WorldWideScience

Sample records for chemical shift analysis

  1. Implementation of the NMR CHEmical Shift Covariance Analysis (CHESCA): A Chemical Biologist's Approach to Allostery.

    Science.gov (United States)

    Boulton, Stephen; Selvaratnam, Rajeevan; Ahmed, Rashik; Melacini, Giuseppe

    2018-01-01

    Mapping allosteric sites is emerging as one of the central challenges in physiology, pathology, and pharmacology. Nuclear Magnetic Resonance (NMR) spectroscopy is ideally suited to map allosteric sites, given its ability to sense at atomic resolution the dynamics underlying allostery. Here, we focus specifically on the NMR CHEmical Shift Covariance Analysis (CHESCA), in which allosteric systems are interrogated through a targeted library of perturbations (e.g., mutations and/or analogs of the allosteric effector ligand). The atomic resolution readout for the response to such perturbation library is provided by NMR chemical shifts. These are then subject to statistical correlation and covariance analyses resulting in clusters of allosterically coupled residues that exhibit concerted responses to the common set of perturbations. This chapter provides a description of how each step in the CHESCA is implemented, starting from the selection of the perturbation library and ending with an overview of different clustering options.

  2. Stereospecific assignment of the asparagine and glutamine sidechain amide protons in proteins from chemical shift analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harsch, Tobias; Schneider, Philipp; Kieninger, Bärbel; Donaubauer, Harald; Kalbitzer, Hans Robert, E-mail: hans-robert.kalbitzer@biologie.uni-regensburg.de [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany)

    2017-02-15

    Side chain amide protons of asparagine and glutamine residues in random-coil peptides are characterized by large chemical shift differences and can be stereospecifically assigned on the basis of their chemical shift values only. The bimodal chemical shift distributions stored in the biological magnetic resonance data bank (BMRB) do not allow such an assignment. However, an analysis of the BMRB shows, that a substantial part of all stored stereospecific assignments is not correct. We show here that in most cases stereospecific assignment can also be done for folded proteins using an unbiased artificial chemical shift data base (UACSB). For a separation of the chemical shifts of the two amide resonance lines with differences ≥0.40 ppm for asparagine and differences ≥0.42 ppm for glutamine, the downfield shifted resonance lines can be assigned to H{sup δ21} and H{sup ε21}, respectively, at a confidence level >95%. A classifier derived from UASCB can also be used to correct the BMRB data. The program tool AssignmentChecker implemented in AUREMOL calculates the Bayesian probability for a given stereospecific assignment and automatically corrects the assignments for a given list of chemical shifts.

  3. PACSY, a relational database management system for protein structure and chemical shift analysis.

    Science.gov (United States)

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo; Lee, Weontae; Markley, John L

    2012-10-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu.

  4. PACSY, a relational database management system for protein structure and chemical shift analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woonghee, E-mail: whlee@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison, and Biochemistry Department (United States); Yu, Wookyung [Center for Proteome Biophysics, Pusan National University, Department of Physics (Korea, Republic of); Kim, Suhkmann [Pusan National University, Department of Chemistry and Chemistry Institute for Functional Materials (Korea, Republic of); Chang, Iksoo [Center for Proteome Biophysics, Pusan National University, Department of Physics (Korea, Republic of); Lee, Weontae, E-mail: wlee@spin.yonsei.ac.kr [Yonsei University, Structural Biochemistry and Molecular Biophysics Laboratory, Department of Biochemistry (Korea, Republic of); Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison, and Biochemistry Department (United States)

    2012-10-15

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.eduhttp://pacsy.nmrfam.wisc.edu.

  5. PACSY, a relational database management system for protein structure and chemical shift analysis

    Science.gov (United States)

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo

    2012-01-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu. PMID:22903636

  6. PACSY, a relational database management system for protein structure and chemical shift analysis

    International Nuclear Information System (INIS)

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo; Lee, Weontae; Markley, John L.

    2012-01-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.eduhttp://pacsy.nmrfam.wisc.edu.

  7. Chemical shift imaging: a review

    International Nuclear Information System (INIS)

    Brateman, L.

    1986-01-01

    Chemical shift is the phenomenon that is seen when an isotope possessing a nuclear magnetic dipole moment resonates at a spectrum of resonance frequencies in a given magnetic field. These resonance frequencies, or chemical shifts, depend on the chemical environments of particular nuclei. Mapping the spatial distribution of nuclei associated with a particular chemical shift (e.g., hydrogen nuclei associated with water molecules or with lipid groups) is called chemical shift imaging. Several techniques of proton chemical shift imaging that have been applied in vivo are presented, and their clinical findings are reported and summarized. Acquiring high-resolution spectra for large numbers of volume elements in two or three dimensions may be prohibitive because of time constraints, but other methods of imaging lipid of water distributions (i.e., selective excitation, selective saturation, or variations in conventional magnetic resonance imaging pulse sequences) can provide chemical shift information. These techniques require less time, but they lack spectral information. Since fat deposition seen by chemical shift imaging may not be demonstrated by conventional magnetic resonance imaging, certain applications of chemical shift imaging, such as in the determination of fatty liver disease, have greater diagnostic utility than conventional magnetic resonance imaging. Furthermore, edge artifacts caused by chemical shift effects can be eliminated by certain selective methods of data acquisition employed in chemical shift imaging

  8. Chemical shift homology in proteins

    International Nuclear Information System (INIS)

    Potts, Barbara C.M.; Chazin, Walter J.

    1998-01-01

    The degree of chemical shift similarity for homologous proteins has been determined from a chemical shift database of over 50 proteins representing a variety of families and folds, and spanning a wide range of sequence homologies. After sequence alignment, the similarity of the secondary chemical shifts of C α protons was examined as a function of amino acid sequence identity for 37 pairs of structurally homologous proteins. A correlation between sequence identity and secondary chemical shift rmsd was observed. Important insights are provided by examining the sequence identity of homologous proteins versus percentage of secondary chemical shifts that fall within 0.1 and 0.3 ppm thresholds. These results begin to establish practical guidelines for the extent of chemical shift similarity to expect among structurally homologous proteins

  9. Increased precision for analysis of protein-ligand dissociation constants determined from chemical shift titrations

    Energy Technology Data Exchange (ETDEWEB)

    Markin, Craig J.; Spyracopoulos, Leo, E-mail: leo.spyracopoulos@ualberta.ca [University of Alberta, Department of Biochemistry (Canada)

    2012-06-15

    NMR is ideally suited for the analysis of protein-protein and protein ligand interactions with dissociation constants ranging from {approx}2 {mu}M to {approx}1 mM, and with kinetics in the fast exchange regime on the NMR timescale. For the determination of dissociation constants (K{sub D}) of 1:1 protein-protein or protein-ligand interactions using NMR, the protein and ligand concentrations must necessarily be similar in magnitude to the K{sub D}, and nonlinear least squares analysis of chemical shift changes as a function of ligand concentration is employed to determine estimates for the parameters K{sub D} and the maximum chemical shift change ({Delta}{delta}{sub max}). During a typical NMR titration, the initial protein concentration, [P{sub 0}], is held nearly constant. For this condition, to determine the most accurate parameters for K{sub D} and {Delta}{delta}{sub max} from nonlinear least squares analyses requires initial protein concentrations that are {approx}0.5 Multiplication-Sign K{sub D}, and a maximum concentration for the ligand, or titrant, of {approx}10 Multiplication-Sign [P{sub 0}]. From a practical standpoint, these requirements are often difficult to achieve. Using Monte Carlo simulations, we demonstrate that co-variation of the ligand and protein concentrations during a titration leads to an increase in the precision of the fitted K{sub D} and {Delta}{delta}{sub max} values when [P{sub 0}] > K{sub D}. Importantly, judicious choice of protein and ligand concentrations for a given NMR titration, combined with nonlinear least squares analyses using two independent variables (ligand and protein concentrations) and two parameters (K{sub D} and {Delta}{delta}{sub max}) is a straightforward approach to increasing the accuracy of measured dissociation constants for 1:1 protein-ligand interactions.

  10. Conformational analysis of the chemical shifts for molecules containing diastereotopic methylene protons

    Science.gov (United States)

    Borowski, Piotr

    2012-01-01

    Quantum chemistry SCF/GIAO calculations were carried out on a set of compounds containing diastereotopic protons. Five molecules, including recently synthesized 1,3-di(2,3-epoxypropoxy)benzene, containing the chiral or pro-chiral center and the neighboring methylene group, were chosen. The rotational averages (i.e. normalized averages with respect to the rotation about the torsional angle τ with the exponential energy weight at temperature T) calculated individually for each of the methylene protons in 1,3-di(2,3-epoxypropoxy)benzene differ by ca. 0.6 ppm, which is significantly less than the value calculated for the lowest energy conformer. This value turned out to be low enough to guarantee the proper ordering of theoretical chemical shifts, supporting the interpretation of the 1H NMR spectrum of this important compound. The rotational averages of chemical shifts for methylene protons for a given type of conformer are shown to be essentially equal to the Boltzmann averages (here, the population-weighted averages for the individual conformers representing minima on the E( τ) cross-section). The calculated Boltzmann averages in the representative conformational space may exhibit completely different ordering as compared to the chemical shifts calculated for the lowest-energy conformer. This is especially true in the case of molecules, for which no significant steric effects are present. In this case, only Boltzmann averages account for the experimental pattern of proton signals. In addition, better overall agreement with experiment (lower value of the root-mean-square deviation between calculated and measured chemical shifts) is typically obtained when Boltzmann averages are used.

  11. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    Energy Technology Data Exchange (ETDEWEB)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States); Assadi, Amir [University of Wisconsin-Madison, Mathematics Department (United States); Markley, John L. [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States)], E-mail: eghbalni@nmrfam.wisc.edu

    2005-05-15

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states.

  12. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    International Nuclear Information System (INIS)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash; Assadi, Amir; Markley, John L.

    2005-01-01

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states

  13. Quantitative analysis of deuterium using the isotopic effect on quaternary {sup 13}C NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Tamim A., E-mail: tamim.darwish@ansto.gov.au [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); Yepuri, Nageshwar Rao; Holden, Peter J. [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); James, Michael [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual {sup 1}H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D{sub 2}O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary {sup 13}C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing {sup 13}C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve {sup 13}C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ({sup 1}H, {sup 2}H) resolves closely separated quaternary {sup 13}C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. - Graphical abstract: The relative intensities of quaternary {sup 13}C {"1H,"2H} resonances are equal despite the different relaxation delays, allowing the relative abundance of the different deuterated isotopologues to be calculated using NMR fast

  14. Empirical isotropic chemical shift surfaces

    International Nuclear Information System (INIS)

    Czinki, Eszter; Csaszar, Attila G.

    2007-01-01

    A list of proteins is given for which spatial structures, with a resolution better than 2.5 A, are known from entries in the Protein Data Bank (PDB) and isotropic chemical shift (ICS) values are known from the RefDB database related to the Biological Magnetic Resonance Bank (BMRB) database. The structures chosen provide, with unknown uncertainties, dihedral angles φ and ψ characterizing the backbone structure of the residues. The joint use of experimental ICSs of the same residues within the proteins, again with mostly unknown uncertainties, and ab initio ICS(φ,ψ) surfaces obtained for the model peptides For-(l-Ala) n -NH 2 , with n = 1, 3, and 5, resulted in so-called empirical ICS(φ,ψ) surfaces for all major nuclei of the 20 naturally occurring α-amino acids. Out of the many empirical surfaces determined, it is the 13C α ICS(φ,ψ) surface which seems to be most promising for identifying major secondary structure types, α-helix, β-strand, left-handed helix (α D ), and polyproline-II. Detailed tests suggest that Ala is a good model for many naturally occurring α-amino acids. Two-dimensional empirical 13C α - 1 H α ICS(φ,ψ) correlation plots, obtained so far only from computations on small peptide models, suggest the utility of the experimental information contained therein and thus they should provide useful constraints for structure determinations of proteins

  15. Shifted Independent Component Analysis

    DEFF Research Database (Denmark)

    Mørup, Morten; Madsen, Kristoffer Hougaard; Hansen, Lars Kai

    2007-01-01

    Delayed mixing is a problem of theoretical interest and practical importance, e.g., in speech processing, bio-medical signal analysis and financial data modelling. Most previous analyses have been based on models with integer shifts, i.e., shifts by a number of samples, and have often been carried...

  16. MR chemical shift imaging of human atheroma

    International Nuclear Information System (INIS)

    Mohiaddin, R.H.; Underwood, R.; Firmin, D.; Abdulla, A.K.; Rees, S.; Longmore, D.

    1988-01-01

    The lipid content of atheromatous plaques has been measured with chemical shift MR imaging by taking advantage of the different resonance frequencies of protons in lipid and water. Fifteen postmortem aortic specimens of the human descending aorta and the aortae of seven patients with documented peripheral vascular disease were studied at 0.5 T. Spin-echo images were used to localize the lesions before acquisition of the chemical shift images. The specimens were examined histologically, and the lipid distribution in the plaque showed good correlation with the chemical shift data. Validation in vivo and clinical applications remain to be established

  17. Combined chemical shift changes and amino acid specific chemical shift mapping of protein-protein interactions

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, Frank H.; Riepl, Hubert [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany); Maurer, Till [Boehringer Ingelheim Pharma GmbH and Co. KG, Analytical Sciences Department (Germany); Gronwald, Wolfram [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany); Neidig, Klaus-Peter [Bruker BioSpin GmbH, Software Department (Germany); Kalbitzer, Hans Robert [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany)], E-mail: hans-robert.kalbitzer@biologie.uni-regensburg.de

    2007-12-15

    Protein-protein interactions are often studied by chemical shift mapping using solution NMR spectroscopy. When heteronuclear data are available the interaction interface is usually predicted by combining the chemical shift changes of different nuclei to a single quantity, the combined chemical shift perturbation {delta}{delta}{sub comb}. In this paper different procedures (published and non-published) to calculate {delta}{delta}{sub comb} are examined that include a variety of different functional forms and weighting factors for each nucleus. The predictive power of all shift mapping methods depends on the magnitude of the overlap of the chemical shift distributions of interacting and non-interacting residues and the cut-off criterion used. In general, the quality of the prediction on the basis of chemical shift changes alone is rather unsatisfactory but the combination of chemical shift changes on the basis of the Hamming or the Euclidian distance can improve the result. The corrected standard deviation to zero of the combined chemical shift changes can provide a reasonable cut-off criterion. As we show combined chemical shifts can also be applied for a more reliable quantitative evaluation of titration data.

  18. Protein Structure Determination Using Chemical Shifts

    DEFF Research Database (Denmark)

    Christensen, Anders Steen

    is determined using only chemical shifts recorded and assigned through automated processes. The CARMSD to the experimental X-ray for this structure is 1.1. Å. Additionally, the method is combined with very sparse NOE-restraints and evolutionary distance restraints and tested on several protein structures >100...

  19. Structural analysis of flavonoids in solution through DFT 1H NMR chemical shift calculations: Epigallocatechin, Kaempferol and Quercetin

    Science.gov (United States)

    De Souza, Leonardo A.; Tavares, Wagner M. G.; Lopes, Ana Paula M.; Soeiro, Malucia M.; De Almeida, Wagner B.

    2017-05-01

    In this work, we showed that comparison between experimental and theoretical 1H NMR chemical shift patterns, calculated using Density Functional Theory (DFT), can be used for the prediction of molecular structure of flavonoids in solution, what is experimentally accessible for gas phase (electron diffraction methods) and solid samples (X-ray diffraction). The best match between B3LYP/6-31G(d,p)-PCM 1H NMR calculations for B ring rotated structures and experimental spectra can provide information on the conformation adopted by polyphenols in solution (usually DMSO-d6, acetone-d6 as solvents), which may differ from solid state and gas phase observed structures, and also DFT optimized geometry in the vacuum.

  20. Accessible surface area from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hafsa, Noor E.; Arndt, David; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-07-15

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  1. chemical shift tensors in helical peptides by dipolar-modulated chemical shift recoupling NMR

    International Nuclear Information System (INIS)

    Yao Xiaolan; Yamaguchi, Satoru; Hong Mei

    2002-01-01

    The Cα chemical shift tensors of proteins contain information on the backbone conformation. We have determined the magnitude and orientation of the Cα chemical shift tensors of two peptides with α-helical torsion angles: the Ala residue in G*AL (φ=-65.7 deg., ψ=-40 deg.), and the Val residue in GG*V (φ=-81.5 deg., ψ=-50.7 deg.). The magnitude of the tensors was determined from quasi-static powder patterns recoupled under magic-angle spinning, while the orientation of the tensors was extracted from Cα-Hα and Cα-N dipolar modulated powder patterns. The helical Ala Cα chemical shift tensor has a span of 36 ppm and an asymmetry parameter of 0.89. Its σ 11 axis is 116 deg. ± 5 deg. from the Cα-Hα bond while the σ 22 axis is 40 deg. ± 5 deg. from the Cα-N bond. The Val tensor has an anisotropic span of 25 ppm and an asymmetry parameter of 0.33, both much smaller than the values for β-sheet Val found recently (Yao and Hong, 2002). The Val σ 33 axis is tilted by 115 deg. ± 5 deg. from the Cα-Hα bond and 98 deg. ± 5 deg. from the Cα-N bond. These represent the first completely experimentally determined Cα chemical shift tensors of helical peptides. Using an icosahedral representation, we compared the experimental chemical shift tensors with quantum chemical calculations and found overall good agreement. These solid-state chemical shift tensors confirm the observation from cross-correlated relaxation experiments that the projection of the Cα chemical shift tensor onto the Cα-Hα bond is much smaller in α-helices than in β-sheets

  2. Spectral fitting for signal assignment and structural analysis of uniformly {sup 13}C-labeled solid proteins by simulated annealing based on chemical shifts and spin dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Matsuki, Yoh; Akutsu, Hideo; Fujiwara, Toshimichi [Osaka University, Institute for Protein Research (Japan)], E-mail: tfjwr@protein.osaka-u.ac.jp

    2007-08-15

    We describe an approach for the signal assignment and structural analysis with a suite of two-dimensional {sup 13}C-{sup 13}C magic-angle-spinning solid-state NMR spectra of uniformly {sup 13}C-labeled peptides and proteins. We directly fit the calculated spectra to experimental ones by simulated annealing in restrained molecular dynamics program CNS as a function of atomic coordinates. The spectra are calculated from the conformation dependent chemical shift obtained with SHIFTX and the cross-peak intensities computed for recoupled dipolar interactions. This method was applied to a membrane-bound 14-residue peptide, mastoparan-X. The obtained C', C{sup {alpha}} and C{sup {beta}} chemical shifts agreed with those reported previously at the precisions of 0.2, 0.7 and 0.4 ppm, respectively. This spectral fitting program also provides backbone dihedral angles with a precision of about 50 deg. from the spectra even with resonance overlaps. The restraints on the angles were improved by applying protein database program TALOS to the obtained chemical shifts. The peptide structure provided by these restraints was consistent with the reported structure at the backbone RMSD of about 1 A.

  3. Random coil chemical shift for intrinsically disordered proteins

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin

    2011-01-01

    . Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series......, which allows the accurate random coil chemical shifts to be obtained at any pH. By correcting the random coil chemical shifts for the effects of temperature and pH, systematic biases of the secondary chemical shifts are minimized, which will improve the reliability of detection of transient secondary...

  4. Proton chemical shift imaging after myocardial infarction

    International Nuclear Information System (INIS)

    Bouchard, A.; Doyle, M.; Pohost, G.M.

    1989-01-01

    The present study was undertaken to test whether chemical shift imaging could detect spatially the lipids known to accumulate in myocardium after an ischemic insult. Seven dogs underwent a 24-hour coronary artery occlusion. Hearts were removed and imaged ex vivo by the Dixon method (1.5 T), and myocardial samples were obtained for high-resolution H-1 spectroscopy. Lipid images revealed regions of increased signal intensity in the periphery f the myocardial infarction. The zones of high lipid signal corresponded to zones with elevated mobile lipids as detected by H-1 spectroscopy

  5. Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis.

    Science.gov (United States)

    Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe

    2017-12-06

    Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.

  6. The calculation of proton chemical shifts in hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Raymond J [Liverpool Univ. (United Kingdom). Dept. of Chemistry

    1994-12-31

    Novel extension of the CHARGE3 semi-empirical calculation of the partial atomic charges in molecules are described which allow the accurate calculation of the proton chemical shifts of a variety of acyclic alkanes. This simple scheme predicts the proton chemical shifts of all the simple alkanes, cyclohexane and methyl cyclohexanes, norbornane, trans-decalin and trans perhydrophenanthrene, comprising a range of chemical shifts from 0.3 to 2.2 {delta} with the known substituent chemical shifts of other functional groups this could allow the general prediction of proton chemical shifts in a simple and useful format. (author) 13 refs., 2 figs.

  7. De novo protein structure generation from incomplete chemical shift assignments

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Vernon, Robert; Baker, David [University of Washington, Department of Biochemistry and Howard Hughes Medical Institute (United States); Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: bax@nih.gov

    2009-02-15

    NMR chemical shifts provide important local structural information for proteins. Consistent structure generation from NMR chemical shift data has recently become feasible for proteins with sizes of up to 130 residues, and such structures are of a quality comparable to those obtained with the standard NMR protocol. This study investigates the influence of the completeness of chemical shift assignments on structures generated from chemical shifts. The Chemical-Shift-Rosetta (CS-Rosetta) protocol was used for de novo protein structure generation with various degrees of completeness of the chemical shift assignment, simulated by omission of entries in the experimental chemical shift data previously used for the initial demonstration of the CS-Rosetta approach. In addition, a new CS-Rosetta protocol is described that improves robustness of the method for proteins with missing or erroneous NMR chemical shift input data. This strategy, which uses traditional Rosetta for pre-filtering of the fragment selection process, is demonstrated for two paramagnetic proteins and also for two proteins with solid-state NMR chemical shift assignments.

  8. Chemical shift-dependent apparent scalar couplings: An alternative concept of chemical shift monitoring in multi-dimensional NMR experiments

    International Nuclear Information System (INIS)

    Kwiatkowski, Witek; Riek, Roland

    2003-01-01

    The paper presents an alternative technique for chemical shift monitoring in a multi-dimensional NMR experiment. The monitored chemical shift is coded in the line-shape of a cross-peak through an apparent residual scalar coupling active during an established evolution period or acquisition. The size of the apparent scalar coupling is manipulated with an off-resonance radio-frequency pulse in order to correlate the size of the coupling with the position of the additional chemical shift. The strength of this concept is that chemical shift information is added without an additional evolution period and accompanying polarization transfer periods. This concept was incorporated into the three-dimensional triple-resonance experiment HNCA, adding the information of 1 H α chemical shifts. The experiment is called HNCA coded HA, since the chemical shift of 1 H α is coded in the line-shape of the cross-peak along the 13 C α dimension

  9. Using chemical shift perturbation to characterise ligand binding.

    Science.gov (United States)

    Williamson, Mike P

    2013-08-01

    Chemical shift perturbation (CSP, chemical shift mapping or complexation-induced changes in chemical shift, CIS) follows changes in the chemical shifts of a protein when a ligand is added, and uses these to determine the location of the binding site, the affinity of the ligand, and/or possibly the structure of the complex. A key factor in determining the appearance of spectra during a titration is the exchange rate between free and bound, or more specifically the off-rate koff. When koff is greater than the chemical shift difference between free and bound, which typically equates to an affinity Kd weaker than about 3μM, then exchange is fast on the chemical shift timescale. Under these circumstances, the observed shift is the population-weighted average of free and bound, which allows Kd to be determined from measurement of peak positions, provided the measurements are made appropriately. (1)H shifts are influenced to a large extent by through-space interactions, whereas (13)Cα and (13)Cβ shifts are influenced more by through-bond effects. (15)N and (13)C' shifts are influenced both by through-bond and by through-space (hydrogen bonding) interactions. For determining the location of a bound ligand on the basis of shift change, the most appropriate method is therefore usually to measure (15)N HSQC spectra, calculate the geometrical distance moved by the peak, weighting (15)N shifts by a factor of about 0.14 compared to (1)H shifts, and select those residues for which the weighted shift change is larger than the standard deviation of the shift for all residues. Other methods are discussed, in particular the measurement of (13)CH3 signals. Slow to intermediate exchange rates lead to line broadening, and make Kd values very difficult to obtain. There is no good way to distinguish changes in chemical shift due to direct binding of the ligand from changes in chemical shift due to allosteric change. Ligand binding at multiple sites can often be characterised, by

  10. Identifying secondary structures in proteins using NMR chemical shift 3D correlation maps

    Science.gov (United States)

    Kumari, Amrita; Dorai, Kavita

    2013-06-01

    NMR chemical shifts are accurate indicators of molecular environment and have been extensively used as aids in protein structure determination. This work focuses on creating empirical 3D correlation maps of backbone chemical shift nuclei for use as identifiers of secondary structure elements in proteins. A correlated database of backbone nuclei chemical shifts was constructed from experimental structural data gathered from entries in the Protein Data Bank (PDB) as well as isotropic chemical shift values from the RefDB database. Rigorous statistical analysis of the maps led to the conclusion that specific correlations between triplets of backbone chemical shifts are best able to differentiate between different secondary structures such as α-helices, β-strands and turns. The method is compared with similar techniques that use NMR chemical shift information as aids in biomolecular structure determination and performs well in tests done on experimental data determined for different types of proteins, including large multi-domain proteins and membrane proteins.

  11. Characterization of mu s-ms dynamics of proteins using a combined analysis of N-15 NMR relaxation and chemical shift: Conformational exchange in plastocyanin induced by histidine protonations

    DEFF Research Database (Denmark)

    Hass, M. A. S.; Thuesen, Marianne Hallberg; Christensen, Hans Erik Mølager

    2004-01-01

    of the exchanging species can be determined independently of the relaxation rates. The applicability of the approach is demonstrated by a detailed analysis of the conformational exchange processes previously observed in the reduced form of the blue copper protein, plastocyanin from the cyanobacteria Anabaena......An approach is presented that allows a detailed, quantitative characterization of conformational exchange processes in proteins on the mus-ms time scale. The approach relies on a combined analysis of NMR relaxation rates and chemical shift changes and requires that the chemical shift...... quantitatively by the correlation between the R-ex terms and the corresponding chemical shift differences of the exchanging species. By this approach, the R-ex terms of N-15 nuclei belonging to contiguous regions in the protein could be assigned to the same exchange process. Furthermore, the analysis...

  12. A complete set of NMR chemical shifts and spin-spin coupling constants for L-Alanyl-L-Alanine zwitterion and analysis of its conformational behavior

    Czech Academy of Sciences Publication Activity Database

    Bouř, Petr; Buděšínský, Miloš; Špirko, Vladimír; Kapitán, Josef; Šebestík, Jaroslav; Sychrovský, Vladimír

    2005-01-01

    Roč. 127, - (2005), 17079-17089 ISSN 0002-7863 R&D Projects: GA AV ČR(CZ) IAA4055104; GA ČR(CZ) GA203/05/0388 Institutional research plan: CEZ:AV0Z40550506 Keywords : NMR * chemical shifts * coupling constants Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.419, year: 2005

  13. Rapid and reliable protein structure determination via chemical shift threading.

    Science.gov (United States)

    Hafsa, Noor E; Berjanskii, Mark V; Arndt, David; Wishart, David S

    2018-01-01

    Protein structure determination using nuclear magnetic resonance (NMR) spectroscopy can be both time-consuming and labor intensive. Here we demonstrate how chemical shift threading can permit rapid, robust, and accurate protein structure determination using only chemical shift data. Threading is a relatively old bioinformatics technique that uses a combination of sequence information and predicted (or experimentally acquired) low-resolution structural data to generate high-resolution 3D protein structures. The key motivations behind using NMR chemical shifts for protein threading lie in the fact that they are easy to measure, they are available prior to 3D structure determination, and they contain vital structural information. The method we have developed uses not only sequence and chemical shift similarity but also chemical shift-derived secondary structure, shift-derived super-secondary structure, and shift-derived accessible surface area to generate a high quality protein structure regardless of the sequence similarity (or lack thereof) to a known structure already in the PDB. The method (called E-Thrifty) was found to be very fast (often chemical shift refinement, these results suggest that protein structure determination, using only NMR chemical shifts, is becoming increasingly practical and reliable. E-Thrifty is available as a web server at http://ethrifty.ca .

  14. Relative Configuration of Natural Products Using NMR Chemical Shifts

    Science.gov (United States)

    By comparing calculated with experimental NMR chemical shifts, we were able to determine the relative configurations of three monoterpene diastereomers produced by the walkingstick Anisomorpha buprestoides. The combined RMSDs of both 1H and 13C quantum chemically calculated shifts were able to predi...

  15. A probabilistic approach for validating protein NMR chemical shift assignments

    International Nuclear Information System (INIS)

    Wang Bowei; Wang, Yunjun; Wishart, David S.

    2010-01-01

    It has been estimated that more than 20% of the proteins in the BMRB are improperly referenced and that about 1% of all chemical shift assignments are mis-assigned. These statistics also reflect the likelihood that any newly assigned protein will have shift assignment or shift referencing errors. The relatively high frequency of these errors continues to be a concern for the biomolecular NMR community. While several programs do exist to detect and/or correct chemical shift mis-referencing or chemical shift mis-assignments, most can only do one, or the other. The one program (SHIFTCOR) that is capable of handling both chemical shift mis-referencing and mis-assignments, requires the 3D structure coordinates of the target protein. Given that chemical shift mis-assignments and chemical shift re-referencing issues should ideally be addressed prior to 3D structure determination, there is a clear need to develop a structure-independent approach. Here, we present a new structure-independent protocol, which is based on using residue-specific and secondary structure-specific chemical shift distributions calculated over small (3-6 residue) fragments to identify mis-assigned resonances. The method is also able to identify and re-reference mis-referenced chemical shift assignments. Comparisons against existing re-referencing or mis-assignment detection programs show that the method is as good or superior to existing approaches. The protocol described here has been implemented into a freely available Java program called 'Probabilistic Approach for protein Nmr Assignment Validation (PANAV)' and as a web server (http://redpoll.pharmacy.ualberta.ca/PANAVhttp://redpoll.pharmacy.ualberta.ca/PANAV) which can be used to validate and/or correct as well as re-reference assigned protein chemical shifts.

  16. Validation of archived chemical shifts through atomic coordinates

    Science.gov (United States)

    Rieping, Wolfgang; Vranken, Wim F

    2010-01-01

    The public archives containing protein information in the form of NMR chemical shift data at the BioMagResBank (BMRB) and of 3D structure coordinates at the Protein Data Bank are continuously expanding. The quality of the data contained in these archives, however, varies. The main issue for chemical shift values is that they are determined relative to a reference frequency. When this reference frequency is set incorrectly, all related chemical shift values are systematically offset. Such wrongly referenced chemical shift values, as well as other problems such as chemical shift values that are assigned to the wrong atom, are not easily distinguished from correct values and effectively reduce the usefulness of the archive. We describe a new method to correct and validate protein chemical shift values in relation to their 3D structure coordinates. This method classifies atoms using two parameters: the per-atom solvent accessible surface area (as calculated from the coordinates) and the secondary structure of the parent amino acid. Through the use of Gaussian statistics based on a large database of 3220 BMRB entries, we obtain per-entry chemical shift corrections as well as Z scores for the individual chemical shift values. In addition, information on the error of the correction value itself is available, and the method can retain only dependable correction values. We provide an online resource with chemical shift, atom exposure, and secondary structure information for all relevant BMRB entries (http://www.ebi.ac.uk/pdbe/nmr/vasco) and hope this data will aid the development of new chemical shift-based methods in NMR. Proteins 2010. © 2010 Wiley-Liss, Inc. PMID:20602353

  17. Probabilistic validation of protein NMR chemical shift assignments

    International Nuclear Information System (INIS)

    Dashti, Hesam; Tonelli, Marco; Lee, Woonghee; Westler, William M.; Cornilescu, Gabriel; Ulrich, Eldon L.; Markley, John L.

    2016-01-01

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data. ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/ http://areca.nmrfam.wisc.edu/

  18. Probabilistic validation of protein NMR chemical shift assignments

    Energy Technology Data Exchange (ETDEWEB)

    Dashti, Hesam [University of Wisconsin-Madison, Graduate Program in Biophysics, Biochemistry Department (United States); Tonelli, Marco; Lee, Woonghee; Westler, William M.; Cornilescu, Gabriel [University of Wisconsin-Madison, Biochemistry Department, National Magnetic Resonance Facility at Madison (United States); Ulrich, Eldon L. [University of Wisconsin-Madison, BioMagResBank, Biochemistry Department (United States); Markley, John L., E-mail: markley@nmrfam.wisc.edu, E-mail: jmarkley@wisc.edu [University of Wisconsin-Madison, Biochemistry Department, National Magnetic Resonance Facility at Madison (United States)

    2016-01-15

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data. ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/ http://areca.nmrfam.wisc.edu/.

  19. Is the Lamb shift chemically significant?

    Science.gov (United States)

    Dyall, Kenneth G.; Bauschlicher, Charles W., Jr.; Schwenke, David W.; Pyykko, Pekka; Arnold, James (Technical Monitor)

    2001-01-01

    The contribution of the Lamb shift to the atomization energies of some prototype molecules, BF3, AlF3, and GaF3, is estimated by a perturbation procedure. It is found to be in the range of 3-5% of the one-electron scalar relativistic contribution to the atomization energy. The maximum absolute value is 0.2 kcal/mol for GaF3. These sample calculations indicate that the Lamb shift is probably small enough to be neglected for energetics of molecules containing light atoms if the target accuracy is 1 kcal/mol, but for higher accuracy calculations and for molecules containing heavy elements it must be considered.

  20. A procedure to validate and correct the {sup 13}C chemical shift calibration of RNA datasets

    Energy Technology Data Exchange (ETDEWEB)

    Aeschbacher, Thomas; Schubert, Mario, E-mail: schubert@mol.biol.ethz.ch; Allain, Frederic H.-T., E-mail: allain@mol.biol.ethz.ch [ETH Zuerich, Institute for Molecular Biology and Biophysics (Switzerland)

    2012-02-15

    Chemical shifts reflect the structural environment of a certain nucleus and can be used to extract structural and dynamic information. Proper calibration is indispensable to extract such information from chemical shifts. Whereas a variety of procedures exist to verify the chemical shift calibration for proteins, no such procedure is available for RNAs to date. We present here a procedure to analyze and correct the calibration of {sup 13}C NMR data of RNAs. Our procedure uses five {sup 13}C chemical shifts as a reference, each of them found in a narrow shift range in most datasets deposited in the Biological Magnetic Resonance Bank. In 49 datasets we could evaluate the {sup 13}C calibration and detect errors or inconsistencies in RNA {sup 13}C chemical shifts based on these chemical shift reference values. More than half of the datasets (27 out of those 49) were found to be improperly referenced or contained inconsistencies. This large inconsistency rate possibly explains that no clear structure-{sup 13}C chemical shift relationship has emerged for RNA so far. We were able to recalibrate or correct 17 datasets resulting in 39 usable {sup 13}C datasets. 6 new datasets from our lab were used to verify our method increasing the database to 45 usable datasets. We can now search for structure-chemical shift relationships with this improved list of {sup 13}C chemical shift data. This is demonstrated by a clear relationship between ribose {sup 13}C shifts and the sugar pucker, which can be used to predict a C2 Prime - or C3 Prime -endo conformation of the ribose with high accuracy. The improved quality of the chemical shift data allows statistical analysis with the potential to facilitate assignment procedures, and the extraction of restraints for structure calculations of RNA.

  1. Solvent Effects on Oxygen-17 Chemical Shifts in Amides. Quantitative Linear Solvation Shift Relationships

    Science.gov (United States)

    Díez, Ernesto; Fabián, Jesús San; Gerothanassis, Ioannis P.; Esteban, Angel L.; Abboud, José-Luis M.; Contreras, Ruben H.; de Kowalewski, Dora G.

    1997-01-01

    A multiple-linear-regression analysis (MLRA) has been carried out using the Kamlet-Abboud-Taft (KAT) solvatochromic parameters in order to elucidate and quantify the solvent effects on the17O chemical shifts ofN-methylformamide (NMF),N,N-dimethylformamide (DMF),N-methylacetamide (NMA), andN,N-dimethylacetamide (DMA). The chemical shifts of the four molecules show the same dependence (in ppm) on the solvent polarity-polarizability, i.e., -22π*. The influence of the solvent hydrogen-bond-donor (HBD) acidities is slightly larger for the acetamides NMA and DMA, i.e., -48α, than for the formamides NMF and DMF, i.e., -42α. The influence of the solvent hydrogen-bond-acceptor (HBA) basicities is negligible for the nonprotic molecules DMF and DMA but significant for the protic molecules NMF and NMA, i.e., -9β. The effect of substituting the N-H hydrogen by a methyl group amounts to -5.9 ppm in NMF and 5.4 ppm in NMA. The effect of substituting the O=C-H hydrogen amounts to 5.5 ppm in NMF and 16.8 ppm in DMF. The model of specific hydration sites of amides by I. P. Gerothanassis and C. Vakka [J. Org. Chem.59,2341 (1994)] is settled in a more quantitative basis and the model by M. I. Burgar, T. E. St. Amour, and D. Fiat [J. Phys. Chem.85,502 (1981)] is critically evaluated.17O hydration shifts have been calculated for formamide (FOR) by the ab initio LORG method at the 6-31G* level. For a formamide surrounded by the four in-plane molecules of water in the first hydration shell, the calculated17O shift change due to the four hydrogen bonds, -83.2 ppm, is smaller than the empirical hydration shift, -100 ppm. The17O shift change from each out-of-plane water molecule hydrogen-bonded to the amide oxygen is -18.0 ppm. These LORG results support the conclusion that no more than four water molecules are hydrogen-bonded to the amide oxygen in formamide.

  2. Chemical shifts of oxygen-17 NMR in polyoxotungstates

    International Nuclear Information System (INIS)

    Kazanskij, L.P.; Fedotov, M.A.; Spitsyn, V.I.

    1977-01-01

    17 O NMR spectra of aqueous solutions containing paratungstate BH 2 W 12 O 42 10- and metatungstate H 2 W 12 O 40 6- anions have been measured. On the basis of the obtained data a scale of chemical shifts for oxygen atoms connected by various bonds with tungsten atoms is suggested. The obtained data are compared with the Raman spectra of crystalline salts and their aqueous solutions. Chemical shifts of 17 O NMR spectra have been also measured in other heteropolyanions

  3. Chemical Shift Imaging (CSI) by precise object displacement

    OpenAIRE

    Leclerc, Sebastien; Trausch, Gregory; Cordier, Benoit; Grandclaude, Denis; Retournard, Alain; Fraissard, Jacques; Canet, Daniel

    2006-01-01

    International audience; A mechanical device (NMR lift) has been built for displacing vertically an object (typically a NMR sample tube) inside the NMR probe with an accuracy of 1 Μm. A series of single pulse experiments are performed for incremented vertical positions of the sample. With a sufficiently spatially selective rf field, one obtains chemical shift information along the displacement direction (one dimensional Chemical Shift Imaging – CSI). Knowing the vertical radio-frequency (rf) f...

  4. Unraveling the meaning of chemical shifts in protein NMR.

    Science.gov (United States)

    Berjanskii, Mark V; Wishart, David S

    2017-11-01

    Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    International Nuclear Information System (INIS)

    Fritzsching, K. J.; Yang, Y.; Schmidt-Rohr, K.; Hong Mei

    2013-01-01

    We introduce a Python-based program that utilizes the large database of 13 C and 15 N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D 13 C– 13 C, 15 N– 13 C, or 3D 15 N– 13 C– 13 C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D 13 C– 13 C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the Cα and Cβ chemical shifts, the highest-ranked PLUQ assignments were 40–60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO–Cα–Cβ or N–Cα–Cβ), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  6. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsching, K. J.; Yang, Y.; Schmidt-Rohr, K.; Hong Mei, E-mail: mhong@iastate.edu [Iowa State University, Department of Chemistry (United States)

    2013-06-15

    We introduce a Python-based program that utilizes the large database of {sup 13}C and {sup 15}N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D {sup 13}C-{sup 13}C, {sup 15}N-{sup 13}C, or 3D {sup 15}N-{sup 13}C-{sup 13}C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D {sup 13}C-{sup 13}C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the C{alpha} and C{beta} chemical shifts, the highest-ranked PLUQ assignments were 40-60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO-C{alpha}-C{beta} or N-C{alpha}-C{beta}), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  7. Empirical correlation between protein backbone {sup 15}N and {sup 13}C secondary chemical shifts and its application to nitrogen chemical shift re-referencing

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liya [Cold Spring Harbor Laboratory (United States); Markley, John L. [University of Wisconsin, Biochemistry Department (United States)], E-mail: markley@nmrfam.wisc.edu

    2009-06-15

    The linear analysis of chemical shifts (LACS) has provided a robust method for identifying and correcting {sup 13}C chemical shift referencing problems in data from protein NMR spectroscopy. Unlike other approaches, LACS does not require prior knowledge of the three-dimensional structure or inference of the secondary structure of the protein. It also does not require extensive assignment of the NMR data. We report here a way of extending the LACS approach to {sup 15}N NMR data from proteins, so as to enable the detection and correction of inconsistencies in chemical shift referencing for this nucleus. The approach is based on our finding that the secondary {sup 15}N chemical shift of the backbone nitrogen atom of residue i is strongly correlated with the secondary chemical shift difference (experimental minus random coil) between the alpha and beta carbons of residue i - 1. Thus once alpha and beta {sup 13}C chemical shifts are available (their difference is referencing error-free), the {sup 15}N referencing can be validated, and an appropriate offset correction can be derived. This approach can be implemented prior to a structure determination and can be used to analyze potential referencing problems in database data not associated with three-dimensional structure. Application of the LACS algorithm to the current BMRB protein chemical shift database, revealed that nearly 35% of the BMRB entries have {delta}{sup 15}N values mis-referenced by over 0.7 ppm and over 25% of them have {delta}{sup 1}H{sup N} values mis-referenced by over 0.12 ppm. One implication of the findings reported here is that a backbone {sup 15}N chemical shift provides a better indicator of the conformation of the preceding residue than of the residue itself.

  8. Counterion influence on chemical shifts in strychnine salts

    Energy Technology Data Exchange (ETDEWEB)

    Metaxas, Athena E.; Cort, John R.

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here we characterize the relative influence of different counterions on 1H and 13C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD) and chloroform-d (CDCl3) solvents. In organic solvents, but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. The observed effects are much greater in organic solvents than in water. Slight concentration-dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared to the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts.

  9. 1H and 13C NMR Chemical Shift Assignments and Conformational Analysis for the Two Diastereomers of the Vitamin K Epoxide Reductase Inhibitor Brodifacoum

    International Nuclear Information System (INIS)

    Cort, John R.; Cho, Herman M.

    2009-01-01

    Proton and 13C NMR chemical shift assignments and 1H-1H scalar couplings for the two diastereomers of the vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined from acetone solutions containing both diastereomers. Data were obtained from homo- and heteronuclear correlation spectra acquired at 1H frequencies of 750 and 900 MHz over a 268-303 K temperature range. Conformations inferred from scalar coupling and 1-D NOE measurements exhibit large differences between the diastereomers. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  10. Evaluating amber force fields using computed NMR chemical shifts.

    Science.gov (United States)

    Koes, David R; Vries, John K

    2017-10-01

    NMR chemical shifts can be computed from molecular dynamics (MD) simulations using a template matching approach and a library of conformers containing chemical shifts generated from ab initio quantum calculations. This approach has potential utility for evaluating the force fields that underlie these simulations. Imperfections in force fields generate flawed atomic coordinates. Chemical shifts obtained from flawed coordinates have errors that can be traced back to these imperfections. We use this approach to evaluate a series of AMBER force fields that have been refined over the course of two decades (ff94, ff96, ff99SB, ff14SB, ff14ipq, and ff15ipq). For each force field a series of MD simulations are carried out for eight model proteins. The calculated chemical shifts for the 1 H, 15 N, and 13 C a atoms are compared with experimental values. Initial evaluations are based on root mean squared (RMS) errors at the protein level. These results are further refined based on secondary structure and the types of atoms involved in nonbonded interactions. The best chemical shift for identifying force field differences is the shift associated with peptide protons. Examination of the model proteins on a residue by residue basis reveals that force field performance is highly dependent on residue position. Examination of the time course of nonbonded interactions at these sites provides explanations for chemical shift differences at the atomic coordinate level. Results show that the newer ff14ipq and ff15ipq force fields developed with the implicitly polarized charge method perform better than the older force fields. © 2017 Wiley Periodicals, Inc.

  11. Prediction of proton chemical shifts in RNA - Their use in structure refinement and validation

    International Nuclear Information System (INIS)

    Cromsigt, Jenny A.M.T.C.; Hilbers, Cees W.; Wijmenga, Sybren S.

    2001-01-01

    An analysis is presented of experimental versus calculated chemical shifts of the non-exchangeable protons for 28 RNA structures deposited in the Protein Data Bank, covering a wide range of structural building blocks. We have used existing models for ring-current and magnetic-anisotropy contributions to calculate the proton chemical shifts from the structures. Two different parameter sets were tried: (i) parameters derived by Ribas-Prado and Giessner-Prettre (GP set) [(1981) J. Mol. Struct.,76, 81-92.]; (ii) parameters derived by Case [(1995) J. Biomol. NMR, 6, 341-346]. Both sets lead to similar results. The detailed analysis was carried using the GP set. The root-mean-square-deviation between the predicted and observed chemical shifts of the complete database is 0.16 ppm with a Pearson correlation coefficient of 0.79. For protons in the usually well-defined A-helix environment these numbers are, 0.08 ppm and 0.96, respectively. As a result of this good correspondence, a reliable analysis could be made of the structural dependencies of the 1 H chemical shifts revealing their physical origin. For example, a down-field shift of either H2' or H3' or both indicates a high-syn/syn χ-angle. In an A-helix it is essentially the 5'-neighbor that affects the chemical shifts of H5, H6 and H8 protons. The H5, H6 and H8 resonances can therefore be assigned in an A-helix on the basis of their observed chemical shifts. In general, the chemical shifts were found to be quite sensitive to structural changes. We therefore propose that a comparison between calculated and observed 1 H chemical shifts is a good tool for validation and refinement of structures derived from NOEs and J-couplings

  12. Nucleic acid helix structure determination from NMR proton chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Werf, Ramon M. van der; Tessari, Marco; Wijmenga, Sybren S., E-mail: S.Wijmenga@science.ru.nl [Radboud University Nijmegen, Department of Biophysical Chemistry, Institute of Molecules and Materials (Netherlands)

    2013-06-15

    We present a method for de novo derivation of the three-dimensional helix structure of nucleic acids using non-exchangeable proton chemical shifts as sole source of experimental restraints. The method is called chemical shift de novo structure derivation protocol employing singular value decomposition (CHEOPS) and uses iterative singular value decomposition to optimize the structure in helix parameter space. The correct performance of CHEOPS and its range of application are established via an extensive set of structure derivations using either simulated or experimental chemical shifts as input. The simulated input data are used to assess in a defined manner the effect of errors or limitations in the input data on the derived structures. We find that the RNA helix parameters can be determined with high accuracy. We finally demonstrate via three deposited RNA structures that experimental proton chemical shifts suffice to derive RNA helix structures with high precision and accuracy. CHEOPS provides, subject to further development, new directions for high-resolution NMR structure determination of nucleic acids.

  13. Chemical Security Analysis Center

    Data.gov (United States)

    Federal Laboratory Consortium — In 2006, by Presidential Directive, DHS established the Chemical Security Analysis Center (CSAC) to identify and assess chemical threats and vulnerabilities in the...

  14. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Joshua D.; Summers, Michael F. [University of Maryland Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce.johnson@asrc.cuny.edu [University of Maryland Baltimore County, Department of Chemistry and Biochemistry (United States)

    2015-09-15

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR and {sup 13}C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and {sup 1}H and {sup 13}C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA {sup 1}H and {sup 13}C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides.

  15. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin

    2011-01-01

    Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues....... The contributions from the neighboring residues are typically removed by using neighbor correction factors determined based on each residue's effect on glycine chemical shifts. Due to its unusual conformational freedom, glycine may be particularly unrepresentative for the remaining residue types. In this study, we...... in the conformational ensemble are an important source of neighbor effects in disordered proteins. Glutamine derived random coil chemical shifts and correction factors modestly improve our ability to predict (13)C chemical shifts of intrinsically disordered proteins compared to existing datasets, and may thus improve...

  16. MR chemical shift imaging and spectroscopy of atherosclerotic plaque

    International Nuclear Information System (INIS)

    Vinitski, S.; Consigny, P.M.; Shapiro, M.J.; Janes, N.; Smullens, S.N.; Rifkin, M.D.

    1989-01-01

    The purpose of this study was to develop a technique for in vivo imaging and characterization of atherosclerotic plaque. The authors used a spin-echo technique with a short echo time (TE) of 11 msec. Lipid/water suppression was achieved by means of hybrid chemical shift imaging. Lesions were induced in three rabbits by a combination of balloon denudation of the abdominal aorta and a high-cholesterol diet. Following in vivo imaging of these rabbit aortas and human carotid arteries (1.5 T), the animals were killed or carotid endarterectomy was performed so that the plaques could be excised. The plaques were then analyzed in vitro both histologically and with high-resolution spectroscopy (8.5 T). Use of the short TE improved lesion visualization. The fat/water suppression showed only a small amount of mobile lipids in plaque. Both MR spectroscopic and histologic analysis corroborated these images. The composition of atherosclerotic plaques in both humans and rabbits was demonstrated to be heterogeneous, with predominantly nonmobile lipids. These results suggest that the combination of short TE MR imaging and fat/water suppression can identify plaque and delineate areas containing mobile lipids

  17. Improving 3D structure prediction from chemical shift data

    Energy Technology Data Exchange (ETDEWEB)

    Schot, Gijs van der [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Zhang, Zaiyong [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany); Vernon, Robert [University of Washington, Department of Biochemistry (United States); Shen, Yang [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Vranken, Wim F. [VIB, Department of Structural Biology (Belgium); Baker, David [University of Washington, Department of Biochemistry (United States); Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Lange, Oliver F., E-mail: oliver.lange@tum.de [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany)

    2013-09-15

    We report advances in the calculation of protein structures from chemical shift nuclear magnetic resonance data alone. Our previously developed method, CS-Rosetta, assembles structures from a library of short protein fragments picked from a large library of protein structures using chemical shifts and sequence information. Here we demonstrate that combination of a new and improved fragment picker and the iterative sampling algorithm RASREC yield significant improvements in convergence and accuracy. Moreover, we introduce improved criteria for assessing the accuracy of the models produced by the method. The method was tested on 39 proteins in the 50-100 residue size range and yields reliable structures in 70 % of the cases. All structures that passed the reliability filter were accurate (<2 A RMSD from the reference)

  18. Anisotropy of the fluorine chemical shift tensor in UF6

    International Nuclear Information System (INIS)

    Rigny, P.

    1965-04-01

    An 19 F magnetic resonance study of polycrystalline UF 6 is presented. The low temperature complex line can be analyzed as the superposition of two distinct lines, which is attributed to a distortion of the UF 6 octahedron in the solid. The shape of the two components is studied. Their width is much larger than the theoretical dipolar width, and must be explained by large anisotropies of the fluorine chemical shift tensors. The resulting shape functions of the powder spectra are determined. The values of the parameters of the chemical shift tensors yield estimates of the characters of the U-F bonds, and this gives some information on the ground state electronic wave function of the UF 6 molecule in the solid. (author) [fr

  19. Aromaticity of graphene nanoflakes in a new way: fragment analysis by combination of the nucleus-independent chemical shifts and the anisotropy of current induced density.

    Science.gov (United States)

    Li, Qing; Li, Chun-Min; Xu, Hong-Liang; Su, Zhong-Min

    2017-08-01

    A graphene nanoflake (GNF) is a polycyclic aromatic hydrocarbon (PAH) with a huge two-dimensional π-conjugated carbon material in which a central benzene ring is surrounded by identical benzene-type rings through infinite alternant method. In this paper, we explore the structure-aromaticity relationship of the GNFs and the GNFs with hollow sites (GNFHs) by combining the nucleus-independent chemical shifts (NICS) with the anisotropy of the current induced density (ACID). Firstly, the benzene is a typical aromatic molecule (NICS = -9.671 ppm), GNFs 1-6 is darned with benzene and the corresponding GNFHs 1'-6'. Secondly, the NICS values of GNFs 1-6 alternately vary: -1.214 (1) > -13.847 (2)  -14.530 (4)  -13.978 (6) ppm, the GNFs (2, 4, 6) with even fragments of annulene have larger aromaticity than that of GNFs (1, 3, 5) with odd fragments of annulene. Significantly, the NICS values of GNFs 1-6 can also be fragment analyzed by the NICS values and ACID of benzene and corresponding GNFHs 1'-6'. The NICS values for GNFs (2, 4, 6) can be roughly estimated by the NICS value of benzene minus the NICS value of the GNFHs (2', 4', 6'), respectively. The NICS values for GNFs (1, 3, 5) can be roughly estimated by the NICS value of the GNFHs (1', 3', 5') minus the NICS value of benzene, respectively. We hope that the present work can provide a simple and reliable method for the rational design of the GNF with aromaticity, which may be used to understand the origin of the graphene nanoflake aromatic properties.

  20. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    International Nuclear Information System (INIS)

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-01-01

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method

  1. Identify Beta-Hairpin Motifs with Quadratic Discriminant Algorithm Based on the Chemical Shifts.

    Directory of Open Access Journals (Sweden)

    Feng YongE

    Full Text Available Successful prediction of the beta-hairpin motif will be helpful for understanding the of the fold recognition. Some algorithms have been proposed for the prediction of beta-hairpin motifs. However, the parameters used by these methods were primarily based on the amino acid sequences. Here, we proposed a novel model for predicting beta-hairpin structure based on the chemical shift. Firstly, we analyzed the statistical distribution of chemical shifts of six nuclei in not beta-hairpin and beta-hairpin motifs. Secondly, we used these chemical shifts as features combined with three algorithms to predict beta-hairpin structure. Finally, we achieved the best prediction, namely sensitivity of 92%, the specificity of 94% with 0.85 of Mathew's correlation coefficient using quadratic discriminant analysis algorithm, which is clearly superior to the same method for the prediction of beta-hairpin structure from 20 amino acid compositions in the three-fold cross-validation. Our finding showed that the chemical shift is an effective parameter for beta-hairpin prediction, suggesting the quadratic discriminant analysis is a powerful algorithm for the prediction of beta-hairpin.

  2. Role of quantitative chemical shift magnetic resonance imaging and chemical shift subtraction technique in discriminating adenomatous from non adenomatous adrenal solid lesions

    Directory of Open Access Journals (Sweden)

    Ahmed H. Afifi

    2017-03-01

    Conclusion: The signal intensity index and adrenal to spleen ratio are the most reliable quantitative chemical shift MRI methods in differentiation of adrenal adenomas from other non-adenomatous adrenal solid lesions. Chemical shift subtraction MRI is a recent technique that gives highly confident discrimination between two categories of pathology without using of any reference organ.

  3. Identification of helix capping and {beta}-turn motifs from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2012-03-15

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and {sup 13}C{sup {beta}} chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of {beta}-turns: I, II, I Prime , II Prime and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and {beta}-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7-0.9 for the Matthews correlation coefficient of its predictions far exceed those attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures.

  4. Database proton NMR chemical shifts for RNA signal assignment and validation

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Shawn; Heng Xiao [University of Maryland, Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce@onemoonscientific.com [University of Maryland, Baltimore County, Department of Chemistry and Biochemistry (United States); Summers, Michael F., E-mail: summers@hhmi.umbc.edu [University of Maryland, Baltimore County, Howard Hughes Medical Institute (United States)

    2013-01-15

    The Biological Magnetic Resonance Data Bank contains NMR chemical shift depositions for 132 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR chemical shifts reported for non-exchangeable protons of residues that reside within A-form helical regions of these RNAs. The analysis focused on the central base pair within a stretch of three adjacent base pairs (BP triplets), and included both Watson-Crick (WC; G:C, A:U) and G:U wobble pairs. Chemical shift values were included for all 4{sup 3} possible WC-BP triplets, as well as 137 additional triplets that contain one or more G:U wobbles. Sequence-dependent chemical shift correlations were identified, including correlations involving terminating base pairs within the triplets and canonical and non-canonical structures adjacent to the BP triplets (i.e. bulges, loops, WC and non-WC BPs), despite the fact that the NMR data were obtained under different conditions of pH, buffer, ionic strength, and temperature. A computer program (RNAShifts) was developed that enables convenient comparison of RNA {sup 1}H NMR assignments with database predictions, which should facilitate future signal assignment/validation efforts and enable rapid identification of non-canonical RNA structures and RNA-ligand/protein interaction sites.

  5. Skeletal and chlorine effects on 13C-NMR chemical shifts of chlorinated polycyclic systems

    Directory of Open Access Journals (Sweden)

    Costa V.E.U.

    1999-01-01

    Full Text Available In order to establish a comparative analysis of chemical shifts caused by ring compression effects or by the presence of a chlorine atom on strained chlorinated carbons, a series of the chlorinated and dechlorinated polycyclic structures derived from "aldrin" (5 and "isodrin" (14 was studied. Compounds were classified in four different groups, according to their conformation and number of ring such as: endo-exo and endo-endo tetracyclics, pentacyclics and hexacyclics. The 13C chemical shift comparison between the chlorinated and dechlorinated compounds showed that when C-9 and C-10 are olefinic carbons, it occurs a shielding of 0.5-2.4 ppm for endo-endo tetracyclics and of 4.7-7.6 ppm for endo-exo tetracyclic. The chemical shift variation for C-11 reaches 49-53 ppm for endo-exo and endo-endo tetracyclics, 54 ppm for pentacyclic and 56-59 ppm for hexacyclic compounds. From these data, it was possible to observe the influence of ring compression on the chemical shifts.

  6. Identification of helix capping and β-turn motifs from NMR chemical shifts

    International Nuclear Information System (INIS)

    Shen Yang; Bax, Ad

    2012-01-01

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and 13 C β chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of β-turns: I, II, I′, II′ and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and β-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7–0.9 for the Matthews correlation coefficient of its predictions far exceed those attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures.

  7. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations

    Energy Technology Data Exchange (ETDEWEB)

    Markin, Craig J.; Spyracopoulos, Leo, E-mail: leo.spyracopoulos@ualberta.ca [University of Alberta, Department of Biochemistry (Canada)

    2012-12-15

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K{sub D}) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K{sub D} value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of {sup 1}H-{sup 15}N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k{sub off}). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k{sub off} {approx} 3,000 s{sup -1} in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k{sub off} from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k{sub off} values over a wide range, from 100 to 15,000 s{sup -1}. The validity of line shape analysis for k{sub off} values approaching intermediate exchange ({approx}100 s{sup -1}), may be facilitated by

  8. Accuracy and precision of protein–ligand interaction kinetics determined from chemical shift titrations

    International Nuclear Information System (INIS)

    Markin, Craig J.; Spyracopoulos, Leo

    2012-01-01

    NMR-monitored chemical shift titrations for the study of weak protein–ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K D ) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K D value of a 1:1 protein–ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125–138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of 1 H– 15 N 2D HSQC NMR spectra acquired using precise protein–ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k off ). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k off ∼ 3,000 s −1 in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k off from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k off values over a wide range, from 100 to 15,000 s −1 . The validity of line shape analysis for k off values approaching intermediate exchange (∼100 s −1 ), may be facilitated by more accurate K D measurements from NMR

  9. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations.

    Science.gov (United States)

    Markin, Craig J; Spyracopoulos, Leo

    2012-12-01

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K ( D )) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K ( D ) value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of (1)H-(15)N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k ( off )). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k ( off ) ~ 3,000 s(-1) in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k ( off ) from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k ( off ) values over a wide range, from 100 to 15,000 s(-1). The validity of line shape analysis for k ( off ) values approaching intermediate exchange (~100 s(-1)), may be facilitated by more accurate K ( D ) measurements

  10. Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts.

    Science.gov (United States)

    Camilloni, Carlo; Robustelli, Paul; De Simone, Alfonso; Cavalli, Andrea; Vendruscolo, Michele

    2012-03-07

    Following the recognition that NMR chemical shifts can be used for protein structure determination, rapid advances have recently been made in methods for extending this strategy for proteins and protein complexes of increasing size and complexity. A remaining major challenge is to develop approaches to exploit the information contained in the chemical shifts about conformational fluctuations in native states of proteins. In this work we show that it is possible to determine an ensemble of conformations representing the free energy surface of RNase A using chemical shifts as replica-averaged restraints in molecular dynamics simulations. Analysis of this surface indicates that chemical shifts can be used to characterize the conformational equilibrium between the two major substates of this protein. © 2012 American Chemical Society

  11. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    International Nuclear Information System (INIS)

    Fritzsching, Keith J.; Hong, Mei; Schmidt-Rohr, Klaus

    2016-01-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ( 13 C– 13 C, 15 N– 13 C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 13 C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the 13 C NMR data and almost all 15 N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the 13 C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a

  12. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsching, Keith J., E-mail: kfritzsc@brandeis.edu [Brandeis University, Department of Chemistry (United States); Hong, Mei [Massachusetts Institute of Technology, Department of Chemistry (United States); Schmidt-Rohr, Klaus, E-mail: srohr@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2016-02-15

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ({sup 13}C–{sup 13}C, {sup 15}N–{sup 13}C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 {sup 13}C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the {sup 13}C NMR data and almost all {sup 15}N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the {sup 13}C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra

  13. SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database

    International Nuclear Information System (INIS)

    Ginzinger, Simon W.; Coles, Murray

    2009-01-01

    We present SimShiftDB, a new program to extract conformational data from protein chemical shifts using structural alignments. The alignments are obtained in searches of a large database containing 13,000 structures and corresponding back-calculated chemical shifts. SimShiftDB makes use of chemical shift data to provide accurate results even in the case of low sequence similarity, and with even coverage of the conformational search space. We compare SimShiftDB to HHSearch, a state-of-the-art sequence-based search tool, and to TALOS, the current standard tool for the task. We show that for a significant fraction of the predicted similarities, SimShiftDB outperforms the other two methods. Particularly, the high coverage afforded by the larger database often allows predictions to be made for residues not involved in canonical secondary structure, where TALOS predictions are both less frequent and more error prone. Thus SimShiftDB can be seen as a complement to currently available methods

  14. SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database

    Energy Technology Data Exchange (ETDEWEB)

    Ginzinger, Simon W. [Center of Applied Molecular Engineering, University of Salzburg, Department of Molecular Biology, Division of Bioinformatics (Austria)], E-mail: simon@came.sbg.ac.at; Coles, Murray [Max-Planck-Institute for Developmental Biology, Department of Protein Evolution (Germany)], E-mail: Murray.Coles@tuebingen.mpg.de

    2009-03-15

    We present SimShiftDB, a new program to extract conformational data from protein chemical shifts using structural alignments. The alignments are obtained in searches of a large database containing 13,000 structures and corresponding back-calculated chemical shifts. SimShiftDB makes use of chemical shift data to provide accurate results even in the case of low sequence similarity, and with even coverage of the conformational search space. We compare SimShiftDB to HHSearch, a state-of-the-art sequence-based search tool, and to TALOS, the current standard tool for the task. We show that for a significant fraction of the predicted similarities, SimShiftDB outperforms the other two methods. Particularly, the high coverage afforded by the larger database often allows predictions to be made for residues not involved in canonical secondary structure, where TALOS predictions are both less frequent and more error prone. Thus SimShiftDB can be seen as a complement to currently available methods.

  15. Coronary artery atherosclerosis associated with shift work in chemical plant workers by using coronary CT angiography.

    Science.gov (United States)

    Kang, WonYang; Park, Won-Ju; Jang, Keun-Ho; Kim, Soo-Hyeon; Gwon, Do-Hyeong; Lim, Hyeong-Min; Ahn, Ji-Sung; Moon, Jai-Dong

    2016-08-01

    The aim of this study was to investigate whether shift work is related to elevated risk of coronary artery disease (CAD) by determining the coronary artery calcium (CAC) score and the presence of coronary artery stenosis by using coronary artery CT angiography (CCTA). In this study, 110 male workers participated and underwent a CCTA examination for CAC scoring, which represents coronary artery plaque, and were evaluated for luminal stenosis. All of the participants were working in the same chemical plant, of whom 70 worked day shifts and 40 worked rotating shifts. In a multivariate logistic regression analysis, including age, smoking status, alcohol consumption, regular exercise and waist circumference, shift work was associated with a 2.89-fold increase in the odds of developing coronary plaque compared with day work (OR, 2.89; 95% CI 1.07 to 7.82). The association between shift work and coronary plaque was strong after adjustment for age, low-density lipoprotein cholesterol, hypertension and diabetes mellitus (OR, 2.92; 95% CI 1.02 to 8.33). In addition, the number of years of shift work employment was associated with coronary plaque. However, no association was found between shift work and coronary artery stenosis. Shift work could induce CAD onset via the atherosclerotic process, and shift work employment duration was associated with an increased risk of atherosclerosis in male workers. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Random coil chemical shifts in acidic 8 M urea: Implementation of random coil shift data in NMRView

    International Nuclear Information System (INIS)

    Schwarzinger, Stephan; Kroon, Gerard J.A.; Foss, Ted R.; Wright, Peter E.; Dyson, H. Jane

    2000-01-01

    Studies of proteins unfolded in acid or chemical denaturant can help in unraveling events during the earliest phases of protein folding. In order for meaningful comparisons to be made of residual structure in unfolded states, it is necessary to use random coil chemical shifts that are valid for the experimental system under study. We present a set of random coil chemical shifts obtained for model peptides under experimental conditions used in studies of denatured proteins. This new set, together with previously published data sets, has been incorporated into a software interface for NMRView, allowing selection of the random coil data set that fits the experimental conditions best

  17. Applications of Chemical Shift Imaging to Marine Sciences

    Directory of Open Access Journals (Sweden)

    Haakil Lee

    2010-08-01

    Full Text Available The successful applications of magnetic resonance imaging (MRI in medicine are mostly due to the non-invasive and non-destructive nature of MRI techniques. Longitudinal studies of humans and animals are easily accomplished, taking advantage of the fact that MRI does not use harmful radiation that would be needed for plain film radiographic, computerized tomography (CT or positron emission (PET scans. Routine anatomic and functional studies using the strong signal from the most abundant magnetic nucleus, the proton, can also provide metabolic information when combined with in vivo magnetic resonance spectroscopy (MRS. MRS can be performed using either protons or hetero-nuclei (meaning any magnetic nuclei other than protons or 1H including carbon (13C or phosphorus (31P. In vivo MR spectra can be obtained from single region ofinterest (ROI or voxel or multiple ROIs simultaneously using the technique typically called chemical shift imaging (CSI. Here we report applications of CSI to marine samples and describe a technique to study in vivo glycine metabolism in oysters using 13C MRS 12 h after immersion in a sea water chamber dosed with [2-13C]-glycine. This is the first report of 13C CSI in a marine organism.

  18. Diagnostic value of chemical shift artifact in distinguishing benign lymphadenopathy

    Energy Technology Data Exchange (ETDEWEB)

    Farshchian, Nazanin, E-mail: farshchian.n@gmail.com [Department of Radiology, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Tamari, Saghar; Farshchian, Negin [Department of Radiology, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Madani, Hamid [Department of Pathology, Imam-Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Rezaie, Mansour [Department of Biostatistics, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Mohammadi-Motlagh, Hamid-Reza, E-mail: mohammadimotlagh@gmail.com [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2011-11-15

    Purpose: Today, distinguishing metastatic lymph nodes from secondary benign inflammatory ones via using non-invasive methods is increasingly favorable. In this study, the diagnostic value of chemical shift artifact (CSA) in magnetic resonance imaging (MRI) was evaluated to distinguish benign lymphadenopathy. Subjects and methods: A prospective intraindividual internal review board-approved study was carried out on 15 men and 15 women having lymphadenopathic lesions in different locations of the body who underwent contrast-enhanced dynamic MR imaging at 1.5 T. Then, the imaging findings were compared with pathology reports, using the statistics analyses. Results: Due to the findings of the CSA existence in MRI, a total of 56.7% of the studied lesions (17 of 30) were identified as benign lesions and the rest were malignant, whereas the pathology reports distinguished twelve malignant and eighteen benign cases. Furthermore, the CSA findings comparing the pathology reports indicated that CSA, with confidence of 79.5%, has a significant diagnostic value to differentiate benign lesions from malignant ones. Conclusion: Our study demonstrated that CSA in MR imaging has a suitable diagnostic potential nearing readiness for clinical trials. Furthermore, CSA seems to be a feasible tool to differentiate benign lymph nodes from malignant ones; however, further studies including larger numbers of patients are required to confirm our results.

  19. The PROSECCO server for chemical shift predictions in ordered and disordered proteins.

    Science.gov (United States)

    Sanz-Hernández, Máximo; De Simone, Alfonso

    2017-11-01

    The chemical shifts measured in solution-state and solid-state nuclear magnetic resonance (NMR) are powerful probes of the structure and dynamics of protein molecules. The exploitation of chemical shifts requires methods to correlate these data with the protein structures and sequences. We present here an approach to calculate accurate chemical shifts in both ordered and disordered proteins using exclusively the information contained in their sequences. Our sequence-based approach, protein sequences and chemical shift correlations (PROSECCO), achieves the accuracy of the most advanced structure-based methods in the characterization of chemical shifts of folded proteins and improves the state of the art in the study of disordered proteins. Our analyses revealed fundamental insights on the structural information carried by NMR chemical shifts of structured and unstructured protein states.

  20. Temperature dependence of 1H NMR chemical shifts and its influence on estimated metabolite concentrations.

    Science.gov (United States)

    Wermter, Felizitas C; Mitschke, Nico; Bock, Christian; Dreher, Wolfgang

    2017-12-01

    Temperature dependent chemical shifts of important brain metabolites measured by localised 1 H MRS were investigated to test how the use of incorrect prior knowledge on chemical shifts impairs the quantification of metabolite concentrations. Phantom measurements on solutions containing 11 metabolites were performed on a 7 T scanner between 1 and 43 °C. The temperature dependence of the chemical shift differences was fitted by a linear model. Spectra were simulated for different temperatures and analysed by the AQSES program (jMRUI 5.2) using model functions with chemical shift values for 37 °C. Large differences in the temperature dependence of the chemical shift differences were determined with a maximum slope of about ±7.5 × 10 -4  ppm/K. For 32-40 °C, only minor quantification errors resulted from using incorrect chemical shifts, with the exception of Cr and PCr. For 1-10 °C considerable quantification errors occurred if the temperature dependence of the chemical shifts was neglected. If 1 H MRS measurements are not performed at 37 °C, for which the published chemical shift values have been determined, the temperature dependence of chemical shifts should be considered to avoid systematic quantification errors, particularly for measurements on animal models at lower temperatures.

  1. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  2. Hepatic fat quantification: a prospective comparison of magnetic resonance spectroscopy and analysis methods for chemical-shift gradient echo magnetic resonance imaging with histologic assessment as the reference standard.

    Science.gov (United States)

    Kang, Bo-Kyeong; Yu, Eun Sil; Lee, Seung Soo; Lee, Youngjoo; Kim, Namkug; Sirlin, Claude B; Cho, Eun Yoon; Yeom, Suk Keu; Byun, Jae Ho; Park, Seong Ho; Lee, Moon-Gyu

    2012-06-01

    The aims of this study were to assess the confounding effects of hepatic iron deposition, inflammation, and fibrosis on hepatic steatosis (HS) evaluation by magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) and to assess the accuracies of MRI and MRS for HS evaluation, using histology as the reference standard. In this institutional review board-approved prospective study, 56 patients gave informed consents and underwent chemical-shift MRI and MRS of the liver on a 1.5-T magnetic resonance scanner. To estimate MRI fat fraction (FF), 4 analysis methods were used (dual-echo, triple-echo, multiecho, and multi-interference), and MRS FF was calculated with T2 correction. Degrees of HS, iron deposition, inflammation, and fibrosis were analyzed in liver resection (n = 37) and biopsy (n = 19) specimens. The confounding effects of histology on fat quantification were assessed by multiple linear regression analysis. Using the histologic degree of HS as the reference standard, the accuracies of each method in estimating HS and diagnosing an HS of 5% or greater were determined by linear regression and receiver operating characteristic analyses. Iron deposition significantly confounded estimations of FF by the dual-echo (P hepatic fat, with coexisting histologic abnormalities having no confounding effects.

  3. A comparative quantitative analysis of the IDEAL (iterative decomposition of water and fat with echo asymmetry and least-squares estimation) and the CHESS (chemical shift selection suppression) techniques in 3.0 T L-spine MRI

    Science.gov (United States)

    Kim, Eng-Chan; Cho, Jae-Hwan; Kim, Min-Hye; Kim, Ki-Hong; Choi, Cheon-Woong; Seok, Jong-min; Na, Kil-Ju; Han, Man-Seok

    2013-03-01

    This study was conducted on 20 patients who had undergone pedicle screw fixation between March and December 2010 to quantitatively compare a conventional fat suppression technique, CHESS (chemical shift selection suppression), and a new technique, IDEAL (iterative decomposition of water and fat with echo asymmetry and least squares estimation). The general efficacy and usefulness of the IDEAL technique was also evaluated. Fat-suppressed transverse-relaxation-weighed images and longitudinal-relaxation-weighted images were obtained before and after contrast injection by using these two techniques with a 1.5T MR (magnetic resonance) scanner. The obtained images were analyzed for image distortion, susceptibility artifacts and homogenous fat removal in the target region. The results showed that the image distortion due to the susceptibility artifacts caused by implanted metal was lower in the images obtained using the IDEAL technique compared to those obtained using the CHESS technique. The results of a qualitative analysis also showed that compared to the CHESS technique, fewer susceptibility artifacts and more homogenous fat removal were found in the images obtained using the IDEAL technique in a comparative image evaluation of the axial plane images before and after contrast injection. In summary, compared to the CHESS technique, the IDEAL technique showed a lower occurrence of susceptibility artifacts caused by metal and lower image distortion. In addition, more homogenous fat removal was shown in the IDEAL technique.

  4. Deuterium isotope effects on 13C chemical shifts of 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Kamounah, Fadhil S.; Gryko, Daniel T.

    2013-01-01

    Deuterium isotope effects on 13C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ’s) The OH proton is deuteriated. The isotope effects on 13C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found to be nega...

  5. Vanadium NMR Chemical Shifts of (Imido)vanadium(V) Dichloride Complexes with Imidazolin-2-iminato and Imidazolidin-2-iminato Ligands: Cooperation with Quantum-Chemical Calculations and Multiple Linear Regression Analyses.

    Science.gov (United States)

    Yi, Jun; Yang, Wenhong; Sun, Wen-Hua; Nomura, Kotohiro; Hada, Masahiko

    2017-11-30

    The NMR chemical shifts of vanadium ( 51 V) in (imido)vanadium(V) dichloride complexes with imidazolin-2-iminato and imidazolidin-2-iminato ligands were calculated by the density functional theory (DFT) method with GIAO. The calculated 51 V NMR chemical shifts were analyzed by the multiple linear regression (MLR) analysis (MLRA) method with a series of calculated molecular properties. Some of calculated NMR chemical shifts were incorrect using the optimized molecular geometries of the X-ray structures. After the global minimum geometries of all of the molecules were determined, the trend of the observed chemical shifts was well reproduced by the present DFT method. The MLRA method was performed to investigate the correlation between the 51 V NMR chemical shift and the natural charge, band energy gap, and Wiberg bond index of the V═N bond. The 51 V NMR chemical shifts obtained with the present MLR model were well reproduced with a correlation coefficient of 0.97.

  6. Protein backbone angle restraints from searching a database for chemical shift and sequence homology

    Energy Technology Data Exchange (ETDEWEB)

    Cornilescu, Gabriel; Delaglio, Frank; Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    1999-03-15

    Chemical shifts of backbone atoms in proteins are exquisitely sensitive to local conformation, and homologous proteins show quite similar patterns of secondary chemical shifts. The inverse of this relation is used to search a database for triplets of adjacent residues with secondary chemical shifts and sequence similarity which provide the best match to the query triplet of interest. The database contains 13C{alpha}, 13C{beta}, 13C', 1H{alpha} and 15N chemical shifts for 20 proteins for which a high resolution X-ray structure is available. The computer program TALOS was developed to search this database for strings of residues with chemical shift and residue type homology. The relative importance of the weighting factors attached to the secondary chemical shifts of the five types of resonances relative to that of sequence similarity was optimized empirically. TALOS yields the 10 triplets which have the closest similarity in secondary chemical shift and amino acid sequence to those of the query sequence. If the central residues in these 10 triplets exhibit similar {phi} and {psi} backbone angles, their averages can reliably be used as angular restraints for the protein whose structure is being studied. Tests carried out for proteins of known structure indicate that the root-mean-square difference (rmsd) between the output of TALOS and the X-ray derived backbone angles is about 15 deg. Approximately 3% of the predictions made by TALOS are found to be in error.

  7. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Jerome M.; Erylimaz, Ertan; Cowburn, David, E-mail: cowburn@cowburnlab.org, E-mail: David.cowburn@einstein.yu.edu [Albert Einstein College of Medicine of Yeshiva University, Department of Biochemistry (United States)

    2015-01-15

    There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder.

  8. A robust algorithm for optimizing protein structures with NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-11-15

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca.

  9. Chemical constituents of Ottonia corcovadensis Miq. from Amazon forest: 1H and 13C chemical shift assignments

    International Nuclear Information System (INIS)

    Facundo, Valdir A.; Morais, Selene M.; Braz Filho, Raimundo

    2004-01-01

    In an ethanolic extract of leaves of Ottonia corcovadensis (Piperaceae) were identified sixteen terpenoids of essential oil and the three flavonoids 3',4',5,5',7-penta methoxyflavone (1), 3',4',5,7-tetra methoxyflavone (2) and 5-hydroxy-3',4',5',7-tetra methoxyflavone (3) and cafeic acid (4). Two amides (5 and 6) were isolated from an ethanolic extract of the roots. The structures were established by spectral analysis, meanly NMR (1D and 2D) and mass spectra. Extensive NMR analysis was also used to complete 1 H and 13 C chemical shift assignments of the flavonoids and amides. The components of the essential oil were identified by computer library search, retention indices and visual interpretation of mass spectra. (author)

  10. Relation between chemical shift artifact and infiltration on MR imaging of renal cell carcinoma

    International Nuclear Information System (INIS)

    Yoshigoe, Fukuo; Makino, Hideki; Yanada, Syuichi; Ohishi, Yukihiko; Mashima, Yasuoki; Yamada, Hideo.

    1994-01-01

    Retrospective study on the relation between existence of the interruption and disturbance of chemical shift artifact and tumor infiltration at the periphery of the kidney on MR imaging was evaluated in 28 cases with renal cell carcinoma. Judgement was possible in 9 out of the 11 cases with pathological stage below pT2 and 14 cases out of 17 pT3 cases. Judgement was impracticable in 5 cases because the peripheral fat tissue of the kidney was too less to observe chemical shift artifact and the tumor was spreading at the side opposite to the chemical shift artifact. Chemical shift artifact on MRI in this study correlated well with renal tumor infiltration. (author)

  11. PPM-One: a static protein structure based chemical shift predictor

    International Nuclear Information System (INIS)

    Li, Dawei; Brüschweiler, Rafael

    2015-01-01

    We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM-One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain protons and it is found that the prediction accuracy is at a level allowing an independent assessment of stereospecific assignments. For a previously established set of test proteins some overall improvement was achieved over current top-performing chemical shift prediction programs

  12. Theoretical Study of the NMR Chemical Shift of Xe in Supercritical Condition

    DEFF Research Database (Denmark)

    Lacerda Junior, Evanildo Gomes; Sauer, Stephan P. A.; Mikkelsen, Kurt Valentin

    2018-01-01

    In this work we investigate the level of theory necessary for reproducing the non-linear variation of the 129Xe nuclear magnetic resonance (NMR) chemical shift with the density of Xe in supercritical conditions. In detail we study how the 129Xe chemical shift depends under these conditions...... on electron correlation, relativistic and many-body effects. The latter are included using a sequential-QM/MM methodology, in which a classical MD simulation is performed first and the chemical shift is then obtained as an average of quantum calculations of 250 MD snapshots conformations carried out for Xen...... this approach we obtain very good agreement with the experimental data, showing that the chemical shift of 129Xe in supercritical conditions is very well described by cluster calculations at the HF level, with small contributions from relativistic and electron correlation effects....

  13. The direct measurement of the heteronuclear chemical shifts relative to tetramethylsilane

    International Nuclear Information System (INIS)

    Moritz, A.G.

    1988-12-01

    The measurement of heteronuclear chemical shifts using absolute frequencies of the heteronucleus and the 1 H resonance of tetramethylsilane has been examined. This method avoids the problems associated with external standards and gives results which can be obtained quickly and with high precision. The method has a number of advantages in the accurate measurement of chemical shifts, as for example 31 P in chemical warfare agents and related chemicals and allows multinuclear data to be obtained without dynamic range or potential interference problems. 15 refs., 4 tabs

  14. Calculation of the NMR chemical shift for a 4d1 system in a strong crystal field environment of trigonal symmetry with a threefold axis of quantization

    International Nuclear Information System (INIS)

    Ahn, Sang Woon; Oh, Se Woung; Ro, Seung Woo

    1986-01-01

    The NMR chemical shift arising from 4d electron angular momentum and 4d electron angular momentum and 4d electron spin dipolar-nuclear spin angular momentum interactions for a 4d 1 system in a strong crystal field environment of trigonal symmetry, where the threefold axis is chosen to be the axis of quantization axis, has been examined. A general expression using the nonmultipole expansion method (exact method) is derived for the NMR chemical shift. From this expression all the multipolar terms are determined. we observe that along the (100), (010), (110), and (111) axes the NMR chemical shifts are positive while along the (001) axis, it is negative. We observe that the dipolar term (1/R 3 ) is the dominant contribution to the NMR chemical shift except for along the (111) axis. A comparison of the multipolar terms with the exact values shows also that the multipolar results are exactly in agreement with the exact values around R≥0.2 nm. The temperature dependence analysis on the NMR chemical shifts may imply that along the (111) axis the contribution to the NMR chemical shift is dominantly pseudo contact interaction. Separation of the contributions of the Fermi and the pseudo contact interactions would correctly imply that the dipolar interaction is the dominant contribution to the NMR chemical shifts along the (100), (010), (001), and (110) axes, but along the (111) axis the Fermi contact interaction is incorrectly the dominant contribution to the NMR chemical shift. (Author)

  15. Chemical shift MRI can aid in the diagnosis of indeterminate skeletal lesions of the spine

    Energy Technology Data Exchange (ETDEWEB)

    Douis, H. [University Hospital Birmingham, Department of Radiology, Birmingham (United Kingdom); Royal Orthopaedic Hospital, Department of Radiology, Birmingham (United Kingdom); Davies, A.M. [Royal Orthopaedic Hospital, Department of Radiology, Birmingham (United Kingdom); Jeys, L. [Royal Orthopaedic Hospital, Department of Orthopaedic Oncology, Birmingham (United Kingdom); Sian, P. [Royal Orthopaedic Hospital, Department of Spinal Surgery and Spinal Oncology, Birmingham (United Kingdom)

    2016-04-15

    To evaluate the role of chemical shift MRI in the characterisation of indeterminate skeletal lesions of the spine as benign or malignant. Fifty-five patients (mean age 54.7 years) with 57 indeterminate skeletal lesions of the spine were included in this retrospective study. In addition to conventional MRI at 3 T which included at least sagittal T1WI and T2WI/STIR sequences, patients underwent chemical shift MRI. A cut-off value with a signal drop-out of 20 % was used to differentiate benign lesions from malignant lesions (signal drop-out <20 % being malignant). There were 45 benign lesions and 12 malignant lesions. Chemical shift imaging correctly diagnosed 33 of 45 lesions as benign and 11 of 12 lesions as malignant. In contrast, there were 12 false positive cases and 1 false negative case based on chemical shift MRI. This yielded a sensitivity of 91.7 %, a specificity of 73.3 %, a negative predictive value of 97.1 %, a positive predictive value of 47.8 % and a diagnostic accuracy of 82.5 %. Chemical shift MRI can aid in the characterisation of indeterminate skeletal lesions of the spine in view of its high sensitivity in diagnosing malignant lesions. Chemical shift MRI can potentially avoid biopsy in a considerable percentage of patients with benign skeletal lesions of the spine. (orig.)

  16. Experimental and DFT evaluation of the 1H and 13C NMR chemical shifts for calix[4]arenes

    Science.gov (United States)

    Guzzo, Rodrigo N.; Rezende, Michelle Jakeline Cunha; Kartnaller, Vinicius; Carneiro, José Walkimar de M.; Stoyanov, Stanislav R.; Costa, Leonardo Moreira da

    2018-04-01

    The density functional theory is employed to determine the efficiency of 11 exchange-correlation (XC) functionals to compute the 1H and 13C NMR chemical shifts of p-tert-butylcalix[4]arene (ptcx4, R1 = C(CH3)3) and congeners using the 6-31G(d,p) basis set. The statistical analysis shows that B3LYP, B3PW91 and PBE1PBE are the best XC functionals for the calculation of 1H chemical shifts. Moreover, the best results for the 13C chemical shifts are obtained using the LC-WPBE, M06-2X and wB97X-D functionals. The performance of these XC functionals is tested for three other calix[4]arenes: p-sulfonic acid calix[4]arene (sfxcx4 - R1 = SO3H), p-nitro-calix[4]arene (ncx4, R1 = NO2) and calix[4]arene (cx4 - R1 = H). For 1H chemical shifts B3LYP, B3PW91 and PBE1PBE yield similar results, although B3PW91 shows more consistency in the calculated error for the different structures. For 13C NMR chemical shifts, the XC functional that stood out as best is LC-WPBE. Indeed, the three functionals selected for each of 1H and 13C show good accuracy and can be used in future studies involving the prediction of 1H and 13C chemical shifts for this type of compounds.

  17. Cyclohexanecarbonitriles: Assigning Configurations at Quaternary Centers From 13C NMR CN Chemical Shifts.1

    Science.gov (United States)

    Wei, Guoqing

    2009-01-01

    13C NMR chemical shifts of the nitrile carbon in cyclohexanecarbonitriles directly correlate with the configuration of the quaternary, nitrile-bearing stereocenter. Comparing 13C NMR chemical shifts for over 200 cyclohexanecarbonitriles reveals that equatorially oriented nitriles resonate 3.3 ppm downfield, on average, from their axial counterparts. Pairs of axial/equatorial diastereomers varying only at the nitrile-bearing carbon consistently exhibit downfield shifts of δ 0.4–7.2 for the equatorial nitrile carbon, even in angularly substituted decalins and hydrindanes. PMID:19348434

  18. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    International Nuclear Information System (INIS)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-01-01

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), 1 H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong 1 H– 1 H homonuclear dipolar couplings and narrow 1 H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) 1 H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about 1 H– 1 H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical

  19. Shift Performance Test and Analysis of Multipurpose Vehicle

    Directory of Open Access Journals (Sweden)

    Can Yang

    2014-08-01

    Full Text Available This paper presented an analysis of the gear shifting performances of a multipurpose vehicle transmission in driving condition by Ricardo's Gear Shift Quality Assessment (GSQA system. The performances of the transmission included the travel and effort of the gear shift lever and synchronizing time. The mathematic models of the transmission including the gear shift mechanism and synchronizer were developed in MATLAB. The model of the gear shift mechanism was developed to analyze the travel map of the gear shift lever and the model of the synchronizer was developed to obtain the force-time curve of the synchronizer during the slipping time. The model of the synchronizer was used to investigate the relationship between the performances of the transmission and the variation of parameters during gear shifting. The mathematic models of the gear shift mechanism and the synchronizer provided a rapid design and verification method for the transmission with ring spring.

  20. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.K. [University of Durham, Durham (United Kingdom). Dept. of Chemistry; Becker, E.D. [National Institutes of Health, Bethesda, MD (United States); Menezes, S.M. Cabral de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Granger, P. [University Louis Pasteur, Strasbourg (France). Inst. of Chemistry; Hoffman, R.E. [The Hebrew University of Jerusalem, Safra Campus, Jerusalem (Israel). Dept. of Organic Chemistry; Zilm, K.W., E-mail: r.k.harris@durham.ac.uk [Yale University, New Haven, CT (United States). Dept. of Chemistry

    2008-07-01

    IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the {sup 1}H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3- (trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating {sup 13}C NMR chemical shifts in solids to the scales used for high resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice. (author)

  1. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008)

    International Nuclear Information System (INIS)

    Harris, R.K.; Menezes, S.M. Cabral de; Granger, P.; Hoffman, R.E.; Zilm, K.W.

    2008-01-01

    IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the 1 H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3- (trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating 13 C NMR chemical shifts in solids to the scales used for high resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice. (author)

  2. 29Si NMR Chemical Shift Calculation for Silicate Species by Gaussian Software

    Science.gov (United States)

    Azizi, S. N.; Rostami, A. A.; Godarzian, A.

    2005-05-01

    Hartree-Fock self-consistent-field (HF-SCF) theory and the Gauge-including atomic orbital (GIAO) methods are used in the calculation of 29Si NMR chemical shifts for ABOUT 90 units of 19 compounds of various silicate species of precursors for zeolites. Calculations have been performed at geometries optimized at the AM1 semi-empirical method. The GIAO-HF-SCF calculations were carried out with using three different basis sets: 6-31G*, 6-31+G** and 6-311+G(2d,p). To demonstrate the quality of the calculations the calculated chemical shifts, δ, were compared with the corresponding experimental values for the compounds in study. The results, especially with 6-31+g** are in excellent agreement with experimental values. The calculated chemical shifts, in practical point of view, appear to be accurate enough to aid in experimental peak assignments. The difference between the experimental and calculated 29Si chemical shift values not only depends on the Qn units but also it seems that basis set effects and the level of theory is more important. For the series of molecules studied here, the standard deviations and mean absolute errors for 29Si chemical shifts relative to TMS determined using Hartree--Fock 6-31+G** basis is nearly in all cases smaller than the errors for shifts determined using HF/6-311+G(2d,p).

  3. 1H NMR spectra part 31: 1H chemical shifts of amides in DMSO solvent.

    Science.gov (United States)

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2014-07-01

    The (1)H chemical shifts of 48 amides in DMSO solvent are assigned and presented. The solvent shifts Δδ (DMSO-CDCl3 ) are large (1-2 ppm) for the NH protons but smaller and negative (-0.1 to -0.2 ppm) for close range protons. A selection of the observed solvent shifts is compared with calculated shifts from the present model and from GIAO calculations. Those for the NH protons agree with both calculations, but other solvent shifts such as Δδ(CHO) are not well reproduced by the GIAO calculations. The (1)H chemical shifts of the amides in DMSO were analysed using a functional approach for near ( ≤ 3 bonds removed) protons and the electric field, magnetic anisotropy and steric effect of the amide group for more distant protons. The chemical shifts of the NH protons of acetanilide and benzamide vary linearly with the π density on the αN and βC atoms, respectively. The C=O anisotropy and steric effect are in general little changed from the values in CDCl3. The effects of substituents F, Cl, Me on the NH proton shifts are reproduced. The electric field coefficient for the protons in DMSO is 90% of that in CDCl3. There is no steric effect of the C=O oxygen on the NH proton in an NH…O=C hydrogen bond. The observed deshielding is due to the electric field effect. The calculated chemical shifts agree well with the observed shifts (RMS error of 0.106 ppm for the data set of 257 entries). Copyright © 2014 John Wiley & Sons, Ltd.

  4. Protein Structure Validation and Refinement Using Chemical Shifts Derived from Quantum Mechanics

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen

    to within 3 A. Furthermore, a fast quantum mechanics based chemical shift predictor was developed together with methodology for using chemical shifts in structure simulations. The developed predictor was used for renement of several protein structures and for reducing the computational cost of quantum...... mechanics / molecular mechanics (QM/MM) computations of chemical shieldings. Several improvements to the predictor is ongoing, where among other things, kernel based machine learning techniques have successfully been used to improve the quantum mechanical level of theory used in the predictions....

  5. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology

    International Nuclear Information System (INIS)

    Shen Yang; Bax, Ad

    2007-01-01

    Chemical shifts of nuclei in or attached to a protein backbone are exquisitely sensitive to their local environment. A computer program, SPARTA, is described that uses this correlation with local structure to predict protein backbone chemical shifts, given an input three-dimensional structure, by searching a newly generated database for triplets of adjacent residues that provide the best match in φ/ψ/χ 1 torsion angles and sequence similarity to the query triplet of interest. The database contains 15 N, 1 H N , 1 H α , 13 C α , 13 C β and 13 C' chemical shifts for 200 proteins for which a high resolution X-ray (≤2.4 A) structure is available. The relative importance of the weighting factors for the φ/ψ/χ 1 angles and sequence similarity was optimized empirically. The weighted, average secondary shifts of the central residues in the 20 best-matching triplets, after inclusion of nearest neighbor, ring current, and hydrogen bonding effects, are used to predict chemical shifts for the protein of known structure. Validation shows good agreement between the SPARTA-predicted and experimental shifts, with standard deviations of 2.52, 0.51, 0.27, 0.98, 1.07 and 1.08 ppm for 15 N, 1 H N , 1 H α , 13 C α , 13 C β and 13 C', respectively, including outliers

  6. Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.go [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Laboratory of Chemical Physics (United States)

    2010-03-15

    We present a program, named Promega, to predict the Xaa-Pro peptide bond conformation on the basis of backbone chemical shifts and the amino acid sequence. Using a chemical shift database of proteins of known structure together with the PDB-extracted amino acid preference of cis Xaa-Pro peptide bonds, a cis/trans probability score is calculated from the backbone and {sup 13}C{sup {beta}} chemical shifts of the proline and its neighboring residues. For an arbitrary number of input chemical shifts, which may include Pro-{sup 13}C{sup {gamma}}, Promega calculates the statistical probability that a Xaa-Pro peptide bond is cis. Besides its potential as a validation tool, Promega is particularly useful for studies of larger proteins where Pro-{sup 13}C{sup {gamma}} assignments can be challenging, and for on-going efforts to determine protein structures exclusively on the basis of backbone and {sup 13}C{sup {beta}} chemical shifts.

  7. Benchmarking quantum mechanical calculations with experimental NMR chemical shifts of 2-HADNT

    Science.gov (United States)

    Liu, Yuemin; Junk, Thomas; Liu, Yucheng; Tzeng, Nianfeng; Perkins, Richard

    2015-04-01

    In this study, both GIAO-DFT and GIAO-MP2 calculations of nuclear magnetic resonance (NMR) spectra were benchmarked with experimental chemical shifts. The experimental chemical shifts were determined experimentally for carbon-13 (C-13) of seven carbon atoms for the TNT degradation product 2-hydroxylamino-4,6-dinitrotoluene (2-HADNT). Quantum mechanics GIAO calculations were implemented using Becke-3-Lee-Yang-Parr (B3LYP) and other six hybrid DFT methods (Becke-1-Lee-Yang-Parr (B1LYP), Becke-half-and-half-Lee-Yang-Parr (BH and HLYP), Cohen-Handy-3-Lee-Yang-Parr (O3LYP), Coulomb-attenuating-B3LYP (CAM-B3LYP), modified-Perdew-Wang-91-Lee-Yang-Parr (mPW1LYP), and Xu-3-Lee-Yang-Parr (X3LYP)) which use the same correlation functional LYP. Calculation results showed that the GIAO-MP2 method gives the most accurate chemical shift values, and O3LYP method provides the best prediction of chemical shifts among the B3LYP and other five DFT methods. Three types of atomic partial charges, Mulliken (MK), electrostatic potential (ESP), and natural bond orbital (NBO), were also calculated using MP2/aug-cc-pVDZ method. A reasonable correlation was discovered between NBO partial charges and experimental chemical shifts of carbon-13 (C-13).

  8. DFT/GIAO calculations of the relative contributions of hyperconjugation to the chemical shifts of ethanol

    International Nuclear Information System (INIS)

    Carneiro, J. Walkimar de M.; Dias, Jacques F.; Seidl, Peter R.; Tostes, J. Glauco R.

    2002-01-01

    Our previous DFT/GIAO calculations on different types of alcohols reveal that the rotation of the hydroxyl group can affect the chemical shift of carbons and hydrogens close to the substituent in different ways. Besides the steric and electrostatic effects that have been widely studied, hyperconjugation with the lone pairs on oxygen of the hydroxyl group leads to changes in bond lengths and angles as well as to different charge distributions. As all three of these factors also affect chemical shifts, we undertook a systematic investigation of their relative contributions to the chemical shifts of ethanol, a molecule in which there is minimum interference among these factors. Calculations by the B3LYP method at the 6-31G(d) level for ethanol conformers corresponding to a rotation around the carbon-oxygen bond at 30 dec increments are used to show how relative contributions vary with the dihedral angle formed between the carbon-carbon and oxygen-hydrogen bonds (C-C-O-H). Largest contributions to carbon chemical shifts can be attributed to changes in bond lengths while for hydrogen chemical shifts also contribute significantly differences in charge distribution. (author)

  9. Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts.

    Science.gov (United States)

    Boomsma, Wouter; Tian, Pengfei; Frellsen, Jes; Ferkinghoff-Borg, Jesper; Hamelryck, Thomas; Lindorff-Larsen, Kresten; Vendruscolo, Michele

    2014-09-23

    Methods of protein structure determination based on NMR chemical shifts are becoming increasingly common. The most widely used approaches adopt the molecular fragment replacement strategy, in which structural fragments are repeatedly reassembled into different complete conformations in molecular simulations. Although these approaches are effective in generating individual structures consistent with the chemical shift data, they do not enable the sampling of the conformational space of proteins with correct statistical weights. Here, we present a method of molecular fragment replacement that makes it possible to perform equilibrium simulations of proteins, and hence to determine their free energy landscapes. This strategy is based on the encoding of the chemical shift information in a probabilistic model in Markov chain Monte Carlo simulations. First, we demonstrate that with this approach it is possible to fold proteins to their native states starting from extended structures. Second, we show that the method satisfies the detailed balance condition and hence it can be used to carry out an equilibrium sampling from the Boltzmann distribution corresponding to the force field used in the simulations. Third, by comparing the results of simulations carried out with and without chemical shift restraints we describe quantitatively the effects that these restraints have on the free energy landscapes of proteins. Taken together, these results demonstrate that the molecular fragment replacement strategy can be used in combination with chemical shift information to characterize not only the native structures of proteins but also their conformational fluctuations.

  10. Resolution of NMR chemical shift images into real and imaginary components

    International Nuclear Information System (INIS)

    Yamamoto, E.; Kohno, H.

    1986-01-01

    Fast chemical shift imaging of two-line materials is described using a modified spin-echo sequence. The method resolves the two chemical shift images into real and imaginary components representing the reconstructed image. The measuring time is reduced to half of that for the conventional method proposed by Dixon et al, and quantitative evaluation of the images becomes possible. Reference material with a single resonant line is used to eliminate the phase error caused by static field inhomogeneity and the inherent apparatus offset phase. Experiments are conducted using acetone and benzene with a medium-bore superconductive magnet operating at 0.5T. From these experiments, two chemical shift images are obtained. These images are then superimposed to produce a conventional density image. (author)

  11. /sup 1/H-NMR chemical shift imaging suitable for low field systems

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Etsuji; Onodera, Takashi; Shiono, Hidemi; Kohno, Hideki

    1986-12-01

    An echo-time encoding proton NMR chemical shift imaging proposed by Dixon is extended to be applicable to low filed systems. The method utilizes the small phase angle between magnetic vectors of water and lipid protons to decrease the signal decays with spin-spin relaxation. The inevitable phase error caused by the static field inhomogeneity is corrected by using phase images of phantom measured under the same conditions as the actual measurements. The experiments were carried out using CuSO/sub 4/ doped water and vegetable oil at 0.5 T. Two chemical shift images could be clearly resolved with only one scan when the field inhomogeneity was larger than the chemical shift difference.

  12. On the Confounding Effect of Temperature on Chemical Shift-Encoded Fat Quantification

    Science.gov (United States)

    Hernando, Diego; Sharma, Samir D.; Kramer, Harald; Reeder, Scott B.

    2014-01-01

    Purpose To characterize the confounding effect of temperature on chemical shift-encoded (CSE) fat quantification. Methods The proton resonance frequency of water, unlike triglycerides, depends on temperature. This leads to a temperature dependence of the spectral models of fat (relative to water) that are commonly used by CSE-MRI methods. Simulation analysis was performed for 1.5 Tesla CSE fat–water signals at various temperatures and echo time combinations. Oil–water phantoms were constructed and scanned at temperatures between 0 and 40°C using spectroscopy and CSE imaging at three echo time combinations. An explanted human liver, rejected for transplantation due to steatosis, was scanned using spectroscopy and CSE imaging. Fat–water reconstructions were performed using four different techniques: magnitude and complex fitting, with standard or temperature-corrected signal modeling. Results In all experiments, magnitude fitting with standard signal modeling resulted in large fat quantification errors. Errors were largest for echo time combinations near TEinit ≈ 1.3 ms, ΔTE ≈ 2.2 ms. Errors in fat quantification caused by temperature-related frequency shifts were smaller with complex fitting, and were avoided using a temperature-corrected signal model. Conclusion Temperature is a confounding factor for fat quantification. If not accounted for, it can result in large errors in fat quantifications in phantom and ex vivo acquisitions. PMID:24123362

  13. What can we learn by computing 13Cα chemical shifts for X-ray protein models?

    International Nuclear Information System (INIS)

    Arnautova, Yelena A.; Vila, Jorge A.; Martin, Osvaldo A.; Scheraga, Harold A.

    2009-01-01

    The room-temperature X-ray structures of two proteins, solved at 1.8 and 1.9 Å resolution, are used to investigate whether a set of conformations, rather than a single X-ray structure, provides better agreement with both the X-ray data and the observed 13 C α chemical shifts in solution. The room-temperature X-ray structures of ubiquitin and of the RNA-binding domain of nonstructural protein 1 of influenza A virus solved at 1.8 and 1.9 Å resolution, respectively, were used to investigate whether a set of conformations rather than a single X-ray structure provides better agreement with both the X-ray data and the observed 13 C α chemical shifts in solution. For this purpose, a set of new conformations for each of these proteins was generated by fitting them to the experimental X-ray data deposited in the PDB. For each of the generated structures, which show R and R free factors similar to those of the deposited X-ray structure, the 13 C α chemical shifts of all residues in the sequence were computed at the DFT level of theory. The sets of conformations were then evaluated by their ability to reproduce the observed 13 C α chemical shifts by using the conformational average root-mean-square-deviation (ca-r.m.s.d.). For ubiquitin, the computed set of conformations is a better representation of the observed 13 C α chemical shifts in terms of the ca-r.m.s.d. than a single X-ray-derived structure. However, for the RNA-binding domain of nonstructural protein 1 of influenza A virus, consideration of an ensemble of conformations does not improve the agreement with the observed 13 C α chemical shifts. Whether an ensemble of conformations rather than any single structure is a more accurate representation of a protein structure in the crystal as well as of the observed 13 C α chemical shifts is determined by the dispersion of coordinates, in terms of the all-atom r.m.s.d. among the generated models; these generated models satisfy the experimental X-ray data with

  14. Guidelines for secondary analysis in search of response shift

    NARCIS (Netherlands)

    Schwartz, Carolyn E.; Ahmed, Sara; Sawatzky, Richard; Sajobi, Tolulope; Mayo, Nancy; Finkelstein, Joel; Lix, Lisa; Verdam, Mathilde G. E.; Oort, Frans J.; Sprangers, Mirjam A. G.

    2013-01-01

    Response shift methods have developed substantially in the past decade, with a notable emphasis on model-based methods for response shift detection that are appropriate for the analysis of existing data sets. These secondary data analyses have yielded useful insights and motivated the continued

  15. Guidelines for secondary analysis in search of response shift

    NARCIS (Netherlands)

    Schwartz, C.E.; Ahmed, S.; Sawatzky, R.; Sajobi, T.; Mayo, N.; Finkelstein, J.; Verdam, M.G.E.; Oort, F.J.; Sprangers, M.A.G.

    2013-01-01

    Objective: Response shift methods have developed substantially in the past decade, with a notable emphasis on model-based methods for response shift detection that are appropriate for the analysis of existing data sets. These secondary data analyses have yielded useful insights and motivated the

  16. Sequential nearest-neighbor effects on computed {sup 13}C{sup {alpha}} chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Vila, Jorge A. [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States); Serrano, Pedro; Wuethrich, Kurt [The Scripps Research Institute, Department of Molecular Biology (United States); Scheraga, Harold A., E-mail: has5@cornell.ed [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States)

    2010-09-15

    To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of {sup 13}C{sup {alpha}} chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue {alpha}/{beta} protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed {sup 13}C{sup {alpha}} chemical shifts. A new ensemble of 20 conformers representing the NMR structure of the NAB, which was calculated with an input containing backbone torsion angle constraints derived from the theoretical {sup 13}C{sup {alpha}} chemical shifts as supplementary data to the NOE distance constraints, exhibits very similar topology and comparable agreement with the NOE constraints as the published NMR structure. However, the two structures differ in the patterns of differences between observed and computed {sup 13}C{sup {alpha}} chemical shifts, {Delta}{sub ca,i}, for the individual residues along the sequence. This indicates that the {Delta}{sub ca,i} -values for the NAB protein are primarily a consequence of the limited sampling by the bundles of 20 conformers used, as in common practice, to represent the two NMR structures, rather than of local flaws in the structures.

  17. Chemical analysis report 2014

    International Nuclear Information System (INIS)

    Elbouzidi, Saliha; Elyahyaoui, Adil; Ghassan, Acil; Marah, Hamid

    2014-01-01

    This report highlights the results of chemical analyzes related to Major elements, traces and heavy metals carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 120 samples. The report presents the analytical techniques used (parameters and methods), a legend and the results tables.

  18. Chemical analysis report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    This report highlights the results of chemical analyzes of fluorides, bromides, lithium and boron carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 120 samples. The report presents the analytical techniques used (parameters and methods), a legend and the results tables.

  19. Investigation of DOTA-Metal Chelation Effects on the Chemical Shift of 129 Xe

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K; Slack, CC; Vassiliou, CC; Dao, P; Gomes, MD; Kennedy, DJ; Truxal, AE; Sperling, LJ; Francis, MB; Wemmer, DE; Pines, A

    2015-09-17

    Recent work has shown that xenon chemical shifts in cryptophane-cage sensors are affected when tethered chelators bind to metals. Here in this paper, we explore the xenon shifts in response to a wide range of metal ions binding to diastereomeric forms of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) linked to cryptophane-A. The shifts induced by the binding of Ca2+, Cu2+, Ce3+, Zn2+, Cd2+, Ni2+, Co2+, Cr2+, Fe3+, and Hg2+ are distinct. In addition, the different responses of the diastereomers for the same metal ion indicate that shifts are affected by partial folding with a correlation between the expected coordination number of the metal in the DOTA complex and the chemical shift of 129Xe. Lastly, these sensors may be used to detect and quantify many important metal ions, and a better understanding of the basis for the induced shifts could enhance future designs.

  20. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    DEFF Research Database (Denmark)

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...

  1. Chemical shift of Mn and Cr K-edges in X-ray absorption

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 6. Chemical shift of Mn and Cr K-edges in X-ray absorption spectroscopy with synchrotron radiation. D Joseph A K Yadav S N Jha D Bhattacharyya. Volume 36 Issue 6 November 2013 pp ...

  2. Stereoelectronic effects on 1H nuclear magnetic resonance chemical shifts in methoxybenzenes

    DEFF Research Database (Denmark)

    Lambert, Maja; Olsen, Lars; Jaroszewski, Jerzy W

    2006-01-01

    the Ar-OCH3 torsion out of the ring plane, resulting in large stereoelectronic effects on the chemical shift of Hpara. Conformational searches and geometry optimizations for 3-16 at the B3LYP/6-31G** level, followed by B3LYP/6-311++G(2d,2p) calculations for all low-energy conformers, gave excellent...

  3. H-1 chemical shift imaging characterization of human brain tumor and edema

    NARCIS (Netherlands)

    Sijens, PE; Oudkerk, M

    Longitudinal (T1) and transverse (T2) relaxation times of metabolites in human brain tumor, peritumoral edema, and unaffected brain tissue were assessed from point resolved spectroscopy (PRESS) H-1 chemical shift imaging results at different repetition times (TR = 1500 and 5000 ms; T1: n = 19) and

  4. Application of the Fenske-Hall molecular orbital method to the calculation of 11B NMR chemical shifts. Antipodal substituent effects in deltahedral clusters

    International Nuclear Information System (INIS)

    Fehlner, T.P.; Czech, P.T.; Fenske, R.F.

    1990-01-01

    Utilizing Fenske-Hall wave functions and eigenvalues combined with the Ramsey sum over states (SOS) approximation, it is demonstrated that the sign and magnitude of the paramagnetic contribution to the shielding correlates well with the observed 11 B chemical shifts of a substantial variety of boron- and metal-containing compounds. Analysis of the molecular orbital (MO) contributions in the SOS approximation leads to an explanation of the large downfield shifts associated with metal-rich metallaboranes. A similar analysis demonstrates the importance of selected cluster occupied and unoccupied MO's in explaining both exo-cage substituent effects in which the antipodal boron resonance is shifted upfield and endo-cage substituent effects (interchange of isolobal fragments within the cage framework) in which the antipodal boron resonance is shifted downfield. Exo- and endo-cage substitution perturbs these MO's in an understandable fashion, leading to an internally consistent explanation of the observed chemical shift changes. 36 refs., 8 figs., 4 tabs

  5. Chemical Mass Shifts in a Digital Linear Ion Trap as Analytical Identity of o-, m-, and p-Xylene.

    Science.gov (United States)

    Sun, Lulu; Xue, Bing; Huang, Zhengxu; Cheng, Ping; Ma, Li; Ding, Li; Zhou, Zhen

    2018-07-01

    Chemical mass shifts between isomeric ions of o-, m-, and p-xylene were measured using a digital linear ion trap, and the directions and values of the shifts were found to be correlated to the collision cross sections of the isomers. Both forward and reverse scans were used and the chemical shifts for each pair of isomers in scans of opposite directions were in opposite signs. Using different voltage settings (namely the voltage dividing ratio-VDR) of the ion trap allows adding high order field components in the quadrupole field and results in larger chemical mass shifts. The differential chemical mass shift which combined the shifts from forward and reverse scans doubled the amount of chemical shift, e.g., 0.077 Th between o- and p-xylene, enough for identification of the type of isomer without using an additional ion mobility spectrometer. The feature of equal and opposite chemical mass shifts also allowed to null out the chemical mass shift by calculating the mean m/z value between the two opposite scans and remove or reduce the mass error caused by chemical mass shift. Graphical Abstract ᅟ.

  6. Chemical Mass Shifts in a Digital Linear Ion Trap as Analytical Identity of o-, m-, and p-Xylene

    Science.gov (United States)

    Sun, Lulu; Xue, Bing; Huang, Zhengxu; Cheng, Ping; Ma, Li; Ding, Li; Zhou, Zhen

    2018-04-01

    Chemical mass shifts between isomeric ions of o-, m-, and p-xylene were measured using a digital linear ion trap, and the directions and values of the shifts were found to be correlated to the collision cross sections of the isomers. Both forward and reverse scans were used and the chemical shifts for each pair of isomers in scans of opposite directions were in opposite signs. Using different voltage settings (namely the voltage dividing ratio-VDR) of the ion trap allows adding high order field components in the quadrupole field and results in larger chemical mass shifts. The differential chemical mass shift which combined the shifts from forward and reverse scans doubled the amount of chemical shift, e.g., 0.077 Th between o- and p-xylene, enough for identification of the type of isomer without using an additional ion mobility spectrometer. The feature of equal and opposite chemical mass shifts also allowed to null out the chemical mass shift by calculating the mean m/z value between the two opposite scans and remove or reduce the mass error caused by chemical mass shift. [Figure not available: see fulltext.

  7. Pressure-dependent {sup 13}C chemical shifts in proteins: origins and applications

    Energy Technology Data Exchange (ETDEWEB)

    Wilton, David J. [University of Sheffield, Department of Molecular Biology and Biotechnology (United Kingdom); Kitahara, Ryo [Ritsumeikan University, College of Pharmaceutical Sciences (Japan); Akasaka, Kazuyuki [Kinki University, Department of Biotechnological Science, School of Biology-Oriented Science and Technology (Japan); Williamson, Mike P. [University of Sheffield, Department of Molecular Biology and Biotechnology (United Kingdom)], E-mail: m.williamson@sheffield.ac.uk

    2009-05-15

    Pressure-dependent {sup 13}C chemical shifts have been measured for aliphatic carbons in barnase and Protein G. Up to 200 MPa (2 kbar), most shift changes are linear, demonstrating pressure-independent compressibilities. CH{sub 3}, CH{sub 2} and CH carbon shifts change on average by +0.23, -0.09 and -0.18 ppm, respectively, due to a combination of bond shortening and changes in bond angles, the latter matching one explanation for the {gamma}-gauche effect. In addition, there is a residue-specific component, arising from both local compression and conformational change. To assess the relative magnitudes of these effects, residue-specific shift changes for protein G were converted into structural restraints and used to calculate the change in structure with pressure, using a genetic algorithm to convert shift changes into dihedral angle restraints. The results demonstrate that residual {sup 13}C{alpha} shifts are dominated by dihedral angle changes and can be used to calculate structural change, whereas {sup 13}C{beta} shifts retain significant dependence on local compression, making them less useful as structural restraints.

  8. Evaluation of the application of chemical shift for the detection of lipid in brain lesion

    Energy Technology Data Exchange (ETDEWEB)

    Lim, C.J. [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur (Malaysia); Ng, K.H., E-mail: ngkh@um.edu.m [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur (Malaysia); Ramli, N.; Azman, R.R. [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur (Malaysia)

    2011-02-15

    Non-invasive detection of the presence of lipids is particularly important in staging of intracranial tumours. Presence of lipid peak in aggressive intracranial tumours has been reported widely using MR spectroscopy. However this method has limitation due to long imaging time and artefacts formed by adjacent bones. Chemical shift MR imaging (with has shorter imaging time) is an alternative method that had been used to detect presence of lipid in vivo by means of signal intensity loss. The purpose of this study was to evaluate gradient echo in- and opposed-phase chemical shift pulse sequences for detection of lipid elements in brain lesion. Ten cylindered phantoms measuring 3 x 3 cm were filled with various mixtures of lipid and water: 0-90% lipid, in 10% step by weight. The gradient echo in- and opposed-phase chemical shift sequences were performed using a 1.5 T MRI (Magnetom Vision, Siemens) with a head coil. In addition, we performed MRI and chemical shift studies on 32 patients with brain lesion. We then analysed the association between out of phase intensity value and classification of the lesions. For phantom containing 50% lipid, maximum signal loss on opposed-phase images was observed. There were significant differences between in- and opposed-phase lipid-water phantom images (P = 0.0054). Most of the benign lesions fall into the positive out of phase intensity value, and malignant lesions fall into negative out of phase intensity value. We conclude that chemical shift artefact can be applied in detecting and characterising lipid elements in brain lesion.

  9. Evaluation of the application of chemical shift for the detection of lipid in brain lesion

    International Nuclear Information System (INIS)

    Lim, C.J.; Ng, K.H.; Ramli, N.; Azman, R.R.

    2011-01-01

    Non-invasive detection of the presence of lipids is particularly important in staging of intracranial tumours. Presence of lipid peak in aggressive intracranial tumours has been reported widely using MR spectroscopy. However this method has limitation due to long imaging time and artefacts formed by adjacent bones. Chemical shift MR imaging (with has shorter imaging time) is an alternative method that had been used to detect presence of lipid in vivo by means of signal intensity loss. The purpose of this study was to evaluate gradient echo in- and opposed-phase chemical shift pulse sequences for detection of lipid elements in brain lesion. Ten cylindered phantoms measuring 3 x 3 cm were filled with various mixtures of lipid and water: 0-90% lipid, in 10% step by weight. The gradient echo in- and opposed-phase chemical shift sequences were performed using a 1.5 T MRI (Magnetom Vision, Siemens) with a head coil. In addition, we performed MRI and chemical shift studies on 32 patients with brain lesion. We then analysed the association between out of phase intensity value and classification of the lesions. For phantom containing 50% lipid, maximum signal loss on opposed-phase images was observed. There were significant differences between in- and opposed-phase lipid-water phantom images (P = 0.0054). Most of the benign lesions fall into the positive out of phase intensity value, and malignant lesions fall into negative out of phase intensity value. We conclude that chemical shift artefact can be applied in detecting and characterising lipid elements in brain lesion.

  10. Chemical substructure analysis in toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Beauchamp, R.O. Jr. [Center for Information on Toxicology and Environment, Raleigh, NC (United States)

    1990-12-31

    A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

  11. Chemical Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Uses state-of-the-art instrumentation for qualitative and quantitative analysis of organic and inorganic compounds, and biomolecules from gas, liquid, and...

  12. Microprocessors in automatic chemical analysis

    International Nuclear Information System (INIS)

    Goujon de Beauvivier, M.; Perez, J.-J.

    1979-01-01

    Application of microprocessors to programming and computing of solutions chemical analysis by a sequential technique is examined. Safety, performances reliability are compared to other methods. An example is given on uranium titration by spectrophotometry [fr

  13. Isotope effects on chemical shifts in tautomeric systems with double proton transfer. Citronin

    International Nuclear Information System (INIS)

    Hansen, P.E.; Langgard, M.; Bolvig, S.

    1998-01-01

    Primary and secondary deuterium isotope effects on 1 H and 13 C chemical shifts are measured in citrinin, a tautomeric compound with an unusual doubly intramolecularly hydrogen bonded structure. The isotope effects are to a large extent dominated by equilibrium contributions and deuteration leads to more of the deuterated enol forms rather than the deuterated acid form. 1 H 13 C and 17 O nuclear shieldings are calculated using density functional ab initio methods. A very good correlation between calculated nuclear shieldings and experimental 1 H and 13 C chemical shifts is obtained. The tautomeric equilibrium can be analyzed based on the isotope effects on B-6 and C-8 carbons and shows an increase in the o-quinone form on lowering the temperature. Furthermore, upon deuteration the largest equilibrium shift is found for deuteration at OH-8 and the shift in the tautomeric equilibrium upon deuteration at OH-8 and the shift in the tautomeric equilibrium upon deuteration is increasing at lower temperature. (author)

  14. 13C NMR Chemical Shifts of the Triclinic and Monoclinic Crystal forms of Valinomycin

    International Nuclear Information System (INIS)

    Kameda, Tsunenori; McGeorge, Gary; Orendt, Anita M.; Grant, David M.

    2004-01-01

    Two different crystalline polymorphs of valinomycin, the triclinic and monoclinic forms, have been studied by high resolution, solid state 13 C CP-MAS NMR spectroscopy. Although the two polymorphs of the crystal are remarkably similar, there are distinct differences in the isotropic chemical shifts between the two spectra. For the triclinic form, the carbon chemical shift tensor components for the alpha carbons adjacent to oxygen in the lactic acid and hydroxyisovaleric acid residues and the ester carbonyls of the valine residue were obtained using the FIREMAT experiment. From the measured components, it was found that the behavior of the isotropic chemical shift, δ iso , for valine residue ester carbonyl carbons is predominately influenced by the intermediate component, δ 22 . Additionally it was found that the smallest shift component, δ 33 , for the L-lactic acid (L-Lac) and D-α-hydroxyisovaleric acid (D-Hyi) C α -O carbon was significantly displaced depending upon the nature of individual amino acid residues, and it is the δ 33 component that governs the behavior of δ iso in these alpha carbons

  15. SHIFT: server for hidden stops analysis in frame-shifted translation.

    Science.gov (United States)

    Gupta, Arun; Singh, Tiratha Raj

    2013-02-23

    Frameshift is one of the three classes of recoding. Frame-shifts lead to waste of energy, resources and activity of the biosynthetic machinery. In addition, some peptides synthesized after frame-shifts are probably cytotoxic which serve as plausible cause for innumerable number of diseases and disorders such as muscular dystrophies, lysosomal storage disorders, and cancer. Hidden stop codons occur naturally in coding sequences among all organisms. These codons are associated with the early termination of translation for incorrect reading frame selection and help to reduce the metabolic cost related to the frameshift events. Researchers have identified several consequences of hidden stop codons and their association with myriad disorders. However the wealth of information available is speckled and not effortlessly acquiescent to data-mining. To reduce this gap, this work describes an algorithmic web based tool to study hidden stops in frameshifted translation for all the lineages through respective genetic code systems. This paper describes SHIFT, an algorithmic web application tool that provides a user-friendly interface for identifying and analyzing hidden stops in frameshifted translation of genomic sequences for all available genetic code systems. We have calculated the correlation between codon usage frequencies and the plausible contribution of codons towards hidden stops in an off-frame context. Markovian chains of various order have been used to model hidden stops in frameshifted peptides and their evolutionary association with naturally occurring hidden stops. In order to obtain reliable and persuasive estimates for the naturally occurring and predicted hidden stops statistical measures have been implemented. This paper presented SHIFT, an algorithmic tool that allows user-friendly exploration, analysis, and visualization of hidden stop codons in frameshifted translations. It is expected that this web based tool would serve as a useful complement for

  16. Multiparametric fat-water separation method for fast chemical-shift imaging guidance of thermal therapies.

    Science.gov (United States)

    Lin, Jonathan S; Hwang, Ken-Pin; Jackson, Edward F; Hazle, John D; Stafford, R Jason; Taylor, Brian A

    2013-10-01

    A k-means-based classification algorithm is investigated to assess suitability for rapidly separating and classifying fat/water spectral peaks from a fast chemical shift imaging technique for magnetic resonance temperature imaging. Algorithm testing is performed in simulated mathematical phantoms and agar gel phantoms containing mixed fat/water regions. Proton resonance frequencies (PRFs), apparent spin-spin relaxation (T2*) times, and T1-weighted (T1-W) amplitude values were calculated for each voxel using a single-peak autoregressive moving average (ARMA) signal model. These parameters were then used as criteria for k-means sorting, with the results used to determine PRF ranges of each chemical species cluster for further classification. To detect the presence of secondary chemical species, spectral parameters were recalculated when needed using a two-peak ARMA signal model during the subsequent classification steps. Mathematical phantom simulations involved the modulation of signal-to-noise ratios (SNR), maximum PRF shift (MPS) values, analysis window sizes, and frequency expansion factor sizes in order to characterize the algorithm performance across a variety of conditions. In agar, images were collected on a 1.5T clinical MR scanner using acquisition parameters close to simulation, and algorithm performance was assessed by comparing classification results to manually segmented maps of the fat/water regions. Performance was characterized quantitatively using the Dice Similarity Coefficient (DSC), sensitivity, and specificity. The simulated mathematical phantom experiments demonstrated good fat/water separation depending on conditions, specifically high SNR, moderate MPS value, small analysis window size, and low but nonzero frequency expansion factor size. Physical phantom results demonstrated good identification for both water (0.997 ± 0.001, 0.999 ± 0.001, and 0.986 ± 0.001 for DSC, sensitivity, and specificity, respectively) and fat (0.763 ± 0.006, 0

  17. Trace Chemical Analysis Methodology

    Science.gov (United States)

    1980-04-01

    147 65 Modified DR/2 spectrophotometer face ........... ... 150 66 Colorimetric oil analysis field test kit ......... .. 152 67 Pictorial step...Assisted Pattern Recognitio Perhaps the most promising application of pattern recogntiontechniques for this research effort is the elucidation ".f the...large compartment on the spectrophotomer face . The screwdriver is used to adjust the zero adjust and light ad- just knobs, and the stainless steel

  18. Modelling the acid/base 1H NMR chemical shift limits of metabolites in human urine.

    Science.gov (United States)

    Tredwell, Gregory D; Bundy, Jacob G; De Iorio, Maria; Ebbels, Timothy M D

    2016-01-01

    Despite the use of buffering agents the 1 H NMR spectra of biofluid samples in metabolic profiling investigations typically suffer from extensive peak frequency shifting between spectra. These chemical shift changes are mainly due to differences in pH and divalent metal ion concentrations between the samples. This frequency shifting results in a correspondence problem: it can be hard to register the same peak as belonging to the same molecule across multiple samples. The problem is especially acute for urine, which can have a wide range of ionic concentrations between different samples. To investigate the acid, base and metal ion dependent 1 H NMR chemical shift variations and limits of the main metabolites in a complex biological mixture. Urine samples from five different individuals were collected and pooled, and pre-treated with Chelex-100 ion exchange resin. Urine samples were either treated with either HCl or NaOH, or were supplemented with various concentrations of CaCl 2 , MgCl 2 , NaCl or KCl, and their 1 H NMR spectra were acquired. Nonlinear fitting was used to derive acid dissociation constants and acid and base chemical shift limits for peaks from 33 identified metabolites. Peak pH titration curves for a further 65 unidentified peaks were also obtained for future reference. Furthermore, the peak variations induced by the main metal ions present in urine, Na + , K + , Ca 2+ and Mg 2+ , were also measured. These data will be a valuable resource for 1 H NMR metabolite profiling experiments and for the development of automated metabolite alignment and identification algorithms for 1 H NMR spectra.

  19. Assignment of protein backbone resonances using connectivity, torsion angles and 13Cα chemical shifts

    International Nuclear Information System (INIS)

    Morris, Laura C.; Valafar, Homayoun; Prestegard, James H.

    2004-01-01

    A program is presented which will return the most probable sequence location for a short connected set of residues in a protein given just 13 C α chemical shifts (δ( 13 C α )) and data restricting the φ and ψ backbone angles. Data taken from both the BioMagResBank and the Protein Data Bank were used to create a probability density function (PDF) using a multivariate normal distribution in δ( 13 C α ), φ, and ψ space for each amino acid residue. Extracting and combining probabilities for particular amino acid residues in a short proposed sequence yields a score indicative of the correctness of the proposed assignment. The program is illustrated using several proteins for which structure and 13 C α chemical shift data are available

  20. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2013-07-15

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, {>=}90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed ({phi}, {psi}) torsion angles of ca 12 Masculine-Ordinal-Indicator . TALOS-N also reports sidechain {chi}{sup 1} rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.

  1. Identifying stereoisomers by ab-initio calculation of secondary isotope shifts on NMR chemical shieldings.

    Science.gov (United States)

    Böhm, Karl-Heinz; Banert, Klaus; Auer, Alexander A

    2014-04-23

    We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2H)ethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T) level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  2. Identifying Stereoisomers by ab-initio Calculation of Secondary Isotope Shifts on NMR Chemical Shieldings

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Böhm

    2014-04-01

    Full Text Available We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2Hethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  3. Cα and Cβ Carbon-13 Chemical Shifts in Proteins From an Empirical Database

    International Nuclear Information System (INIS)

    Iwadate, Mitsuo; Asakura, Tetsuo; Williamson, Michael P.

    1999-01-01

    We have constructed an extensive database of 13C Cα and Cβ chemical shifts in proteins of solution, for proteins of which a high-resolution crystal structure exists, and for which the crystal structure has been shown to be essentially identical to the solution structure. There is no systematic effect of temperature, reference compound, or pH on reported shifts, but there appear to be differences in reported shifts arising from referencing differences of up to 4.2 ppm. The major factor affecting chemical shifts is the backbone geometry, which causes differences of ca. 4 ppm between typical α- helix and β-sheet geometries for Cα, and of ca. 2 ppm for Cβ. The side-chain dihedral angle χ1 has an effect of up to 0.5 ppm on the Cα shift, particularly for amino acids with branched side-chains at Cβ. Hydrogen bonding to main-chain atoms has an effect of up to 0.9 ppm, which depends on the main- chain conformation. The sequence of the protein and ring-current shifts from aromatic rings have an insignificant effect (except for residues following proline). There are significant differences between different amino acid types in the backbone geometry dependence; the amino acids can be grouped together into five different groups with different φ,ψ shielding surfaces. The overall fit of individual residues to a single non-residue-specific surface, incorporating the effects of hydrogen bonding and χ1 angle, is 0.96 ppm for both Cα and Cβ. The results from this study are broadly similar to those from ab initio studies, but there are some differences which could merit further attention

  4. An extrapolation scheme for solid-state NMR chemical shift calculations

    Science.gov (United States)

    Nakajima, Takahito

    2017-06-01

    Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.

  5. Measuring 13Cβ chemical shifts of invisible excited states in proteins by relaxation dispersion NMR spectroscopy

    International Nuclear Information System (INIS)

    Lundstroem, Patrik; Lin Hong; Kay, Lewis E.

    2009-01-01

    A labeling scheme is introduced that facilitates the measurement of accurate 13 C β chemical shifts of invisible, excited states of proteins by relaxation dispersion NMR spectroscopy. The approach makes use of protein over-expression in a strain of E. coli in which the TCA cycle enzyme succinate dehydrogenase is knocked out, leading to the production of samples with high levels of 13 C enrichment (30-40%) at C β side-chain carbon positions for 15 of the amino acids with little 13 C label at positions one bond removed (∼5%). A pair of samples are produced using [1- 13 C]-glucose/NaH 12 CO 3 or [2- 13 C]-glucose as carbon sources with isolated and enriched (>30%) 13 C β positions for 11 and 4 residues, respectively. The efficacy of the labeling procedure is established by NMR spectroscopy. The utility of such samples for measurement of 13 C β chemical shifts of invisible, excited states in exchange with visible, ground conformations is confirmed by relaxation dispersion studies of a protein-ligand binding exchange reaction in which the extracted chemical shift differences from dispersion profiles compare favorably with those obtained directly from measurements on ligand free and fully bound protein samples

  6. Effects of Protein-pheromone Complexation on Correlated Chemical Shift Modulations

    International Nuclear Information System (INIS)

    Perazzolo, Chiara; Wist, Julien; Loth, Karine; Poggi, Luisa; Homans, Steve; Bodenhausen, Geoffrey

    2005-01-01

    Major urinary protein (MUP) is a pheromone-carrying protein of the lipocalin family. Previous studies by isothermal titration calorimetry (ITC) show that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine (IBMP) is mainly driven by enthalpy, with a small unfavourable entropic contribution. Entropic terms can be attributed in part to changes in internal motions of the protein upon binding. Slow internal motions can lead to correlated or anti-correlated modulations of the isotropic chemical shifts of carbonyl C' and amide N nuclei. Correlated chemical shift modulations (CSM/CSM) in MUP have been determined by measuring differences of the transverse relaxation rates of zero- and double-quantum coherences ZQC{C'N} and DQC{C'N}, and by accounting for the effects of correlated fluctuations of dipole-dipole couplings (DD/DD) and chemical shift anisotropies (CSA/CSA). The latter can be predicted from tensor parameters of C' and N nuclei that have been determined in earlier work. The effects of complexation on slow time-scale protein dynamics can be determined by comparing the temperature dependence of the relaxation rates of APO-MUP (i.e., without ligand) and HOLO-MUP (i.e., with IBMP as a ligand)

  7. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Delaglio, Frank [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Cornilescu, Gabriel [National Magnetic Resonance Facility (United States); Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: bax@nih.gov

    2009-08-15

    NMR chemical shifts in proteins depend strongly on local structure. The program TALOS establishes an empirical relation between {sup 13}C, {sup 15}N and {sup 1}H chemical shifts and backbone torsion angles {phi} and {psi} (Cornilescu et al. J Biomol NMR 13 289-302, 1999). Extension of the original 20-protein database to 200 proteins increased the fraction of residues for which backbone angles could be predicted from 65 to 74%, while reducing the error rate from 3 to 2.5%. Addition of a two-layer neural network filter to the database fragment selection process forms the basis for a new program, TALOS+, which further enhances the prediction rate to 88.5%, without increasing the error rate. Excluding the 2.5% of residues for which TALOS+ makes predictions that strongly differ from those observed in the crystalline state, the accuracy of predicted {phi} and {psi} angles, equals {+-}13{sup o}. Large discrepancies between predictions and crystal structures are primarily limited to loop regions, and for the few cases where multiple X-ray structures are available such residues are often found in different states in the different structures. The TALOS+ output includes predictions for individual residues with missing chemical shifts, and the neural network component of the program also predicts secondary structure with good accuracy.

  8. Effects of Protein-pheromone Complexation on Correlated Chemical Shift Modulations

    Energy Technology Data Exchange (ETDEWEB)

    Perazzolo, Chiara; Wist, Julien [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland); Loth, Karine; Poggi, Luisa [Ecole Normale Superieure, Departement de chimie, associe au CNRS (France); Homans, Steve [University of Leeds, School of Biochemistry and Microbiology (United Kingdom); Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland)], E-mail: Geoffrey.Bodenhausen@ens.fr

    2005-12-15

    Major urinary protein (MUP) is a pheromone-carrying protein of the lipocalin family. Previous studies by isothermal titration calorimetry (ITC) show that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine (IBMP) is mainly driven by enthalpy, with a small unfavourable entropic contribution. Entropic terms can be attributed in part to changes in internal motions of the protein upon binding. Slow internal motions can lead to correlated or anti-correlated modulations of the isotropic chemical shifts of carbonyl C' and amide N nuclei. Correlated chemical shift modulations (CSM/CSM) in MUP have been determined by measuring differences of the transverse relaxation rates of zero- and double-quantum coherences ZQC{l_brace}C'N{r_brace} and DQC{l_brace}C'N{r_brace}, and by accounting for the effects of correlated fluctuations of dipole-dipole couplings (DD/DD) and chemical shift anisotropies (CSA/CSA). The latter can be predicted from tensor parameters of C' and N nuclei that have been determined in earlier work. The effects of complexation on slow time-scale protein dynamics can be determined by comparing the temperature dependence of the relaxation rates of APO-MUP (i.e., without ligand) and HOLO-MUP (i.e., with IBMP as a ligand)

  9. Advantages of shift changeovers with meetings: ergonomic analysis of shift supervisors' activity in aircraft building.

    Science.gov (United States)

    Le Bris, Valérie; Barthe, Béatrice; Marquié, Jean-Claude; Kerguelen, Alain; Aubert, Sophie; Bernadou, Bernadette

    2012-03-01

    Good shift changeovers contribute to ensuring continuity and reliability in shift work. In situations where production is not maintained 24 h a day, changeovers with meetings (SCM) between the two work teams (written plus oral face-to-face handovers) alternate with changeovers without meetings (SCnM; written handovers only). An ergonomic work analysis on an aircraft assembly line showed that (1) incoming and outgoing operators met during the overlap time allotted by the company, and (2) the content of the exchanges was richer for SCMs than for SCnMs. SCMs enabled the operators to pass on and process more aspects of their work than SCnMs did. SCMs also allowed incoming operators to validate their predictions, and enabled both outgoing and incoming operators to update their mental models and work together on peripheral aspects of the technical process over a greater time span. The findings highlight the importance of allowing overlap time in shift work. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. Thalassiosira spp. community composition shifts in response to chemical and physical forcing in the northeast Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Phoebe Dreux Chappell

    2013-09-01

    Full Text Available Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a three-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a three-month-old Haida eddy remained largely (>80% similar over a two-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response.

  11. Benchmarking Hydrogen and Carbon NMR Chemical Shifts at HF, DFT, and MP2 Levels.

    Science.gov (United States)

    Flaig, Denis; Maurer, Marina; Hanni, Matti; Braunger, Katharina; Kick, Leonhard; Thubauville, Matthias; Ochsenfeld, Christian

    2014-02-11

    An extensive study of error distributions for calculating hydrogen and carbon NMR chemical shifts at Hartree-Fock (HF), density functional theory (DFT), and Møller-Plesset second-order perturbation theory (MP2) levels is presented. Our investigation employs accurate CCSD(T)/cc-pVQZ calculations for providing reference data for 48 hydrogen and 40 carbon nuclei within an extended set of chemical compounds covering a broad range of the NMR scale with high relevance to chemical applications, especially in organic chemistry. Besides the approximations of HF, a variety of DFT functionals, and conventional MP2, we also present results with respect to a spin component-scaled MP2 (GIAO-SCS-MP2) approach. For each method, the accuracy is analyzed in detail for various basis sets, allowing identification of efficient combinations of method and basis set approximations.

  12. Carbon 13 nuclear magnetic resonance chemical shifts empiric calculations of polymers by multi linear regression and molecular modeling

    International Nuclear Information System (INIS)

    Da Silva Pinto, P.S.; Eustache, R.P.; Audenaert, M.; Bernassau, J.M.

    1996-01-01

    This work deals with carbon 13 nuclear magnetic resonance chemical shifts empiric calculations by multi linear regression and molecular modeling. The multi linear regression is indeed one way to obtain an equation able to describe the behaviour of the chemical shift for some molecules which are in the data base (rigid molecules with carbons). The methodology consists of structures describer parameters definition which can be bound to carbon 13 chemical shift known for these molecules. Then, the linear regression is used to determine the equation significant parameters. This one can be extrapolated to molecules which presents some resemblances with those of the data base. (O.L.). 20 refs., 4 figs., 1 tab

  13. Elucidation of the substitution pattern of 9,10-anthraquinones through the chemical shifts of peri-hydroxyl protons

    DEFF Research Database (Denmark)

    Schripsema, Jan; Danigno, Denise

    1996-01-01

    In 9,10-anthraquinones the chemical shift of a peri-hydroxyl proton is affected by the substituents in the other benzenoid ring. These effects are additive. They are useful for the determination of substitution patterns and have been used to revise the structures of six previously reported...... anthraquinones containing methoxyl, hydroxyl, methylenedioxy and beta-methyl substituents. Because the chemical shifts of the other protons are hardly affected by substitutions in the other ring, the characteristic chemical shifts for a wide variety of substitution patterns could be derived....

  14. Associations of rotational shift work and night shift status with hypertension: a systematic review and meta-analysis.

    Science.gov (United States)

    Manohar, Sandhya; Thongprayoon, Charat; Cheungpasitporn, Wisit; Mao, Michael A; Herrmann, Sandra M

    2017-10-01

    The reported risks of hypertension (HTN) in rotating shift and night shift workers are controversial. The objective of this meta-analysis was to assess the association between shift work status and HTN. A literature search was performed using MEDLINE, EMBASE and Cochrane Database from inception through October 2016. Studies that reported odds ratios (OR) comparing the risk of HTN in shift workers were included. A prespecified subgroup analysis by rotating shift and night shift statuses were also performed. Pooled OR and 95% confidence interval (CI) were calculated using a random-effect, generic inverse variance method. The protocol for this study is registered with International Prospective Register of Systematic Reviews; no. CRD42016051843. Twenty-seven observational studies (nine cohort and 18 cross-sectional studies) with a total of 394 793 individuals were enrolled. The pooled ORs of HTN in shift workers in cohort and cross-sectional studies were 1.31 (95% CI, 1.07-1.60) and 1.10 (95% CI, 1.00-1.20), respectively. When meta-analysis was restricted only to cohort studies in rotating shift, the pooled OR of HTN in rotating shift workers was 1.34 (95% CI, 1.08-1.67). The data regarding night shift and HTN in cohort studies was limited. The pooled OR of HTN in night shift workers in cross-sectional studies was 1.07 (95% CI, 0.85-1.35). Based on the findings of our meta-analysis, shiftwork status may play an important role in HTN, as there is a significant association between rotating shift work and HTN. However, there is no significant association between night shift status and risk of HTN.

  15. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.go [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2010-09-15

    NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structures and nearly complete backbone and {sup 13}C{sup {beta}} chemical shifts are available. The neural network is trained to establish quantitative relations between chemical shifts and protein structures, including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects. The trained neural network yields rapid chemical shift prediction for backbone and {sup 13}C{sup {beta}} atoms, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for {delta}{sup 15}N, {delta}{sup 13}C', {delta}{sup 13}C{sup {alpha}}, {delta}{sup 13}C{sup {beta}}, {delta}{sup 1}H{sup {alpha}} and {delta}{sup 1}H{sup N}, respectively, between the SPARTA+ predicted and experimental shifts for a set of eleven validation proteins. These results represent a modest but consistent improvement (2-10%) over the best programs available to date, and appear to be approaching the limit at which empirical approaches can predict chemical shifts.

  16. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network

    International Nuclear Information System (INIS)

    Shen Yang; Bax, Ad

    2010-01-01

    NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structures and nearly complete backbone and 13 C β chemical shifts are available. The neural network is trained to establish quantitative relations between chemical shifts and protein structures, including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects. The trained neural network yields rapid chemical shift prediction for backbone and 13 C β atoms, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for δ 15 N, δ 13 C', δ 13 C α , δ 13 C β , δ 1 H α and δ 1 H N , respectively, between the SPARTA+ predicted and experimental shifts for a set of eleven validation proteins. These results represent a modest but consistent improvement (2-10%) over the best programs available to date, and appear to be approaching the limit at which empirical approaches can predict chemical shifts.

  17. Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis.

    Science.gov (United States)

    Kühn, Jens-Peter; Hernando, Diego; Mensel, Birger; Krüger, Paul C; Ittermann, Till; Mayerle, Julia; Hosten, Norbert; Reeder, Scott B

    2014-06-01

    To compare the accuracy of liver fat quantification using a three-echo chemical shift-encoded magnetic resonance imaging (MRI) technique without and with correction for confounders with spectroscopy (MRS) as the reference standard. Fifty patients (23 women, mean age 56.6 ± 13.2 years) with fatty liver disease were enrolled. Patients underwent T2-corrected single-voxel MRS and a three-echo chemical shift-encoded gradient echo (GRE) sequence at 3.0T. MRI fat fraction (FF) was calculated without and with T2* and T1 correction and multispectral modeling of fat and compared with MRS-FF using linear regression. The spectroscopic range of liver fat was 0.11%-38.7%. Excellent correlation between MRS-FF and MRI-FF was observed when using T2* correction (R(2)  = 0.96). With use of T2* correction alone, the slope was significantly different from 1 (1.16 ± 0.03, P fat were addressed, the results showed equivalence between fat quantification using MRI and MRS (slope: 1.02 ± 0.03, P = 0.528; intercept: 0.26% ± 0.46%, P = 0.572). Complex three-echo chemical shift-encoded MRI is equivalent to MRS for quantifying liver fat, but only with correction for T2* decay and T1 recovery and use of spectral modeling of fat. This is necessary because T2* decay, T1 recovery, and multispectral complexity of fat are processes which may otherwise bias the measurements. Copyright © 2013 Wiley Periodicals, Inc.

  18. Study of chemical shifts of the chloroform complexes with cyclic donors of electrons

    International Nuclear Information System (INIS)

    Blaszkiewicz, B.; Pajak, Z.

    1973-01-01

    Chemical shifts of chloroform complexes with the heterocyclic electron donors: pyridine, piperidine, alpha-picoline and gamma-picoline have been studied using the high resolution (5.10 -9 ) spectrometer operating at 80 MHz. An attempt has also been made to study the three - component solutions of : chloroform, a heterocyclic donor of electrons and carbon tetrachloride. The results, which have been obtained, indicate that the complex-forming power of pyridine and other electron donors is greater in carbon tetrachloride than in other solvents. (S.B.)

  19. Isomer shifts and chemical bonding in crystalline Sn(II) and Sn(IV) compounds

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1991-01-01

    First-principles self-consistent Local Density calculations of the electronic structure of clusters representing Sn(II) (SnO, SnF 2 , SnS, SnSe) and Sn(IV) (SnO 2 , SnF 4 ) crystalline compounds were performed. Values of the electron density at the Sn nucleus were obtained and related to measured values of the Moessbauer Isomer Shifts reported in the literature. The nuclear parameter of 119 Sn derived was ΔR/R=(1.58±0.14)x10 -4 . The chemical bonding in the solids was analysed and related to the electron densities obtained. (author)

  20. Performance test of multicomponent quantum mechanical calculation with polarizable continuum model for proton chemical shift.

    Science.gov (United States)

    Kanematsu, Yusuke; Tachikawa, Masanori

    2015-05-21

    Multicomponent quantum mechanical (MC_QM) calculations with polarizable continuum model (PCM) have been tested against liquid (1)H NMR chemical shifts for a test set of 80 molecules. Improvement from conventional quantum mechanical calculations was achieved for MC_QM calculations. The advantage of the multicomponent scheme could be attributed to the geometrical change from the equilibrium geometry by the incorporation of the hydrogen nuclear quantum effect, while that of PCM can be attributed to the change of the electronic structure according to the polarization by solvent effects.

  1. Parameter-free calculation of K alpha chemical shifts for Al, Si, and Ge oxides

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2001-01-01

    The chemical shifts of the K alpha radiation line from Al, Si, and Ge ions between their elemental and oxide forms are calculated within the framework of density functional theory using ultrasoft pseudopotentials. It is demonstrated that this theoretical approach yields quantitatively accurate...... results fur the systems investigated, provided that relaxations of the valence electrons upon the core-hole transition are properly accounted for. Therefore, such calculations provide a powerful tool for identification of impurity states based on x-ray fluorescence data. Results for an Al impurity...

  2. Combined echo offset (Dixon) and line volume chemical shift imaging as a clinical imaging protocol

    International Nuclear Information System (INIS)

    Listerud, J.; Chan, T.; Lenkinski, R.E.; Kressel, H.Y.; Chao, P.W.

    1989-01-01

    The authors have studied the sensitivity and specificity of the line-volume chemical-shift imaging (CSI) method as compared with the Dixon method they have recently implemented on a Signa, which supports a variety of options. Potential sources or error for the Dixon method include line broadening due to susceptibility, field inhomogeneity, and errors form olefinic resonances associated with fat, which behave like water in the Dixon regime. The authors investigate whether a combined Dixon/line-volume CSI method could be used to improve the placement of the line volume and to provide higher sensitivity and specificity than does the Dixon method alone

  3. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method

    Science.gov (United States)

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  4. Determination of hydration numbers of electrolytes from temperature dependence of PMR chemical shifts

    International Nuclear Information System (INIS)

    Subramanian, N.

    1979-01-01

    The method proposed by Malinowski et al. for the determination of effective hydration numbers (h) of electrolytes leads to a consistent incrrease in the observed values of 'h' with increase in solution concentration. An attempt is made to rationalize the experimental results by cosidering the simultaneous effects of temperature and concentration on the proton chemical shift. It is suggested that Malinowski's technique might yeld 'h' values very close to the true value for those ions for which there is a fortuitous cancellation of structure-making and structure-breaking properties. (Author) [pt

  5. Chemical analysis of geological samples

    International Nuclear Information System (INIS)

    Malhotra, R.K.

    1997-01-01

    Most of the analytical methodology used in geochemical exploration has been based on molecular absorption, atomic absorption, and ICP-AES, ICPMAS etc. Detection limit and precision are factors in the choice of methodology in search of metallic ores and are related to the accuracy of data. A brief outline of the various chemical analysis techniques explaining essentially the basics of measurement principles and instrumentation is discussed

  6. Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging

    DEFF Research Database (Denmark)

    Hanson, Lars Peter Grüner; Adalsteinsson, E; Pfefferbaum, A

    2000-01-01

    Quantification of gray and white matter levels of spectroscopically visible metabolites can provide important insights into brain development and pathological conditions. Chemical shift imaging offers a gain in efficiency for estimation of global gray and white matter metabolite concentrations co...

  7. Physical basis of the effect of hemoglobin on the 31P NMR chemical shifts of various phosphoryl compounds

    International Nuclear Information System (INIS)

    Kirk, K.; Kuchel, P.W.

    1988-01-01

    The marked difference between the intra- and extracellular 31 P NMR chemical shifts of various phosphoryl compounds when added to a red cell suspension may be largely understood in terms of the effects of hemoglobin on the 31 P NMR chemical shifts. The presence of [oxy- or (carbonmonoxy)-] hemoglobin inside the red cell causes the bulk magnetic susceptibility of the cell cytoplasm to be significantly less than that of the external solution. This difference is sufficient to account for the difference in the intra- and extracellular chemical shifts of the two phosphate esters trimethyl phosphate and triethyl phosphate. However, in the case of the compounds dimethyl methylphosphonate, diethyl methylphosphonate, and trimethylphosphine oxide as well as the hypophosphite, phenylphosphinate, and diphenylphosphinate ions, hemoglobin exerts an additional, much larger, effect, causing the 31 P NMR resonances to shift to lower frequency in a manner that cannot be accounted for in terms of magnetic susceptibility. Lysozyme is a protein structurally unrelated to hemoglobin and was shown to cause similar shifts to lower frequency of the resonances of these six compounds; this suggests that the mechanism may involve a property of proteins in general and not a specific property of hemoglobin. The effect of different solvents on the chemical shifts of the eight phosphoryl compounds provided an insight into the possible physical basis of the effect. It is proposed that, in addition to magnetic susceptibility effects, hemoglobin exerts its influence on phosphoryl chemical shifts by disrupting the hydrogen bonding of the phosphoryl group to solvent water

  8. Solvation effects on chemical shifts by embedded cluster integral equation theory.

    Science.gov (United States)

    Frach, Roland; Kast, Stefan M

    2014-12-11

    The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution.

  9. Rapid chemical analysis of allanite

    International Nuclear Information System (INIS)

    Nishiyama, Goro; Hayashi, Hiroshi

    1981-01-01

    Rapid chemical analysis of allanite was studied by atomic absorption spectrophotometry. Powdered sample was fused with mixture of sodium carbonate anhydrous and borax (4 : 1 weight) in platinum crucible and sample solution was prepared. SiO 2 , Fe 2 O 3 , Al 2 O 3 , MnO and rare earth metals were determined by atomic absorption spectrophotometry, CaO, MgO and Ce 2 O 3 by titration, ThO 2 by colorimetry, and La 2 O 3 by flame photometry respectively. For sample solution treated with hydrofluoric acid and sulfuric acid. Na 2 O and K 2 O were determined by atomic absorption spectrophotometry, TiO 2 and P 2 O 5 by colorimetry. Chemical analyses for four samples were carried out and gave consistent results. (author)

  10. Criteria to average out the chemical shift anisotropy in solid-state NMR when irradiated with BABA I, BABA II, and C7 radiofrequency pulse sequences.

    Science.gov (United States)

    Stephane Mananga, Eugene

    2013-01-01

    Floquet-Magnus expansion is used to study the effect of chemical shift anisotropy in solid-state NMR of rotating solids. The chemical shift interaction is irradiated with two types of radiofrequency pulse sequences: BABA and C7. The criteria for the chemical shift anisotropy to be averaged out in each rotor period are obtained. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. An extended chemical analysis of gallstone

    OpenAIRE

    Chandran, P.; Kuchhal, N. K.; Garg, P.; Pundir, C. S.

    2007-01-01

    Chemical composition of gall stones is essential for aetiopathogensis of gallstone disease. We have reported quantitative chemical analysis of total cholesterol bilirubin, calcium, iron and inorganic phosphate in 120 gallstones from haryana. To extend this chemical analysis of gall stones by studying more cases and by analyzing more chemical constituents. A quantitative chemical analysis of total cholesterol, total bilirubin, fatty acids, triglycerides, phospholipids, bile acids, soluble prot...

  12. NMR Chemical Shift of a Helium Atom as a Probe for Electronic Structure of FH, F-, (FHF)-, and FH2.

    Science.gov (United States)

    Tupikina, E Yu; Efimova, A A; Denisov, G S; Tolstoy, P M

    2017-12-21

    In this work, we present the first results of outer electronic shell visualization by using a 3 He atom as a probe particle. As model objects we have chosen F - , FH, and FH 2 + species, as well as the hydrogen-bonded complex FH···F - at various H···F - distances (3.0, 2.5, 2.0, and 1.5 Å and equilibrium at ca. 1.14 Å). The interaction energy of investigated objects with helium atom (CCSD/aug-cc-pVTZ) and helium atom chemical shift (B3LYP/pcS-2) surfaces were calculated, and their topological analysis was performed. For comparison, the results of standard quantum mechanical approaches to electronic shell visualization were presented (ESP, ELF, ED, ∇ 2 ED). We show that the Laplacian of helium chemical shift, ∇ 2 δ He , is sensitive to fluorine atom lone pair localization regions, and it can be used for the visualization of the outer electronic shell, which could be used to evaluate the proton accepting ability. The sensitivity of ∇ 2 δ He to lone pairs is preserved at distances as large as 2.0-2.5 Å from the fluorine nucleus (in comparison with the distance to ESP minima, located at 1.0-1.5 Å or maxima of ELF, which are as close as 0.6 Å to the fluorine nucleus).

  13. Chemical analysis as production guide

    International Nuclear Information System (INIS)

    Bouzigues, H.; Fontaine, A.; Patigny, P.

    1975-01-01

    All piloting data of chemical processing plants are based on the results of analysis. The first part of this article describes a system of analysers adapted to the needs of the Pierrelatte plant, with management of signals collected by the factory computer. Part two shows the influence of analytical development in the establishment of material balance sheets for the Marcoule spent fuel processing plant. Part three stresses the contribution of the automation of analytical test processes at the La Hague spent fuel processing plant. In all three cases the progress in analytical methods greatly improves the safety, reliability and response time of the various operations [fr

  14. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    Science.gov (United States)

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  15. Correlations of the chemical shift on fasly rotating biological solids by means of NMR spectroscopy

    International Nuclear Information System (INIS)

    Herbst, Christian

    2010-01-01

    The basic aim of the thesis was the development and improvement of homo- and heteronuclear feedback sequences for the generation of correlation spectra of the chemical shift. In a first step the possibility of the acquisition of 13 C- 13 correlation spectra of the chemical shift by means of inversion pulses with low RF power factor was studied. Furthermore it was shown that broad-band phase-modulated inversion and universal rotational pulses can be constructed by means of global optimization procedures like the genetic algorithms under regardment of the available RF field strength. By inversion, universal rotational, and 360 pulses as starting values of the optimization efficient homonuclear CN n ν and RN n ν mixing sequences as well as heteronuclear RN n ν s ,ν k feedback sequences were generated. The satisfactory power of the numerically optimized sequences was shown by means of the simulation as well by means of correlation experiments of the chemical shift of L-histidine, L-arginine, and the (CUG) 97 -RNA. This thesis deals furthermore with the possibility to acquire simultaneously different signals with several receivers. By means of numerically optimized RN n ν s ,ν k pulse sequences both 15 N- 13 C and 13 C- 15 N correlation spectra were simultaneously generated. Furthermore it could be shown that the simultaneous acquisition of 3D- 15 N- 13 C- 13 C and 13 C- 15 N-( 1 H)- 1 H correlation spectra is possible. By this in only one measurement process resonance assignments can be met and studies of the global folding performed. A further application of several receivers is the simultaneous acquisition of CHHC, NHHN, NHHC, as well as CHHN spectra. By such experiments it is possible to characterize the hydrogen-bonding pattern and the glycosidic torsion angle χ in RNA. This was demonstrated by means of the (CUG) 97 -RNA. The simultaneous acquisition of all relevant crossing signals of the correlation spectra leads not only to an essential time saving, but

  16. Chemical analysis by nuclear techniques

    International Nuclear Information System (INIS)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y.

    2002-01-01

    This state art report consists of four parts, production of micro-particles, analysis of boron, alpha tracking method and development of neutron induced prompt gamma ray spectroscopy (NIPS) system. The various methods for the production of micro-paticles such as mechanical method, electrolysis method, chemical method, spray method were described in the first part. The second part contains sample treatment, separation and concentration, analytical method, and application of boron analysis. The third part contains characteristics of alpha track, track dectectors, pretreatment of sample, neutron irradiation, etching conditions for various detectors, observation of track on the detector, etc. The last part contains basic theory, neutron source, collimator, neutron shields, calibration of NIPS, and application of NIPS system

  17. Chemical analysis by nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y

    2002-01-01

    This state art report consists of four parts, production of micro-particles, analysis of boron, alpha tracking method and development of neutron induced prompt gamma ray spectroscopy (NIPS) system. The various methods for the production of micro-paticles such as mechanical method, electrolysis method, chemical method, spray method were described in the first part. The second part contains sample treatment, separation and concentration, analytical method, and application of boron analysis. The third part contains characteristics of alpha track, track dectectors, pretreatment of sample, neutron irradiation, etching conditions for various detectors, observation of track on the detector, etc. The last part contains basic theory, neutron source, collimator, neutron shields, calibration of NIPS, and application of NIPS system.

  18. The interplay between transient a-helix formation and side chain rotamer distributions in disordered proteins probed by methyl chemical shifts

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Iesmantavicius, Vytautas; Poulsen, Flemming M

    2011-01-01

    and retinoid receptors (ACTR). We find that small differences in the methyl carbon chemical shifts due to the ¿-gauche effect may provide information about the side chain rotamer distributions. However, the effects of neighboring residues on the methyl group chemical shifts obscure the direct observation...... of ¿-gauche effect. To overcome this, we reference the chemical shifts to those in a more disordered state resulting in residue specific random coil chemical shifts. The (13)C secondary chemical shifts of the methyl groups of valine, leucine, and isoleucine show sequence specific effects, which allow...

  19. Improvement of chemical shift selective saturation (CHESS) pulse for MR angiography

    International Nuclear Information System (INIS)

    Ishimori, Yoshiyuki; Sashie, Hiroyuki; Hiraga, Akira; Matsuda, Tsuyoshi

    2000-01-01

    We improved the fat suppression technique based on chemical shift selective saturation (CHESS). To do this, we shortened the duration of the CHESS pulse to achieve a short repetition time (TR) for MR angiography (MRA). A short-duration CHESS pulse causes broad frequency band saturation, creating extensive offset from the resonance frequency of water. In our phantom experiment, the best parameters of the short-duration CHESS pulse were 3.84 ms in duration, -650 Hz in offset frequency from water resonance, and had a 130-degree flip angle. With this technique, MRA will be able to be carried out without a significant increase in TR. Thus, better vessel contrast will be maintained in time-of-flight (TOF) MRA or contrast-enhanced MRA when using the maximum intensity projection (MIP) method. (author)

  20. Chemical shift assignments of the partially deuterated Fyn SH2-SH3 domain.

    Science.gov (United States)

    Kieken, Fabien; Loth, Karine; van Nuland, Nico; Tompa, Peter; Lenaerts, Tom

    2018-04-01

    Src Homology 2 and 3 (SH2 and SH3) are two key protein interaction modules involved in regulating the activity of many proteins such as tyrosine kinases and phosphatases by respective recognition of phosphotyrosine and proline-rich regions. In the Src family kinases, the inactive state of the protein is the direct result of the interaction of the SH2 and the SH3 domain with intra-molecular regions, leading to a closed structure incompetent with substrate modification. Here, we report the 1 H, 15 N and 13 C backbone- and side-chain chemical shift assignments of the partially deuterated Fyn SH3-SH2 domain and structural differences between tandem and single domains. The BMRB accession number is 27165.

  1. Nuclear spin relaxation due to chemical shift anisotropy of gas-phase 129Xe.

    Science.gov (United States)

    Hanni, Matti; Lantto, Perttu; Vaara, Juha

    2011-08-14

    Nuclear spin relaxation provides detailed dynamical information on molecular systems and materials. Here, first-principles modeling of the chemical shift anisotropy (CSA) relaxation time for the prototypic monoatomic (129)Xe gas is carried out, both complementing and predicting the results of NMR measurements. Our approach is based on molecular dynamics simulations combined with pre-parametrized ab initio binary nuclear shielding tensors, an "NMR force field". By using the Redfield relaxation formalism, the simulated CSA time correlation functions lead to spectral density functions that, for the first time, quantitatively determine the experimental spin-lattice relaxation times T(1). The quality requirements on both the Xe-Xe interaction potential and binary shielding tensor are investigated in the context of CSA T(1). Persistent dimers Xe(2) are found to be responsible for the CSA relaxation mechanism in the low-density limit of the gas, completely in line with the earlier experimental findings.

  2. The contribution of chemical shift imaging with digital subtracting images to the diagnosis of steatohepatitis

    International Nuclear Information System (INIS)

    Guo Xinghua; Wang Juanping; Zhang Chongjie; Zheng Guofang; Fan Ruiqiang; Zhu Sumei; Liu Qiwang

    2006-01-01

    Objective: To investigate the diagnosis value of chemical shift imaging with digital subtracting in steatohepatitis. Methods: The in-phase images were subtracted by the out-phase ones in 34 cases of steatohepatitis, and the CNR were measured on these subtracted images to estimate the steatosis of the liver. The relationship of CT grade of steatohepatitis and CNR from the subtracted images was analyzed to evaluate the relationship between CNR and the degree of hepatic steatosis. The sensitivity and specificity of the subtracting and eyeballing methods were compared with chi-square test. Results: On the subtracted images, the liver and spleen were seen nearly the same aspects as low signals, CNR=0.98±0.06, meanwhile the spongy vertebra and the subcutaneous or abdominal lipid were seen as obvious higher signals in 52 normal cases. On the 34 steatohepatitis, scattered high signals were seen in the liver, which made the signal of liver higher than that of spleen, CNR=3.25±0.91--14.35±6.10. There was positive correlation between CNR and CT grade in the 34 cases of steatohepatitis, r=0.893, P<0.01. The sensitivity and specificity of the subtracting method were 88.24% and 94. 23%, significantly higher than that of the eyeballing results, 32.35% and 80.77%, P<0.01 and P<0.05. Conclusion: Chemical shift imaging with digital subtracting is a sensitive, specific, objective method to diagnose steatohepatitis and it is of potential ability for quantitative diagnosis. (authors)

  3. Clinical application of 1H-chemical-shift imaging (CSI) to brain diseases

    International Nuclear Information System (INIS)

    Naruse, Shoji; Furuya, Seiichi; Ide, Mariko

    1992-01-01

    An H-1 chemical shift imaging (CSI) was developed as part of the clinical MRI system, by which magnetic resonance spectra (MRS) can be obtained from multiple small voxels and metabolite distribution in the brain can be visualized. The present study was to determine the feasibility and clinical potential of using an H-1 CSI. The device used was a Magnetom H 15 apparatus. The study population was comprised of 25 healthy subjects, 20 patients with brain tumor, 4 with ischemic disease, and 6 with miscellaneous degenerative disease. The H-1 CSI was obtained by the 3-dimensional Fourier transformation. After suppressing the lipid signal by the inversion-recovery method and the water signal by the chemical-shift selective pulse with a following dephasing gradient, 2-directional 16 x 16 phase encodings were applied to the 16 x 16∼18 x 18 cm field of view, in which a 8 x 8 x 2∼10 x 10 x 2 cm area was selected by the stimulated echo or spin-echo method. The metabolite mapping and its contour mapping were created by using the curve-fitted area, with interpolation to the 256 x 256 matrix. In the healthy group, high resolution spectra for N-acetyl aspartate (NAA), creatine, choline (Cho), and glutamine/glutamate were obtained from each voxel; and metabolite mapping and contour mapping also clearly showed metabolite distribution in the brain. In the group of brain tumor, an increased Cho and lactate and loss of NAA were observed, along with heterogeneity within the tumor and changes in the surrounding tissue; and there was a good correlation between lactate peak and tumor malignancy. The group of ischemic and degenerative disease had a decreased NAA and increased lactate on both spectra and metabolite mapping, depending on disease stage. These findings indicated that H-1 CSI is helpful for detecting spectra over the whole brain, as well as for determining metabolite distribution. (N.K.)

  4. Sensitivity of ab Initio vs Empirical Methods in Computing Structural Effects on NMR Chemical Shifts for the Example of Peptides.

    Science.gov (United States)

    Sumowski, Chris Vanessa; Hanni, Matti; Schweizer, Sabine; Ochsenfeld, Christian

    2014-01-14

    The structural sensitivity of NMR chemical shifts as computed by quantum chemical methods is compared to a variety of empirical approaches for the example of a prototypical peptide, the 38-residue kaliotoxin KTX comprising 573 atoms. Despite the simplicity of empirical chemical shift prediction programs, the agreement with experimental results is rather good, underlining their usefulness. However, we show in our present work that they are highly insensitive to structural changes, which renders their use for validating predicted structures questionable. In contrast, quantum chemical methods show the expected high sensitivity to structural and electronic changes. This appears to be independent of the quantum chemical approach or the inclusion of solvent effects. For the latter, explicit solvent simulations with increasing number of snapshots were performed for two conformers of an eight amino acid sequence. In conclusion, the empirical approaches neither provide the expected magnitude nor the patterns of NMR chemical shifts determined by the clearly more costly ab initio methods upon structural changes. This restricts the use of empirical prediction programs in studies where peptide and protein structures are utilized for the NMR chemical shift evaluation such as in NMR refinement processes, structural model verifications, or calculations of NMR nuclear spin relaxation rates.

  5. Binding energies and chemical shifts of least bound core electron excitations in cubic Asub(N)Bsub(8-N) semiconductors

    International Nuclear Information System (INIS)

    Bechstedt, F.; Enderlein, R.; Wischnewski, R.

    1981-01-01

    Core electron binding energies Esup(B) with respect to the vacuum level and their chemical shifts are calculated for the least bound core levels of cations and anions of cubic Asub(N)Bsub(8-N) semiconductors. Starting from the HF-binding energy of the free atom absolute values of Esup(B) are obtained by adding core level shifts and relaxation energies. Core level shifts are calculated by means of an electrostatic model with ionic and bond charges according to Phillips' bond charge model. For the calculation of relaxation energies the linear dielectric theory of electronic polarization is applied. Valence and core electrons, and diagonal and non-diagonal screening are taken into account. The theoretical results for chemical shifts of binding energies are compared with experimental values from XPS-measurements corrected by work function data. Good agreement is obtained in all cases within the error limit of about one eV. Chemical and atomic trends of core level shifts, relaxation energies, and binding energies are discussed in terms of changes of atomic and solid state parameters. Chemical shifts and relaxation energies are predicted for various ternary Asub(N)Bsub(8-N) compounds. (author)

  6. Using 1H and 13C NMR chemical shifts to determine cyclic peptide conformations: a combined molecular dynamics and quantum mechanics approach.

    Science.gov (United States)

    Nguyen, Q Nhu N; Schwochert, Joshua; Tantillo, Dean J; Lokey, R Scott

    2018-05-10

    Solving conformations of cyclic peptides can provide insight into structure-activity and structure-property relationships, which can help in the design of compounds with improved bioactivity and/or ADME characteristics. The most common approaches for determining the structures of cyclic peptides are based on NMR-derived distance restraints obtained from NOESY or ROESY cross-peak intensities, and 3J-based dihedral restraints using the Karplus relationship. Unfortunately, these observables are often too weak, sparse, or degenerate to provide unequivocal, high-confidence solution structures, prompting us to investigate an alternative approach that relies only on 1H and 13C chemical shifts as experimental observables. This method, which we call conformational analysis from NMR and density-functional prediction of low-energy ensembles (CANDLE), uses molecular dynamics (MD) simulations to generate conformer families and density functional theory (DFT) calculations to predict their 1H and 13C chemical shifts. Iterative conformer searches and DFT energy calculations on a cyclic peptide-peptoid hybrid yielded Boltzmann ensembles whose predicted chemical shifts matched the experimental values better than any single conformer. For these compounds, CANDLE outperformed the classic NOE- and 3J-coupling-based approach by disambiguating similar β-turn types and also enabled the structural elucidation of the minor conformer. Through the use of chemical shifts, in conjunction with DFT and MD calculations, CANDLE can help illuminate conformational ensembles of cyclic peptides in solution.

  7. An analysis of clock-shift experiments: is scatter increased and deflection reduced in clock-shifted homing pigeons?

    Science.gov (United States)

    Chappell

    1997-01-01

    Clock-shifting (altering the phase of the internal clock) in homing pigeons leads to a deflection in the vanishing bearing of the clock-shifted group relative to controls. However, two unexplained phenomena are common in clock-shift experiments: the vanishing bearings of the clock-shifted group are often more scattered (with a shorter vector length) than those of the control group, and the deflection of the mean bearing of the clock-shifted group from that of the controls is often smaller than expected theoretically. Here, an analysis of 55 clock-shift experiments performed in four countries over 21 years is reported. The bearings of the clock-shifted groups were significantly more scattered than those of controls and less deflected than expected, but these effects were not significantly different at familiar and unfamiliar sites. The possible causes of the effects are discussed and evaluated with reference to this analysis and other experiments. The most likely causes appear to be conflict between the directions indicated by the sun compass and either unshifted familiar visual landmarks (at familiar sites only) or the unshifted magnetic compass (possible at both familiar and unfamiliar sites).

  8. Fragment-based {sup 13}C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Joshua D.; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu [Department of Chemistry, University of California, Riverside, California 92521 (United States); Monaco, Stephen; Schatschneider, Bohdan [The Pennsylvania State University, The Eberly Campus, 2201 University Dr, Lemont Furnace, Pennsylvania 15456 (United States)

    2015-09-14

    We assess the quality of fragment-based ab initio isotropic {sup 13}C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic {sup 13}C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.

  9. Spin-echo based diagonal peak suppression in solid-state MAS NMR homonuclear chemical shift correlation spectra

    Science.gov (United States)

    Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang

    2018-02-01

    The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.

  10. Quantum-Chemical Approach to NMR Chemical Shifts in Paramagnetic Solids Applied to LiFePO4 and LiCoPO4.

    Science.gov (United States)

    Mondal, Arobendo; Kaupp, Martin

    2018-04-05

    A novel protocol to compute and analyze NMR chemical shifts for extended paramagnetic solids, accounting comprehensively for Fermi-contact (FC), pseudocontact (PC), and orbital shifts, is reported and applied to the important lithium ion battery cathode materials LiFePO 4 and LiCoPO 4 . Using an EPR-parameter-based ansatz, the approach combines periodic (hybrid) DFT computation of hyperfine and orbital-shielding tensors with an incremental cluster model for g- and zero-field-splitting (ZFS) D-tensors. The cluster model allows the use of advanced multireference wave function methods (such as CASSCF or NEVPT2). Application of this protocol shows that the 7 Li shifts in the high-voltage cathode material LiCoPO 4 are dominated by spin-orbit-induced PC contributions, in contrast with previous assumptions, fundamentally changing interpretations of the shifts in terms of covalency. PC contributions are smaller for the 7 Li shifts of the related LiFePO 4 , where FC and orbital shifts dominate. The 31 P shifts of both materials finally are almost pure FC shifts. Nevertheless, large ZFS contributions can give rise to non-Curie temperature dependences for both 7 Li and 31 P shifts.

  11. Shifts in Plant Chemical Defenses of Chile Pepper (Capsicum annuum L. Due to Domestication in Mesoamerica

    Directory of Open Access Journals (Sweden)

    Jose de Jesus Luna-Ruiz

    2018-04-01

    Full Text Available We propose that comparisons of wild and domesticated Capsicum species can serve as a model system for elucidating how crop domestication influences biotic and abiotic interactions mediated by plant chemical defenses. Perhaps no set of secondary metabolites (SMs used for plant defenses and human health have been better studied in the wild and in milpa agro-habitats than those found in Capsicum species. However, very few scientific studies on SM variation have been conducted in both the domesticated landraces of chile peppers and in their wild relatives in the Neotropics. In particular, capsaicinoids in Capsicum fruits and on their seeds differ in the specificity of their ecological effects from broad-spectrum toxins in other members of the Solanaceae. They do so in a manner that mediates specific ecological interactions with a variety of sympatric Neotropical vertebrates, invertebrates, nurse plants and microbes. Specifically, capsaicin is a secondary metabolite (SM in the placental tissues of the chile fruit that mediates interactions with seed dispersers such as birds, and with seed predators, ranging from fungi to insects and rodents. As with other Solanaceae, a wide range of SMs in Capsicum spp. function to ecologically mediate the effects of a variety of biotic and abiotic stresses on wild chile peppers in certain tropical and subtropical habitats. However, species in the genus Capsicum are the only ones found within any solanaceous genus that utilize capsaicinoids as their primary means of chemical defense. We demonstrate how exploring in tandem the evolutionary ecology and the ethnobotany of human-chile interactions can generate and test novel hypotheses with regard to how the domestication process shifts plant chemical defense strategies in a variety of tropical crops. To do so, we draw upon recent advances regarding the chemical ecology of a number of wild Capsicum species found in the Neotropics. We articulate three hypotheses regarding

  12. The 40th anniversary of the discovery of NMR-chemical shift and nuclear spin-spin coupling

    International Nuclear Information System (INIS)

    Zhu Zhenghe; Gou Qingquan

    1989-01-01

    After the discovery of NMR Phenomenon in the physics laboratories of E.M.Purcell at Harvard and F.Bloch at Stanford in 1946, W.G.Proctor and F.C.Yu made the successful discovery of NMR-chemical shift and nuclear spin-spin coupling at Stanford in 1950, Which brought NMR spectroscopy from the physics laboratory to the laboratories of many different fields. This is worth memorizing. Retrospecting the past 40 years, it is sure that chemical shift theory will be much more prosperous prospects

  13. Chemical shift-based identification of monosaccharide spin-systems with NMR spectroscopy to complement untargeted glycomics.

    Science.gov (United States)

    Klukowski, Piotr; Schubert, Mario

    2018-06-15

    A better understanding of oligosaccharides and their wide-ranging functions in almost every aspect of biology and medicine promises to uncover hidden layers of biology and will support the development of better therapies. Elucidating the chemical structure of an unknown oligosaccharide is still a challenge. Efficient tools are required for non-targeted glycomics. Chemical shifts are a rich source of information about the topology and configuration of biomolecules, whose potential is however not fully explored for oligosaccharides. We hypothesize that the chemical shifts of each monosaccharide are unique for each saccharide type with a certain linkage pattern, so that correlated data measured by NMR spectroscopy can be used to identify the chemical nature of a carbohydrate. We present here an efficient search algorithm, GlycoNMRSearch, that matches either a subset or the entire set of chemical shifts of an unidentified monosaccharide spin system to all spin systems in an NMR database. The search output is much more precise than earlier search functions and highly similar matches suggest the chemical structure of the spin system within the oligosaccharide. Thus searching for connected chemical shift correlations within all electronically available NMR data of oligosaccharides is a very efficient way of identifying the chemical structure of unknown oligosaccharides. With an improved database in the future, GlycoNMRSearch will be even more efficient deducing chemical structures of oligosaccharides and there is a high chance that it becomes an indispensable technique for glycomics. The search algorithm presented here, together with a graphical user interface, is available at http://glyconmrsearch.santos.pwr.edu.pl. Supplementary data are available at Bioinformatics online.

  14. Chemical shifts as a novel measure of interactions between two binding sites of symmetric dialkyldimethylammonium bromides to α-cyclodextrin

    International Nuclear Information System (INIS)

    Funasaki, Noriaki; Ishikawa, Seiji; Hirota, Shun

    2006-01-01

    Complex formation of α-cyclodextrin (α-CD) with decyltrimethylammonium (DeTAB), N,N-dioctyldimethylammonium (DOAB), and N,N-didecyldimethylammonium bromides (DDeAB) was investigated by proton NMR spectroscopy. Analysis of chemical shifts yielded macroscopic 1:1 and 1:2 binding constants (K 1 and K 2 ) and chemical shift differences (Δδ SD and Δδ SD2 ) for the 1:1 and 1:2 complexes of DeTAB, DOAB, and DDeAB with α-CD. The K 1 and K 2 values of DDeAB were quantitatively explained on the basis of the assumption that the microscopic 1:1 binding constant of DDeAB is identical to the observed K 1 value of DeTAB. The K 2 value of DDeAB was also explained in terms of its observed K 1 value and the independent binding of two alkyl chains. Furthermore, the Δδ SD and Δδ SD2 values for protons of DDeAB and α-CD were quantitatively explained on the basis of the assumption that the geometry of the decyl group of DDeAB in an α-CD cavity is identical to that of DeTAB. The Δδ SD value was also explicable on the basis of the same geometric assumption and the observed Δδ SD2 value for this system. Similar results were obtained for the 1:1 and 1:2 DOAB-α-CD complexes

  15. Orientation-dependent surface core-level shifts and chemical shifts on clean and H 2S-covered GaAs

    Science.gov (United States)

    Ranke, W.; Finster, J.; Kuhr, H. J.

    1987-08-01

    Photoelectron spectra of the As 3d and Ga 3d core levels were studied in situ on a cylindrically shaped GaAs single crystal for the six inequivalent orientations (001), (113), (111), (110), (11¯1) and (11¯3). On the clean surface, prepared by molecular beam epitaxy (MBE), surface core levels are shifted by 0.25 to 0.55 eV towards smaller binding energy (BE) for As 3d and -0.25 to -0.35 eV towards higher BE for Ga, depending on orientation. Additional As causes As 3d contributions shifted between -0.45 and -0.7 eV towards higher BE. The position and intensity of them is influenced by H 2S adsorption. At 150 K, H 2S adsorbs preferentially on As sites. As chemical shifts appear at -0.6 to -0.9 eV towards higher BE. Simultaneously, As accumulation occurs on all orientations with the exception of (110). High temperature adsorption (550 K, 720 K) influences mainly the Ga 3d peaks. Two peaks shifted by about -0.45 and -0.8 eV towards higher Be were found which are attributed to Ga atoms with one or two sulfur ligands, respectively. At 720 K, also As depletion is observed. The compatibility of surface core-level positions and intensities with recent structural models for the (111) and (11¯1) surfaces is discussed.

  16. Scenario aggregation and analysis via Mean-Shift Methodology

    International Nuclear Information System (INIS)

    Mandelli, D.; Yilmaz, A.; Metzroth, K.; Aldemir, T.; Denning, R.

    2010-01-01

    A new generation of dynamic methodologies is being developed for nuclear reactor probabilistic risk assessment (PRA) which explicitly account for the time element in modeling the probabilistic system evolution and use numerical simulation tools to account for possible dependencies between failure events. The dynamic event tree (DET) approach is one of these methodologies. One challenge with dynamic PRA methodologies is the large amount of data they produce which may be difficult to analyze without appropriate software tools. The concept of 'data mining' is well known in the computer science community and several methodologies have been developed in order to extract useful information from a dataset with a large number of records. Using the dataset generated by the DET analysis of the reactor vessel auxiliary cooling system (RVACS) of an ABR-1000 for an aircraft crash recovery scenario and the Mean-Shift Methodology for data mining, it is shown how clusters of transients with common characteristics can be identified and classified. (authors)

  17. Atmospheric Peroxy Radical Measurements by Chemical Amplification - Cavity Attenuated Phase Shift Spectroscopy

    Science.gov (United States)

    Wood, E. C.; Charest, J. R.

    2013-12-01

    We present a new chemical amplifier for the detection of peroxy radicals using Cavity Attenuated Phase Shift spectroscopy (CAPS) detection of NO2. The amplification scheme is similar to other chemical amplifiers and involves addition of CO (8%) and NO (3 ppm) to air sampled in a PFA tube. The chain length is quantified by amplification of a known concentration of methyl peroxy radicals (CH3O2) and peroxyacetyl radicals (CH3COO2) sampled by the instrument's reactor. The CH3O2 and CH3COO2 radicals are produced by photolysis of acetone at 254 nm and quantified by conversion to NO2 by reaction with excess NO. The chain length (CL) in dry air is over 200 and constant at RO2 concentrations under 500 ppt. The CL decreases by 55% at a relative humidity of 50%. A 0.95 cm (3/8') ID PFA tube, a 0.32 cm (1/8' ID) PFA tube, and a 0.48 cm ID quartz reactor give near-identical chain lengths and RH dependence, demonstrating the small importance of wall reactions (for clean tubing) as radical termination steps. The instrument comprises two independent inlets and CAPS detectors, allowing for simultaneous measurements in ROx mode (= NO2 + O3 + RO2 + HO2) and Ox mode (= NO2 + O3) thereby greatly reducing the effect of variations in background [Ox]. The 1σ precision of the instrument at constant background [Ox] and 0% relative humidity is 0.2 ppt ROx with 100 second averaging and increases to 0.3 ppt at an RH of 50%. The absolute uncertainty of the measurements is estimated as 20% and is affected by the accuracy of the NO2 calibration, the precision of the CAPS when calibrating at low RO2 concentrations, and the uncertainty in the photolysis quantum yield for the CH3CO + CH3 channel of acetone photolysis.

  18. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {in-phase and out-of phase} MR imaging

    International Nuclear Information System (INIS)

    Ragab, Yasser; Emad, Yasser; Gheita, Tamer; Mansour, Maged; Abou-Zeid, A.; Ferrari, Serge; Rasker, Johannes J.

    2009-01-01

    Objective: The objective of this study was to establish the cut-off value of the signal intensity drop on chemical shift magnetic resonance imaging (MRI) with appropriate sensitivity and specificity to differentiate osteoporotic from neoplastic wedging of the spine. Patients and methods: All patients with wedging of vertebral bodies were included consecutively between February 2006 and January 2007. A chemical shift MRI was performed and signal intensity after (in-phase and out-phase) images were obtained. A DXA was performed in all. Results: A total of 40 patients were included, 20 with osteoporotic wedging (group 1) and 20 neoplastic (group 2). They were 21 males and 19 females. Acute vertebral collapse was observed in 15 patients in group 1 and subacute collapse in another 5 patients, while in group 2, 11 patients showed acute collapse and 9 patients (45%) showed subacute vertebral collapse. On the chemical shift MRI a substantial reduction in signal intensity was found in all lesions in both groups. The proportional changes observed in signal intensity of bone marrow lesions on in-phase compared with out-of-phase images showed significant differences in both groups (P < 0.05). At a cut-off value of 35%, the observed sensitivity of out-of-phase images was 95%, specificity was 100%, positive predictive value was 100% and negative predictive value was 95.2%. Conclusion: A chemical shift MRI is useful in order to differentiate patients with vertebral collapse due to underlying osteoporosis or neoplastic process.

  19. A cognitive-pragmatic model for translation-shift analysis in ...

    African Journals Online (AJOL)

    A cognitive-pragmatic model for translation-shift analysis in descriptive case ... This model responds to the tendency of descriptive studies to analyse all translation shifts under the same rubric of neutrality. ... AJOL African Journals Online.

  20. A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in {sup 19}F NMR studies of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Libin; Larda, Sacha Thierry; Frank Li, Yi Feng [University of Toronto, UTM, Department of Chemistry (Canada); Manglik, Aashish [Stanford University School of Medicine, Department of Molecular and Cellular Physiology (United States); Prosser, R. Scott, E-mail: scott.prosser@utoronto.ca [University of Toronto, UTM, Department of Chemistry (Canada)

    2015-05-15

    The elucidation of distinct protein conformers or states by fluorine ({sup 19}F) NMR requires fluorinated moieties whose chemical shifts are most sensitive to subtle changes in the local dielectric and magnetic shielding environment. In this study we evaluate the effective chemical shift dispersion of a number of thiol-reactive trifluoromethyl probes [i.e. 2-bromo-N-(4-(trifluoromethyl)phenyl)acetamide (BTFMA), N-(4-bromo-3-(trifluoromethyl)phenyl)acetamide (3-BTFMA), 3-bromo-1,1,1-trifluoropropan-2-ol (BTFP), 1-bromo-3,3,4,4,4-pentafluorobutan-2-one (BPFB), 3-bromo-1,1,1-trifluoropropan-2-one (BTFA), and 2,2,2-trifluoroethyl-1-thiol (TFET)] under conditions of varying polarity. In considering the sensitivity of the {sup 19}F NMR chemical shift to the local environment, a series of methanol/water mixtures were prepared, ranging from relatively non-polar (MeOH:H{sub 2}O = 4) to polar (MeOH:H{sub 2}O = 0.25). {sup 19}F NMR spectra of the tripeptide, glutathione ((2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl] -2-sulfanylethyl]carbamoyl}butanoic acid), conjugated to each of the above trifluoromethyl probes, revealed that the BTFMA tag exhibited a significantly greater range of chemical shift as a function of solvent polarity than did either BTFA or TFET. DFT calculations using the B3LYP hybrid functional and the 6-31G(d,p) basis set, confirmed the observed trend in chemical shift dispersion with solvent polarity.

  1. 1H MR chemical shift imaging detection of phenylalanine in patients suffering from phenylketonuria (PKU)

    International Nuclear Information System (INIS)

    Sijens, Paul E.; Oudkerk, Matthijs; Reijngoud, Dirk-Jan; Spronsen, Francjan J. van; Leenders, Klaas L.; Valk, Harold W. de

    2004-01-01

    Short echo time single voxel methods were used in previous MR spectroscopy studies of phenylalanine (Phe) levels in phenylketonuria (PKU) patients. In this study, apparent T 2 relaxation time of the 7.3-ppm Phe multiplet signal in the brain of PKU patients was assessed in order to establish which echo time would be optimal. 1 H chemical shift imaging (CSI) examinations of a transverse plain above the ventricles of the brain were performed in 10 PKU patients and 11 persons not suffering from PKU at 1.5 T, using four echo times (TE 20, 40, 135 and 270 ms). Phe was detectable only when the signals from all CSI voxels were summarized. In patients suffering from PKU the T 2 relaxation times of choline, creatine and N-acetyl aspartate (NAA) were similar to those previously reported for healthy volunteers (between 200 and 325 ms). The T 2 of Phe in brain tissue was 215±120 ms (standard deviation). In the PKU patients the brain tissue Phe concentrations were 141±69 μM as opposed to 58±23 μM in the persons not suffering from PKU. In the detection of Phe, MR spectroscopy performed at TE 135 or 270 ms is not inferior to that performed at TE 20 or 40 ms (all previous studies). Best results were obtained at TE=135 ms, relating to the fact that at that particular TE, the visibility of a compound with a T 2 of 215 ms still is good, while interfering signals from short-TE compounds are negligible. (orig.)

  2. {sup 1}H MR chemical shift imaging detection of phenylalanine in patients suffering from phenylketonuria (PKU)

    Energy Technology Data Exchange (ETDEWEB)

    Sijens, Paul E.; Oudkerk, Matthijs [University Hospital Groningen, Department of Radiology, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); Reijngoud, Dirk-Jan; Spronsen, Francjan J. van [University Hospital Groningen, Department of Pediatrics, Groningen (Netherlands); Leenders, Klaas L. [University Hospital Groningen, Department of Neurology, Groningen (Netherlands); Valk, Harold W. de [University Medical Centre of Utrecht, Department of Internal Medicine, Utrecht (Netherlands)

    2004-10-01

    Short echo time single voxel methods were used in previous MR spectroscopy studies of phenylalanine (Phe) levels in phenylketonuria (PKU) patients. In this study, apparent T{sub 2} relaxation time of the 7.3-ppm Phe multiplet signal in the brain of PKU patients was assessed in order to establish which echo time would be optimal. {sup 1}H chemical shift imaging (CSI) examinations of a transverse plain above the ventricles of the brain were performed in 10 PKU patients and 11 persons not suffering from PKU at 1.5 T, using four echo times (TE 20, 40, 135 and 270 ms). Phe was detectable only when the signals from all CSI voxels were summarized. In patients suffering from PKU the T{sub 2} relaxation times of choline, creatine and N-acetyl aspartate (NAA) were similar to those previously reported for healthy volunteers (between 200 and 325 ms). The T{sub 2} of Phe in brain tissue was 215{+-}120 ms (standard deviation). In the PKU patients the brain tissue Phe concentrations were 141{+-}69 {mu}M as opposed to 58{+-}23 {mu}M in the persons not suffering from PKU. In the detection of Phe, MR spectroscopy performed at TE 135 or 270 ms is not inferior to that performed at TE 20 or 40 ms (all previous studies). Best results were obtained at TE=135 ms, relating to the fact that at that particular TE, the visibility of a compound with a T{sub 2} of 215 ms still is good, while interfering signals from short-TE compounds are negligible. (orig.)

  3. Quantification of fat using chemical shift imaging and 1H-MR spectroscopy in phantom model

    International Nuclear Information System (INIS)

    Peng Xingui; Ju Shenghong; Fang Fang; Teng Gaojun

    2010-01-01

    Objective: To evaluate the accuracy of chemical shift imaging (CSI) and MR spectroscopy (MRS) for fat quantification in phantom model. Methods: Eleven phantoms were made according to the volume percentage of fat ranging from 0 to 100% with an interval of 10%. The fat concentration in the phantoms were measured respectively by CSI and MRS and compared using one-sample t test. The correlation between the two methods was also analyzed. The concentration of saturated fatty acids (FS), unsaturated fatty acids (FU) and the poly, unsaturation degree (PUD) were calculated by using MRS. Results: The fat concentration was (48.0±1.0)%, (57.0±0.5)%, (67.3±0.6)%, (77.3± 0.6)%, (83.3±0.6)% and (91.0±1.0)% respectively with fat volume of 50% to 100% by CSI. The fat concentration was (8.3±0.6)%, (16.3±0.7)%, (27.7±0.6)%, (36.0±1.0)%, (43.5± 0.6)% and (56.5±1.0)% respectively with fat volume of 10% to 60% by MRS, the fat concentration were underestimated by CSI and MRS (P<0.05), and had high linear correlation with the real concentration in phantoms (CSI: r=0.998, MRS: r=0.996, P<0.01). There was also a linear correlation between two methods (r=0.992, P<0.01) but no statistically significant difference (paired- samples t test, t=-0.125, P=0.903). By using MRS, the relative ratio of FS and FU in fat were 0. 15 and 0.85, the PUD was 0.0325, respectively, and highly consistent with these in phantoms. Conclusion: Both CSI and MRS are efficient and accurate methods in fat quantification at 7.0 T MR. (authors)

  4. Changes of brain metabolite concentrations during maturation in different brain regions measured by chemical shift imaging.

    Science.gov (United States)

    Bültmann, Eva; Nägele, Thomas; Lanfermann, Heinrich; Klose, Uwe

    2017-01-01

    We examined the effect of maturation on the regional distribution of brain metabolite concentrations using multivoxel chemical shift imaging. From our pool of pediatric MRI examinations, we retrospectively selected patients showing a normal cerebral MRI scan or no pathologic signal abnormalities at the level of the two-dimensional 1H MRS-CSI sequence and an age-appropriate global neurological development, except for focal neurological deficits. Seventy-one patients (4.5 months-20 years) were identified. Using LC Model, spectra were evaluated from voxels in the white matter, caudate head, and corpus callosum. The concentration of total N-acetylaspartate increased in all regions during infancy and childhood except in the right caudate head where it remained constant. The concentration of total creatine decreased in the caudate nucleus and splenium and minimally in the frontal white matter and genu. It remained largely constant in the parietal white matter. The concentration of choline-containing compounds had the tendency to decrease in all regions except in the parietal white matter where it remained constant. The concentration of myoinositol decreased slightly in the splenium and right frontal white matter, remained constant on the left side and in the caudate nucleus, and rose slightly in the parietal white matter and genu. CSI determined metabolite concentrations in multiple cerebral regions during routine MRI. The obtained data will be helpful in future pediatric CSI measurements deciding whether the ratios of the main metabolites are within the range of normal values or have to be considered as probably pathologic.

  5. Changes of brain metabolite concentrations during maturation in different brain regions measured by chemical shift imaging

    International Nuclear Information System (INIS)

    Bueltmann, Eva; Lanfermann, Heinrich; Naegele, Thomas; Klose, Uwe

    2017-01-01

    We examined the effect of maturation on the regional distribution of brain metabolite concentrations using multivoxel chemical shift imaging. From our pool of pediatric MRI examinations, we retrospectively selected patients showing a normal cerebral MRI scan or no pathologic signal abnormalities at the level of the two-dimensional 1H MRS-CSI sequence and an age-appropriate global neurological development, except for focal neurological deficits. Seventy-one patients (4.5 months-20 years) were identified. Using LC Model, spectra were evaluated from voxels in the white matter, caudate head, and corpus callosum. The concentration of total N-acetylaspartate increased in all regions during infancy and childhood except in the right caudate head where it remained constant. The concentration of total creatine decreased in the caudate nucleus and splenium and minimally in the frontal white matter and genu. It remained largely constant in the parietal white matter. The concentration of choline-containing compounds had the tendency to decrease in all regions except in the parietal white matter where it remained constant. The concentration of myoinositol decreased slightly in the splenium and right frontal white matter, remained constant on the left side and in the caudate nucleus, and rose slightly in the parietal white matter and genu. CSI determined metabolite concentrations in multiple cerebral regions during routine MRI. The obtained data will be helpful in future pediatric CSI measurements deciding whether the ratios of the main metabolites are within the range of normal values or have to be considered as probably pathologic. (orig.)

  6. Quantification of liver fat with respiratory-gated quantitative chemical shift encoded MRI.

    Science.gov (United States)

    Motosugi, Utaroh; Hernando, Diego; Bannas, Peter; Holmes, James H; Wang, Kang; Shimakawa, Ann; Iwadate, Yuji; Taviani, Valentina; Rehm, Jennifer L; Reeder, Scott B

    2015-11-01

    To evaluate free-breathing chemical shift-encoded (CSE) magnetic resonance imaging (MRI) for quantification of hepatic proton density fat-fraction (PDFF). A secondary purpose was to evaluate hepatic R2* values measured using free-breathing quantitative CSE-MRI. Fifty patients (mean age, 56 years) were prospectively recruited and underwent the following four acquisitions to measure PDFF and R2*; 1) conventional breath-hold CSE-MRI (BH-CSE); 2) respiratory-gated CSE-MRI using respiratory bellows (BL-CSE); 3) respiratory-gated CSE-MRI using navigator echoes (NV-CSE); and 4) single voxel MR spectroscopy (MRS) as the reference standard for PDFF. Image quality was evaluated by two radiologists. MRI-PDFF measured from the three CSE-MRI methods were compared with MRS-PDFF using linear regression. The PDFF and R2* values were compared using two one-sided t-test to evaluate statistical equivalence. There was no significant difference in the image quality scores among the three CSE-MRI methods for either PDFF (P = 1.000) or R2* maps (P = 0.359-1.000). Correlation coefficients (95% confidence interval [CI]) for the PDFF comparisons were 0.98 (0.96-0.99) for BH-, 0.99 (0.97-0.99) for BL-, and 0.99 (0.98-0.99) for NV-CSE. The statistical equivalence test revealed that the mean difference in PDFF and R2* between any two of the three CSE-MRI methods was less than ±1 percentage point (pp) and ±5 s(-1) , respectively (P liver PDFF and R2* and are as valid as the standard breath-hold technique. © 2015 Wiley Periodicals, Inc.

  7. Changes of brain metabolite concentrations during maturation in different brain regions measured by chemical shift imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bueltmann, Eva; Lanfermann, Heinrich [Hannover Medical School, Institute of Diagnostic and Interventional Neuroradiology, Hannover (Germany); Naegele, Thomas [University of Tuebingen, Department of Diagnostic and Interventional Neuroradiology, Radiological University Hospital, Tuebingen (Germany); Klose, Uwe [University of Tuebingen, Section of Experimental MR of the CNS, Department of Neuroradiology, Radiological University Hospital, Tuebingen (Germany)

    2017-01-15

    We examined the effect of maturation on the regional distribution of brain metabolite concentrations using multivoxel chemical shift imaging. From our pool of pediatric MRI examinations, we retrospectively selected patients showing a normal cerebral MRI scan or no pathologic signal abnormalities at the level of the two-dimensional 1H MRS-CSI sequence and an age-appropriate global neurological development, except for focal neurological deficits. Seventy-one patients (4.5 months-20 years) were identified. Using LC Model, spectra were evaluated from voxels in the white matter, caudate head, and corpus callosum. The concentration of total N-acetylaspartate increased in all regions during infancy and childhood except in the right caudate head where it remained constant. The concentration of total creatine decreased in the caudate nucleus and splenium and minimally in the frontal white matter and genu. It remained largely constant in the parietal white matter. The concentration of choline-containing compounds had the tendency to decrease in all regions except in the parietal white matter where it remained constant. The concentration of myoinositol decreased slightly in the splenium and right frontal white matter, remained constant on the left side and in the caudate nucleus, and rose slightly in the parietal white matter and genu. CSI determined metabolite concentrations in multiple cerebral regions during routine MRI. The obtained data will be helpful in future pediatric CSI measurements deciding whether the ratios of the main metabolites are within the range of normal values or have to be considered as probably pathologic. (orig.)

  8. Proton magnetic resonance chemical shift imaging (1H CSI)-directed stereotactic biopsy

    International Nuclear Information System (INIS)

    Son, B.-C.; Kim, B.-C.; Kang, J.-K.; Choi, B.-G.; Kim, E.-N.; Baik, H.-M.; Choe, B.-Y.; Naruse, S.

    2001-01-01

    Introduction. To add metabolic information during stereotactic biopsy target selection, the authors adopted proton chemical shift imaging ( 1 H CSI)-directed stereotactic biopsy. Currently, proton single voxel spectroscopy (SVS) technique has been reported in stereotactic biopsy. We performed 1 H CSI in combination with a stereotactic headframe and selected targets according to local metabolic information, and evaluated the pathological results. Patients and Method. The 1 H CSI-directed stereotactic biopsy was performed in four patients. 1 H CSI and conventional Gd-enhancement stereotactic MRI were performed simultaneously after the fitting of a stereotactic frame. After reconstructing the metabolic maps of N-acetylaspartate (NAA)/phosphocreatine (Cr), phosphocholine (Cho)/Cr, and Lactate/Cr ratios, focal areas of increased Cho/Cr ratio and Lac/Cr ratios were selected as target sites in the stereotactic MR images. Result. 1 H CSI is possible with the stereotactic headframe in place. No difficulty was experienced performing 1 H CSI or making a diagnosis. Pathological samples taken from areas of increased Cho/Cr ratios and decreased NAA/Cr ratios provided information upon increased cellularity, mitoses and cellular atypism, and facilitated diagnosis. Pathological samples taken from areas of increased Lac/ Cr ratio snowed predominant feature of necrosis. Conclusion. 1 H CSI was feasible with the stereotactic headframe in place. The final pathological results obtained were concordant with the local metabolic information from 1 H CSI. We believe that 1 H CSI-directed stereotactic biopsy has the potential to significantly improve the accuracy of stereotactic biopsy targeting. (author)

  9. Female sea lamprey shift orientation toward a conspecific chemical cue to escape a sensory trap

    Science.gov (United States)

    Brant, Cory O.; Johnson, Nicholas; Li, Ke; Buchinger, Tyler J.; Li, Weiming

    2016-01-01

    The sensory trap model of signal evolution hypothesizes that signalers adapt to exploit a cue used by the receiver in another context. Although exploitation of receiver biases can result in conflict between the sexes, deceptive signaling systems that are mutually beneficial drive the evolution of stable communication systems. However, female responses in the nonsexual and sexual contexts may become uncoupled if costs are associated with exhibiting a similar response to a trait in both contexts. Male sea lamprey (Petromyzon marinus) signal with a mating pheromone, 3-keto petromyzonol sulfate (3kPZS), which may be a match to a juvenile cue used by females during migration. Upstream movement of migratory lampreys is partially guided by 3kPZS, but females only move toward 3kPZS with proximal accuracy during spawning. Here, we use in-stream behavioral assays paired with gonad histology to document the transition of female preference for juvenile- and male-released 3kPZS that coincides with the functional shift of 3kPZS as a migratory cue to a mating pheromone. Females became increasingly biased toward the source of synthesized 3kPZS as their maturation progressed into the reproductive phase, at which point, a preference for juvenile odor (also containing 3kPZS naturally) ceased to exist. Uncoupling of female responses during migration and spawning makes the 3kPZS communication system a reliable means of synchronizing mate search. The present study offers a rare example of a transition in female responses to a chemical cue between nonsexual and sexual contexts, provides insights into the origins of stable communication signaling systems.

  10. Dynamic Characteristics Analysis of Power Shift Control Valve

    Directory of Open Access Journals (Sweden)

    Feng Ren

    2014-07-01

    Full Text Available In order to study the influence that dynamic performance of shift control valve has on shifting process of construction machinery, the paper introduces working principle of the shift control valve and sets up the dynamically mathematical model and corresponding simulation model with simulation software LMS Imagine. Lab AMESim. Based on simulation, the paper analyzes the influence of pressure variation characteristics and buffering characteristics acting on vehicle performance during the process of shifting, meanwhile conducting experiments to verify the simulation. The results indicate that the simulation model is accurate and credible; the performance of the valve is satisfactory, which indeed reduces impact during shifting. Furthermore, the valve can meet the demand of other construction machineries in better degree by suitable matching between control spring stiffness and damping holes diameter.

  11. Benchmark fragment-based 1H, 13C, 15N and 17O chemical shift predictions in molecular crystals†

    Science.gov (United States)

    Hartman, Joshua D.; Kudla, Ryan A.; Day, Graeme M.; Mueller, Leonard J.; Beran, Gregory J. O.

    2016-01-01

    The performance of fragment-based ab initio 1H, 13C, 15N and 17O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. 1H, 13C, 15N, and 17O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same 1H, 13C, 15N, and 17O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tertbutyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2. PMID:27431490

  12. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals.

    Science.gov (United States)

    Hartman, Joshua D; Kudla, Ryan A; Day, Graeme M; Mueller, Leonard J; Beran, Gregory J O

    2016-08-21

    The performance of fragment-based ab initio(1)H, (13)C, (15)N and (17)O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. (1)H, (13)C, (15)N, and (17)O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same (1)H, (13)C, (15)N, and (17)O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tert-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2.

  13. Relativistic Spin-Orbit Heavy Atom on the Light Atom NMR Chemical Shifts: General Trends Across the Periodic Table Explained.

    Science.gov (United States)

    Vícha, Jan; Komorovsky, Stanislav; Repisky, Michal; Marek, Radek; Straka, Michal

    2018-05-10

    The importance of relativistic effects on the NMR parameters in heavy-atom (HA) compounds, particularly the SO-HALA (Spin-Orbit Heavy Atom on the Light Atom) effect on NMR chemical shifts, has been known for about 40 years. Yet, a general correlation between the electronic structure and SO-HALA effect has been missing. By analyzing 1 H NMR chemical shifts of the sixth-period hydrides (Cs-At), we discovered general electronic-structure principles and mechanisms that dictate the size and sign of the SO-HALA NMR chemical shifts. In brief, partially occupied HA valence shells induce relativistic shielding at the light atom (LA) nuclei, while empty HA valence shells induce relativistic deshielding. In particular, the LA nucleus is relativistically shielded in 5d 2 -5d 8 and 6p 4 HA hydrides and deshielded in 4f 0 , 5d 0 , 6s 0 , and 6p 0 HA hydrides. This general and intuitive concept explains periodic trends in the 1 H NMR chemical shifts along the sixth-period hydrides (Cs-At) studied in this work. We present substantial evidence that the introduced principles have a general validity across the periodic table and can be extended to nonhydride LAs. The decades-old question of why compounds with occupied frontier π molecular orbitals (MOs) cause SO-HALA shielding at the LA nuclei, while the frontier σ MOs cause deshielding is answered. We further derive connection between the SO-HALA NMR chemical shifts and Spin-Orbit-induced Electron Deformation Density (SO-EDD), a property that can be obtained easily from differential electron densities and can be represented graphically. SO-EDD provides an intuitive understanding of the SO-HALA effect in terms of the depletion/concentration of the electron density at LA nuclei caused by spin-orbit coupling due to HA in the presence of a magnetic field. Using an analogy between the SO-EDD concept and arguments from classic NMR theory, the complex question of the SO-HALA NMR chemical shifts becomes easily understandable for a wide

  14. Pressure dependence of side chain 13C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Beck Erlach, Markus; Koehler, Joerg; Crusca, Edson; Munte, Claudia E; Kainosho, Masatsune; Kremer, Werner; Kalbitzer, Hans Robert

    2017-10-01

    For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of 13 C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH 2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For H N , N and C α the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically 13 C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.

  15. Molecular activation analysis for chemical speciation studies

    International Nuclear Information System (INIS)

    Chai-Chifang

    1998-01-01

    The term of Molecular Activation Analysis (MAA) refers to an activation analysis method that is able to provide information about the chemical species of elements in system of interests, though its definition has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical species of elements, because the total concentrations are often without any meaning when assessing health or environmental risks of trace elements.In practice, the MAA is a combination of conventional instrumental or radiochemical activation analysis and physical, chemical or biochemical separation techniques. The MAA is able to play a particular role in speciation studies. However, the critical point in the MAA is that it is not permitted to change the primitive chemical species of elements in systems, or the change has to be under control; in the meantime it is not allowed to form the 'new artifact' originally not present in systems. Some practical examples of MAA for chemical species research performed recently in our laboratory will be presented as follows: Chemical species of platinum group elements in sediment; Chemical species of iodine in marine algae; Chemical species of mercury in human tissues; Chemical species of selenium in corn; Chemical species of rare earth elements in natural plant, etc. The merits and limitations of MAA will be described as well. (author)

  16. Synthesis, three-dimensional structure, conformation and correct chemical shift assignment determination of pharmaceutical molecules by NMR and molecular modeling

    Energy Technology Data Exchange (ETDEWEB)

    Azeredo, Sirlene O.F. de; Sales, Edijane M.; Figueroa-Villar, José D., E-mail: jdfv2009@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Grupo de Ressonância Magnética Nuclear e Química Medicinal

    2017-07-01

    This work includes the synthesis of phenanthrenequinone guanylhydrazone and phenanthro[9,10-e][1,2,4]triazin-3-amine to be tested as intercalate with DNA for treatment of cancer. The other synthesized product, 2-[(4-chlorophenylamino)methylene]malononitrile, was designed for future determination of its activity against leishmaniasis. A common problem about some articles on the literature is that some previously published compounds display error of their molecular structures. In this article it is shown the application of several procedures of nuclear magnetic resonance (NMR) to determine the complete molecular structure and the non questionable chemical shift assignment of the synthesized compounds, and also their analysis by molecular modeling to confirm the NMR results. To determine the capacity of pharmacological compounds to interact with biological targets is determined by docking. This work is to motivate the application of NMR and molecular modeling on organic synthesis, being a process that is very important for the study of the prepared compounds as interactions with biological targets by NMR. (author)

  17. Synthesis, three-dimensional structure, conformation and correct chemical shift assignment determination of pharmaceutical molecules by NMR and molecular modeling

    International Nuclear Information System (INIS)

    Azeredo, Sirlene O.F. de; Sales, Edijane M.; Figueroa-Villar, José D.

    2017-01-01

    This work includes the synthesis of phenanthrenequinone guanylhydrazone and phenanthro[9,10-e][1,2,4]triazin-3-amine to be tested as intercalate with DNA for treatment of cancer. The other synthesized product, 2-[(4-chlorophenylamino)methylene]malononitrile, was designed for future determination of its activity against leishmaniasis. A common problem about some articles on the literature is that some previously published compounds display error of their molecular structures. In this article it is shown the application of several procedures of nuclear magnetic resonance (NMR) to determine the complete molecular structure and the non questionable chemical shift assignment of the synthesized compounds, and also their analysis by molecular modeling to confirm the NMR results. To determine the capacity of pharmacological compounds to interact with biological targets is determined by docking. This work is to motivate the application of NMR and molecular modeling on organic synthesis, being a process that is very important for the study of the prepared compounds as interactions with biological targets by NMR. (author)

  18. Chemical shift of U L3 edges in different uranium compounds ...

    Indian Academy of Sciences (India)

    Administrator

    by X-ray absorption spectroscopy with synchrotron radiation. D JOSEPH†, C NAYAK††, ... Bhabha Atomic Research Centre, Mumbai 400 085, India. MS received 28 .... As has been discussed in the 'Introduction' section, the above edge shift ...

  19. Chemical analysis of the Fornax Dwarf galaxy

    NARCIS (Netherlands)

    Letarte, Bruno

    2007-01-01

    This thesis is entitled “Chemical Analysis of the Fornax Dwarf Galaxy”, and it’s main goal is to determine what are the chemical elements present in the stars of this galaxy in order to try and understand it’s evolution. Galaxies are not “static” objects, they move, form stars and can interact with

  20. Chemical analysis of reactor and commercial columbium

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The methods cover the chemical analysis of reactor and commercial columbium having chemical compositions within specified limits. The following analytical procedures are discussed along with apparatus, reagents, photometric practice, safety precautions, sampling, and rounding calculated values: nitrogen, by distillation (photometric) method; molybdenum and tungsten by the dithiol (photometric) method; iron by the 1,10-phenanthroline (photometric) method

  1. Correlates to sleepiness on night shift among male workers engaged in three-shift work in a chemical plant: its association with sleep practice and job stress.

    Science.gov (United States)

    Kageyama, Takayuki; Kobayashi, Toshio; Abe-Gotoh, Ayano

    2011-01-01

    The purpose of this study was to examine the correlation of sleepiness during night shift (SNS) in male shiftworkers with nonpharmacological self-management (nPSM) practices to facilitate good day sleep, and also with job stress. Sleepiness on the job and possible correlates to SNS among 157 male shiftworkers in a rotating three-shift schedule at a chemical plant were cross-sectionally investigated using a self-administered questionnaire. Multivariate analyses revealed that SNS was positively associated with drinking alcoholic beverages before day sleep, but inversely associated with subjective health status, being of the evening type, abstaining from caffeine before day sleep, having a bath before day sleep, job control, reward from work, feeling suited to the job, and support from colleagues. SNS correlated with certain nPSM practices and also with possible modifiers of job stress. These findings provide clues to developing countermeasures against SNS among shiftworkers. The effects of nPSM practices and job stress management on their day sleep and SNS should be examined in detail.

  2. Development of 19F-NMR chemical shift detection of DNA B-Z equilibrium using 19F-NMR.

    Science.gov (United States)

    Nakamura, S; Yang, H; Hirata, C; Kersaudy, F; Fujimoto, K

    2017-06-28

    Various DNA conformational changes are in correlation with biological events. In particular, DNA B-Z equilibrium showed a high correlation with translation and transcription. In this study, we developed a DNA probe containing 5-trifluoromethylcytidine or 5-trifluoromethylthymidine to detect DNA B-Z equilibrium using 19 F-NMR. Its probe enabled the quantitative detection of B-, Z-, and ss-DNA based on 19 F-NMR chemical shift change.

  3. Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups

    Directory of Open Access Journals (Sweden)

    Ricardo Infante-Castillo

    2012-01-01

    Full Text Available This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO charge and 15N NMR chemical shifts of the nitro groups (15NNitro as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation results show that the model is significant and stable and that the predicted accuracy is within 0.146 MJ kg−1, with an overall root mean squared error of prediction (RMSEP below 0.183 MJ kg−1. Strong correlations were observed between the heat of explosion and the charges (R2 = 0.9533 and 15N NMR chemical shifts (R2 = 0.9531 of the studied compounds. In addition, the dependence of the heat of explosion on the presence of activating or deactivating groups of nitroaromatic explosives was analyzed. All calculations, including optimizations, NBO charges, and 15NNitro NMR chemical shifts analyses, were performed using density functional theory (DFT and a 6-311+G(2d,p basis set. Based on these results, this practical quantitative model can be used as a tool in the design and development of highly energetic materials (HEM based on nitroaromatic compounds.

  4. Optical MEMS for chemical analysis and biomedicine

    CERN Document Server

    Jiang, Hongrui

    2016-01-01

    This book describes the current state of optical MEMS in chemical and biomedical analysis and brings together current trends and highlights topics representing the most exciting progress in recent years in the field.

  5. Chemical analysis of water in hydrogeology

    International Nuclear Information System (INIS)

    Flakova, R.; Zenisova, Z.; Seman, M.

    2010-01-01

    The aim of the monograph is to give complete information on the chemical analysis of water hydrogeology not only for the students program of Geology study (Bachelor degree study), Engineering Geology and Hydrogeology (Master's degree study) and Engineering Geology (doctoral level study), but also for students from other colleges and universities schools in Slovakia, as well as in the Czech Republic, dealing with the chemical composition of water and its quality, from different perspectives. The benefit would be for professionals with hydrogeological, water and environmental practices, who can find there all the necessary information about proper water sampling, the units used in the chemical analysis of water, expressing the proper chemical composition of water in its various parameters through classification of chemical composition of the water up to the basic features of physical chemistry at thermodynamic calculations and hydrogeochemical modelling.

  6. A retrospective cohort study of shift work and risk of cancer-specific mortality in German male chemical workers.

    Science.gov (United States)

    Yong, Mei; Nasterlack, Michael; Messerer, Peter; Oberlinner, Christoph; Lang, Stefan

    2014-02-01

    Human evidence of carcinogenicity concerning shift work is inconsistent. In a previous study, we observed no elevated risk of total mortality in shift workers followed up until the end of 2006. The present study aimed to investigate cancer-specific mortality, relative to shift work. The cohort consisted of male production workers (14,038 shift work and 17,105 day work), employed at BASF Ludwigshafen for at least 1 year between 1995 and 2005. Vital status was followed from 2000 to 2009. Cause-specific mortality was obtained from death certificates. Exposure to shift work was measured both as a dichotomous and continuous variable. While lifetime job history was not available, job duration in the company was derived from personal data, which was then categorized at the quartiles. Cox proportional hazard model was used to adjust for potential confounders, in which job duration was treated as a time-dependent covariate. Between 2000 and 2009, there were 513 and 549 deaths among rotating shift and day work employees, respectively. Risks of total and cancer-specific mortalities were marginally lower among shift workers when taking age at entry and job level into consideration and were statistically significantly lower when cigarette smoking, alcohol intake, job duration, and chronic disease prevalence at entry to follow-up were included as explanatory factors. With respect to mortality risks in relation to exposure duration, no increased risks were found in any of the exposure groups after full adjustment and there was no apparent trend suggesting an exposure-response relation with duration of shift work. The present analysis extends and confirms our previous finding of no excess risk of mortality associated with work in the shift system employed at BASF Ludwigshafen. More specifically, there is also no indication of an increased risk of mortality due to cancer.

  7. Chemical methods of rock analysis

    National Research Council Canada - National Science Library

    Jeffery, P. G; Hutchison, D

    1981-01-01

    A practical guide to the methods in general use for the complete analysis of silicate rock material and for the determination of all those elements present in major, minor or trace amounts in silicate...

  8. Analysis of modal shift in South Africa: A qualitative investigation

    CSIR Research Space (South Africa)

    Venter, Karien

    2013-07-01

    Full Text Available The qualitative investigation into factors facilitating modal shift formed part of a larger research study that was conducted by the CSIR for the National Department of Transport. The aim of the study was to understand the factors that are most...

  9. Utilization of chemical derivatives in activation analysis

    International Nuclear Information System (INIS)

    Ehmann, W.D.

    1990-01-01

    Derivative activation analysis (DAA) is a method to enhance the sensitivity of nuclear activation analysis for the more elusive elements. It may also allow a degree of chemical speciation for the element of interest. DAA uses a preirradiation chemical reaction on the sample to initiate the formation of, or an exchange with, a chemical complex which contains a surrogate element, M. As a result, the amount of the element or the chemical species to be determined, X, is now represented by measurement of the amount of the surrogate element, M, that is made part of, or released by the complex species. The surrogate element is selected for its superior properties for nuclear activation analysis and the absence of interference reaction in its final determination by instrumental neutron activation analysis (INAA) after some preconcentration or separation chemistry. Published DAA studies have been limited to neutron activation analysis. DAA can offer the analyst some important advantages. It can determine elements, functional groups, or chemical species which cannot be determined directly by INAA, fast neutron activation analysis (FNAA), prompt gamma neutron activation analysis (PGNAA), or charged particle activation analysis (CPAA) procedures. When compared with conventional RNAA, there are fewer precautions with respect to handling of intensely radioactive samples, since the chemistry is done before the irradiation. The preirradiation chemistry may also eliminate many interferences that might occur in INAA and, through use of an appropriate surrogate element, can place the analytical gamma-ray line in an interference-free region of the gamma-ray spectrum

  10. Proton Chemical Shift Imaging of the Brain in Pediatric and Adult Developmental Stuttering.

    Science.gov (United States)

    O'Neill, Joseph; Dong, Zhengchao; Bansal, Ravi; Ivanov, Iliyan; Hao, Xuejun; Desai, Jay; Pozzi, Elena; Peterson, Bradley S

    2017-01-01

    Developmental stuttering is a neuropsychiatric condition of incompletely understood brain origin. Our recent functional magnetic resonance imaging study indicates a possible partial basis of stuttering in circuits enacting self-regulation of motor activity, attention, and emotion. To further characterize the neurophysiology of stuttering through in vivo assay of neurometabolites in suspect brain regions. Proton chemical shift imaging of the brain was performed in a case-control study of children and adults with and without stuttering. Recruitment, assessment, and magnetic resonance imaging were performed in an academic research setting. Ratios of N-acetyl-aspartate plus N-acetyl-aspartyl-glutamate (NAA) to creatine (Cr) and choline compounds (Cho) to Cr in widespread cerebral cortical, white matter, and subcortical regions were analyzed using region of interest and data-driven voxel-based approaches. Forty-seven children and adolescents aged 5 to 17 years (22 with stuttering and 25 without) and 47 adults aged 21 to 51 years (20 with stuttering and 27 without) were recruited between June 2008 and March 2013. The mean (SD) ages of those in the stuttering and control groups were 12.2 (4.2) years and 13.4 (3.2) years, respectively, for the pediatric cohort and 31.4 (7.5) years and 30.5 (9.9) years, respectively, for the adult cohort. Region of interest-based findings included lower group mean NAA:Cr ratio in stuttering than nonstuttering participants in the right inferior frontal cortex (-7.3%; P = .02), inferior frontal white matter (-11.4%; P < .001), and caudate (-10.6%; P = .04), while the Cho:Cr ratio was higher in the bilateral superior temporal cortex (left: +10.0%; P = .03 and right: +10.8%; P = .01), superior temporal white matter (left: +14.6%; P = .003 and right: +9.5%; P = .02), and thalamus (left: +11.6%; P = .002 and right: +11.1%; P = .001). False discovery rate-corrected voxel-based findings were highly consistent

  11. Spectroscopic Chemical Analysis Methods and Apparatus

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2018-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  12. 2H isotope effect on 13C chemical shifts of Nitro-Benzo-9-Crown-3

    International Nuclear Information System (INIS)

    Moghimi, A.; Rastegar, M.; Ghandi, M.; Bijanzadeh, H. R.

    2002-01-01

    Deuterium substitution on two ortho-substituted-OCH 2 fragments in Nitro-Benzo-9 Crown-3 induces low frequency shifts, positive m ''nΔC j, in all 13 C NMR resonances which is an indication of the increased shielding in this crown ether. The magnitude of these shifts vary from 15 ΔC 7=716 to 54 ΔC 3=15 ppb for C 7 and C 3 carbons directly attached to 2 H, respectively. The influences of concentration and solvent, CDCl 3 CD 3 COCD 3 , and C 6 D 6 , on mn ΔC j values were investigated. The mn ΔC j values depended more on the nature of the solvent than on the concentration. The order of induced isotope shifts is 15 Δ, 51 Δ > 24 Δ, 42 Δ> 34 Δ, 43 Δ > 56 Δ, 65 Δ> 45 Δ, 54 Δ. The isotope shifts observed are suggested to be a sum of contributions from low frequency shift due to inductive-type and negative hyperconjugation perturbations. The C-D bond, as a poorer electron acceptor than a C-H bond induced less positive charge on directly attached oxygens O 1 and O 2. This, in turn, causes shielding of C 1 and C 2 in C1O1CD 2 and C 2 0 2 CD 2 fragments. The difference in 34 ΔC 1 and 43 ΔC 2 values is attributed to the conformational dependence of the negative hyperconjugation. The C 1 and C 2, are in fact, not equally affected by the two CD 2 groups by negative hyperconjugation because of the existence of NO 2 group attached to the benzene ring

  13. Hyperfine structure and isotope shift analysis of singly ionized titanium

    Science.gov (United States)

    Bouazza, Safa

    2013-04-01

    The even-parity low configuration system of Ti II has been considered on the basis of the experimental data found in the literature, and its fine structure has been reanalyzed by simultaneous parameterization of one- and two-body interactions for the model space (3d + 4s)3. Furthermore, the main one-electron hyperfine structure parameters for these configurations have been evaluated. For instance, for 3d24s1, a_{3{\\rm{d}}}^{01} = - {\\rm{63}}.{\\rm{2}}\\left( {{\\rm{3}}.{\\rm{1}}} \\right)\\,{\\rm{MHz}} and a_{4{\\rm{s}}}^{10} = - {\\rm{984}}.{\\rm{1}}\\left( {{\\rm{7}}.{\\rm{1}}} \\right)\\,{\\rm{MHz}} . Field shifts (FS) and specific mass shifts (SMS) of the main Ti II configurations are deduced by means of ab initio estimates combined with a small quantity of experimental isotope shift data available in the literature: FS(3d3) = -63.3 MHz, FS(3d24p1) = -49.7 MHz, FS(3d14s2) = 98.2 MHz, FS(4s24P1) = 163.4 MHz and SMS(3d3) = 1453.3 MHz, SMS(3d14s2) = -2179.7 MHz, …, referred to 3d24s1 for the pair Ti46-Ti48.

  14. Prediction of microvascular invasion of hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging: Impact of intra-tumoral fat detected on chemical-shift images

    Energy Technology Data Exchange (ETDEWEB)

    Min, Ji Hye [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Young Kon, E-mail: jmyr@dreamwiz.com [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Lim, Sanghyeok [Department of Radiology, Guri Hospital, Hanyang University College of Medicine, Guri (Korea, Republic of); Jeong, Woo Kyoung; Choi, Dongil; Lee, Won Jae [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    Highlights: • Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC. • Alfa-fetoprotein, tumor size, and fat component were associated with MVI of HCC. • Chemical shift MRI should be considered for the evaluation of HCC. - Abstract: Purpose: To investigate the impact of intra-tumoral fat detected by chemical-shift MR imaging in predicting the MVI of HCC. Materials and methods: Gadoxetic acid-enhanced MR imaging of 365 surgically proven HCCs from 365 patients (306 men, 59 women; mean age, 55.6 years) were evaluated. HCCs were classified into two groups, fat-containing and non-fat-containing, based on the presence of fat on chemical-shift images. Fat-containing HCCs were subdivided into diffuse or focal fatty change groups. Logistic regression analyses were used to identify clinical and MR findings associated with MVI. Results: Based on MR imaging, 66 tumors were classified as fat-containing HCCs and 299 as non-fat-containing HCCs. Among the 66 fat-containing HCCs, 38 (57.6%) showed diffuse fatty changes and 28 (42.4%) showed focal fatty changes. MVI was present in 18 (27.3%) fat-containing HCCs and in 117 (39.1%) non-fat-containing HCCs (P = 0.07). Univariate analysis revealed that serum alpha-fetoprotein (AFP) and tumor size were significantly associated with MVI (P < 0.001). A multiple logistic regression analysis showed that log AFP (odds ratio 1.178, P = 0.0016), tumor size (odds ratio 1.809, P < 0.001), and intra-tumoral fat (odds ratio 0.515, P = 0.0387) were independent variables associated with MVI. Conclusion: Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC and, therefore, a possibly more favorable prognosis, but the clinical value of this finding is uncertain.

  15. Prediction of microvascular invasion of hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging: Impact of intra-tumoral fat detected on chemical-shift images

    International Nuclear Information System (INIS)

    Min, Ji Hye; Kim, Young Kon; Lim, Sanghyeok; Jeong, Woo Kyoung; Choi, Dongil; Lee, Won Jae

    2015-01-01

    Highlights: • Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC. • Alfa-fetoprotein, tumor size, and fat component were associated with MVI of HCC. • Chemical shift MRI should be considered for the evaluation of HCC. - Abstract: Purpose: To investigate the impact of intra-tumoral fat detected by chemical-shift MR imaging in predicting the MVI of HCC. Materials and methods: Gadoxetic acid-enhanced MR imaging of 365 surgically proven HCCs from 365 patients (306 men, 59 women; mean age, 55.6 years) were evaluated. HCCs were classified into two groups, fat-containing and non-fat-containing, based on the presence of fat on chemical-shift images. Fat-containing HCCs were subdivided into diffuse or focal fatty change groups. Logistic regression analyses were used to identify clinical and MR findings associated with MVI. Results: Based on MR imaging, 66 tumors were classified as fat-containing HCCs and 299 as non-fat-containing HCCs. Among the 66 fat-containing HCCs, 38 (57.6%) showed diffuse fatty changes and 28 (42.4%) showed focal fatty changes. MVI was present in 18 (27.3%) fat-containing HCCs and in 117 (39.1%) non-fat-containing HCCs (P = 0.07). Univariate analysis revealed that serum alpha-fetoprotein (AFP) and tumor size were significantly associated with MVI (P < 0.001). A multiple logistic regression analysis showed that log AFP (odds ratio 1.178, P = 0.0016), tumor size (odds ratio 1.809, P < 0.001), and intra-tumoral fat (odds ratio 0.515, P = 0.0387) were independent variables associated with MVI. Conclusion: Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC and, therefore, a possibly more favorable prognosis, but the clinical value of this finding is uncertain

  16. An automated system designed for large scale NMR data deposition and annotation: application to over 600 assigned chemical shift data entries to the BioMagResBank from the Riken Structural Genomics/Proteomics Initiative internal database

    International Nuclear Information System (INIS)

    Kobayashi, Naohiro; Harano, Yoko; Tochio, Naoya; Nakatani, Eiichi; Kigawa, Takanori; Yokoyama, Shigeyuki; Mading, Steve; Ulrich, Eldon L.; Markley, John L.; Akutsu, Hideo; Fujiwara, Toshimichi

    2012-01-01

    Biomolecular NMR chemical shift data are key information for the functional analysis of biomolecules and the development of new techniques for NMR studies utilizing chemical shift statistical information. Structural genomics projects are major contributors to the accumulation of protein chemical shift information. The management of the large quantities of NMR data generated by each project in a local database and the transfer of the data to the public databases are still formidable tasks because of the complicated nature of NMR data. Here we report an automated and efficient system developed for the deposition and annotation of a large number of data sets including 1 H, 13 C and 15 N resonance assignments used for the structure determination of proteins. We have demonstrated the feasibility of our system by applying it to over 600 entries from the internal database generated by the RIKEN Structural Genomics/Proteomics Initiative (RSGI) to the public database, BioMagResBank (BMRB). We have assessed the quality of the deposited chemical shifts by comparing them with those predicted from the PDB coordinate entry for the corresponding protein. The same comparison for other matched BMRB/PDB entries deposited from 2001–2011 has been carried out and the results suggest that the RSGI entries greatly improved the quality of the BMRB database. Since the entries include chemical shifts acquired under strikingly similar experimental conditions, these NMR data can be expected to be a promising resource to improve current technologies as well as to develop new NMR methods for protein studies.

  17. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.

  18. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Erlach, Markus Beck; Koehler, Joerg [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany); Crusca, Edson [University of São Paulo, Physics Institute of São Carlos (Brazil); Kremer, Werner [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany); Munte, Claudia E. [University of São Paulo, Physics Institute of São Carlos (Brazil); Kalbitzer, Hans Robert, E-mail: hans-robert.kalbitzer@biologie.uni-regensburg.de [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany)

    2016-06-15

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms {sup 1}H{sup α}, {sup 13}C{sup α} and {sup 13}C′ in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH{sub 2} (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B{sub 1} and B{sub 2} are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.Graphical Abstract.

  19. Creatinine and creatininium cation in water solution. Tautomerism and quantitative interpretation of the solution acidity effect on 1H, 13C and 1:4N NMR chemical shifts

    International Nuclear Information System (INIS)

    Kotsyubynskyy, D.; Molchanov, S.; Gryff-Keller, A.

    2004-01-01

    1 H, 13 C and 1 :4N NMR chemical shifts for creatinine in water solution of various acidity have been measured. Analysis of these data enabled determination of the acidity constant of creatininium cation and the chemical shifts of the neutral and protonated forms of creatinine. Molecular energies and carbon and nitrogen magnetic shielding constants for various tautomeric structures of the investigated species have been calculated using the quantum chemistry method GIAO DFT B3LYP/6-311++G(2d,p). Compilation of the available experimental and theoretical results has provided additional information on the problem of tautomerism of this important biological molecule. (author)

  20. Chemical analysis of high purity graphite

    International Nuclear Information System (INIS)

    1993-03-01

    The Sub-Committee on Chemical Analysis of Graphite was organized in April 1989, under the Committee on Chemical Analysis of Nuclear Fuels and Reactor Materials, JAERI. The Sub-Committee carried out collaborative analyses among eleven participating laboratories for the certification of the Certified Reference Materials (CRMs), JAERI-G5 and G6, after developing and evaluating analytical methods during the period of September 1989 to March 1992. The certified values were given for ash, boron and silicon in the CRM based on the collaborative analysis. The values for ten elements (Al, Ca, Cr, Fe, Mg, Mo, Ni, Sr, Ti, V) were not certified, but given for information. Preparation, homogeneity testing and chemical analyses for certification of reference materials were described in this paper. (author) 52 refs

  1. Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors.

    Science.gov (United States)

    Mälkiä, Annika; Madrid, Rodolfo; Meseguer, Victor; de la Peña, Elvira; Valero, María; Belmonte, Carlos; Viana, Félix

    2007-05-15

    TRPM8, a member of the melastatin subfamily of transient receptor potential (TRP) cation channels, is activated by voltage, low temperatures and cooling compounds. These properties and its restricted expression to small sensory neurons have made it the ion channel with the most advocated role in cold transduction. Recent work suggests that activation of TRPM8 by cold and menthol takes place through shifts in its voltage-activation curve, which cause the channel to open at physiological membrane potentials. By contrast, little is known about the actions of inhibitors on the function of TRPM8. We investigated the chemical and thermal modulation of TRPM8 in transfected HEK293 cells and in cold-sensitive primary sensory neurons. We show that cold-evoked TRPM8 responses are effectively suppressed by inhibitor compounds SKF96365, 4-(3-chloro-pyridin-2-yl)-piperazine-1-carboxylic acid (4-tert-butyl-phenyl)-amide (BCTC) and 1,10-phenanthroline. These antagonists exert their effect by shifting the voltage dependence of TRPM8 activation towards more positive potentials. An opposite shift towards more negative potentials is achieved by the agonist menthol. Functionally, the bidirectional shift in channel gating translates into a change in the apparent temperature threshold of TRPM8-expressing cells. Accordingly, in the presence of the antagonist compounds, the apparent response-threshold temperature of TRPM8 is displaced towards colder temperatures, whereas menthol sensitizes the response, shifting the threshold in the opposite direction. Co-application of agonists and antagonists produces predictable cancellation of these effects, suggesting the convergence on a common molecular process. The potential for half maximal activation of TRPM8 activation by cold was approximately 140 mV more negative in native channels compared to recombinant channels, with a much higher open probability at negative membrane potentials in the former. In functional terms, this difference translates

  2. Molecular activation analysis for chemical species studies

    International Nuclear Information System (INIS)

    Chai Zhifang; Mao Xueying; Wang Yuqi; Sun Jingxin; Qian Qingfang; Hou Xiaolin; Zhang Peiqun; Chen Chunying; Feng Weiyu; Ding Wenjun; Li Xiaolin; Li Chunsheng; Dai Xiongxin

    2001-01-01

    The Molecular Activation Analysis (MAA) mainly refers to an activation analysis method that is able to provide information about the chemical species of elements in systems of interest, though its exact definition has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical species of elements, because the bulk contents or concentrations are often insignificant for judging biological, environmental or geochemical effects of elements. In this paper, the features, methodology and limitation of MAA were outlined. Further, the up-to-date MAA progress made in our laboratory was introduced as well. (author)

  3. Service activities of chemical analysis division

    International Nuclear Information System (INIS)

    Eom, Tae Yoon; Suh, Moo Yul; Park, Kyoung Kyun; Jung, Ki Suk; Joe, Kih Soo; Jee, Kwang Yong; Jung, Woo Sik; Sohn, Se Chul; Yeo, In Heong; Han, Sun Ho

    1988-12-01

    Progress of the Division during the year of 1988 was described on the service activities for various R and D projects carrying out in the Institute, for the fuel fabrication and conversion plant, and for the post-irradiation examination facility. Relevant analytical methodologies developed for the chemical analysis of an irradiated fuel, safeguards chemical analysis, and pool water monitoring were included such as chromatographic separation of lanthanides, polarographic determination of dissolved oxygen in water, and automation on potentiometric titration of uranium. Some of the laboratory manuals revised were also included in this progress report. (Author)

  4. 1H NMR spectra. Part 30(+): 1H chemical shifts in amides and the magnetic anisotropy, electric field and steric effects of the amide group.

    Science.gov (United States)

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2013-03-01

    The (1)H spectra of 37 amides in CDCl(3) solvent were analysed and the chemical shifts obtained. The molecular geometries and conformational analysis of these amides were considered in detail. The NMR spectral assignments are of interest, e.g. the assignments of the formamide NH(2) protons reverse in going from CDCl(3) to more polar solvents. The substituent chemical shifts of the amide group in both aliphatic and aromatic amides were analysed using an approach based on neural network data for near (≤3 bonds removed) protons and the electric field, magnetic anisotropy, steric and for aromatic systems π effects of the amide group for more distant protons. The electric field is calculated from the partial atomic charges on the N.C═O atoms of the amide group. The magnetic anisotropy of the carbonyl group was reproduced with the asymmetric magnetic anisotropy acting at the midpoint of the carbonyl bond. The values of the anisotropies Δχ(parl) and Δχ(perp) were for the aliphatic amides 10.53 and -23.67 (×10(-6) Å(3)/molecule) and for the aromatic amides 2.12 and -10.43 (×10(-6) Å(3)/molecule). The nitrogen anisotropy was 7.62 (×10(-6) Å(3)/molecule). These values are compared with previous literature values. The (1)H chemical shifts were calculated from the semi-empirical approach and also by gauge-independent atomic orbital calculations with the density functional theory method and B3LYP/6-31G(++) (d,p) basis set. The semi-empirical approach gave good agreement with root mean square error of 0.081 ppm for the data set of 280 entries. The gauge-independent atomic orbital approach was generally acceptable, but significant errors (ca. 1 ppm) were found for the NH and CHO protons and also for some other protons. Copyright © 2013 John Wiley & Sons, Ltd.

  5. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    Science.gov (United States)

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Chemical analysis by nuclear methods. v. 2

    International Nuclear Information System (INIS)

    Alfassi, Z.B.

    1998-01-01

    'Chemical analysis by Nuclear Methods' is an effort of some renowned authors in field of nuclear chemistry and radiochemistry which is compiled by Alfassi, Z.B. and translated into Farsi version collected in two volumes. The second volume consists of the following chapters: Detecting ion recoil scattering and elastic scattering are dealt in the eleventh chapter, the twelfth chapter is devoted to nuclear reaction analysis using charged particles, X-ray emission is discussed at thirteenth chapter, the fourteenth chapter is about using ion microprobes, X-ray fluorescence analysis is discussed in the fifteenth chapter, alpha, beta and gamma ray scattering in chemical analysis are dealt in chapter sixteen, Moessbauer spectroscopy and positron annihilation are discussed in chapter seventeen and eighteen; The last two chapters are about isotope dilution analysis and radioimmunoassay

  7. An extended chemical analysis of gallstone.

    Science.gov (United States)

    Chandran, P; Kuchhal, N K; Garg, P; Pundir, C S

    2007-09-01

    Chemical composition of gall stones is essential for aetiopathogensis of gallstone disease. We have reported quantitative chemical analysis of total cholesterol bilirubin, calcium, iron and inorganic phosphate in 120 gallstones from haryana. To extend this chemical analysis of gall stones by studying more cases and by analyzing more chemical constituents. A quantitative chemical analysis of total cholesterol, total bilirubin, fatty acids, triglycerides, phospholipids, bile acids, soluble proteins, sodium potassium, magnesium, copper, oxalate and chlorides of biliary calculi (52 cholesterol, 76 mixed and 72 pigment) retrieved from surgical operation of 200 patients from Haryana state was carried out. Total cholesterol as the major component and total bilirubin, phospholipids, triglycerides, bile acids, fatty acids (esterified), soluble protein, calcium, magnesium, iron, copper, sodium, potassium, inorganic phosphate, oxalate and chloride as minor components were found in all types of calculi. The cholesterol stones had higher content of total cholesterol, phospholipids, fatty acids (esterified), inorganic phosphate and copper compared to mixed and pigment stones. The mixed stones had higher content of iron and triglycerides than to cholesterol and pigment stones. The pigment stones were richer in total bilirubin, bile acids, calcium, oxalate, magnesium, sodium, potassium, chloride and soluble protein compared to cholesterol and mixed stones. Although total cholesterol was a major component of cholesterol, mixed and pigment gall stone in Haryana, the content of most of the other lipids, cations and anions was different in different gall stones indicating their different mechanism of formation.

  8. Chemical shift of neutron resonances and some ideas on neutron resonances and scattering theory

    International Nuclear Information System (INIS)

    Ignatovich, V.K.; )

    2002-01-01

    The dependence of positions of neutron resonances in nuclei in condensed matter on chemical environment is considered. A possibility of theoretical description of neutron resonances, different from R-matrix theory is investigated. Some contradictions of standard scattering theory are discussed and a new approach without these contradictions is formulated [ru

  9. NMR chemical shift and J coupling parameterization and quantum mechanical reference spectrum simulation for selected nerve agent degradation products in aqueous conditions.

    Science.gov (United States)

    Koskela, Harri; Anđelković, Boban

    2017-10-01

    The spectral parameters of selected nerve agent degradation products relevant to the Chemical Weapons Convention, namely, ethyl methylphosphonate, isopropyl methylphosphonate, pinacolyl methylphosphonate and methylphosphonic acid, were studied in wide range of pH conditions and selected temperatures. The pH and temperature dependence of chemical shifts and J couplings was parameterized using Henderson-Hasselbalch-based functions. The obtained parameters allowed calculation of precise chemical shifts and J coupling constants in arbitrary pH conditions and typical measurement temperatures, thus facilitating quantum mechanical simulation of reference spectra in the chosen magnetic field strength for chemical verification. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Saturated amine oxides: Part 8. Hydroacridines: Part 27. Effects of N-oxidation and of N-quaternization on the 15N NMR chemical shifts of N-methylpiperidine-derived mono-, bi-, and tricycloaliphatic tertiary amines.

    Science.gov (United States)

    Potmischil, Francisc; Duddeck, Helmut; Nicolescu, Alina; Deleanu, Calin

    2007-03-01

    The (15)N chemical shifts of 13 N-methylpiperidine-derived mono-, bi- and tricycloaliphatic tertiary amines, their methiodides and their N-epimeric pairs of N-oxides were measured, and the contributions of specific structural parameters to the chemical shifts were determined by multilinear regression analysis. Within the examined compounds, the effects of N-oxidation upon the (15)N chemical shifts of the amines vary from +56 ppm to +90 ppm (deshielding), of which approx. +67.7 ppm is due to the inductive effect of the incoming N(+)--O(-) oxygen atom, whereas the rest is due to the additive shift effects of the various C-alkyl substituents of the piperidine ring. The effects of quaternization vary from -3.1 ppm to +29.3 ppm, of which approx. +8.9 ppm is due to the inductive effect of the incoming N(+)--CH(3) methyl group, and the rest is due to the additive shift effects of the various C-alkyl substituents of the piperidine ring. The shift effects of the C-alkyl substituents in the amines, the N-oxides and the methiodides are discussed. Copyright (c) 2007 John Wiley & Sons, Ltd.

  11. pH-Dependent spin state population and 19F NMR chemical shift via remote ligand protonation in an iron(ii) complex.

    Science.gov (United States)

    Gaudette, Alexandra I; Thorarinsdottir, Agnes E; Harris, T David

    2017-11-30

    An Fe II complex that features a pH-dependent spin state population, by virtue of a variable ligand protonation state, is described. This behavior leads to a highly pH-dependent 19 F NMR chemical shift with a sensitivity of 13.9(5) ppm per pH unit at 37 °C, thereby demonstrating the potential utility of the complex as a 19 F chemical shift-based pH sensor.

  12. Failure analysis on a chemical waste pipe

    International Nuclear Information System (INIS)

    Ambler, J.R.

    1985-01-01

    A failure analysis of a chemical waste pipe illustrates how nuclear technology can spin off metallurgical consultant services. The pipe, made of zirconium alloy (Zr-2.5 wt percent Nb, UNS 60705), had cracked in several places, all at butt welds. A combination of fractography and metallography indicated delayed hydride cracking

  13. Calibrating Detailed Chemical Analysis of M dwarfs

    Science.gov (United States)

    Veyette, Mark; Muirhead, Philip Steven; Mann, Andrew; Brewer, John; Allard, France; Homeier, Derek

    2018-01-01

    The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications including studying the chemical evolution of the Galaxy, assessing membership in stellar kinematic groups, and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres has hindered similar analysis of M-dwarf stars. Large surveys of FGK abundances play an important role in developing methods to measure the compositions of M dwarfs by providing benchmark FGK stars that have widely-separated M dwarf companions. These systems allow us to empirically calibrate metallicity-sensitive features in M dwarf spectra. However, current methods to measure metallicity in M dwarfs from moderate-resolution spectra are limited to measuring overall metallicity and largely rely on astrophysical abundance correlations in stellar populations. In this talk, I will discuss how large, homogeneous catalogs of precise FGK abundances are crucial to advancing chemical analysis of M dwarfs beyond overall metallicity to direct measurements of individual elemental abundances. I will present a new method to analyze high-resolution, NIR spectra of M dwarfs that employs an empirical calibration of synthetic M dwarf spectra to infer effective temperature, Fe abundance, and Ti abundance. This work is a step toward detailed chemical analysis of M dwarfs at a similar precision achieved for FGK stars.

  14. SHIFTING WEED COMPOSITIONS AND BIOMASS PRODUCTION IN SWEET CORN FIELD TREATED WITH ORGANIC COMPOSTS AND CHEMICAL WEED CONTROLS

    Directory of Open Access Journals (Sweden)

    Marulak Simarmata

    2015-10-01

    Full Text Available The objectives of the research were to study the shift of weed compositions in sweet corn field treated with organic compost and chemical weed controls and to compare the effect of treatment combinations on weed growth, weed biomass and sweet corn biomass. The research was conducted in Bengkulu, Indonesia, from April to July 2014. Results showed that the number of weed species decreased after the trials from 14 to 13. There was a shift in weed compositions because 5 species of weeds did not emerge after the trials, but 4 new species were found. Chemical weed control used a herbiside mixture of atrazine and mesotrione applied during postemergence was the most effective method to control weeds, which was observed on decreased weed emergence and weed biomass down to 22.33 and 25.00 percent of control, respectively. Subsequently, biomass production of sweet corn increased up to 195.64 percent at the same trials. Biomass of weeds and sweet corn were also affected by the organic composts. Weed biomass was inhibited by treatment of composted empty fruith bunches of oil palm, whereas significantly increased of sweet corn biomass were observed in the plots of organic manure.

  15. A Bayesian-probability-based method for assigning protein backbone dihedral angles based on chemical shifts and local sequences

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jun; Liu Haiyan [University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at the Microscale, and Key Laboratory of Structural Biology, School of Life Sciences (China)], E-mail: hyliu@ustc.edu.cn

    2007-01-15

    Chemical shifts contain substantial information about protein local conformations. We present a method to assign individual protein backbone dihedral angles into specific regions on the Ramachandran map based on the amino acid sequences and the chemical shifts of backbone atoms of tripeptide segments. The method uses a scoring function derived from the Bayesian probability for the central residue of a query tripeptide segment to have a particular conformation. The Ramachandran map is partitioned into representative regions at two levels of resolution. The lower resolution partitioning is equivalent to the conventional definitions of different secondary structure regions on the map. At the higher resolution level, the {alpha} and {beta} regions are further divided into subregions. Predictions are attempted at both levels of resolution. We compared our method with TALOS using the original TALOS database, and obtained comparable results. Although TALOS may produce the best results with currently available databases which are much enlarged, the Bayesian-probability-based approach can provide a quantitative measure for the reliability of predictions.

  16. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  17. Meta-analysis on shift work and risks of specific obesity types.

    Science.gov (United States)

    Sun, M; Feng, W; Wang, F; Li, P; Li, Z; Li, M; Tse, G; Vlaanderen, J; Vermeulen, R; Tse, L A

    2018-01-01

    This systematic review and meta-analysis evaluated the associations between shift work patterns and risks of specific types of obesity. PubMed was searched until March 2017 for observational studies that examined the relationships between shift work patterns and obesity. Odds ratio for obesity was extracted using a fixed-effects or random-effects model. Subgroup meta-analyses were carried out for study design, specific obesity types and characteristics of shift work pattern. A total of 28 studies were included in this meta-analysis. The overall odds ratio of night shift work was 1.23 (95% confidence interval = 1.17-1.29) for risk of obesity/overweight. Cross-sectional studies showed a higher risk of 1.26 than those with the cohort design (risk ratio = 1.10). Shift workers had a higher frequency of developing abdominal obesity (odds ratio = 1.35) than other obesity types. Permanent night workers demonstrated a 29% higher risk than rotating shift workers (odds ratio 1.43 vs. 1.14). This meta-analysis confirmed the risks of night shift work for the development of overweight and obesity with a potential gradient association suggested, especially for abdominal obesity. Modification of working schedules is recommended, particularly for prolonged permanent night work. More accurate and detailed measurements on shift work patterns should be conducted in future research. © 2017 World Obesity Federation.

  18. Probabilistic risk analysis in chemical engineering

    International Nuclear Information System (INIS)

    Schmalz, F.

    1991-01-01

    In risk analysis in the chemical industry, recognising potential risks is considered more important than assessing their quantitative extent. Even in assessing risks, emphasis is not on the probability involved but on the possible extent. Qualitative assessment has proved valuable here. Probabilistic methods are used in individual cases where the wide implications make it essential to be able to assess the reliability of safety precautions. In this case, assessment therefore centres on the reliability of technical systems and not on the extent of a chemical risk. 7 figs

  19. Microfabricated Gas Phase Chemical Analysis Systems

    International Nuclear Information System (INIS)

    FRYE-MASON, GREGORY CHARLES; HELLER, EDWIN J.; HIETALA, VINCENT M.; KOTTENSTETTE, RICHARD; LEWIS, PATRICK R.; MANGINELL, RONALD P.; MATZKE, CAROLYN M.; WONG, CHUNGNIN C.

    1999-01-01

    A portable, autonomous, hand-held chemical laboratory ((micro)ChemLab(trademark)) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described

  20. Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C' scalar couplings (3hbJNC')

    Energy Technology Data Exchange (ETDEWEB)

    Bonvin, Alexandre M.J.J.; Houben, Klaartje; Guenneugues, Marc; Kaptein, Robert; Boelens, Rolf [Utrecht University, Bijvoet Center for Biomolecular Research, NMR Spectroscopy (Netherlands)

    2001-11-15

    The possibility of generating protein folds at the stage of backbone assignment using structural restraints derived from experimentally measured cross-hydrogen bond scalar couplings and secondary chemical shift information is investigated using as a test case the small {alpha}/{beta} protein chymotrypsin inhibitor 2. Dihedral angle restraints for the {phi} and {psi} angles of 32 out of 64 residues could be obtained from secondary chemical shift analysis with the TALOS program (Corneliscu et al., 1999a). This information was supplemented by 18 hydrogen-bond restraints derived from experimentally measured cross-hydrogen bond {sup 3hb}J{sub NC'} coupling constants. These experimental data were sufficient to generate structures that are as close as 1.0 A backbone rmsd from the crystal structure. The fold is, however, not uniquely defined and several solutions are generated that cannot be distinguished on the basis of violations or energetic considerations. Correct folds could be identified by combining clustering methods with knowledge-based potentials derived from structural databases.

  1. A Decision Making Analysis of Persuasive Argumentation and the Choice Shift Effect

    Science.gov (United States)

    Vinokur, Amiram; And Others

    1975-01-01

    A subjective expected utility (SEU) decision-making analysis was performed on the content of arguments generated by subjects privately or during group discussion in response to choice-dilemmas shown to shift toward risk and caution. (Editor)

  2. Comparison of CT and chemical-shift MRI for differentiating thymoma from non-thymomatous conditions in myasthenia gravis: value of qualitative and quantitative assessment

    International Nuclear Information System (INIS)

    Priola, A.M.; Priola, S.M.; Gned, D.; Giraudo, M.T.; Fornari, A.; Veltri, A.

    2016-01-01

    Aim: To evaluate the usefulness of computed tomography (CT) and chemical-shift magnetic resonance imaging (MRI) in patients with myasthenia gravis (MG) for differentiating thymoma (THY) from thymic lymphoid hyperplasia (TLH) and normal thymus (NT), and to determine which technique is more accurate. Materials and methods: Eighty-three patients with generalised MG who underwent surgery were divided into the TLH/NT group (A; 65 patients) and THY group (B; 24 patients). Differences in qualitative characteristics and quantitative data (CT: radiodensity in Hounsfield units; MRI: signal intensity index [SII]) between groups were tested using Fisher's exact test and Student's t-test. Logistic regression models were estimated for both qualitative and quantitative analyses. At quantitative analysis, discrimination abilities were determined according to the area under the receiver operating characteristic (ROC) curve (AUROC) with computation of optimal cut-off points. The diagnostic accuracies of CT and MRI were compared using McNemar's test. Results: At qualitative assessment, MRI had higher accuracy than CT (96.4%, 80/83 and 86.7%, 72/83, respectively). At quantitative analysis, both the radiodensity and SII were significantly different between groups (p<0.0001). For CT, at quantitative assessment, the AUROC of the radiodensity in discriminating between groups was 0.904 (optimal cut-off point, 20 HU) with an accuracy of 77.1% (64/83). For MRI, the AUROC of the SII was 0.989 (optimal cut-off point, 7.766%) with an accuracy of 96.4% (80/83), which was significantly higher than CT (p<0.0001). By using optimal cut-off points for cases with an erroneous diagnosis at qualitative assessment, accuracy improved both for CT (89.2%, 74/83) and MRI (97.6%, 81/83). Conclusion: Quantitative analysis is useful in evaluating patients with MG and improves the diagnostic accuracy of CT and MRI based on qualitative assessment. Chemical-shift MRI is more reliable than CT in differentiating

  3. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Kraus, Jodi; Gupta, Rupal; Yehl, Jenna; Lu, Manman; Case, David A; Gronenborn, Angela M; Akke, Mikael; Polenova, Tatyana

    2018-03-22

    Magic angle spinning NMR spectroscopy is uniquely suited to probe the structure and dynamics of insoluble proteins and protein assemblies at atomic resolution, with NMR chemical shifts containing rich information about biomolecular structure. Access to this information, however, is problematic, since accurate quantum mechanical calculation of chemical shifts in proteins remains challenging, particularly for 15 N H . Here we report on isotropic chemical shift predictions for the carbohydrate recognition domain of microcrystalline galectin-3, obtained from using hybrid quantum mechanics/molecular mechanics (QM/MM) calculations, implemented using an automated fragmentation approach, and using very high resolution (0.86 Å lactose-bound and 1.25 Å apo form) X-ray crystal structures. The resolution of the X-ray crystal structure used as an input into the AF-NMR program did not affect the accuracy of the chemical shift calculations to any significant extent. Excellent agreement between experimental and computed shifts is obtained for 13 C α , while larger scatter is observed for 15 N H chemical shifts, which are influenced to a greater extent by electrostatic interactions, hydrogen bonding, and solvation.

  4. 13C-NMR chemical shift databases as a quick tool to evaluate structural models of humic substances

    DEFF Research Database (Denmark)

    Nyrop Albers, Christian; Hansen, Poul Erik

    2010-01-01

    Models for humic and fulvic acids are discussed based on 13C liquid state NMR spectra combined with results from elemental analysis and titration studies. The analysis of NMR spectra is based on a full reconstruction of the NMR spectrum done with help of 13C-NMR data bases by adding up chemical...... side missing structural elements in the models can be suggested. A number of proposed structures for humic and fulvic acids are discussed based on the above analysis....

  5. Integrated ecological and chemical food web accumulation modeling explains PAH temporal trends during regime shifts in a shallow lake.

    Science.gov (United States)

    Kong, Xiangzhen; He, Wei; Qin, Ning; Liu, Wenxiu; Yang, Bin; Yang, Chen; Xu, Fuliu; Mooij, Wolf M; Koelmans, Albert A

    2017-08-01

    Shallow lakes can switch suddenly from a turbid situation with high concentrations of phytoplankton and other suspended solids to a vegetated state with clear water, and vice versa. These alternative stable states may have a substantial impact on the fate of hydrophobic organic compounds (HOCs). Models that are fit to simulate impacts from these complex interactions are scarce. We developed a contaminant fate model which is linked to an ecosystem model (PCLake) for shallow lakes. This integrated model was successful in simulating long-term dynamics (1953-2012) of representative polycyclic aromatic hydrocarbons (PAHs) in the main biotic and abiotic components in a large shallow lake (Chaohu in China), which has undergone regime shifts in this period. Historical records from sediment cores were used to evaluate the model. The model revealed that regime shifts in shallow lakes had a strong impact on the fate of less hydrophobic compounds due to the large storage capacity of macrophytes, which accumulated up to 55.6% of phenanthrene in the clear state. The abrupt disappearance of macrophytes after the regime shift resulted in a sudden change in phenanthrene distribution, as the sediment became the major sink. For more hydrophobic compounds such as benzo(a)pyrene, the modeled impact of the regime shift was negligible for the whole environment, yet large for biotic compartments. This study is the first to provide a full mechanistic analysis of the impact of regime shifts on the fate of PAHs in a real lake ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Chemical analysis quality assurance at the ICPP

    International Nuclear Information System (INIS)

    Hand, R.L.

    1990-01-01

    This document discusses the chemical analysis quality assurance program at the ICPP which involves records management, analytical methods quality control, analysis procedures and training and qualification. Since 1979, the major portion of the quality assurance program has been implemented on a central analytical computer system. The individual features provided by the system are storage, retrieval, and search capabilities over all general request and sample analysis information, automatic method selection for all process streams, automation of all method calculations, automatic assignment of bias and precision estimates at all analysis levels, with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of all process stream results for replicate agreement, automatic testing of process results against pre- established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of all analysis data plus all statistical testing to the Production Department

  7. Backbone and stereospecific (13)C methyl Ile (δ1), Leu and Val side-chain chemical shift assignments of Crc.

    Science.gov (United States)

    Sharma, Rakhi; Sahu, Bhubanananda; Ray, Malay K; Deshmukh, Mandar V

    2015-04-01

    Carbon catabolite repression (CCR) allows bacteria to selectively assimilate a preferred compound among a mixture of several potential carbon sources, thus boosting growth and economizing the cost of adaptability to variable nutrients in the environment. The RNA-binding catabolite repression control (Crc) protein acts as a global post-transcriptional regulator of CCR in Pseudomonas species. Crc triggers repression by inhibiting the expression of genes involved in transport and catabolism of non-preferred substrates, thus indirectly favoring assimilation of preferred one. We report here a nearly complete backbone and stereospecific (13)C methyl side-chain chemical shift assignments of Ile (δ1), Leu and Val of Crc (~ 31 kDa) from Pseudomonas syringae Lz4W.

  8. Computational Protocols for Prediction of Solute NMR Relative Chemical Shifts. A Case Study of L-Tryptophan in Aqueous Solution

    DEFF Research Database (Denmark)

    Eriksen, Janus J.; Olsen, Jógvan Magnus H.; Aidas, Kestutis

    2011-01-01

    to the results stemming from the conformations extracted from the MM conformational search in terms of replicating an experimental reference as well as in achieving the correct sequence of the NMR relative chemical shifts of L-tryptophan in aqueous solution. We find this to be due to missing conformations......In this study, we have applied two different spanning protocols for obtaining the molecular conformations of L-tryptophan in aqueous solution, namely a molecular dynamics simulation and a molecular mechanics conformational search with subsequent geometry re-optimization of the stable conformers...... using a quantum mechanically based method. These spanning protocols represent standard ways of obtaining a set of conformations on which NMR calculations may be performed. The results stemming from the solute–solvent configurations extracted from the MD simulation at 300 K are found to be inferior...

  9. Comparison of brown and white adipose tissues in infants and children with chemical-shift-encoded water-fat MRI.

    Science.gov (United States)

    Hu, Houchun H; Yin, Larry; Aggabao, Patricia C; Perkins, Thomas G; Chia, Jonathan M; Gilsanz, Vicente

    2013-10-01

    To compare fat-signal fractions (FFs) and T2* values between brown (BAT) and white (WAT) adipose tissue located within the supraclavicular fossa and subcutaneous depots, respectively. Twelve infants and 39 children were studied. Children were divided into lean and overweight/obese subgroups. Chemical-shift-encoded water-fat magnetic resonance imaging (MRI) was used to quantify FFs and T2* metrics in the supraclavicular and adjacent subcutaneous adipose tissue depots. Linear regression and t-tests were performed. Infants had lower supraclavicular FFs than children (P children exhibited lower supraclavicular FFs and T2* values than overweight children (P children, but not in infants. FFs in both depots were positively correlated with age and weight in infants (P children, they were correlated with weight and body mass index (BMI) (P children (P children, which are potentially indicative of physiological differences in adipose tissue fat content, amount, and metabolic activity. Copyright © 2013 Wiley Periodicals, Inc.

  10. Hepatic fat quantification using automated six-point Dixon: Comparison with conventional chemical shift based sequences and computed tomography.

    Science.gov (United States)

    Shimizu, Kie; Namimoto, Tomohiro; Nakagawa, Masataka; Morita, Kosuke; Oda, Seitaro; Nakaura, Takeshi; Utsunomiya, Daisuke; Yamashita, Yasuyuki

    To compare automated six-point Dixon (6-p-Dixon) MRI comparing with dual-echo chemical-shift-imaging (CSI) and CT for hepatic fat fraction in phantoms and clinical study. Phantoms and fifty-nine patients were examined both MRI and CT for quantitative fat measurements. In phantom study, linear regression between fat concentration and 6-p-Dixon showed good agreement. In clinical study, linear regression between 6-p-Dixon and dual-echo CSI showed good agreement. CT attenuation value was strongly correlated with 6-p-Dixon (R 2 =0.852; PDixon and dual-echo CSI were accurate correlation with CT attenuation value of liver parenchyma. 6-p-Dixon has the potential for automated hepatic fat quantification. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. 1H, 13C and 15N chemical shift assignments of the thioredoxin from the obligate anaerobe Desulfovibrio vulgaris Hildenborough.

    Science.gov (United States)

    Garcin, Edwige B; Bornet, Olivier; Pieulle, Laetitia; Guerlesquin, Françoise; Sebban-Kreuzer, Corinne

    2011-10-01

    Thioredoxins are ubiquitous key antioxidant enzymes which play an essential role in cell defense against oxidative stress. They maintain the redox homeostasis owing to the regulation of thiol-disulfide exchange. In the present paper, we report the full resonance assignments of (1)H, (13)C and (15)N atoms for the reduced and oxidized forms of Desulfovibrio vulgaris Hildenborough thioredoxin 1 (Trx1). 2D and 3D heteronuclear NMR experiments were performed using uniformly (15)N-, (13)C-labelled Trx1. Chemical shifts of 97% of the backbone and 90% of the side chain atoms were obtained for the oxidized and reduced form (BMRB deposits with accession number 17299 and 17300, respectively).

  12. Quantitative evaluation of vertebral marrow adipose tissue in postmenopausal female using MRI chemical shift-based water–fat separation

    International Nuclear Information System (INIS)

    Li, G.-W.; Xu, Z.; Chen, Q.-W.; Tian, Y.-N.; Wang, X.-Y.; Zhou, L.; Chang, S.-X.

    2014-01-01

    Aim: To investigate the feasibility of assessing vertebral marrow adipose tissue using a magnetic resonance imaging (MRI) chemical shift-based water–fat separation technique at 3 T. Material and methods: A modified Dixon technique was performed to obtain the vertebral marrow fat fraction (FF) in a study of 58 postmenopausal females (age range 49.2–77.4 years), including 24 normal bone density, 19 osteopaenia, and 15 osteoporosis as documented with dual-energy X-ray absorptiometry. The reliability of FF measurements performed by two radiologists independently was evaluated with the intraclass correlation coefficient (ICC). Ten participants were scanned twice to assess the reproducibility of FF measurements. FF values were compared between each vertebral level and between groups. Results: The mean coefficient of variation of FF measurements was 2.1%. According to the ICC, the measurements were reliable (ICC = 0.900 for normal bone density, ICC = 0.937 for osteopaenia and ICC = 0.909 for osteoporosis, p < 0.001 for all). There was an inverse association between mean FF at L1–L4 vertebrae and lumbar spine BMD (r = −0.459, p = 0.006), which remained significant even after controlling for confounders (age, height, and body weight). FF values at different vertebral levels were significantly correlated to each other (r = 0.703–0.921, p < 0.05 for all). There was a general trend toward increased marrow adiposity for more inferior vertebral bodies. Patients with osteopaenia and osteoporosis had a higher marrow fat content compared with normal bone mass after adjusting for confounders, although no significant differences in each vertebral level and average marrow fat content were found between the osteopaenia and osteoporosis groups. Conclusion: Chemical shift-based water–fat separation enables the quantitation of vertebral marrow adiposity with excellent reproducibility, which appears to be a useful method to provide complementary information to osteoporosis

  13. Volumetric spiral chemical shift imaging of hyperpolarized [2-(13) c]pyruvate in a rat c6 glioma model.

    Science.gov (United States)

    Park, Jae Mo; Josan, Sonal; Jang, Taichang; Merchant, Milton; Watkins, Ron; Hurd, Ralph E; Recht, Lawrence D; Mayer, Dirk; Spielman, Daniel M

    2016-03-01

    MRS of hyperpolarized [2-(13)C]pyruvate can be used to assess multiple metabolic pathways within mitochondria as the (13)C label is not lost with the conversion of pyruvate to acetyl-CoA. This study presents the first MR spectroscopic imaging of hyperpolarized [2-(13)C]pyruvate in glioma-bearing brain. Spiral chemical shift imaging with spectrally undersampling scheme (1042 Hz) and a hard-pulse excitation was exploited to simultaneously image [2-(13)C]pyruvate, [2-(13)C]lactate, and [5-(13)C]glutamate, the metabolites known to be produced in brain after an injection of hyperpolarized [2-(13)C]pyruvate, without chemical shift displacement artifacts. A separate undersampling scheme (890 Hz) was also used to image [1-(13)C]acetyl-carnitine. Healthy and C6 glioma-implanted rat brains were imaged at baseline and after dichloroacetate administration, a drug that modulates pyruvate dehydrogenase kinase activity. The baseline metabolite maps showed higher lactate and lower glutamate in tumor as compared to normal-appearing brain. Dichloroacetate led to an increase in glutamate in both tumor and normal-appearing brain. Dichloroacetate-induced %-decrease of lactate/glutamate was comparable to the lactate/bicarbonate decrease from hyperpolarized [1-(13)C]pyruvate studies. Acetyl-carnitine was observed in the muscle/fat tissue surrounding the brain. Robust volumetric imaging with hyperpolarized [2-(13)C]pyruvate and downstream products was performed in glioma-bearing rat brains, demonstrating changes in mitochondrial metabolism with dichloroacetate. © 2015 Wiley Periodicals, Inc.

  14. Chemical analysis of refractories by plasma spectrometry

    International Nuclear Information System (INIS)

    Coutinho, C.A.

    1990-01-01

    X-ray spectrometry has been, since the last two or three decades, the traditional procedure for the chemical analysis of refractories, due to its high degree of accuracy and speed to produce analytical results. An interesting alternative to X-ray fluorescence is provided by the Inductively Coupled Plasma Spectrometry technique, for those laboratories where wet chemistry facilities are already available or process control is not required at high speed, or investiment costs have to be low. This paper presents results obtained by plasma spectroscopy for the analysis of silico - aluminous refractories, showing calibration curves, precion and detection limits. Considerations and comparisons with X-ray fluorescence are also made. (author) [pt

  15. Lanthanide shift reagents, binding, shift mechanisms and exchange

    International Nuclear Information System (INIS)

    Boer, J.W.M. de

    1977-01-01

    Paramagnetic lanthanide shift reagents, when added to a solution of a substrate, induce shifts in the nuclear magnetic resonance (NMR) spectrum of the substrate molecules. The induced shifts contain information about the structure of the shift reagent substrate complex. The structural information, however, may be difficult to extract because of the following effects: (1) different complexes between shift reagent and substrate may be present in solution, e.g. 1:1 and 1:2 complexes, and the shift observed is a weighed average of the shifts of the substrate nuclei in the different complexes; (2) the Fermi contact interaction, arising from the spin density at the nucleus, contributes to the induced shift; (3) chemical exchange effects may complicate the NMR spectrum. In this thesis, the results of an investigation into the influence of these effects on the NMR spectra of solutions containing a substrate and LSR are presented. The equations describing the pseudo contact and the Fermi contact shift are derived. In addition, it is shown how the modified Bloch equations describing the effect of the chemical exchange processes occurring in the systems studied can be reduced to the familiar equations for a two-site exchange case. The binding of mono- and bifunctional ethers to the shift reagent are reported. An analysis of the induced shifts is given. Finally, the results of the experiments performed to study the exchange behavior of dimethoxyethane and heptafluorodimethyloctanedionato ligands are presented

  16. Comparison of experimental and DFT-calculated NMR chemical shifts of 2-amino and 2-hydroxyl substituted phenyl benzimidazoles, benzoxazoles and benzothiazoles in four solvents using the IEF-PCM solvation model.

    Science.gov (United States)

    Pierens, Gregory K; Venkatachalam, T K; Reutens, David C

    2016-04-01

    A comparative study of experimental and calculated NMR chemical shifts of six compounds comprising 2-amino and 2-hydroxy phenyl benzoxazoles/benzothiazoles/benzimidazoles in four solvents is reported. The benzimidazoles showed interesting spectral characteristics, which are discussed. The proton and carbon chemical shifts were similar for all solvents. The largest chemical shift deviations were observed in benzene. The chemical shifts were calculated with density functional theory using a suite of four functionals and basis set combinations. The calculated chemical shifts revealed a good match to the experimentally observed values in most of the solvents. The mean absolute error was used as the primary metric. The use of an additional metric is suggested, which is based on the order of chemical shifts. The DP4 probability measures were also used to compare the experimental and calculated chemical shifts for each compound in the four solvents. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Nucleus-independent chemical shift criterion for aromaticity in π-extended tetraoxa[8]circulenes

    DEFF Research Database (Denmark)

    Baryshnikov, Gleb V.; Minaev, Boris F.; Pittelkow, Michael

    2013-01-01

    Recently synthesized p-extended symmetrical tetraoxa[8]circulenes that exhibit electroluminescent properties were calculated at the density functional theory (DFT) level using the quantum theory of atoms in molecules (QTAIM) approach to electron density distribution analysis. Nucleus-independent ......Recently synthesized p-extended symmetrical tetraoxa[8]circulenes that exhibit electroluminescent properties were calculated at the density functional theory (DFT) level using the quantum theory of atoms in molecules (QTAIM) approach to electron density distribution analysis. Nucleus...... demonstrated the existence of a common p-extended system (distributed like a flat ribbon) in the studied tetraoxa[8]circulene molecules. Thus, these symmetrical tetraoxa[8]circulene molecules provide examples of diatropic systems characterized by the presence of induced diatropic ring currents....

  18. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    Science.gov (United States)

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chemical detection, identification, and analysis system

    International Nuclear Information System (INIS)

    Morel, R.S.; Gonzales, D.; Mniszewski, S.

    1990-01-01

    The chemical detection, identification, and analysis system (CDIAS) has three major goals. The first is to display safety information regarding chemical environment before personnel entry. The second is to archive personnel exposure to the environment. Third, the system assists users in identifying the stage of a chemical process in progress and suggests safety precautions associated with that process. In addition to these major goals, the system must be sufficiently compact to provide transportability, and it must be extremely simple to use in order to keep user interaction at a minimum. The system created to meet these goals includes several pieces of hardware and the integration of four software packages. The hardware consists of a low-oxygen, carbon monoxide, explosives, and hydrogen sulfide detector; an ion mobility spectrometer for airborne vapor detection; and a COMPAQ 386/20 portable computer. The software modules are a graphics kernel, an expert system shell, a data-base management system, and an interface management system. A supervisory module developed using the interface management system coordinates the interaction of the other software components. The system determines the safety of the environment using conventional data acquisition and analysis techniques. The low-oxygen, carbon monoxide, hydrogen sulfide, explosives, and vapor detectors are monitored for hazardous levels, and warnings are issued accordingly

  20. Night Shift Work and Risk of Depression: Meta-analysis of Observational Studies.

    Science.gov (United States)

    Lee, Aeyoung; Myung, Seung Kwon; Cho, Jung Jin; Jung, Yu Jin; Yoon, Jong Lull; Kim, Mee Young

    2017-07-01

    This study aimed to assess whether night shift work is associated with the risk of depression by using a meta-analysis of observational studies. We searched PubMed and EMBASE in August, 2016 to locate eligible studies and investigated the association between night shift work and the risk of depression, reporting outcome measures with adjusted odds ratios (ORs) or relative risks (RRs) and 95% confidence intervals (CIs). In the meta-analysis of a total of 11 observational studies with 9 cross-sectional study, 1 longitudinal study, and 1 cohort study, night shift work was significantly associated with an increased risk of depression (OR/RR, 1.43; 95% CI, 1.24-1.64; I² = 78.0%). Also, subgroup meta-analyses by gender, night shift work duration, type of occupation, continent, and type of publication showed that night shift work was consistently associated with the increased risk of depression. The current meta-analysis suggests that night shift work is associated with the increased risk of depression. However, further large prospective cohort studies are needed to confirm this association. © 2017 The Korean Academy of Medical Sciences.

  1. A simple method for measuring signs of {sup 1}H{sup N} chemical shift differences between ground and excited protein states

    Energy Technology Data Exchange (ETDEWEB)

    Bouvignies, Guillaume; Korzhnev, Dmitry M.; Neudecker, Philipp; Hansen, D. Flemming [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada); Cordes, Matthew H. J. [University of Arizona, Department of Chemistry and Biochemistry (United States); Kay, Lewis E., E-mail: kay@pound.med.utoronto.c [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)

    2010-06-15

    NMR relaxation dispersion spectroscopy is a powerful method for studying protein conformational dynamics whereby visible, ground and invisible, excited conformers interconvert on the millisecond time-scale. In addition to providing kinetics and thermodynamics parameters of the exchange process, the CPMG dispersion experiment also allows extraction of the absolute values of the chemical shift differences between interconverting states, |{Delta}{omega}-tilde|, opening the way for structure determination of excited state conformers. Central to the goal of structural analysis is the availability of the chemical shifts of the excited state that can only be obtained once the signs of {Delta}{omega}-tilde are known. Herein we describe a very simple method for determining the signs of {sup 1}H{sup N} {Delta}{omega}-tilde values based on a comparison of peak positions in the directly detected dimensions of a pair of {sup 1}H{sup N}-{sup 15}N correlation maps recorded at different static magnetic fields. The utility of the approach is demonstrated for three proteins that undergo millisecond time-scale conformational rearrangements. Although the method provides fewer signs than previously published techniques it does have a number of strengths: (1) Data sets needed for analysis are typically available from other experiments, such as those required for measuring signs of {sup 15}N {Delta}{omega}-tilde values, thus requiring no additional experimental time, (2) acquisition times in the critical detection dimension can be as long as necessary and (3) the signs obtained can be used to cross-validate those from other approaches.

  2. 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts.

    Science.gov (United States)

    Zheng, Anmin; Liu, Shang-Bin; Deng, Feng

    2017-10-11

    Acid-base catalytic reaction, either in heterogeneous or homogeneous systems, is one of the most important chemical reactions that has provoked a wide variety of industrial catalytic processes for production of chemicals and petrochemicals over the past few decades. In view of the fact that the catalytic performances (e.g., activity, selectivity, and reaction mechanism) of acid-catalyzed reactions over acidic catalysts are mostly dictated by detailed acidic features, viz. type (Brønsted vs Lewis acidity), amount (concentration), strength, and local environments (location) of acid sites, information on and manipulation of their structure-activity correlation are crucial for optimization of catalytic performances as well as innovative design of novel effective catalysts. This review aims to summarize recent developments on acidity characterization of solid and liquid catalysts by means of experimental 31 P nuclear magnetic resonance (NMR) spectroscopy using phosphorus probe molecules such as trialkylphosphine (TMP) and trialkylphosphine oxides (R 3 PO). In particular, correlations between the observed 31 P chemical shifts (δ 31 P) of phosphorus (P)-containing probes and acidic strengths have been established in conjuction with density functional theory (DFT) calculations, rendering practical and reliable acidity scales for Brønsted and Lewis acidities at the atomic level. As illustrated for a variety of different solid and liquid acid systems, such as microporous zeolites, mesoporous molecular sieves, and metal oxides, the 31 P NMR probe approaches were shown to provide important acid features of various catalysts, surpassing most conventional methods such as titration, pH measurement, Hammett acidity function, and some other commonly used physicochemical techniques, such as calorimetry, temperature-programmed desorption of ammonia (NH 3 -TPD), Fourier transformed infrared (FT-IR), and 1 H NMR spectroscopies.

  3. Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions

    Science.gov (United States)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-01

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1H/1H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  4. Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions

    International Nuclear Information System (INIS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-01-01

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1 H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1 H/ 1 H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials

  5. Chemical shift magnetic resonance spectroscopy of cingulate grey matter in patients with minimal hepatic encephalopathy

    International Nuclear Information System (INIS)

    Mechtcheriakov, Sergei; Kugener, Andre; Mattedi, Michael; Hinterhuber, Hartmann; Marksteiner, Josef; Schocke, Michael; Graziadei, Ivo W.; Vogel, Wolfgang

    2005-01-01

    Minimal hepatic encephalopathy (MHE) is frequently diagnosed in patients with liver cirrhosis who do not show overt clinical cirrhosis-associated neurological deficits. This condition manifests primarily with visuo-motor and attention deficits. We studied the association between visuo-motor deficits and magnetic resonance spectroscopic parameters in cingulate grey matter and white matter of centrum semiovale in patients with liver cirrhosis. The data revealed an increase in the glutamate-glutamine/creatine ratio and a decrease in choline/creatine and inositol/creatine ratios in patients with liver cirrhosis. The analysis of the data showed that cirrhosis-associated deterioration of the visuo-motor function significantly correlates with a decrease in the choline/creatine ratio and an increase in N-acetylaspartate/choline in cingulate grey matter but not in the neighbouring white matter. Furthermore, the increase in the glutamate-glutamine/creatine ratio correlated significantly with the increase in the N-acetylaspartate/creatine ratio. These data suggest an association between altered choline, glutamate-glutamine and NAA metabolism in cingulate grey matter and symptoms of MHE, and underline the importance of differentiation between grey and white matter in magnetic resonance spectroscopic studies on patients with cirrhosis-associated brain dysfunction. (orig.)

  6. A canonical correlation analysis based EMG classification algorithm for eliminating electrode shift effect.

    Science.gov (United States)

    Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang

    2016-08-01

    Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.

  7. The development of chemical speciation analysis

    International Nuclear Information System (INIS)

    Martin, R.; Santana, J.L.; Lima, L.; De La Rosa, D.; Melchor, K.

    2003-01-01

    The knowledge of many metals species on the environmental, its bioaccumulation, quantification and its effect in human body has been studied by a wide researchers groups in the last two decades. The development of speciation analysis has an vertiginous advance close to the developing of novel analytical techniques. Separation and quantification at low level is a problem that's has been afford by a coupling of high resolution chromatographic techniques like HPLC and HRGC with a specific method of detection (ICP-MS or CV-AAS). This methodological approach make possible the success in chemical speciation nowadays

  8. Laser chemical analysis: the recent developments

    International Nuclear Information System (INIS)

    Mauchien, P.

    1997-01-01

    This paper gives a general overview and describes the principles of the main laser-based techniques for physical and chemical analysis, and of their recent developments. Analytical techniques using laser radiations were actually developed at the end of the 1970's. The recent evolutions concern the 3 principal techniques of laser spectroscopy currently used: Raman, fluorescence (atomic and molecular) and ablation (ICP laser ablation-plasma coupling, optical emission spectroscopy on laser-induced plasma). The description of these different techniques is illustrated with some examples of applications. (J.S.)

  9. Activation and chemical analysis of drinking waters

    International Nuclear Information System (INIS)

    Sharma, H.K.; Mittal, V.K.; Sahota, H.S.

    1989-01-01

    Ground water samples from Patiala city have been analysed for 22 trace elements using neutron activation analysis and for seven chemical parameters using standard techniques. It was found that alkali and alkaline earth metals have high concentrations in all samples whereas the concentrations of toxic metals are low in the majority of samples. However, chromium and cadmium concentrations are higher in ground water taken from the industrial belt of the city. This indicates that the overall level of pollution is low, but that some measures are still needed to inhibit various industries from polluting the ground water. (author)

  10. Development of chemical equilibrium analysis code 'CHEEQ'

    International Nuclear Information System (INIS)

    Nagai, Shuichiro

    2006-08-01

    'CHEEQ' code which calculates the partial pressure and the mass of the system consisting of ideal gas and pure condensed phase compounds, was developed. Characteristics of 'CHEEQ' code are as follows. All the chemical equilibrium equations were described by the formation reactions from the mono-atomic gases in order to simplify the code structure and input preparation. Chemical equilibrium conditions, Σν i μ i =0 for the gaseous compounds and precipitated condensed phase compounds and Σν i μ i > 0 for the non-precipitated condensed phase compounds, were applied. Where, ν i and μ i are stoichiometric coefficient and chemical potential of component i. Virtual solid model was introduced to perform the calculation of constant partial pressure condition. 'CHEEQ' was consisted of following 3 parts, (1) analysis code, zc132. f. (2) thermodynamic data base, zmdb01 and (3) input data file, zindb. 'CHEEQ' code can calculate the system which consisted of elements (max.20), condensed phase compounds (max.100) and gaseous compounds. (max.200). Thermodynamic data base, zmdb01 contains about 1000 elements and compounds, and 200 of them were Actinide elements and their compounds. This report describes the basic equations, the outline of the solution procedure and instructions to prepare the input data and to evaluate the calculation results. (author)

  11. VALIDATION GUIDELINES FOR LABORATORIES PERFORMING FORENSIC ANALYSIS OF CHEMICAL TERRORISM

    Science.gov (United States)

    The Scientific Working Group on Forensic Analysis of Chemical Terrorism (SWGFACT) has developed the following guidelines for laboratories engaged in the forensic analysis of chemical evidence associated with terrorism. This document provides a baseline framework and guidance for...

  12. Unusually large chemical potential shift in a degenerate semiconductor: Angle-resolved photoemission study of SnSe and Na-doped SnSe

    Science.gov (United States)

    Maeda, M.; Yamamoto, K.; Mizokawa, T.; Saini, N. L.; Arita, M.; Namatame, H.; Taniguchi, M.; Tan, G.; Zhao, L. D.; Kanatzidis, M. G.

    2018-03-01

    We have studied the electronic structure of SnSe and Na-doped SnSe by means of angle-resolved photoemission spectroscopy. The valence-band top reaches the Fermi level by the Na doping, indicating that Na-doped SnSe can be viewed as a degenerate semiconductor. However, in the Na-doped system, the chemical potential shift with temperature is unexpectedly large and is apparently inconsistent with the degenerate semiconductor picture. The large chemical potential shift and anomalous spectral shape are key ingredients for an understanding of the novel metallic state with the large thermoelectric performance in Na-doped SnSe.

  13. NMR spectroscopy of organic compounds of selenium and tellurium. Communication 9. Chemical shifts of /sup 13/C in isological series of unsaturated ethers, sulfides, selenides and tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Kalabin, G.A.; Bzhezovskii, V.M.; Kushnarev, D.F.; Proidakov, A.G. (Irkutskii Gosudarstvennyj Univ. (USSR))

    1981-06-01

    The effects of heteroatoms Eh(Eh=O, S, Se, Te) on /sup 13/C chemical shifts in eleven isological series of R/sup 1/-Eh-R/sup 2/ unsaturated compounds are compared. A linear relation between /sup 13/C nuclei screening and tEh electronegativity is observed. An assumption is suggested that both likeness of the effects of 6A and 7A group elements on /sup 13/C chemical shifts of R/sup 1/ and R/sup 2/ substituents and their difference for elements of the 4A group are caused by unbonded interactions of the substituents with unshared electron pairs of heteroatoms.

  14. Intermolecular Interactions in Crystalline Theobromine as Reflected in Electron Deformation Density and (13)C NMR Chemical Shift Tensors.

    Science.gov (United States)

    Bouzková, Kateřina; Babinský, Martin; Novosadová, Lucie; Marek, Radek

    2013-06-11

    An understanding of the role of intermolecular interactions in crystal formation is essential to control the generation of diverse crystalline forms which is an important concern for pharmaceutical industry. Very recently, we reported a new approach to interpret the relationships between intermolecular hydrogen bonding, redistribution of electron density in the system, and NMR chemical shifts (Babinský et al. J. Phys. Chem. A, 2013, 117, 497). Here, we employ this approach to characterize a full set of crystal interactions in a sample of anhydrous theobromine as reflected in (13)C NMR chemical shift tensors (CSTs). The important intermolecular contacts are identified by comparing the DFT-calculated NMR CSTs for an isolated theobromine molecule and for clusters composed of several molecules as selected from the available X-ray diffraction data. Furthermore, electron deformation density (EDD) and shielding deformation density (SDD) in the proximity of the nuclei involved in the proposed interactions are calculated and visualized. In addition to the recently reported observations for hydrogen bonding, we focus here particularly on the stacking interactions. Although the principal relations between the EDD and CST for hydrogen bonding (HB) and stacking interactions are similar, the real-space consequences are rather different. Whereas the C-H···X hydrogen bonding influences predominantly and significantly the in-plane principal component of the (13)C CST perpendicular to the HB path and the C═O···H hydrogen bonding modulates both in-plane components of the carbonyl (13)C CST, the stacking modulates the out-of-plane electron density resulting in weak deshielding (2-8 ppm) of both in-plane principal components of the CST and weak shielding (∼ 5 ppm) of the out-of-plane component. The hydrogen-bonding and stacking interactions may add to or subtract from one another to produce total values observed experimentally. On the example of theobromine, we demonstrate

  15. Phase shift analysis of hyperon-nucleon elastic scattering using optimized polynomial expansion techniques

    International Nuclear Information System (INIS)

    Mohanty, S.; Deo, B.B.; Mohapatra, J.K.

    1986-01-01

    A relatively stable method of phase shift analysis of hyperon-nucleon scattering is proposed and applied to Σ + p and Λp scattering. The analytic cut t-planes of analyticity of the helicity amplitudes are mapped into the interior of unifocal ellipses. The helicity amplitudes are then expressed as accelerated convergent expansions in the mapped variable. A definite economy is observed in the number of free parameters for fixed energy phase shift analysis of Σ + p and Λp scattering at 40 and 100 MeV and 100 MeV respectively. Twenty six more phase shifts and coupling parameters corresponding to higher J values are also predicted. (author)

  16. Systems analysis of past, present, and future chemical terrorism scenarios.

    Energy Technology Data Exchange (ETDEWEB)

    Hoette, Trisha Marie

    2012-03-01

    Throughout history, as new chemical threats arose, strategies for the defense against chemical attacks have also evolved. As a part of an Early Career Laboratory Directed Research and Development project, a systems analysis of past, present, and future chemical terrorism scenarios was performed to understand how the chemical threats and attack strategies change over time. For the analysis, the difficulty in executing chemical attack was evaluated within a framework of three major scenario elements. First, historical examples of chemical terrorism were examined to determine how the use of chemical threats, versus other weapons, contributed to the successful execution of the attack. Using the same framework, the future of chemical terrorism was assessed with respect to the impact of globalization and new technologies. Finally, the efficacy of the current defenses against contemporary chemical terrorism was considered briefly. The results of this analysis justify the need for continued diligence in chemical defense.

  17. Night-shift work and breast cancer--a systematic review and meta-analysis.

    Science.gov (United States)

    Ijaz, Sharea; Verbeek, Jos; Seidler, Andreas; Lindbohm, Marja-Liisa; Ojajärvi, Anneli; Orsini, Nicola; Costa, Giovanni; Neuvonen, Kaisa

    2013-09-01

    The aim of this review was to synthesize the evidence on the potential relationship between nightshift work and breast cancer. We searched multiple databases for studies comparing women in shift work to those with no-shift work reporting incidence of breast cancer. We calculated incremental risk ratios (RR) per five years of night-shift work and per 300 night shift increases in exposure and combined these in a random effects dose-response meta-analysis. We assessed study quality in ten domains of bias. We identified 16 studies: 12 case-control and 4 cohort studies. There was a 9% risk increase per five years of night-shift work exposure in case-control studies [RR 1.09, 95% confidence interval (95% CI) 1.02-1.20; I (2) = 37%, 9 studies], but not in cohort studies (RR 1.01, 95% CI 0.97-1.05; I (2) = 53%, 3 studies). Heterogeneity was significant overall (I (2) = 55%, 12 studies). Results for 300 night shifts were similar (RR 1.04, 95% CI 1.00-1.10; I (2) = 58%, 8 studies). Sensitivity analysis using exposure transformations such as cubic splines, a fixed-effect model, or including only better quality studies did not change the results. None of the 16 studies had a low risk of bias, and 6 studies had a moderate risk. Based on the low quality of exposure data and the difference in effect by study design, our findings indicate insufficient evidence for a link between night-shift work and breast cancer. Objective prospective exposure measurement is needed in future studies.

  18. Noninvasive measurements of cardiac high-energy phosphate metabolites in dilated cardiomyopathy by using 31P spectroscopic chemical shift imaging

    International Nuclear Information System (INIS)

    Hansch, A.; Rzanny, R.; Heyne, J.-P.; Reichenbach, J.R.; Kaiser, W.A.; Leder, U.

    2005-01-01

    Dilated cardiomyopathy (DCM) is accompanied by an impaired cardiac energy metabolism. The aim of this study was to investigate metabolic ratios in patients with DCM compared to controls by using spectroscopic two-dimensional chemical shift imaging (2D-CSI). Twenty volunteers and 15 patients with severe symptoms (left ventricular ejection fraction, LVEF 30%) of DCM were investigated. Cardiac 31 P MR 2D-CSI measurements (voxel size: 40 x 40 x 100 mm 3 ) were performed with a 1.5 T whole-body scanner. Measurement time ranged from 15 min to 30 min. Peak areas and ratios of different metabolites were evaluated, including high-energy phosphates (PCr, ATP), 2,3-diphosphoglycerate (2,3-DPG) and phosphodiesters (PDE). In addition, we evaluated how PCr/ATP ratios correlate with LVEF as an established prognostic factor of heart failure. The PCr/γ-ATP ratio was significantly decreased in patients with moderate and severe DCM and showed a linear correlation with reduced LVEFs. PDE/ATP ratios were significantly increased only in patients with severe DCM as compared to volunteers. Applying 31 P MRS with commonly-available 2D-CSI sequences is a valuable technique to evaluate DCM by determining PCr/ATP ratios noninvasively. In addition to reduced PCr/ATP ratios observed in patients suffering from DCM, significantly-increased PDE/ATP ratios were found in patients with severe DCM. (orig.)

  19. Measurements of relative chemical shift tensor orientations in solid-state NMR: new slow magic angle spinning dipolar recoupling experiments.

    Science.gov (United States)

    Jurd, Andrew P S; Titman, Jeremy J

    2009-08-28

    Solid-state NMR experiments can be used to determine conformational parameters, such as interatomic distances and torsion angles. The latter can be obtained from measurements of the relative orientation of two chemical shift tensors, if the orientation of these with respect to the surrounding bonds is known. In this paper, a new rotor-synchronized magic angle spinning (MAS) dipolar correlation experiment is described which can be used in this way. Because the experiment requires slow MAS rates, a novel recoupling sequence, designed using symmetry principles, is incorporated into the mixing period. This recoupling sequence is based in turn on a new composite cyclic pulse referred to as COAST (for combined offset and anisotropy stabilization). The new COAST-C7(2)(1) sequence is shown to give good theoretical and experimental recoupling efficiency, even when the CSA far exceeds the MAS rate. In this regime, previous recoupling sequences, such as POST-C7(2)(1), exhibit poor recoupling performance. The effectiveness of the new method has been explored by a study of the dipeptide L-phenylalanyl-L-phenylalanine.

  20. Charge-symmetry-breaking effects from phase-shift analysis of elastic πsup(+-4)He scattering

    International Nuclear Information System (INIS)

    Khankhasayev, M.Kh.; Nichitiu, F.; Sapozhnikov, M.G.

    1986-01-01

    A phase-shift analysis of elastic πsup(+-4)He scattering at energies 20-160 MeV was performed to determine pure hadronic phase shifts. No statistically significant difference between the hadronic phase shifts deduced from π +4 He and π -4 He scattering was observed. (orig.)

  1. Shift work, long working hours and preterm birth: a systematic review and meta-analysis

    NARCIS (Netherlands)

    van Melick, M. J. G. J.; Van Beukering, M. D. M.; Mol, B. W.; Frings-Dresen, M. H. W.; Hulshof, C. T. J.

    2014-01-01

    Specific physical activities or working conditions are suspected for increasing the risk of preterm birth (PTB). The aim of this meta-analysis is to review and summarize the pre-existing evidence on the effect of shift work or long working hours on the risk of PTB. We conducted a systematic search

  2. Chemical shift-selective snapshot FLASH MR imaging in combination with inversion-recovery T1 contrast at different field strengths

    International Nuclear Information System (INIS)

    Matthaei, D.; Haase, A.; Henrich, D.; Duhmke, E.

    1991-01-01

    With fast MR imaging, chemical shift contract becomes available to the clinician in seconds. The purpose of this paper is to evaluate the combination of chemical shift selective (CHESS) MR imaging using the snapshot FLASH MR method with the inversion-recovery technique and to obtain information concerning the signal-to-noise and chemical shift with the presaturation method at different field strengths. Investigations with volunteers and experimental animals were done at 2 and 3 T (whole body) and in a 4.7-T animal image. For the inversion-recovery experiments, saturation was done before every snapshot FLASH image. With increasing field strength due to signal-to-noise and chemical shift advantages, the method performs better. Increasing T1 values are also important at high field strengths. The combined technique is useful only for T1 water images with fat saturation. It also allows fast quantification of T1 in water-containing organs and pathologic processes. At high field strengths, fast CHESS and T1 imaging promise fast quantitative information. This is a possible argument for clinical high-field-strength MR imagining along with MR spectroscopy

  3. Automated Fragmentation Polarizable Embedding Density Functional Theory (PE-DFT) Calculations of Nuclear Magnetic Resonance (NMR) Shielding Constants of Proteins with Application to Chemical Shift Predictions

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Bratholm, L.A.; Olsen, Jógvan Magnus Haugaard

    2017-01-01

    that are comparable with experiment. The introduction of a probabilistic linear regression model allows us to substantially reduce the number of snapshots that are needed to make comparisons with experiment. This approach is further improved by augmenting snapshot selection with chemical shift predictions by which we...

  4. High-Frequency H-1 NMR Chemical Shifts of Sn-II and Pb-II Hydrides Induced by Relativistic Effects: Quest for Pb-II Hydrides

    Czech Academy of Sciences Publication Activity Database

    Vícha, J.; Marek, R.; Straka, Michal

    2016-01-01

    Roč. 55, č. 20 (2016), s. 10302-10309 ISSN 0020-1669 Institutional support: RVO:61388963 Keywords : hydrides of TlI and PbII * high-frequency 1H chemical shifts * relativistic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.857, year: 2016

  5. High-Frequency C-13 and Si-29 NMR Chemical Shifts in Diamagnetic Low-Valence Compounds of TII and Pb-II: Decisive Role of Relativistic Effects

    Czech Academy of Sciences Publication Activity Database

    Vícha, J.; Marek, R.; Straka, Michal

    2016-01-01

    Roč. 55, č. 4 (2016), s. 1770-1781 ISSN 0020-1669 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : high-frequency NMR chemical shifts * HALA effect * relativistic DFT calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.857, year: 2016

  6. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {l_brace}in-phase and out-of phase{r_brace} MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ragab, Yasser [Radiology Department, Faculty of Medicine, Cairo University (Egypt); Radiology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yragab61@hotmail.com; Emad, Yasser [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt); Rheumatology and Rehabilitation Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yasseremad68@yahoo.com; Gheita, Tamer [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt)], E-mail: gheitamer@yahoo.com; Mansour, Maged [Oncology Department, Faculty of Medicine, Cairo University (Egypt); Oncology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: magedmansour@yahoo.com; Abou-Zeid, A. [Public Health Department, Faculty of Medicine, Cairo University, Cairo (Egypt)], E-mail: alaabouzeid@yahoo.com; Ferrari, Serge [Division of Bone Diseases, Department of Rehabilitation and Geriatrics, and WHO, Collaborating Center for Osteoporosis Prevention, Geneva University Hospital (Switzerland)], E-mail: serge.ferrari@medecine.unige.ch; Rasker, Johannes J. [Rheumatologist University of Twente, Enschede (Netherlands)], E-mail: j.j.rasker@utwente.nl

    2009-10-15

    Objective: The objective of this study was to establish the cut-off value of the signal intensity drop on chemical shift magnetic resonance imaging (MRI) with appropriate sensitivity and specificity to differentiate osteoporotic from neoplastic wedging of the spine. Patients and methods: All patients with wedging of vertebral bodies were included consecutively between February 2006 and January 2007. A chemical shift MRI was performed and signal intensity after (in-phase and out-phase) images were obtained. A DXA was performed in all. Results: A total of 40 patients were included, 20 with osteoporotic wedging (group 1) and 20 neoplastic (group 2). They were 21 males and 19 females. Acute vertebral collapse was observed in 15 patients in group 1 and subacute collapse in another 5 patients, while in group 2, 11 patients showed acute collapse and 9 patients (45%) showed subacute vertebral collapse. On the chemical shift MRI a substantial reduction in signal intensity was found in all lesions in both groups. The proportional changes observed in signal intensity of bone marrow lesions on in-phase compared with out-of-phase images showed significant differences in both groups (P < 0.05). At a cut-off value of 35%, the observed sensitivity of out-of-phase images was 95%, specificity was 100%, positive predictive value was 100% and negative predictive value was 95.2%. Conclusion: A chemical shift MRI is useful in order to differentiate patients with vertebral collapse due to underlying osteoporosis or neoplastic process.

  7. Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C’ scalar couplings (3hbJNC’)

    NARCIS (Netherlands)

    Bonvin, A.M.J.J.; Houben, K.; Guenneugues, M.N.L.; Kaptein, R.; Boelens, R.

    2001-01-01

    The possibility of generating protein folds at the stage of backbone assignment using structural restraints derived from experimentally measured cross-hydrogen bond scalar couplings and secondary chemical shift information is investigated using as a test case the small alpha/beta protein

  8. H-1 chemical shift imaging of the brain in guanidino methyltransferase deficiency, a creatine deficiency syndrome; guanidinoacetate accumulation in the gray matter

    NARCIS (Netherlands)

    Sijens, PE; Verbruggen, KT; Meiners, LC; Soorani-Lunsing, RJ; Rake, JP; Oudkerk, M

    MR spectroscopy results in a mild case of guanidinoacetate methyltransferase (GAMT) deficiency are presented. The approach differs from previous MRS studies in the acquisition of a chemical shift imaging spectral map showing gray and white matter with the corresponding spectra in one overview. MR

  9. Computational Chemical Synthesis Analysis and Pathway Design

    Directory of Open Access Journals (Sweden)

    Fan Feng

    2018-06-01

    Full Text Available With the idea of retrosynthetic analysis, which was raised in the 1960s, chemical synthesis analysis and pathway design have been transformed from a complex problem to a regular process of structural simplification. This review aims to summarize the developments of computer-assisted synthetic analysis and design in recent years, and how machine-learning algorithms contributed to them. LHASA system started the pioneering work of designing semi-empirical reaction modes in computers, with its following rule-based and network-searching work not only expanding the databases, but also building new approaches to indicating reaction rules. Programs like ARChem Route Designer replaced hand-coded reaction modes with automatically-extracted rules, and programs like Chematica changed traditional designing into network searching. Afterward, with the help of machine learning, two-step models which combine reaction rules and statistical methods became the main stream. Recently, fully data-driven learning methods using deep neural networks which even do not require any prior knowledge, were applied into this field. Up to now, however, these methods still cannot replace experienced human organic chemists due to their relatively low accuracies. Future new algorithms with the aid of powerful computational hardware will make this topic promising and with good prospects.

  10. Analysis of the differential-phase-shift-keying protocol in the quantum-key-distribution system

    International Nuclear Information System (INIS)

    Rong-Zhen, Jiao; Chen-Xu, Feng; Hai-Qiang, Ma

    2009-01-01

    The analysis is based on the error rate and the secure communication rate as functions of distance for three quantum-key-distribution (QKD) protocols: the Bennett–Brassard 1984, the Bennett–Brassard–Mermin 1992, and the coherent differential-phase-shift keying (DPSK) protocols. We consider the secure communication rate of the DPSK protocol against an arbitrary individual attack, including the most commonly considered intercept-resend and photon-number splitting attacks, and concluded that the simple and efficient differential-phase-shift-keying protocol allows for more than 200 km of secure communication distance with high communication rates. (general)

  11. Quantitative evaluation of the pivot shift by image analysis using the iPad.

    Science.gov (United States)

    Hoshino, Yuichi; Araujo, Paulo; Ahldén, Mattias; Samuelsson, Kristian; Muller, Bart; Hofbauer, Marcus; Wolf, Megan R; Irrgang, James J; Fu, Freddie H; Musahl, Volker

    2013-04-01

    To enable comparison of test results, a widely available measurement system for the pivot shift test is needed. Simple image analysis of lateral knee joint translation is one such system that can be installed on a prevalent computer tablet (e.g. iPad). The purpose of this study was to test a novel iPad application to detect the pivot shift. It was hypothesized that the abnormal lateral translation in ACL deficient knees would be detected by the iPad application. Thirty-four consecutive ACL deficient patients were tested. Three skin markers were attached on the following bony landmarks: (1) Gerdy's tubercle, (2) fibular head and (3) lateral epicondyle. A standardized pivot shift test was performed under anaesthesia, while the lateral side of the knee joint was monitored. The recorded movie was processed by the iPad application to measure the lateral translation of the knee joint. Lateral translation was compared between knees with different pivot shift grades. Valid data sets were obtained in 20 (59 %) ACL deficient knees. The remaining 14 data sets were invalid because of failure to detect translation or detection of excessive translation. ACL deficient knees had larger lateral translation than the contra-lateral knees (p iPad application, the potential of the iPad application to classify the pivot shift was demonstrated.

  12. Accuracy of chemical shift MR imaging in diagnosing indeterminate bone marrow lesions in the pelvis: review of a single institution's experience

    International Nuclear Information System (INIS)

    Kohl, Chad A.; Chivers, F.S.; Lorans, Roxanne; Roberts, Catherine C.; Kransdorf, Mark J.

    2014-01-01

    To re-assess the accuracy of chemical shift imaging in diagnosing indeterminate bone marrow lesions as benign or malignant. We retrospectively reviewed our experience with MR imaging of the pelvis to assess the accuracy of chemical shift imaging in distinguishing benign from malignant bone lesions. Two musculoskeletal radiologists retrospectively reviewed all osseous lesions biopsied since 2006, when chemical shift imaging was added to our routine pelvic imaging protocol. Study inclusion criteria required (1) MR imaging of an indeterminate bone marrow lesion about the pelvis and (2) subsequent histologic confirmation. The study group included 50 patients (29 male, 21 female) with an average age of 67 years (range, 41-89 years). MR imaging results were evaluated using biopsy results as the ''gold standard.'' There were 27 malignant and 23 benign lesions. Chemical shift imaging using an opposed-phase signal loss criteria of less than 20 % to indicate a malignant lesion, correctly diagnosed 27/27 malignant lesions and 14/23 benign lesions, yielding a 100 % sensitivity, 61 % specificity, 75 % PPV, 100 % NPV, and 82 % accuracy. The area under the receiver operator characteristic (ROC) curve was 0.88. The inter-rater and intra-rater agreement K values were both 1.0. Chemical shift imaging is a useful adjunct MR technique to characterize focal and diffuse marrow abnormalities on routine non-contrast pelvic imaging. It is highly sensitive in identifying malignant disease. Despite its lower specificity, the need for biopsy could be eliminated in more than 60 % of patients with benign disease. (orig.)

  13. Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction

    International Nuclear Information System (INIS)

    Lehtivarjo, Juuso; Tuppurainen, Kari; Hassinen, Tommi; Laatikainen, Reino; Peräkylä, Mikael

    2012-01-01

    While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein 1 H chemical shifts in which molecular motions, the 4th dimension, were modeled using molecular dynamics (MD) simulations. Although the approach clearly improved the prediction, the X-ray structures and single NMR conformers used in the model cannot be considered fully realistic models of protein in solution. In this work, NMR ensembles (NMRE) were used to expand the conformational space of proteins (e.g. side chains, flexible loops, termini), followed by MD simulations for each conformer to map the local fluctuations. Compared with the non-dynamic model, the NMRE+MD model gave 6–17% lower root-mean-square (RMS) errors for different backbone nuclei. The improved prediction indicates that NMR ensembles with MD simulations can be used to obtain a more realistic picture of protein structures in solutions and moreover underlines the importance of short and long time-scale dynamics for the prediction. The RMS errors of the NMRE+MD model were 0.24, 0.43, 0.98, 1.03, 1.16 and 2.39 ppm for 1 Hα, 1 HN, 13 Cα, 13 Cβ, 13 CO and backbone 15 N chemical shifts, respectively. The model is implemented in the prediction program 4DSPOT, available at http://www.uef.fi/4dspothttp://www.uef.fi/4dspot.

  14. Diffusion-weighted imaging of the liver at 3 T using section-selection gradient reversal: emphasis on chemical shift artefacts and lesion conspicuity

    International Nuclear Information System (INIS)

    Lee, J.S.; Kim, Y.K.; Jeong, W.K.; Choi, D.; Lee, W.J.

    2015-01-01

    Aim: To assess the value of section-selection gradient reversal (SSGR) in liver diffusion-weighted imaging (DWI) by comparing it to conventional DWI with an emphasis on chemical shift artefacts and lesion conspicuity. Materials and methods: Forty-eight patients (29 men and 19 women; age range 33–80 years) with 48 liver lesions underwent two DWI examinations using spectral presaturation with inversion recovery fat suppression with and without SSGR at 3 T. Two reviewers evaluated each DWI (b = 100 and b = 800 image) with respect to chemical shift artefacts and liver lesion conspicuity using five-point scales and performed pairwise comparisons between the two DWIs. The signal-to-noise ratio (SNR) of the liver and the lesion and the lesion–liver contrast-to-noise ratio (CNR) were also calculated. Results: SSGR-DWI was significantly better than conventional DWI with respect to chemical shift artefacts and lesion conspicuity in both separate reviews and pairwise comparisons (p < 0.05). There were significant differences in the SNR of the liver (b = 100 and b = 800 images) and lesion (b = 800) between SSGR-DWI and conventional DWI (p < 0.05). Conclusion: Applying the SSGR method to DWI using SPIR fat suppression at 3 T could significantly reduce chemical shift artefacts without incurring additional acquisition time or SNR penalties, which leads to increased conspicuity of focal liver lesions. - Highlights: • Chemical shift artefact in liver DWI is markedly decreased by applying SSGR. • Liver lesion conspicuity is improved by applying SSGR to DWI. • In SNR of the liver, SSGR-DWI is better than conventional DWI

  15. Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction

    Energy Technology Data Exchange (ETDEWEB)

    Lehtivarjo, Juuso, E-mail: juuso.lehtivarjo@uef.fi; Tuppurainen, Kari; Hassinen, Tommi; Laatikainen, Reino [University of Eastern Finland, School of Pharmacy (Finland); Peraekylae, Mikael [University of Eastern Finland, Institute of Biomedicine (Finland)

    2012-03-15

    While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein {sup 1}H chemical shifts in which molecular motions, the 4th dimension, were modeled using molecular dynamics (MD) simulations. Although the approach clearly improved the prediction, the X-ray structures and single NMR conformers used in the model cannot be considered fully realistic models of protein in solution. In this work, NMR ensembles (NMRE) were used to expand the conformational space of proteins (e.g. side chains, flexible loops, termini), followed by MD simulations for each conformer to map the local fluctuations. Compared with the non-dynamic model, the NMRE+MD model gave 6-17% lower root-mean-square (RMS) errors for different backbone nuclei. The improved prediction indicates that NMR ensembles with MD simulations can be used to obtain a more realistic picture of protein structures in solutions and moreover underlines the importance of short and long time-scale dynamics for the prediction. The RMS errors of the NMRE+MD model were 0.24, 0.43, 0.98, 1.03, 1.16 and 2.39 ppm for {sup 1}H{alpha}, {sup 1}HN, {sup 13}C{alpha}, {sup 13}C{beta}, {sup 13}CO and backbone {sup 15}N chemical shifts, respectively. The model is implemented in the prediction program 4DSPOT, available at http://www.uef.fi/4dspothttp://www.uef.fi/4dspot.

  16. Comparative Analysis on Chemical Composition of Bentonite Clays ...

    African Journals Online (AJOL)

    2017-09-12

    Sep 12, 2017 ... Comparative Analysis on Chemical Composition of Bentonite Clays. Obtained from Ashaka and ... versatile material for geotechnical engineering and as well as their demand for ..... A PhD thesis submitted to the Chemical ...

  17. Meta-analysis on night shift work and risk of metabolic syndrome.

    Science.gov (United States)

    Wang, F; Zhang, L; Zhang, Y; Zhang, B; He, Y; Xie, S; Li, M; Miao, X; Chan, E Y Y; Tang, J L; Wong, M C S; Li, Z; Yu, I T S; Tse, L A

    2014-09-01

    This study aims to quantitatively summarize the association between night shift work and the risk of metabolic syndrome (MetS), with special reference to the dose-response relationship with years of night shift work. We systematically searched all observational studies published in English on PubMed and Embase from 1971 to 2013. We extracted effect measures (relative risk, RR; or odd ratio, OR) with 95% confidence interval (CI) from individual studies to generate pooled results using meta-analysis approach. Pooled RR was calculated using random- or fixed-effect model. Downs and Black scale was applied to assess the methodological quality of included studies. A total of 13 studies were included. The pooled RR for the association between 'ever exposed to night shift work' and MetS risk was 1.57 (95% CI = 1.24-1.98, pheterogeneity  = 0.001), while a higher risk was indicated in workers with longer exposure to night shifts (RR = 1.77, 95% CI = 1.32-2.36, pheterogeneity  = 0.936). Further stratification analysis demonstrated a higher pooled effect of 1.84 (95% CI = 1.45-2.34) for studies using the NCEP-ATPIII criteria, among female workers (RR = 1.61, 95% CI = 1.10-2.34) and the countries other than Asia (RR = 1.65, 95% CI = 1.39-1.95). Sensitivity analysis confirmed the robustness of the results. No evidence of publication bias was detected. The present meta-analysis suggested that night shift work is significantly associated with the risk of MetS, and a positive dose-response relationship with duration of exposure was indicated. © 2014 The Authors. obesity reviews © 2014 World Obesity.

  18. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E. [Stanford University, Stanford, California 94309 (United States)

    1997-08-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H{endash}Si bond on the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C{endash}Si bond length of 1.85{plus_minus}0.05{Angstrom}. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. {copyright} {ital 1997 American Institute of Physics.}

  19. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    International Nuclear Information System (INIS)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E.

    1997-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H endash Si bond on the H endash Si(111) surface, and (ii) replacement of Cl on the Cl endash Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C endash Si bond length of 1.85±0.05 Angstrom. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. copyright 1997 American Institute of Physics

  20. Chemical shift of U L3 edges in different uranium compounds obtained by X-ray absorption spectroscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Joseph, D.; Jha, S.N.; Nayak, C.; Bhattacharyya, D.; Babu, P. Venu

    2014-01-01

    Uranium L 3 X-ray absorption edge was measured in various compounds containing uranium in U 4+ , U 5+ and U 5+ oxidation states. The measurements have been carried out at the Energy Dispersive EXAFS beamline (BL-08) at INDUS-2 synchrotron radiation source at RRCAT, Indore. Energy shifts of ∼ 2-3 eV were observed for U L 3 edge in the U-compounds compared to their value in elemental U. The different chemical shifts observed for the compounds having the same oxidation state of the cation but different anions or ligands show the effect of different chemical environments surrounding the cations in determining their X-ray absorption edges in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on U cation in the above compounds. (author)

  1. Novel chemical analysis for thin films

    International Nuclear Information System (INIS)

    Usui, Toshio; Kamei, Masayuki; Aoki, Yuji; Morishita, Tadataka; Tanaka, Shoji

    1991-01-01

    Scanning electron microscopy and total-reflection-angle X-ray spectroscopy (SEM-TRAXS) was applied for fluorescence X-ray analysis of 50A- and 125A-thick Au thin films on Si(100). The intensity of the AuM line (2.15 keV) emitted from the Au thin films varied as a function of the take-off angle (θ t ) with respect to the film surface; the intensity of AuM line from the 125A-thick Au thin film was 1.5 times as large as that of SiK α line (1.74 keV) emitted from the Si substrate when θ t = 0deg-3deg, in the vicinity of a critical angle for total external reflection of the AuM line at Si (0.81deg). In addition, the intensity of the AuM line emitted from the 50A-thick Au thin film was also sufficiently strong for chemical analysis. (author)

  2. Analysis of Shift and Deformation of Planar Surfaces Using the Least Squares Plane

    Directory of Open Access Journals (Sweden)

    Hrvoje Matijević

    2006-12-01

    Full Text Available Modern methods of measurement developed on the basis of advanced reflectorless distance measurement have paved the way for easier detection and analysis of shift and deformation. A large quantity of collected data points will often require a mathematical model of the surface that fits best into these. Although this can be a complex task, in the case of planar surfaces it is easily done, enabling further processing and analysis of measurement results. The paper describes the fitting of a plane to a set of collected points using the least squares distance, with previously excluded outliers via the RANSAC algorithm. Based on that, a method for analysis of the deformation and shift of planar surfaces is also described.

  3. Using chemical-shift MR imaging to quantify fatty degeneration within supraspinatus muscle due to supraspinatus tendon injuries

    Energy Technology Data Exchange (ETDEWEB)

    Gokalp, Gokhan; Yildirim, Nalan; Yazici, Zeynep [Uludag University Medical Faculty, Department of Radiology, Gorukle, Bursa (Turkey); Ercan, Ilker [Uludag University Medical Faculty, Department of Biostatistics, Gorukle, Bursa (Turkey)

    2010-12-15

    The objective of this study was to prospectively quantify the fatty degeneration of supraspinatus (SSP) muscle due to SSP tendon injuries by using chemical-shift magnetic resonance imaging (CS-MRI). Forty-one patients with suspected rotator cuff tear or impingement examined with MR arthrography were included in the study. The following images were obtained after injection of diluted gadolinium chelate into glenohumeral joint: fat-saturated T1-weighted spin echo in the coronal, axial, and sagittal-oblique plane; fat-saturated T2-weighted and intermediate-weighted fast spin-echo in the coronal-oblique plane; and T1-weighted spin echo in the sagittal-oblique plane. CS-MRI was performed in the coronal plane using a double-echo fast low-angle shot (FLASH) sequence. SSP tendon changes were classified as normal, tendinosis, and partial and complete tear according to MR arthrography findings. Fatty degeneration was quantified after measurement of signal intensity values within the region of interest (ROI) placed over SSP muscle. Signal intensity (SI) suppression ratio and SI index were calculated with the values obtained. Degrees of fatty degeneration depicted in normal subjects and subjects with rotator cuff injuries were compared. Median (min:max) was used as descriptive values. SI suppression ratio was -3.5% (-15.5:3.03) in normal subjects, whereas it was -13.5% (-28.55:-6.60), -30.7% (-41.5:-20.35), and -43.75% (-62:-24.90) in tendinosis, partial and complete tears, respectively. SI index was 0.75% (-6:11.5) in normal subjects. It was 10% (4.50:27), 26.5% (19.15:35.5), and 41% (23.9:57) in tendinosis, partial and complete tears, respectively. The increase in degree of fatty degeneration parallels the seriousness of tendon pathology. CS-MRI is a useful method for grading fat accumulation within SSP muscle. (orig.)

  4. High SNR Acquisitions Improve the Repeatability of Liver Fat Quantification Using Confounder-corrected Chemical Shift-encoded MR Imaging

    Science.gov (United States)

    Motosugi, Utaroh; Hernando, Diego; Wiens, Curtis; Bannas, Peter; Reeder, Scott. B

    2017-01-01

    Purpose: To determine whether high signal-to-noise ratio (SNR) acquisitions improve the repeatability of liver proton density fat fraction (PDFF) measurements using confounder-corrected chemical shift-encoded magnetic resonance (MR) imaging (CSE-MRI). Materials and Methods: Eleven fat-water phantoms were scanned with 8 different protocols with varying SNR. After repositioning the phantoms, the same scans were repeated to evaluate the test-retest repeatability. Next, an in vivo study was performed with 20 volunteers and 28 patients scheduled for liver magnetic resonance imaging (MRI). Two CSE-MRI protocols with standard- and high-SNR were repeated to assess test-retest repeatability. MR spectroscopy (MRS)-based PDFF was acquired as a standard of reference. The standard deviation (SD) of the difference (Δ) of PDFF measured in the two repeated scans was defined to ascertain repeatability. The correlation between PDFF of CSE-MRI and MRS was calculated to assess accuracy. The SD of Δ and correlation coefficients of the two protocols (standard- and high-SNR) were compared using F-test and t-test, respectively. Two reconstruction algorithms (complex-based and magnitude-based) were used for both the phantom and in vivo experiments. Results: The phantom study demonstrated that higher SNR improved the repeatability for both complex- and magnitude-based reconstruction. Similarly, the in vivo study demonstrated that the repeatability of the high-SNR protocol (SD of Δ = 0.53 for complex- and = 0.85 for magnitude-based fit) was significantly higher than using the standard-SNR protocol (0.77 for complex, P magnitude-based fit, P = 0.003). No significant difference was observed in the accuracy between standard- and high-SNR protocols. Conclusion: Higher SNR improves the repeatability of fat quantification using confounder-corrected CSE-MRI. PMID:28190853

  5. Dual-echo, chemical shift gradient-echo magnetic resonance imaging to quantify hepatic steatosis: Implications for living liver donation.

    Science.gov (United States)

    Rinella, Mary E; McCarthy, Richard; Thakrar, Kiran; Finn, John Paul; Rao, Sambasiva M; Koffron, Alan J; Abecassis, Michael; Blei, Andres T

    2003-08-01

    In living liver donation, a fatty liver poses risks for both recipient and donor. Currently, liver biopsy is the standard for assessing the presence and extent of steatosis. The goals of this study were to correlate a steatosis index derived from magnetic resonance imaging (MRI) to the histologic grade on biopsy as well as to determine the topographic distribution of steatosis within the liver. We examined the ability of dual-echo, chemical shift gradient-echo MRI to predict the degree of steatosis on liver biopsy. A total of 22 subjects received both a liver biopsy and detailed MRI evaluation. These individuals included 15 potential living donors and 7 patients with nonalcoholic fatty liver disease. MRI steatosis index was then compared with histologic grade on liver biopsy. The topographic distribution of hepatic steatosis was determined from those subjects in whom MRI detected hepatic steatosis. The steatosis index had a positive correlation with grade of steatosis on liver biopsy (correlation coefficient, 0.84). There was no significant variation in the degree of steatosis among segments. A steatosis index of >0.2 had good positive and negative predictive value for the presence of significant steatosis (>15%) on biopsy. Our quantitative MRI protocol can predict the degree of hepatic steatosis when it is minimal to moderate, and may obviate the need for liver biopsy for the purpose of quantification of steatosis in living donors. Fat saturation added to the MRI protocol may further improve diagnostic accuracy. This technique may be applicable to the larger population with hepatic steatosis.

  6. Using chemical-shift MR imaging to quantify fatty degeneration within supraspinatus muscle due to supraspinatus tendon injuries

    International Nuclear Information System (INIS)

    Gokalp, Gokhan; Yildirim, Nalan; Yazici, Zeynep; Ercan, Ilker

    2010-01-01

    The objective of this study was to prospectively quantify the fatty degeneration of supraspinatus (SSP) muscle due to SSP tendon injuries by using chemical-shift magnetic resonance imaging (CS-MRI). Forty-one patients with suspected rotator cuff tear or impingement examined with MR arthrography were included in the study. The following images were obtained after injection of diluted gadolinium chelate into glenohumeral joint: fat-saturated T1-weighted spin echo in the coronal, axial, and sagittal-oblique plane; fat-saturated T2-weighted and intermediate-weighted fast spin-echo in the coronal-oblique plane; and T1-weighted spin echo in the sagittal-oblique plane. CS-MRI was performed in the coronal plane using a double-echo fast low-angle shot (FLASH) sequence. SSP tendon changes were classified as normal, tendinosis, and partial and complete tear according to MR arthrography findings. Fatty degeneration was quantified after measurement of signal intensity values within the region of interest (ROI) placed over SSP muscle. Signal intensity (SI) suppression ratio and SI index were calculated with the values obtained. Degrees of fatty degeneration depicted in normal subjects and subjects with rotator cuff injuries were compared. Median (min:max) was used as descriptive values. SI suppression ratio was -3.5% (-15.5:3.03) in normal subjects, whereas it was -13.5% (-28.55:-6.60), -30.7% (-41.5:-20.35), and -43.75% (-62:-24.90) in tendinosis, partial and complete tears, respectively. SI index was 0.75% (-6:11.5) in normal subjects. It was 10% (4.50:27), 26.5% (19.15:35.5), and 41% (23.9:57) in tendinosis, partial and complete tears, respectively. The increase in degree of fatty degeneration parallels the seriousness of tendon pathology. CS-MRI is a useful method for grading fat accumulation within SSP muscle. (orig.)

  7. Combining ambiguous chemical shift mapping with structure-based backbone and NOE assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard

    2011-01-01

    Chemical shift mapping is an important technique in NMRbased drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically. However, automated methods are necessary for high-throughput drug screening. We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C- labeling, to resolve the ambiguities for a one-toone mapping. On the three proteins, it achieves an average accuracy of 94% or better. Copyright © 2011 ACM.

  8. Modern MRI tools for the characterization of acute demyelinating lesions: value of chemical shift and diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Kueker, W.; Mehnert, F.; Mader, I.; Naegele, T.; Ruff, J.; Gaertner, S.

    2004-01-01

    Acute demyelinating lesions occur in various inflammatory disorders of the CNS. Apart from multiple sclerosis, most cases can be attributed to an overshooting immunological response to infectious agents called acute disseminated encephalomyelitis (ADEM). ADEM, which is mostly characterized by a monophasic course, has a multiphasic variant (MDEM). The early application of corticosteroids has been shown to be beneficial for the outcome; thus, an early diagnosis is highly desirable. Furthermore, the differential diagnosis ruling out neoplastic disorders may be difficult using conventional MRI alone. The potential diagnostic value of advanced MR techniques such as chemical shift imaging (CSI) and diffusion-weighted imaging (DWI) was investigated in a patient with MDEM, who had a new lesion in continuity with the initial disease manifestation. CSI was performed at 1.5 T with a long echo time of 135 ms for the evaluation of N-acetyl-aspartate (NAA) and choline (Cho) and with short TE of 30 ms for macromolecules (mm) and myo-Inositol (mI). DWI was performed using a single-shot isotropic EPI sequence. Whereas acute and chronic areas of demyelination were neither distinguishable on T2- nor on contrast-enhanced T1-weigted images, CSI and DWI revealed different metabolite concentrations and diffusion characteristics within the composite lesion, clearly separating acute from chronic areas of demyelination. In conclusion, the addition of CSI and DWI may add to the diagnostic power of MRI in the setting of demyelinating disorders by identifying areas of acute and chronic demyelination, even in the absence of contrast enhancement. (orig.)

  9. Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints

    Science.gov (United States)

    Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.

    2005-01-01

    A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221

  10. Phase-shift analysis in pion-/sup 4/He elastic scattering. [60 to 260 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Falomkin, I V; Nichitiu, F; Sapozhnikov, M G; Shcherbakov, YU A [Joint Inst. for Nuclear Research, Dubna (USSR); Balestra, F; Bollini, E [Turin Univ. (Italy). Istituto di Fisica

    1978-02-21

    An energy-independent phase-shift analysis (PSA) of the elastic scattering of pions on /sup 4/He, in the energy range 60 to 260 MeV has been performed. All possible solutions, arising from the phase-shift analysis ambiguity, have been analyzed. Particular care has been taken in the choice of the physical solution. The calculated phase shifts have been compared with the results of the energy-dependent phase-shift analysis (EDPSA) and with the optical-model predictions.

  11. Thermodynamic analysis of chemical heat pumps

    International Nuclear Information System (INIS)

    Obermeier, Jonas; Müller, Karsten; Arlt, Wolfgang

    2015-01-01

    Thermal energy storages and heat pump units represent an important part of high efficient renewable energy systems. By using thermally driven, reversible chemical reactions a combination of thermal energy storage and heat pump can be realized. The influences of thermophysical properties of the involved components on the efficiency of a heat pump cycle is analysed and the relevance of the thermodynamic driving force is worked out. In general, the behaviour of energetic and exergetic efficiency is contrary. In a real cycle, higher enthalpies of reaction decrease the energetic efficiency but increase the exergetic efficiency. Higher enthalpies of reaction allow for lower offsets from equilibrium state for a default thermodynamic driving force of the reaction. - Highlights: • A comprehensive efficiency analysis of gas-solid heat pumps is proposed. • Link between thermodynamic driving force and equilibrium drop is shown. • Calculation of the equilibrium drop based on thermochemical properties. • Reaction equilibria of the decomposition reaction of salt hydrates. • Contrary behavior of energetic and exergetic efficiency

  12. Influence of shift work on early reproductive outcomes: a systematic review and meta-analysis.

    Science.gov (United States)

    Stocker, Linden J; Macklon, Nicholas S; Cheong, Ying C; Bewley, Susan J

    2014-07-01

    To determine whether an association exists between shift work and early reproductive outcomes. MEDLINE, Embase, and Web of Science were searched. Additional sources included Google Scholar, the Cochrane Library, online publications of national colleges, the ClinicalTrials.gov, and references of retrieved papers. Included studies compared female shift workers (work outside 8:00 AM to 6:00 PM) with nonshift workers with menstrual disruption (cycles less than 25 days or greater than 31 days), infertility (time-to-pregnancy exceeding 12 months), or early spontaneous pregnancy loss (less than 25 weeks). Two reviewers extracted adjusted and raw data. Random effect models were used to pool data weighting for the inverse of variance. Assessments of heterogeneity, bias, and subgroup analyses were performed. Sixteen independent cohorts from 15 studies (123,403 women) were subject to analysis. Shift workers had increased rates of menstrual disruption (16.05% [2,207/13,749] compared with 13.05% [7,561/57,932] [n=71.681, odds ratio {OR} 1.22, 95% confidence interval {CI} 1.15-1.29, I 0%]) and infertility (11.3% [529/4,668] compared with 9.9% [2,354/23,811] [OR 1.80, 95% CI 1.01-3.20, I 94%]) but not early spontaneous pregnancy loss (11.84% [939/7,931] compared with 12.11% [1,898/15,673] [n=23,604, OR 0.96, 95% CI 0.88-1.05, I 0%]). Night shifts were associated with increased early spontaneous pregnancy loss (n=13,018, OR 1.29, 95% CI 1.11-1.50, I 0%). Confounder adjustment led to persistent relationships between shift work and menstrual disruption (adjusted OR 1.15, 95% CI 1.01-1.31, I 70%) but not infertility (adjusted OR 1.11 95% CI 0.86-1.44, I 61%). The association between night shifts and early spontaneous pregnancy loss remained (adjusted OR 1.41 95% CI 1.22-1.63, I 0%). This review provides evidence for an association between performing shift work and early reproductive outcomes, consistent with later pregnancy findings. However, there is currently insufficient evidence

  13. Shift work, long working hours and preterm birth: a systematic review and meta-analysis.

    Science.gov (United States)

    van Melick, M J G J; van Beukering, M D M; Mol, B W; Frings-Dresen, M H W; Hulshof, C T J

    2014-11-01

    Specific physical activities or working conditions are suspected for increasing the risk of preterm birth (PTB). The aim of this meta-analysis is to review and summarize the pre-existing evidence on the effect of shift work or long working hours on the risk of PTB. We conducted a systematic search in MEDLINE and EMBASE (1990-2013) for observational and intervention studies with original data. We only included articles that met our specific criteria for language, exposure, outcome, data collection and original data that were of at least of moderate quality. The data of the included studies were pooled. Eight high-quality studies and eight moderate-quality studies were included in the meta-analysis. In these studies, no clear or statistically significant relationship between shift work and PTB was found. The summary estimate OR for performing shift work during pregnancy and the risk of PTB were 1.04 (95% CI 0.90-1.20). For long working hours during pregnancy, the summary estimate OR was 1.25 (95% CI 1.01-1.54), indicating a marginally statistically significant relationship but an only slightly elevated risk. Although in many of the included studies a positive association between long working hours and PTB was seen this did reach only marginal statistical significance. In the studies included in this review, working in shifts or in night shifts during pregnancy was not significantly associated with an increased risk for PTB. For both risk factors, due to the lack of high-quality studies focusing on the risks per trimester, in particular the third trimester, a firm conclusion about an association cannot be stated.

  14. Measurement of the signs of methyl {sup 13}C chemical shift differences between interconverting ground and excited protein states by R{sub 1{rho}}: an application to {alpha}B-crystallin

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Andrew J.; Kay, Lewis E., E-mail: kay@pound.med.utoronto.ca [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)

    2012-05-15

    Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG RD) NMR spectroscopy has emerged as a powerful tool for quantifying the kinetics and thermodynamics of millisecond time-scale exchange processes involving the interconversion between a visible ground state and one or more minor, sparsely populated invisible 'excited' conformational states. Recently it has also become possible to determine atomic resolution structural models of excited states using a wide array of CPMG RD approaches. Analysis of CPMG RD datasets provides the magnitudes of the chemical shift differences between the ground and excited states, {Delta}{omega}, but not the sign. In order to obtain detailed structural insights from, for example, excited state chemical shifts and residual dipolar coupling measurements, these signs are required. Here we present an NMR experiment for obtaining signs of {sup 13}C chemical shift differences of {sup 13}CH{sub 3} methyl groups using weak field off-resonance R{sub 1{rho}} relaxation measurements. The accuracy of the method is established by using an exchanging system where the invisible, excited state can be converted to the visible, ground state by altering sample conditions so that the signs of {Delta}{omega} values obtained from the spin-lock approach can be validated against those measured directly. Further, the spin-lock experiments are compared with the established H(S/M)QC approach for measuring signs of chemical shift differences and the relative strengths of each method are discussed. In the case of the 650 kDa human {alpha}B-crystallin complex where there are large transverse relaxation differences between ground and excited state spins the R{sub 1{rho}} method is shown to be superior to more 'traditional' experiments for sign determination.

  15. Perturbation method utilization in the analysis of the Convertible Spectral Shift Reactor (RCVS)

    International Nuclear Information System (INIS)

    Bruna, G.B; Legendre, J.F.; Porta, J.; Doriath, J.Y.

    1988-01-01

    In the framework of the preliminary faisability studies on a new core concept, techniques derived from perturbation theory show-up very useful in the calculation and physical analysis of project parameters. We show, in the present work, some applications of these methods to the RCVS (Reacteur Convertible a Variation de Spectre - Convertible Spectral Shift Reactor) Concept studies. Actually, we present here the search of a few group project type energy structure and the splitting of reactivity effects into individual components [fr

  16. Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures.

    Science.gov (United States)

    Geith, Tobias; Schmidt, Gerwin; Biffar, Andreas; Dietrich, Olaf; Dürr, Hans Roland; Reiser, Maximilian; Baur-Melnyk, Andrea

    2012-11-01

    The objective of our study was to compare the diagnostic value of qualitative diffusion-weighted imaging (DWI), quantitative DWI, and chemical-shift imaging in a single prospective cohort of patients with acute osteoporotic and malignant vertebral fractures. The study group was composed of patients with 26 osteoporotic vertebral fractures (18 women, eight men; mean age, 69 years; age range, 31 years 6 months to 86 years 2 months) and 20 malignant vertebral fractures (nine women, 11 men; mean age, 63.4 years; age range, 24 years 8 months to 86 years 4 months). T1-weighted, STIR, and T2-weighted sequences were acquired at 1.5 T. A DW reverse fast imaging with steady-state free precession (PSIF) sequence at different delta values was evaluated qualitatively. A DW echo-planar imaging (EPI) sequence and a DW single-shot turbo spin-echo (TSE) sequence at different b values were evaluated qualitatively and quantitatively using the apparent diffusion coefficient. Opposed-phase sequences were used to assess signal intensity qualitatively. The signal loss between in- and opposed-phase images was determined quantitatively. Two-tailed Fisher exact test, Mann-Whitney test, and receiver operating characteristic analysis were performed. Sensitivities, specificities, and accuracies were determined. Qualitative DW-PSIF imaging (delta = 3 ms) showed the best performance for distinguishing between benign and malignant fractures (sensitivity, 100%; specificity, 88.5%; accuracy, 93.5%). Qualitative DW-EPI (b = 50 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.50]) and DW single-shot TSE imaging (b = 100 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.18]; b = 400 s/mm(2) [p = 0.18]; b = 600 s/mm(2) [p = 0.39]) did not indicate significant differences between benign and malignant fractures. DW-EPI using a b value of 500 s/mm(2) (p = 0.01) indicated significant differences between benign and malignant vertebral fractures. Quantitative DW-EPI (p = 0.09) and qualitative opposed-phase imaging (p = 0

  17. Hepatic steatosis assessment with {sup 1}H-spectroscopy and chemical shift imaging at 3.0 T before hepatic surgery: Reliable enough for making clinical decisions?

    Energy Technology Data Exchange (ETDEWEB)

    Koelblinger, Claus, E-mail: claus.koelblinger@meduniwien.ac.at [Department of Radiology, Medical University of Vienna (Austria); Krssak, Martin, E-mail: martin.krssak@meduniwien.ac.at [Department of Radiology, Medical University of Vienna (Austria); Maresch, Judith, E-mail: judith.maresch@meduniwien.ac.at [Department of Pathology, Medical University of Vienna (Austria); Wrba, Fritz, E-mail: fritz.wrba@meduniwien.ac.at [Department of Pathology, Medical University of Vienna (Austria); Kaczirek, Klaus, E-mail: klaus.kaczirek@meduniwien.ac.at [Department of Surgery, Medical University of Vienna (Austria); Gruenberger, Thomas, E-mail: thomas.gruenberger@meduniwien.ac.at [Department of Surgery, Medical University of Vienna (Austria); Tamandl, Dietmar, E-mail: dietmar.tamandl@meduniwien.ac.at [Department of Surgery, Medical University of Vienna (Austria); Ba-Ssalamah, Ahmed, E-mail: ahmed.ba-ssalamah@meduniwien.ac.at [Department of Radiology, Medical University of Vienna (Austria); Berger-Kulemann, Vanessa, E-mail: vanessa.berger-kulemann@meduniwien.ac.at [Department of Radiology, Medical University of Vienna (Austria); Weber, Michael, E-mail: michael.weber@meduniwien.ac.at [Department of Radiology, Medical University of Vienna (Austria); Schima, Wolfgang, E-mail: wolfgang.schima@khgh.at [Department of Radiology, KH Goettlicher Heiland and Herz-Jesu Krankenhaus, Dornbacher Strasse 20-28, 1170 Vienna (Austria)

    2012-11-15

    Purpose: To compare the accuracy of liver fat quantification using chemical shift imaging (CSI) and H1 MR-spectroscopy (MRS) at 3.0 T in patients undergoing liver resection. Methods: Totally 35 patients were included in this prospective IRB approved study. The histopathologically assessed liver fat was compared to the hepatic fat fractions calculated with CSI (with and without spleen correction) and MRS. Spearman's rank correlation and Fisher z-test were used for correlation analysis. Sensitivity and specificity regarding the detection of marked steatosis were calculated for the different modalities and compared using the McNemar test. Results: MRS (r = .85) and CSI with spleen correction (r = .85) showed a significantly better correlation (p = .03) with histology compared to CSI without spleen correction (r = .67). Sensitivity and specificity for the detection of marked steatosis was 100% (12/12) and 87% (20/23) for MRS and 92% (11/12) and 83% (19/23) for CSI with spleen correction (p > .12). Conclusion: For the assessment of hepatic steatosis both CSI with spleen correction and MRS at 3.0 T, show a good correlation with histology. CSI without spleen correction should not be used. Sensitivity and specificity for the detection of marked steatosis are high with both modalities. However, results that are scattered around the cut-off values are not reliable enough for clinical decisions.

  18. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    International Nuclear Information System (INIS)

    Bellstedt, Peter; Herbst, Christian; Häfner, Sabine; Leppert, Jörg; Görlach, Matthias; Ramachandran, Ramadurai

    2012-01-01

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC′C and 3D C′NCA with sequential 13 C acquisitions, 3D NHH and 3D NC′H with sequential 1 H acquisitions and 3D CANH and 3D C’NH with broadband 13 C– 15 N mixing are demonstrated using microcrystalline samples of the β1 immunoglobulin binding domain of protein G (GB1) and the chicken α-spectrin SH3 domain.

  19. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bellstedt, Peter [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Haefner, Sabine; Leppert, Joerg; Goerlach, Matthias; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany)

    2012-12-15

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC Prime C and 3D C Prime NCA with sequential {sup 13}C acquisitions, 3D NHH and 3D NC Prime H with sequential {sup 1}H acquisitions and 3D CANH and 3D C'NH with broadband {sup 13}C-{sup 15}N mixing are demonstrated using microcrystalline samples of the {beta}1 immunoglobulin binding domain of protein G (GB1) and the chicken {alpha}-spectrin SH3 domain.

  20. NMR spectroscopic studies of a TAT-derived model peptide in imidazolium-based ILs: influence on chemical shifts and the cis/trans equilibrium state.

    Science.gov (United States)

    Wiedemann, Christoph; Ohlenschläger, Oliver; Mrestani-Klaus, Carmen; Bordusa, Frank

    2017-09-13

    NMR spectroscopy was used to study systematically the impact of imidazolium-based ionic liquid (IL) solutions on a TAT-derived model peptide containing Xaa-Pro peptide bonds. The selected IL anions cover a wide range of the Hofmeister series of ions. Based on highly resolved one- and two-dimensional NMR spectra individual 1 H and 13 C peptide chemical shift differences were analysed and a classification of IL anions according to the Hofmeister series was derived. The observed chemical shift changes indicate significant interactions between the peptide and the ILs. In addition, we examined the impact of different ILs towards the cis/trans equilibrium state of the Xaa-Pro peptide bonds. In this context, the IL cations appear to be of exceptional importance for inducing an alteration of the native cis/trans equilibrium state of Xaa-Pro bonds in favour of the trans-isomers.

  1. availability analysis of chemicals for water treatment

    African Journals Online (AJOL)

    NIJOTECH

    In most countries, chemicals are generally recognized as being vital in the production of potable water and will ... industries and water utility ventures are being started in Nigeria ... are being dumped into rivers thereby polluting them the more.

  2. CSSI-PRO: a method for secondary structure type editing, assignment and estimation in proteins using linear combination of backbone chemical shifts

    International Nuclear Information System (INIS)

    Swain, Monalisa; Atreya, Hanudatta S.

    2009-01-01

    Estimation of secondary structure in polypeptides is important for studying their structure, folding and dynamics. In NMR spectroscopy, such information is generally obtained after sequence specific resonance assignments are completed. We present here a new methodology for assignment of secondary structure type to spin systems in proteins directly from NMR spectra, without prior knowledge of resonance assignments. The methodology, named Combination of Shifts for Secondary Structure Identification in Proteins (CSSI-PRO), involves detection of specific linear combination of backbone 1 H α and 13 C' chemical shifts in a two-dimensional (2D) NMR experiment based on G-matrix Fourier transform (GFT) NMR spectroscopy. Such linear combinations of shifts facilitate editing of residues belonging to α-helical/β-strand regions into distinct spectral regions nearly independent of the amino acid type, thereby allowing the estimation of overall secondary structure content of the protein. Comparison of the predicted secondary structure content with those estimated based on their respective 3D structures and/or the method of Chemical Shift Index for 237 proteins gives a correlation of more than 90% and an overall rmsd of 7.0%, which is comparable to other biophysical techniques used for structural characterization of proteins. Taken together, this methodology has a wide range of applications in NMR spectroscopy such as rapid protein structure determination, monitoring conformational changes in protein-folding/ligand-binding studies and automated resonance assignment

  3. Evidence of chemical-potential shift with hole doping in Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Shen, Z.; Dessau, D.S.; Wells, B.O.; Olson, C.G.; Mitzi, D.B.; Lombado, L.; List, R.S.; Arko, A.J.

    1991-01-01

    We have performed photoemission studies on high-quality Bi 2 Sr 2 CaCu 2 O 8+δ samples with various δ. Our results show a clear chemical-potential shift (0.15--0.2 eV) as a function of doping. This result and the existing angle-resolved-photoemission data give a rather standard doping behavior of this compound in its highly doped regime

  4. Nonsuppressing normal thymus on chemical-shift MR imaging and anterior mediastinal lymphoma. Differentiation with diffusion-weighted MR imaging by using the apparent diffusion coefficient

    International Nuclear Information System (INIS)

    Priola, Adriano Massimiliano; Priola, Sandro Massimo; Gned, Dario; Veltri, Andrea; Giraudo, Maria Teresa

    2018-01-01

    To prospectively evaluate usefulness of the apparent diffusion coefficient (ADC) in differentiating anterior mediastinal lymphoma from nonsuppressing normal thymus on chemical-shift MR, and to look at the relationship between patient age and ADC. Seventy-three young subjects (25 men, 48 women; age range, 9-29 years), who underwent chemical-shift MR and diffusion-weighted MR were divided into a normal thymus group (group A, 40 subjects), and a lymphoma group (group B, 33 patients). For group A, all subjects had normal thymus with no suppression on opposed-phase chemical-shift MR. Two readers measured the signal intensity index (SII) and ADC. Differences in SII and ADC between groups were tested using t-test. ADC was correlated with age using Pearson correlation coefficient. Mean SII±standard deviation was 2.7±1.8% for group A and 2.2±2.4% for group B, with no significant difference between groups (P=.270). Mean ADC was 2.48±0.38 x 10 -3 mm 2 /s for group A and 1.24±0.23 x 10 -3 mm 2 /s for group B. A significant difference between groups was found (P<.001), with no overlap in range. Lastly, significant correlation was found between age and ADC (r=0.935, P<.001) in group A. ADC of diffusion-weighted MR is a noninvasive and accurate parameter for differentiating lymphoma from nonsuppressing thymus on chemical-shift MR in young subjects. (orig.)

  5. Backbone and sidechain methyl Ile (δ1), Leu and Val chemical shift assignments of RDE-4 (1-243), an RNA interference initiation protein in C. elegans.

    Science.gov (United States)

    Chiliveri, Sai Chaitanya; Kumar, Sonu; Marelli, Udaya Kiran; Deshmukh, Mandar V

    2012-10-01

    The RNAi pathway of several organisms requires presence of double stranded RNA binding proteins for functioning of Dicer in gene regulation. In C. elegans, a double stranded RNA binding protein, RDE-4 (385 aa, 44 kDa) recognizes long exogenous dsRNA and initiates the RNAi pathway. We have achieved complete backbone and stereospecific methyl sidechain Ile (δ1), Leu and Val chemical shifts of first 243 amino acids of RDE-4, namely RDE-4ΔC.

  6. Structure, solvent, and relativistic effects on the NMR chemical shifts in square-planar transition-metal complexes: assessment of DFT approaches

    Czech Academy of Sciences Publication Activity Database

    Vícha, J.; Novotný, J.; Straka, Michal; Repisky, M.; Ruud, K.; Komorovsky, S.; Marek, R.

    2015-01-01

    Roč. 17, č. 38 (2015), s. 24944-24955 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : NMR chemical shifts * transition metal complexes * relativistic effects * method calibration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/cp/c5cp04214c

  7. Parameter design and performance analysis of shift actuator for a two-speed automatic mechanical transmission for pure electric vehicles

    Directory of Open Access Journals (Sweden)

    Jianjun Hu

    2016-08-01

    Full Text Available Recent developments of pure electric vehicles have shown that pure electric vehicles equipped with two-speed or multi-speed gearbox possess higher energy efficiency by ensuring the drive motor operates at its peak performance range. This article presents the design, analysis, and control of a two-speed automatic mechanical transmission for pure electric vehicles. The shift actuator is based on a motor-controlled camshaft where a special geometric groove is machined, and the camshaft realizes the axial positions of the synchronizer sleeve for gear engaging, disengaging, and speed control of the drive motor. Based on the force analysis of shift process, the parameters of shift actuator and shift motor are designed. The drive motor’s torque control strategy before shifting, speed governing control strategy before engaging, shift actuator’s control strategy during gear engaging, and drive motor’s torque recovery strategy after shift process are proposed and implemented with a prototype. To validate the performance of the two-speed gearbox, a test bed was developed based on dSPACE that emulates various operation conditions. The experimental results indicate that the shift process with the proposed shift actuator and control strategy could be accomplished within 1 s under various operation conditions, with shift smoothness up to passenger car standard.

  8. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI)

    Science.gov (United States)

    Amberg, Alexander; Barrett, Dave; Beale, Michael H.; Beger, Richard; Daykin, Clare A.; Fan, Teresa W.-M.; Fiehn, Oliver; Goodacre, Royston; Griffin, Julian L.; Hankemeier, Thomas; Hardy, Nigel; Harnly, James; Higashi, Richard; Kopka, Joachim; Lane, Andrew N.; Lindon, John C.; Marriott, Philip; Nicholls, Andrew W.; Reily, Michael D.; Thaden, John J.; Viant, Mark R.

    2013-01-01

    There is a general consensus that supports the need for standardized reporting of metadata or information describing large-scale metabolomics and other functional genomics data sets. Reporting of standard metadata provides a biological and empirical context for the data, facilitates experimental replication, and enables the re-interrogation and comparison of data by others. Accordingly, the Metabolomics Standards Initiative is building a general consensus concerning the minimum reporting standards for metabolomics experiments of which the Chemical Analysis Working Group (CAWG) is a member of this community effort. This article proposes the minimum reporting standards related to the chemical analysis aspects of metabolomics experiments including: sample preparation, experimental analysis, quality control, metabolite identification, and data pre-processing. These minimum standards currently focus mostly upon mass spectrometry and nuclear magnetic resonance spectroscopy due to the popularity of these techniques in metabolomics. However, additional input concerning other techniques is welcomed and can be provided via the CAWG on-line discussion forum at http://msi-workgroups.sourceforge.net/ or http://Msi-workgroups-feedback@lists.sourceforge.net. Further, community input related to this document can also be provided via this electronic forum. PMID:24039616

  9. Bayesian Analysis of two Censored Shifted Gompertz Mixture Distributions using Informative and Noninformative Priors

    Directory of Open Access Journals (Sweden)

    Tabassum Naz Sindhu

    2017-03-01

    Full Text Available This study deals with Bayesian analysis of shifted Gompertz mixture model under type-I censored samples assuming both informative and noninformative priors. We have discussed the Bayesian estimation of parameters of shifted Gompertz mixture model under the uniform, and gamma priors assuming three loss functions. Further, some properties of the model with some graphs of the mixture density are discussed. These properties include Bayes estimators, posterior risks and reliability function under simulation scheme. Bayes estimates are obtained considering two cases: (a when the shape parameter is known and (b when all parameters are unknown. We analyzed some simulated sets in order to investigate the effect of prior belief, loss functions, and performance of the proposed set of estimators of the mixture model parameters.

  10. On the analysis of the thermal line shift and thermal line width of ions in solids

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Brian M., E-mail: brian.m.walsh@nasa.gov [NASA Langley Research Center, Hampton, VA 23681 (United States); Di Bartolo, Baldassare, E-mail: baldassare.dibartolo@bc.edu [Boston College, Department of Physics, Chestnut Hill, MA 23667 (United States)

    2015-02-15

    A method of analysis for the thermally induced line shift and line width of spectral lines regarding the Raman process of ions in solids utilizing rational approximations for the Debye functions is presented. The {sup 2}E level unsplit R-line in V{sup 2+}:MgO is used as an example to illustrate the utility of the methods discussed here in providing a new analytical tool for researchers. - Highlights: • We use rational approximations for Debye functions. • We discuss limits and ranges of applicability of the rational approximations. • We formulate expressions for thermal shift and thermal linewidth for Raman processes using the rational approximations of the Debye functions. • We present an application of the methods to analyze the temperature dependent linewidth and lineshift in V2+:MgO.

  11. Analysis of the Market Structure and Shift-effects in North China Ports

    Directory of Open Access Journals (Sweden)

    Manlu Liu, Doctoral Student

    2016-09-01

    Full Text Available This study divides the foreign trade traffic of major North China ports into export and import cargoes for the past 10 years. Then, the concentration ratios and shift effects are analyzed in order to determine their relationships with the ports’ competition structures. Here, the HHI, a BCG matrix analysis, and the shift effects are applied as study methods. The results indicate that the oligopoly market structure of major North China ports has gradually decreased. Furthermore, the concentration ratios of import cargoes are higher than those of export cargoes, indicating that competition to attract import cargoes will intensify. Therefore, the effects of the South Korea–China FTA mean that the competition structures of these ports with regard to export and import cargoes are highly likely to be differentiated further over time.

  12. Phase-shifting Real-time Holographic Microscopy applied in micro-structures surface analysis

    International Nuclear Information System (INIS)

    Brito, I V; Gesualdi, M R R; Muramatsu, M; Ricardo, J

    2011-01-01

    The microscopic real-time analysis of micro structured materials is of great importance in various domains of science and technology. For other hand, the holographic interferometry comprises a group of powerful optical methods for non-destructive testing in surface analysis. The holographic microscopy uses the holographic interferometric techniques to obtain quantitative intensity and phase information of the optical waves by microscopic systems. With the development of CCD cameras, computers (hardware and software), and new materials for holographic recording, these techniques can be used to replace the classical form of registration and became promising tools in surface analysis. In this work, we developed a prototype of Photorefractive and Digital Holographic Microscope for real-time analysis of micro-structured systems based on the phase-shifting real-time holographic interferometry techniques. Using this apparatus, we are made analysis of shapes and surfaces to obtain the phase maps and the 3D profiles of some samples.

  13. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.

    Science.gov (United States)

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A

    2016-02-05

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.

  14. MR imaging of osteonecrosis using frequency selective chemical shift sequences; Neue Aspekte in der MR-Diagnostik der Osteonekrose: Selektive Fett/Wasser-Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Duda, S H [Abt. fuer Radiologische Diagnostik, Tuebingen Univ. (Germany); Laniado, M [Abt. fuer Radiologische Diagnostik, Tuebingen Univ. (Germany); Schick, F [Inst. fuer Physik, Tuebingen Univ. (Germany)

    1994-12-31

    The MR appearance of osteonecrosis was assessed on selective fat- and water images to further evaluate the nature of double-line sign. Conventional T1- and T2-weighted SE and frequency selective chemical shift images of eight patients with avascular necrosis of the femoral head and three patients with bone infarcts were retrospectively reviewed. Eight of 11 patients showed a double-line sign on T2-weighted SE images. In these cases, correlation with selective water images revealed that a chemical shift artifact contributed to appearance and location of the hyperintense line. The authors conclude that chemical shift imaging improves our understanding of the nature of the double-line sign. (orig.) [Deutsch] Das MR-tomographische Erscheinungsbild der Osteonekrose auf selektiven Fett- und Wasserbildern wurde analysiert, um das in der Literatur beschriebene Doppellinienzeichen naeher zu untersuchen. Hierfuer wurden sowohl die herkoemmlichen T1- und T2-gewichteten Spin-Echo-Sequenzen herangezogen, als auch frequenzselektive Bilder, die aufgrund chemischer Verschiebung gewonnen wurden (1,5 T). Es wurden die Untersuchungen von acht Patienten mit avaskulaerer Hueftkopfnekrose und von drei Patienten mit Knocheninfarkten retrospektiv ausgewertet. Acht von 11 Patienten zeigten ein Doppellinienzeichen auf den T2-gewichteten Bildern. Die Korrelation mit den selektiven Wasserbildern ergab, dass durch chemische Verschiebung bedingte Artefakte das Erscheinungsbild und den Ort der hyperintensen Linie beeinflussten. Die Bildgebung mit Hilfe der chemischen Verschiebung verbessert unser Verstaendnis der MRT-Charakteristika der Osteonekrose. (orig.)

  15. Physico-Chemical Analysis and Sensory Evaluation of Bread

    African Journals Online (AJOL)

    Shuaibu et al.

    Physico-Chemical Analysis and Sensory Evaluation of Bread Produced Using ... analysis of the bread samples revealed that the moisture content ..... 72. Jarup, L. ,2003. Hazards of heavy metal contamination. Br Med. Bull; 68, pp.167-82.

  16. Chemical analysis and base-promoted hydrolysis of locally ...

    African Journals Online (AJOL)

    Abstract. The study was on the chemical analysis and base- promoted hydrolysis of extracted shea nut fat. The local method of extraction of the shea nut oil was employed in comparison with literature report. A simple cold-process alkali hydrolysis of the shea nut oil was used in producing the soap. The chemical analysis of ...

  17. Thermally emissive sensing materials for chemical spectroscopy analysis

    Science.gov (United States)

    Poole, Zsolt; Ohodnicki, Paul R.

    2018-05-08

    A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to the material.

  18. Thigh muscle segmentation of chemical shift encoding-based water-fat magnetic resonance images: The reference database MyoSegmenTUM.

    Directory of Open Access Journals (Sweden)

    Sarah Schlaeger

    Full Text Available Magnetic resonance imaging (MRI can non-invasively assess muscle anatomy, exercise effects and pathologies with different underlying causes such as neuromuscular diseases (NMD. Quantitative MRI including fat fraction mapping using chemical shift encoding-based water-fat MRI has emerged for reliable determination of muscle volume and fat composition. The data analysis of water-fat images requires segmentation of the different muscles which has been mainly performed manually in the past and is a very time consuming process, currently limiting the clinical applicability. An automatization of the segmentation process would lead to a more time-efficient analysis. In the present work, the manually segmented thigh magnetic resonance imaging database MyoSegmenTUM is presented. It hosts water-fat MR images of both thighs of 15 healthy subjects and 4 patients with NMD with a voxel size of 3.2x2x4 mm3 with the corresponding segmentation masks for four functional muscle groups: quadriceps femoris, sartorius, gracilis, hamstrings. The database is freely accessible online at https://osf.io/svwa7/?view_only=c2c980c17b3a40fca35d088a3cdd83e2. The database is mainly meant as ground truth which can be used as training and test dataset for automatic muscle segmentation algorithms. The segmentation allows extraction of muscle cross sectional area (CSA and volume. Proton density fat fraction (PDFF of the defined muscle groups from the corresponding images and quadriceps muscle strength measurements/neurological muscle strength rating can be used for benchmarking purposes.

  19. Shift work and hypertension: Prevalence and analysis of disease pathways in a German car manufacturing company.

    Science.gov (United States)

    Ohlander, Johan; Keskin, Mekail-Cem; Stork, Joachim; Radon, Katja

    2015-05-01

    Hypertension and cardiovascular disease (CVD) may share a similar pathophysiology. Despite shift workers' CVD excess risk, studies on shift work and hypertension are inconclusive. Blood pressure and shift status for 25,343 autoworkers were obtained from medical check-ups and company registers. Cross-sectional associations modeling the total effect from shift work (day shifts, shift work without nights, rotating shift work with nights, and night shifts) on hypertension were assessed. By sequential adjustments, the influence of behavioral, psychosocial, and physiological factors on the total effect was examined, with subsequent mediation and moderation analyses. Adjusted for confounders, shift work without nights (vs. day shifts) was significantly associated with hypertension (OR 1.15, 95%CI 1.02-1.30). The total effect was mediated by BMI, physical inactivity, and sleep disorders. No moderation of the total effect by behaviors was found. The association between shift work and hypertension seems mainly attributable to behavioral mechanisms. © 2015 Wiley Periodicals, Inc.

  20. Error Analysis in a Device to Test Optical Systems by Using Ronchi Test and Phase Shifting

    International Nuclear Information System (INIS)

    Cabrera-Perez, Brasilia; Castro-Ramos, Jorge; Gordiano-Alvarado, Gabriel; Vazquez y Montiel, Sergio

    2008-01-01

    In optical workshops, Ronchi test is used to determine the optical quality of any concave surface, while it is in the polishing process its quality is verified. The Ronchi test is one of the simplest and most effective methods used for evaluating and measuring aberrations. In this work, we describe a device to test converging mirrors and lenses either with small F/numbers or large F/numbers, using LED (Light-Emitting Diode) that has been adapted in the Ronchi testing as source of illumination. With LED used the radiation angle is bigger than common LED. It uses external power supplies to have well stability intensity to avoid error during the phase shift. The setup also has the advantage to receive automatic input and output data, this is possible because phase shifting interferometry and a square Ronchi ruling with a variable intensity LED were used. Error analysis of the different parameters involved in the test of Ronchi was made. For example, we analyze the error in the shifting of phase, the error introduced by the movement of the motor, misalignments of x-axis, y-axis and z-axis of the surface under test, error in the period of the grid used

  1. Reproducibility and influencing factors of 31P MR spectroscopy in rabbit liver with two-dimensional chemical shift imaging

    International Nuclear Information System (INIS)

    Yu Risheng; Sun Jianzhong; Ding Wenhong; Xu Xiufang; Wang Zhikang

    2009-01-01

    Objective: To investigate the reproducibility and influencing factors of relative quantification of phosphorus metabolites with two-dimensional chemical shift imaging (2D CSI) in rabbit liver. Methods: Using 2D CSI MRS, 500 ml phosphate (NaH 2 PO 4 ) solution phantom with 0.05 mol/L concentration and one healthy rabbit were scanned 30 times respectively in one day and rescanned 30 times in the next day, and the stability of MR scanner and reproducibility of within-run and between-days in the same individual were analyzed. Each of thirty rabbits was scanned and rescanned one time respectively in different days, and the reproducibility of between-days in one group was analyzed. The data were statistically analyzed with t tests. Results: (1) Phosphate solution phantom had a good reproducibility of within-run with the coefficient variation (CV) of 4.92% and 5.12% respectively in different two days. No significant change of phosphorus metabolites was detected in between-days, which was 16.68±0.82 and 16.56± 0.85 respectively (t=0.665, P>0.05). (2) The CV of metabolites in one healthy rabbit ranged from 8.04% to 34.13%. Among the metabolites, β-ATP had the best reproducibility with the CV less than 10%. PME was 0.88±0.28 and 0.88±0.30, PDE was 4.35±0.66 and 4.35±0.66, Pi was 0.95±0.30 and 0.97±0.28, α-ATP was 5.58±0.60 and 5.61±0.61, β-ATP was 2.70±0.22 and 2.71± 0.22, γ-ATP was 2.20±0.63 and 2.18±0.44 respectively, no significant changes of metabolites were detected in between-days (P>0.05). (3) The CV of metabolites in 30 healthy rabbits ranged from 8.48% to 36.21%. Among the metabolites, β-ATP had the best reproducibility with CV less than 10%. PME was 0.84±0.30 and 0.79±0.28, PDE was 4.29±0.72 and 3.94±0.84, Pi was 0.91±0.28 and 0.92± 0.31, α-ATP was 5.65±0.66 and 5.36±0.60, β-ATP was 2.71±0.23 and 2.66±0.25, γ-ATP was 2.07±0.29 and 1.99±0.37 respectively, no significant changes of metabolites were detected in between-days (P>0

  2. The Influence of Power Shifts in Data Collection and Analysis Stages: A Focus on Qualitative Research Interview

    Science.gov (United States)

    Anyan, Frederick

    2013-01-01

    This paper analyzes the power relation between the interviewer and the interviewee in the qualitative research interview methodology. The paper sets out to grapple with the extent to which the dynamisms in power shifts influence data collection and analysis in the interview methodology. The exploration of power shifts in the qualitative research…

  3. Chemical and thermal analysis for characterisation of building materials

    International Nuclear Information System (INIS)

    Kumar, S.C.; Sudersanan, M.; Ravindran, P.V.; Kalekar, B.B.; Mathur, P.K.

    2000-01-01

    Cement and other construction materials are extensively used for the construction of shielding materials for nuclear and high energy radiations. The design and optimum utilisation of such materials need an accurate analysis of their chemical composition. The moisture content and presence of bound water and other volatile materials are also important. The use of thermal analysis supplements the data obtained by chemical analysis and enables a distinction of moisture and chemically bound water. It also enables an identification of the process leading to the loss on ignition. The work carried out on the analysis of sand, cement and other aggregate materials used for the preparation of concrete is described in the paper. (author)

  4. Chemical Diversity, Origin, and Analysis of Phycotoxins

    DEFF Research Database (Denmark)

    Rasmussen, Silas Anselm; Andersen, Aaron John Christian; Andersen, Nikolaj Gedsted

    2016-01-01

    , yessotoxins, azaspiracids, brevetoxins, and pinnatoxins. Other toxins, such as ciguatoxins and maitotoxins, accumulate in fish, where, as is the case for the latter compounds, they can be metabolized to even more toxic metabolites. On the other hand, much less is known about the chemical nature of compounds...

  5. Reduction and Analysis of Low Temperature Shift Heterogeneous Catalyst for Water Gas Reaction in Ammonia Production

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2013-09-01

    Full Text Available In order to obtain additional quantities of hydrogen after the reforming reactions of natural gas and protect the ammonia synthesis catalyst, it is crucial to achieve and maintain maximum possible activity, selectivity and stability of the low temperature shift catalyst for conversion of water gas reaction during its lifetime. Whereas the heterogeneous catalyst comes in oxidized form, it is of the utmost importance to conduct the reduction procedure properly. The proper reduction procedure and continuous analysis of its performance would ensure the required activity, selectivity and stability throughout the catalyst’s service time. For the proper reduction procedure ofthe low temperature shift catalyst, in addition to process equipment, also necessary is a reliable and realistic system for temperature measurements, which will be effective for monitoring the exothermal temperature curves through all catalyst bed layers. For efficiency evaluation of low shift temperature catalyst reduction and its optimization, it is necessary to determine at regular time intervals the temperature approach to equilibrium and temperature profiles of individual layers by means of "S" and "die off" temperature exothermal curves. Based on the obtained data, the optimum inlet temperature could be determined, in order to maximally extend the service life of the heterogeneous catalyst as much as possible, and achieve the optimum equilibrium for conversion of the water gas. This paper presents the methodology for in situ reduction of the low temperature shift heterogeneous catalyst and the developed system for monitoring its individual layers to achieve the minimum possible content of carbon monoxide at the exit of the reactor. The developed system for temperature monitoring through heterogeneous catalyst layers provides the proper procedure for reduction and adjustment of optimum process working conditions for the catalyst by the continuous increase of reactor inlet

  6. Film Adaptation as Translation: An Analysis of Adaptation Shifts in Silver Linings Playbook

    Directory of Open Access Journals (Sweden)

    Katerina Perdikaki

    2017-12-01

    Full Text Available The purpose of this paper is to approach film adaptation as a modality of translation and to provide a systematic analysis of the changes occurring in the adaptation of a novel for the big screen. These changes, i.e. adaptation shifts, are examined by means of a model that consists of a descriptive/comparative component and an interpretive component. The model is derived from combining insights from adaptation and translation studies and thus builds on the interdisciplinary nature of adaptation studies so as to offer a comprehensive methodological tool for the analysis of adaptations. As processes and products, adaptation and translation involve an act of communication between a source and a target text within a new sociocultural context. In this light, adaptation can be examined as a case of intersemiotic translation in that it involves the transfer of meaning between two different media; in the case of film adaptation, more specifically, meaning is transferred from book to film and the dynamics between the source novel and adaptation is juxtaposed with that between a source text and its translation. The adaptation model is applied to the film adaptation Silver Linings Playbook with an aim to understand the aspects in which the adaptation differs from the source novel and the rationale behind the adaptation shifts. Finally, it is argued that such an analysis from a descriptive as well as an interpretive perspective can lead to a more holistic understanding of adaptation as a cultural phenomenon in the contemporary creative industries.

  7. Analysis of chemical constituents in Cistanche species.

    Science.gov (United States)

    Jiang, Yong; Tu, Peng-Fei

    2009-03-13

    Species of the genus of Cistanche (Rou Cong Rong in Chinese) are perennial parasite herbs, and are mainly distributed in arid lands and warm deserts. As a superior tonic for the treatment of kidney deficiency, impotence, female infertility, morbid leucorrhea, profuse metrorrhagia and senile constipation, Cistanche herbs earned the honor of "Ginseng of the desert". Recently, there has been increasing scientific attention on Herba Cistanche for its remarkable bioactivities including antioxidation, neuroprotection, and anti-aging. The chemical constituents of Cistanche plants mainly include volatile oils and non-volatile phenylethanoid glycosides (PhGs), iridoids, lignans, alditols, oligosaccharides and polysaccharides. Pharmacological studies show that PhGs are the main active components for curing kidney deficiency, antioxidation and neuroprotection; galactitol and oligosaccharides are the representatives for the treatment of senile constipation, while polysaccharides are responsible for improving body immunity. In this paper, the advances on the chemical constituents of Cistanche plants and their corresponding analyses are reviewed.

  8. Hybrid chemical and nondestructive-analysis technique

    International Nuclear Information System (INIS)

    Hsue, S.T.; Marsh, S.F.; Marks, T.

    1982-01-01

    A hybrid chemical/NDA technique has been applied at the Los Alamos National Laboratory to the assay of plutonium in ion-exchange effluents. Typical effluent solutions contain low concentrations of plutonium and high concentrations of americium. A simple trioctylphosphine oxide (TOPO) separation can remove 99.9% of the americium. The organic phase that contains the separated plutonium can be accurately assayed by monitoring the uranium L x-ray intensities

  9. Effects of irritant chemicals on Aedes aegypti resting behavior: is there a simple shift to untreated "safe sites"?

    Directory of Open Access Journals (Sweden)

    Hortance Manda

    2011-07-01

    Full Text Available BACKGROUND: Previous studies have identified the behavioral responses of Aedes aegypti to irritant and repellent chemicals that can be exploited to reduce man-vector contact. Maximum efficacy of interventions based on irritant chemical actions will, however, require full knowledge of variables that influence vector resting behavior and how untreated "safe sites" contribute to overall impact. METHODS: Using a laboratory box assay, resting patterns of two population strains of female Ae. aegypti (THAI and PERU were evaluated against two material types (cotton and polyester at various dark:light surface area coverage (SAC ratio and contrast configuration (horizontal and vertical under chemical-free and treated conditions. Chemicals evaluated were alphacypermethrin and DDT at varying concentrations. RESULTS: Under chemical-free conditions, dark material had significantly higher resting counts compared to light material at all SAC, and significantly increased when material was in horizontal configuration. Cotton elicited stronger response than polyester. Within the treatment assays, significantly higher resting counts were observed on chemical-treated dark material compared to untreated light fabric. However, compared to matched controls, significantly less resting observations were made on chemical-treated dark material overall. Most importantly, resting observations on untreated light material (or "safe sites" in the treatment assay did not significantly increase for many of the tests, even at 25% SAC. Knockdown rates were ≤5% for all assays. Significantly more observations of flying mosquitoes were made in test assays under chemical-treatment conditions as compared to controls. CONCLUSIONS/SIGNIFICANCE: When preferred Ae. aegypti resting sites are treated with chemicals, even at reduced treatment coverage area, mosquitoes do not simply move to safe sites (untreated areas following contact with the treated material. Instead, they become agitated

  10. Transport-induced shifts in condensate dew-point and composition in multicomponent systems with chemical reaction

    Science.gov (United States)

    Rosner, D. E.; Nagarajan, R.

    1985-01-01

    Partial heterogeneous condensation phenomena in multicomponent reacting systems are analyzed taking into consideration the chemical element transport phenomena. It is demonstrated that the dew-point surface temperature in chemically reactive systems is not a purely thermodynamic quantity, but is influenced by the multicomponent diffusion and Soret-mass diffusion phenomena. Several distinct dew-points are shown to exist in such systems and, as a result of transport constraints, the 'sharp' locus between two chemically distinct condensates is systematically moved to a difference mainstream composition.

  11. Controlling the accuracy of chemical analysis

    International Nuclear Information System (INIS)

    Suschny, O.; Danesi, P.R.

    1991-01-01

    The involvement of the IAEA in quantitative analysis began in the early 1960's with radiochemical work connected with the environment. It than expanded to cover analysis (mostly by nuclear techniques) of samples for projects associated with human health, agriculture, hydrology and international safeguards. This article highlights the IAEA activities in the field of quality control in quantitative analysis

  12. Shift-invariant discrete wavelet transform analysis for retinal image classification.

    Science.gov (United States)

    Khademi, April; Krishnan, Sridhar

    2007-12-01

    This work involves retinal image classification and a novel analysis system was developed. From the compressed domain, the proposed scheme extracts textural features from wavelet coefficients, which describe the relative homogeneity of localized areas of the retinal images. Since the discrete wavelet transform (DWT) is shift-variant, a shift-invariant DWT was explored to ensure that a robust feature set was extracted. To combat the small database size, linear discriminant analysis classification was used with the leave one out method. 38 normal and 48 abnormal (exudates, large drusens, fine drusens, choroidal neovascularization, central vein and artery occlusion, histoplasmosis, arteriosclerotic retinopathy, hemi-central retinal vein occlusion and more) were used and a specificity of 79% and sensitivity of 85.4% were achieved (the average classification rate is 82.2%). The success of the system can be accounted to the highly robust feature set which included translation, scale and semi-rotational, features. Additionally, this technique is database independent since the features were specifically tuned to the pathologies of the human eye.

  13. Chemical considerations in severe accident analysis

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Kress, T.S.

    1988-01-01

    The Reactor Safety Study presented the first systematic attempt to include fission product physicochemical effects in the determination of expected consequences of hypothetical nuclear reactor power plant accidents. At the time, however, the data base was sparse, and the treatment of fission product behavior was not entirely consistent or accurate. Considerable research has since been performed to identify and understand chemical phenomena that can occur in the course of a nuclear reactor accident, and how these phenomena affect fission product behavior. In this report, the current status of our understanding of the chemistry of fission products in severe core damage accidents is summarized and contrasted with that of the Reactor Safety Study

  14. Analysis of chemical constituents in medicinal plants of selected ...

    African Journals Online (AJOL)

    Analysis of chemical constituents in medicinal plants of selected districts of Pakhtoonkhwa, Pakistan. I Hussain, R Ullah, J Khan, N Khan, M Zahoor, N Ullah, MuR Khattak, FA Khan, A Baseer, M Khurram ...

  15. Detection of fat in focal liver lesions using chemical-shift MR imaging: its significance in patients with and without hepatic cirrhosis

    International Nuclear Information System (INIS)

    Martin, J.

    1999-01-01

    To determine the utility of the chemical shift technique in MRI for the detection of fact in focal hepatic lesions and to see its significance in patients with and without hepatic cirrhosis. 159 patients with 207 hepatic lesions were studied using MRI (IT). Two groups were established: a) patients with hepatic cirrhosis (n=63 with 69 lesions) and b) patients without cirrhosis (n=96 with 138 lesions). Images were obtained in phase (P) and in opposite phase (OP) with gradient echo sequences (RG). The parameter used to differentiate the lesions with fat from those without fat was the variation percentage of the intensity of the signal (VIS) between the images in P and in OP. The statistical valuation was carried out using Student's t tests and the area under the ROC curve. The chemical shift technique detected fat in 25 lesions (12%), 10 hepatocarcinomas in the patients with cirrhosis and two angiomyolipomas and 13 nodular fat infiltrations in the patients who did not have cirrhosis. The average VIS percentage in the 10 hepatocarcinomas was 174.77% (ranging from 88.64% to 369.33%) while in the remaining 59 hepatocarcinomas it was -4.03% (ranging from 12.79% to -19.10%) (p=0.003). In the patients who did not have cirrhosis the average VIS percentage of the lesions with fat was 161.23 (ranging from 19.82 to 605.78) while in the lesions without fat it was -0.41 (ranging from -18.96 to 19.52) (p=0.003). The area under the ROC curve was 1 for the VIS parameter. The chemical shift technique allowed for fat to be detected within hepatic lesions. Based on our study, a nodule with fat in a patient with hepatic cirrhosis is suspected to have hepatocarcinomas while in patients who do not suffer from cirrhosis the existence of fat in a nodule favours its bening nature. (Author) 39 refs

  16. Other compounds isolated from Simira glaziovii and the {sup 1}H and {sup 13}C NMR chemical shift assignments of new 1-epi-castanopsol

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Marcelo F. de; Vieira, Ivo J. Curcino [Universidade Federal Rural do Rio de Janeiro, Seropedica, RJ (Brazil). Dept. de Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Centro de Ciencias Tecnologicas. Lab. de Ciencias Quimicas; Carvalho, Mario G. de, E-mail: mgeraldo@ufrrj.br [Universidade Federal do Rio de Janeiro (NPPN/UFRJ), RJ (Brazil). Centro de Ciencias da Saude. Nucleo de Pesquisa em Produtos Naturais

    2012-07-01

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D {sup 1}H, {sup 13}C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of {sup 1}H and {sup 13}C NMR chemical shift assignments. (author)

  17. Other compounds isolated from Simira glaziovii and the 1H and 13C NMR chemical shift assignments of new 1-epi-castanopsol

    International Nuclear Information System (INIS)

    Araujo, Marcelo F. de; Vieira, Ivo J. Curcino; Braz-Filho, Raimundo; Carvalho, Mario G. de

    2012-01-01

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D 1 H, 13 C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of 1 H and 13 C NMR chemical shift assignments. (author)

  18. Hydrogen exchange rate of tyrosine hydroxyl groups in proteins as studied by the deuterium isotope effect on C(zeta) chemical shifts.

    Science.gov (United States)

    Takeda, Mitsuhiro; Jee, Jungoo; Ono, Akira Mei; Terauchi, Tsutomu; Kainosho, Masatsune

    2009-12-30

    We describe a new NMR method for monitoring the individual hydrogen exchange rates of the hydroxyl groups of tyrosine (Tyr) residues in proteins. The method utilizes (2S,3R)-[beta(2),epsilon(1,2)-(2)H(3);0,alpha,beta,zeta-(13)C(4);(15)N]-Tyr, zeta-SAIL Tyr, to detect and assign the (13)C(zeta) signals of Tyr rings efficiently, either by indirect (1)H-detection through 7-8 Hz (1)H(delta)-(13)C(zeta) spin couplings or by direct (13)C(zeta) observation. A comparison of the (13)C(zeta) chemical shifts of three Tyr residues of an 18.2 kDa protein, EPPIb, dissolved in H(2)O and D(2)O, revealed that all three (13)C(zeta) signals in D(2)O appeared at approximately 0.13 ppm ( approximately 20 Hz at 150.9 MHz) higher than those in H(2)O. In a H(2)O/D(2)O (1:1) mixture, however, one of the three signals for (13)C(zeta) appeared as a single peak at the averaged chemical shifts, and the other two appeared as double peaks at exactly the same chemical shifts in H(2)O and D(2)O, in 50 mM phosphate buffer (pH 6.6) at 40 degrees C. These three peaks were assigned to Tyr-36, Tyr-120, and Tyr-30, from the lower to higher chemical shifts, respectively. The results indicate that the hydroxyl proton of Tyr-120 exchanges faster than a few milliseconds, whereas those of Tyr-30 and Tyr-36 exchange more slowly. The exchange rate of the Tyr-30 hydroxyl proton, k(ex), under these conditions was determined by (13)C NMR exchange spectroscopy (EXSY) to be 9.2 +/- 1.1 s(-1). The Tyr-36 hydroxyl proton, however, exchanges too slowly to be determined by EXSY. These profound differences among the hydroxyl proton exchange rates are closely related to their relative solvent accessibility and the hydrogen bonds associated with the Tyr hydroxyl groups in proteins.

  19. [Analysis of relationship between shift-work and occupational stress among workers from different companies].

    Science.gov (United States)

    Gu, Guizhen; Yu, Shanfa; Zhou, Wenhui; Wu, Hui

    2016-01-01

    To investigate the relationship between work in shifts and occupational stress. A total of 5338 employees from 13 companies were investigated by cluster sampling, and occupational stress measuring tools, job content questionnaire, and effort-reward imbalance questionnaire were used to investigate occupational stress factors, stress reaction, and the condition of work in shifts. The employees who worked in shifts accounted for 46.6%. The condition of work in shifts varied significantly across different companies, employees with different individual features (including sex, job title, degree of education, age, working years, smoking, and drinking), and employees with different weekly working times(Pwork in shifts(Pwork in shifts, those who worked in shifts had significantly lower scores of technology utilization, work control level, psychological need, reward, social support, and job satisfaction(PWork in shifts can affect health status, and is associated with occupational stress.

  20. Conflict Detection Performance Analysis for Function Allocation Using Time-Shifted Recorded Traffic Data

    Science.gov (United States)

    Guerreiro, Nelson M.; Butler, Ricky W.; Maddalon, Jeffrey M.; Hagen, George E.; Lewis, Timothy A.

    2015-01-01

    The performance of the conflict detection function in a separation assurance system is dependent on the content and quality of the data available to perform that function. Specifically, data quality and data content available to the conflict detection function have a direct impact on the accuracy of the prediction of an aircraft's future state or trajectory, which, in turn, impacts the ability to successfully anticipate potential losses of separation (detect future conflicts). Consequently, other separation assurance functions that rely on the conflict detection function - namely, conflict resolution - are prone to negative performance impacts. The many possible allocations and implementations of the conflict detection function between centralized and distributed systems drive the need to understand the key relationships that impact conflict detection performance, with respect to differences in data available. This paper presents the preliminary results of an analysis technique developed to investigate the impacts of data quality and data content on conflict detection performance. Flight track data recorded from a day of the National Airspace System is time-shifted to create conflicts not present in the un-shifted data. A methodology is used to smooth and filter the recorded data to eliminate sensor fusion noise, data drop-outs and other anomalies in the data. The metrics used to characterize conflict detection performance are presented and a set of preliminary results is discussed.

  1. Self-stability analysis of MHTGRs: A shifted-ectropy based approach

    International Nuclear Information System (INIS)

    Dong Zhe

    2012-01-01

    Highlights: ► In this paper, self-stability of the MHTGR is analyzed from a physical viewpoint. ► A shifted-ectropy method for self-stability analysis of general thermodynamic systems is established. ► Then it is proved theoretically that the equilibriums of the MHTGR are globally asymptotically stable. ► Numerical verification results are consistent with the theoretical result. - Abstract: Because of the strong inherent safety, the modular high temperature gas-cooled nuclear reactor (MHTGR) has been seen as the chosen technology for the next generation of nuclear power plants (NPPs). Self-stability of a nuclear reactor, which is the ability that the reactor state can converge to an equilibrium point without control input, has great meaning in designing control and operation strategies for the NPPs based on MHTGR technology. In this paper, self-stability of the MHTGR is analyzed from a physical viewpoint. A shifted-ectropy method for analyzing the stability of the equilibriums of general thermodynamic systems is firstly established. Based upon this approach, it is proved theoretically that the equilibriums of the MHTGR dynamics are globally asymptotically stable. Numerical simulation results, which illustrate the MHTGR self-stability feature directly, are consistent with the theoretical result.

  2. Stress Analysis of an Edge-Cracked Plate by using Photoelastic Fringe Phase Shifting Method

    International Nuclear Information System (INIS)

    Baek, Tae Hyun; Kim, Myung Soo; Cho, Sung Ho

    2000-01-01

    The method of photoelasticity allows one to obtain principal stress differences and principal stress directions in a photoelastic model. In the classical approach, the photoelastic parameters are measured manually point by point. The previous methods require much time and skill in the identification and measurement of photoelastic data. Fringe phase shifting method has been recently developed and widely used to measure and analyze fringe data in photo-mechanics. This paper presents the test results of photoelastic fringe phase shifting technique for the stress analysis of a circular disk under compression and an edge-cracked plate subjected to tensile load. The technique used here requires four phase stepped photoelastic images obtained from a circular polariscope by rotating the analyzer at 0 .deg. ,45 .deg. ,90 .deg. ,and 135 .deg. . Experimental results are compared with those or FEM. Good agreement between the results can be observed. However, some error may be included if the technique is used to general direction which is not parallel to isoclinic fringe

  3. Quantum-chemical investigation of the 1,2-proton shift in protonated five-membered aromatic heterocycles

    International Nuclear Information System (INIS)

    Abronin, I.A.; Gorb, L.G.; Litvinov, V.P.

    1985-01-01

    Calculations of the energetics of the 1,2-proton shift in protonated five-membered aromatic heterocycles - pyrrole, furan, and thiophene - have been carried out by the SCF MO LCAO method in the MINDO/3 approximation and nonempirically on the OST-3GF (OST-3GF) basis. The general features of this process, and also the influence of solvation and of taking into account the vacant d-AOs of the sulfur atom in the protonated form of thiophene on the results of the calculation are considered. The results obtained have been used for a discussion of the activity and selectivity of the heterocycles considered in aromatic electrophilic substitution reactions

  4. Chemical analysis of cyanide in cyanidation process: review of methods

    International Nuclear Information System (INIS)

    Nova-Alonso, F.; Elorza-Rodriguez, E.; Uribe-Salas, A.; Perez-Garibay, R.

    2007-01-01

    Cyanidation, the world wide method for precious metals recovery, the chemical analysis of cyanide, is a very important, but complex operation. Cyanide can be present forming different species, each of them with different stability, toxicity, analysis method and elimination technique. For cyanide analysis, there exists a wide selection of analytical methods but most of them present difficulties because of the interference of species present in the solution. This paper presents the different available methods for chemical analysis of cyanide: titration, specific electrode and distillation, giving special emphasis on the interferences problem, with the aim of helping in the interpretation of the results. (Author)

  5. Chemical composition analysis and authentication of whisky.

    Science.gov (United States)

    Wiśniewska, Paulina; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek

    2015-08-30

    Whisky (whiskey) is one of the most popular spirit-based drinks made from malted or saccharified grains, which should mature for at least 3 years in wooden barrels. High popularity of products usually causes a potential risk of adulteration. Thus authenticity assessment is one of the key elements of food product marketing. Authentication of whisky is based on comparing the composition of this alcohol with other spirit drinks. The present review summarizes all information about the comparison of whisky and other alcoholic beverages, the identification of type of whisky or the assessment of its quality and finally the authentication of whisky. The article also presents the various techniques used for analyzing whisky, such as gas and liquid chromatography with different types of detectors (FID, AED, UV-Vis), electronic nose, atomic absorption spectroscopy and mass spectrometry. In some cases the application of chemometric methods is also described, namely PCA, DFA, LDA, ANOVA, SIMCA, PNN, k-NN and CA, as well as preparation techniques such SPME or SPE. © 2014 Society of Chemical Industry.

  6. Analysis of blood spots for polyfluoroalkyl chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Kayoko; Wanigatunga, Amal A.; Needham, Larry L. [Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA (United States); Calafat, Antonia M., E-mail: acalafat@cdc.gov [Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA (United States)

    2009-12-10

    Polyfluoroalkyl chemicals (PFCs) have been detected in humans, in the environment, and in ecosystems around the world. The potential for developmental and reproductive toxicities of some PFCs is of concern especially to children's health. In the United States, a sample of a baby's blood, called a 'dried blood spot' (DBS), is obtained from a heel stick within 48 h of a child's birth. DBS could be useful for assessing prenatal exposure to PFCs. We developed a method based on online solid phase extraction coupled with high performance liquid chromatography-isotope dilution tandem mass spectrometry for measuring four PFCs in DBS, perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate, perfluorooctanoate (PFOA), and perfluorononanoate. The analytical limits of detection using one whole DBS ({approx}75 {mu}L of blood) were <0.5 ng mL{sup -1}. To validate the method, we analyzed 98 DBS collected in May 2007 in the United States. PFOS and PFOA were detected in all DBS at concentrations in the low ng mL{sup -1} range. These data suggest that DBS may be a suitable matrix for assessing perinatal exposure to PFCs, but additional information related to sampling and specimen storage is needed to demonstrate the utility of these measures for assessing exposure.

  7. Analysis of Weyl-affine theories of gravity in terms of the gravitational frequency shift effect

    International Nuclear Information System (INIS)

    Coley, A.A.; Sarmiento, G.A.

    1986-01-01

    A subclass of nonmetric theories of gravity, called Weyl-affine theories of gravity (WATGs), is analyzed by calculating their predictions for the gravitational frequency shift undergone by a wave signal in a planned solar probe. The analysis is carried out using a formalism in a spherically symmetric and static gravitational field. One of the advantages of the formalism is that any possible ''nonmetricity'' is contained in an arbitrary function, λ, of the Newtonian gravitational potential, U. The numerical results are calculated for a situation modeling a future experiment in the solar system. In the calculations, the metric components and the function, λ, are expanded up to third order in U. Within the limits of the gravitational redshift experiments performed to date, it is found that WATGs must coincide with their metric counterparts (i.e., λ is unity). It is hoped that the planned solar probe will test the nature of the theories under investigation to a higher degree of accuracy

  8. Droplet microfluidics in (bio) chemical analysis

    Czech Academy of Sciences Publication Activity Database

    Basova, E. Y.; Foret, František

    2015-01-01

    Roč. 140, č. 1 (2015), s. 22-38 ISSN 0003-2654 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : droplet chemistry * bio analysis * microfluidics * protein Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.033, year: 2015

  9. Chemical aspects of nuclear methods of analysis

    International Nuclear Information System (INIS)

    1985-01-01

    This final report includes papers which fall into three general areas: development of practical pre-analysis separation techniques, uranium/thorium separation from other elements for analytical and processing operations, and theory and mechanism of separation techniques. A separate abstract was prepared for each of the 9 papers

  10. Chemical composition, antimicrobial activity, proximate analysis and ...

    African Journals Online (AJOL)

    Detarium senegalense JF Gmelin (Caesalpiniaceae), commonly known as tallow tree, is used traditionally for the treatment of bronchitis, pneumonia, internal complaints and skin diseases in Tropical Africa. The seed is used as a soup thickener in Eastern Nigeria. Analysis of the petroleum ether extract of the seeds with ...

  11. Orthopedic resident work-shift analysis: are we making the best use of resident work hours?

    Science.gov (United States)

    Hamid, Kamran S; Nwachukwu, Benedict U; Hsu, Eugene; Edgerton, Colston A; Hobson, David R; Lang, Jason E

    2014-01-01

    Surgery programs have been tasked to meet rising demands in patient surgical care while simultaneously providing adequate resident training in the midst of increasing resident work-hour restrictions. The purpose of this study was to quantify orthopedic surgery resident workflow and identify areas needing improved resident efficiency. We hypothesize that residents spend a disproportionate amount of time involved in activities that do not relate directly to patient care or maximize resident education. We observed 4 orthopedic surgery residents on the orthopedic consult service at a major tertiary care center for 72 consecutive hours (6 consecutive shifts). We collected minute-by-minute data using predefined work-task criteria: direct new patient contact, direct existing patient contact, communications with other providers, documentation/administrative time, transit time, and basic human needs. A seventh category comprised remaining less-productive work was termed as standby. In a 720-minute shift, residents spent on an average: 191 minutes (26.5%) performing documentation/administrative duties, 167.0 minutes (23.2%) in direct contact with new patient consults, 129.6 minutes (17.1%) in communication with other providers regarding patients, 116.2 (16.1%) minutes in standby, 63.7 minutes (8.8%) in transit, 32.6 minutes (4.5%) with existing patients, and 20 minutes (2.7%) attending to basic human needs. Residents performed an additional 130 minutes of administrative work off duty. Secondary analysis revealed residents were more likely to perform administrative work rather than directly interact with existing patients (p = 0.006) or attend to basic human needs (p = 0.003). Orthopedic surgery residents spend a large proportion of their time performing documentation/administrative-type work and their workday can be operationally optimized to minimize nonvalue-adding tasks. Formal workflow analysis may aid program directors in systematic process improvements to better align

  12. Comparison of the solution and crystal structures of staphylococcal nuclease with 13C and 15N chemical shifts used as structural fingerprints

    International Nuclear Information System (INIS)

    Cole, H.B.R.; Sparks, S.W.; Torchia, D.A.

    1988-01-01

    The authors report high-resolution 13 C and 15 N NMR spectra of crystalline staphylococcal nuclease (Nase) complexed to thymidine 3',5'-diphosphate and Ca 2+ . High sensitivity and resolution are obtained by applying solid-state NMR techniques-high power proton decoupling and cross-polarization magic angle sample spinning (CPMASS)-to protein samples that have been efficiently synthesized and labeled by an overproducing strain of Escherichia coli. A comparison of CPMASS and solution spectra of Nase labeled with either [methyl- 13 C]methionine or [ 15 ]valine shows that the chemical shifts in the crystalline and solution states are virtually identical. This result is strong evidence that the protein conformations in the solution and crystalline states are nearly the same. Because of the close correspondence of the crystal and solution chemical shifts, sequential assignments obtained in solution apply to the crystal spectra. It should therefore be possible to study the molecular structure and dynamics of many sequentially assigned atomic sites in Nase crystals. Similar experiments are applicable to the growing number of proteins that can be obtained from efficient expression systems

  13. Solid-state NMR chemical-shift perturbations indicate domain reorientation of the DnaG primase in the primosome of Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Gardiennet, Carole [Université de Lorraine, CNRS, CRM2, UMR 7036 (France); Wiegand, Thomas [ETH Zurich, Physical Chemistry (Switzerland); Bazin, Alexandre [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France); Cadalbert, Riccardo [ETH Zurich, Physical Chemistry (Switzerland); Kunert, Britta; Lacabanne, Denis [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France); Gutsche, Irina [Université Grenoble Alpes, Institut de Biologie Structurale (IBS), CNRS, IBS, CEA, IBS (France); Terradot, Laurent, E-mail: l.terradot@ibcp.fr [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); Böckmann, Anja, E-mail: a.bockmann@ibcp.fr [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France)

    2016-03-15

    We here investigate the interactions between the DnaB helicase and the C-terminal domain of the corresponding DnaG primase of Helicobacter pylori using solid-state NMR. The difficult crystallization of this 387 kDa complex, where the two proteins interact in a six to three ratio, is circumvented by simple co-sedimentation of the two proteins directly into the MAS-NMR rotor. While the amount of information that can be extracted from such a large protein is still limited, we can assign a number of amino-acid residues experiencing significant chemical-shift perturbations upon helicase-primase complex formation. The location of these residues is used as a guide to model the interaction interface between the two proteins in the complex. Chemical-shift perturbations also reveal changes at the interaction interfaces of the hexameric HpDnaB assembly on HpDnaG binding. A structural model of the complex that explains the experimental findings is obtained.

  14. Benchmarking of density functionals for a soft but accurate prediction and assignment of (1) H and (13)C NMR chemical shifts in organic and biological molecules.

    Science.gov (United States)

    Benassi, Enrico

    2017-01-15

    A number of programs and tools that simulate 1 H and 13 C nuclear magnetic resonance (NMR) chemical shifts using empirical approaches are available. These tools are user-friendly, but they provide a very rough (and sometimes misleading) estimation of the NMR properties, especially for complex systems. Rigorous and reliable ways to predict and interpret NMR properties of simple and complex systems are available in many popular computational program packages. Nevertheless, experimentalists keep relying on these "unreliable" tools in their daily work because, to have a sufficiently high accuracy, these rigorous quantum mechanical methods need high levels of theory. An alternative, efficient, semi-empirical approach has been proposed by Bally, Rablen, Tantillo, and coworkers. This idea consists of creating linear calibrations models, on the basis of the application of different combinations of functionals and basis sets. Following this approach, the predictive capability of a wider range of popular functionals was systematically investigated and tested. The NMR chemical shifts were computed in solvated phase at density functional theory level, using 30 different functionals coupled with three different triple-ζ basis sets. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Toward structural dynamics: protein motions viewed by chemical shift modulations and direct detection of C'N multiple-quantum relaxation.

    Science.gov (United States)

    Mori, Mirko; Kateb, Fatiha; Bodenhausen, Geoffrey; Piccioli, Mario; Abergel, Daniel

    2010-03-17

    Multiple quantum relaxation in proteins reveals unexpected relationships between correlated or anti-correlated conformational backbone dynamics in alpha-helices or beta-sheets. The contributions of conformational exchange to the relaxation rates of C'N coherences (i.e., double- and zero-quantum coherences involving backbone carbonyl (13)C' and neighboring amide (15)N nuclei) depend on the kinetics of slow exchange processes, as well as on the populations of the conformations and chemical shift differences of (13)C' and (15)N nuclei. The relaxation rates of C'N coherences, which reflect concerted fluctuations due to slow chemical shift modulations (CSMs), were determined by direct (13)C detection in diamagnetic and paramagnetic proteins. In well-folded proteins such as lanthanide-substituted calbindin (CaLnCb), copper,zinc superoxide dismutase (Cu,Zn SOD), and matrix metalloproteinase (MMP12), slow conformational exchange occurs along the entire backbone. Our observations demonstrate that relaxation rates of C'N coherences arising from slow backbone dynamics have positive signs (characteristic of correlated fluctuations) in beta-sheets and negative signs (characteristic of anti-correlated fluctuations) in alpha-helices. This extends the prospects of structure-dynamics relationships to slow time scales that are relevant for protein function and enzymatic activity.

  16. Fractional enrichment of proteins using [2-{sup 13}C]-glycerol as the carbon source facilitates measurement of excited state {sup 13}Cα chemical shifts with improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ahlner, Alexandra; Andresen, Cecilia; Khan, Shahid N. [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden); Kay, Lewis E. [The University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry, One King’s College Circle (Canada); Lundström, Patrik, E-mail: patlu@ifm.liu.se [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden)

    2015-07-15

    A selective isotope labeling scheme based on the utilization of [2-{sup 13}C]-glycerol as the carbon source during protein overexpression has been evaluated for the measurement of excited state {sup 13}Cα chemical shifts using Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion (RD) experiments. As expected, the fractional incorporation of label at the Cα positions is increased two-fold relative to labeling schemes based on [2-{sup 13}C]-glucose, effectively doubling the sensitivity of NMR experiments. Applications to a binding reaction involving an SH3 domain from the protein Abp1p and a peptide from the protein Ark1p establish that accurate excited state {sup 13}Cα chemical shifts can be obtained from RD experiments, with errors on the order of 0.06 ppm for exchange rates ranging from 100 to 1000 s{sup −1}, despite the small fraction of {sup 13}Cα–{sup 13}Cβ spin-pairs that are present for many residue types. The labeling approach described here should thus be attractive for studies of exchanging systems using {sup 13}Cα spin probes.

  17. Chemical analysis developments for fusion materials studies

    International Nuclear Information System (INIS)

    McCown, J.J.; Baldwin, D.L.; Keough, R.F.; Van der Cook, B.P.

    1985-04-01

    Several projects at Hanford under the management of the Westinghouse Hanford Company have involved research and development (R and D) on fusion materials. They include work on the Fusion Materials Irradiation Test Facility and its associated Experimental Lithium System; testing of irradiated lithium compounds as breeding materials; and testing of Li and Li-Pb alloy reactions with various atmospheres, concrete, and other reactor materials for fusion safety studies. In the course of these projects, a number of interesting and challenging analytical chemistry problems were encountered. They include sampling and analysis of lithium while adding and removing elements of interest; sampling, assaying and compound identification efforts on filters, aerosol particles and fire residues; development of dissolution and analysis techniques for measuring tritium and helium in lithium ceramics including oxides, aluminates, silicates and zirconates. An overview of the analytical chemistry development problems plus equipment and procedures used will be presented

  18. Chemical analysis of rare earth elements

    International Nuclear Information System (INIS)

    Tsukahara, Ryoichi; Sakoh, Takefumi; Nagai, Iwao

    1994-01-01

    Recently attention has been paid to ICP-AES or ICP-MS, and the reports on the analysis of rare earth elements by utilizing these methods continue to increase. These reports have become to take about 30% of the reports on rare earth analysis, and this is because these methods are highly sensitive to rare earth elements, and also these methods have spread widely. In ICP-AES and ICP-MS, mostly solution samples are measured, therefore, solids must be made into solution. At the time of quantitatively determining the rare earth elements of low concentration, separation and concentration are necessary. Referring to the literatures reported partially in 1990 and from 1991 to 1993, the progress of ICP-AES and ICP-MS is reported. Rare earth oxides and the alloys containing rare earth elements are easily decomposed with acids, but the decomposition of rocks is difficult, and its method is discussed. The separation of the rare earth elements from others in geochemical samples, cation exchange process is frequently utilized. Also solvent extraction process has been studied. For the separation of rare earth elements mutually, chromatography is used. The spectral interference in spectral analysis was studied. The comparison of these methods with other methods is reported. (K.I)

  19. A meta-analysis including dose-response relationship between night shift work and the risk of colorectal cancer

    OpenAIRE

    Wang, Xiao; Ji, Alin; Zhu, Yi; Liang, Zhen; Wu, Jian; Li, Shiqi; Meng, Shuai; Zheng, Xiangyi; Xie, Liping

    2015-01-01

    A meta-analysis was conducted to quantitatively evaluate the correlation between night shift work and the risk of colorectal cancer. We searched for publications up to March 2015 using PubMed, Web of Science, Cochrane Library, EMBASE and the Chinese National Knowledge Infrastructure databases, and the references of the retrieved articles and relevant reviews were also checked. OR and 95% CI were used to assess the degree of the correlation between night shift work and risk of colorectal cance...

  20. Night Shift Work and Breast Cancer Incidence: Three Prospective Studies and Meta-analysis of Published Studies.

    Science.gov (United States)

    Travis, Ruth C; Balkwill, Angela; Fensom, Georgina K; Appleby, Paul N; Reeves, Gillian K; Wang, Xiao-Si; Roddam, Andrew W; Gathani, Toral; Peto, Richard; Green, Jane; Key, Timothy J; Beral, Valerie

    2016-12-01

    It has been proposed that night shift work could increase breast cancer incidence. A 2007 World Health Organization review concluded, mainly from animal evidence, that shift work involving circadian disruption is probably carcinogenic to humans. We therefore aimed to generate prospective epidemiological evidence on night shift work and breast cancer incidence. Overall, 522 246 Million Women Study, 22 559 EPIC-Oxford, and 251 045 UK Biobank participants answered questions on shift work and were followed for incident cancer. Cox regression yielded multivariable-adjusted breast cancer incidence rate ratios (RRs) and 95% confidence intervals (CIs) for night shift work vs no night shift work, and likelihood ratio tests for interaction were used to assess heterogeneity. Our meta-analyses combined these and relative risks from the seven previously published prospective studies (1.4 million women in total), using inverse-variance weighted averages of the study-specific log RRs. In the Million Women Study, EPIC-Oxford, and UK Biobank, respectively, 673, 28, and 67 women who reported night shift work developed breast cancer, and the RRs for any vs no night shift work were 1.00 (95% CI = 0.92 to 1.08), 1.07 (95% CI = 0.71 to 1.62), and 0.78 (95% CI = 0.61 to 1.00). In the Million Women Study, the RR for 20 or more years of night shift work was 1.00 (95% CI = 0.81 to 1.23), with no statistically significant heterogeneity by sleep patterns or breast cancer risk factors. Our meta-analysis of all 10 prospective studies included 4660 breast cancers in women reporting night shift work; compared with other women, the combined relative risks were 0.99 (95% CI = 0.95 to 1.03) for any night shift work, 1.01 (95% CI = 0.93 to 1.10) for 20 or more years of night shift work, and 1.00 (95% CI = 0.87 to 1.14) for 30 or more years. The totality of the prospective evidence shows that night shift work, including long-term shift work, has little or no effect on

  1. Deep sequencing analysis of HBV genotype shift and correlation with antiviral efficiency during adefovir dipivoxil therapy.

    Directory of Open Access Journals (Sweden)

    Yuwei Wang

    Full Text Available Viral genotype shift in chronic hepatitis B (CHB patients during antiviral therapy has been reported, but the underlying mechanism remains elusive.38 CHB patients treated with ADV for one year were selected for studying genotype shift by both deep sequencing and Sanger sequencing method.Sanger sequencing method found that 7.9% patients showed mixed genotype before ADV therapy. In contrast, all 38 patients showed mixed genotype before ADV treatment by deep sequencing. 95.5% mixed genotype rate was also obtained from additional 200 treatment-naïve CHB patients. Of the 13 patients with genotype shift, the fraction of the minor genotype in 5 patients (38% increased gradually during the course of ADV treatment. Furthermore, responses to ADV and HBeAg seroconversion were associated with the high rate of genotype shift, suggesting drug and immune pressure may be key factors to induce genotype shift. Interestingly, patients with genotype C had a significantly higher rate of genotype shift than genotype B. In genotype shift group, ADV treatment induced a marked enhancement of genotype B ratio accompanied by a reduction of genotype C ratio, suggesting genotype C may be more sensitive to ADV than genotype B. Moreover, patients with dominant genotype C may have a better therapeutic effect. Finally, genotype shifts was correlated with clinical improvement in terms of ALT.Our findings provided a rational explanation for genotype shift among ADV-treated CHB patients. The genotype and genotype shift might be associated with antiviral efficiency.

  2. Advanced chemical analysis service for elements, radionuclides and phases

    International Nuclear Information System (INIS)

    Sansoni, B.

    1986-01-01

    A review is given on the structure, organisation and performance of the chemical analysis service of the Central Department for Chemical Analysis at the Kernforschungsanlage Juelich GmbH. The research and development programs together with the infrastructure of the Centre afford to analyse almost all stable elements of the periodical table in almost any material. The corresponding chemical analysis service has been organized according to a new modular system of analytical steps. According to this, the most complicated and, therefore, most general case of an analytical scheme for element and radionuclide analysis in any type of material can be differentiated into about 14 different steps, the modules. They are more or less independent of the special problem. The laboratory is designed and organized according to these steps. (orig./PW) [de

  3. Buckling collapse analysis of framed structures by using adaptively shifted integration technique. Junnogata shifted intergration ho ni yoru honegumi kozo no zakutsu hokai kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Toi, Y.; Isobe, D. (The University of Tokyo, Tokyo (Japan). Institute of Industrial Science)

    1993-09-01

    This paper describes the following matters on application of an adaptively shifted integration technique to a buckling collapse analysis of framed structures: This method is a method in a finite element analysis using three-dimensional girder elements to arrange value integration points at optimal locations in a linear analysis if the elements are in an elastic transform condition on the whole. The method then moves the value integration points so that plastic hinge will occur in these locations immediately after part of the elements has yielded. The method was applied to analyzing an elastic buckling problem in several loading patterns for either a both-end supported or a one-end fixed beam member. A result was obtained that a number of elements required for one member is four at minimum. In a buckling analysis of framed structures, a satisfactory result was obtained by using an automatic element segmenting algorithm, which begins the analysis with one element one member, and immediately after a member is determined with a possibility of generation of buckling, splits that member only into four elements. 6 refs., 5 figs.

  4. Chemical kinetic functional sensitivity analysis: Elementary sensitivities

    International Nuclear Information System (INIS)

    Demiralp, M.; Rabitz, H.

    1981-01-01

    Sensitivity analysis is considered for kinetics problems defined in the space--time domain. This extends an earlier temporal Green's function method to handle calculations of elementary functional sensitivities deltau/sub i//deltaα/sub j/ where u/sub i/ is the ith species concentration and α/sub j/ is the jth system parameter. The system parameters include rate constants, diffusion coefficients, initial conditions, boundary conditions, or any other well-defined variables in the kinetic equations. These parameters are generally considered to be functions of position and/or time. Derivation of the governing equations for the sensitivities and the Green's funciton are presented. The physical interpretation of the Green's function and sensitivities is given along with a discussion of the relation of this work to earlier research

  5. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Emilio M. Ungerfeld

    2015-02-01

    Full Text Available Maximizing the flow of metabolic hydrogen ([H] in the rumen away from CH4 and towards volatile fatty acids (VFA would increase the efficiency of ruminant production and decrease its environmental impact. The objectives of this meta-analysis were: i To quantify shifts in metabolic hydrogen sinks when inhibiting ruminal methanogenesis in vitro; and ii To understand the variation in shifts of metabolic hydrogen sinks among experiments and between batch and continuous cultures systems when methanogenesis is inhibited. Batch (28 experiments, N=193 and continuous (16 experiments, N=79 culture databases of experiments with at least 50% inhibition in CH4 production were compiled. Inhibiting methanogenesis generally resulted in less fermentation and digestion in most batch culture, but not in most continuous culture, experiments. Inhibiting CH4 production in batch cultures resulted in redirection of metabolic hydrogen towards propionate and H2 but not butyrate. In continuous cultures, there was no overall metabolic hydrogen redirection towards propionate or butyrate, and H2 as a proportion of metabolic hydrogen spared from CH4 production was numerically smaller compared to batch cultures. Dihydrogen accumulation was affected by type of substrate and methanogenesis inhibitor, with highly fermentable substrates resulting in greater redirection of metabolic hydrogen towards H2 when inhibiting methanogenesis, and some oils causing small or no H2 accumulation. In both batch and continuous culture, there was a decrease in metabolic hydrogen recovered as the sum of propionate, butyrate, CH4 and H2 when inhibiting methanogenesis, and it is speculated that as CH4 production decreases metabolic hydrogen could be increasingly incorporated into formate, microbial biomass, and, perhaps, reductive acetogenesis in continuous cultures. Energetic benefits of inhibiting methanogenesis depended on the inhibitor and its concentration and on the in vitro system.

  6. Hunting down frame shifts: Ecological analysis of diverse functional gene sequences

    Directory of Open Access Journals (Sweden)

    Michal eStrejcek

    2015-11-01

    Full Text Available Functional gene ecological analyses using amplicon sequencing can be challenging as translated sequences are often burdened with shifted reading frames. The aim of this work was to evaluate several bioinformatics tools designed to correct errors which arise during sequencing in an effort to reduce the number of frame-shifts (FS. Genes encoding for alpha subunits of biphenyl (bphA and benzoate (benA dioxygenases were used as model sequences. FrameBot, a FS correction tool, was able to reduce the number of detected FS to zero. However, up to 43.1% of sequences were discarded by FrameBot as non-specific targets. Therefore, we proposed a de novo mode of FrameBot for FS correction, which works on a similar basis as common chimera identifying platforms and is not dependent on reference sequences. By nature of FrameBot de novo design, it is crucial to provide it with data as error free as possible. We tested the ability of several publicly available correction tools to decrease the number of errors in the data sets. The combination of Maximum Expected Error (MEE filtering and single linkage pre-clustering (SLP proved the most efficient read procession. Applying FrameBot de novo on the processed data enabled analysis of BphA sequences with minimal losses of potentially functional sequences not homologous to those previously known. This experiment also demonstrated the extensive diversity of dioxygenases in soil. A script which performs FrameBot de novo is presented in the supplementary material to the study and the tool was implemented into FunGene Pipeline available at http://fungene.cme.msu.edu/FunGenePipeline/ and https://github.com/rdpstaff/Framebot.

  7. Handbook of Basic Tables for Chemical Analysis. Final report

    International Nuclear Information System (INIS)

    Bruno, T.J.; Svoronos, P.D.N.

    1988-04-01

    This work began as a slim booklet prepared by one of the authors (TJB) to accompany a course on chemical instrumentation presented at the National Bureau of Standards, Boulder Laboratories. The booklet contained tables on chromatography, spectroscopy, and chemical (wet) methods, and was intended to provide the students with enough basic data to design their own analytical methods and procedures. Shortly thereafter, with the co-authorship of Prof. Paris D. N. Svoronos, it was expanded into a more-extensive compilation entitled Basic Tables for Chemical Analysis, published as National Bureau of Standards Technical Note 1096. That work has now been expanded and updated into the present body of tables. Although there have been considerable changes since the first version of these tables, the aim has remained essentially the same. The authors have tried to provide a single source of information for those practicing scientists and research students who must use various aspects of chemical analysis in their work. In this respect, it is geared less toward the researcher in analytical chemistry than to those practitioners in other chemical disciplines who must have routine use of chemical analysis

  8. Hepatic fat quantification using chemical shift MR imaging and MR spectroscopy in the presence of hepatic iron deposition: validation in phantoms and in patients with chronic liver disease.

    Science.gov (United States)

    Lee, Seung Soo; Lee, Youngjoo; Kim, Namkug; Kim, Seong Who; Byun, Jae Ho; Park, Seong Ho; Lee, Moon-Gyu; Ha, Hyun Kwon

    2011-06-01

    To compare the accuracy of four chemical shift magnetic resonance imaging (MRI) (CS-MRI) analysis methods and MR spectroscopy (MRS) with and without T2-correction in fat quantification in the presence of excess iron. CS-MRI with six opposed- and in-phase acquisitions and MRS with five-echo acquisitions (TEs of 20, 30, 40, 50, 60 msec) were performed at 1.5 T on phantoms containing various fat fractions (FFs), on phantoms containing various iron concentrations, and in 18 patients with chronic liver disease. For CS-MRI, FFs were estimated with the dual-echo method, with two T2*-correction methods (triple- and multiecho), and with multiinterference methods that corrected for both T2* and spectral interference effects. For MRS, FF was estimated without T2-correction (single-echo MRS) and with T2-correction (multiecho MRS). In the phantoms, T2*- or T2-correction methods for CS-MRI and MRS provided unbiased estimations of FFs (mean bias, -1.1% to 0.5%) regardless of iron concentration, whereas the dual-echo method (-5.5% to -8.4%) and single-echo MRS (12.1% to 37.3%) resulted in large biases in FFs. In patients, the FFs estimated with triple-echo (R = 0.98), multiecho (R = 0.99), and multiinterference (R = 0.99) methods had stronger correlations with multiecho MRS FFs than with the dual-echo method (R = 0.86; P ≤ 0.011). The FFs estimated with multiinterference method showed the closest agreement with multiecho MRS FFs (the 95% limit-of-agreement, -0.2 ± 1.1). T2*- or T2-correction methods are effective in correcting the confounding effects of iron, enabling an accurate fat quantification throughout a wide range of iron concentrations. Spectral modeling of fat may further improve the accuracy of CS-MRI in fat quantification. Copyright © 2011 Wiley-Liss, Inc.

  9. Airborne chemistry: acoustic levitation in chemical analysis.

    Science.gov (United States)

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.

  10. Development of chemical analysis techniques: pt. 3

    International Nuclear Information System (INIS)

    Kim, K.J.; Chi, K.Y.; Choi, G.C.

    1981-01-01

    For the purpose of determining trace rare earths a spectrofluorimetric method has been studied. Except Ce and Tb, the fluorescence intensities are not enough to allow satisfactory analysis. Complexing agents such as tungstate and hexafluoroacetylacetone should be employed to increase fluorescence intensities. As a preliminary experiment for the separation of individual rare earth element and uranium, the distribution coefficient, % S here, are obtained on the Dowex 50 W against HCl concentration by a batch method. These % S data are utilized to obtain elution curves. The % S data showed a minimum at around 4 M HCl. To understand this previously known phenomenon the adsorption of Cl - on Dowex 50 W is examined as a function of HCl concentration and found to be decreasing while % S of rare earths increasing. It is interpreted that Cl - and rare earth ions are moved into the resin phase separately and that the charge and the charge densities of these ions are responsible for the different % S curves. Dehydration appears to play an important role in the upturn of the % S curves at higher HCl concentrations

  11. Shift Colors

    Science.gov (United States)

    Publications & News Shift Colors Pages default Sign In NPC Logo Banner : Shift Colors Search Navy Personnel Command > Reference Library > Publications & News > Shift Colors Top Link Bar Navy Personnel Library Expand Reference Library Quick Launch Shift Colors Shift Colors Archives Mailing Address How to

  12. Endocrine Disrupting Chemical Induced "Pollution of Metabolic Pathways": A Case of Shifting Paradigms With Implications for Vascular Diseases.

    Science.gov (United States)

    Janardhanan, Rajiv

    2018-05-14

    The latter half of the twentieth century has witnessed a humongous spurt in the use of synthetic chemicals in a wide variety of industrial and agricultural applications are leading to niche specific perturbations affecting every trophic level of the ecosystems due to unmitigated environmental contamination. Despite the incremental usefulness of endocrine disrupting chemicals (EDCs) such as pesticides and plasticizers, their statutory impact on environmental health is assuming worrisome proportions. The EDCs can disrupt physiological homeostasis resulting in developmental and reproductive abnormalities. Both preclinical animal experiments, as well as epidemiological studies, have correlated EDC exposure with metabolic disorders such as metabolic syndrome, type 2 diabetes as well as cardiovascular health. Here we briefly review the statutory impact of EDCs on metabolic disruption as well as their impact on environmental health. Finally, difficulties pertaining to the categorization of EDC induced metabolic diseases as risk factors for global disease burden have been addressed taking into account the complexity of such interactions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Isotopic shifts in chemical exchange systems. 1. Large isotope effects in the complexation of Na+ isotopes by macrocyclic polyethers

    International Nuclear Information System (INIS)

    Knoechel, A.; Wilken, R.D.

    1981-01-01

    The complexation of 24 Na + and 22 Na + by 18 of the most widely used macrocyclic polyethers (crown ethers and monocyclic and bicyclic aminopolyethers) has been investigated in view of possible equilibrium isotope shifts. Solvated salts and polyether complexes were distributed differently into two phases and isotope ratios determined in both phases. Chloroform/water systems were shown to be particularly suitable to the investigations allowing favorable distribution for Na + and 13 of the 18 polyethers employed. With crown ethers 24 Na + enrichment varied from nonsignficant values (for large crown ethers) up to 3.1 +- 0.4% (18-crown-6). In the case of bicyclic aminopolyethers, ligands with cages of optimum size to accommodate Na + showed 24 Na + enrichment between O (nonsignificant) (2.2/sub B/2./sub B/) and 5.2 +- 1.8% (2.2.1). In contrast, for 2.2.2. and its derivatives, being too large for Na + , 22 Na + enrichment varying from O (nonsignificant) (2.2.2.p) up to 5.4 +- 0.5% (2.2.2.) has been observed. These values are remarkably high. They are explained by different bonding in solvate structure and polyether complex by using the theoretical approach of Bigeleisen

  14. Infrared speckle observations of the binary Ross 614 AB - combined shift-and-add and zero-and-add analysis

    International Nuclear Information System (INIS)

    Davey, B.L.K.; Bates, R.H.T.; Cocke, W.J.; Mccarthy, D.W. Jr.; Christou, J.C.

    1989-01-01

    One-dimensional infrared speckle scans of Ross 614 AB were recorded at a wavelength of 2.2 microns, and the three bins corresponding to the three best seeing conditions were further processed by applying a shift-and-add algorithm to the set of images contained within each bin, generating three shift-and-add images with differing shift-and-add point-spread functions. A zero-and-add technique was used to deconvolve the three shift-and-add images in order to obtain parameters corresponding to the separation and the brightness ratio of a two-component model of Ross 614 Ab. Least-squares analysis results reveal a separation of 1.04 arcsec and a brightness ratio of 4.3 for the binary system at this wavelength. 31 refs

  15. A shift from significance test to hypothesis test through power analysis in medical research.

    Science.gov (United States)

    Singh, G

    2006-01-01

    Medical research literature until recently, exhibited substantial dominance of the Fisher's significance test approach of statistical inference concentrating more on probability of type I error over Neyman-Pearson's hypothesis test considering both probability of type I and II error. Fisher's approach dichotomises results into significant or not significant results with a P value. The Neyman-Pearson's approach talks of acceptance or rejection of null hypothesis. Based on the same theory these two approaches deal with same objective and conclude in their own way. The advancement in computing techniques and availability of statistical software have resulted in increasing application of power calculations in medical research and thereby reporting the result of significance tests in the light of power of the test also. Significance test approach, when it incorporates power analysis contains the essence of hypothesis test approach. It may be safely argued that rising application of power analysis in medical research may have initiated a shift from Fisher's significance test to Neyman-Pearson's hypothesis test procedure.

  16. A shift from significance test to hypothesis test through power analysis in medical research

    Directory of Open Access Journals (Sweden)

    Singh Girish

    2006-01-01

    Full Text Available Medical research literature until recently, exhibited substantial dominance of the Fisher′s significance test approach of statistical inference concentrating more on probability of type I error over Neyman-Pearson′s hypothesis test considering both probability of type I and II error. Fisher′s approach dichotomises results into significant or not significant results with a P value. The Neyman-Pearson′s approach talks of acceptance or rejection of null hypothesis. Based on the same theory these two approaches deal with same objective and conclude in their own way. The advancement in computing techniques and availability of statistical software have resulted in increasing application of power calculations in medical research and thereby reporting the result of significance tests in the light of power of the test also. Significance test approach, when it incorporates power analysis contains the essence of hypothesis test approach. It may be safely argued that rising application of power analysis in medical research may have initiated a shift from Fisher′s significance test to Neyman-Pearson′s hypothesis test procedure.

  17. Calculation of 125Te NMR Chemical Shifts at the Full Four-Component Relativistic Level with Taking into Account Solvent and Vibrational Corrections: A Gateway to Better Agreement with Experiment.

    Science.gov (United States)

    Rusakova, Irina L; Rusakov, Yuriy Yu; Krivdin, Leonid B

    2017-06-29

    Four-component relativistic calculations of 125 Te NMR chemical shifts were performed in the series of 13 organotellurium compounds, potential precursors of the biologically active species, at the density functional theory level under the nonrelativistic and four-component fully relativistic conditions using locally dense basis set scheme derived from relativistic Dyall's basis sets. The relativistic effects in tellurium chemical shifts were found to be of as much as 20-25% of the total calculated values. The vibrational and solvent corrections to 125 Te NMR chemical shifts are about, accordingly, 6 and 8% of their total values. The PBE0 exchange-correlation functional turned out to give the best agreement of calculated tellurium shifts with their experimental values giving the mean absolute percentage error of 4% in the range of ∼1000 ppm, provided all corrections are taken into account.

  18. A meta-analysis including dose-response relationship between night shift work and the risk of colorectal cancer.

    Science.gov (United States)

    Wang, Xiao; Ji, Alin; Zhu, Yi; Liang, Zhen; Wu, Jian; Li, Shiqi; Meng, Shuai; Zheng, Xiangyi; Xie, Liping

    2015-09-22

    A meta-analysis was conducted to quantitatively evaluate the correlation between night shift work and the risk of colorectal cancer. We searched for publications up to March 2015 using PubMed, Web of Science, Cochrane Library, EMBASE and the Chinese National Knowledge Infrastructure databases, and the references of the retrieved articles and relevant reviews were also checked. OR and 95% CI were used to assess the degree of the correlation between night shift work and risk of colorectal cancer via fixed- or random-effect models. A dose-response meta-analysis was performed as well. The pooled OR estimates of the included studies illustrated that night shift work was correlated with an increased risk of colorectal cancer (OR = 1.318, 95% CI 1.121-1.551). No evidence of publication bias was detected. In the dose-response analysis, the rate of colorectal cancer increased by 11% for every 5 years increased in night shift work (OR = 1.11, 95% CI 1.03-1.20). In conclusion, this meta-analysis indicated that night shift work was associated with an increased risk of colorectal cancer. Further researches should be conducted to confirm our findings and clarify the potential biological mechanisms.

  19. Correlations of the chemical shift on fasly rotating biological solids by means of NMR spectroscopy; Korrelationen der chemischen Verschiebung an schnell rotierenden biologischen Festkoerpern mittels NMR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Christian

    2010-04-27

    The basic aim of the thesis was the development and improvement of homo- and heteronuclear feedback sequences for the generation of correlation spectra of the chemical shift. In a first step the possibility of the acquisition of {sup 13}C-{sup 13} correlation spectra of the chemical shift by means of inversion pulses with low RF power factor was studied. Furthermore it was shown that broad-band phase-modulated inversion and universal rotational pulses can be constructed by means of global optimization procedures like the genetic algorithms under regardment of the available RF field strength. By inversion, universal rotational, and 360 pulses as starting values of the optimization efficient homonuclear CN{sub n}{sup {nu}} and RN{sub n}{sup {nu}} mixing sequences as well as heteronuclear RN{sub n}{sup {nu}{sub s},{nu}{sub k}} feedback sequences were generated. The satisfactory power of the numerically optimized sequences was shown by means of the simulation as well by means of correlation experiments of the chemical shift of L-histidine, L-arginine, and the (CUG){sub 97}-RNA. This thesis deals furthermore with the possibility to acquire simultaneously different signals with several receivers. By means of numerically optimized RN{sub n}{sup {nu}{sub s},{nu}{sub k}} pulse sequences both {sup 15}N-{sup 13}C and {sup 13}C-{sup 15}N correlation spectra were simultaneously generated. Furthermore it could be shown that the simultaneous acquisition of 3D-{sup 15}N-{sup 13}C-{sup 13}C and {sup 13}C-{sup 15}N-({sup 1}H)-{sup 1}H correlation spectra is possible. By this in only one measurement process resonance assignments can be met and studies of the global folding performed. A further application of several receivers is the simultaneous acquisition of CHHC, NHHN, NHHC, as well as CHHN spectra. By such experiments it is possible to characterize the hydrogen-bonding pattern and the glycosidic torsion angle {sup {chi}} in RNA. This was demonstrated by means of the (CUG){sub 97

  20. Miniaturised wireless smart tag for optical chemical analysis applications.

    Science.gov (United States)

    Steinberg, Matthew D; Kassal, Petar; Tkalčec, Biserka; Murković Steinberg, Ivana

    2014-01-01

    A novel miniaturised photometer has been developed as an ultra-portable and mobile analytical chemical instrument. The low-cost photometer presents a paradigm shift in mobile chemical sensor instrumentation because it is built around a contactless smart card format. The photometer tag is based on the radio-frequency identification (RFID) smart card system, which provides short-range wireless data and power transfer between the photometer and a proximal reader, and which allows the reader to also energise the photometer by near field electromagnetic induction. RFID is set to become a key enabling technology of the Internet-of-Things (IoT), hence devices such as the photometer described here will enable numerous mobile, wearable and vanguard chemical sensing applications in the emerging connected world. In the work presented here, we demonstrate the characterisation of a low-power RFID wireless sensor tag with an LED/photodiode-based photometric input. The performance of the wireless photometer has been tested through two different model analytical applications. The first is photometry in solution, where colour intensity as a function of dye concentration was measured. The second is an ion-selective optode system in which potassium ion concentrations were determined by using previously well characterised bulk optode membranes. The analytical performance of the wireless photometer smart tag is clearly demonstrated by these optical absorption-based analytical experiments, with excellent data agreement to a reference laboratory instrument. © 2013 Elsevier B.V. All rights reserved.

  1. Work zone simulator analysis : driver performance and acceptance of Missouri alternate lane shift configurations.

    Science.gov (United States)

    2017-01-13

    The objective of this project is to evaluate MoDOTs alternate lane shift sign configuration for work zones. The single sign proposed by MoDOT provides the traveler with enough information to let them know that all lanes are available to shift arou...

  2. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were

  3. Attempt of analysis of the elastic scattering of 44 MeV alpha particles using a phase shift parameterization

    International Nuclear Information System (INIS)

    Papiau, Anne-Marie

    1966-01-01

    In order to ease the resolution of the problem of interaction of an alpha particle with a nucleus, and determine simpler hypotheses which enable the analysis of experimental results, this research thesis reports the use of a parameterization of phase shifts to reduce ambiguities and the number of parameters. After general remarks, a description of the Hamiltonian and a formulation of phase shifts, the author presents experimental data and the analytical method. Analysis is then performed for two-, three-, four- or five-parameter formulations. Efficient cross sections are then studied

  4. Design of high-power, broadband 180o pulses and mixing sequences for fast MAS solid state chemical shift correlation NMR spectroscopy

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Kirschstein, Anika; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    An approach for the design of high-power, broadband 180 o pulses and mixing sequences for generating dipolar and scalar coupling mediated 13 C- 13 C chemical shift correlation spectra of isotopically labelled biological systems at fast magic-angle spinning frequencies without 1 H decoupling during mixing is presented. Considering RF field strengths in the range of 100-120 kHz, as typically available in MAS probes employed at high spinning speeds, and limited B 1 field inhomogeneities, the Fourier coefficients defining the phase modulation profile of the RF pulses were optimised numerically to obtain broadband inversion and refocussing pulses and mixing sequences. Experimental measurements were carried out to assess the performance characteristics of the mixing sequences reported here

  5. Stereochemistry of Complex Marine Natural Products by Quantum Mechanical Calculations of NMR Chemical Shifts: Solvent and Conformational Effects on Okadaic Acid

    Directory of Open Access Journals (Sweden)

    Humberto J. Domínguez

    2014-01-01

    Full Text Available Marine organisms are an increasingly important source of novel metabolites, some of which have already inspired or become new drugs. In addition, many of these molecules show a high degree of novelty from a structural and/or pharmacological point of view. Structure determination is generally achieved by the use of a variety of spectroscopic methods, among which NMR (nuclear magnetic resonance plays a major role and determination of the stereochemical relationships within every new molecule is generally the most challenging part in structural determination. In this communication, we have chosen okadaic acid as a model compound to perform a computational chemistry study to predict 1H and 13C NMR chemical shifts. The effect of two different solvents and conformation on the ability of DFT (density functional theory calculations to predict the correct stereoisomer has been studied.

  6. Evaluation of the Aromaticity of a Non-Planar Carbon Nano-Structure by Nucleus-Independent Chemical Shift Criterion: Aromaticity of the Nitrogen- Doped Corannulene

    Directory of Open Access Journals (Sweden)

    A. Reisi-Vanani

    2014-04-01

    Full Text Available Substitution of two or four carbon atoms by nitrogen in the corannulene molecule as a carbon nanostructure was done and the obtained structures were optimized at MP2/6-31G(d level of theory. Calculations of the nucleus-independent chemical shift (NICS were performed to analyze the aromaticity of the corannulene rings and its derivatives upon doping with N at B3LYP/6-31G(d level of theory. Results showed NICS values in six-membered and five-membered rings of two and four N atoms doped corannulene are different and very dependent to number and position of the N atoms. The values of the mean NICS of all N-doped structures are more positive than intact corannulene that show insertion of N atom to the structures causes to decreasing aromaticity of them.

  7. Stopping powers from the inverted doppler shift attenuation method: Z-oscillations; Bragg's rule or chemical effects; solid and liquid state effects

    International Nuclear Information System (INIS)

    Pietsch, W.; Hauser, U.; Neuwirth, W.

    1976-01-01

    With the 'Inverted Doppler Shift Attenuation (IDSA)' method stopping cross sections for swift ions can be measured with an accuracy of about 1%. Here results are reported with lithium and carbon projectiles in very different stopping materials. It turns out that the stopping cross section around Bohr's velocity is linearly dependent on the velocity. Stopping cross sections of elements show the expected Z 2 -oscillations. With compound targets strong deviations from Bragg's rule were found which means that the stopping cross section is influenced by the chemical bonding. In electrolytic solutions effects due to ion-dipole interactions can be observed. These phenomena demonstrate the strong sensitivity of electronic stopping cross sections on the specific distribution of the outer electrons of the target atoms. Further Lindhard's formula has been modified which gives a good description of this influence. (Auth.)

  8. The shift to rapid job placement for people living with mental illness: an analysis of consequences.

    Science.gov (United States)

    Gewurtz, Rebecca E; Cott, Cheryl; Rush, Brian; Kirsh, Bonnie

    2012-12-01

    This article reports on the consequences of the revised policy for employment supports within the Ontario Disability Support Program, a disability benefit program administered by the provincial government in Ontario, Canada. The revised policy involves a change from a fee-for-service model to an outcome-based funding model. This revision has encouraged a shift from preemployment to job placement services, with a particular focus on rapid placement into available jobs. Using a qualitative case study approach, 25 key informant interviews were conducted with individuals involved in developing or implementing the policy, or delivering employment services for individuals living with mental illness under the policy. Policy documents were also reviewed in order to explore the intent of the policy. Analysis focused on exploring how the policy has been implemented in practice, and its impact on employment services for individuals living with mental illness. The findings highlight how employment support practices have evolved under the new policy. Although there is now an increased focus on employment rather than preemployment supports, the financial imperative to place individuals into jobs as quickly as possible has decreased attention to career development. Jobs are reported to be concentrated at the entry-level with low pay and little security or benefits. These findings raise questions about the quality of employment being achieved under the new policy, highlight problems with adopting selected components of evidence-based approaches, and begin to explicate the influence that funding structures can have on practice.

  9. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    Science.gov (United States)

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.

    2017-04-01

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

  10. 31P-MR spectroscopy of all regions of the human heart at 1.5 T with acquisition-weighted chemical shift imaging

    International Nuclear Information System (INIS)

    Koestler, H.; Beer, M.; Buchner, S.; Sandstede, J.; Pabst, T.; Kenn, W.; Hahn, D.

    2001-01-01

    Aim: Aim of this study was to show whether or not acquisition-weighted chemical shift imaging (AW-CSI) allows the determination of PCr and ATP in the lateral and posterior wall of the human heart at 1.5 T. Methods: 12 healthy volunteers were examined using a conventional chemical shift imaging (CSI) and an AW-CSI. The sequences differed only in the number of repetitions for each point in k space. A hanning function was used as filter function leading to 7 repetitions in the center of the k space and 0 in the corners. Thus, AW-CSI had the same resolution as the CSI sequence. The results for both sequences were analyzed using identically positioned voxels in the septal, anterior, lateral and posterior wall. Results: The determined averaged AW-CSI signal to noise ratios were higher for PCr by a factor of 1.3 and for ATP by 1.4 than those of CSI. The PCr/ATP ratios were higher by a factor of 1.2 - 1.3 and showed a smaller standard deviation in all locations for AW-CSI. The mean PCr/ATP ratios determined by AW-CSI of septal, lateral and posterior wall were almost identical (1.72 - 1.76), while it was higher in the anterior wall (1.9). Conclusions: The reduced contamination in AW-CSI improves the signal to noise ratio and the determination of the PCr/ATP ratio in cardiac 31 P spectroscopy compared to CSI with the same resolution. The results in volunteers indicate that AW-CSI renders 31 P spectroscopy of the lateral and posterior wall of the human heart feasible for patient studies at 1.5 T. (orig.) [de

  11. [Investigation and Analysis on shift work female workers' and the impact on reproductive health].

    Science.gov (United States)

    Yu, C Y; Yu, W L; Xu, M; Xing, Z L

    2018-02-20

    Objective: To investigate the distribution of shift work of female workers in different industries and the relationship between shift work and reproductive health, then provide reference for the female workers' labor protection. Methods: From June to September 2016, cluster sampling questionnaire survey was performed among female workers from 11 industries including electronics, medicine and health, pharmacy. To investigate the general information, shift - work information, reproductive health and childbearing history of these female workers. Results: A total of 63 711 usable questionnaires were collected, resulting in a response rate of 96.94%.A total of 13 546 workers worked in shifts, accounting for 21.26%, the highest proportion was in the medical industry 30.61%, metallurgy 30.81%, petrochemical engineerin 26.78% respectively. Compared with the workers who did not work in shifts, those who worked in shifts had significantly higher rate of abnormal menstruation, rate of reproductive system infection in married workers, the rate of infertility (χ(2)=19.108、10.673、21.510, P <0.05) ; Compared with the workers who did not work in nightshifts, those who worked in nightshifts had significantly higher rate of abnormal menstruation, rate of reproductive system infection among married workers and rate of infertility (χ(2)=140.043、71.901、29.024, P <0.01) . Conclusion: The highest rate of shift work was in the medical industry, metallurgy, petrochemical engineering industry. Workers who worked in shifts have serious reproductive health issues, the occurrence of abnormal menstruation, reproductive system infection and infertility may associated with shift work.

  12. Chemical analysis of steel by optical emission spectrometry

    International Nuclear Information System (INIS)

    Hayakawa, M.O.; Kajita, T.; Jeszensky, G.

    1981-01-01

    The development of the chemical analysis for special steels by optical emission spectrometry direct reading method with computer, at the Siderurgica N.S. Aparecida S.A. is presented. Results are presented for the low alloy steels and high speed steel. Also, the contribution of this method to the special steel preparation is commented. (Author) [pt

  13. Physico-chemical analysis and sensory evaluation of bread ...

    African Journals Online (AJOL)

    This study carried out the physico-chemical analysis and sensory evaluation of bread produced using different indigenous yeast isolates in order to offer an insight into the overall quality of the bread. Four (4) different yeast species were isolated from sweet orange, pineapple and palm wine. The yeasts were characterized ...

  14. Chemical and antimicrobial analysis of husk fiber aqueous extract ...

    African Journals Online (AJOL)

    Chemical and antimicrobial analysis of husk fiber aqueous extract from Cocos nucifera L. Davi Oliveira e Silva, Gabriel Rocha Martins, Antônio Jorge Ribeiro da Silva, Daniela Sales Alviano, Rodrigo Pires Nascimento, Maria Auxiliadora Coelho Kaplan, Celuta Sales Alviano ...

  15. Bark chemical analysis explains selective bark damage by rodents

    Czech Academy of Sciences Publication Activity Database

    Heroldová, Marta; Jánová, Eva; Suchomel, J.; Purchart, L.; Homolka, Miloslav

    2009-01-01

    Roč. 2, č. 2 (2009), s. 137-140 ISSN 1803-2451 R&D Projects: GA MZe QH72075 Institutional research plan: CEZ:AV0Z60930519 Keywords : bark damage * bark selection * bark chemical analysis * rowan * beech * spruce * mountain forest regeneration Subject RIV: GK - Forestry

  16. 1H, 13C and 13N chemical shifts and 1H-15N and 13C-15N heteronuclear spin-spin coupling constants n the NMR spectra of 5-substituted furfural oximes

    International Nuclear Information System (INIS)

    Popelis, Yu.Yu.; Liepin'sh, E.E.; Lukevits, E.Ya.

    1986-01-01

    The 1 H, 13 C, and 15 N NMR spectra of 15 N-enriched 5-substituted furfural oximes were investigated. It was shown that the chemical shifts of the ring atoms and the oxime group correlate satisfactorily with the F and R substituent constants, whereas their sensitivity to the effect of the substituents is lower than in monosubstituted furan derivatives. The constants of spin-spin coupling between the ring protons and the oxime group were determined. An analysis of the 1 H- 1 H spin-spin coupling constants (SSCC) on the basis of their stereospecificity indicates that the E isomers have primarily an s-trans conformation in polar dimethyl sulfoxide, whereas the Z isomers, on the other hand, have an s-cis conformation. The signs of the direct and geminal 13 C- 15 N SSCC were determined for 5-trimethylsilylfurfural oxime

  17. Ab initio/GIAO-CCSD(T) study of structures, energies, and 13C NMR chemical shifts of C4H7(+) and C5H9(+) ions: relative stability and dynamic aspects of the cyclopropylcarbinyl vs bicyclobutonium ions.

    Science.gov (United States)

    Olah, George A; Surya Prakash, G K; Rasul, Golam

    2008-07-16

    The structures and energies of the carbocations C 4H 7 (+) and C 5H 9 (+) were calculated using the ab initio method. The (13)C NMR chemical shifts of the carbocations were calculated using the GIAO-CCSD(T) method. The pisigma-delocalized bisected cyclopropylcarbinyl cation, 1 and nonclassical bicyclobutonium ion, 2 were found to be the minima for C 4H 7 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level the structure 2 is 0.4 kcal/mol more stable than the structure 1. The (13)C NMR chemical shifts of 1 and 2 were calculated by the GIAO-CCSD(T) method. Based on relative energies and (13)C NMR chemical shift calculations, an equilibrium involving the 1 and 2 in superacid solutions is most likely responsible for the experimentally observed (13)C NMR chemical shifts, with the latter as the predominant equilibrating species. The alpha-methylcyclopropylcarbinyl cation, 4, and nonclassical bicyclobutonium ion, 5, were found to be the minima for C 5H 9 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level ion 5 is 5.9 kcal/mol more stable than the structure 4. The calculated (13)C NMR chemical shifts of 5 agree rather well with the experimental values of C 5H 9 (+).

  18. Error analysis of the phase-shifting technique when applied to shadow moire

    International Nuclear Information System (INIS)

    Han, Changwoon; Han Bongtae

    2006-01-01

    An exact solution for the intensity distribution of shadow moire fringes produced by a broad spectrum light is presented. A mathematical study quantifies errors in fractional fringe orders determined by the phase-shifting technique, and its validity is corroborated experimentally. The errors vary cyclically as the distance between the reference grating and the specimen increases. The amplitude of the maximum error is approximately 0.017 fringe, which defines the theoretical limit of resolution enhancement offered by the phase-shifting technique

  19. Neutron activation analysis of high-purity iron in comparison with chemical analysis

    International Nuclear Information System (INIS)

    Kinomura, Atsushi; Horino, Yuji; Takaki, Seiichi; Abiko, Kenji

    2000-01-01

    Neutron activation analysis of iron samples of three different purity levels has been performed and compared with chemical analysis for 30 metallic and metalloid impurity elements. The concentration of As, Cl, Cu, Sb and V detected by neutron activation analysis was mostly in agreement with that obtained by chemical analysis. The sensitivity limits of neutron activation analysis of three kinds of iron samples were calculated and found to be reasonable compared with measured values or detection limits of chemical analysis; however, most of them were above the detection limits of chemical analysis. Graphite-shielded irradiation to suppress fast neutron reactions was effective for Mn analysis without decreasing sensitivity to the other impurity elements. (author)

  20. A meta-analysis on dose-response relationship between night shift work and the risk of breast cancer.

    Science.gov (United States)

    Wang, F; Yeung, K L; Chan, W C; Kwok, C C H; Leung, S L; Wu, C; Chan, E Y Y; Yu, I T S; Yang, X R; Tse, L A

    2013-11-01

    This study aimed to conduct a systematic review to sum up evidence of the associations between different aspects of night shift work and female breast cancer using a dose-response meta-analysis approach. We systematicly searched all cohort and case-control studies published in English on MEDLINE, Embase, PSYCInfo, APC Journal Club and Global Health, from January 1971 to May 2013. We extracted effect measures (relative risk, RR; odd ratio, OR; or hazard ratio, HR) from individual studies to generate pooled results using meta-analysis approaches. A log-linear dose-response regression model was used to evaluate the relationship between various indicators of exposure to night shift work and breast cancer risk. Downs and Black scale was applied to assess the methodological quality of included studies. Ten studies were included in the meta-analysis. A pooled adjusted relative risk for the association between 'ever exposed to night shift work' and breast cancer was 1.19 [95% confidence interval (CI) 1.05-1.35]. Further meta-analyses on dose-response relationship showed that every 5-year increase of exposure to night shift work would correspondingly enhance the risk of breast cancer of the female by 3% (pooled RR = 1.03, 95% CI 1.01-1.05; Pheterogeneity night shifts would result in a 13% (RR = 1.13, 95% CI 1.07-1.21; Pheterogeneity = 0.06) increase in breast cancer risk. This systematic review updated the evidence that a positive dose-response relationship is likely to present for breast cancer with increasing years of employment and cumulative shifts involved in the work.

  1. Activation and chemical analysis of drinking water from shallow aquifers

    International Nuclear Information System (INIS)

    Sharma, H.K.; Mittal, V.K.; Sahota, H.S.

    1991-01-01

    In most of the Indian cities drinking water is drawn from shallow aqiufers with the help of hand pumps. These shallow aquifers get easilyl polluted. In the present work we have measured 20 trace elements using Neutron Activation Analysis (NAA) and 8 chemical parameters using standard chemical methods of drinking water drawn from Rajpura city. It was found that almost all water samples are highly polluted. We attribute this to unplaned disposal of industrial and domestic waste over a period of many decades. (author) 11 refs.; 1 fig.; 1 tab

  2. Activation analysis. A basis for chemical similarity and classification

    Energy Technology Data Exchange (ETDEWEB)

    Beeck, J OP de [Ghent Rijksuniversiteit (Belgium). Instituut voor Kernwetenschappen

    1977-01-01

    It is shown that activation analysis is especially suited to serve as a basis for determining the chemical similarity between samples defined by their trace-element concentration patterns. The general problem of classification and identification is discussed. The nature of possible classification structures and their appropriate clustering strategies is considered. A practical computer method is suggested and its application as well as the graphical representation of classification results are given. The possibility for classification using information theory is mentioned. Classification of chemical elements is discussed and practically realized after Hadamard transformation of the concentration variation patterns in a series of samples.

  3. Chemical analysis of plasma-assisted antimicrobial treatment on cotton

    International Nuclear Information System (INIS)

    Kan, C W; Lam, Y L; Yuen, C W M; Luximon, A; Lau, K W; Chen, K S

    2013-01-01

    This paper explores the use of plasma treatment as a pretreatment process to assist the application of antimicrobial process on cotton fabric with good functional effect. In this paper, antimicrobial finishing agent, Microfresh Liquid Formulation 9200-200 (MF), and a binder (polyurethane dispersion, Microban Liquid Formulation R10800-0, MB) will be used for treating the cotton fabric for improving the antimicrobial property and pre-treatment of cotton fabric by plasma under atmospheric pressure will be employed to improve loading of chemical agents. The chemical analysis of the treated cotton fabric will be conducted by Fourier transform Infrared Spectroscopy.

  4. Positron annihilation spectroscopy for chemical analysis (PASCA). Chapter 9

    International Nuclear Information System (INIS)

    Cheng, K.L.; Jean, Y.C.

    1988-01-01

    This chapter gives an up to date overview of positron annihilation spectroscopy for chemical analysis (PASCA). As an in situ technique PASCA is especially suitable for studying processes occurring at surfaces. The in situ characteristics of PASCA are treated. The principes of positron annihilation life time spectroscopy (PAL) are discussed and some important analytical applications such as, in determining of total surface areas and cavity volumes in chemical reactions, in the study of chemisorption and catalytic reactions on porous surfaces, in the analysis of bulk materials, in determining molecular association constants in biological systems, in proton and neutron activation analysis, in thin layer chromatography and in tracer technology. 28 refs.; 15 figs.; 8 tabs

  5. Phase-shift-analysis approach to elastic neutron scattering from /sup 12/C between 9 and 12 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W. (Tuebingen Univ. (Germany, F.R.). Physikalisches Inst.); Walter, R.L.; Byrd, R.C. (Duke Univ., Durham, NC (USA). Dept. of Physics; Triangle Universities Nuclear Lab., Durham, NC (USA))

    1985-03-01

    The excitation energy, spin and parity of levels in /sup 13/C have been determined for excitation energies between 13 and 16 MeV via a phase-shift analysis of the measured total cross section, elastic differential cross section and analysing power for n + /sup 12/C in the neutron energy range from 8.9 to 12.0 MeV. New analysing power measurements are reported for this energy range. The present and previous experimental data are well described by the phase shifts obtained. The non-elastic cross section for n + /sup 12/C predicted from the phase shifts is in good agreement with the ENDF/B-V evaluation. The need for further experimental data is pointed out.

  6. Phase-shift-analysis approach to elastic neutron scattering from 12C between 9 and 12 MeV

    International Nuclear Information System (INIS)

    Tornow, W.

    1985-01-01

    The excitation energy, spin and parity of levels in 13 C have been determined for excitation energies between 13 and 16 MeV via a phase-shift analysis of the measured total cross section, elastic differential cross section and analysing power for n + 12 C in the neutron energy range from 8.9 to 12.0 MeV. New analysing power measurements are reported for this energy range. The present and previous experimental data are well described by the phase shifts obtained. The non-elastic cross section for n + 12 C predicted from the phase shifts is in good agreement with the ENDF/B-V evaluation. The need for further experimental data is pointed out. (author)

  7. Determination of the Tautomeric Equilibria of Pyridoyl Benzoyl -Diketones in the Liquid and Solid State through the use of Deuterium Isotope Effects on 1H and 13C NMR Chemical Shifts and Spin Coupling Constants

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Borisov, Eugeny V.; Lindon, John C.

    2015-01-01

    The tautomeric equilibria for 2-pyridoyl-, 3-pyridoyl-, and 4-pyridoyl-benzoyl methane have been investigated using deuterium isotope effects on 1H and 13C chemical shifts both in the liquid and the solid state. Equilibria are established both in the liquid and the solid state. In addition......, in the solution state the 2-bond and 3-bond J(1H–13C) coupling constants have been used to confirm the equilibrium positions. The isotope effects due to deuteriation at the OH position are shown to be superior to chemical shift in determination of equilibrium positions of these almost symmetrical -pyridoyl......-benzoyl methanes. The assignments of the NMR spectra are supported by calculations of the chemical shifts at the DFT level. The equilibrium positions are shown to be different in the liquid and the solid state. In the liquid state the 4-pyridoyl derivative is at the B-form (C-1 is OH), whereas the 2-and 3-pyridoyl...

  8. Effects of Napping During Shift Work on Sleepiness and Performance in Emergency Medical Services Personnel and Similar Shift Workers: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Martin-Gill, Christian; Barger, Laura K; Moore, Charity G; Higgins, J Stephen; Teasley, Ellen M; Weiss, Patricia M; Condle, Joseph P; Flickinger, Katharyn L; Coppler, Patrick J; Sequeira, Denisse J; Divecha, Ayushi A; Matthews, Margaret E; Lang, Eddy S; Patterson, P Daniel

    2018-02-15

    Scheduled napping during work shifts may be an effective way to mitigate fatigue-related risk. This study aimed to critically review and synthesize existing literature on the impact of scheduled naps on fatigue-related outcomes for EMS personnel and similar shift worker groups. A systematic literature review was performed of the impact of a scheduled nap during shift work on EMS personnel or similar shift workers. The primary (critical) outcome of interest was EMS personnel safety. Secondary (important) outcomes were patient safety; personnel performance; acute states of fatigue, alertness, and sleepiness; indicators of sleep duration and/or quality; employee retention/turnover; indicators of long-term health; and cost to the system. Meta-analyses were performed to evaluate the impact of napping on a measure of personnel performance (the psychomotor vigilance test [PVT]) and measures of acute fatigue. Of 4,660 unique records identified, 13 experimental studies were determined relevant and summarized. The effect of napping on reaction time measured at the end of shift was small and non-significant (SMD 0.12, 95% CI -0.13 to 0.36; p = 0.34). Napping during work did not change reaction time from the beginning to the end of the shift (SMD -0.01, 95% CI -25.0 to 0.24; p = 0.96). Naps had a moderate, significant effect on sleepiness measured at the end of shift (SMD 0.40, 95% CI 0.09 to 0.72; p = 0.01). The difference in sleepiness from the start to the end of shift was moderate and statistically significant (SMD 0.41, 95% CI 0.09 to 0.72; p = 0.01). Reviewed literature indicated that scheduled naps at work improved performance and decreased fatigue in shift workers. Further research is required to identify the optimal timing and duration of scheduled naps to maximize the beneficial outcomes.

  9. Concurrent Increases and Decreases in Local Stability and Conformational Heterogeneity in Cu, Zn Superoxide Dismutase Variants Revealed by Temperature-Dependence of Amide Chemical Shifts.

    Science.gov (United States)

    Doyle, Colleen M; Rumfeldt, Jessica A; Broom, Helen R; Sekhar, Ashok; Kay, Lewis E; Meiering, Elizabeth M

    2016-03-08

    The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.

  10. A lanthanide complex with dual biosensing properties: CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts) with europium DOTA-tetraglycinate.

    Science.gov (United States)

    Coman, Daniel; Kiefer, Garry E; Rothman, Douglas L; Sherry, A Dean; Hyder, Fahmeed

    2011-12-01

    Responsive contrast agents (RCAs) composed of lanthanide(III) ion (Ln3R) complexes with a variety of1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA4S) derivatives have shown great potential as molecular imaging agents for MR. A variety of LnDOTA–tetraamide complexes have been demonstrated as RCAs for molecular imaging using chemical exchange saturation transfer (CEST). The CEST method detects proton exchange between bulk water and any exchangeable sites on the ligand itself or an inner sphere of bound water that is shifted by a paramagnetic Ln3R ion bound in the core of the macrocycle. It has also been shown that molecular imaging is possible when the RCA itself is observed (i.e. not its effect on bulk water) using a method called biosensor imaging of redundant deviation in shifts (BIRDS). The BIRDS method utilizes redundant information stored in the nonexchangeable proton resonances emanating from the paramagnetic RCA for ambient factors such as temperature and/or pH.Thus, CEST and BIRDS rely on exchangeable and nonexchangeable protons, respectively, for biosensing. We posited that it would be feasible to combine these two biosensing features into the same RCA (i.e. dual CEST and BIRDS properties). A complex between europium(III) ion (Eu3R) and DOTA–tetraglycinate [DOTA–(gly)S4] was used to demonstrate that its CEST characteristics are preserved, while its BIRDS properties are also detectable. The in vitro temperature sensitivity of EuDOTA–(gly)S4 was used to show that qualitative MR contrast with CEST can be calibrated using quantitative MR mapping with BIRDS, thereby enabling quantitative molecular imaging at high spatial resolution.

  11. All-Russia conference on chemical analysis of substances and materials. Abstracts of reports

    International Nuclear Information System (INIS)

    2000-01-01

    Collection contains abstracts of reports on chemical analysis of foods, drugs, environmental materials. Methods of chemical analysis used in such regions as chemical control in agriculture, criminology, art and archaeology, biotechnology, geology, chemistry and petrochemistry, metallurgy, metrology are presented. Theoretical, methodological and applied aspects of chemical analysis are considered [ru

  12. Transcriptional analysis of the conidiation pattern shift of the entomopathogenic fungus Metarhizium acridum in response to different nutrients.

    Science.gov (United States)

    Wang, Zhenglong; Jin, Kai; Xia, Yuxian

    2016-08-09

    Most fungi, including entomopathogenic fungi, have two different conidiation patterns, normal and microcycle conidiation, under different culture conditions, eg, in media containing different nutrients. However, the mechanisms underlying the conidiation pattern shift are poorly understood. In this study, Metarhizium acridum undergoing microcycle conidiation on sucrose yeast extract agar (SYA) medium shifted to normal conidiation when the medium was supplemented with sucrose, nitrate, or phosphate. By linking changes in nutrients with the conidiation pattern shift and transcriptional changes, we obtained conidiation pattern shift libraries by Solexa/Illumina deep-sequencing technology. A comparative analysis demonstrated that the expression of 137 genes was up-regulated during the shift to normal conidiation, while the expression of 436 genes was up-regulated at the microcycle conidiation stage. A comparison of subtractive libraries revealed that 83, 216, and 168 genes were related to sucrose-induced, nitrate-induced, and phosphate-induced conidiation pattern shifts, respectively. The expression of 217 genes whose expression was specific to microcycle conidiation was further analyzed by the gene expression profiling via multigene concatemers method using mRNA isolated from M. acridum grown on SYA and the four normal conidiation media. The expression of 142 genes was confirmed to be up-regulated on standard SYA medium. Of these 142 genes, 101 encode hypothetical proteins or proteins of unknown function, and only 41 genes encode proteins with putative functions. Of these 41 genes, 18 are related to cell growth, 10 are related to cell proliferation, three are related to the cell cycle, three are related to cell differentiation, two are related to cell wall synthesis, two are related to cell division, and seven have other functions. These results indicate that the conidiation pattern shift in M. acridum mainly results from changes in cell growth and proliferation. The

  13. Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer.

    Science.gov (United States)

    Novak, Matt; Millerd, James; Brock, Neal; North-Morris, Michael; Hayes, John; Wyant, James

    2005-11-10

    Recent technological innovations have enabled the development of a new class of dynamic (vibration-insensitive) interferometer based on a CCD pixel-level phase-shifting approach. We present theoretical and experimental results for an interferometer based on this pixelated phase-shifting technique. Analyses of component errors and instrument functionality are presented. We show that the majority of error sources cause relatively small magnitude peak-to-valley errors in measurement of the order of 0.002-0.005lambda. These errors are largely mitigated by high-rate data acquisition and consequent data averaging.

  14. The collection and field chemical analysis of water samples

    International Nuclear Information System (INIS)

    Korte, N.E.; Ealey, D.T.; Hollenbach, M.H.

    1984-01-01

    A successful water sampling program requires a clear understanding of appropriate measurement and sampling procedures in order to obtain reliable field data and representative samples. It is imperative that the personnel involved have a thorough knowledge of the limitations of the techniques being used. Though this seems self-evident, many sampling and field-chemical-analysis programs are still not properly conducted. Recognizing these problems, the Department of Energy contracted with Bendix Field Engineering Corporation through the Technical Measurements Center to develop and select procedures for water sampling and field chemical analysis at waste sites. The fundamental causese of poor field programs are addressed in this paper, largely through discussion of specific field-measurement techniques and their limitations. Recommendations for improvement, including quality-assurance measures, are also presented

  15. Regression analysis of a chemical reaction fouling model

    International Nuclear Information System (INIS)

    Vasak, F.; Epstein, N.

    1996-01-01

    A previously reported mathematical model for the initial chemical reaction fouling of a heated tube is critically examined in the light of the experimental data for which it was developed. A regression analysis of the model with respect to that data shows that the reference point upon which the two adjustable parameters of the model were originally based was well chosen, albeit fortuitously. (author). 3 refs., 2 tabs., 2 figs

  16. Gas analysis during the chemical vapor deposition of carbon

    International Nuclear Information System (INIS)

    Lieberman, M.L.; Noles, G.T.

    1973-01-01

    Gas chromatographic analyses were performed during the chemical vapor deposition of carbon in both isothermal and thermal gradient systems. Such data offer insight into the gas phase processes which occur during deposition and the interrelations which exist between gas composition, deposition rate, and resultant structure of the deposit. The results support a carbon CVD model presented previously. The application of chromatographic analysis to research, development, and full-scale facilities is shown. (U.S.)

  17. Cluster analysis to evaluate stable chemical elements and physical-chemical parameters behavior on uranium mining waste

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo; Goncalves, Simone, E-mail: wspereira@inb.gov.br [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Coordenacao de Protecao Radiologica. Grupo Multidisciplinar de Radioprotecao; Kelecom, Alphonse [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Biologia. Lab. de Radiobiologia e Radiometria Pedro Lopes dos Santos; Morais, Gustavo Ferrari de; Campelo, Emanuele Lazzaretti Cordova [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Coordenacao de Desenvolvimento de Processos; Dores, Luis Augusto de Carvalho Bresser [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Gerencia de Descomissionamento

    2011-07-01

    The Ore Treating Unit (UTM, in portuguese) is a deactivated uranium mine. A cluster analysis was used to evaluate the behavior of stable chemical elements and physical-chemical parameters in their effluents. The utilization of the cluster analysis proved itself effective in the assessment, allowing the identification of groups of chemical elements, physical-chemical parameters and their joint analysis (elements and parameters). As a result we may assert, based on data analysis, that there is a strong link between calcium and magnesium and between aluminum and rare-earth oxides on UTM's effluents. Sulphate was also identified as strongly linked to total and dissolved solids, and those to electrical conductivity. There were other associations, but not so strongly linked. Further gathering, to seasonal evaluation, are required in order to confirm those analysis. Additional statistical analysis (factor analysis) must be used to try to identify the origin of the identified groups on this analysis. (author)

  18. Cluster analysis to evaluate stable chemical elements and physical-chemical parameters behavior on uranium mining waste

    International Nuclear Information System (INIS)

    Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo; Goncalves, Simone; Kelecom, Alphonse; Morais, Gustavo Ferrari de; Campelo, Emanuele Lazzaretti Cordova; Dores, Luis Augusto de Carvalho Bresser

    2011-01-01

    The Ore Treating Unit (UTM, in portuguese) is a deactivated uranium mine. A cluster analysis was used to evaluate the behavior of stable chemical elements and physical-chemical parameters in their effluents. The utilization of the cluster analysis proved itself effective in the assessment, allowing the identification of groups of chemical elements, physical-chemical parameters and their joint analysis (elements and parameters). As a result we may assert, based on data analysis, that there is a strong link between calcium and magnesium and between aluminum and rare-earth oxides on UTM's effluents. Sulphate was also identified as strongly linked to total and dissolved solids, and those to electrical conductivity. There were other associations, but not so strongly linked. Further gathering, to seasonal evaluation, are required in order to confirm those analysis. Additional statistical analysis (factor analysis) must be used to try to identify the origin of the identified groups on this analysis. (author)

  19. An Analysis of "Rank-Shift" of Compound Complex Sentence Translation

    Science.gov (United States)

    Widarwati, Nunun Tri

    2015-01-01

    The focus of the research is to describe the "rank-shift" of compound complex sentence translation in Harry Potter and the Order of the Phoenix novel translation by Listiana Srisanti and also to describe the accuracy of those translation. This research belongs to qualitative descriptive research which document and informants are being…

  20. Topics in phase-shift analysis and higher spin field theory

    International Nuclear Information System (INIS)

    Reisen, J.C.J.M.

    1983-01-01

    The first part of this thesis considers several aspects of the existence of phase-shift ambiguities. The subject is introduced with a few remarks on scattering theory and previous work in this area is discussed. The mathematical restrictions of presenting such problems clearly are considered and the construction of different unitary amplitudes which correspond to the same differential cross section is described. So far, examples of phase-shift ambiguities have only been found for rather special cases but the author shows that these results can be considerably generalized for spinless elastic scattering, leading to properties of phase-shift ambiguities being revealed that were previously absent. These properties are discussed in detail. Phase-shift ambiguities for the spin-0-spin-1/2 elastic scattering are then considered and again generalized. The second part of this thesis is concerned with the investigation of a free field theory for both massive and massless particles with higher spin (1, 2 and 3). A root method has been used which is described and shown to lead to the free field equations and the subsidiary conditions. A field equation and Lagrangian are constructed for massive particles and the former is then used to derive a massless field equation and Lagrangian. The relation between massive and massless field equations is investigated in more detail and particularly the expressions for the amplitude describing exchange of a particle between two external sources are compared. (Auth./C.F.)

  1. Tonic noradrenergic activity modulates explorative behavior and attentional set shifting: Evidence from pupillometry and gaze pattern analysis.

    Science.gov (United States)

    Pajkossy, Péter; Szőllősi, Ágnes; Demeter, Gyula; Racsmány, Mihály

    2017-12-01

    A constant task for every living organism is to decide whether to exploit rewards associated with current behavior or to explore the environment for more rewarding options. Current empirical evidence indicates that exploitation is related to phasic whereas exploration is related to tonic firing mode of noradrenergic neurons in the locus coeruleus. In humans, this exploration-exploitation trade-off is subserved by the ability to flexibly switch attention between task-related and task-irrelevant information. Here, we investigated whether this function, called attentional set shifting, is related to exploration and tonic noradrenergic discharge. We measured pretrial baseline pupil dilation, proved to be strongly correlated with the activity of the locus coeruleus, while human participants took part in well-known tasks of attentional set shifting. Study 1 used the Wisconsin Card Sorting Task, whereas in Study 2, the Intra/Extradimensional Set Shifting Task was used. Both tasks require participants to choose between different compound stimuli based on feedback provided for their previous decisions. During the task, stimulus-reward contingencies change periodically, thus participants are repeatedly required to reassess which stimulus features are relevant (i.e., they shift their attentional set). Our results showed that baseline pupil diameter steadily decreased when the stimulus-reward contingencies were stable, whereas they suddenly increased when these contingencies changed. Analysis of looking patterns also confirmed the presence of exploratory behavior during attentional set shifting. Thus, our results suggest that tonic firing mode of noradrenergic neurons in the locus coeruleus is implicated in attentional set shifting, as it regulates the amount of exploration. © 2017 Society for Psychophysiological Research.

  2. Cost-effectiveness analysis of weekday and weeknight or weekend shifts for assessment of appendicitis

    International Nuclear Information System (INIS)

    Doria, Andrea S.; Babyn, Paul; Chait, Peter; Amernic, Heidi; Coyte, Peter C.; Dick, Paul; Langer, Jacob; Ungar, Wendy J.

    2005-01-01

    Assessment of appendicitis during a weeknight or weekend shift (after-hours period, AHP) might be more costly and less effective than its assessment on a weekday shift (standard hours period, SHP) because of increased costs (staff premium fees) and perforation risk (longer delays and less experience of fellows). Objectives: The objectives were to compare the costs and effectiveness of assessing children with suspected appendicitis who required a laparotomy and had US or CT after-hours with those of assessing children during standard hours, and to evaluate the importance of diagnostic imaging (DI) within the overall costs. We retrospectively microcosted resource use within six areas of a tertiary hospital (emergency [ED], diagnostic imaging (DI), surgery, wards, transport, and pathology) in a tertiary hospital. About 41 children (1.8-17 years) in the AHP and 35 (2.9-16 years) in the SHP were evaluated. Work shift effectiveness was measured with a histological score that assessed the severity of appendicitis (non-perforated appendicitis: scores 1-3; perforated appendicitis: score 4). The SHP was less costly and more effective regardless of whether the calculation included US or CT costs only. For a salary-based fee schedule, US$733 were saved per case of perforated appendicitis averted in the SHP. For a fee-for-service payment schedule, $847 were saved. Within the overall budget, the highest costs were those incurred on the ward for both shifts. The average cost per patient in DI ranged from 2 to 5% of the total costs in both shifts. Most perforation cases were found in the AHP (31.7%, AHP vs. 17.1%, SHP), which resulted in higher ward costs for patients in the AHP. (orig.)

  3. Shotgun lipidomic analysis of chemically sulfated sterols compromises analytical sensitivity

    DEFF Research Database (Denmark)

    Casanovas, Albert; Hannibal-Bach, Hans Kristian; Jensen, Ole Nørregaard

    2014-01-01

    Shotgun lipidomics affords comprehensive and quantitative analysis of lipid species in cells and tissues at high-throughput [1 5]. The methodology is based on direct infusion of lipid extracts by electrospray ionization (ESI) combined with tandem mass spectrometry (MS/MS) and/or high resolution F...... low ionization efficiency in ESI [7]. For this reason, chemical derivatization procedures including acetylation [8] or sulfation [9] are commonly implemented to facilitate ionization, detection and quantification of sterols for global lipidome analysis [1-3, 10]....

  4. [A new working shift model for anesthesiologists: an analysis 3 years after implementation].

    Science.gov (United States)

    Maschmann, J; Holderried, M; Blumenstock, G; Rieger, M A; Bamberg, M; Rosenberger, P; Wagner, T

    2012-11-01

    The aim of this study was to assess the efficacy, appropriateness and cost-effectiveness of a new working shift model for anesthesiologists complying with the European working time directive (EWTD) at the University Hospital of Tübingen (UKT), Germany 3 years after implementation Applying the standards of the EWTD is challenging for university hospitals as doctors must comply with the challenge of combining patient care, research and teaching. So far there have been no data available for German university hospitals on how these requirements can be met. As the department of anesthesiology is also a service-providing department it is essential not to increase staffing costs with a new shift model. In 2007 a new working shift model for the department of anesthesiology was designed and introduced in 2008. Shift planning and documentation of working hours were implemented electronically. The calculated number of doctors to run this model was 87.6 full time equivalents (FTE). For 2009 and 2010 the compliance with the EWTD parameters was checked for 1) average weekly working time limit (AWWTL) and 2) compliance to the maximum daily working time limit of 10 h (10 h DWTL). Furthermore, staffing costs for doctors in 2010 were compared to 2007. To check for the time spent in patient care the period of anesthetic attendance (PAA) was chosen, i.e. the total time of patient contact by anesthesiology staff. Data were analyzed descriptively for AWWTL and for 10 h DWTL. FTE, staff costs and PAA were evaluated by one-way ANOVA. The new shift model allowed 84.4 % of all doctors to comply with the individual AWWT limits of 54 h and 48 h in 2009 (81/96) and 76.0 % in 2010 (79/104). In 2009 61.5 % of anesthesiologists voted for opt-out (59/96) and 53.8 % did so in 2010 (56/104). The 10 h DWTL was respected by 84.0 % in 2009 and by 85.9 % in 2010. The mean number of anesthesiologists rose significantly from 78.4 FTE in 2007 to 82.5 FTE in 2009 and 84.6 FTE in 2010 (p

  5. Deuterium isotope effects on 13C and 15N chemical shifts of intramolecularly hydrogen-bonded enaminocarbonyl derivatives of Meldrum’s and Tetronic acid

    Science.gov (United States)

    Ullah, Saif; Zhang, Wei; Hansen, Poul Erik

    2010-07-01

    Secondary deuterium isotope effects on 13C and 15N nuclear shieldings in a series of cyclic enamino-diesters and enamino-esters and acyclic enaminones and enamino-esters have been examined and analysed using NMR and DFT (B3LYP/6-31G(d,p)) methods. One-dimensional and two-dimensional NMR spectra of enaminocarbonyl and their deuterated analogues were recorded in CDCl 3 and CD 2Cl 2 at variable temperatures and assigned. 1JNH coupling constants for the derivatives of Meldrum's and tetronic acids reveal that they exist at the NH-form. It was demonstrated that deuterium isotope effects, for the hydrogen bonded compounds, due to the deuterium substitution at the nitrogen nucleus lead to large one-bond isotope effects at nitrogen, 1Δ 15N(D), and two-bond isotope effects on carbon nuclei, 2ΔC(ND), respectively. A linear correlations exist between 2ΔC(ND) and 1Δ 15N(D) whereas the correlation with δNH is divided into two. A good agreement between the experimentally observed 2ΔC(ND) and calculated dσ 13C/dR NH was obtained. A very good correlation between calculated NH bond lengths and observed NH chemical shifts is found. The observed isotope effects are shown to depend strongly on Resonance Assisted Hydrogen bonding.

  6. Chemical shift assignments of the first and second RRMs of Nrd1, a fission yeast MAPK-target RNA binding protein.

    Science.gov (United States)

    Kobayashi, Ayaho; Kanaba, Teppei; Satoh, Ryosuke; Ito, Yutaka; Sugiura, Reiko; Mishima, Masaki

    2017-10-01

    Negative regulator differentiation 1 (Nrd1), a fission yeast RNA binding protein, modulates cytokinesis and sexual development and contributes to stress granule formation in response to environmental stresses. Nrd1 comprises four RRM domains and binds and stabilizes Cdc4 mRNA that encodes the myosin II light chain. Nrd1 binds the Cpc2 fission-yeast RACK1 homolog, and the interaction promotes Nrd1 localization to stress granules. Interestingly, Pmk1 mitogen-activated protein kinase phosphorylates Thr40 in the unstructured N-terminal region and Thr126 in the first RRM domain of Nrd1. Phosphorylation significantly reduces RNA-binding activity and likely modulates Nrd1 function. To reveal the relationship between the structure and function of Nrd1 and how phosphorylation affects structure, we used heteronuclear NMR techniques to investigate the three-dimensional structure of Nrd1. Here we report the 1 H, 13 C, and 15 N resonance assignments of RRM1-RRM2 (residues 108-284) comprising the first and second RRMs obtained using heteronuclear NMR techniques. Secondary structures derived from the chemical shifts are reported. These data should contribute to the understanding of the three-dimensional structure of the RRM1-RRM2 region of Nrd1 and the perturbation caused by phosphorylation.

  7. Chemical shift effect predicting lymph node status in rectal cancer using high-resolution MR imaging with node-for-node matched histopathological validation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongmei; Zhang, Chongda; Ye, Feng; Liu, Yuan; Zhou, Chunwu [Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Diagnostic Radiology, National Cancer Center/Cancer Hospital, ChaoYang District, Beijing (China); Zheng, Zhaoxu [Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Colorectal Oncology, National Cancer Center/Cancer Hospital, ChaoYang District, Beijing (China); Zou, Shuangmei [Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Pathology, National Cancer Center/Cancer Hospital, ChaoYang District, Beijing (China)

    2017-09-15

    To evaluate the value of the chemical shift effect (CSE) as well as other criteria for the prediction of lymph node status. Twenty-nine patients who underwent radical surgery of rectal cancers were studied with pre- and postoperative specimen MRI. Lymph nodes were harvested from transverse whole-mount specimens and compared with in vivo and ex vivo images to obtain a precise slice-for-section match. Preoperative MR characteristics including CSE, as well as other predictors, were evaluated by two readers independently between benign and metastatic nodes. A total of 255 benign and 35 metastatic nodes were obtained; 71.4% and 69.4% of benign nodes were detected with regular CSE for two readers, whereas 80.0% and 74.3% of metastatic nodes with absence of CSE. The CSE rendered areas under the ROC curve (AUC) of 0.879 and 0.845 for predicting nodal status for two readers. The criteria of nodal location, border, signal intensity and minimum distance to the rectal wall were also useful but with AUCs (0.629-0.743) lower than those of CSE. CSE is a reliable predictor for differentiating benign from metastatic nodes. Additional criteria should be taken into account when it is difficult to determine the nodal status by using only a single predictor. (orig.)

  8. Comparison of diffusion-weighted images using short inversion time inversion recovery or chemical shift selective pulse as fat suppression in patients with breast cancer

    International Nuclear Information System (INIS)

    Kazama, Toshiki; Nasu, Katsuhiro; Kuroki, Yoshifumi; Nawano, Shigeru; Ito, Hisao

    2009-01-01

    Fat suppression is essential for diffusion-weighted imaging (DWI) in the body. However, the chemical shift selective (CHESS) pulse often fails to suppress fat signals in the breast. The purpose of this study was to compare DWI using CHESS and DWI using short inversion time inversion recovery (STIR) in terms of fat suppression and the apparent diffusion coefficient (ADC) value. DWI using STIR, DWI using CHESS, and contrast-enhanced T1-weighted images were obtained in 32 patients with breast carcinoma. Uniformity of fat suppression, ADC, signal intensity, and visualization of the breast tumors were evaluated. In 44% (14/32) of patients there was insufficient fat suppression in the breasts on DWI using CHESS, whereas 0% was observed on DWI using STIR (P<0.0001). The ADCs obtained for DWI using STIR were 4.3% lower than those obtained for DWI using CHESS (P<0.02); there was a strong correlation of the ADC measurement (r=0.93, P<0.001). DWI using STIR may be excellent for fat suppression; and the ADC obtained in this sequence was well correlated with that obtained with DWI using CHESS. DWI using STIR may be useful when the fat suppression technique in DWI using CHESS does not work well. (author)

  9. Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2009-01-01

    Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of (79)Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the (79)Br NMR frequency to that of (13)C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions.

  10. "1H and "1"3C NMR Data on Hydroxy/methoxy Flavonoids and the Effects of Substituents on Chemical Shifts

    International Nuclear Information System (INIS)

    Yoon, Hyuk; Eom, Sung Lock; Hyun, Ji Ye; Jo, Geun Hyeong; Hwang, Do Seok; Lee, Sun Hee; Yong, Yeon Joong; Lee, Young Han; Lim, Yoong Ho; Park, Jun Cheol

    2011-01-01

    Polyphenols have recently been examined for such applications, and they are classified based on their carbon skeletons: phenolic acids with C6-C1 skeleton, hydrocinammates with C6-C_3 skeleton, stilbenes with C6-C2-C6 skeleton, and flavonoids with C6-C_3-C6 skeleton.2 Of these compounds, flavonoids are ubiquitously found in most plants. Since flavonoids belong to polyphenols, they have many hydroxy groups. From a bioavailability point of view, hydroxy groups prevent cell membrane transport, and hydroxyflavonoids can be metabolized by O-methyltransferases. However, methoxylated flavonoids may not have these problems. Hydroxylated or methoxylated flavonoids are found from natural sources. Nuclear magnetic resonance (NMR) spectroscopy is widely used to identify different compounds including hydroxylated or methoxylated flavonoids. Because the position and the number of substituted hydroxy or/and methoxy groups will change the "1H and "1"3C chemical shifts, it is important to understand these changes so that the structures of newly isolated hydroxy/methoxy-flavonoids can be easily identified

  11. VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C.; Nesbitt, Anna E.; Hallock, Michael J. [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Rupasinghe, Sanjeewa G. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Tang Ming [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Harris, Jason; Baudry, Jerome [University of Tennessee, Department of Biochemistry, Cellular and Molecular Biology (United States); Schuler, Mary A. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Rienstra, Chad M., E-mail: rienstra@illinois.edu [University of Illinois at Urbana-Champaign, Department of Chemistry (United States)

    2012-01-15

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., {sup 13}C-{sup 13}C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  12. VITAL NMR: Using Chemical Shift Derived Secondary Structure Information for a Limited Set of Amino Acids to Assess Homology Model Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C [University of Illinois, Urbana-Champaign; Nesbitt, Anna E [University of Illinois, Urbana-Champaign; Hallock, Michael J [University of Illinois, Urbana-Champaign; Rupasinghe, Sanjeewa [University of Illinois, Urbana-Champaign; Tang, Ming [University of Illinois, Urbana-Champaign; Harris, Jason B [ORNL; Baudry, Jerome Y [ORNL; Schuler, Mary A [University of Illinois, Urbana-Champaign; Rienstra, Chad M [University of Illinois, Urbana-Champaign

    2011-01-01

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  13. Repeatability of two-dimensional chemical shift imaging multivoxel proton magnetic resonance spectroscopy for measuring human cerebral choline-containing compounds.

    Science.gov (United States)

    Puri, Basant K; Egan, Mary; Wallis, Fintan; Jakeman, Philip

    2018-03-22

    To investigate the repeatability of proton magnetic resonance spectroscopy in the in vivo measurement of human cerebral levels of choline-containing compounds (Cho). Two consecutive scans were carried out in six healthy resting subjects at a magnetic field strength of 1.5 T. On each occasion, neurospectroscopy data were collected from 64 voxels using the same 2D chemical shift imaging (CSI) sequence. The data were analyzed in the same way, using the same software, to obtain the values for each voxel of the ratio of Cho to creatine. The Wilcoxon related-samples signed-rank test, coefficient of variation (CV), repeatability coefficient (RC), and intraclass correlation coefficient (ICC) were used to assess the repeatability. The CV ranged from 2.75% to 33.99%, while the minimum RC was 5.68%. There was excellent reproducibility, as judged by significant ICC values, in 26 voxels. Just three voxels showed significant differences according to the Wilcoxon related-samples signed-rank test. It is therefore concluded that when CSI multivoxel proton neurospectroscopy is used to measure cerebral choline-containing compounds at 1.5 T, the reproducibility is highly acceptable.

  14. Scan time reduction in {sup 23}Na-Magnetic Resonance Imaging using the chemical shift imaging sequence. Evaluation of an iterative reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Weingaertner, Sebastian; Konstandin, Simon; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Wetterling, Friedrich [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Dublin Univ. (Ireland) Trinity Inst. of Neuroscience; Fatar, Marc [Heidelberg Univ., Mannheim (Germany). Dept. of Neurology; Neumaier-Probst, Eva [Heidelberg Univ., Mannheim (Germany). Dept. of Neuroradiology

    2015-07-01

    To evaluate potential scan time reduction in {sup 23}Na-Magnetic Resonance Imaging with the chemical shift imaging sequence (CSI) using undersampled data of high-quality datasets, reconstructed with an iterative constrained reconstruction, compared to reduced resolution or reduced signal-to-noise ratio. CSI {sup 23}Na-images were retrospectively undersampled and reconstructed with a constrained reconstruction scheme. The results were compared to conventional methods of scan time reduction. The constrained reconstruction scheme used a phase constraint and a finite object support, which was extracted from a spatially registered {sup 1}H-image acquired with a double-tuned coil. The methods were evaluated using numerical simulations, phantom images and in-vivo images of a healthy volunteer and a patient who suffered from cerebral ischemic stroke. The constrained reconstruction scheme showed improved image quality compared to a decreased number of averages, images with decreased resolution or circular undersampling with weighted averaging for any undersampling factor. Brain images of a stroke patient, which were reconstructed from three-fold undersampled k-space data, resulted in only minor differences from the original image (normalized root means square error < 12%) and an almost identical delineation of the stroke region (mismatch < 6%). The acquisition of undersampled {sup 23}Na-CSI images enables up to three-fold scan time reduction with improved image quality compared to conventional methods of scan time saving.

  15. Constituintes químicos de Ottonia corcovadensis Miq. da floresta Amazônica: atribuição dos deslocamentos químicos dos átomos de hidrogênio e carbono Chemical constituents of Ottonia corcovadensis Miq. from Amazon forest: ¹h and 13c chemical shift assignments

    Directory of Open Access Journals (Sweden)

    Valdir A. Facundo

    2004-02-01

    Full Text Available In an ethanolic extract of leaves of Ottonia corcovadensis (Piperaceae were identified sixteen terpenoids of essential oil and the three flavonoids 3',4',5,5',7-pentamethoxyflavone (1, 3',4',5,7-tetramethoxyflavone (2 and 5-hydroxy-3',4',5',7-tetramethoxyflavone (3 and cafeic acid (4. Two amides (5 and 6 were isolated from an ethanolic extract of the roots. The structures were established by spectral analysis, meanly NMR (1D and 2D and mass spectra. Extensive NMR analysis was also used to complete ¹H and 13C chemical shift assignments of the flavonoids and amides. The components of the essential oil were identified by computer library search, retention indices and visual interpretation of mass spectra.

  16. Chemical Abundance Analysis of Moving Group W11450 (Latham 1)

    Science.gov (United States)

    O'Connell, Julia E.; Martens, Kylee; Frinchaboy, Peter M.

    2016-12-01

    We present elemental abundances for all seven stars in Moving Group W11450 (Latham 1) to determine if they may be chemically related. These stars appear to be both spatially and kinematically related, but no spectroscopic abundance analysis exists in literature. Abundances for eight elements were derived via equivalent width analyses of high-resolution (R ˜ 60,000), high-signal-to-noise ratio ( ˜ 100) spectra obtained with the Otto Struve 2.1 m telescope and the Sandiford Echelle Spectrograph at McDonald Observatory. The large star-to-star scatter in metallicity, -0.55 ≤ [Fe/H] ≤slant 0.06 dex (σ = 0.25), implies these stars were not produced from the same chemically homogeneous molecular cloud, and are therefore not part of a remnant or open cluster as previously proposed. Prior to this analysis, it was suggested that two stars in the group, W11449 and W11450, are possible wide binaries. The candidate wide binary pair show similar chemical abundance patterns with not only iron but with other elements analyzed in this study, suggesting the proposed connection between these two stars may be real.

  17. Proton-deuteron phase-shift analysis above the deuteron breakup threshold

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W. [Duke Univ., Durham, NC (United States). Dept. of Physics]|[Triangle Universities Nuclear Laboratory, Box 90308, Durham, NC (United States); Witala, H. [Institute of Physics, Jagellonian University, Reymonta 4, 30059 Cracow (Poland)

    1998-03-02

    We have performed single-energy phase-shift analyses of proton-deuteron elastic scattering data in the proton energy range from 3.5 to 10 MeV. The resulting values for the {sup 2}S{sub 1/2} and {sup 4}P{sub 1/2}, {sup 4}P{sub 3/2}, and {sup 4}P{sub 5/2} phase shifts are important benchmark values for three-nucleon calculations based on nucleon-nucleon potential models (with and without three-nucleon forces) aimed at describing the triton binding energy and at resolving the nucleon-deuteron A{sub y}({theta}) and iT{sub 11}({theta}) puzzles, respectively. (orig.) 7 refs.

  18. Desynchronization Chaos Shift Keying Method Based on the Error Second Derivative and Its Security Analysis

    Czech Academy of Sciences Publication Activity Database

    Čelikovský, Sergej; Lynnyk, Volodymyr

    2012-01-01

    Roč. 22, č. 9 (2012), 1250231-1-1250231-11 ISSN 0218-1274 R&D Projects: GA ČR(CZ) GAP103/12/1794 Institutional support: RVO:67985556 Keywords : Nonlinear system * desynchronization * chaos shift keying * generalized Lorenz system Subject RIV: BC - Control Systems Theory Impact factor: 0.921, year: 2012 http://library.utia.cas.cz/separaty/2012/TR/celikovsky-0381701.pdf

  19. Analysis of ductile-brittle transition shifts for standard and miniature bending specimens of irradiated steel

    International Nuclear Information System (INIS)

    Korshunov, M.E.; Korolev, Yu.N.; Krasikov, E.A.; Gabuev, N.N.; Tykhmeev, D.Yu.

    1996-01-01

    A study is made to reveal if there is a correlation between shifts in temperature curves obtained when testing thin plates and standard specimens on impact bending and fracture toughness. The tests were carried out using steel 25Kh3NM specimens irradiated by 6 x 10 19 cm -2 neutron fluence. A conclusion is made about the possibility to evaluate the degree of radiation-induced embrittlement of reactor steels on the basis of thin plate testing under quasistatic loads [ru

  20. QSAR modeling and chemical space analysis of antimalarial compounds

    Science.gov (United States)

    Sidorov, Pavel; Viira, Birgit; Davioud-Charvet, Elisabeth; Maran, Uko; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2017-05-01

    Generative topographic mapping (GTM) has been used to visualize and analyze the chemical space of antimalarial compounds as well as to build predictive models linking structure of molecules with their antimalarial activity. For this, a database, including 3000 molecules tested in one or several of 17 anti- Plasmodium activity assessment protocols, has been compiled by assembling experimental data from in-house and ChEMBL databases. GTM classification models built on subsets corresponding to individual bioassays perform similarly to the earlier reported SVM models. Zones preferentially populated by active and inactive molecules, respectively, clearly emerge in the class landscapes supported by the GTM model. Their analysis resulted in identification of privileged structural motifs of potential antimalarial compounds. Projection of marketed antimalarial drugs on this map allowed us to delineate several areas in the chemical space corresponding to different mechanisms of antimalarial activity. This helped us to make a suggestion about the mode of action of the molecules populating these zones.

  1. Method for fractional solid-waste sampling and chemical analysis

    DEFF Research Database (Denmark)

    Riber, Christian; Rodushkin, I.; Spliid, Henrik

    2007-01-01

    four subsampling methods and five digestion methods, paying attention to the heterogeneity and the material characteristics of the waste fractions, it was possible to determine 61 substances with low detection limits, reasonable variance, and high accuracy. For most of the substances of environmental...... of variance (20-85% of the overall variation). Only by increasing the sample size significantly can this variance be reduced. The accuracy and short-term reproducibility of the chemical characterization were good, as determined by the analysis of several relevant certified reference materials. Typically, six...... to eight different certified reference materials representing a range of concentrations levels and matrix characteristics were included. Based on the documentation provided, the methods introduced were considered satisfactory for characterization of the chemical composition of waste-material fractions...

  2. Differential Shift Estimation in the Absence of Coherence: Performance Analysis and Benefits of Polarimetry

    Science.gov (United States)

    Villano, Michelangelo; Papathanassiou, Konstantinos P.

    2011-03-01

    The estimation of the local differential shift between synthetic aperture radar (SAR) images has proven to be an effective technique for monitoring glacier surface motion. As images acquired over glaciers by short wavelength SAR systems, such as TerraSAR-X, often suffer from a lack of coherence, image features have to be exploited for the shift estimation (feature-tracking).The present paper addresses feature-tracking with special attention to the feasibility requirements and the achievable accuracy of the shift estimation. In particular, the dependence of the performance on image characteristics, such as texture parameters, signal-to-noise ratio (SNR) and resolution, as well as on processing techniques (despeckling, normalised cross-correlation versus maximum likelihood estimation) is analysed by means of Monte-Carlo simulations. TerraSAR-X data acquired over the Helheim glacier, Greenland, and the Aletsch glacier, Switzerland, have been processed to validate the simulation results.Feature-tracking can benefit of the availability of fully-polarimetric data. As some image characteristics, in fact, are polarisation-dependent, the selection of an optimum polarisation leads to improved performance. Furthermore, fully-polarimetric SAR images can be despeckled without degrading the resolution, so that additional (smaller-scale) features can be exploited.

  3. Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel β-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation.

    Science.gov (United States)

    Yazawa, Koji; Suzuki, Furitsu; Nishiyama, Yusuke; Ohata, Takuya; Aoki, Akihiro; Nishimura, Katsuyuki; Kaji, Hironori; Shimizu, Tadashi; Asakura, Tetsuo

    2012-11-25

    The accurate (1)H positions of alanine tripeptide, A(3), with anti-parallel and parallel β-sheet structures could be determined by highly resolved (1)H DQMAS solid-state NMR spectra and (1)H chemical shift calculation with gauge-including projector augmented wave calculations.

  4. Gel shift analysis of the empA promoter region in Vibrio anguillarum

    Directory of Open Access Journals (Sweden)

    Denkin Steven M

    2004-10-01

    Full Text Available Abstract Background The induction of metalloprotease encoded by empA in Vibrio anguillarum occurs at high cell density in salmon intestinal mucus. Previously we have shown that there are significant differences in empA expression in two strains of V. anguillarum, M93Sm and NB10. It is hypothesized that differences in empA regulation are due to differences in binding of regulatory elements. Results Two strains of V. anguillarum, M93Sm and NB10, were examined and compared for the presence of DNA regulatory proteins that bind to and control the empA promoter region. Gel mobility shift assays, using a digoxigenin (DIG-labeled oligomer containing a lux box-like element and the promoter for empA, were done to demonstrate the presence of a DNA-binding protein. Protein extracts from NB10 cells incubated in Luria Bertani broth + 2% NaCl (LB20, nine salts solution + 200 μg/ml mucus (NSSM, 3M (marine minimal medium, or NSS resulted in a gel mobility shift. No gel mobility shift was seen when protein extracts from either LB20- or NSSM-grown M93Sm cells were mixed with the DIG-labeled empA oligomer. The azocasein assay detected protease activity in all incubation conditions for NB10 culture supernatants. In contrast, protease activity was detected in M93Sm culture supernatants only when incubated in NSSM. Since the luxR homologue in V. anguillarum, vanT, has been cloned, sequenced, and shown to be required for protease activity, we wanted to determine if vanT mutants of NB10 exhibit the same gel shift observed in the wild-type. Site-directed mutagenesis was used to create vanT mutants in V. anguillarum M93Sm and NB10 to test whether VanT is involved with the gel mobility shift. Both vanT mutants, M02 and NB02, did not produce protease activity in any conditions. However, protein extracts from NB02 incubated in each condition still exhibited a gel shift when mixed with the DIG-labeled empA oligomer. Conclusions The data demonstrate that protein extracts of V

  5. Interleukin-6 Level among Shift and Night Workers in Japan: Cross-Sectional Analysis of the J-HOPE Study.

    Science.gov (United States)

    Amano, Hoichi; Fukuda, Yoshiharu; Yokoo, Takashi; Yamaoka, Kazue

    2018-03-27

    Shift workers have a high risk of cardiovascular disease (CVD). Systemic inflammation measured has been associated with the risk of CVD onset, in addition to classical risk factors. However, the association between work schedule and inflammatory cytokine levels remains unclear. The purpose of this study was to examine the association between work schedule and interleukin-6 (IL-6)/high-sensitivity C-reactive protein (hs-CRP) levels among Japanese workers. The present cross-sectional study was a part of the Japanese Study of Health, Occupation and Psychosocial Factors Related Equity (J-HOPE). A total of 5259 persons who measured inflammatory cytokine were analyzed in this study. One-way analysis of variance was used to test log-transformed IL-6/hs-CRP differences by work schedule. Multiple regression analysis was used to examine the difference adjusted for other possible CVD risk factors. There were 3660 participants who had a regular work schedule; the remaining schedules were shift work without night work for 181 participants, shift work with night work for 1276 participants, and only night work for 142 participants. The unadjusted model showed that only night workers were significantly related to high levels of IL-6 compared with regular workers. Even in the multiple regression analysis, the higher level of IL-6 among only night workers remained significant (β=0.058, P=0.01). On the contrary, hs-CRP was not. The present study revealed that only night shift work is significantly associated with high levels of IL-6 in Japanese workers. These observations help us understand the mechanism for the association between work schedule and CVD onset.

  6. Time allocation shifts and pollutant exposure due to traffic congestion: an analysis using the national human activity pattern survey.

    Science.gov (United States)

    Zhang, Kai; Batterman, Stuart A

    2009-10-15

    Traffic congestion increases air pollutant exposures of commuters and urban populations due to the increased time spent in traffic and the increased vehicular emissions that occur in congestion, especially "stop-and-go" traffic. Increased time in traffic also decreases time in other microenvironments, a trade-off that has not been considered in previous time activity pattern (TAP) analyses conducted for exposure assessment purposes. This research investigates changes in time allocations and exposures that result from traffic congestion. Time shifts were derived using data from the National Human Activity Pattern Survey (NHAPS), which was aggregated to nine microenvironments (six indoor locations, two outdoor locations and one transport location). After imputing missing values, handling outliers, and conducting other quality checks, these data were stratified by respondent age, employment status and period (weekday/weekend). Trade-offs or time-shift coefficients between time spent in vehicles and the eight other microenvironments were then estimated using robust regression. For children and retirees, congestion primarily reduced the time spent at home; for older children and working adults, congestion shifted the time spent at home as well as time in schools, public buildings, and other indoor environments. Changes in benzene and PM(2.5) exposure were estimated for the current average travel delay in the U.S. (9 min day(-1)) and other scenarios using the estimated time shifts coefficients, concentrations in key microenvironments derived from the literature, and a probabilistic analysis. Changes in exposures depended on the duration of the congestion and the pollutant. For example, a 30 min day(-1) travel delay was determined to account for 21+/-12% of current exposure to benzene and 14+/-8% of PM(2.5) exposure. The time allocation shifts and the dynamic approach to TAPs improve estimates of exposure impacts from congestion and other recurring events.

  7. Effects of Napping During Shift Work on Sleepiness and Performance in Emergency Medical Services Personnel and Similar Shift Workers: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    2018-01-11

    Background: Scheduled napping during work shifts may be an effective way to mitigate fatigue-related risk. This study aimed to critically review and synthesize existing literature on the impact of scheduled naps on fatigue-related outcomes for EMS pe...

  8. Shift work, night work, and the risk of prostate cancer: A meta-analysis based on 9 cohort studies.

    Science.gov (United States)

    Du, Hong-Bing; Bin, Kai-Yun; Liu, Wen-Hong; Yang, Feng-Sheng

    2017-11-01

    Epidemiology studies suggested that shift work or night work may be linked to prostate cancer (PCa); the relationship, however, remains controversy. PubMed, ScienceDirect, and Embase (Ovid) databases were searched before (started from the building of the databases) February 4, 2017 for eligible cohort studies. We pooled the evidence included by a random- or fixed-effect model, according to the heterogeneity. A predefined subgroup analysis was conducted to see the potential discrepancy between groups. Sensitivity analysis was used to test whether our results were stale. Nine cohort studies were eligible for meta-analysis with 2,570,790 male subjects. Our meta-analysis showed that, under the fixed-effect model, the pooled relevant risk (RR) of PCa was 1.05 (95% confidence interval [CI]: 1.00, 1.11; P = .06; I = 24.00%) for men who had ever engaged in night shift work; and under the random-effect model, the pooled RR was 1.08 (0.99, 1.17; P = .08; I = 24.00%). Subgroup analysis showed the RR of PCa among males in western countries was 1.05 (95% CI: 0.99, 1.11; P = .09; I = 0.00%), while among Asian countries it was 2.45 (95% CI: 1.19, 5.04; P = .02; I = 0.00%); and the RR was 1.04 (95% CI: 0.95, 1.14; P = .40; I = 29.20%) for the high-quality group compared with 1.21 (95% CI: 1.03, 1.41; P = .02; I = 0.00%) for the moderate/low-quality group. Sensitivity analysis showed robust results. Based on the current evidence of cohort studies, we found no obvious association between night shift work and PCa. However, our subgroup analysis suggests that night shift work may increase the risk of PCa in Asian men. Some evidence of a small study effect was observed in this meta-analysis.

  9. Tissue chemical analysis with muonic X-rays

    International Nuclear Information System (INIS)

    Hutson, R.L.; Reidy, J.J.; Springer, K.; Daniel, H.; Knowles, H.B.

    1976-01-01

    The stopped muon channel at the Clinton P. Anderson Meson Physics Facility (LAMPF) was used as a source of muons for studying the elemental composition of tissue with muonic X rays. The X ray spectra from several types of tissue were used to determine the amounts of carbon, nitrogen, and oxygen present. These determinations agree with the results of more conventional chemical analysis. The results show that muonic X rays offer a non-invasive technique for determining the amounts of the more abundant elements present in selected regions of the body. (orig.) [de

  10. Analysis of the chemical equilibrium of combustion at constant volume

    Directory of Open Access Journals (Sweden)

    Marius BREBENEL

    2014-04-01

    Full Text Available Determining the composition of a mixture of combustion gases at a given temperature is based on chemical equilibrium, when the equilibrium constants are calculated on the assumption of constant pressure and temperature. In this paper, an analysis of changes occurring when combustion takes place at constant volume is presented, deriving a specific formula of the equilibrium constant. The simple reaction of carbon combustion in pure oxygen in both cases (constant pressure and constant volume is next considered as example of application, observing the changes occurring in the composition of the combustion gases depending on temperature.

  11. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    International Nuclear Information System (INIS)

    Bharti, Amardeep; Goyal, Navdeep; Singh, Suman; Singla, M. L.

    2015-01-01

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  12. Treatment systems for liquid wastes generated in chemical analysis laboratories

    International Nuclear Information System (INIS)

    Linda Berrio; Oscar Beltran; Edison Agudelo; Santiago Cardona

    2012-01-01

    Nowadays, handling of liquid wastes from chemical analysis laboratories is posing problems to different public and private organizations because of its requirements of an integrated management. This article reviews various treatment technologies and its removal efficiencies in order to establish criteria for selecting the system and the appropriate variables to achieve research objectives as well as environmental sustainability. Review begins with a description of the problem and continues with the study of treatments for laboratory wastes. These technologies are segregated into physicochemical and biological treatments that comprise a variety of processes, some of which are considered in this review.

  13. Chemical analysis of dairy cattle feed from Brazil

    International Nuclear Information System (INIS)

    Luis Gustavo Cofani dos Santos; De Nadai Fernandes, E.A.; Marcio Arruda Bacchi; Lucimara Blumer; Gabriel Adrian Sarries; Fernando Barbosa Junior

    2009-01-01

    The bovine dairy cattle demand diets of high nutritional value being essential to know chemical composition of feed supplied to cows to achieve high levels of quality, safety and productivity of milk. Different roughages and concentrates from Minas Gerais and Rio Grande do Sul states, Brazil, were analyzed by instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS). Concentrate and roughage samples were differentiated by mass fractions of As, Ba, Mg, P, Rb and Sr. Samples of concentrate from both origins were differentiated by mass fractions of As, Cd, Co, Cr, Cs, Ni and Rb. (author)

  14. Integrated polymer waveguides for absorbance detection in chemical analysis systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; El-Ali, Jamil; Wolff, Anders

    2003-01-01

    A chemical analysis system for absorbance detection with integrated polymer waveguides is reported for the first time. The fabrication procedure relies on structuring of a single layer of the photoresist SU-8, so both the microfluidic channel network and the optical components, which include planar....... The emphasis of this paper is on the signal-to-noise ratio of the detection and its relation to the sensitivity. Two absorbance cells with an optical path length of 100 μm and 1000 μm were characterized and compared in terms of sensitivity, limit of detection and effective path length for measurements...

  15. Imaging, structural, and chemical analysis of silicon nanowires

    International Nuclear Information System (INIS)

    Barsotti, R.J. Jr.; Fischer, J.E.; Lee, C.H.; Mahmood, J.; Adu, C.K.W.; Eklund, P.C.

    2002-01-01

    Laser ablation has been used to grow silicon nanowires with an average silicon crystal core diameter of 6.7 nm±2.9 nm surrounded by an amorphous SiO x sheath of 1-2 nm, the smallest silicon wires reported in the literature. Imaging, chemical, and structural analysis of these wires are reported. Due to the growth temperature and the presence of calcium impurities and trace oxygen, two distinct types of wires are found. They appear to gro