detected on chemical-shift images

    International Nuclear Information System (INIS)

    Highlights: • Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC. • Alfa-fetoprotein, tumor size, and fat component were associated with MVI of HCC. • Chemical shift MRI should be considered for the evaluation of HCC. - Abstract: Purpose: To investigate the impact of intra-tumoral fat detected by chemical-shift MR imaging in predicting the MVI of HCC. Materials and methods: Gadoxetic acid-enhanced MR imaging of 365 surgically proven HCCs from 365 patients (306 men, 59 women; mean age, 55.6 years) were evaluated. HCCs were classified into two groups, fat-containing and non-fat-containing, based on the presence of fat on chemical-shift images. Fat-containing HCCs were subdivided into diffuse or focal fatty change groups. Logistic regression analyses were used to identify clinical and MR findings associated with MVI. Results: Based on MR imaging, 66 tumors were classified as fat-containing HCCs and 299 as non-fat-containing HCCs. Among the 66 fat-containing HCCs, 38 (57.6%) showed diffuse fatty changes and 28 (42.4%) showed focal fatty changes. MVI was present in 18 (27.3%) fat-containing HCCs and in 117 (39.1%) non-fat-containing HCCs (P = 0.07). Univariate analysis revealed that serum alpha-fetoprotein (AFP) and tumor size were significantly associated with MVI (P < 0.001). A multiple logistic regression analysis showed that log AFP (odds ratio 1.178, P = 0.0016), tumor size (odds ratio 1.809, P < 0.001), and intra-tumoral fat (odds ratio 0.515, P = 0.0387) were independent variables associated with MVI. Conclusion: Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC and, therefore, a possibly more favorable prognosis, but the clinical value of this finding is uncertain

  3. Other compounds isolated from Simira glaziovii and the {sup 1}H and {sup 13}C NMR chemical shift assignments of new 1-epi-castanopsol

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Marcelo F. de; Vieira, Ivo J. Curcino [Universidade Federal Rural do Rio de Janeiro, Seropedica, RJ (Brazil). Dept. de Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Centro de Ciencias Tecnologicas. Lab. de Ciencias Quimicas; Carvalho, Mario G. de, E-mail: mgeraldo@ufrrj.br [Universidade Federal do Rio de Janeiro (NPPN/UFRJ), RJ (Brazil). Centro de Ciencias da Saude. Nucleo de Pesquisa em Produtos Naturais

    2012-07-01

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D {sup 1}H, {sup 13}C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of {sup 1}H and {sup 13}C NMR chemical shift assignments. (author)

  4. (1)H, (13)C, and (15)N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state.

    Science.gov (United States)

    Lim, Sunghyuk; Yu, Qinhong; Rockwell, Nathan C; Martin, Shelley S; Lagarias, J Clark; Ames, James B

    2016-04-01

    Cyanobacteriochromes (CBCRs) are cyanobacterial photosensory proteins with a tetrapyrrole (bilin) chromophore that belong to the phytochrome superfamily. Like phytochromes, CBCRs photoconvert between two photostates with distinct spectral properties. NpR6012g4 from Nostoc punctiforme is a model system for widespread CBCRs with conserved red/green photocycles. Atomic-level structural information for the photoproduct state in this subfamily is not known. Here, we report NMR backbone chemical shift assignments of the light-activated state of NpR6012g4 (BMRB no. 26577) as a first step toward determining its atomic resolution structure. PMID:26537963

  5. Other compounds isolated from Simira glaziovii and the 1H and 13C NMR chemical shift assignments of new 1-epi-castanopsol

    International Nuclear Information System (INIS)

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D 1H, 13C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of 1H and 13C NMR chemical shift assignments. (author)

  6. 1H and 13C NMR Chemical Shift Assignments and Conformational Analysis for the Two Diastereomers of the Vitamin K Epoxide Reductase Inhibitor Brodifacoum

    International Nuclear Information System (INIS)

    Proton and 13C NMR chemical shift assignments and 1H-1H scalar couplings for the two diastereomers of the vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined from acetone solutions containing both diastereomers. Data were obtained from homo- and heteronuclear correlation spectra acquired at 1H frequencies of 750 and 900 MHz over a 268-303 K temperature range. Conformations inferred from scalar coupling and 1-D NOE measurements exhibit large differences between the diastereomers. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  7. Mechanistic insights into enzymatic and homogeneous transition metal catalysis from quantum-chemical calculations

    OpenAIRE

    Crawford, Luke

    2015-01-01

    Catalysis is a key area of chemistry. Through catalysis it is possible to achieve better synthetic routes, exploit molecules normally considered to be inactive and also attain novel chemical transformations. The development of new catalysts is crucial to furthering chemistry as a field. Computational chemistry, arising from applying the equations of quantum and classical mechanics to solving chemical problems, offers an essential route to investigating the underlying atomistic detail of ca...

  8. 13C-NMR chemical shift databases as a quick tool to evaluate structural models of humic substances

    DEFF Research Database (Denmark)

    Nyrop Albers, Christian; Hansen, Poul Erik

    2010-01-01

    Models for humic and fulvic acids are discussed based on 13C liquid state NMR spectra combined with results from elemental analysis and titration studies. The analysis of NMR spectra is based on a full reconstruction of the NMR spectrum done with help of 13C-NMR data bases by adding up chemical s...

  9. Chemical analyses and calculation of isotopic compositions of high-burnup UO2 fuels and MOX fuels

    International Nuclear Information System (INIS)

    Chemical analysis activities of isotopic compositions of high-burnup UO2 fuels and MOX fuels in CRIEPI and calculation evaluation are reviewed briefly. C/E values of ORIGEN2, in which original libraries and JENDL-3.2 libraries are used, and other codes with chemical analysis data are reviewed and evaluated. Isotopic compositions of main U and Pu in fuels can be evaluated within 10% relative errors by suitable libraries and codes. Void ratio is effective parameter for C/E values in BWR fuels. JENDL-3.2 library shows remarkable improvement compared with original libraries in isotopic composition evaluations of FP nuclides. (author)

  10. Characteristics of the complexing of chitosan with sodium dodecyl sulfate, according to IR spectroscopy data and quantum-chemical calculations

    Science.gov (United States)

    Shilova, S. V.; Romanova, K. A.; Galyametdinov, Yu. G.; Tret'yakova, A. Ya.; Barabanov, V. P.

    2016-06-01

    The complexing of protonated chitosan with dodecyl sulfate ions in water solutions is studied using IR spectroscopy data and quantum-chemical calculations. It is established that the electrostatic interaction between the protonated amino groups of chitosan and dodecyl sulfate ions is apparent in the IR spectrum as a band at 833 cm-1. The need to consider the effect the solvent has on the formation of hydrogen-bound ion pairs [CTS+ ṡ C12H25O 3 - ] is shown via a quantum-chemical simulation of the equilibrium geometry and the energy characteristics of complexing and hydration.

  11. Quantitative and qualitative shifts in defensive metabolites define chemical defense investment during leaf development in Inga, a genus of tropical trees.

    Science.gov (United States)

    Wiggins, Natasha L; Forrister, Dale L; Endara, María-José; Coley, Phyllis D; Kursar, Thomas A

    2016-01-01

    Selective pressures imposed by herbivores are often positively correlated with investments that plants make in defense. Research based on the framework of an evolutionary arms race has improved our understanding of why the amount and types of defenses differ between plant species. However, plant species are exposed to different selective pressures during the life of a leaf, such that expanding leaves suffer more damage from herbivores and pathogens than mature leaves. We hypothesize that this differential selective pressure may result in contrasting quantitative and qualitative defense investment in plants exposed to natural selective pressures in the field. To characterize shifts in chemical defenses, we chose six species of Inga, a speciose Neotropical tree genus. Focal species represent diverse chemical, morphological, and developmental defense traits and were collected from a single site in the Amazonian rainforest. Chemical defenses were measured gravimetrically and by characterizing the metabolome of expanding and mature leaves. Quantitative investment in phenolics plus saponins, the major classes of chemical defenses identified in Inga, was greater for expanding than mature leaves (46% and 24% of dry weight, respectively). This supports the theory that, because expanding leaves are under greater selective pressure from herbivores, they rely more upon chemical defense as an antiherbivore strategy than do mature leaves. Qualitatively, mature and expanding leaves were distinct and mature leaves contained more total and unique metabolites. Intraspecific variation was greater for mature leaves than expanding leaves, suggesting that leaf development is canalized. This study provides a snapshot of chemical defense investment in a speciose genus of tropical trees during the short, few-week period of leaf development. Exploring the metabolome through quantitative and qualitative profiling enables a more comprehensive examination of foliar chemical defense investment

  12. Structure and dynamics of poly(ethylene- co-1,5-hexadiene) as studied by solid state 13C NMR and quantum chemical calculations

    Science.gov (United States)

    Kurosu, Hiromichi; Yamamoto, Yuuri; Fujikawa, Aki; Kawabata, Emika; Sone, Masato; Naga, Naofumi

    2009-03-01

    Poly(ethylene- co-1,5-hexadiene) with 1,5-hexadiene (HD) contents of 1.8, 8.1, 9.7 and 20.3% was prepared by copolymerization of ethylene and HD involving intermolecular cyclization. Higher-order structures and dynamics of these samples were studied by solid state NMR and quantum chemistry. The 13C solid state NMR spectra and 13C spin-lattice relaxation time ( T1) of the samples were measured. The observed 13C CP/MAS and PST/MAS NMR spectra for all samples were decomposed into six peaks. The cyclopentane units incorporated in the main chain of polyethylene affected not only the crystalline structure but also the noncrystalline structure. This causes a trans-rich conformation in the noncrystalline region. Even in the melt-quenched samples, incorporation of the cyclopentane structure into the polyethylene chain suppresses the increase in the gauche structure in the noncrystalline region. Based on the 13C chemical shift of the methylene carbon, the low cyclopentane content sample assumes an orthorhombic crystal structure, and the high cyclopentane content samples assume a hexagonal-type chain packing. 13C spin-lattice relaxation times show that the crystalline region of the low cyclopentane content sample has two regions with different mobility, although the high cyclopentane content samples have only one region with a high mobility for each peak. Furthermore, quantum chemical calculations for the 13C NMR shieldings were carried out for precise assignment of the peaks.

  13. Structural and stability investigation of the anticancer drug Cyclophosphamide via quantum chemical calculations :A nanotube drug delivery

    Directory of Open Access Journals (Sweden)

    Z. Felegari

    2014-12-01

    Full Text Available Cyclophosphamide is a medicine used to interfere with the growth and spread of tumor cells and treat cancers and autoimmune disorders.This work reports the study of anticancer drugs with density functional theory (DFT and electronic structures.Its structure was optimized with B3LYP/6-311G* level in the gas phase and different solvents (SCRF calculation. NBO analysis,NMR parameter,thermodynamic properties,HOMO and LUMO,HOMO-LUMO band gap, and the electronic chemical potential (µ were calculated. The results indicated that the Cyclophosphamide in water solvent is more stable than the gas phase orother solvents.

  14. Halogen effect on structure and 13C NMR chemical shift of 3,6-disubstituted-N-alkyl carbazoles

    DEFF Research Database (Denmark)

    Radula-Janik, Klaudia; Kupka, Teobald; Ejsmont, Krzysztof; Daszkiewicz, Zdzislaw; Sauer, Stephan P. A.

    2013-01-01

    Structures of selected 3,6-dihalogeno-N-alkyl carbazole derivatives were calculated at the B3LYP/6-311++G(3df,2pd) level of theory and their 13C NMR isotropic nuclear shieldings were predicted using density functional theory (DFT). The model compounds contained 9H-, N-methyl and N-ethyl derivatives....... The relativistic effect of Br and I atoms on nuclear shieldings was modeled using the spin-orbit ZORA method. Significant heavy atom shielding effects for the carbon atom directly bonded with bromine and iodine were observed (~ -10 and ~ -30 ppm while the other carbon shifts were practically...

  15. Evaluation of photodissociation coefficient calculations for use in atmospheric chemical models. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Petropaviovskikh, I.

    1995-07-01

    The chemistry of the atmosphere is strongly influenced by solar radiation, In addition to the obvious heating effect, solar radiation at visible and ultra-violet (UV) wavelengths drives atmospheric chemistry by photodissociating relatively stable molecules into usually highly reactive fragments. Photodissociation coefficients (J-values) describe quantitatively the frequency of atmospheric photolysis reactions, and therefore it is important to calculate them accurately. The author has examined a number of outstanding problems in the calculation of J-values.

  16. Quantum Chemical Calculations of EPR-Hyperfine Coupling Constants for Transition Metal Complex

    International Nuclear Information System (INIS)

    In this this study the performance of various density functional approaches for calculation of electron paramagnetic resonance hyperfine coupling constants in transition metal complexes was studied. Several gradient-corrected as well as hybrid functionals have been validated by comparison with experimental data and high-level coupled-cluster calculation for 21 systems, representing a variety of bonding situations. Second part of this work represents an analysis and interpretation of spin-polarization effects in first transition metal complexes

  17. Final Technical Report: A Paradigm Shift in Chemical Processing: New Sustainable Chemistries for Low-VOC Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kenneth F.

    2006-07-26

    The project employed new processes to make emulsion polymers from reduced levels of petroleum-derived chemical feedstocks. Most waterborne paints contain spherical, emulsion polymer particles that serve as the film-forming binder phase. Our goal was to make emulsion polymer particles containing 30 percent feedstock that would function as effectively as commercial emulsions made from higher level feedstock. The processes developed yielded particles maintained their film formation capability and binding capacity while preserving the structural integrity of the particles after film formation. Rohm and Haas Company (ROH) and Archer Daniels Midland Company (ADM) worked together to employ novel polymer binders (ROH) and new, non-volatile, biomass-derived coalescing agents (ADM). The University of Minnesota Department of Chemical Engineering and Material Science utilized its unique microscopy capabilities to characterize films made from the New Emulsion Polymers (NEP).

  18. Comparative molecular field analysis and comparative molecular similarity index analysis studies on 1H NMR chemical shift of NH group of diaryl triazene derivatives.

    Science.gov (United States)

    Rofouie, M K; Salahinejad, M; Ghasemi, J B; Aghaei, A

    2013-05-01

    Comparative molecular field analysis (CoMFA), comparative molecular field analysis region focusing (CoMFA-RF) for optimizing the region for the final partial least square analysis, and comparative molecular similarity indices analysis (CoMSIA) methods were employed to develop three-dimensional quantitative structure-activity relationship (3D-QSAR) models of (1)H NMR chemical shift of NH proton of diaryl triazene derivatives. The best orientation was searched by all-orientation search (AOS) strategy to minimize the effect of the initial orientation of the structures. The predictive abilities of CoMFA-RF and CoMSIA models were determined using a test set of ten compounds affording predictive correlation coefficients of 0.721 and 0.754, respectively, indicating good predictive power. For further model validation, cross validation (leave one out), progressive scrambling, and bootstrapping were also applied. The accuracy and speed of obtained 3D-QSAR models for the prediction of (1)H NMR chemical shifts of NH group of diaryl triazene derivatives were greater compared to some computational well-known procedures. PMID:23456682

  19. Fractional enrichment of proteins using [2-{sup 13}C]-glycerol as the carbon source facilitates measurement of excited state {sup 13}Cα chemical shifts with improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ahlner, Alexandra; Andresen, Cecilia; Khan, Shahid N. [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden); Kay, Lewis E. [The University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry, One King’s College Circle (Canada); Lundström, Patrik, E-mail: patlu@ifm.liu.se [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden)

    2015-07-15

    A selective isotope labeling scheme based on the utilization of [2-{sup 13}C]-glycerol as the carbon source during protein overexpression has been evaluated for the measurement of excited state {sup 13}Cα chemical shifts using Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion (RD) experiments. As expected, the fractional incorporation of label at the Cα positions is increased two-fold relative to labeling schemes based on [2-{sup 13}C]-glucose, effectively doubling the sensitivity of NMR experiments. Applications to a binding reaction involving an SH3 domain from the protein Abp1p and a peptide from the protein Ark1p establish that accurate excited state {sup 13}Cα chemical shifts can be obtained from RD experiments, with errors on the order of 0.06 ppm for exchange rates ranging from 100 to 1000 s{sup −1}, despite the small fraction of {sup 13}Cα–{sup 13}Cβ spin-pairs that are present for many residue types. The labeling approach described here should thus be attractive for studies of exchanging systems using {sup 13}Cα spin probes.

  20. Development of Bi-phase sodium-oxygen-hydrogen chemical equilibrium calculation program (BISHOP) using Gibbs free energy minimization method

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Yasushi [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-08-01

    In order to analyze the reaction heat and compounds due to sodium combustion, the multiphase chemical equilibrium calculation program for chemical reaction among sodium, oxygen and hydrogen is developed in this study. The developed numerical program is named BISHOP; which denotes Bi-Phase, Sodium - Oxygen - Hydrogen, Chemical Equilibrium Calculation Program'. Gibbs free energy minimization method is used because of the special merits that easily add and change chemical species, and generally deal many thermochemical reaction systems in addition to constant temperature and pressure one. Three new methods are developed for solving multi-phase sodium reaction system in this study. One is to construct equation system by simplifying phase, and the other is to expand the Gibbs free energy minimization method into multi-phase system, and the last is to establish the effective searching method for the minimum value. Chemical compounds by the combustion of sodium in the air are calculated using BISHOP. The Calculated temperature and moisture conditions where sodium-oxide and hydroxide are formed qualitatively agree with the experiments. Deformation of sodium hydride is calculated by the program. The estimated result of the relationship between the deformation temperature and pressure closely agree with the well known experimental equation of Roy and Rodgers. It is concluded that BISHOP can be used for evaluated the combustion and deformation behaviors of sodium and its compounds. Hydrogen formation condition of the dump-tank room at the sodium leak event of FBR is quantitatively evaluated by BISHOP. It can be concluded that to keep the temperature of dump-tank room lower is effective method to suppress the formation of hydrogen. In case of choosing the lower inflammability limit of 4.1 mol% as the hydrogen concentration criterion, formation reaction of sodium hydride from sodium and hydrogen is facilitated below the room temperature of 800 K, and concentration of

  1. Development of Bi-phase sodium-oxygen-hydrogen chemical equilibrium calculation program (BISHOP) using Gibbs free energy minimization method

    International Nuclear Information System (INIS)

    In order to analyze the reaction heat and compounds due to sodium combustion, the multiphase chemical equilibrium calculation program for chemical reaction among sodium, oxygen and hydrogen is developed in this study. The developed numerical program is named BISHOP; which denotes Bi-Phase, Sodium - Oxygen - Hydrogen, Chemical Equilibrium Calculation Program'. Gibbs free energy minimization method is used because of the special merits that easily add and change chemical species, and generally deal many thermochemical reaction systems in addition to constant temperature and pressure one. Three new methods are developed for solving multi-phase sodium reaction system in this study. One is to construct equation system by simplifying phase, and the other is to expand the Gibbs free energy minimization method into multi-phase system, and the last is to establish the effective searching method for the minimum value. Chemical compounds by the combustion of sodium in the air are calculated using BISHOP. The Calculated temperature and moisture conditions where sodium-oxide and hydroxide are formed qualitatively agree with the experiments. Deformation of sodium hydride is calculated by the program. The estimated result of the relationship between the deformation temperature and pressure closely agree with the well known experimental equation of Roy and Rodgers. It is concluded that BISHOP can be used for evaluated the combustion and deformation behaviors of sodium and its compounds. Hydrogen formation condition of the dump-tank room at the sodium leak event of FBR is quantitatively evaluated by BISHOP. It can be concluded that to keep the temperature of dump-tank room lower is effective method to suppress the formation of hydrogen. In case of choosing the lower inflammability limit of 4.1 mol% as the hydrogen concentration criterion, formation reaction of sodium hydride from sodium and hydrogen is facilitated below the room temperature of 800 K, and concentration of hydrogen

  2. Structure analysis and spectroscopic characterization of 2-Fluoro-3-Methylpyridine-5-Boronic Acid with experimental (FT-IR, Raman, NMR and XRD) techniques and quantum chemical calculations

    Science.gov (United States)

    Alver, Özgür; Dikmen, Gökhan

    2016-03-01

    Possible stable conformers, geometrical molecular structures, vibrational properties as well as band assignments, nuclear magnetic shielding tensors of 2-Fluoro-3-Methylpyridine-5-Boronic Acid (2F3MP5BA) were studied experimentally and theoretically using FT-IR, Raman, (CP/MAS) NMR and XRD spectroscopic methods. FT-IR and Raman spectra were evaluated in the region of 3500-400 cm-1, and 3200-400 cm-1, respectively. The optimized geometric structures, vibrational wavenumbers and nuclear magnetic shielding tensors were examined using Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-311++G(d, p) basis set. 1H, 13C NMR chemical shifts were calculated using the gauge invariant atomic orbital (GIAO) method. 1H, 13C, APT and HETCOR NMR experiments of title molecule were carried out in DMSO solution. 13C CP/MAS NMR measurement was done with 4 mm zirconium rotor and glycine was used as an external standard. Single crystal of 2F3MP5BA was also prepared for XRD measurements. Assignments of vibrational wavenumbers were also strengthened by calculating the total energy distribution (TED) values using scaled quantum mechanical (SQM) method.

  3. Spectroscopic [FT-IR and FT-Raman] and molecular modeling (MM) study of benzene sulfonamide molecule using quantum chemical calculations

    Science.gov (United States)

    Vinod, K. S.; Periandy, S.; Govindarajan, M.

    2016-07-01

    The spectroscopic and molecular modeling (MM) study includes, FT-IR, FT-Raman and 13C NMR and 1H NMR spectra of the Benzene sulfonamide were recorded for the analysis. The observed experimental and theoretical frequencies (IR and Raman) were assigned according to their distinctive region. The present study of this title molecule have been carried out by hybrid computational calculations of HF and DFT (B3LYP) methods with 6-311+G(d,p) and 6-311++G(d,p) basis sets and the corresponding results are tabulated. The structural modifications of the compound due to the substitutions of NH2 and SO2 were investigated. The minimum energy conformers of the compound were studied using conformational analysis. The alternations of the vibrational pattern of the base structure related to the substitutions were analyzed. The thermodynamic parameters (such as zero-point vibrational energy, thermal energy, specific heat capacity, rotational constants, entropy, and dipole moment) of Benzene sulfonamide have been calculated. The donor acceptor interactions of the compound and the corresponding UV transitions are found out using NBO analysis. The NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts related to TMS were compared. A quantum computational study on the electronic and optical properties absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by HF and DFT methods. The energy gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand group. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase and

  4. The CH...O hydrogen bonds in biodegradable polyhydroxyalkanoate studied by Raman and infrared spectroscopy and quantum chemical calculation

    Czech Academy of Sciences Publication Activity Database

    Sato, H.; Dybal, Jiří; Murakami, R.; Hirose, F.; Senda, K.; Noda, I.

    Gold Coast : Queensland University of Technology, 2004, 051/1-051/2. ISBN 0-643-09122-X. [International Conference on Raman Spectroscopy. Gold Coast (AU), 08.08.2004-13.08.2004] R&D Projects: GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : CH...O interactions * infrared spectroscopy * quantum chemical calculation Subject RIV: CD - Macromolecular Chemistry

  5. Chemical reaction calculation simulation of redox behavior of metal ions and the like in the nitric acid solution

    International Nuclear Information System (INIS)

    It is known that corrosion rate of stainless steel in nitric acid solution is affected by the valence change of oxidizing metallic ions. In this study, we conducted redox reaction analyses using chemical reaction calculation model to clarify the mechanism of valence change. We obtained that the oxidization of metallic ions in the solution is not only caused by nitric acid but also nitrogen oxides. (author)

  6. Calculation of Propulsive Nozzle Flowfields in Multidiffusing Chemically Reacting Environments. Ph.D. Thesis - Purdue Univ.

    Science.gov (United States)

    Kacynski, Kenneth John

    1994-01-01

    An advanced engineering model has been developed to aid in the analysis and design of hydrogen/oxygen chemical rocket engines. The complete multispecies, chemically reacting and multidiffusing Navier-Stokes equations are modelled, including the Soret thermal diffusion and the Dufour energy transfer terms. In addition to the spectrum of multispecies aspects developed, the model developed in this study is also conservative in axisymmetric flow for both inviscid and viscous flow environments and the boundary conditions employ a viscous, chemically reacting, reference plane characteristics method. Demonstration cases are presented for a 1030:1 area ratio nozzle, a 25 lbf film cooled nozzle, and a transpiration cooled plug and spool rocket engine. The results indicate that the thrust coefficient predictions of the 1030:1 and the 25 lbf film cooled nozzle are within 0.2 to 0.5 percent, respectively, of experimental measurements when all of the chemical reaction and diffusion terms are considered. Further, the model's predictions agree very well with the heat transfer measurements made in all of the nozzle test cases. The Soret thermal diffusion term is demonstrated to have a significant effect on the predicted mass fraction of hydrogen along the wall of the nozzle in both the laminar flow 1030:1 nozzle and the turbulent flow plug and spool nozzle analysis cases performed. Further, the Soret term was shown to represent an important fraction of the diffusion fluxes occurring in a transpiration cooled rocket engine.

  7. Chemically transferable coarse-grained potentials from conditional reversible work calculations.

    Science.gov (United States)

    Brini, E; van der Vegt, N F A

    2012-10-21

    The representability and transferability of effective pair potentials used in multiscale simulations of soft matter systems is ill understood. In this paper, we study liquid state systems composed of n-alkanes, the coarse-grained (CG) potential of which may be assumed pairwise additive and has been obtained using the conditional reversible work (CRW) method. The CRW method is a free-energy-based coarse-graining procedure, which, by means of performing the coarse graining at pair level, rigorously provides a pair potential that describes the interaction free energy between two mapped atom groups (beads) embedded in their respective chemical environments. The pairwise nature of the interactions combined with their dependence on the chemically bonded environment makes CRW potentials ideally suited in studies of chemical transferability. We report CRW potentials for hexane using a mapping scheme that merges two heavy atoms in one CG bead. It is shown that the model is chemically and thermodynamically transferable to alkanes of different chain lengths in the liquid phase at temperatures between the melting and the boiling point under atmospheric (1 atm) pressure conditions. It is further shown that CRW-CG potentials may be readily obtained from a single simulation of the liquid state using the free energy perturbation method, thereby providing a fast and versatile molecular coarse graining method for aliphatic molecules. PMID:23083154

  8. Thermodynamic calculations for chemical vapor deposition of silicon carbide using ethyltrichlorosilane

    International Nuclear Information System (INIS)

    The computer code SOLGASMIX-PV, which is based on the free energy minimization method, was used to calculate the equilibrium composition of the C2H5SiCl3-H2-Ar system. In the C2H5SiCl3-H2 system, the calculation results showed that β-SiC+C, β-SiC, β-SiC+Si(1), Si(1), β-SiC+Si(s), and Si(s) would be deposited, whereas β-SiC+C and C would be deposited in the C2H5SiCl3-Ar system. By comparing the calculated results with the experimental results from the literature, in the region calculated as β-SiC+C to be deposited, β-SiC+C, β-SiC, or β-SiC+Si(s) was deposited in the experiments. The calculations revealed that the gas mole ratios for CVD were optimum when the (Ar+H2)/C2H5SiCl3 took a value between 1000 and 10000, and the Ar/H2 between 0.43 and 1.5. The deposition temperature was optimum between 1100-1500K. In this region, the Si atoms were most effectively used as source materials, and formed a single phase of β-SiC on the substrate. (author)

  9. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Alizai, Hamza; Nardo, Lorenzo; Karampinos, Dimitrios C.; Joseph, Gabby B.; Yap, Samuel P.; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M. [University of California, San Francisco, Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2012-07-15

    The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Sixty-two women (age 61 {+-} 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P < 0.0001, R values ranging from 0.79 to 0.88). Goutallier grades 0-4 had a fat fraction ranging from 3.5 to 19%. Intra-observer and inter-observer agreement values of 0.83 and 0.81 were calculated for the semi-quantitative grading. Semi-quantitative grading of intramuscular fat and quantitative fat fraction were significantly correlated and both techniques had excellent reproducibility. However, the clinical grading was found to overestimate muscle fat. (orig.)

  10. Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent

    OpenAIRE

    Coman, Daniel; Trubel, Hubert K.; Rycyna, Robert E.; Hyder, Fahmeed

    2009-01-01

    Temperature and pH are two of the most important physiological parameters and are believed to be tightly regulated because they are intricately related to energy metabolism in living organisms. Temperature and/or pH data in mammalian brain are scarce, however, mainly due to lack of precise and non-invasive methods. At 11.7T, we demonstrate that a thulium-based macrocyclic complex infused through the blood stream can be used to obtain temperature and pH maps of rat brain in vivo by 1H chemical...

  11. Comparison of trajectory models in calculations of N2-broadened half-widths and N2-induced line shifts for the rotational band of H216O and comparison with measurements

    International Nuclear Information System (INIS)

    In this work, Complex Robert-Bonamy calculations of half-widths and line shifts were done for N2-broadening of water for 1639 transitions in the rotational band using two models for the trajectories. The first is a model correct to second order in time, the Robert-Bonamy parabolic approximation. The second is the solution of Hamilton's equations. Both models use the isotropic part of the atom-atom potential to determine the trajectories. The present calculations used an intermolecular potential expanded to 20th order to assure the convergence of the half-widths and line shifts. The aim of the study is to assess if the difference in the half-widths and line shifts determined from the two trajectory models is greater than the accuracy requirements of the spectroscopic and remote sensing communities. The results of the calculations are compared with measurements of the half-widths and line shifts. It is shown that the effects of the trajectory model greatly exceed the needs of current remote sensing measurements and that line shape parameters calculated using trajectories determined by solving Hamilton's equations agree better with measurement.

  12. Large-scale quantum mechanical scattering calculations for molecular energy transfer and chemical reactions

    International Nuclear Information System (INIS)

    The authors discuss two projects involving quantal collision theory calculations on supercomputers. In the first project the authors are considering HF-HF collisions and calculating rotational energy transfer for collisions of rigid molecules and vibrational-to-vibrational (V-V) energy transfer for collisions including all degrees of freedom. They examined several potential energy surfaces, and they parametrized a new one that should be more accurate for the cross correlation of the forces. For rotational energy transfer they also compared the results to classical trajectory calculations. The quantal calculations were carried out by integrating the close coupling equations with scattering boundary conditions using an extensively vectorized R matrix propagation code on the Control Data Corporation Cyber 205 computer. In the second project they are considering atom-diatom reactive collisions for low initial rotational states and both the ground and first excited vibrational state. The three arrangement channels (A =BC, AB+C, and AC+B) are coupled by the Fock scheme, and the reactive amplitude density (obtained by operating on the initial state with the reactance operator or the total wave function with the interaction potential) is expanded in a square-integrable basis set. This leads to a large system of coupled algebraic equations which are constructed and solved using a large-memory Cray-2 computer. Variational improvements have been tested successfully for nonreactive collisions and will soon be implemented for reactive collisions

  13. A Steady-State Approximation to the Two-Dimensional Master Equation for Chemical Kinetics Calculations.

    Science.gov (United States)

    Nguyen, Thanh Lam; Stanton, John F

    2015-07-16

    In the field of chemical kinetics, the solution of a two-dimensional master equation that depends explicitly on both total internal energy (E) and total angular momentum (J) is a challenging problem. In this work, a weak-E/fixed-J collisional model (i.e., weak-collisional internal energy relaxation/free-collisional angular momentum relaxation) is used along with the steady-state approach to solve the resulting (simplified) two-dimensional (E,J)-grained master equation. The corresponding solutions give thermal rate constants and product branching ratios as functions of both temperature and pressure. We also have developed a program that can be used to predict and analyze experimental chemical kinetics results. This expedient technique, when combined with highly accurate potential energy surfaces, is cable of providing results that may be meaningfully compared to experiments. The reaction of singlet oxygen with methane proceeding through vibrationally excited methanol is used as an illustrative example. PMID:25815602

  14. Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond

    OpenAIRE

    Gagliardi, Laura; Roos, Björn O.

    2005-01-01

    Covalent bonding is commonly described by Lewis's theory1, with an electron pair shared between two atoms constituting one full bond. Beginning with the valence bond description2 for the hydrogen molecule, quantum chemists have further explored the fundamental nature of the chemical bond for atoms throughout the periodic table, confirming that most molecules are indeed held together by one electron pair for each bond. But more complex binding may occur when large numbers of atomic orbitals ca...

  15. Chloromethane Complexation by Cryptophanes : Host-Guest Chemistry Investigated by NMR and Quantum Chemical Calculations

    OpenAIRE

    Takacs, Zoltan

    2012-01-01

    Host–guest complexes are widely investigated because of their importance in many industrial applications. The investigation of their physico–chemical properties helps understanding the inclusion phenomenon. The hosts investigated in this work are cryptophane molecules possessing a hydrophobic cavity. They can encapsulate small organic guests such as halo–methanes (CH2Cl2, CHCl3). The encapsulation process was investigated from both the guest and the host point of view. With the help of Nuclea...

  16. CALCULATING THE CARBON FOOTPRINT OF A CHEMICAL PLANT: A CASE STUDY OF AKZONOBEL

    OpenAIRE

    MICHAEL STEIN; ANSHUMAN KHARE

    2009-01-01

    Reduction of greenhouse gas emissions is one of the key requirements for sustainable production and consumption, but while the Canadian chemical industry has been very successful in reducing emissions to water and air, and while non-CO2 greenhouse gas emissions have been minimised as well, reduction of CO2 emissions has been less successful. The industry itself forecasts that further reduction of CO2 emissions will be minimal. On the other hand concerns about global warming are increasing, wh...

  17. Chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core-collapse calculations

    Science.gov (United States)

    Marchand, P.; Masson, J.; Chabrier, G.; Hennebelle, P.; Commerçon, B.; Vaytet, N.

    2016-07-01

    We develop a detailed chemical network relevant to calculate the conditions that are characteristic of prestellar core collapse. We solve the system of time-dependent differential equations to calculate the equilibrium abundances of molecules and dust grains, with a size distribution given by size-bins for these latter. These abundances are used to compute the different non-ideal magneto-hydrodynamics resistivities (ambipolar, Ohmic and Hall), needed to carry out simulations of protostellar collapse. For the first time in this context, we take into account the evaporation of the grains, the thermal ionisation of potassium, sodium, and hydrogen at high temperature, and the thermionic emission of grains in the chemical network, and we explore the impact of various cosmic ray ionisation rates. All these processes significantly affect the non-ideal magneto-hydrodynamics resistivities, which will modify the dynamics of the collapse. Ambipolar diffusion and Hall effect dominate at low densities, up to nH = 1012 cm-3, after which Ohmic diffusion takes over. We find that the time-scale needed to reach chemical equilibrium is always shorter than the typical dynamical (free fall) one. This allows us to build a large, multi-dimensional multi-species equilibrium abundance table over a large temperature, density and ionisation rate ranges. This table, which we make accessible to the community, is used during first and second prestellar core collapse calculations to compute the non-ideal magneto-hydrodynamics resistivities, yielding a consistent dynamical-chemical description of this process. The multi-dimensional multi-species equilibrium abundance table and a copy of the code are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A18

  18. Correlations of the chemical shift on fasly rotating biological solids by means of NMR spectroscopy; Korrelationen der chemischen Verschiebung an schnell rotierenden biologischen Festkoerpern mittels NMR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Christian

    2010-04-27

    The basic aim of the thesis was the development and improvement of homo- and heteronuclear feedback sequences for the generation of correlation spectra of the chemical shift. In a first step the possibility of the acquisition of {sup 13}C-{sup 13} correlation spectra of the chemical shift by means of inversion pulses with low RF power factor was studied. Furthermore it was shown that broad-band phase-modulated inversion and universal rotational pulses can be constructed by means of global optimization procedures like the genetic algorithms under regardment of the available RF field strength. By inversion, universal rotational, and 360 pulses as starting values of the optimization efficient homonuclear CN{sub n}{sup {nu}} and RN{sub n}{sup {nu}} mixing sequences as well as heteronuclear RN{sub n}{sup {nu}{sub s},{nu}{sub k}} feedback sequences were generated. The satisfactory power of the numerically optimized sequences was shown by means of the simulation as well by means of correlation experiments of the chemical shift of L-histidine, L-arginine, and the (CUG){sub 97}-RNA. This thesis deals furthermore with the possibility to acquire simultaneously different signals with several receivers. By means of numerically optimized RN{sub n}{sup {nu}{sub s},{nu}{sub k}} pulse sequences both {sup 15}N-{sup 13}C and {sup 13}C-{sup 15}N correlation spectra were simultaneously generated. Furthermore it could be shown that the simultaneous acquisition of 3D-{sup 15}N-{sup 13}C-{sup 13}C and {sup 13}C-{sup 15}N-({sup 1}H)-{sup 1}H correlation spectra is possible. By this in only one measurement process resonance assignments can be met and studies of the global folding performed. A further application of several receivers is the simultaneous acquisition of CHHC, NHHN, NHHC, as well as CHHN spectra. By such experiments it is possible to characterize the hydrogen-bonding pattern and the glycosidic torsion angle {sup {chi}} in RNA. This was demonstrated by means of the (CUG){sub 97

  19. Quantum Chemical Calculations and Experimental Studies on 2,3-Diphenyl-tetrazole-5-thione

    Institute of Scientific and Technical Information of China (English)

    赵朴素; 卑凤利; 杨绪杰; 汪信; 陆路德; 建方方; 侯玉霞

    2004-01-01

    2,3-Diphenyl-tetrazole-5-thione has been synthesized and characterized by X-ray diffraction analysis and FTIR spectra. The extended MO calculations by using density functional theory (DFT) and self-consistent field molecular orbital Hartree-Fock theory with 6-31gG* basis set were carried out. The optimized structure and atomic charge distributions have been investi- gated, showing the exocyclic sulfur atom has the biggest negative charge value and this site is the most likely site of protonation and methylation as well as the potential coordination site with metallic ions. The predicted harmonic vibration frequencies are compared to the experimental values. On the basis of vibrational analyses, the thermodynamic properties of this compound at different temperature have been calculated, revealing the correlations between C0p, m, S0m, H0m and temperature.

  20. Quantum chemical and conventional TST calculations of rate constants for the OH + alkane reaction

    International Nuclear Information System (INIS)

    Reactions of OH with methane, ethane, propane, i-butane, and n-butane have been modeled using ab initio (MP2) and hybrid DFT (BHandHLYP) methods, and the 6-311G(d,p) basis set. Furthermore, single-point calculations at the CCSD(T) level were carried out at the optimized geometries. The rate constants have been calculated using the conventional transition-state theory (CTST). Arrhenius equations are proposed in the temperature range of 250-650 K. Hindered Internal Rotation partition functions calculations were explicitly carried out and included in the total partition functions. These corrections showed to be relevant in the determination of the pre-exponential parameters, although not so important as in the NO3 + alkane reactions [G. Bravo-Perez, J.R. Alvarez-Idaboy, A. Cruz-Torres, M.E. Ruiz, J. Phys. Chem. A 106 (2002) 4645]. The explicit participation of the tunnel effect has been taken into account. The calculated rate coefficients provide a very good agreement with the experimental data. The best agreement for the overall alkane + OH reactions seemed to occur when the BHandHLYP geometries and partition functions are used. For propane and i-butane, in addition to the respective secondary and tertiary H-abstraction channels, the primary one has been considered. These pathways are confirmed to be significant in spite of the large differences in activation energies between primary and secondary or primary and tertiary channels, respectively of propane and i-butane reactions and should not be disregarded

  1. The interplay between transient a-helix formation and side chain rotamer distributions in disordered proteins probed by methyl chemical shifts

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Iesmantavicius, Vytautas; Poulsen, Flemming M

    2011-01-01

    shifts can in principle report the conformations of aliphatic side chains in disordered proteins and in order to examine this two model systems were chosen: the acid denatured state of acyl-CoA binding protein (ACBP) and the intrinsically disordered activation domain of the activator for thyroid hormone...... allow a quantitative analysis of the ensemble of ¿(2)-angles of especially leucine residues in disordered proteins. The changes in the rotamer distributions upon denaturation correlate to the changes upon helix induction by the co-solvent trifluoroethanol, suggesting that the side chain conformers are......The peptide backbones of disordered proteins are routinely characterized by NMR with respect to transient structure and dynamics. Little experimental information is, however, available about the side chain conformations and how structure in the backbone affects the side chains. Methyl chemical...

  2. 1H chemical shift imaging of the brain in guanidino methyltransferase deficiency, a creatine deficiency syndrome; guanidinoacetate accumulation in the gray matter

    International Nuclear Information System (INIS)

    MR spectroscopy results in a mild case of guanidinoacetate methyltransferase (GAMT) deficiency are presented. The approach differs from previous MRS studies in the acquisition of a chemical shift imaging spectral map showing gray and white matter with the corresponding spectra in one overview. MR spectroscopy revealed guanidinoacetate (GAA) in the absence of creatine. New is that GAA signals are more prominent in gray matter than in white. In the prevailing view, that enzyme deficiency is localized in liver and pancreas and that all GAA is transported into the brain from the blood and the cerebrospinal fluid, this would be compatible with a more limited uptake and/or better clearance of GAA from the white matter compared to the grey matter. (orig.)

  3. Molecular Structure and Electronic Properties of Porphyrin-Thiophene-Perylene Using Quantum Chemical Calculation

    OpenAIRE

    Tatiya Chokbunpiam; Patchanita Thamyongkit; Oraphan Saengsawang; Supot Hannongbua

    2010-01-01

    This study aimed to design a new series of compounds consisting of a porphyrin macrocycle linked to a perylene unit via a thiophenic bridge. The structural and electronic properties of the molecules, and the effects of mono- and di-substituents R on C3 and R′ on C4 of the thiophene ring were investigated using a quantum calculation approach. The results from the method validation revealed that using the density functional theory approach at B3LYP/6–31G(d) data set was the optimal one, conside...

  4. Fractional crystallization models for calculating distribution coefficients of chemical elements between magmas and their crystallization products

    International Nuclear Information System (INIS)

    Igneous rock successions can be investigated with respect to their genetic coherence or to the role in fractional crystallization during their generation, respectively, by evaluating element concentration correlations. It is shown that the existence of a linear relation between element concentrations or their logarithms is only a necessary, but not a sufficient condition for fractional crystallization as the dominating factor of graduating element concentrations. The comparison of the slope of such correlation lines with the slope calculated on the basis of the distribution coefficients evaluated by using Schuetze's 18O index reveals whether fractional crystallization is dominant in graduating element concentrations in igneous rocks. Several applications are given. (author)

  5. Chemical shifts of 17O, 183W NMR and state of [ZW10O36]n-heteropolyanions in aqueous solutions

    International Nuclear Information System (INIS)

    By 17O, 183W NMR aqueous solutions of Na- and K-salts of heteropolyanions (HPA) [ZW10O36]n-, where Z = La3+-Er3+, Ce3+, Th4+, U4+, have been studied. HPA in aqueous solution exist as inert in the NMR time scale (1-100 ms) complexes, moreover, coordination sphere of Z is filled with O atoms of oxotungstate ligands, as in crystal state. The character of paramagnetic shifts (LIS) of all HPA atoms has been defined - in O and W atoms nearest to Z in LIS contact contribution prevails, for W-O-W bridge atoms and internal O atom dipole contribution prevails, for the rest atoms the dipole and contact contributions are comparable. The change in chemical shifts in lanthanide series depends not only on magnetic properties of element, but also on structural change in HPA. The width of 17O NMR lines for HPA studied (except HPA containing gadolinium) is determined by quadrupole mechanism of nuclear magnetic relaxation. 24 refs., 2 figs., 3 tabs

  6. Probing structural patterns of ion association and solvation in mixtures of imidazolium ionic liquids with acetonitrile by means of relative (1)H and (13)C NMR chemical shifts.

    Science.gov (United States)

    Marekha, Bogdan A; Kalugin, Oleg N; Bria, Marc; Idrissi, Abdenacer

    2015-09-21

    Mixtures of ionic liquids (ILs) with polar aprotic solvents in different combinations and under different conditions (concentration, temperature etc.) are used widely in electrochemistry. However, little is known about the key intermolecular interactions in such mixtures depending on the nature of the constituents and mixture composition. In order to systematically address the intermolecular interactions, the chemical shift variation of (1)H and (13)C nuclei has been followed in mixtures of imidazolium ILs 1-n-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4), 1-n-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6), 1-n-butyl-3-methylimidazolium trifluoromethanesulfonate (BmimTfO) and 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) with molecular solvent acetonitrile (AN) over the entire composition range at 300 K. The concept of relative chemical shift variation is proposed to assess the observed effects on a unified and unbiased scale. We have found that hydrogen bonds between the imidazolium ring hydrogen atoms and electronegative atoms of anions are stronger in BmimBF4 and BmimTfO ILs than those in BmimTFSI and BmimPF6. Hydrogen atom at position 2 of the imidazolium ring is substantially more sensitive to interionic hydrogen bonding than those at positions 4-5 in the case of BmimTfO and BmimTFSI ILs. These hydrogen bonds are disrupted upon dilution in AN due to ion dissociation which is more pronounced at high dilutions. Specific solvation interactions between AN molecules and IL cations are poorly manifested. PMID:26278514

  7. 31P-MR spectroscopy of all regions of the human heart at 1.5 T with acquisition-weighted chemical shift imaging

    International Nuclear Information System (INIS)

    Aim: Aim of this study was to show whether or not acquisition-weighted chemical shift imaging (AW-CSI) allows the determination of PCr and ATP in the lateral and posterior wall of the human heart at 1.5 T. Methods: 12 healthy volunteers were examined using a conventional chemical shift imaging (CSI) and an AW-CSI. The sequences differed only in the number of repetitions for each point in k space. A hanning function was used as filter function leading to 7 repetitions in the center of the k space and 0 in the corners. Thus, AW-CSI had the same resolution as the CSI sequence. The results for both sequences were analyzed using identically positioned voxels in the septal, anterior, lateral and posterior wall. Results: The determined averaged AW-CSI signal to noise ratios were higher for PCr by a factor of 1.3 and for ATP by 1.4 than those of CSI. The PCr/ATP ratios were higher by a factor of 1.2 - 1.3 and showed a smaller standard deviation in all locations for AW-CSI. The mean PCr/ATP ratios determined by AW-CSI of septal, lateral and posterior wall were almost identical (1.72 - 1.76), while it was higher in the anterior wall (1.9). Conclusions: The reduced contamination in AW-CSI improves the signal to noise ratio and the determination of the PCr/ATP ratio in cardiac 31P spectroscopy compared to CSI with the same resolution. The results in volunteers indicate that AW-CSI renders 31P spectroscopy of the lateral and posterior wall of the human heart feasible for patient studies at 1.5 T. (orig.)

  8. Structure-based predictions of 13C-NMR chemical shifts for a series of 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indoles derivatives using GA-based MLR method

    Science.gov (United States)

    Ghavami, Raouf; Sadeghi, Faridoon; Rasouli, Zolikha; Djannati, Farhad

    2012-12-01

    Experimental values for the 13C NMR chemical shifts (ppm, TMS = 0) at 300 K ranging from 96.28 ppm (C4' of indole derivative 17) to 159.93 ppm (C4' of indole derivative 23) relative to deuteride chloroform (CDCl3, 77.0 ppm) or dimethylsulfoxide (DMSO, 39.50 ppm) as internal reference in CDCl3 or DMSO-d6 solutions have been collected from literature for thirty 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indole derivatives containing different substituted groups. An effective quantitative structure-property relationship (QSPR) models were built using hybrid method combining genetic algorithm (GA) based on stepwise selection multiple linear regression (SWS-MLR) as feature-selection tools and correlation models between each carbon atom of indole derivative and calculated descriptors. Each compound was depicted by molecular structural descriptors that encode constitutional, topological, geometrical, electrostatic, and quantum chemical features. The accuracy of all developed models were confirmed using different types of internal and external procedures and various statistical tests. Furthermore, the domain of applicability for each model which indicates the area of reliable predictions was defined.

  9. Paradigm shift in LUNG SBRT dose calculation associated with Heterogeneity correction; Cambio de paradigma en SBRT pulmonar asociada al calculo de dosis con correccion de heterogeneidad

    Energy Technology Data Exchange (ETDEWEB)

    Zucca Aparicio, D.; Perez Moreno, J. M.; Fernandez Leton, P.; Garcia Ruiz-Zorrilla, J.; Pinto Monedero, M.; Marti Asensjo, J.; Alonso Iracheta, L.

    2015-07-01

    Treatment of lung injury SBRT requires great dosimetric accuracy, the increasing clinical importance of dose calculation heterogeneities introducing algorithms that adequately model the transport of particles narrow beams in media of low density, as with Monte Carlo calculation. (Author)

  10. Actinide solubility in deep groundwaters - estimates for upper limits based on chemical equilibrium calculations

    International Nuclear Information System (INIS)

    A chemical equilibrium model is used to estimate maximum upper concentration limits for some actinides (Th, U, Np, Pu, Am) in groundwaters. Eh/pH diagrams for solubility isopleths, dominant dissolved species and limiting solids are constructed for fixed parameter sets including temperature, thermodynamic database, ionic strength and total concentrations of most important inorganic ligands (carbonate, fluoride, phosphate, sulphate, chloride). In order to assess conservative conditions, a reference water is defined with high ligand content and ionic strength, but without competing cations. In addition, actinide oxides and hydroxides are the only solid phases considered. Recommendations for 'safe' upper actinide solubility limits for deep groundwaters are derived from such diagrams, based on the predicted Eh/pH domain. The model results are validated as far as the scarce experimental data permit. (Auth.)

  11. Lattice dynamics and chemical bonding in Sb2Te3 from first-principles calculations

    International Nuclear Information System (INIS)

    Pressure effects on the lattice dynamics and the chemical bonding of the three-dimensional topological insulator, Sb2Te3, have been studied from a first-principles perspective in its rhombohedral phase. Where it is possible to compare, theory agrees with most of the measured phonon dispersions. We find that the inclusion of relativistic effects, in terms of the spin-orbit interaction, affects the vibrational features to some extend and creates large fluctuations on phonon density of state in high frequency zone. By investigations of structure and electronic structure, we analyze in detail the semiconductor to metal transition at ∼2 GPa followed by an electronic topological transition at a pressure of ∼4.25 GPa

  12. Chemical composition data and calculated aquifer temperature for selected wells and springs of Honey Lake Valley, California

    Science.gov (United States)

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1976-01-01

    Major element, minor element, and gas composition data are tabulated for 15 springs and wells in Honey Lake Valley, California. Wendel and Amedee hot springs issue Na-S04-C1 waters at boiling or near boiling temperatures; the remaining springs and wells issue Na-HC03 waters at temperatures ranging from 14 to 33 deg C. Gases escaping from the hot springs are principally nitrogen with minor amounts of methane. The geothermometers calculated from the chemical data are also tabulated for each spring. (Woodard-USGS)

  13. The hyperfine structure in the rotational spectra of bromofluoromethane: Lamb-dip technique and quantum-chemical calculations

    OpenAIRE

    Cazzoli, Gabriele; Puzzarini, Cristina; Stopkowicz, Stella; Gauss, Jürgen

    2008-01-01

    Abstract The hyperfine structure in the rotational spectra of six isotopic species of bromofluoromethane, namely CH2{79}BrF, CH2{81}BrF, CDH{79}BrF, CDH{81}BrF, CD2{79}BrF, and CD2{81}BrF, has been investigated using the Lamb-dip technique in the submillimeter-wave frequency range. Measurements as well as assignment procedures have been supported by high-level quantum-chemical calculations of the hyperfine parameters at the coupled-cluster level. For all species, the accuracy of th...

  14. Parameters for the RM1 Quantum Chemical Calculation of Complexes of the Trications of Thulium, Ytterbium and Lutetium.

    Directory of Open Access Journals (Sweden)

    Manoel A M Filho

    Full Text Available The RM1 quantum chemical model for the calculation of complexes of Tm(III, Yb(III and Lu(III is advanced. Subsequently, we tested the models by fully optimizing the geometries of 126 complexes. We then compared the optimized structures with known crystallographic ones from the Cambridge Structural Database. Results indicate that, for thulium complexes, the accuracy in terms of the distances between the lanthanide ion and its directly coordinated atoms is about 2%. Corresponding results for ytterbium and lutetium are both 3%, levels of accuracy useful for the design of lanthanide complexes, targeting their countless applications.

  15. Parameters for the RM1 Quantum Chemical Calculation of Complexes of the Trications of Thulium, Ytterbium and Lutetium.

    Science.gov (United States)

    Filho, Manoel A M; Dutra, José Diogo L; Rocha, Gerd B; Simas, Alfredo M; Freire, Ricardo O

    2016-01-01

    The RM1 quantum chemical model for the calculation of complexes of Tm(III), Yb(III) and Lu(III) is advanced. Subsequently, we tested the models by fully optimizing the geometries of 126 complexes. We then compared the optimized structures with known crystallographic ones from the Cambridge Structural Database. Results indicate that, for thulium complexes, the accuracy in terms of the distances between the lanthanide ion and its directly coordinated atoms is about 2%. Corresponding results for ytterbium and lutetium are both 3%, levels of accuracy useful for the design of lanthanide complexes, targeting their countless applications. PMID:27223475

  16. Trans Hoogsteen/sugar edge base pairing in RNA. Structures, energies, and stabilities from quantum chemical calculations

    Czech Academy of Sciences Publication Activity Database

    Mládek, Arnošt; Sharma, P.; Mitra, A.; Bhattacharyya, D.; Šponer, Jiří; Šponer, Judit E.

    2009-01-01

    Roč. 113, č. 6 (2009), s. 1743-1755. ISSN 1520-6106 R&D Projects: GA AV ČR(CZ) IAA400550701; GA AV ČR(CZ) IAA400040802; GA AV ČR(CZ) 1QS500040581; GA MŠk(CZ) LC06030 Grant ostatní: GA MŠk(CZ) LC512 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z40550506 Keywords : quantum chemical calculations * base pairing * RNA Subject RIV: BO - Biophysics Impact factor: 3.471, year: 2009

  17. In Vivo Anti-Leukemia, Quantum Chemical Calculations and ADMET Investigations of Some Quaternary and Isothiouronium Surfactants

    Directory of Open Access Journals (Sweden)

    Ahmed A. El-Henawy

    2013-04-01

    Full Text Available Anti-leukemia screening of previously prepared isothiouronium and quaternary salts was performed, and some salts exhibited promising activity as anticancer agents. Quantum chemical calculations were utilized to explore the electronic structure and stability of these compounds. Computational studies have been carried out at the PM3 semiempirical molecular orbitals level, to establish the HOMO-LUMO, IP and ESP mapping of these compounds. The ADMET properties were also studied to gain a clear view of the potential oral bioavailability of these compounds. The surface properties calculated included critical micelle concentration (CMC, maximum surface excess (Γmax, minimum surface area (Amin, free energy of micellization (ΔGomic and adsorption (ΔGoads.

  18. The Galactic chemical evolution of oxygen inferred from 3D non-LTE spectral line formation calculations

    CERN Document Server

    Amarsi, A M; Collet, R; Leenaarts, J

    2015-01-01

    We revisit the Galactic chemical evolution of oxygen, addressing the systematic errors inherent in classical determinations of the oxygen abundance that arise from the use of one dimensional hydrostatic (1D) model atmospheres and from the assumption of local thermodynamic equilibrium (LTE). We perform detailed 3D non-LTE radiative transfer calculations for atomic oxygen lines across a grid of 3D hydrodynamic stag- ger model atmospheres for dwarfs and subgiants. We apply our grid of predicted line strengths of the [OI] 630 nm and OI 777 nm lines using accurate stellar parameters from the literature. We infer a steep decay in [O/Fe] for [Fe/H] $\\gtrsim$ -1.0, a plateau [O/Fe] $\\approx$ 0.5 down to [Fe/H] $\\approx$ -2.5 and an increasing trend for [Fe/H] $\\lesssim$ -2.5. Our 3D non-LTE calculations yield overall concordant results from the two oxygen abundance diagnostics.

  19. A quantitative analysis of weak intermolecular interactions & quantum chemical calculations (DFT) of novel chalcone derivatives

    Science.gov (United States)

    Chavda, Bhavin R.; Gandhi, Sahaj A.; Dubey, Rahul P.; Patel, Urmila H.; Barot, Vijay M.

    2016-05-01

    The novel chalcone derivatives have widespread applications in material science and medicinal industries. The density functional theory (DFT) is used to optimized the molecular structure of the three chalcone derivatives (M-I, II, III). The observed discrepancies between the theoretical and experimental (X-ray data) results attributed to different environments of the molecules, the experimental values are of the molecule in solid state there by subjected to the intermolecular forces, like non-bonded hydrogen bond interactions, where as isolated state in gas phase for theoretical studies. The lattice energy of all the molecules have been calculated using PIXELC module in Coulomb -London -Pauli (CLP) package and is partitioned into corresponding coulombic, polarization, dispersion and repulsion contributions. Lattice energy data confirm and strengthen the finding of the X-ray results that the weak but significant intermolecular interactions like C-H…O, Π- Π and C-H… Π plays an important role in the stabilization of crystal packing.

  20. An Approach to Calculate Mineralś Bulk Moduli KS from Chemical Composition and Density ρ

    Science.gov (United States)

    Breuer, S.; Schilling, F. R.; Mueller, B.; Drüppel, K.

    2015-12-01

    The elastic properties of minerals are fundamental parameters for technical and geotechnical applications and an important research topic towards a better understanding of the Eart&hacute;s interior. Published elastic properties, chemical composition, and density data of 86 minerals (total of 258 data including properties of minerals at various p, T conditions) were collected into a database. It was used to test different hypotheses about relationships between these properties (e.g. water content in minerals and their Poisson's ratio). Furthermore, a scheme to model the average elastic properties, i.e. the bulk modulus KS, based on mineral density and composition was developed. Birc&hacute;s law, a linearity between density ρ and wave velocity (e.g. vp.), is frequently used in seismic and seismology to derive density of the Eart&hacute;s interior from seismic velocities. Applying the compiled mineral data contradicts the use of a simple velocity-density relation (e.g. Gardneŕs relation, 1974). The presented model-approach to estimate the mineralś bulk moduli Ks (as Voigt-Reuss-Hill average) is based on the idea of pressure-temperature (p-T) dependent ionś bulk moduli. Using a multi-exponential regression to ascertain the ionś bulk moduli and by applying an exponential scaling with density ρ, their bulk moduli could be modelled. As a result, > 88 % of the 258 bulk moduli data are predicted with an uncertainty of < 20 % compared to published values. Compared to other models (e.g. Anderson et al. 1970 and Anderson & Nafe 1965), the here presented approach to model the bulk moduli only requires the density ρ and chemical composition of the mineral and is not limited to a specific group of minerals, composition, or structure. In addition to this, by using the pressure and temperature dependent density ρ(p, T), it is possible to predict bulk moduli for varying p-T conditions. References:Gardner, G.H.F, Gardner, L.W. and Gregory, A.R. (1974). Geophysics, 39, No. 6

  1. FAF-Drugs3: a web server for compound property calculation and chemical library design.

    Science.gov (United States)

    Lagorce, David; Sperandio, Olivier; Baell, Jonathan B; Miteva, Maria A; Villoutreix, Bruno O

    2015-07-01

    Drug attrition late in preclinical or clinical development is a serious economic problem in the field of drug discovery. These problems can be linked, in part, to the quality of the compound collections used during the hit generation stage and to the selection of compounds undergoing optimization. Here, we present FAF-Drugs3, a web server that can be used for drug discovery and chemical biology projects to help in preparing compound libraries and to assist decision-making during the hit selection/lead optimization phase. Since it was first described in 2006, FAF-Drugs has been significantly modified. The tool now applies an enhanced structure curation procedure, can filter or analyze molecules with user-defined or eight predefined physicochemical filters as well as with several simple ADMET (absorption, distribution, metabolism, excretion and toxicity) rules. In addition, compounds can be filtered using an updated list of 154 hand-curated structural alerts while Pan Assay Interference compounds (PAINS) and other, generally unwanted groups are also investigated. FAF-Drugs3 offers access to user-friendly html result pages and the possibility to download all computed data. The server requires as input an SDF file of the compounds; it is open to all users and can be accessed without registration at http://fafdrugs3.mti.univ-paris-diderot.fr. PMID:25883137

  2. An automated system designed for large scale NMR data deposition and annotation: application to over 600 assigned chemical shift data entries to the BioMagResBank from the Riken Structural Genomics/Proteomics Initiative internal database

    International Nuclear Information System (INIS)

    Biomolecular NMR chemical shift data are key information for the functional analysis of biomolecules and the development of new techniques for NMR studies utilizing chemical shift statistical information. Structural genomics projects are major contributors to the accumulation of protein chemical shift information. The management of the large quantities of NMR data generated by each project in a local database and the transfer of the data to the public databases are still formidable tasks because of the complicated nature of NMR data. Here we report an automated and efficient system developed for the deposition and annotation of a large number of data sets including 1H, 13C and 15N resonance assignments used for the structure determination of proteins. We have demonstrated the feasibility of our system by applying it to over 600 entries from the internal database generated by the RIKEN Structural Genomics/Proteomics Initiative (RSGI) to the public database, BioMagResBank (BMRB). We have assessed the quality of the deposited chemical shifts by comparing them with those predicted from the PDB coordinate entry for the corresponding protein. The same comparison for other matched BMRB/PDB entries deposited from 2001–2011 has been carried out and the results suggest that the RSGI entries greatly improved the quality of the BMRB database. Since the entries include chemical shifts acquired under strikingly similar experimental conditions, these NMR data can be expected to be a promising resource to improve current technologies as well as to develop new NMR methods for protein studies.

  3. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table.

    Science.gov (United States)

    Aquilante, Francesco; Autschbach, Jochen; Carlson, Rebecca K; Chibotaru, Liviu F; Delcey, Mickaël G; De Vico, Luca; Fdez Galván, Ignacio; Ferré, Nicolas; Frutos, Luis Manuel; Gagliardi, Laura; Garavelli, Marco; Giussani, Angelo; Hoyer, Chad E; Li Manni, Giovanni; Lischka, Hans; Ma, Dongxia; Malmqvist, Per Åke; Müller, Thomas; Nenov, Artur; Olivucci, Massimo; Pedersen, Thomas Bondo; Peng, Daoling; Plasser, Felix; Pritchard, Ben; Reiher, Markus; Rivalta, Ivan; Schapiro, Igor; Segarra-Martí, Javier; Stenrup, Michael; Truhlar, Donald G; Ungur, Liviu; Valentini, Alessio; Vancoillie, Steven; Veryazov, Valera; Vysotskiy, Victor P; Weingart, Oliver; Zapata, Felipe; Lindh, Roland

    2016-02-15

    In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization. PMID:26561362

  4. NMR structure calculation for all small molecule ligands and non-standard residues from the PDB Chemical Component Dictionary.

    Science.gov (United States)

    Yilmaz, Emel Maden; Güntert, Peter

    2015-09-01

    An algorithm, CYLIB, is presented for converting molecular topology descriptions from the PDB Chemical Component Dictionary into CYANA residue library entries. The CYANA structure calculation algorithm uses torsion angle molecular dynamics for the efficient computation of three-dimensional structures from NMR-derived restraints. For this, the molecules have to be represented in torsion angle space with rotations around covalent single bonds as the only degrees of freedom. The molecule must be given a tree structure of torsion angles connecting rigid units composed of one or several atoms with fixed relative positions. Setting up CYANA residue library entries therefore involves, besides straightforward format conversion, the non-trivial step of defining a suitable tree structure of torsion angles, and to re-order the atoms in a way that is compatible with this tree structure. This can be done manually for small numbers of ligands but the process is time-consuming and error-prone. An automated method is necessary in order to handle the large number of different potential ligand molecules to be studied in drug design projects. Here, we present an algorithm for this purpose, and show that CYANA structure calculations can be performed with almost all small molecule ligands and non-standard amino acid residues in the PDB Chemical Component Dictionary. PMID:26123317

  5. NMR structure calculation for all small molecule ligands and non-standard residues from the PDB Chemical Component Dictionary

    International Nuclear Information System (INIS)

    An algorithm, CYLIB, is presented for converting molecular topology descriptions from the PDB Chemical Component Dictionary into CYANA residue library entries. The CYANA structure calculation algorithm uses torsion angle molecular dynamics for the efficient computation of three-dimensional structures from NMR-derived restraints. For this, the molecules have to be represented in torsion angle space with rotations around covalent single bonds as the only degrees of freedom. The molecule must be given a tree structure of torsion angles connecting rigid units composed of one or several atoms with fixed relative positions. Setting up CYANA residue library entries therefore involves, besides straightforward format conversion, the non-trivial step of defining a suitable tree structure of torsion angles, and to re-order the atoms in a way that is compatible with this tree structure. This can be done manually for small numbers of ligands but the process is time-consuming and error-prone. An automated method is necessary in order to handle the large number of different potential ligand molecules to be studied in drug design projects. Here, we present an algorithm for this purpose, and show that CYANA structure calculations can be performed with almost all small molecule ligands and non-standard amino acid residues in the PDB Chemical Component Dictionary

  6. NMR structure calculation for all small molecule ligands and non-standard residues from the PDB Chemical Component Dictionary

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Emel Maden; Güntert, Peter, E-mail: guentert@em.uni-frankfurt.de [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany)

    2015-09-15

    An algorithm, CYLIB, is presented for converting molecular topology descriptions from the PDB Chemical Component Dictionary into CYANA residue library entries. The CYANA structure calculation algorithm uses torsion angle molecular dynamics for the efficient computation of three-dimensional structures from NMR-derived restraints. For this, the molecules have to be represented in torsion angle space with rotations around covalent single bonds as the only degrees of freedom. The molecule must be given a tree structure of torsion angles connecting rigid units composed of one or several atoms with fixed relative positions. Setting up CYANA residue library entries therefore involves, besides straightforward format conversion, the non-trivial step of defining a suitable tree structure of torsion angles, and to re-order the atoms in a way that is compatible with this tree structure. This can be done manually for small numbers of ligands but the process is time-consuming and error-prone. An automated method is necessary in order to handle the large number of different potential ligand molecules to be studied in drug design projects. Here, we present an algorithm for this purpose, and show that CYANA structure calculations can be performed with almost all small molecule ligands and non-standard amino acid residues in the PDB Chemical Component Dictionary.

  7. Dynamics-based selective 2D {sup 1}H/{sup 1}H chemical shift correlation spectroscopy under ultrafast MAS conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of {sup 1}H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of {sup 1}H/{sup 1}H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  8. Calculation of the relative chemical stabilities of proteins as a function of temperature and redox chemistry in a hot spring.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Dick

    Full Text Available Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems.

  9. High resolution spectroscopy and chemical shift imaging of hyperpolarized 129Xe dissolved in the human brain in vivo at 1.5 tesla

    Science.gov (United States)

    Rao, Madhwesha; Stewart, Neil J.; Norquay, Graham; Griffiths, Paul D.

    2016-01-01

    Purpose Upon inhalation, xenon diffuses into the bloodstream and is transported to the brain, where it dissolves in various compartments of the brain. Although up to five chemically distinct peaks have been previously observed in 129Xe rat head spectra, to date only three peaks have been reported in the human head. This study demonstrates high resolution spectroscopy and chemical shift imaging (CSI) of 129Xe dissolved in the human head at 1.5 Tesla. Methods A 129Xe radiofrequency coil was built in‐house and 129Xe gas was polarized using spin‐exchange optical pumping. Following the inhalation of 129Xe gas, NMR spectroscopy was performed with spectral resolution of 0.033 ppm. Two‐dimensional CSI in all three anatomical planes was performed with spectral resolution of 2.1 ppm and voxel size 20 mm × 20 mm. Results Spectra of hyperpolarized 129Xe dissolved in the human head showed five distinct peaks at 188 ppm, 192 ppm, 196 ppm, 200 ppm, and 217 ppm. Assignment of these peaks was consistent with earlier studies. Conclusion High resolution spectroscopy and CSI of hyperpolarized 129Xe dissolved in the human head has been demonstrated. For the first time, five distinct NMR peaks have been observed in 129Xe spectra from the human head in vivo. Magn Reson Med 75:2227–2234, 2016. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27080441

  10. Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints

    Science.gov (United States)

    Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.

    2005-01-01

    A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221

  11. Comprehensive signal assignment of 13C-labeled lignocellulose using multidimensional solution NMR and 13C chemical shift comparison with solid-state NMR.

    Science.gov (United States)

    Komatsu, Takanori; Kikuchi, Jun

    2013-09-17

    A multidimensional solution NMR method has been developed using various pulse programs including HCCH-COSY and (13)C-HSQC-NOESY for the structural characterization of commercially available (13)C labeled lignocellulose from potatoes (Solanum tuberosum L.), chicory (Cichorium intybus), and corn (Zea mays). This new method allowed for 119 of the signals in the (13)C-HSQC spectrum of lignocelluloses to be assigned and was successfully used to characterize the structures of lignocellulose samples from three plants in terms of their xylan and xyloglucan structures, which are the major hemicelluloses in angiosperm. Furthermore, this new method provided greater insight into fine structures of lignin by providing a high resolution to the aromatic signals of the β-aryl ether and resinol moieties, as well as the diastereomeric signals of the β-aryl ether. Finally, the (13)C chemical shifts assigned in this study were compared with those from solid-state NMR and indicated the presence of heterogeneous dynamics in the polysaccharides where rigid cellulose and mobile hemicelluloses moieties existed together. PMID:24010724

  12. Scan time reduction in {sup 23}Na-Magnetic Resonance Imaging using the chemical shift imaging sequence. Evaluation of an iterative reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Weingaertner, Sebastian; Konstandin, Simon; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Wetterling, Friedrich [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Dublin Univ. (Ireland) Trinity Inst. of Neuroscience; Fatar, Marc [Heidelberg Univ., Mannheim (Germany). Dept. of Neurology; Neumaier-Probst, Eva [Heidelberg Univ., Mannheim (Germany). Dept. of Neuroradiology

    2015-07-01

    To evaluate potential scan time reduction in {sup 23}Na-Magnetic Resonance Imaging with the chemical shift imaging sequence (CSI) using undersampled data of high-quality datasets, reconstructed with an iterative constrained reconstruction, compared to reduced resolution or reduced signal-to-noise ratio. CSI {sup 23}Na-images were retrospectively undersampled and reconstructed with a constrained reconstruction scheme. The results were compared to conventional methods of scan time reduction. The constrained reconstruction scheme used a phase constraint and a finite object support, which was extracted from a spatially registered {sup 1}H-image acquired with a double-tuned coil. The methods were evaluated using numerical simulations, phantom images and in-vivo images of a healthy volunteer and a patient who suffered from cerebral ischemic stroke. The constrained reconstruction scheme showed improved image quality compared to a decreased number of averages, images with decreased resolution or circular undersampling with weighted averaging for any undersampling factor. Brain images of a stroke patient, which were reconstructed from three-fold undersampled k-space data, resulted in only minor differences from the original image (normalized root means square error < 12%) and an almost identical delineation of the stroke region (mismatch < 6%). The acquisition of undersampled {sup 23}Na-CSI images enables up to three-fold scan time reduction with improved image quality compared to conventional methods of scan time saving.

  13. Determination of NH proton chemical shift anisotropy with 14N-1H heteronuclear decoupling using ultrafast magic angle spinning solid-state NMR

    Science.gov (United States)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-12-01

    The extraction of chemical shift anisotropy (CSA) tensors of protons either directly bonded to 14N nuclei (I = 1) or lying in their vicinity using rotor-synchronous recoupling pulse sequence is always fraught with difficulty due to simultaneous recoupling of 14N-1H heteronuclear dipolar couplings and the lack of methods to efficiently decouple these interactions. This difficulty mainly arises from the presence of large 14N quadrupolar interactions in comparison to the rf field that can practically be achieved. In the present work it is demonstrated that the application of on-resonance 14N-1H decoupling with rf field strength ∼30 times weaker than the 14N quadrupolar coupling during 1H CSA recoupling under ultrafast MAS (90 kHz) results in CSA lineshapes that are free from any distortions from recoupled 14N-1H interactions. With the use of extensive numerical simulations we have shown the applicability of our proposed method on a naturally abundant L-Histidine HCl·H2O sample.

  14. A chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core collapse calculations

    CERN Document Server

    Marchand, Pierre; Chabrier, Gilles; Hennebelle, Patrick; Commerçon, Benoit; Vaytet, Neil

    2016-01-01

    We develop a detailed chemical network relevant to the conditions characteristic of prestellar core collapse. We solve the system of time-dependent differential equations to calculate the equilibrium abundances of molecules and dust grains, with a size distribution given by size-bins for these latter. These abundances are used to compute the different non-ideal magneto-hydrodynamics resistivities (ambipolar, Ohmic and Hall), needed to carry out simulations of protostellar collapse. For the first time in this context, we take into account the evaporation of the grains, the thermal ionisation of Potassium, Sodium and Hydrogen at high temperature, and the thermionic emission of grains in the chemical network, and we explore the impact of various cosmic ray ionisation rates. All these processes significantly affect the non-ideal magneto-hydrodynamics resistivities, which will modify the dynamics of the collapse. Ambipolar diffusion and Hall effect dominate at low densities, up to n_H = 10^12 cm^-3, after which Oh...

  15. Shifting Attention

    Science.gov (United States)

    Ingram, Jenni

    2014-01-01

    This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…

  16. Detailed calculation of spectral noise caused by measurement errors of Mach-Zehnder interferometer optical path phases in a spatial heterodyne spectrometer with a phase shift scheme.

    Science.gov (United States)

    Takada, Kazumasa; Seino, Mitsuyoshi; Chiba, Akito; Okamoto, Katsunari

    2013-04-20

    We calculate the root mean square (rms) value of the spectral noise caused by optical path phase measurement errors in a spatial heterodyne spectrometer (SHS) featuring a complex Fourier transformation. In our calculation the deviated phases of each Mach-Zehnder interferometer in the in-phase and quadrature states are treated as statistically independent random variables. We show that the rms value is proportional to the rms error of the phase measurement and that the proportionality coefficient is given analytically. The relationship enables us to estimate the potential performance of the SHS such as the sidelobe suppression ratio for a given measurement error. PMID:23669661

  17. First-Principles Calculations on Electronic, Chemical Bonding and Optical Properties of Cubic Hf3N4

    International Nuclear Information System (INIS)

    Electronic, chemical bonding and optical properties of cubic Hf3N4(c-Hf3N4) are calculated using the first-principles based on the density functional theory (DFT). The optimized lattice parameter is in good agreement with the available experimental and calculational values. Band structure shows that c-Hf3N4 has direct band gap. Densities of states (DOS) and charge densities indicate that the bonding between Hf and N is ionic. The optical properties including complex dielectric function, refractive index, extinction coefficient, absorption coefficient, and reflectivity are predicted. From the theory of crystal-field and molecular-orbital bonding, the optical transitions of c-Hf3N4 affected by the electronic structure and molecular orbital are studied. It is found that the absorptive transitions of c-Hf3N4 compound are predominantly composed of the transitions from N T22p valence bands to Hf T2 (dxy, dxz, dyz) conduction bands. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Rotational Spectroscopy and Quantum Chemical Calculations of a Fruit Ester: the Microwave Spectrum of n-BUTYL Acetate

    Science.gov (United States)

    Attig, T.; Sutikdja, L. W.; Kannengiesser, R.; Stahl, W.; Kleiner, I.

    2013-06-01

    In the course of our studies on a number of aliphatic ester molecules and natural substances, the rotational spectrum of n-butyl acetate (CH_{3}-COO-C_4H_9) has been recorded for the first time in the 10-13.5 GHz frequency range, using the MB-FTMW spectrometer in Aachen, with an instrumental uncertainty of a few kHz for unblended lines. Three conformers were observed. The main conformer with C_{1} symmetry has a strong spectrum. The other two conformers have C_{s} and C_{1} symmetries. Their intensities are considerably weaker. The quantum chemical calculations of specific conformers were carried out at the MP2/6-311++G(d,p) level, and for the main conformer different levels of theory were calculated. To analyze the internal rotation of the acetyl methyl groups the codes XIAM (based on the Combined Axis Method) and BELGI (based on the Rho-Axis-Method) were used to model the large amplitude motion. The molecular structures of the three conformers were determined and the values of the experimental rotational constants were compared with those obtained by ab initio methods. For all conformers torsional barriers of approximately 100 cm^{-1} were found. This study is part of a larger project which aims at determining the lowest energy conformers and their structures of organic esters and ketones which are of interest for flavour or perfume synthetic applications. Project partly supported by the PHC PROCOPE 25059YB

  19. The overall phase shift and lens effect calculation using Gaussian boundary conditions and paraxial ray approximation for an end-pumped solid-state laser

    Indian Academy of Sciences (India)

    H Nadgaran; P Elahi

    2006-03-01

    In this work, the inhomogeneous equation of heat conduction was exactly solved by applying inhomogeneous boundary conditions for laser crystals of aspect ratio=1 (aspect ratio=radius of the laser rod/length of the laser rod). We have shown that the paraxial ray approximation leads the solution to be a function of 2, that is, the approximation is equivalent to a situation in which a homogeneous pump source is used. The solution was then used to derive expressions for the overall phase shift, focal length of the thermal lens and the end effect induced curvature of the end face. The expressions were then applied to Nd:YAG laser medium. The result shows a meaningful correction of the order of 0.001 cm to the focal length of Nd:YAG rod for 3 W source power and beam waist of 100 m.

  20. Synthesis, antimicrobial evaluation and theoretical prediction of NMR chemical shifts of thiazole and selenazole derivatives with high antifungal activity against Candida spp.

    Science.gov (United States)

    Łączkowski, Krzysztof Z.; Motylewska, Katarzyna; Baranowska-Łączkowska, Angelika; Biernasiuk, Anna; Misiura, Konrad; Malm, Anna; Fernández, Berta

    2016-03-01

    Synthesis and investigation of antimicrobial activities of novel thiazoles and selenazoles is presented. Their structures were determined using NMR, FAB(+)-MS, HRMS and elemental analyses. To support the experiment, theoretical calculations of the 1H NMR shifts were carried out for representative systems within the DFT B3LYP/6-311++G** approximation which additionally confirmed the structure of investigated compounds. Among the derivatives, compounds 4b, 4h, 4j and 4l had very strong activity against reference strains of Candida albicans ATCC and Candida parapsilosis ATCC 22019 with MIC = 0.49-7.81 μg/ml. In the case of compounds 4b, 4c, 4h - 4j and 4l, the activity was very strong against of Candida spp. isolated from clinical materials, i.e. C. albicans, Candida krusei, Candida inconspicua, Candida famata, Candida lusitaniae, Candida sake, C. parapsilosis and Candida dubliniensis with MIC = 0.24-15.62 μg/ml. The activity of several of these was similar to the activity of commonly used antifungal agent fluconazole. Additionally, compounds 4m - 4s were found to be active against Gram-positive bacteria, both pathogenic staphylococci Staphylococcus aureus ATCC with MIC = 31.25-125 μg/ml and opportunistic bacteria, such as Staphylococcus epidermidis ATCC 12228 and Micrococcus luteus ATCC 10240 with MIC = 7.81-31.25 μg/ml.

  1. SAFT缔合模型关联含水体系的1H NMR%Correlation of 1H NMR Chemical Shift for Aqueous Solutions by Statistical Associating Fluid Theory Association Model

    Institute of Scientific and Technical Information of China (English)

    许波; 李浩然; 王从敏; 许映杰; 韩世钧

    2005-01-01

    1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between SAFT association model and Wilson equation shows that the former is better for dealing with aqueous solutions. Finally, the specialties of both models are discussed.

  2. Determination of the Tautomeric Equilibria of Pyridoyl Benzoyl -Diketones in the Liquid and Solid State through the use of Deuterium Isotope Effects on 1H and 13C NMR Chemical Shifts and Spin Coupling Constants

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Borisov, Eugeny V.; Lindon, John C.

    2015-01-01

    The tautomeric equilibria for 2-pyridoyl-, 3-pyridoyl-, and 4-pyridoyl-benzoyl methane have been investigated using deuterium isotope effects on 1H and 13C chemical shifts both in the liquid and the solid state. Equilibria are established both in the liquid and the solid state. In addition, in th...

  3. Detection of fat in lipomatous tumors of the myometrium by means of computed tomography and chemical shift magnetic resonance imaging; Deteccion de grasa en tumores lipomatosos del miometrio mediante TC y RM con tecnica de Desplazamiento Quimico

    Energy Technology Data Exchange (ETDEWEB)

    Costa, S.; Marti-Bonmati, L.; Delgado, F.; Ripolles, T. [Hospital Universitario Doctor Peset. Valencia (Spain)

    2000-07-01

    Lipomatous tumors of the myometrium are rare lesions composed of varying amounts of mature fatty tissue. Our objective was to assess the computed tomography (CT) and magnetic resonance MR findings associated with these tumors and determine the utility of the chemical shift imaging technique in the detection of fact within these focal uterine masses. Lipomatous focal uterine lesions were detected in three women by means of ultrasound. The patients underwent CT and MR using the chemical shift imaging technique and in-phase and opposed phase T1-weighted gradient-echo images. Qualitative and quantitative analyses of the results were carried out, based on the attenuations and relations of signal intensity. The tumors were hypoattenuated in CT seans and hyperintense in T1-weighted images, showing a decreased signal in opposed phase T1-weighted images when compared with in-phase images. The percentage change (between 2% and 3%) is probably proportional to the differing proportions of fact and muscle elements present in these lipoleiomyomas. Lipomatous tumors of the myometrium are uterine lesions with a varying proportion of fact. Their fat composition can be detected by CT and MR. The chemical shift imaging technique reveals the variations in the proportions of fat in these tumors. Since the presence of fat within uterine lesions is virtually diagnostic of the myometrial lipomatous tumor, the chemical shift imaging technique contributes to the characterization of these lesions. (Author) 11 refs.

  4. Electronic structures of TiO2-TCNE, -TCNQ, and -2,6-TCNAQ surface complexes studied by ionization potential measurements and DFT calculations: Mechanism of the shift of interfacial charge-transfer bands

    Science.gov (United States)

    Fujisawa, Jun-ichi; Hanaya, Minoru

    2016-06-01

    Interfacial charge-transfer (ICT) transitions between inorganic semiconductors and π-conjugated molecules allow direct charge separation without loss of energy. This feature is potentially useful for efficient photovoltaic conversions. Charge-transferred complexes of TiO2 nanoparticles with 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its analogues (TCNX) show strong ICT absorption in the visible region. The ICT band was reported to be significantly red-shifted with extension of the π-conjugated system of TCNX. In order to clarify the mechanism of the red-shift, in this work, we systematically study electronic structures of the TiO2-TCNX surface complexes (TCNX; TCNE, TCNQ, 2,6-TCNAQ) by ionization potential measurements and density functional theory (DFT) calculations.

  5. Calculation of activation energies for transport and recombination in mesoporous TiO2/dye/electrolyte films--taking into account surface charge shifts with temperature.

    Science.gov (United States)

    O'Regan, Brian C; Durrant, James R

    2006-05-01

    Transient photovoltage and photocurrent measurements have been employed to determine the recombination and transport kinetics in operating dye-sensitized photovoltaic cells as a function of potential and temperature. Photocurrent transients have been taken at the open circuit potential, as opposed to the standard measurement at short circuit. Kinetic results have been used to calculate the activation energy as function of the Fermi level position in the TiO(2). In the calculation of activation energies, we have explicitly taken into account the temperature dependence of the offset between the electrolyte redox potential and the conduction band edge. This new method gives activation energies that decrease linearly as the Fermi level position moves toward the conduction band edge, as expected, but not found in previous studies. The results are consistent with the presence of a distribution of traps below the TiO(2) conduction band, the detrapping from which limits both the transport and the recombination of electrons. PMID:16640403

  6. Self-consistent Green’s-function technique for bulk and surface impurity calculations: Surface core-level shifts by complete screening

    OpenAIRE

    Aldén, M.; Abrikosov, I. A.; Johansson, B; Rosengaard, N. M.; Skriver, Hans Lomholt

    1994-01-01

    We have implemented an efficient self-consistent Green's-function technique, based on the tight-binding linear-muffin-tin-orbitals method, for calculating the electronic structure and total energy of a substitutional impurity located either in the bulk or at the surface. The technique makes use of the frozen-core and atomic-sphere approximation but, in addition, includes the dipole contribution to the intersphere potential. Within the concept of complete screening, we identify the surface cor...

  7. Conformation and intramolecular hydrogen bonding of 2-chloroacetamide as studied by microwave spectroscopy and quantum chemical calculations.

    Science.gov (United States)

    Møllendal, Harald; Samdal, Svein

    2006-02-16

    The microwave spectrum of 2-chloroacetamide (ClCH2CONH2) has been investigated at room temperature in the 19-80 spectral range. Spectra of the 35ClCH2CONH2 and 37ClCH2CONH2 isotopomers of one conformer, which has a symmetry plane (Cs symmetry), were assigned. The amide group is planar, and an intramolecular hydrogen bond is formed between the chlorine atom and the nearest hydrogen atom of the amide group. The ground vibrational state, six vibrationally excited states of the torsional vibration about the CC bond, as well as the first excited state of the lowest bending mode were assigned for the 35ClCH2CONH2 isotopomer, whereas the ground vibrational state of 37ClCH2CONH2 was assigned. The CC torsional fundamental vibration has a frequency of 62(10) cm(-1), and the bending vibration has a frequency of 204(30) cm(-1). The rotational constants of the ground and of the six excited states of the CC torsion were fitted to the potential function Vz = 16.1( + 2.3) cm(-1), where z is a dimensionless parameter. This function indicates that the equilibrium conformation has Cs symmetry. Rough values of the chlorine nuclear quadrupole coupling constants were derived as chi(aa) = -47.62(52) and chi(bb) = 8.22(66) MHz for the 35Cl nucleus and chi(aa) = -34.6(10) and chi(bb) = 6.2(11) MHz for the 37Cl nucleus. Ab initio and density functional theory quantum chemical calculations have been performed at several levels of theory to evaluate the equilibrium geometry of this compound. The density functional theory calculations at the B3LYP/6-311++G(3df,2pd) and B3LYP/cc-pVTZ levels of theory as well as ab initio calculations at the MP2(F)/cc-pVTZ level predict correct lowest-energy conformation for the molecule, whereas the ab initio calculations at the QCISD(FC)/6-311G(d) and MP2(F)/6-311++G(d,p) levels predict an incorrect equilibrium conformation. PMID:16466249

  8. 13C chemical shift anisotropies for carbonate ions in cement minerals and the use of 13C, 27Al and 29Si MAS NMR in studies of Portland cement including limestone additions

    International Nuclear Information System (INIS)

    13C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed 13C MAS or 13C(1H) CP/MAS NMR spectra (9.4 T or 14.1 T) for 13C in natural abundance. The variation in the 13C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in 13C MAS NMR spectra. However, it is shown that by combining 13C MAS and 13C(1H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends 29Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in 27Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •13C chemical shift anisotropies for inorganic carbonates from 13C MAS NMR. •Narrow 13C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by 13C MAS and 13C(1H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase

  9. Chemical Bonding of AlH3 Hydride by Al-L2,3 Electron Energy-Loss Spectra and First-Principles Calculations

    OpenAIRE

    Kazutaka Ikeda; Shin-Ichi Orimo; Kazuyoshi Tatsumi; Shunsuke Muto

    2012-01-01

    In a previous study, we used transmission electron microscopy and electron energy-loss (EEL) spectroscopy to investigate dehydrogenation of AlH3 particles. In the present study, we systematically examine differences in the chemical bonding states of Al-containing compounds (including AlH3) by comparing their Al-L2,3 EEL spectra. The spectral chemical shift and the fine peak structure of the spectra were consistent with the degree of covalent bonding of Al. This finding will be useful for futu...

  10. Chemical Bonding of AlH3 Hydride by Al-L2,3 Electron Energy-Loss Spectra and First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Kazutaka Ikeda

    2012-03-01

    Full Text Available In a previous study, we used transmission electron microscopy and electron energy-loss (EEL spectroscopy to investigate dehydrogenation of AlH3 particles. In the present study, we systematically examine differences in the chemical bonding states of Al-containing compounds (including AlH3 by comparing their Al-L2,3 EEL spectra. The spectral chemical shift and the fine peak structure of the spectra were consistent with the degree of covalent bonding of Al. This finding will be useful for future nanoscale analysis of AlH3 dehydrogenation toward the cell.

  11. {sup 31}P-MR spectroscopy of all regions of the human heart at 1.5 T with acquisition-weighted chemical shift imaging; P-MR-Spektroskopie aller Wandabschnitte des menschlichen Herzens bei 1,5 T mit akquisitionsgewichteter Chemical-shift-Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Koestler, H.; Beer, M.; Buchner, S.; Sandstede, J.; Pabst, T.; Kenn, W.; Hahn, D. [Wuerzburg Univ. (Germany). Abt. fuer Roentgendiagnostik; Landschuetz, W.; Kienlin, M. von [Wuerzburg Univ. (Germany). Physikalisches Inst.; Neubauer, S. [Dept. of Cardiovascular Medicine, John Radcliffe Hospital, Oxford (United Kingdom)

    2001-12-01

    Aim: Aim of this study was to show whether or not acquisition-weighted chemical shift imaging (AW-CSI) allows the determination of PCr and ATP in the lateral and posterior wall of the human heart at 1.5 T. Methods: 12 healthy volunteers were examined using a conventional chemical shift imaging (CSI) and an AW-CSI. The sequences differed only in the number of repetitions for each point in k space. A hanning function was used as filter function leading to 7 repetitions in the center of the k space and 0 in the corners. Thus, AW-CSI had the same resolution as the CSI sequence. The results for both sequences were analyzed using identically positioned voxels in the septal, anterior, lateral and posterior wall. Results: The determined averaged AW-CSI signal to noise ratios were higher for PCr by a factor of 1.3 and for ATP by 1.4 than those of CSI. The PCr/ATP ratios were higher by a factor of 1.2 - 1.3 and showed a smaller standard deviation in all locations for AW-CSI. The mean PCr/ATP ratios determined by AW-CSI of septal, lateral and posterior wall were almost identical (1.72 - 1.76), while it was higher in the anterior wall (1.9). Conclusions: The reduced contamination in AW-CSI improves the signal to noise ratio and the determination of the PCr/ATP ratio in cardiac {sup 31}P spectroscopy compared to CSI with the same resolution. The results in volunteers indicate that AW-CSI renders {sup 31}P spectroscopy of the lateral and posterior wall of the human heart feasible for patient studies at 1.5 T. (orig.) [German] Ziel: Ziel der Arbeit war es zu untersuchen, ob die akquisitionsgewichtete Chemical-shift-Bildgebung (AW-CSI) die Bestimmung von PCr und ATP in der Seiten- und Hinterwand des menschlichen Herzens an einem klinischen 1,5 T MR-Tomographen erlaubt. Methoden: 12 gesunde Probanden wurden jeweils mit einer chemical shift imaging (CSI) und einer AW-CSI-Sequenz untersucht. Die Sequenzen unterschieden sich lediglich in der Anzahl der Wiederholungen der einzelnen

  12. Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations

    KAUST Repository

    Ott, Lesley E.

    2010-02-18

    A three-dimensional (3-D) cloud-scale chemical transport model that includes a parameterized source of lightning NOx on the basis of observed flash rates has been used to simulate six midlatitude and subtropical thunderstorms observed during four field projects. Production per intracloud (PIC) and cloud-to-ground (PCG) flash is estimated by assuming various values of PIC and PCG for each storm and determining which production scenario yields NOx mixing ratios that compare most favorably with in-cloud aircraft observations. We obtain a mean PCG value of 500 moles NO (7 kg N) per flash. The results of this analysis also suggest that on average, PIC may be nearly equal to PCG, which is contrary to the common assumption that intracloud flashes are significantly less productive of NO than are cloud-to-ground flashes. This study also presents vertical profiles of the mass of lightning NOx after convection based on 3-D cloud-scale model simulations. The results suggest that following convection, a large percentage of lightning NOx remains in the middle and upper troposphere where it originated, while only a small percentage is found near the surface. The results of this work differ from profiles calculated from 2-D cloud-scale model simulations with a simpler lightning parameterization that were peaked near the surface and in the upper troposphere (referred to as a “C-shaped” profile). The new model results (a backward C-shaped profile) suggest that chemical transport models that assume a C-shaped vertical profile of lightning NOx mass may place too much mass near the surface and too little in the middle troposphere.

  13. EQ6 Calculation for Chemical Degradation of Shippingport LWBR (TH/U Oxide) Spent Nuclear Fuel Waste Packages

    International Nuclear Information System (INIS)

    The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management and Operating contractor (CRWMS M and O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Light Water Breeder Reactor (LWBR) (Ref. 1). The Shippingport LWBR SNF has been considered for disposal at the potential Yucca Mountain site. Because of the high content of fissile material in the SNF, the waste package (WP) design requires special consideration of the amount and placement of neutron absorbers and the possible loss of absorbers and SNF materials over geologic time. For some WPs, the outer shell corrosion-resistant material (CRM) and the corrosion-allowance inner shell may breach (Refs. 2 and 3), allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components and neutron absorbers from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing a Shippingport LWBR SNF seed assembly, and high-level waste (HLW) glass canisters arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which criticality control material, suggested for this WP design, will remain in the WP after corrosion/dissolution of the initial WP configuration (such that it can be effective in preventing criticality); (2) The extent to which fissile uranium and fertile thorium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this

  14. Non-covalent interactions in ionic liquid ion pairs and ion pair dimers: a quantum chemical calculation analysis.

    Science.gov (United States)

    Marekha, Bogdan A; Kalugin, Oleg N; Idrissi, Abdenacer

    2015-07-14

    Ionic liquids (ILs) being composed of bulky multiatomic ions reveal a plethora of non-covalent interactions which determine their microscopic structure. In order to establish the main peculiarities of these interactions in an IL-environment, we have performed quantum chemical calculations for a set of representative model molecular clusters. These calculations were coupled with advanced methods of analysis of the electron density distribution, namely, the quantum theory of atoms in molecules (QTAIM) and the non-covalent interaction (NCI; J. Am. Chem. Soc., 2010, 132, 6499) approaches. The former allows for profound quantitative characterization of non-covalent interactions between atoms while the latter gives an overview of spatial extent, delocalization, and relative strength of such interactions. The studied systems consist of 1-butyl-3-methylimidazolium (Bmim(+)) cations and different perfluorinated anions: tetrafluoroborate (BF4(-)), hexafluorophosphate (PF6(-)), trifluoromethanesulfonate (TfO(-)), and bis(trifluoromethanesulfonyl)imide (TFSI(-)). IL ion pairs and ion pair dimers were considered as model structures for the neat ILs and large aggregates. Weak electrostatic hydrogen bonding was found between the anions and the imidazolium ring hydrogen atoms of cations. Weaker but still appreciable hydrogen bonding was also noted for hydrogen atoms adjacent to the imidazolium ring alkyl groups of Bmim(+). The relative strength of the hydrogen bonding is higher in BmimTfO and BmimBF4 ILs than in BmimPF6 and BmimTFSI, whereas BmimTfO and BmimTFSI reveal higher sensitivity of hydrogen bonding at the different hydrogen atoms of the imidazolium ring. PMID:26059822

  15. Ab initio calculations and analysis of chemical bonding in SrTiO3 and SrZrO3 cubic crystals

    Science.gov (United States)

    Evarestov, R. A.; Tupitsyn, I. I.; Bandura, A. V.; Alexandrov, V. E.

    The possibility of the different first-principles methods to describe the chemical bonding in SrTiO3 and SrZrO3 cubic crystals is investigated. The local properties of the electronic structure (atomic charges, bond orders, atomic delocalization indexes, and polarization fractions) were calculated with different methods: traditional Mulliken population analysis in LCAO calculations, two projection techniques in plane-wave (PW) calculations, population analysis based on Wannier-type atomic orbitals, and chemical bonding analysis based on the localized Wannier functions for occupied (valence band) LCAO states. All the techniques considered except the traditional Mulliken analysis demonstrate that the ionicity of chemical bonding in SrZrO3 is larger than in SrTiO3, in agreement with the Zr and Ti electronegativities relation and the relative bandgaps observed.

  16. Calculation of liquid-liquid equilibrium of aqueous two-phase systems using a chemical-theory-based excess Gibbs energy model

    Directory of Open Access Journals (Sweden)

    Pessôa Filho P. A.

    2004-01-01

    Full Text Available Mixtures containing compounds that undergo hydrogen bonding show large deviations from ideal behavior. These deviations can be accounted for through chemical theory, according to which the formation of a hydrogen bond can be treated as a chemical reaction. This chemical equilibrium needs to be taken into account when applying stability criteria and carrying out phase equilibrium calculations. In this work, we illustrate the application of the stability criteria to establish the conditions under which a liquid-phase split may occur and the subsequent calculation of liquid-liquid equilibrium using a chemical-theory-modified Flory-Huggins equation to describe the non ideality of aqueous two-phase systems composed of poly(ethylene glycol and dextran. The model was found to be able to correlate ternary liquid-liquid diagrams reasonably well by simple adjustment of the polymer-polymer binary interaction parameter.

  17. Utility of chemical-shift MR imaging in detecting small amounts of fat in extrahepatic abdominal tumors; Utilidad de la tecnica de desplazamiento quimico den RM para la deteccion de pequenas cantidades de grasa en tumores abdominales extrahepaticos

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.; Falco, J.; Puig, J.; Donoso, L. [Unidad de Diagnostico por Imagen de Alta Tecnologia (UDIAT). Sabadell (Spain)

    1999-07-01

    To determine the utility of the chemical shift technique in magnetic resonance imaging (MRI) to confirm small amounts of fat in extrahepatic intraabdominal tumours. 7 extrahepatic abdominal tumours that are suspected to have fat as seen in the axial computed tomography (TC) are analysed retrospectively. In order to confirm the fat content, the chemical displacement technique with gradient echo sequences (GE) in phase (P) and in opposite phase (OP) was used with MRI 1 T equipment. The tumours corresponded to renal angiomyolipoma (AML) (n=4), intraperitoneal liposarcoma (n=1), retroperitoneal liposarcoma (n=1) and intraabdominal extramedular hematopoiesis (n=1). To confirm the existence of fat in the tumours, we used a quantitative percentage variation parameter of the intensity of the signals (VIS) between the images in P and OP, according to the formula: IS{sub (}p)-IS({sub o}p)x100/IS{sub (}op), where IS is the intensity of the signal. The chemical shift technique showed fat in the seven tumours. Upon visual inspection, all the tumoral areas that were suspected to have fat showed a notable difference in the signal intensity, being hypointense in OP and hyperintense in P. In these areas the average VIS percentage was 170% while in the rest of the tumour the average VIS percentage was 3%. The chemical shift technique with RG sequences can be easily used in MRI equipment and allows us to confirm if a specific abdominal tumour has fat, even if there is only a small quantity. (Author) 13 refs.

  18. Tough Shift

    DEFF Research Database (Denmark)

    Brewer, Robert S.; Verdezoto, Nervo; Holst, Thomas;

    2015-01-01

    people to change their behavior at home. Leveraging prior research on encouraging reductions in residential energy use through game play, we introduce ShareBuddy: a casual mobile game intended to encourage players not only to reduce, but also to shift their electricity use. We conducted two field studies...... integrating real-world resource use into a game....

  19. The use of a hot cyclone for separation of heavy metals during combustion, evaluation by chemical equilibrium calculations

    International Nuclear Information System (INIS)

    This degree-project is a part of a project financed by the European Communities non Nuclear energy program. The aim of the project is to reach a sustainable use of biofuels as energy source. A requirement for sustainable use of biomass fuel in combustion and gasification plants is that the ash produced can be recycled back to the forest and farmlands in a safe and controlled way. Recycling is important because most of the nutrients (Ca, Mg, P, Na and K) are ending up in the ash. However, the ashes also contain heavy metals and organic pollutants that should not be recycled. To solve this problem, a new technique for separation of the heavy metals during combustion is under development. This technique builds on evaporation of heavy metals and particle separation with a hot cyclone. The idea is that the heavy metal will pass the cyclone as gas species while the nutrients will be separated in the cyclone from the flue gas. The heavy metals are then collected in the more efficient cleaning device downstream in the process. In the present study, the technique has been evaluated by chemical equilibrium calculations and the results were compared with some previously performed full-scale experiments. The results show that by this technique a separation of Cd and Pb will be possible. Concerning the elements As, Cu and Cr, it may be possible to separate them to some extent while the element Ni and V will not be separated. At least 60-70% of Na and K and 90% of Ca, Mg and P will be separated in the cyclone 21 refs, 12 figs, 2 tabs

  20. Oxygen 17 NMR in the evaluation of oxygen bounding with central ion using hydrolysis products of niobium, tantalum, arsenic, antimony pentafluorides as an example. Symbasis in the change of 17O and 19F chemical shifts

    International Nuclear Information System (INIS)

    Hydrolysis products of niobium, tantalum, antimony and arsenic pentafluorides in acetonitrile solution were studied by the methods of 17O and 19F NMR. In 17O NMR spectra of niobium and tantalum pentafluorides hydrolysis products resonance signals of oxo-, hydroxo- and aquafluorocomplexes were defined. Considerable shift of 17O NMR resonance signals towards weak field making up about 300 m.p., may indicate a higher covalency (Π-character) of Nb-O bond compared to Ta-O one. Symbasis in the change of chemical shifts in 17O NMR and 19F NMR of the relevant hexafluorides and hydrolysis products was detected implying similarity of chemical bond nature in oxygen and fluorine

  1. Free Energy Minimization Calculation of Complex Chemical Equilibria. Reduction of Silicon Dioxide with Carbon at High Temperature.

    Science.gov (United States)

    Wai, C. M.; Hutchinson, S. G.

    1989-01-01

    Discusses the calculation of free energy in reactions between silicon dioxide and carbon. Describes several computer programs for calculating the free energy minimization and their uses in chemistry classrooms. Lists 16 references. (YP)

  2. GIAO NMR calculations of some novel 8-thio-substituted 1,3,7-trimethylxanthines: comparison of theoretical and experimental H-1 chemical shifts

    Czech Academy of Sciences Publication Activity Database

    Stanchev, Stancho; Mitkov, J.; Georgieva, M.; Zlatkov, A.

    2012-01-01

    Roč. 26, č. 6 (2012), s. 3424-3433. ISSN 1310-2818 Institutional research plan: CEZ:AV0Z40550506 Keywords : H-1 NMR * DFT * GIAO * 8-thiosubstituted 1,3,7-trimethylxanthines Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.622, year: 2012

  3. Xe-129 NMR chemical shift in Xe@C-60 calculated at experimental conditions: Essential role of the relativity, dynamics, and explicit solvent

    Czech Academy of Sciences Publication Activity Database

    Standara, Stanislav; Kulhánek, P.; Marek, R.; Straka, Michal

    2013-01-01

    Roč. 34, č. 22 (2013), s. 1890-1898. ISSN 0192-8651 R&D Projects: GA ČR GA203/09/2037; GA ČR GA13-03978S Grant ostatní: 7th European Community Framework Program(XE) FP7-286154; CEITEC-Central European Institute of Technology (European Regional Development)(XE) CZ.1.05/1.1.00/02.0068; Operational Program Research and Development for Innovations(XE) CZ.1.05/3.2.00/08.0144 Institutional support: RVO:61388963 Keywords : Xe-129 NMR * Xe@C-60 * dynamical averaging * explicit solvent * relativistic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.601, year: 2013

  4. 129Xe NMR of xenon adsorbed on the molecular sieves AlPO 4-11 and SAPO-11. Chemical shift anisotropy related to the asymmetry of the adsorption zones

    Science.gov (United States)

    Springuel-Huet, M. A.; Fraissard, J.

    1989-01-01

    The form of the 129Xe NMR signal of xenon adsorbed at low concentration on the molecular sieves SAPO-11 and AlPO 4-11 corresponds to a highly anisotropic chemical shift which expresses the asymmetry of the channels in which the xenon is located. To the asymmetry of the xenon-wall interaction is added that of the xenon-xenon interaction when the channels are largely filled.

  5. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  6. A Series of Diamagnetic Pyridine Monoimine Rhenium Complexes with Different Degrees of Metal-to-Ligand Charge Transfer: Correlating (13) C NMR Chemical Shifts with Bond Lengths in Redox-Active Ligands.

    Science.gov (United States)

    Sieh, Daniel; Kubiak, Clifford P

    2016-07-18

    A set of pyridine monoimine (PMI) rhenium(I) tricarbonyl chlorido complexes with substituents of different steric and electronic properties was synthesized and fully characterized. Spectroscopic (NMR and IR) and single-crystal X-ray diffraction analyses of these complexes showed that the redox-active PMI ligands are neutral and that the overall electronic structure is little affected by the choices of the substituent at the ligand backbone. One- and two-electron reduction products were prepared from selected starting compounds and could also be characterized by multiple spectroscopic methods and X-ray diffraction. The final product of a one-electron reduction in THF is a diamagnetic metal-metal-bonded dimer after loss of the chlorido ligand. Bond lengths in and NMR chemical shifts of the PMI ligand backbone indicate partial electron transfer to the ligand. Two-electron reduction in THF also leads to the loss of the chlorido ligand and a pentacoordinate complex is obtained. The comparison with reported bond lengths and (13) C NMR chemical shifts of doubly reduced free pyridine monoaldimine ligands indicates that both redox equivalents in the doubly reduced rhenium complex investigated here are located in the PMI ligand. With diamagnetic complexes varying over three formal reduction stages at the PMI ligand we were, for the first time, able to establish correlations of the (13) C NMR chemical shifts with the relevant bond lengths in redox-active ligands over a full redox series. PMID:27319753

  7. Easy and unambiguous sequential assignments of intrinsically disordered proteins by correlating the backbone {sup 15}N or {sup 13}C′ chemical shifts of multiple contiguous residues in highly resolved 3D spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Yuichi; Kulminskaya, Natalia V.; Mulder, Frans A. A., E-mail: fmulder@chem.au.dk [Aarhus University, Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO) (Denmark)

    2015-02-15

    Sequential resonance assignment strategies are typically based on matching one or two chemical shifts of adjacent residues. However, resonance overlap often leads to ambiguity in resonance assignments in particular for intrinsically disordered proteins. We investigated the potential of establishing connectivity through the three-bond couplings between sequentially adjoining backbone carbonyl carbon nuclei, combined with semi-constant time chemical shift evolution, for resonance assignments of small folded and larger unfolded proteins. Extended sequential connectivity strongly lifts chemical shift degeneracy of the backbone nuclei in disordered proteins. We show here that 3D (H)N(COCO)NH and (HN)CO(CO)NH experiments with relaxation-optimized multiple pulse mixing correlate up to seven adjacent backbone amide nitrogen or carbonyl carbon nuclei, respectively, and connections across proline residues are also obtained straightforwardly. Multiple, recurrent long-range correlations with ultra-high resolution allow backbone {sup 1}H{sup N}, {sup 15}N{sup H}, and {sup 13}C′ resonance assignments to be completed from a single pair of 3D experiments.

  8. Improved techniques for outgoing wave variational principle calculations of converged state-to-state transition probabilities for chemical reactions

    Science.gov (United States)

    Mielke, Steven L.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    Improved techniques and well-optimized basis sets are presented for application of the outgoing wave variational principle to calculate converged quantum mechanical reaction probabilities. They are illustrated with calculations for the reactions D + H2 yields HD + H with total angular momentum J = 3 and F + H2 yields HF + H with J = 0 and 3. The optimization involves the choice of distortion potential, the grid for calculating half-integrated Green's functions, the placement, width, and number of primitive distributed Gaussians, and the computationally most efficient partition between dynamically adapted and primitive basis functions. Benchmark calculations with 224-1064 channels are presented.

  9. Shifting densities

    OpenAIRE

    Mille, Matthieu

    2000-01-01

    In this paper, the author adopt a time-geography approach to examine the temporal variation of urban density by analysing spatial load changes at different times of the day at the communal and community level. The evolution of means of transport coupled with the abandon of the notion of direct proximity to the urban dwelling place provide the basis for this new approach to the study of urban densities. The shift towards spatial specialisation within cities has lead to radical changes in the f...

  10. Beyond chemical accuracy: The pseudopotential approximation in diffusion Monte Carlo calculations of the HCP to BCC phase transition in beryllium

    CERN Document Server

    Shulenburger, Luke; Desjarlais, M P

    2015-01-01

    Motivated by the disagreement between recent diffusion Monte Carlo calculations and experiments on the phase transition pressure between the ambient and beta-Sn phases of silicon, we present a study of the HCP to BCC phase transition in beryllium. This lighter element provides an oppor- tunity for directly testing many of the approximations required for calculations on silicon and may suggest a path towards increasing the practical accuracy of diffusion Monte Carlo calculations of solids in general. We demonstrate that the single largest approximation in these calculations is the pseudopotential approximation. After removing this we find excellent agreement with experiment for the ambient HCP phase and results similar to careful calculations using density functional theory for the phase transition pressure.

  11. Relativistic calculation of the beta decay probabilities in the optimized Dirac-Kohn-Sham atom model and a chemical environment effect

    Energy Technology Data Exchange (ETDEWEB)

    Glushkov, Alexander [Odessa University (Ukraine); Russian Academy of Sciences, Troitsk (Russian Federation); Khetselius, Olga; Dubrovskaya, Yuliya [Odessa University (Ukraine); Lovett, Ludmila [UK National Academy of Sciences and Bookdata Co., London (United Kingdom)

    2009-07-01

    New theoretical scheme for calculating the beta decay characteristics and an account for chemical environment effect on the beta decay ones is developed. As method of calculation of the relativistic fields and electron wave functions, the gauge invariant Dirac-Fock and Dirac-Kohn-Sham approaches are used. The results of calculating the decay probabilities for the beta decays: {sup 33}P-{sup 33}S, {sup 35}S-{sup 35}Cl, {sup 63}Ni-{sup 63}Cu, {sup 241}Pu-{sup 241}Am are presented. Comparison of the Fermi function values is carried out for different approximations of an exchange effect account, calculation with using wave functions on the boundary of the charged spherical nucleus and with using squires of the amplitudes of expansion of these functions near zero.

  12. Isotope Shifts and Isomer Shifts in Muonic Atoms

    International Nuclear Information System (INIS)

    Recent results on isotope shifts (142-146,148,150 Nd, 92,95-97 Mo, 50,52-54Cr) and isomer shifts (182,184,186W) are summarized in this paper. First, the merits and disadvantages of the three different isotope shift methods (optical h.f.s. spectra, electronic X-rays and muonic X-rays) are briefly outlined. The sensitivities of model dependence of the observed isotope shifts by these three methods are also introduced and discussed. The main emphasis of the paper is to show and to explain how the muonic isotope shift results may be used to normalize the optical isotope shift results and obtain the specific mass corrections occurring in optical results. The energy shifts of nuclear gamma rays as the result of the dynamic E2 interactions in several deformed nuclei have been precisely measured. The calculated shifts of the centre of gravity of the unresolved magnetic doublet are first applied to the observed shifts. The remaining shifts may be interpreted as the isomer effects, i.e. the effect of charge distribution on the transition energy, A comparison of the isomer effects by the muonic atom method and by the Mössbauer technique is included. (author)

  13. Molecular dynamics and quantum chemical calculation studies on 4,4-dimethyl-3-thiosemicarbazide as corrosion inhibitor in 2.5 M H2SO4

    International Nuclear Information System (INIS)

    Highlights: → This work deals with a study of chemical additives for corrosion inhibition of mild steel in acidic conditions. → The effects of the additive 4,4-dimethyl-3-thiosemicarbazide (DTS) on mild steel were studied by means of electrochemical techniques. → Quantum chemical calculations and molecular dynamic model were performed to characterize the inhibition mechanism. → The calculations provided information that helps in the analysis/interpretation of the experimental work. - Abstract: The inhibition of mild steel corrosion in a 2.5 M H2SO4 solution by 4,4-dimethyl-3-thiosemicarbazide (DTS) was studied at 30 deg. C using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Quantum chemical parameters were calculated for DTS using PM3-SCF method. The molecular dynamic method was performed to simulate the adsorption of the DTS molecules on Fe surface. Results showed that DTS performed excellent as inhibitor for mild steel corrosion in a 2.5 M H2SO4 solution and indicated that the inhibition efficiencies increase with the concentration of inhibitor. Theoretical results indicated that DTS could adsorb on the mild steel surface firmly through heteroatoms.

  14. Calculation of aqueous solubility of crystalline un-ionized organic chemicals and drugs based on structural similarity and physicochemical descriptors.

    Science.gov (United States)

    Raevsky, Oleg A; Grigor'ev, Veniamin Yu; Polianczyk, Daniel E; Raevskaja, Olga E; Dearden, John C

    2014-02-24

    Solubilities of crystalline organic compounds calculated according to AMP (arithmetic mean property) and LoReP (local one-parameter regression) models based on structural and physicochemical similarities are presented. We used data on water solubility of 2615 compounds in un-ionized form measured at 25±5 °C. The calculation results were compared with the equation based on the experimental data for lipophilicity and melting point. According to statistical criteria, the model based on structural and physicochemical similarities showed a better fit with the experimental data. An additional advantage of this model is that it uses only theoretical descriptors, and this provides means for calculating water solubility for both existing and not yet synthesized compounds. PMID:24456022

  15. 化学反应焓变计算的解析%Understanding of the Calculation of Enthalpy Change in Chemical Reaction

    Institute of Scientific and Technical Information of China (English)

    梁营

    2011-01-01

    物理化学概念公式多,理论逻辑性强。化学反应焓变的计算内容繁多、计算思路新颖,如何很好理解其内涵,掌握其计算方法对学好物理化学具有重要作用,对学好其它热力学函数的计算具有指导作用。文章详细讨论了化学反应过程中焓变计算公式的引出,假设的模型和计算公式的误差情况。%There are many concepts and formulas in physical chemistry and its logic in theory is very strong.There are more contents and new calculation train of thought in the calculation of chemical reaction enthalpy.How to understand the contents well and grasp the calculation method is important for learning physical chemistry well,also play a vital role for learning other thermodynamical functions.The derivation,the assumption model and the errors of calculation of enthalpy change in chemical reactions were discussed in detail in the paper.

  16. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhongnan; Kitchin, John R., E-mail: jkitchin@andrew.cmu.edu [Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States); Joshi, Yogesh V.; Raman, Sumathy [Exxon-Mobil Research and Engineering, 1545 Route 22 E St. 1, Annandale, New Jersey 08801 (United States)

    2015-04-14

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V ) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  17. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method

    International Nuclear Information System (INIS)

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V ) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively

  18. Accurate pKa Calculation of the Conjugate Acids of Alkanolamines, Alkaloids and Nucleotide Bases by Quantum Chemical Methods

    NARCIS (Netherlands)

    Gangarapu, S.; Marcelis, A.T.M.; Zuilhof, H.

    2013-01-01

    The pKa of the conjugate acids of alkanolamines, neurotransmitters, alkaloid drugs and nucleotide bases are calculated with density functional methods (B3LYP, M08-HX and M11-L) and ab initio methods (SCS-MP2, G3). Implicit solvent effects are included with a conductor-like polarizable continuum mode

  19. Center Manifold and Lie Symmetry Calculations on a Quasi-chemical Model for Growth-death Kinetics in Food

    OpenAIRE

    DeCoste, Rachelle; Piscitelle, Louis

    2007-01-01

    Food scientists at the U.S. Army's Natick Solider Center have developed a model for the lifecyle of the bacteria Staphylococcus aureus in intermediate moisture bread. In this article, we study this model using dynamical systems and Lie symmetry methods. We calculate center manifolds and Lie symmetries for different cases of parameter values and compare our results to those of the food scientists.

  20. Calculation and Interpretation of the Standard Chemical Exergies of Elements Using the Chemical Reference Species%使用化学参考物质计算和阐明元素的标准化学放射本能

    Institute of Scientific and Technical Information of China (English)

    B(I)LGEN Sel(c)uk

    2009-01-01

    Exergy is the amount of work obtainable when some matter is brought to a state of thermodynamic equilibrium with the common components of the natural surroundings by means of reversible processes, involving interaction only with the above mentioned components of nature. This paper presents standard chemical exergy values for 85 elements. Reference species in the atmosphere (air), dissolved in the hydrosphere (oceans), and contained in the lithosphere (minerals) are used for these calculations. Standard chemical exergy values of elements were calculated from tabulated values obtained for standard conditions (an ambient temperature of 298.15 K and an atmospheric pressure of 0.1 MPa). Very low concentrations of elements in the atmosphere and oceans and the abundance of elements in the Earth's crust are no longer used in determining reference states for chemical elements. Liquid and gas mixtures generally are not useful as reference states. As a result of the work in this paper, a table of the chemical exergy values of many elements in the periodic table under standard conditions was tabulated.

  1. First-principles calculations of bismuth induced changes in the band structure of dilute Ga-V-Bi and In-V-Bi alloys: chemical trends versus experimental data

    Science.gov (United States)

    Polak, M. P.; Scharoch, P.; Kudrawiec, R.

    2015-09-01

    Bi-induced changes in the band structure of Ga-V-Bi and In-V-Bi alloys are calculated within the density functional theory (DFT) for alloys with Bi ≤3.7% and the observed chemical trends are discussed in the context of the virtual crystal approximation (VCA) and the valence band anticrossing (VBAC) model. It is clearly shown that the incorporation of Bi atoms into III-V host modifies both the conduction band (CB) and the valence band (VB). The obtained shifts of bands in GaP1-xBix, GaAs1-xBix, GaSb1-xBix, InP1-xBix, InAs1-xBix, and InSb1-xBix are respectively, 15, -29, -16, -27, -15, and -10 meV/%Bi for CB, 82, 62, 16, 79, 45, and 16 meV/%Bi for VB, and -17, -3, -2, -8, -6, and 14 meV/%Bi for spin-orbit split off band. The Bi-induced reduction of the band gap is very consistent with the available experimental data. The chemical trends observed in our calculations as well as in experimental data are very clear: in a sequence of alloys from III-P-Bi to III-Sb-Bi the Bi-induced changes in the band structure weaken. For dilute GaSb1-xBix and InSb1-xBix alloys the band structure modification, in the first approximation, can be described within the VCA, while for Ga-V-Bi and In-V-Bi alloys with V = As or P another phenomenological approach is needed to predict the Bi-induced changes in their band structure. We have found that a combination of the VCA with the VBAC model, which is widely applied for highly mismatched alloys, is suitable for this purpose. The chemical trends for III-V-Bi alloys observed in our DFT calculations are also exhibited by the coupling parameter {C}BiM, which describes the magnitude of interaction between Bi-induced levels and VB states in the VBAC model. This coupling parameter monotonously decreases along the sequence of alloys from III-P-Bi to III-Sb-Bi.

  2. Simulation of the f—d transitions of lanthanide ions in YPO4 using quantum-chemical calculations

    Science.gov (United States)

    Hu, Liu-Sen; Wen, Jun; Yin, Min; Xia, Shang-Da

    2012-01-01

    We constructed an effective one-electron Hamiltonian by using the 4f/5d energies and eigenvectors obtained from the first-principles calculation with the relativistic self-consistent discrete variational Slater software package (DV-Xα). From the effective Hamiltonian, we obtained the crystal-field and spin-orbit interaction parameters for the 4f and 5d electrons of lanthanide ions (Ce3+, Pr3+, Nd3+ and Eu3+) doped in YPO4, and these parameters were used to calculate the 4fN-4fN-15d transition. Comparison with experiments shows that the obtained parameters are reasonable and the excitation spectra can be well predicted.

  3. Excitons in poly(para phenylene vinylene): a quantum-chemical perspective based on high-level ab initio calculations.

    Science.gov (United States)

    Mewes, Stefanie A; Mewes, Jan-Michael; Dreuw, Andreas; Plasser, Felix

    2016-01-28

    Excitonic effects play a fundamental role in the photophysics of organic semiconductors such as poly(para phenylene vinylene) (PPV). The emergence of these effects is examined for PPV oligomers based on high level ab initio excited-state calculations. The computed many-body wavefunctions are subjected to our recently developed exciton analysis protocols to provide a qualitative and quantitative characterization of excitonic effects. The discussion is started by providing high-level benchmark calculations using the algebraic-diagrammatic construction for the polarization propagator in third order of perturbation theory (ADC(3)). These calculations support the general adequacy of the computationally more efficient ADC(2) method in the case of singly excited states but also reveal the existence of low-energy doubly excited states. In a next step, a series of oligomers with chains of two to eight phenyl rings is studied at the ADC(2) level showing that the confinement effects are dominant for small oligomers, while delocalized exciton bands emerge for larger systems. In the case of the largest oligomer, the first twenty singlet and triplet excited states are computed and a detailed analysis in terms of the Wannier and Frenkel models is presented. The presence of different Wannier bands becomes apparent, showing a general trend that exciton sizes are lowered with increasing quasi-momentum within the bands. PMID:26700493

  4. Effect of the proton-rich environment on pyrazolequinoline chemosensor by UV spectroscopy and quantum-chemical calculations

    International Nuclear Information System (INIS)

    The absorption and fluorescence spectroscopy measurements of three derivatives of pyrazolequinoline chemosensor in protonated environment were examined. The absorption spectroscopy measurements have shown high probability of complexation. Fluorescence quenching of pyrazolequinoline in solution with addition of acidic acid and/or trifluoroacetic acid was observed and the Stern–Volmer quenching constants were calculated: 153, 368 and 89 [L mol−1]. Semi-empirical calculations and optimization of molecular structure of the pyrazolequinoline in vacuum, in water and in a proton-rich environment were performed using Gaussian 09 software package. These studies have shown high probability of intermolecular hydrogen bonds that were formed by the protons with nitrogen atoms being potentially able to interact. The formation of pyrazolequinoline-acid complexes confirm the possibility of proton transfer process. These studies shown that the proton transfer mechanism is strongly dependent on environment properties like solvent parameters: Donor Number and Acceptor Number. The selective interaction of the proton with the molecule seems to be strong. - Highlights: • This paper presents UV spectroscopy of pyrazolequinoline in protonated environment. • Quenching of fluorescence due to proton transfer was observed. • Semi-empirical calculations of the molecule structure are discussed

  5. Influence of Chemical Effect on the Kβ/Kα Intensity Ratios and Kβ Energy Shift of Co, Ni, Cu, and Zn Complexes

    Institute of Scientific and Technical Information of China (English)

    G. Apaydma, V. Ayhkg; Z. Biyiklioglu; E. Tirasoglu; H. Kantekin

    2008-01-01

    Chemical effects on the Kβ/Kα intensity ratios and ΔE energy differences for Co, Ni, Cu, and Zn complexes were investigated. The samples were excited by 59.5 keV γ-rays from a 241 Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. We observed the effects of different ligands on the Kβ/Kα intensity ratios and ΔE energy differences for Co, Ni, Cu, and Zn complexes. We tried to investigate chemical effects on central atoms using the behaviors of different ligands in these complexes. The experimental values of Kβ/Kα were compared with the theoretical and other experimental values of pure Co, Ni, Cu, and Zn.

  6. Hash: a program to accurately predict protein H{sup {alpha}} shifts from neighboring backbone shifts

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Jianyang, E-mail: zengjy@gmail.com [Tsinghua University, Institute for Interdisciplinary Information Sciences (China); Zhou Pei [Duke University Medical Center, Department of Biochemistry (United States); Donald, Bruce Randall [Duke University, Department of Computer Science (United States)

    2013-01-15

    Chemical shifts provide not only peak identities for analyzing nuclear magnetic resonance (NMR) data, but also an important source of conformational information for studying protein structures. Current structural studies requiring H{sup {alpha}} chemical shifts suffer from the following limitations. (1) For large proteins, the H{sup {alpha}} chemical shifts can be difficult to assign using conventional NMR triple-resonance experiments, mainly due to the fast transverse relaxation rate of C{sup {alpha}} that restricts the signal sensitivity. (2) Previous chemical shift prediction approaches either require homologous models with high sequence similarity or rely heavily on accurate backbone and side-chain structural coordinates. When neither sequence homologues nor structural coordinates are available, we must resort to other information to predict H{sup {alpha}} chemical shifts. Predicting accurate H{sup {alpha}} chemical shifts using other obtainable information, such as the chemical shifts of nearby backbone atoms (i.e., adjacent atoms in the sequence), can remedy the above dilemmas, and hence advance NMR-based structural studies of proteins. By specifically exploiting the dependencies on chemical shifts of nearby backbone atoms, we propose a novel machine learning algorithm, called Hash, to predict H{sup {alpha}} chemical shifts. Hash combines a new fragment-based chemical shift search approach with a non-parametric regression model, called the generalized additive model, to effectively solve the prediction problem. We demonstrate that the chemical shifts of nearby backbone atoms provide a reliable source of information for predicting accurate H{sup {alpha}} chemical shifts. Our testing results on different possible combinations of input data indicate that Hash has a wide rage of potential NMR applications in structural and biological studies of proteins.

  7. Enhanced spectral resolution in RNA HCP spectra for measurement of 3JC2'P and 3JC4'P couplings and 31P chemical shift changes upon weak alignment

    International Nuclear Information System (INIS)

    The 'out-and-back' 3D HCP experiment, using gradient- and sensitivity-enhanced detection, provides a convenient method for assignment of the 31P NMR spectra and accurate measurement of the 31P chemical shifts of ribonucleic acids. The 13C resolution in such spectra can be doubled, at the cost of a 50% reduction in sensitivity, by combining 13C evolution during the 13C-31P de- and rephasing periods. The multiple connectivities observable for a given 31P, including correlations to the intranucleotide C5'H2 and C4'H groups, and the C2'H, C3'H and C4'H groups of the preceding nucleotide, permit independent measurements of the 31P shift. The 13C spectrum of these groups is typically crowded for an RNA molecule in isotropic solution and overlap becomes more problematic in media used to achieve partial alignment. However, many of these correlations are resolvable in the combined-evolution HCP spectrum. The difference in 31P chemical shift between isotropic solution and a medium containing liquid crystalline Pf1 provides information on the orientation of phosphate groups. The intensities measured in the 3D HCP spectrum, obtained for an isotropic sample, yield values for the 3JC2'P and 3JC4'P couplings, thereby providing important restraints for the backbone torsion angles ε and β. The experiments are illustrated for a uniformly 13C-enriched, 24-residue stem-loop RNA sequence, and results for the helical stem region show close agreement between observed Δδ(31P) values and those predicted for a model A-form RNA helix when using a uniform 31P CSA tensor. This confirms that Δδ(31P) values can be used directly as restraints in refining nucleic acid structures

  8. Host–guest complexes of mixed glycol-bipyridine cryptands: prediction of ion selectivity by quantum chemical calculations, part V

    OpenAIRE

    Svetlana Begel; Ralph Puchta; Rudi van Eldik

    2013-01-01

    The selectivity of the cryptands [2.2.bpy] and [2.bpy.bpy] for the endohedral complexation of alkali, alkaline-earth and earth metal ions was predicted on the basis of the DFT (B3LYP/LANL2DZp) calculated structures and complex-formation energies. The cavity size in both cryptands lay between that for [2.2.2] and [bpy.bpy.bpy], such that the complexation of K+, Sr2+ and Tl3+ is most favorable. While the [2.2.bpy] is moderately larger, preferring Rb+ complexation and demonstrating equal priorit...

  9. WATEQF; a FORTRAN IV version of WATEQ : a computer program for calculating chemical equilibrium of natural waters

    Science.gov (United States)

    Plummer, L. Niel; Jones, Blair F.; Truesdell, Alfred Hemingway

    1976-01-01

    WATEQF is a FORTRAN IV computer program that models the thermodynamic speciation of inorganic ions and complex species in solution for a given water analysis. The original version (WATEQ) was written in 1973 by A. H. Truesdell and B. F. Jones in Programming Language/one (PL/1.) With but a few exceptions, the thermochemical data, speciation, coefficients, and general calculation procedure of WATEQF is identical to the PL/1 version. This report notes the differences between WATEQF and WATEQ, demonstrates how to set up the input data to execute WATEQF, provides a test case for comparison, and makes available a listing of WATEQF. (Woodard-USGS)

  10. THEORETICAL-ANALYSIS OF THE O(1S) BINDING-ENERGY SHIFTS IN ALKALINE-EARTH OXIDES - CHEMICAL OR ELECTROSTATIC CONTRIBUTIONS

    NARCIS (Netherlands)

    PACCHIONI, G; BAGUS, PS

    1994-01-01

    We report results from ab initio cluster-model calculations on the O(1s) binding energy (BE) in the alkaline-earth oxides, MgO, CaO, SrO, and BaO; all these oxides have a cubic lattice structure. We have obtained values for both the initial- and final-state BE's. A simple point-charge model, where a

  11. The calculation of radiation fields of chemical contamination of nature with the use of a digital model

    International Nuclear Information System (INIS)

    Danger of contamination of the environment by convection of air and fluid transport in porous media arise while disposing of waste radioactive isotopes and chemical industry waste in underground deep-seated horizons. As a result there is eventually observed the formation of radioactive fields of local character. A lot of methods using for defining of radioactive fields of objects of the similar type, basically are based on the registration particles and quantum, emitted by nuclear of the corresponding elements in their radioactive decay. This is especially important for objects intended for placement in the mass of low permeable rocks, such as rock type. On the base of complex using of modern information basis created the model of induced radiation field of environment

  12. QSPR models based on molecular mechanics and quantum chemical calculations. 1. Construction of Boltzmann averaged descriptors for alkanes, alcohols, diols, ethers and cyclic compounds

    DEFF Research Database (Denmark)

    Dyekjær, Jane Dannow; Rasmussen, Kjeld; Jonsdottir, Svava Osk

    2002-01-01

    Values for nine descriptors for QSPR (quantitative structure-property relationships) modeling of physical properties of 96 alkanes, alcohols, ethers, diols, triols and cyclic alkanes and alcohols in conjunction with the program Codessa are presented. The descriptors are Boltzmann-averaged by...... selection of the most relevant conformers out of a set of possible molecular conformers generated by a systematic scheme presented in this paper. Six of these descriptors are calculated with molecular mechanics and three with quantum chemical methods. Especially interesting descriptors are the relative van...

  13. Quantum chemical calculations of ionization potentials and dimerization energies of ozone and chloro-oxides: two easy cases and a difficult one

    International Nuclear Information System (INIS)

    Ionization potentials (IPs) of Cl2O and of Clo2 and their dimers were recently measured via electron impact ionization close to threshold. For these systems, quantum chemical calculations were performed to verify the experimental results, to find the equilibrium structures of the three dimers and to obtain information about the electronic structure of monometers and dimers. It turns out that the two chloro-oxides pose no particular difficulties (Cl2O: 11.15 eV and ClO2: 10.55 eV; dimers ∼0.5 eV lower) but that in case of ozone measurement and calculation disagree severely. This lead to an investigation of the structure of ozone dimer and it is suggested that not a weekly bound O3+O3 complex but an O6 or O4+O2 entity is causing the signal. (nevyjel)

  14. Host–guest complexes of mixed glycol-bipyridine cryptands: prediction of ion selectivity by quantum chemical calculations, part V

    Directory of Open Access Journals (Sweden)

    Svetlana Begel

    2013-06-01

    Full Text Available The selectivity of the cryptands [2.2.bpy] and [2.bpy.bpy] for the endohedral complexation of alkali, alkaline-earth and earth metal ions was predicted on the basis of the DFT (B3LYP/LANL2DZp calculated structures and complex-formation energies. The cavity size in both cryptands lay between that for [2.2.2] and [bpy.bpy.bpy], such that the complexation of K+, Sr2+ and Tl3+ is most favorable. While the [2.2.bpy] is moderately larger, preferring Rb+ complexation and demonstrating equal priority for Sr2+ and Ba2+, the slightly smaller [2.bpy.bpy] yields more stable cryptates with Na+ and Ca2+. Although the CH2-units containing molecular bars fixed at the bridgehead nitrogen atoms determine the flexibility of the cryptands, the twist angles associated with the bipyridine and glycol building blocks also contribute considerably.

  15. A chiral rhenium complex with predicted high parity violation effects: synthesis, stereochemical characterization by VCD spectroscopy and quantum chemical calculations

    CERN Document Server

    Saleh, Nidal; Roisnel, Thierry; Guy, Laure; Bast, Radovan; Saue, Trond; Darquié, Benoît; Crassous, Jeanne

    2015-01-01

    With their rich electronic, vibrational, rotational and hyperfine structure, molecular systems have the potential to play a decisive role in precision tests of fundamental physics. For example, electroweak nuclear interactions should cause small energy differences between the two enantiomers of chiral molecules, a signature of parity symmetry breaking. Enantioenriched oxorhenium(VII) complexes S-(-)- and R-(+)-3 bearing a chiral 2-methyl-1-thio-propanol ligand have been prepared as potential candidates for probing molecular parity violation effects via high resolution laser spectroscopy of the Re=O stretching. Although the rhenium atom is not a stereogenic centre in itself, experimental vibrational circular dichroism (VCD) spectra revealed a surrounding chiral environment, evidenced by the Re=O bond stretching mode signal. The calculated VCD spectrum of the R enantiomer confirmed the position of the sulfur atom cis to the methyl, as observed in the solid-state X-ray crystallographic structure, and showed the ...

  16. Design, synthesis, characterization, quantum-chemical calculations and anti-inflammatory activity of novel series of thiophene derivatives

    Science.gov (United States)

    Helal, M. H.; Salem, M. A.; Gouda, M. A.; Ahmed, N. S.; El-Sherif, A. A.

    2015-08-01

    Interaction of 1-(4-morpholinophenyl)ethanone 1 with either malononitrile or ethyl cyanoacetate 2 afforded Knoevenagel-Cope product 3. In subsequent treatment of 3 with sulfur, the 2-aminothiophene derivatives (4a, 4b) are formed under basic conditions. The solvent-free reaction of thiophene derivative 4a with ethyl cyanoacetate afforded thieno[2,3-d][1,3]oxazine derivative 6. The base catalyzed condensation of 2-aminothiophene derivative (4a) with ethyl cyanoacetate afforded N-(thieno-2-yl) cyanoacetamide derivative 7. The latter was used to synthesize different heterocyclic derivatives comprising, pyridine and coumarin rings. Also, several substituted thieno[2,3-d]pyrimidines have been prepared from reaction of 2-aminothiophene-3-carbonitrile 4b with some electrophilic reagents. The structure of the newly compounds were confirmed on the basis of elemental analysis and spectral data. The molecular modeling of the synthesized compounds has been drawn and their molecular parameters were calculated. Also, valuable information is obtained from calculation of the molecular parameters including electronegativity, net dipole moment of the compounds, total energy, electronic energy, binding energy, HOMO and LUMO energy. Evaluation of anti-inflammatory activity of the tested compounds was performed in albino rats by producing carrageenan induced paw oedema and measuring the zone of inflammation at different time intervals i.e. 1, 2, 3 and 4 h after carrageenan injection. Results indicated that most of the tested compounds showed moderate to good activity comparable to indomethacin. Also, compound 16 with additional morpholine ring beside the thiophene ring inhibits carrageenan induced paw oedema more than the standard indomethacin drug at all the time scales studied. Thus, compound 16 is considered as a promising compound for further modification to obtain clinically useful anti-inflammatory agent.

  17. Molecular structure, electronic properties, NLO, NBO analysis and spectroscopic characterization of Gabapentin with experimental (FT-IR and FT-Raman) techniques and quantum chemical calculations

    Science.gov (United States)

    Sinha, Leena; Karabacak, Mehmet; Narayan, V.; Cinar, Mehmet; Prasad, Onkar

    2013-05-01

    Gabapentin (GP), structurally related to the neurotransmitter GABA (gamma-aminobutyric acid), mimics the activity of GABA and is also widely used in neurology for the treatment of peripheral neuropathic pain. It exists in zwitterionic form in solid state. The present communication deals with the quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of GP using density functional (DFT/B3LYP) method with 6-311++G(d,p) basis set. In view of the fact that amino acids exist as zwitterions as well as in the neutral form depending on the environment (solvent, pH, etc.), molecular properties of both the zwitterionic and neutral form of GP have been analyzed. The fundamental vibrational wavenumbers as well as their intensities were calculated and compared with experimental FT-IR and FT-Raman spectra. The fundamental assignments were done on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. The electric dipole moment, polarizability and the first hyperpolarizability values of the GP have been calculated at the same level of theory and basis set. The nonlinear optical (NLO) behavior of zwitterionic and neutral form has been compared. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond orbital analysis. Ultraviolet-visible (UV-Vis) spectrum of the title molecule has also been calculated using TD-DFT method. The thermodynamic properties of both the zwitterionic and neutral form of GP at different temperatures have been calculated.

  18. Combining Nuclear Magnetic Resonance Spectroscopy and Density Functional Theory Calculations to Characterize Carvedilol Polymorphs.

    Science.gov (United States)

    Rezende, Carlos A; San Gil, Rosane A S; Borré, Leandro B; Pires, José Ricardo; Vaiss, Viviane S; Resende, Jackson A L C; Leitão, Alexandre A; De Alencastro, Ricardo B; Leal, Katia Z

    2016-09-01

    The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations. PMID:26372719

  19. Enhanced Adsorption of Hydroxyl- and Amino-Substituted Aromatic Chemicals to Nitrogen-Doped Multiwall Carbon Nanotubes: A Combined Batch and Theoretical Calculation Study.

    Science.gov (United States)

    Zuo, Linzi; Guo, Yong; Li, Xiao; Fu, Heyun; Qu, Xiaolei; Zheng, Shourong; Gu, Cheng; Zhu, Dongqiang; Alvarez, Pedro J J

    2016-01-19

    A large effort is being made to develop nanosorbents with tunable surface chemistry for enhanced adsorption affinity and selectivity toward target organic contaminants. Heteroatom N-doped multiwall carbon nanotubes (N-MCNT) were synthesized by chemical vapor deposition of pyridine and were further investigated for the adsorptive removal of several aromatic chemicals varying in electronic donor and acceptor ability from aqueous solutions using a batch technique. Compared with commercial nondoped multiwall carbon nanotubes (MCNT), N-MCNT had similar specific surface area, morphology, and pore-size distribution but more hydrophilic surfaces and more surface defects due to the doping of graphitic and pyridinic N atoms. N-MCNT exhibited enhanced adsorption (2-10 folds) for the π-donor chemicals (2-naphthol and 1-naphthalmine) at pH ∼6 but similar adsorption for the weak π-donor chemical (naphthalene) and even lower adsorption (up to a 2-fold change) for the π-acceptor chemical (1,3-dinitrobenzene). The enhanced adsorption of 2-naphthol and 1-naphthalmine to N-MCNT was mainly attributed to the favored π-π electron-donor-acceptor (EDA) interaction between the π-donor adsorbate molecule and the polarized N-heterocyclic aromatic ring (π-acceptor) on N-MCNT. The proposed adsorption enhancement mechanisms were further tested through the pH effects on adsorption and the density function theory (DFT) calculation. The results show for the first time that the adsorptive interaction of π-donor aromatic compounds with carbon nanomaterials can be facilitated by N-doping. PMID:26669961

  20. Calculation of the second term of the exact Green's function of the diffusion equation for diffusion-controlled chemical reactions

    Science.gov (United States)

    Plante, Ianik

    2016-01-01

    The exact Green's function of the diffusion equation (GFDE) is often considered to be the gold standard for the simulation of partially diffusion-controlled reactions. As the GFDE with angular dependency is quite complex, the radial GFDE is more often used. Indeed, the exact GFDE is expressed as a Legendre expansion, the coefficients of which are given in terms of an integral comprising Bessel functions. This integral does not seem to have been evaluated analytically in existing literature. While the integral can be evaluated numerically, the Bessel functions make the integral oscillate and convergence is difficult to obtain. Therefore it would be of great interest to evaluate the integral analytically. The first term was evaluated previously, and was found to be equal to the radial GFDE. In this work, the second term of this expansion was evaluated. As this work has shown that the first two terms of the Legendre polynomial expansion can be calculated analytically, it raises the question of the possibility that an analytical solution exists for the other terms.

  1. Kinetic measurements and quantum chemical calculations on low spin Ni(II)/(III) macrocyclic complexes in aqueous and sulphato medium

    Indian Academy of Sciences (India)

    Anuradha Sankaran; E J Padma Malar; Venkatapuram Ramanujam Vijayaraghavan

    2015-07-01

    Cu(II) ion catalyzed kinetics of oxidation of H2O2 by [NiIIIL2] (L2 = 1,8-bis(2-hydroxyethyl)-1,3,6,8,10,13-hexaazacyclotetradecane) was studied in aqueous acidic medium in the presence of sulphate ion. The rate of oxidation of H2O2 by [NiIIIL2] is faster than that by [NiIIIL1] (L1 = 1,4,8,11-tetraazacyclote-tradecane) in sulphate medium. DFT calculations at BP86/def2-TZVP level lead to different modes of bonding between [NiL]II/III and water ligands (L = L1 and L2). In aqueous medium, two water molecules interact with [NiL]II through weak hydrogen bonds with L and are tilted by ∼23° from the vertical axis forming the dihydrate [NiL]2+.2H2O. However, there is coordinate bond formation between [NiL1]III and two water molecules in aqueous medium and an aqua and a sulphato ligand in sulphate medium leading to the octahedral complexes [NiL1(H2O)2]3+ and [NiL1(SO4)(H2O)]+. In the analogous [NiL2]III, the water molecules are bound by hydrogen bonds resulting in [NiL2]3+.2H2O and [NiL2(SO4)]+.H2O. As the sulphato complex [NiL2(SO4)]+.H2O is less stable than [NiL1(SO4)(H2O)]+ in view of the weak H-bonding interactions in the former it can react faster. Thus the difference in the mode of bonding between Ni(III) and the water ligand can explain the rate of oxidation of H2O2 by [NiIIIL] complexes.

  2. 1H, 13C and 13N chemical shifts and 1H-15N and 13C-15N heteronuclear spin-spin coupling constants n the NMR spectra of 5-substituted furfural oximes

    International Nuclear Information System (INIS)

    The 1H, 13C, and 15N NMR spectra of 15N-enriched 5-substituted furfural oximes were investigated. It was shown that the chemical shifts of the ring atoms and the oxime group correlate satisfactorily with the F and R substituent constants, whereas their sensitivity to the effect of the substituents is lower than in monosubstituted furan derivatives. The constants of spin-spin coupling between the ring protons and the oxime group were determined. An analysis of the 1H-1H spin-spin coupling constants (SSCC) on the basis of their stereospecificity indicates that the E isomers have primarily an s-trans conformation in polar dimethyl sulfoxide, whereas the Z isomers, on the other hand, have an s-cis conformation. The signs of the direct and geminal 13C-15N SSCC were determined for 5-trimethylsilylfurfural oxime

  3. Iboga alkaloids from Peschiera affinis (Apocynaceae) - unequivocal {sup 1}H and {sup 13}C chemical shift assignments: antioxidant activity; Alcaloides iboga de Peschiera affinis (Apocynaceae) - atribuicao inequivoca dos deslocamentos quimicos dos atomos de hidrogenio e carbono: atividade antioxidante

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Allana Kellen L.; Magalhaes, Ticiane S.; Monte, Francisco Jose Q.; Mattos, Marcos Carlos de; Oliveira, Maria Conceicao F. de; Almeida, Maria Mozarina B.; Lemos, Telma L.G.; Braz-Filho, Raimundo [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica], e-mail: tlemos@dqoi.ufc.br

    2009-07-01

    Six known alkaloids iboga type and the triterpene {alpha}- and {beta}-amyrin acetate were isolated from the roots and stems of Peschiera affinis. Their structures were characterized on the basis of spectral data mainly NMR and mass spectra. 1D and 2D NMR spectra were also used to unequivocal {sup 1}H and {sup 13}C chemical shift assignments of alkaloids. The ethanolic extract of roots, alkaloidic and no-alkaloidic fractions and iso-voacristine hydroxyindolenine and voacangine were evaluated for their antioxidative properties using an autographic assay based on {beta}-carotene bleaching on TLC plates, and also spectrophotometric detection by reduction of the stable DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical. (author)

  4. Hard X-ray photoelectron spectra (HXPES) of bulk non-conductor vitreous SiO2: Minimum linewidths and surface chemical shifts

    International Nuclear Information System (INIS)

    Highlights: • Electronic structure of non-conducting glass studied by hard X-ray photoelectron spectroscopy. • A thin film of Cr was deposited on the vitreous SiO2 glass to overcome the sample charging. • Excellent O 1s and Si 1s linewidths were obtained, matching those reported using the laboratory based Kratos Axis Ultra spectrometer equipped with a magnetic compensation system. • The bulk and interface states of non-conducting samples are studied as a function of photon energy. - Abstract: Hard X-ray photoelectron spectra (2200 eV to 5000 eV photon energies) have been obtained for the first time on a bulk non-conductor, vitreous SiO2, on a high resolution (E/ΔE of 10,000) synchrotron beamline at the Canadian Light Source (CLS). To minimize charging and differential charging, the SiO2 was coated with very thin layers (0.5 to 1.5 nm) of Cr metal. The O 1s linewidth obtained at 2500 eV photon energy was 1.26 eV—the minimum linewidth for SiO2—and in good agreement with that obtained at 1486 eV on a Kratos Axis Ultra spectrometer equipped with a magnetic charge compensation system. The Si 1s linewidth of 1.5 eV, somewhat broader than that previously obtained at 1486 eV on the Si 2p3/2 line of 1.16 eV, is mainly due to the much larger inherent Si 1s linewidth (0.5 eV) compared to the inherent Si 2p linewidth (<0.1 eV). Both linewidths are dominated by the large final state vibrational broadening previously described. The Cr coating produces surface monolayers of interfacial Cr “suboxide” (Cr-subox), Cr metal, and a surface Cr oxide (Cr-surfox). Cr-subox (Si−O−Cr) gives rise to the weak near-surface Si 1s peak, while both oxides give rise to both the weak surface O 1s peak and the Cr 2p oxide peak. Both the O 1s and Si 1s surface peaks are shifted by ∼2 eV relative to the large bulk Si 1s and O 1s peaks. The weak Si 1s and O 1s surface peaks along with the Cr 2p oxide peak decrease in intensity greatly as the photon energy increases, due to an

  5. Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2*-relaxometry and chemical shift-based sequences

    International Nuclear Information System (INIS)

    To evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference. One hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm (''screening'' sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland-Altman plots were generated and correlation coefficients were calculated to compare the sequences. The screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r = 0.988). A slightly lower correlation (r = 0.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland-Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement. The screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods. (orig.)

  6. Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2*-relaxometry and chemical shift-based sequences

    Energy Technology Data Exchange (ETDEWEB)

    Henninger, B.; Rauch, S.; Schocke, M.; Jaschke, W.; Kremser, C. [Medical University of Innsbruck, Department of Radiology, Innsbruck (Austria); Zoller, H. [Medical University of Innsbruck, Department of Internal Medicine, Innsbruck (Austria); Kannengiesser, S. [Siemens AG, Healthcare Sector, MR Applications Development, Erlangen (Germany); Zhong, X. [Siemens Healthcare, MR R and D Collaborations, Atlanta, GA (United States); Reiter, G. [Siemens AG, Healthcare Sector, MR R and D Collaborations, Graz (Austria)

    2015-05-01

    To evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference. One hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm (''screening'' sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland-Altman plots were generated and correlation coefficients were calculated to compare the sequences. The screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r = 0.988). A slightly lower correlation (r = 0.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland-Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement. The screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods. (orig.)

  7. Using NMR chemical shift imaging to monitor swelling and molecular transport in drug-loaded tablets of hydrophobically modified poly(acrylic acid): methodology and effects of polymer (in)solubility.

    Science.gov (United States)

    Knöös, Patrik; Topgaard, Daniel; Wahlgren, Marie; Ulvenlund, Stefan; Piculell, Lennart

    2013-11-12

    A new technique has been developed using NMR chemical shift imaging (CSI) to monitor water penetration and molecular transport in initially dry polymer tablets that also contain small low-molecular weight compounds to be released from the tablets. Concentration profiles of components contained in the swelling tablets could be extracted via the intensities and chemical shift changes of peaks corresponding to protons of the components. The studied tablets contained hydrophobically modified poly(acrylic acid) (HMPAA) as the polymer component and griseofulvin and ethanol as hydrophobic and hydrophilic, respectively, low-molecular weight model compounds. The water solubility of HMPAA could be altered by titration with NaOH. In the pure acid form, HMPAA tablets only underwent a finite swelling until the maximum water content of the polymer-rich phase, as confirmed by independent phase studies, had been reached. By contrast, after partial neutralization with NaOH, the polyacid became fully miscible with water. The solubility of the polymer affected the water penetration, the polymer release, and the releases of both ethanol and griseofulvin. The detailed NMR CSI concentration profiles obtained highlighted the clear differences in the disintegration/dissolution/release behavior for the two types of tablet and provided insights into their molecular origin. The study illustrates the potential of the NMR CSI technique to give information of importance for the development of pharmaceutical tablets and, more broadly, for the general understanding of any operation that involves the immersion and ultimate disintegration of a dry polymer matrix in a solvent. PMID:24106807

  8. Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI

    International Nuclear Information System (INIS)

    Developments in MRI have made it possible to use diffusion-weighted MRI, perfusion MRI and proton MR spectroscopy (MRS) to study lesions in the brain. We evaluated whether these techniques provide useful, complementary information for grading gliomas, in comparison with conventional MRI. We studied 17 patients with histologically verified gliomas, adding multivoxel proton MRS, echoplanar diffusion and perfusion MRI the a routine MRI examination. The maximum relative cerebral blood volume (CBV), minimum apparent diffusion coefficient (ADC) and metabolic peak area ratios in proton MRS were calculated in solid parts of tumours on the same slice from each imaging data set. The mean minimum ADC of the 13 high-grade gliomas (0.92±0.27 x 10-3 mm2/s) was lower than that of the four low-grade gliomas (1.28±0.15 x 10-3 mm2/s) (P<0.05). Means of maximum choline (Cho)/N-acetylaspartate (NAA), Cho/creatine (Cr), Cho/Cr in normal brain (Cr-n) and minimum NAA/Cr ratios were 5.90±2.62, 4.73±2.22, 2.66±0.68 and 0.40±0.06, respectively, in the high-grade gliomas, and 1.65±1.37, 1.84±1.20, 1.61±1.29 and 1.65±1.61, respectively, in the low-grade gliomas. Significant differences were found on spectroscopy between the high- and low-grade gliomas (P<0.05). Mean maximum relative CBV in the high-grade gliomas (6.10±3.98) was higher than in the low-grade gliomas (1.74±0.57) (P<0.05). Echoplanar diffusion, perfusion MRI and multivoxel proton MRS can offer diagnostic information, not available with conventional MRI, in the assessment of glioma grade. (orig.)

  9. Some Phthalocyanine and Naphthalocyanine Derivatives as Corrosion Inhibitors for Aluminium in Acidic Medium: Experimental, Quantum Chemical Calculations, QSAR Studies and Synergistic Effect of Iodide Ions

    Directory of Open Access Journals (Sweden)

    Masego Dibetsoe

    2015-08-01

    Full Text Available The effects of seven macrocyclic compounds comprising four phthalocyanines (Pcs namely 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (Pc1, 2,3,9,10,16,17,23,24-octakis(octyloxy-29H,31H-phthalocyanine (Pc2, 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (Pc3 and 29H,31H-phthalocyanine (Pc4, and three naphthalocyanines namely 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (nPc1, 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (nPc2 and 2,3-naphthalocyanine (nP3 were investigated on the corrosion of aluminium (Al in 1 M HCl using a gravimetric method, potentiodynamic polarization technique, quantum chemical calculations and quantitative structure activity relationship (QSAR. Synergistic effects of KI on the corrosion inhibition properties of the compounds were also investigated. All the studied compounds showed appreciable inhibition efficiencies, which decrease with increasing temperature from 30 °C to 70 °C. At each concentration of the inhibitor, addition of 0.1% KI increased the inhibition efficiency compared to the absence of KI indicating the occurrence of synergistic interactions between the studied molecules and I− ions. From the potentiodynamic polarization studies, the studied Pcs and nPcs are mixed type corrosion inhibitors both without and with addition of KI. The adsorption of the studied molecules on Al surface obeys the Langmuir adsorption isotherm, while the thermodynamic and kinetic parameters revealed that the adsorption of the studied compounds on Al surface is spontaneous and involves competitive physisorption and chemisorption mechanisms. The experimental results revealed the aggregated interactions between the inhibitor molecules and the results further indicated that the peripheral groups on the compounds affect these interactions. The calculated quantum chemical parameters and the QSAR results revealed the possibility of strong interactions between the studied inhibitors and metal surface. QSAR

  10. Some Phthalocyanine and Naphthalocyanine Derivatives as Corrosion Inhibitors for Aluminium in Acidic Medium: Experimental, Quantum Chemical Calculations, QSAR Studies and Synergistic Effect of Iodide Ions.

    Science.gov (United States)

    Dibetsoe, Masego; Olasunkanmi, Lukman O; Fayemi, Omolola E; Yesudass, Sasikumar; Ramaganthan, Baskar; Bahadur, Indra; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E

    2015-01-01

    The effects of seven macrocyclic compounds comprising four phthalocyanines (Pcs) namely 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (Pc1), 2,3,9,10,16,17,23,24-octakis(octyloxy)-29H,31H-phthalocyanine (Pc2), 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (Pc3) and 29H,31H-phthalocyanine (Pc4), and three naphthalocyanines namely 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (nPc1), 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (nPc2) and 2,3-naphthalocyanine (nP3) were investigated on the corrosion of aluminium (Al) in 1 M HCl using a gravimetric method, potentiodynamic polarization technique, quantum chemical calculations and quantitative structure activity relationship (QSAR). Synergistic effects of KI on the corrosion inhibition properties of the compounds were also investigated. All the studied compounds showed appreciable inhibition efficiencies, which decrease with increasing temperature from 30 °C to 70 °C. At each concentration of the inhibitor, addition of 0.1% KI increased the inhibition efficiency compared to the absence of KI indicating the occurrence of synergistic interactions between the studied molecules and I(-) ions. From the potentiodynamic polarization studies, the studied Pcs and nPcs are mixed type corrosion inhibitors both without and with addition of KI. The adsorption of the studied molecules on Al surface obeys the Langmuir adsorption isotherm, while the thermodynamic and kinetic parameters revealed that the adsorption of the studied compounds on Al surface is spontaneous and involves competitive physisorption and chemisorption mechanisms. The experimental results revealed the aggregated interactions between the inhibitor molecules and the results further indicated that the peripheral groups on the compounds affect these interactions. The calculated quantum chemical parameters and the QSAR results revealed the possibility of strong interactions between the studied inhibitors and metal surface. QSAR analysis on the

  11. Quantum chemical studies on solvents for post-combustion carbon dioxide capture: calculation of pKa and carbamate stability of disubstituted piperazines.

    Science.gov (United States)

    Gangarapu, Satesh; Wierda, Gerben J; Marcelis, Antonius T M; Zuilhof, Han

    2014-06-23

    Piperazine is a widely studied solvent for post-combustion carbon dioxide capture. To investigate the possibilities of further improving this process, the electronic and steric effects of -CH(3), -CH(2)F, -CH(2)OH, -CH(2)NH(2), -COCH3 , and -CN groups of 2,5-disubstituted piperazines on the pKa and carbamate stability towards hydrolysis are investigated by quantum chemical methods. For the calculations, B3LYP, M11L, and spin-component-scaled MP2 (SCS-MP2) methods are used and coupled with the SMD solvation model. The experimental pK(a) values of piperazine, 2-methylpiperazine, and 2,5-dimethylpiperazine agree well with the calculated values. The present study indicates that substitution of -CH(3), -CH(2) NH(2), and -CH(2) OH groups on the 2- and 5-positions of piperazine has a positive impact on the CO(2) absorption capacity by reducing the carbamate stability towards hydrolysis. Furthermore, their higher boiling points, relative to piperazine itself, will lead to a reduction of volatility-related losses. PMID:24782140

  12. Calculated rate constants of the chemical reactions involving the main byproducts SO2F, SOF2, SO2F2 of SF6 decomposition in power equipment

    Science.gov (United States)

    Fu, Yuwei; Rong, Mingzhe; Yang, Kang; Yang, Aijun; Wang, Xiaohua; Gao, Qingqing; Liu, Dingxin; Murphy, Anthony B.

    2016-04-01

    SF6 is widely used in electrical equipment as an insulating gas. In the presence of an electric arc, partial discharge (PD) or spark, SF6 dissociation products (such as SF2, SF3 and SF4) react with the unavoidable gas impurities (such as water vapor and oxygen), electrodes and surrounding solid insulation materials, forming several toxic and corrosive byproducts. The main stable decomposition products are SO2F, SO2F2 and SOF2, which have been confirmed experimentally to have a direct relationship with discharge faults, and are thus expected to be useful in the fault diagnosis of power equipment. Various studies have been performed of the main SF6 decomposition species and their concentrations under different types of faults. However, most of the experiments focused on the qualitative analysis of the relationship between the stable products and discharge faults. Although some theoretical research on the formation of main SF6 derivatives have been carried out using chemical kinetics models, the basic data (chemical reactions and their rate constants) adopted in the model are inaccurate and incomplete. The complex chemical reactions of SF6 with the impurities are ignored in most cases. The rate constants of some reactions obtained at ambient temperature or in a narrow temperature range are adopted in the models over a far greater range, for example up to 12 000 K, due to the difficulty in the experimental measurement and theoretical estimation of rate coefficients, particularly at high temperatures. Therefore, improved theoretical models require not only the consideration of additional SF6 decomposition reactions in the presence of impurities but also on improved values of rate constants. This paper is devoted to determining the rate constants of the chemical reactions relating to the main byproducts of SF6 decomposition in SF6 gas-insulated power equipment: SO2F, SOF2 and SO2F2. Quantum chemistry calculations with density functional theory, conventional

  13. PACKAGE (Plasma Analysis, Chemical Kinetics and Generator Efficiency): a computer program for the calculation of partial chemical equilibrium/partial chemical rate controlled composition of multiphased mixtures under one dimensional steady flow

    Energy Technology Data Exchange (ETDEWEB)

    Yousefian, V.; Weinberg, M.H.; Haimes, R.

    1980-02-01

    The NASA CEC Code was the starting point for PACKAGE, whose function is to evaluate the composition of a multiphase combustion product mixture under the following chemical conditions: (1) total equilibrium with pure condensed species; (2) total equilibrium with ideal liquid solution; (3) partial equilibrium/partial finite rate chemistry; and (4) fully finite rate chemistry. The last three conditions were developed to treat the evolution of complex mixtures such as coal combustion products. The thermodynamic variable pairs considered are either pressure (P) and enthalpy, P and entropy, at P and temperature. Minimization of Gibbs free energy is used. This report gives detailed discussions of formulation and input/output information used in the code. Sample problems are given. The code development, description, and current programming constraints are discussed. (DLC)

  14. Lamb Shift in Nonrelativistic Quantum Electrodynamics.

    Science.gov (United States)

    Grotch, Howard

    1981-01-01

    The bound electron self-energy or Lamb shift is calculated in nonrelativistic quantum electrodynamics. Retardation is retained and also an interaction previously dropped in other nonrelativistic approaches is kept. Results are finite without introducing a cutoff and lead to a Lamb shift in hydrogen of 1030.9 MHz. (Author/JN)

  15. Electron densities and chemical bonding in TiC, TiN and TiO derived from energy band calculations

    International Nuclear Information System (INIS)

    It was the aim of this paper to describe the chemical bonding of TiC, TiN and TiO by means of energy bands and electron densities. Using the respective potentials we have calculated the bandstructure of a finer k-grid with the linearized APW method to obtain accurate densities of states (DOS). These DOS wer partitioned into local partial contributions and the metal d DOS were further decomposed into tsub(2g) and esub(g) symmetry components in order to additionally characterize bonding. The electron densities corresponding to the occupied valence states are obtained from the LAPW calculations. They provide further insight into characteristic trends in the series from TiC to TiO: around the nonmetal site the density shows increasing localisation; around the metal site the deviation from spherical symmetry changes from esub(g) to tsub(2g). Electron density plots of characteristic band states allow to describe different types of bonding occurring in these systems. For TiC and TiN recent measurements of the electron densities exist for samples of TiCsub(0.94) and TiNsub(0.99), where defects cause static displacements of the Ti atoms. If this effect can be compensated by an atomic model one hopefully can extrapolate to stoichiometric composition. This procedure allows a comparison with structure factors derived from theoretical electron densities. The agreement for TiN is very good. For TiC the extrapolated data agree in terms of the deviations from spherical symmetry near the Ti site with the LAPW data, but the densities around both atoms are more localized than in theory. An explanation could be: a) the defects affect the electronic structure in TiCsub(0.94) with respect to TiCsub(1.0): b) the applied atomic model does not properly extrapolate to stoichiometry, because parameters of this model correlate or become unphysical. (Author)

  16. A comparative quantitative analysis of the IDEAL (iterative decomposition of water and fat with echo asymmetry and least-squares estimation) and the CHESS (chemical shift selection suppression) techniques in 3.0 T L-spine MRI

    Science.gov (United States)

    Kim, Eng-Chan; Cho, Jae-Hwan; Kim, Min-Hye; Kim, Ki-Hong; Choi, Cheon-Woong; Seok, Jong-min; Na, Kil-Ju; Han, Man-Seok

    2013-03-01

    This study was conducted on 20 patients who had undergone pedicle screw fixation between March and December 2010 to quantitatively compare a conventional fat suppression technique, CHESS (chemical shift selection suppression), and a new technique, IDEAL (iterative decomposition of water and fat with echo asymmetry and least squares estimation). The general efficacy and usefulness of the IDEAL technique was also evaluated. Fat-suppressed transverse-relaxation-weighed images and longitudinal-relaxation-weighted images were obtained before and after contrast injection by using these two techniques with a 1.5T MR (magnetic resonance) scanner. The obtained images were analyzed for image distortion, susceptibility artifacts and homogenous fat removal in the target region. The results showed that the image distortion due to the susceptibility artifacts caused by implanted metal was lower in the images obtained using the IDEAL technique compared to those obtained using the CHESS technique. The results of a qualitative analysis also showed that compared to the CHESS technique, fewer susceptibility artifacts and more homogenous fat removal were found in the images obtained using the IDEAL technique in a comparative image evaluation of the axial plane images before and after contrast injection. In summary, compared to the CHESS technique, the IDEAL technique showed a lower occurrence of susceptibility artifacts caused by metal and lower image distortion. In addition, more homogenous fat removal was shown in the IDEAL technique.

  17. Sofic Tree-Shifts

    OpenAIRE

    Aubrun, Nathalie; Béal, Marie-Pierre

    2013-01-01

    We introduce the notion of sofic tree-shifts which corresponds to symbolic dynamical systems of infinite ranked trees accepted by finite tree automata. We show that, contrary to shifts of infinite sequences, there is no unique reduced deterministic irreducible tree automaton accepting an irreducible sofic tree-shift, but that there is a unique synchronized one, called the Fischer automaton of the tree-shift. We define the notion of almost of finite type tree-shift which are sofic tree-shifts accepted...

  18. Hyperfine structure in the J = 1-0 transitions of DCO+, DNC, and HN13C: astronomical observations and quantum-chemical calculations

    CERN Document Server

    van der Tak, Floris; Harding, Michael; Gauss, Jürgen

    2009-01-01

    We have observed the rotational ground-state (J = 1-0) transitions of DCO+, HN13C and DNC with the IRAM 30m telescope toward the dark cloud LDN 1512 which has exceptionally narrow lines permitting hyperfine splitting to be resolved in part. The measured splittings of 50-300 kHz are used to derive nuclear quadrupole and spin-rotation parameters for these species. The measurements are supplemented by high-level quantum-chemical calculations using coupled-cluster techniques and large atomic-orbital basis sets. We find eQq = +151.12 (400) kHz and C_I = -1.12 (43) kHz for DCO+, eQq = 272.5 (51) kHz for HN13C, and eQq(D) = 265.9 (83) kHz and eQq(N) = 288.2 (71) kHz for DNC. The numbers for DNC are consistent with previous laboratory data, while our constants for DCO+ are somewhat smaller than previous results based on astronomical data. For both DCO+ and DNC, our results are more accurate than previous determinations. Our results are in good agreement with the corresponding best theoretical estimates. We also deriv...

  19. Vibronic coupling in molecular crystals: A Franck-Condon Herzberg-Teller model of H-aggregate fluorescence based on quantum chemical cluster calculations

    Science.gov (United States)

    Wykes, M.; Parambil, R.; Beljonne, D.; Gierschner, J.

    2015-09-01

    Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescence spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.

  20. Vibronic coupling in molecular crystals: A Franck-Condon Herzberg-Teller model of H-aggregate fluorescence based on quantum chemical cluster calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wykes, M., E-mail: mikewykes@gmail.com; Parambil, R.; Gierschner, J. [Madrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, 28049 Madrid (Spain); Beljonne, D. [Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons (Belgium)

    2015-09-21

    Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescence spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.