WorldWideScience

Sample records for chemical sensing underclothing

  1. Chemical sensing underclothing system for testing PPE

    International Nuclear Information System (INIS)

    Slabotinsky, J.; Kralik, L.; Bradka, S.; Castulik, P.

    2009-01-01

    Personal protective equipment (PPE) when worn is subjected to pressure differentials across the garment due to ambient wind flow, by body movement and breathing creating the bellows effect, which may force hazardous chemicals vapor or aerosol through the closures, joints, outlet valves and/or clothing protective fabric. Thus the design, fit, size or improper donning of the protective garment will influence chemical-agent penetration. In order to determine penetration of chemical-protective garments by chemical vapor or aerosol, it is necessary to test the entire suit system, including seams, closures, outlet valves and areas of transition with other protective equipment, that is, at the ankles, waist, wrists, neck etc. In order to identify penetration of chemical vapor or aerosol through protective assembly, the Man-in-Simulant Test (MIST) with passive adsorptive devices (PADs) is used, when adsorbed challenging agent (simulant) is desorbed from the PAD and quantified. The current MIST method is failing in complexity of leak detection, due to limited number of passive collection points fixed on human body or a mannequin and very labor extensive work associated with allocation of 20-40 PADs and quantification of adsorbed agent. The Czech approach to detect and quantify penetration/permeation of chemical agent is based on chemical sensing underclothing enable to change the color when exposed with simulant or even with real CW agent. Color intensity and shape of stains on sensing fabric are processed with Laboratory Universal Computer Image Analysis (LUCIA) allowing determining the quantity and the allocation of the penetrating noxious agent(s). This method allows for example calculate individual doses of exposure, the breakthrough coefficient of protective garment as whole and uniquely precise allocation of penetration/permeation shortfalls. Presentation is providing detailed description of imaging system with nickname 'LUCY' in combination with testing mannequin

  2. Common Sense and Chemicals

    Science.gov (United States)

    Roy, Ken

    2010-01-01

    This month's column features two true stories about the use of chemicals in the middle school science classroom. The lesson of these stories is simple. Certainly, it is prudent to have age-appropriate experiences in science, given the developmental constraints of students in middle school. On the other hand, when the curriculum necessitates…

  3. Hybrid Arrays for Chemical Sensing

    Science.gov (United States)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.

    In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial

  4. Heterodyne lidar for chemical sensing

    International Nuclear Information System (INIS)

    Oldenborg, Richard C.; Tiee, Joe J.; Shimada, Tsutomu; Wilson, Carl W.; Remelius, Dennis K.; Fox, Jay; Swim, Cynthia

    2004-01-01

    The overall objective is to assess the detection performance of LWIR (long wavelength infrared) coherent Lidar systems that potentially possess enhanced effluent detection capabilities. Previous work conducted by Los Alamos has demonstrated that infrared DIfferential Absorption Lidar (DIAL) is capable of detecting chemicals in plumes from long standoff ranges. Our DIAL approach relied on the reflectivity of topographical targets to provide a strong return signal. With the inherent advantage of applying heterodyne transceivers to approach single-photon detection in LWIR, it is projected that marked improvements in detection range or in spatial coverage can be attained. In some cases, the added photon detection sensitivity could be utilized for sensing 'soft targets', such as atmospheric and threat aerosols where return signal strength is drastically reduced, as opposed to topographical targets. This would allow range resolved measurements and could lead to the mitigation of the limiting source of noise due to spectral/spatial/temporal variability of the ground scene. The ability to distinguish normal variations in the background from true chemical signatures is crucial to the further development of sensitive remote chemical sensing technologies. One main difficulty in demonstrating coherent DIAL detection is the development of suitable heterodyne transceivers that can achieve rapid multi-wavelength tuning required for obtaining spectral signature information. LANL has recently devised a novel multi-wavelength heterodyne transceiver concept that addresses this issue. A 5-KHz prototype coherent CO 2 transceiver has been constructed and is being now used to help address important issues in remote CBW agent standoff detection. Laboratory measurements of signal-to-noise ratio (SNR) will be reported. Since the heterodyne detection scheme fundamentally has poor shot-to-shot signal statistics, in order to achieve sensitive detection limits, favorable averaging statistics

  5. Chemical and biological sensing using tuning forks

    Science.gov (United States)

    Tao, Nongjian; Boussaad, Salah

    2012-07-10

    A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.

  6. Digitizing the chemical senses: possibilities & pitfalls

    OpenAIRE

    Spence, Charles; Obrist, Marianna; Velasco, Carlos; Ranasinghe, Nimesha

    2017-01-01

    Many people are understandably excited by the suggestion that the chemical senses can be digitized; be it to deliver ambient fragrances (e.g., in virtual reality or health-related applications), or else to transmit flavour experiences via the internet. However, to date, progress in this area has been surprisingly slow. Furthermore, the majority of the attempts at successful commercialization have failed, often in the face of consumer ambivalence over the perceived benefits/utility. In this re...

  7. Nanosensors-Cellphone Integration for Extended Chemical Sensing Network

    Science.gov (United States)

    Li, Jing

    2011-01-01

    This poster is to present the development of a cellphone sensor network for extended chemical sensing. The nanosensors using carbon nanotubes and other nanostructures are used with low power and high sensitivity for chemical detection. The sensing module has been miniaturized to a small size that can plug in or clip on to a smartphone. The chemical information detected by the nanosensors are acquired by a smartphone and transmitted via cellphone 3g or WiFi network to an internet server. The whole integrated sensing system from sensor to cellphone to a cloud will provide an extended chemical sensing network that can cover nation wide and even cover global wide for early warning of a hazardous event.

  8. Molybdenum Dichalcogenides for Environmental Chemical Sensing

    Directory of Open Access Journals (Sweden)

    Dario Zappa

    2017-12-01

    Full Text Available 2D transition metal dichalcogenides are attracting a strong interest following the popularity of graphene and other carbon-based materials. In the field of chemical sensors, they offer some interesting features that could potentially overcome the limitation of graphene and metal oxides, such as the possibility of operating at room temperature. Molybdenum-based dichalcogenides in particular are among the most studied materials, thanks to their facile preparation techniques and promising performances. The present review summarizes the advances in the exploitation of these MoX2 materials as chemical sensors for the detection of typical environmental pollutants, such as NO2, NH3, CO and volatile organic compounds.

  9. Chemical Sensing Regulates Mastication/Swallowing.

    Science.gov (United States)

    Yamamura, Kensuke; Kurose, Masayuki; Okamoto, Keiichiro

    2016-01-01

    Mastication and swallowing are the first stage of digestion involving several motor processes such as food intake, intra-oral food transport, bolus formation and chewing and swallowing reflex. These complicated motor functions are accomplished by the well-coordinated activities in the jaw, hyoid, tongue, facial and pharyngeal muscles. Although the basic activity patterns of these movements are controlled by the brainstem pattern generators, these movements generate various peripheral sensory inputs. Among the sensory inputs, it is well-known that somatic sensory inputs play important roles in reflexively modulating the movements so that the final motor outputs fit the environmental demand. However, little is known about the effects of chemical sensory inputs such as taste and olfaction originating from the ingested foods by these movements. A possible reason could be raised that cognition of the chemical sensory inputs at the higher brain also influences the movements, so it is difficult to discuss the neural mechanisms underlying the observed effect. In this review, we focus on the effects of chemical sensory inputs on the masticatory movements and initiation of swallowing. We first summarize chemical sensory inputs occurring during mastication and swallowing, and their receptive mechanisms. In addition, we will introduce the effect of application of monosodium L-glutamate (MSG) solution as an umami taste to the oropharynx on the swallow initiation which is involuntary controlled and the possible neural mechanisms underlying this effect is discussed.

  10. Diamond nanostructured devices for chemical sensing applications

    OpenAIRE

    Ahmad, R. K.

    2011-01-01

    Research in the area of CVD single crystal diamond plates of which only recently has been made commercially available saw significant advancements during the last decade. In parallel to that, detonation nanodiamond (DND) particles also now widely made accessible for requisition are provoking a lot of scientific investigations. The remarkable properties of diamond including its extreme hardness, low coefficient of friction, chemical inertness, biocompatibility, high thermal c...

  11. Miniaturized reflectance devices for chemical sensing

    International Nuclear Information System (INIS)

    Johnson, Brandy J; Erickson, Jeffrey S; Malanoski, Anthony P; Stenger, David A; Kim, Julie; Leska, Iwona A; Monk, Stormie M; Edwards, Daniel J; Young, Trent N; Bovais, Chris; Verbarg, Jasenka; Russell, Ross D

    2014-01-01

    This effort seeks to evaluate the potential of the TAOS TCS3200 RGB sensor chip in a reflectance configuration for use in target detection based on color changes in porphyrin indicators using alcohols as model targets. The chip was evaluated as provided by Parallax, Inc as a component of the TCS3200-DB which includes white LEDs, collimator lens, and standoffs for optimization of sensing distance. Nonlinearity in the response of the daughter board to color standards was observed. Signal noise levels were determined to be less than 1% within a given measurement and measurement-to-measurement variations of ∼9% were observed. The device proved effective for detection of the color change in several porphyrins upon target exposure and for monitoring the time dependence of changes following exposure. An array of six porphyrins was used for demonstration of differential changes in response to specific targets. Proof-of-concept use of the porphyrin indicators onboard two types of unmanned aerial vehicles (UAVs) is described. (paper)

  12. Study of interfacial phenomena for bio/chemical sensing applications

    Science.gov (United States)

    Min, Hwall

    This work presents the fundamental study of biological and chemical interfacial phenomena and (bio)chemical sensing applications using high frequency resonator arrays. To realize a versatile (bio)chemical sensing system for the fundamental study as well as their practical applications, the following three distinct components were studied and developed: i) detection platforms with high sensitivity, ii) novel innovative sensing materials with high selectivity, iii) analytical model for data interpretation. 8-pixel micromachined quartz crystal resonator (muQCR) arrays with a fundamental resonance frequency of 60 ¡V 90 MHz have been used to provide a reliable detection platform with high sensitivity. Room temperature ionic liquid (RTIL) has been explored and integrated into the sensing system as a smart chemical sensing material. The use of nanoporous gold (np-Au) enables the combination of the resonator and surface-enhanced Raman spectroscopy for both quantitative and qualitative measurement. A statistical model for the characterization of resonator behavior to study the protein adsorption kinetics is developed by random sequential adsorption (RSA) approach with the integration of an effective surface depletion theory. The investigation of the adsorption kinetics of blood proteins is reported as the fundamental study of biological phenomena using the proposed sensing system. The aim of this work is to study different aspects of protein adsorption and kinetics of adsorption process with blood proteins on different surfaces. We specifically focus on surface depletion effect in conjunction with the RSA model to explain the observed adsorption isotherm characteristics. A number of case studies on protein adsorption conducted using the proposed sensing system has been discussed. Effort is specifically made to understand adsorption kinetics, and the effect of surface on the adsorption process as well as the properties of the adsorbed protein layer. The second half of the

  13. Low-Cost Chemical-Responsive Adhesive Sensing Chips.

    Science.gov (United States)

    Tan, Weirui; Zhang, Liyuan; Shen, Wei

    2017-12-06

    Chemical-responsive adhesive sensing chip is a new low-cost analytical platform that uses adhesive tape loaded with indicator reagents to detect or quantify the target analytes by directly sticking the tape to the samples of interest. The chemical-responsive adhesive sensing chips can be used with paper to analyze aqueous samples; they can also be used to detect and quantify solid, particulate, and powder analytes. The colorimetric indicators become immediately visible as the contact between the functionalized adhesives and target samples is made. The chemical-responsive adhesive sensing chip expands the capability of paper-based analytical devices to analyze solid, particulate, or powder materials via one-step operation. It is also a simpler alternative way, to the covalent chemical modification of paper, to eliminate indicator leaching from the dipstick-style paper sensors. Chemical-responsive adhesive chips can display analytical results in the form of colorimetric dot patterns, symbols, and texts, enabling clear understanding of assay results by even nonprofessional users. In this work, we demonstrate the analyses of heavy metal salts in silica powder matrix, heavy metal ions in water, and bovine serum albumin in an aqueous solution. The detection is one-step, specific, sensitive, and easy-to-operate.

  14. Chemical and Physical Sensing in the Petroleum Industry

    Science.gov (United States)

    Disko, Mark

    2008-03-01

    World-scale oil, gas and petrochemical production relies on a myriad of advanced technologies for discovering, producing, transporting, processing and distributing hydrocarbons. Sensing systems provide rapid and targeted information that can be used for expanding resources, improving product quality, and assuring environmentally sound operations. For example, equipment such as reactors and pipelines can be operated with high efficiency and safety with improved chemical and physical sensors for corrosion and hydrocarbon detection. At the interface between chemical engineering and multiphase flow physics, ``multi-scale'' phenomena such as catalysis and heat flow benefit from new approaches to sensing and data modeling. We are combining chemically selective micro-cantilevers, fiber optic sensing, and acoustic monitoring with statistical data fusion approaches to maximize control information. Miniaturized analyzers represent a special opportunity, including the nanotech-based quantum cascade laser systems for mid-infrared spectroscopy. Specific examples for use of these new micro-systems include rapid monocyclic aromatic molecule identification and measurement under ambient conditions at weight ppb levels. We see promise from emerging materials and devices based on nanotechnology, which can one day be available at modest cost for impact in existing operations. Controlled surface energies and emerging chemical probes hold the promise for reduction in greenhouse gas emissions for current fuels and future transportation and energy technologies.

  15. Surface emitting ring quantum cascade lasers for chemical sensing

    Science.gov (United States)

    Szedlak, Rolf; Hayden, Jakob; Martín-Mateos, Pedro; Holzbauer, Martin; Harrer, Andreas; Schwarz, Benedikt; Hinkov, Borislav; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Acedo, Pablo; Lendl, Bernhard; Strasser, Gottfried

    2018-01-01

    We review recent advances in chemical sensing applications based on surface emitting ring quantum cascade lasers (QCLs). Such lasers can be implemented in monolithically integrated on-chip laser/detector devices forming compact gas sensors, which are based on direct absorption spectroscopy according to the Beer-Lambert law. Furthermore, we present experimental results on radio frequency modulation up to 150 MHz of surface emitting ring QCLs. This technique provides detailed insight into the modulation characteristics of such lasers. The gained knowledge facilitates the utilization of ring QCLs in combination with spectroscopic techniques, such as heterodyne phase-sensitive dispersion spectroscopy for gas detection and analysis.

  16. Analytical Chemical Sensing in the Submillimeter/terahertz Spectral Range

    Science.gov (United States)

    Moran, Benjamin L.; Fosnight, Alyssa M.; Medvedev, Ivan R.; Neese, Christopher F.

    2012-06-01

    Highly sensitive and selective Terahertz sensor utilized to quantitatively analyze a complex mixture of Volatile Organic Compounds is reported. To best demonstrate analytical capabilities of THz chemical sensors we chose to perform analytical quantitative analysis of a certified gas mixture using a novel prototype chemical sensor that couples a commercial preconcentration system (Entech 7100A) to a high resolution THz spectrometer. We selected Method TO-14A certified mixture of 39 volatile organic compounds (VOCs) diluted to 1 part per million (ppm) in nitrogen. 26 of the 39 chemicals were identified by us as suitable for THz spectroscopic detection. Entech 7100A system is designed and marketed as an inlet system for Gas Chromatography-Mass Spectrometry (GC-MS) instruments with a specific focus on TO-14 and TO-15 EPA sampling methods. Its preconcentration efficiency is high for the 39 chemicals in the mixture used for this study and our preliminary results confirm this. Here we present the results of this study which serves as basis for our ongoing research in environmental sensing and analysis of exhaled human breath.

  17. Chemical Sensing Applications of ZnO Nanomaterials

    Science.gov (United States)

    Chaudhary, Savita; Umar, Ahmad; Bhasin, K. K.

    2018-01-01

    Recent advancement in nanoscience and nanotechnology has witnessed numerous triumphs of zinc oxide (ZnO) nanomaterials due to their various exotic and multifunctional properties and wide applications. As a remarkable and functional material, ZnO has attracted extensive scientific and technological attention, as it combines different properties such as high specific surface area, biocompatibility, electrochemical activities, chemical and photochemical stability, high-electron communicating features, non-toxicity, ease of syntheses, and so on. Because of its various interesting properties, ZnO nanomaterials have been used for various applications ranging from electronics to optoelectronics, sensing to biomedical and environmental applications. Further, due to the high electrochemical activities and electron communication features, ZnO nanomaterials are considered as excellent candidates for electrochemical sensors. The present review meticulously introduces the current advancements of ZnO nanomaterial-based chemical sensors. Various operational factors such as the effect of size, morphologies, compositions and their respective working mechanisms along with the selectivity, sensitivity, detection limit, stability, etc., are discussed in this article. PMID:29439528

  18. Enhanced chemical sensing organic thin-film transistors

    Science.gov (United States)

    Tanese, M. C.; Torsi, L.; Farinola, G. M.; Valli, L.; Hassan Omar, O.; Giancane, G.; Ieva, E.; Babudri, F.; Palmisano, F.; Naso, F.; Zambonin, P. G.

    2007-09-01

    Organic thin film transistor (OTFT) sensors are capable of fast, sensitive and reliable detection of a variety of analytes. They have been successfully tested towards many chemical and biological "odor" molecules showing high selectivity, and displaying the additional advantage of being compatible with plastic technologies. Their versatility is based on the possibility to control the device properties, from molecular design up to device architecture. Here phenylene-thiophene based organic semiconductors functionalized with ad hoc chosen side groups are used as active layers in sensing OTFTs. These materials, indeed, combine the detection capability of organic molecules (particularly in the case of bio-substituted systems) with the electronic properties of the conjugated backbone. A new OTFT structure including Langmuir-Schäfer layer by layer organic thin films is here proposed to perform chemical detection of organic vapors, including vapor phase chiral molecules such as citronellol vapors, with a detection limit in the ppm range. Thermally evaporated α6T based OTFT sensors are used as well to be employed as standard system in order to compare sensors performances.

  19. A wearable fingernail chemical sensing platform: pH sensing at your fingertips.

    Science.gov (United States)

    Kim, Jayoung; Cho, Thomas N; Valdés-Ramírez, Gabriela; Wang, Joseph

    2016-04-01

    This article demonstrates an example of a wearable chemical sensor based on a fingernail platform. Fingernails represent an attractive wearable platform, merging beauty products with chemical sensing, to enable monitoring of our surrounding environment. The new colorimetric pH fingernail sensor relies on coating artificial nails with a recognition layer consisted of pH indicators entrapped in a polyvinyl chloride (PVC) matrix. Such color changing fingernails offer fast and reversible response to pH changes, repeated use, and intense color change detected easily with naked eye. The PVC matrix prevents leaching out of the indicator molecules from the fingernail sensor toward such repeated use. The limited narrow working pH range of a single pH indicator has been addressed by multiplexing three different pH indicators: bromothymol blue (pH 6.0-7.6), bromocresol green (pH 3.8-5.4), and cresol red (pH 7.2-8.8), as demonstrated for analyses of real-life samples of acidic, neutral, and basic character. The new concept of an optical wearable chemical sensor on fingernail platforms can be expanded towards diverse analytes for various applications in connection to the judicious design of the recognition layer. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Quantitative mapping of chemical compositions with MRI using compressed sensing.

    Science.gov (United States)

    von Harbou, Erik; Fabich, Hilary T; Benning, Martin; Tayler, Alexander B; Sederman, Andrew J; Gladden, Lynn F; Holland, Daniel J

    2015-12-01

    In this work, a magnetic resonance (MR) imaging method for accelerating the acquisition time of two dimensional concentration maps of different chemical species in mixtures by the use of compressed sensing (CS) is presented. Whilst 2D-concentration maps with a high spatial resolution are prohibitively time-consuming to acquire using full k-space sampling techniques, CS enables the reconstruction of quantitative concentration maps from sub-sampled k-space data. First, the method was tested by reconstructing simulated data. Then, the CS algorithm was used to reconstruct concentration maps of binary mixtures of 1,4-dioxane and cyclooctane in different samples with a field-of-view of 22mm and a spatial resolution of 344μm×344μm. Spiral based trajectories were used as sampling schemes. For the data acquisition, eight scans with slightly different trajectories were applied resulting in a total acquisition time of about 8min. In contrast, a conventional chemical shift imaging experiment at the same resolution would require about 17h. To get quantitative results, a careful weighting of the regularisation parameter (via the L-curve approach) or contrast-enhancing Bregman iterations are applied for the reconstruction of the concentration maps. Both approaches yield relative errors of the concentration map of less than 2mol-% without any calibration prior to the measurement. The accuracy of the reconstructed concentration maps deteriorates when the reconstruction model is biased by systematic errors such as large inhomogeneities in the static magnetic field. The presented method is a powerful tool for the fast acquisition of concentration maps that can provide valuable information for the investigation of many phenomena in chemical engineering applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Functional nanostructured platforms for chemical and biological sensing

    Science.gov (United States)

    Létant, S. E.

    2006-05-01

    The central goal of our work is to combine semiconductor nanotechnology and surface functionalization in order to build platforms for the selective detection of bio-organisms ranging in size from bacteria (micron range) down to viruses, as well as for the detection of chemical agents (nanometer range). We will show on three porous silicon platforms how pore geometry and pore wall chemistry can be combined and optimized to capture and detect specific targets. We developed a synthetic route allowing to directly anchor proteins on silicon surfaces and illustrated the relevance of this technique by immobilizing live enzymes onto electrochemically etched luminescent nano-porous silicon. The powerful association of the specific enzymes with the transducing matrix led to a selective hybrid platform for chemical sensing. We also used light-assisted electrochemistry to produce periodic arrays of through pores on pre-patterned silicon membranes with controlled diameters ranging from many microns down to tens of nanometers. We demonstrated the first covalently functionalized silicon membranes and illustrated their selective capture abilities with antibody-coated micro-beads. These engineered membranes are extremely versatile and could be adapted to specifically recognize the external fingerprints (size and coat composition) of target bio-organisms. Finally, we fabricated locally functionalized single nanopores using a combination of focused ion beam drilling and ion beam assisted oxide deposition. We showed how a silicon oxide ring can be grown around a single nanopore and how it can be functionalized with DNA probes to detect single viral-sized beads. The next step for this platform is the detection of whole viruses and bacteria.

  2. Stretchable Electronic Sensors of Nanocomposite Network Films for Ultrasensitive Chemical Vapor Sensing.

    Science.gov (United States)

    Yan, Hong; Zhong, Mengjuan; Lv, Ze; Wan, Pengbo

    2017-11-01

    A stretchable, transparent, and body-attachable chemical sensor is assembled from the stretchable nanocomposite network film for ultrasensitive chemical vapor sensing. The stretchable nanocomposite network film is fabricated by in situ preparation of polyaniline/MoS 2 (PANI/MoS 2 ) nanocomposite in MoS 2 suspension and simultaneously nanocomposite deposition onto prestrain elastomeric polydimethylsiloxane substrate. The assembled stretchable electronic sensor demonstrates ultrasensitive sensing performance as low as 50 ppb, robust sensing stability, and reliable stretchability for high-performance chemical vapor sensing. The ultrasensitive sensing performance of the stretchable electronic sensors could be ascribed to the synergistic sensing advantages of MoS 2 and PANI, higher specific surface area, the reliable sensing channels of interconnected network, and the effectively exposed sensing materials. It is expected to hold great promise for assembling various flexible stretchable chemical vapor sensors with ultrasensitive sensing performance, superior sensing stability, reliable stretchability, and robust portability to be potentially integrated into wearable electronics for real-time monitoring of environment safety and human healthcare. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Thin metal films in resistivity-based chemical sensing

    Czech Academy of Sciences Publication Activity Database

    Podešva, Pavel; Foret, František

    2013-01-01

    Roč. 9, č. 4 (2013), s. 642-652 ISSN 1573-4110 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081715 Keywords : voltohmmetric sensing * chemiresistor * thin metal film * gas sensing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.194, year: 2013

  4. Synthesis and characterization of carbon nanofilms for chemical sensing

    Science.gov (United States)

    Kumar, Vivek

    Carbon nanofilms obtained by high temperature graphitization of diamond surface in inert atmospheres or vacuum are modified by treatment in plasma of different precursor gases. At temperatures above 1000 °C, a stable conductive film of thickness between 10 - 100 nm and specific resistivity 10-3-10-4 Ωm, depending upon the heating conditions and the growth atmosphere, is formed on diamond surface. A gray, thin film of high surface resistivity is obtained in high vacuum, while at low vacuum (below 10-4 mbar), a thick black film of low surface resistivity forms. It is observed that the exposure to plasma reduces the surface conductance of carbon nanofilms as result of a partial removal of carbon and the plasma-stimulated amorphization. The rate of the reduction of conductance and hence the etching ability of plasma depends on the type of precursor gas. Hydrogen reveals the strongest etching ability, followed by oxygen and argon, whereas SF6 is ineffective. The carbon nanofilms show significant sensitivity of their electrical conductance to temperature and exposure to the vapors of common organic compounds. The oxygen plasma treated films exhibit selective response to acetone and water vapors. The fast response and recovery of the conductance are the features of the carbon nanofilms. The plasma-treated carbon nanofilm on graphitized diamond surface is discussed as a promising sensing material for development of all-carbon chemical sensors, which may be suitable for biological and medical applications. An alternative approach of fabrication of temperature and chemical sensitive carbon nanofilms on insulating substrates is proposed. The films are obtained by direct deposition of sputtered carbon on highly polished quartz substrates followed by subsequent annealing at temperatures above 400 °C. It is observed that the as-deposited films are essentially amorphous, while the heating induces irreversible structural ordering and gradual conversion of amorphous carbon in

  5. 2006, REMOTE SENSING AND GIS IN THE REMEDIATION OF CHEMICAL WEAPONS CONTAMINATION IN AN URBAN LANDSCAPE

    Science.gov (United States)

    This presentation will document the use of historical imagery, GIS, photogrammetry and hyperspectral remote sensing in locating and removing chemical weapons such as Mustard Gas, Phosgene, Ricin, and Lewisite from the environment and establishing a risk assessment methodology for...

  6. Thermally emissive sensing materials for chemical spectroscopy analysis

    Science.gov (United States)

    Poole, Zsolt; Ohodnicki, Paul R.

    2018-05-08

    A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to the material.

  7. Extremely sensitive multiple sensing ring PCF sensor for lower indexed chemical detection

    Directory of Open Access Journals (Sweden)

    Veerpal Kaur

    2017-09-01

    Full Text Available In this article, we have designed and analysed a photonic crystal fiber with multiple sensing ring in core for chemical and biochemical sensing applications. In this proposed design, three and four sensing ring describe in core which offers remarkable high sensitivity and spiral cladding pattern confines large fraction of power in core region and thus reduce the overall confinement loss. This novel proposed model exhibits simultaneously ultra high relative sensitivity 95.40%, 93.13% and minimum confinement loss 7.108×10−08, 2.47×10−08dB/km for four and three ring pattern. These sensing rings are filled with different sensing liquid. Multiple sensing rings as compared to multiple air holes are desirable feature from fabrication point of view. This proposed PCF design overcomes some experimental challenge such as PCF probe needs some displacement after filling the sensing liquid. These uniform circular sensing rings around the solid core overcome the losses and support better evanescent field matter interaction for sensing application. Multiple sensing rings as compared to multiple tiny air holes are desirable feature from fabrication point of view.

  8. Wireless Chemical Sensor and Sensing Method for Use Therewith

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Oglesby, Donald M. (Inventor); Taylor, Bryant D. (Inventor)

    2016-01-01

    A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.

  9. Impedance spectroscopy on xerogel layer for chemical sensing

    Czech Academy of Sciences Publication Activity Database

    Abdelghani, A.; Cherif, K.; Jaffrezic-Renault, N.; Matějec, Vlastimil

    2006-01-01

    Roč. 26, 2/3 (2006), s. 542-545 ISSN 0928-4931. [MADICA 2004. Tunis, 29.11.2004-01.12.2004] Institutional research plan: CEZ:AV0Z2067918 Keywords : demodulation * chemical sensors * aerogels * spectroscopy * sol-gel processing Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.325, year: 2006

  10. Incorporation of hydrogel as a sensing medium for recycle of sensing material in chemical sensors

    Science.gov (United States)

    Hwang, Yunjung; Park, Jeong Yong; Kwon, Oh Seok; Joo, Seokwon; Lee, Chang-Soo; Bae, Joonwon

    2018-01-01

    A hydrogel, produced with agarose extracted from seaweed, was introduced as a reusable medium in ultrasensitive sensors employing conducting polymer nanomaterials and aptamers. A basic dopamine (DA) sensor was constructed by placing a hydrogel, containing a sensing material composed of aptamer-linked carboxylated polypyrrole nanotubes (PPy-COOH NTs), onto a micropatterned gold electrode. The hydrogel provided a benign electrochemical environment, facilitated specific interactions between DA and the PPy-COOH NT sensing material, and simplified the retrieval of PPy-COOH NTs after detection. It was demonstrated that the agarose hydrogel was successfully employed as a sensing medium for detection of DA, providing a benign environment for the electrode type sensor. PPy-COOH NTs were recovered by simply heating the hydrogel in water. The hydrogel also afforded stable signal intensity after repeated use with a limit of detection of 1 nmol and a clear, stable signal up to 100 nmol DA. This work provides relevant information for future research on reusable or recyclable sensors.

  11. Lighting up micromotors with quantum dots for smart chemical sensing.

    Science.gov (United States)

    Jurado-Sánchez, B; Escarpa, A; Wang, J

    2015-09-25

    A new "on-the-fly" chemical optical detection strategy based on the incorporation of fluorescence CdTe quantum dots (QDs) on the surface of self-propelled tubular micromotors is presented. The motion-accelerated binding of trace Hg to the QDs selectively quenches the fluorescence emission and leads to an effective discrimination between different mercury species and other co-existing ions.

  12. Linking remotely sensed aerosol types to their chemical composition

    Science.gov (United States)

    Dawson, K. W.; Kacenelenbogen, M. S.; Johnson, M. S.; Burton, S. P.; Hostetler, C. A.; Meskhidze, N.

    2016-12-01

    Aerosol types measured during the Ship-Aircraft Bio-Optical Research (SABOR) experiment are related to GEOS-Chem model chemical composition. The application for this procedure to link model chemical components to aerosol type is desirable for understanding aerosol evolution over time. The Mahalanobis distance (DM) statistic is used to cluster model groupings of five chemical components (organic carbon, black carbon, sea salt, dust and sulfate) in a way analogous to the methods used by Burton et al. [2012] and Russell et al. [2014]. First, model-to-measurement evaluation is performed by collocating vertically resolved aerosol extinction from SABOR High Spectral Resolution LiDAR (HSRL) to the GEOS-Chem nested high-resolution data. Comparisons of modeled-to-measured aerosol extinction are shown to be within 35% ± 14%. Second, the model chemical components are calculation into five variables to calculate the DM and cluster means and covariances for each HSRL-retrieved aerosol type. The layer variables from the model are aerosol optical depth (AOD) ratios of (i) sea salt and (ii) dust to total AOD, mass ratios of (iii) total carbon (i.e. sum of organic and black carbon) to the sum of total carbon and sulfate (iv) organic carbon to black carbon, and (v) the natural log of the aerosol-to-molecular extinction ratio. Third, the layer variables and at most five out of twenty SABOR flights are used to form the pre-specified clusters for calculating DM and to assign an aerosol type. After determining the pre-specified clusters, model aerosol types are produced for the entire vertically resolved GEOS-Chem nested domain over the United States and the model chemical component distributions relating to each type are recorded. Resulting aerosol types are Dust/Dusty Mix, Maritime, Smoke, Urban and Fresh Smoke (separated into `dark' and `light' by a threshold of the organic to black carbon ratio). Model-calculated DM not belonging to a specific type (i.e. not meeting a threshold

  13. A wireless potentiostat for mobile chemical sensing and biosensing.

    Science.gov (United States)

    Steinberg, Matthew D; Kassal, Petar; Kereković, Irena; Steinberg, Ivana Murković

    2015-10-01

    Wireless chemical sensors are used as analytical devices in homeland defence, home-based healthcare, food logistics and more generally for the Sensor Internet of Things (SIoT). Presented here is a battery-powered and highly portable credit-card size potentiostat that is suitable for performing mobile and wearable amperometric electrochemical measurements with seamless wireless data transfer to mobile computing devices. The mobile electrochemical analytical system has been evaluated in the laboratory with a model redox system - the reduction of hexacyanoferrate(III) - and also with commercially available enzymatic blood-glucose test-strips. The potentiostat communicates wirelessly with mobile devices such as tablets or Smartphones by near-field communication (NFC) or with personal computers by radio-frequency identification (RFID), and thus provides a solution to the 'missing link' in connectivity that often exists between low-cost mobile and wearable chemical sensors and ubiquitous mobile computing products. The mobile potentiostat has been evaluated in the laboratory with a set of proof-of-concept experiments, and its analytical performance compared with a commercial laboratory potentiostat (R(2)=0.9999). These first experimental results demonstrate the functionality of the wireless potentiostat and suggest that the device could be suitable for wearable and point-of-sample analytical measurements. We conclude that the wireless potentiostat could contribute significantly to the advancement of mobile chemical sensor research and adoption, in particular for wearable sensors in healthcare and sport physiology, for wound monitoring and in mobile point-of-sample diagnostics as well as more generally as a part of the Sensor Internet of Things. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. MEMS Cantilever Sensor for THz Photoacoustic Chemical Sensing and Spectroscopy

    Science.gov (United States)

    2013-12-26

    texture for the preferential crystal formation of the PZT . Deposited by chemical solution deposition (sol-gel), a 1 μm thick PZT film was used as the...Potrepka, G. R. Fox, I. Takeuchi and R. G. Polcawich. "Improving PZT thin film texture through Pt metallization and seed layers," MRS Proceedings (1299... PZT thin film," Journal of the European Ceramic Society 24(6), pp. 993-997, 2004. [73] Q. Wang, X. Du, B. Xu and L. E. Cross. "Theoretical analysis

  15. Chemesthesis and the Chemical Senses as Components of a “Chemofensor Complex”

    Science.gov (United States)

    2012-01-01

    An important function of the chemical senses is to warn against dangerous biological and chemical agents in the environment. The discovery in recent years of “taste” receptor cells outside the oral cavity that appear to have protective functions has raised new questions about the nature and scope of the chemical senses in general and of chemesthesis in particular. The present paper briefly reviews these findings within the context of what is currently known about the body's chemically sensitive protective mechanisms, including nonsensory processes that help to expel or neutralize threatening agents once they have been encountered. It is proposed that this array of defense mechanisms constitutes a “chemofensor complex” in which chemesthesis is the most ubiquitous, functionally diverse, and interactive chemosensory component. PMID:22210122

  16. Chemical sensing of plant stress at the ecosystem scale

    Directory of Open Access Journals (Sweden)

    T. Karl

    2008-09-01

    Full Text Available Significant ecosystem-scale emissions of methylsalicylate (MeSA, a semivolatile plant hormone thought to act as the mobile signal for systemic acquired resistance (SAR, were observed in an agroforest. Our measurements show that plant internal defence mechanisms can be activated in response to temperature stress and are modulated by water availability on large scales. Highest MeSA fluxes (up to 0.25 mg/m2/h were observed after plants experienced ambient night-time temperatures of ~7.5°C followed by a large daytime temperature increase (e.g. up to 22°C. Under these conditions estimated night-time leaf temperatures were as low as ~4.6°C, likely inducing a response to prevent chilling injury. Our observations imply that plant hormones can be a significant component of ecosystem scale volatile organic compound (VOC fluxes (e.g. as high as the total monoterpene (MT flux and therefore contribute to the missing VOC budget. If generalized to other ecosystems and different types of stresses these findings suggest that semivolatile plant hormones have been overlooked by investigations of the impact of biogenic VOCs on aerosol formation events in forested regions. Our observations show that the presence of MeSA in canopy air serves as an early chemical warning signal indicating ecosystem-scale stresses before visible damage becomes apparent. As a chemical metric, ecosystem emission measurements of MeSA in ambient air could therefore support field studies investigating factors that adversely affect plant growth.

  17. 30 CFR 75.1101-16 - Dry powder chemical systems; sensing and fire-suppression devices.

    Science.gov (United States)

    2010-07-01

    ...-contained dry powder chemical system shall be equipped with sensing devices which shall be designed to activate the fire-control system, sound an alarm and stop the conveyor drive motor in the event of a rise... belt drive, each sensor shall be equipped with a standby power source which shall be capable of...

  18. Thermocouple-based Temperature Sensing System for Chemical Cell Inside Micro UAV Device

    Science.gov (United States)

    Han, Yanhui; Feng, Yue; Lou, Haozhe; Zhang, Xinzhao

    2018-03-01

    Environmental temperature of UAV system is crucial for chemical cell component inside. Once the temperature of this chemical cell is over 259 °C and keeps more than 20 min, the high thermal accumulation would result in an explosion, which seriously damage the whole UAV system. Therefore, we develop a micro temperature sensing system for monitoring the temperature of chemical cell thermally influenced by UAV device deployed in a 300 °C temperature environment, which is quite useful for insensitive munitions and UAV safety enhancement technologies.

  19. A PMMA coated PMN–PT single crystal resonator for sensing chemical agents

    International Nuclear Information System (INIS)

    Frank, Michael; Kassegne, Sam; Moon, Kee S

    2010-01-01

    A highly sensitive lead magnesium niobate–lead titanate (PMN–PT) single crystal resonator coated with a thin film of polymethylmethacrylate (PMMA) useful for detecting chemical agents such as acetone, methanol, and isopropyl alcohol is presented. Swelling of the cured PMMA polymer layer in the presence of acetone, methanol, and isopropyl alcohol vapors is sensed as a mass change transduced to an electrical signal by the PMN–PT thickness shear mode sensor. Frequency change in the PMN–PT sensor is demonstrated to vary according to the concentration of the chemical vapor present within the sensing chamber. For acetone, the results indicate a frequency change more than 6000 times greater than that which would be expected from a quartz crystal microbalance coated with PMMA. This study is the first of its kind to demonstrate vapor loading of adsorbed chemical agents onto a polymer coated PMN–PT resonator

  20. Micro- and nanostructured sol-gel-based materials for optical chemical sensing (2005–2015)

    International Nuclear Information System (INIS)

    Barczak, Mariusz; McDonagh, Colette; Wencel, Dorota

    2016-01-01

    This review (with 172 references) highlights the progress made in the past 10 years in silica sol-gel-based materials for use in optical chemical sensing. Following an introduction, the processes leading to the sol-gel-based and ormosil materials, their printability and methods for characterisation are discussed. Then various classes of optical sensors, with a focus on sensors for pH values, oxygen, carbon dioxide, ammonia (also in dissolved form), and heavy metal ions are described. A further section covers nanoparticle-based optical sensors mainly for use in intracellular sensing of the above species. Recent developments in this area are also emphasised and future trends discussed. (author)

  1. Refractive Index Sensing with D-Shaped Plastic Optical Fibers for Chemical and Biochemical Applications.

    Science.gov (United States)

    Sequeira, Filipa; Duarte, Daniel; Bilro, Lúcia; Rudnitskaya, Alisa; Pesavento, Maria; Zeni, Luigi; Cennamo, Nunzio

    2016-12-13

    We report the optimization of the length of a D-shaped plastic optical fiber (POF) sensor for refractive index (RI) sensing from a numerical and experimental point of view. The sensing principle is based on total internal reflection (TIR). POFs with 1 mm in diameter were embedded in grooves, realized in planar supports with different lengths, and polished to remove the cladding and part of the core. All D-shaped POF sensors were tested using aqueous medium with different refractive indices (from 1.332 to 1.471) through intensity-based configuration. Results showed two different responses. Considering the refractive index (RI) range (1.33-1.39), the sensitivity and the resolution of the sensor were strongly dependent on the sensing region length. The highest sensitivity (resolution of 6.48 × 10 -3 refractive index units, RIU) was obtained with 6 cm sensing length. In the RI range (1.41-1.47), the length of the sensing region was not a critical aspect to obtain the best resolution. These results enable the application of this optical platform for chemical and biochemical evanescent field sensing. The sensor production procedure is very simple, fast, and low-cost.

  2. Refractive Index Sensing with D-Shaped Plastic Optical Fibers for Chemical and Biochemical Applications

    Directory of Open Access Journals (Sweden)

    Filipa Sequeira

    2016-12-01

    Full Text Available We report the optimization of the length of a D-shaped plastic optical fiber (POF sensor for refractive index (RI sensing from a numerical and experimental point of view. The sensing principle is based on total internal reflection (TIR. POFs with 1 mm in diameter were embedded in grooves, realized in planar supports with different lengths, and polished to remove the cladding and part of the core. All D-shaped POF sensors were tested using aqueous medium with different refractive indices (from 1.332 to 1.471 through intensity-based configuration. Results showed two different responses. Considering the refractive index (RI range (1.33–1.39, the sensitivity and the resolution of the sensor were strongly dependent on the sensing region length. The highest sensitivity (resolution of 6.48 × 10−3 refractive index units, RIU was obtained with 6 cm sensing length. In the RI range (1.41–1.47, the length of the sensing region was not a critical aspect to obtain the best resolution. These results enable the application of this optical platform for chemical and biochemical evanescent field sensing. The sensor production procedure is very simple, fast, and low-cost.

  3. Long period gratings in multimode optical fibers: application in chemical sensing

    Science.gov (United States)

    Thomas Lee, S.; Dinesh Kumar, R.; Suresh Kumar, P.; Radhakrishnan, P.; Vallabhan, C. P. G.; Nampoori, V. P. N.

    2003-09-01

    We propose and demonstrate a new technique for evanescent wave chemical sensing by writing long period gratings in a bare multimode plastic clad silica fiber. The sensing length of the present sensor is only 10 mm, but is as sensitive as a conventional unclad evanescent wave sensor having about 100 mm sensing length. The minimum measurable concentration of the sensor reported here is 10 nmol/l and the operating range is more than 4 orders of magnitude. Moreover, the detection is carried out in two independent detection configurations viz., bright field detection scheme that detects the core-mode power and dark field detection scheme that detects the cladding mode power. The use of such a double detection scheme definitely enhances the reliability and accuracy of the results. Furthermore, the cladding of the present fiber need not be removed as done in conventional evanescent wave fiber sensors.

  4. Single-Molecule Sensing with Nanopore Confinement: from Chemical Reactions to Biological Interactions.

    Science.gov (United States)

    Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao

    2018-03-25

    The nanopore can generate an electrochemical confinement for single-molecule sensing which help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this concept, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sense of coherence and burnout in the energy and chemicals industry: The moderating role of age

    Directory of Open Access Journals (Sweden)

    Sanet van der Westhuizen

    2015-11-01

    Full Text Available Orientation: Organisations are accommodating four different social generations in the working environment. This poses a challenge for Human Resources departments to manage these diverse age cohorts in the workforce, as they are likely to have different needs, values and variables affecting their wellness. Research purpose: The objective of the present study was to assess whether various age groups differ with regard to their sense of coherence and burnout, and whether age significantly moderates the relationship between sense of coherence and burnout. Motivation for the study: Although the literature review suggests that age groups may differ with regard to their sense of coherence and burnout, the findings seem to be somewhat inconclusive in this regard. There also seems to be a paucity of research examining the interaction effect between sense of coherence, burnout and age. Research approach, design and method: A cross-sectional quantitative survey approach was used. A nonprobability convenience sample of adults (N = 246 – employed in South Africa by an international integrated energy and chemicals company – participated in the study. Correlation, analysis of variance (ANOVA and hierarchical multiple regression analyses were performed to achieve the objectives of the study. Main findings: The results showed that employees between the ages of 51 and 60 years of age experienced higher levels of comprehensibility and lower levels of reduced professional efficacy than their younger counterparts. The relationship between sense of coherence and exhaustion was also stronger for employees between 51 and 60 years old than for younger age categories. Practical/managerial implications: The results of the study can be useful when planning human resource interventions to enhance the well-being of employees from different age groups. Contribution: The results of the study add new insights to the well-being literature by showing that employees’ age is

  6. Chemical and Biological Sensing with a Fiber Optic Surface Plasmon Resonance Device

    Science.gov (United States)

    Shevchenko, Yanina

    Fiber biosensors have emerged as an alternative to other optical sensor platforms which utilize bulkier optical elements. Sensors manufactured using optical fiber offer considerable advantages over traditional platforms, such as simple manufacturing process, small size and possibility for in situ and remote measurements. The possibility to manufacture a compact sensor with very few optical elements and package it into a portable hand-held device makes it particularly useful in many biomedical applications. Such applications generate a growing demand for an improved understanding of how fiber sensors function as well as for sensor optimization techniques so later these devices can suit the needs of the applications they are developed for. Research presented in this thesis is focused on a development of a plasmonic fiber biosensor and its application towards biochemical sensing. The fiber sensor used in this study integrates plasmonics with tilted Bragg grating technology, creating a versatile sensing solution. Plasmonics alone is an established phenomenon that is widely employed in many sensing applications. The Bragg grating is also a well-researched optical component that has been extensively applied in telecommunication. By combining both plasmonics and Bragg gratings, it is possible to design a compact and very sensitive chemical sensor. The presented work focuses on the characterization and optimization of the fiber sensor so later it could be applied in biochemical sensing. It also explores several applications including real-time monitoring of polymer adsorption, detection of thrombin and cellular sensing. All applications are focused on studying processes that are very different in their nature and thus the various strengths of the developed sensing platform were leveraged to suit the requirements of these applications.

  7. Network model of chemical-sensing system inspired by mouse taste buds.

    Science.gov (United States)

    Tateno, Katsumi; Igarashi, Jun; Ohtubo, Yoshitaka; Nakada, Kazuki; Miki, Tsutomu; Yoshii, Kiyonori

    2011-07-01

    Taste buds endure extreme changes in temperature, pH, osmolarity, so on. Even though taste bud cells are replaced in a short span, they contribute to consistent taste reception. Each taste bud consists of about 50 cells whose networks are assumed to process taste information, at least preliminarily. In this article, we describe a neural network model inspired by the taste bud cells of mice. It consists of two layers. In the first layer, the chemical stimulus is transduced into an irregular spike train. The synchronization of the output impulses is induced by the irregular spike train at the second layer. These results show that the intensity of the chemical stimulus is encoded as the degree of the synchronization of output impulses. The present algorithms for signal processing result in a robust chemical-sensing system.

  8. Ultra-Trace Chemical Sensing with Long-Wave Infrared Cavity-Enhanced Spectroscopic Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Myers, Tanya L.; Cannon, Bret D.; Williams, Richard M.; Schultz, John F.

    2003-02-20

    are offset by the superior performance, ma-turity, and robustness of SWIR lasers, detectors, and other components, while the reverse is true for the MWIR and LWIR bands. PNNL's research activities include identification of signature chemicals and quantification of their spectroscopy, exploration of novel sensing techniques, and experimental sensor system construction and testing. In FY02, experimental QC laser systems developed with DARPA funding were used to explore continuous-wave (cw) CES in various forms culminating in the NICE-OHMS technique [1-3] discussed below. In FY02 PNNL also built an SWIR sensor to validate utility of the SWIR spectral region for chemical sensing, and explore the science and engineering of CES in field environments. The remainder of this report is devoted to PNNL's LWIR CES research. During FY02 PNNL explored the performance and limitations of several detection tech-niques in the LWIR including direct cavity-enhanced absorption, cavity-dithered phase-sensitive detection and resonant sideband cavity-enhanced detection. This latter tech-nique is also known as NICE-OHMS, which stands for Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy. This technique, pioneered in the near infra-red (NIR) by Dr J. Hall and coworkers at the University of Colorado, is one of the most sensitive spectroscopic techniques currently known. In this report, the first demonstra-tion of this technique in the LWIR is presented.

  9. Bacteria are not too small for spatial sensing of chemical gradients: An experimental evidence

    DEFF Research Database (Denmark)

    Thar, Roland; Kühl, Michael

    2003-01-01

    By analyzing the chemotactic behavior of a recently described marine bacterial species, we provide experimental evidence that bacteria are not too small for sensing chemical gradients spatially. The bipolar flagellated vibrioid bacteria (typical size 2 × 6 µm) exhibit a unique motility pattern...... as they translate along as well as rotate around their short axis, i.e., the pathways of the cell poles describe a double helix. The natural habitat of the bacteria is characterized by steep oxygen gradients where they accumulate in a band at their preferred oxygen concentration of ˜2 µM. Single cells leaving...... the band toward the oxic region typically return to the band within 16 s following a U-shaped track. A detailed analysis of the tracks reveals that the cells must be able to sense the oxygen gradient perpendicular to their swimming direction. Thus, they can detect oxygen gradients along a distance of ˜5 µm...

  10. Design and Fabrication of Piezoresistive Based Encapsulated Poly-Si Cantilevers for Bio/chemical Sensing

    Science.gov (United States)

    Krishna, N. P. Vamsi; Murthy, T. R. Srinivasa; Reddy, K. Jayaprakash; Sangeeth, K.; Hegde, G. M.

    Cantilever-based sensing is a growing research field not only within micro regime but also in nano technology. The technology offers a method for rapid, on-line and in-situ monitoring of specific bio/chemical substances by detecting the nanomechanical responses of a cantilever sensor. Cantilever with piezoresistive based detection scheme is more attractive because of its electronics compatibility. Majority of commercially available micromachined piezoresistive sensors are bulk micromachined devices and are fabricated using single crystal silicon wafers. As substrate properties are not important in surface micromachining, the expensive silicon wafers can be replaced by cheaper substrates, such as poly-silicon, glass or plastic. Here we have designed SU-8 based bio/chemical compatible micro electro mechanical device that includes an encapsulated polysilicon piezoresistor for bio/chemical sensing. In this paper we report the design, fabrication and analysis of the encapsulated poly-Si cantilevers. Design and theoretical analysis are carried out using Finite Element Analysis software. For fabrication of poly-silicon piezoresistive cantilevers we followed the surface micromachining process steps. Preliminary characterization of the cantilevers is presented.

  11. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    Science.gov (United States)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  12. High Sensitivity, Low Power Nano Sensors and Devices for Chemical Sensing

    Science.gov (United States)

    Li, Jing; Powell, Dan; Getty, Stephanie; Lu, Yi-Jiang

    2004-01-01

    The chemical sensor market has been projected to grow to better than $40 billion dollars worldwide within the next 10 years. Some of the primary motivations to develop nanostructured chemical sensors are monitoring and control of environmental pollution; improved diagnostics for consumption; improvement in measurement precision and accuracy; and improved detection limits for Homeland security, battlefield environments, and process and quality control of industrial applications. In each of these applications, there is demand for sensitivity, selectivity and stability of environmental and biohazard detection and capture beyond what is currently commercially available. Nanotechnology offers the ability to work at the molecular level, atom by atom, to create large structures with fundamentally new molecular organization. It is essentially concerned with materials, devices, and systems whose structures and components exhibit novel and significantly improved physical, chemical and biological properties, phenomena, and process control due to their nanoscale size. One such nanotechnology-enabled chemical sensor has been developed at NASA Ames leveraging nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxide nanobelts or nanowires, as a sensing medium bridging a pair of interdigitated electrodes (IDE) realized through a silicon-based microfabrication and micromachining technique. The DE fingers are fabricated on a silicon substrate using standard photolithography and thin film metallization techniques. It is noteworthy that the fabrication techniques employed are not confined to the silicon substrate. Through spin casting and careful substrate selection (i.e. clothing, glass, polymer, etc.), additional degrees of freedom can be exploited to enhance sensitivity or to conform to unique applications. Both in-situ growth of nanostructured materials and casting of nanostructured dispersions were used to produce analogous chemical sensing devices.

  13. Electrospun Polymer Nanofibers Decorated with Noble Metal Nanoparticles for Chemical Sensing.

    Science.gov (United States)

    Chen, Chen; Tang, Yongan; Vlahovic, Branislav; Yan, Fei

    2017-12-01

    The integration of different noble metal nanostructures, which exhibit desirable plasmonic and/or electrocatalytic properties, with electrospun polymer nanofibers, which display unique mechanical and thermodynamic properties, yields novel hybrid nanoscale systems of synergistic properties and functions. This review summarizes recent advances on how to incorporate noble metal nanoparticles into electrospun polymer nanofibers and illustrates how such integration paves the way towards chemical sensing applications with improved sensitivity, stability, flexibility, compatibility, and selectivity. It is expected that further development of this field will eventually make a wide impact on many areas of research.

  14. Supramolecular chemistry and chemical warfare agents: from fundamentals of recognition to catalysis and sensing.

    Science.gov (United States)

    Sambrook, M R; Notman, S

    2013-12-21

    Supramolecular chemistry presents many possible avenues for the mitigation of the effects of chemical warfare agents (CWAs), including sensing, catalysis and sequestration. To-date, efforts in this field both to study fundamental interactions between CWAs and to design and exploit host systems remain sporadic. In this tutorial review the non-covalent recognition of CWAs is considered from first principles, including taking inspiration from enzymatic systems, and gaps in fundamental knowledge are indicated. Examples of synthetic systems developed for the recognition of CWAs are discussed with a focus on the supramolecular complexation behaviour and non-covalent approaches rather than on the proposed applications.

  15. Two-Dimensional Photonic Crystals for Sensitive Microscale Chemical and Biochemical Sensing

    Science.gov (United States)

    Miller, Benjamin L.

    2015-01-01

    Photonic crystals – optical devices able to respond to changes in the refractive index of a small volume of space – are an emerging class of label-free chemical-and bio-sensors. This review focuses on one class of photonic crystal, in which light is confined to a patterned planar material layer of sub-wavelength thickness. These devices are small (on the order of tens to 100s of microns square), suitable for incorporation into lab-on-a-chip systems, and in theory can provide exceptional sensitivity. We introduce the defining characteristics and basic operation of two-dimensional photonic crystal sensors, describe variations of their basic design geometry, and summarize reported detection results from chemical and biological sensing experiments. PMID:25563402

  16. Surface Acoustic Wave (SAW for Chemical Sensing Applications of Recognition Layers

    Directory of Open Access Journals (Sweden)

    Adnan Mujahid

    2017-11-01

    Full Text Available Surface acoustic wave (SAW resonators represent some of the most prominent acoustic devices for chemical sensing applications. As their frequency ranges from several hundred MHz to GHz, therefore they can record remarkably diminutive frequency shifts resulting from exceptionally small mass loadings. Their miniaturized design, high thermal stability and possibility of wireless integration make these devices highly competitive. Owing to these special characteristics, they are widely accepted as smart transducers that can be combined with a variety of recognition layers based on host-guest interactions, metal oxide coatings, carbon nanotubes, graphene sheets, functional polymers and biological receptors. As a result of this, there is a broad spectrum of SAW sensors, i.e., having sensing applications ranging from small gas molecules to large bio-analytes or even whole cell structures. This review shall cover from the fundamentals to modern design developments in SAW devices with respect to interfacial receptor coatings for exemplary sensor applications. The related problems and their possible solutions shall also be covered, with a focus on emerging trends and future opportunities for making SAW as established sensing technology.

  17. Surface Acoustic Wave (SAW) for Chemical Sensing Applications of Recognition Layers.

    Science.gov (United States)

    Mujahid, Adnan; Dickert, Franz L

    2017-11-24

    Surface acoustic wave (SAW) resonators represent some of the most prominent acoustic devices for chemical sensing applications. As their frequency ranges from several hundred MHz to GHz, therefore they can record remarkably diminutive frequency shifts resulting from exceptionally small mass loadings. Their miniaturized design, high thermal stability and possibility of wireless integration make these devices highly competitive. Owing to these special characteristics, they are widely accepted as smart transducers that can be combined with a variety of recognition layers based on host-guest interactions, metal oxide coatings, carbon nanotubes, graphene sheets, functional polymers and biological receptors. As a result of this, there is a broad spectrum of SAW sensors, i.e., having sensing applications ranging from small gas molecules to large bio-analytes or even whole cell structures. This review shall cover from the fundamentals to modern design developments in SAW devices with respect to interfacial receptor coatings for exemplary sensor applications. The related problems and their possible solutions shall also be covered, with a focus on emerging trends and future opportunities for making SAW as established sensing technology.

  18. Remote sensing of soybean stress as an indicator of chemical concentration of biosolid amended surface soils

    Science.gov (United States)

    Sridhar, B. B. Maruthi; Vincent, Robert K.; Roberts, Sheila J.; Czajkowski, Kevin

    2011-08-01

    The accumulation of heavy metals in the biosolid amended soils and the risk of their uptake into different plant parts is a topic of great concern. This study examines the accumulation of several heavy metals and nutrients in soybeans grown on biosolid applied soils and the use of remote sensing to monitor the metal uptake and plant stress. Field and greenhouse studies were conducted with soybeans grown on soils applied with biosolids at varying rates. The plant growth was monitored using Landsat TM imagery and handheld spectroradiometer in field and greenhouse studies, respectively. Soil and plant samples were collected and then analyzed for several elemental concentrations. The chemical concentrations in soils and roots increased significantly with increase in applied biosolid concentrations. Copper (Cu) and Molybdenum (Mo) accumulated significantly in the shoots of the metal-treated plants. Our spectral and Landsat TM image analysis revealed that the Normalized Difference Vegetative Index (NDVI) can be used to distinguish the metal stressed plants. The NDVI showed significant negative correlation with increase in soil Cu concentrations followed by other elements. This study suggests the use of remote sensing to monitor soybean stress patterns and thus indirectly assess soil chemical characteristics.

  19. Chemical sensing and imaging based on photon upconverting nano- and microcrystals: a review

    International Nuclear Information System (INIS)

    Christ, Simon; Schäferling, Michael

    2015-01-01

    The demand for photostable luminescent reporters that absorb and emit light in the red to near-infrared (NIR) spectral region continues in biomedical research and bioanalysis. In recent years, classical organic fluorophores have increasingly been displaced by luminescent nanoparticles. These consist of either polymer or silica based beads that are loaded with luminescent dyes, conjugated polymers, or inorganic nanomaterials such as semiconductor nanocrystals (quantum dots), colloidal clusters of silver and gold, or carbon dots. Among the inorganic materials, photon upconversion nanocrystals exhibit a high potential for application to bioimaging or biomolecular assays. They offer an exceptionally high photostability, can be excited in the NIR, and their anti-Stokes emission enables luminescence detection free of background and perturbing scatter effects even in complex biological samples. These lanthanide doped inorganic crystals have multiple emission lines that can be tuned by the selection of the dopants.This review article is focused on the applications of functionalized photon upconversion nanoparticles (UCNPs) to chemical sensing. This is a comparatively new field of research activity and mainly directed at the sensing and imaging of ubiquitous chemical analytes in biological samples, particularly in living cells. For this purpose, the particles have to be functionalized with suitable indicator dyes or recognition elements, as they do not show an intrinsic or specific luminescence response to most of these analytes (e.g. pH, oxygen, metal ions). We describe the strategies for the design of such responsive nanocomposites utilizing either luminescence resonance energy transfer or emission–reabsorption (inner filter effect) mechanisms and also highlight examples for their use either immobilized in sensor layers or directly as nanoprobes for intracellular sensing and imaging. (review)

  20. Linear chemically sensitive electron tomography using DualEELS and dictionary-based compressed sensing

    Energy Technology Data Exchange (ETDEWEB)

    AlAfeef, Ala, E-mail: a.al-afeef.1@research.gla.ac.uk [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); School of Computing Science, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Bobynko, Joanna [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Cockshott, W. Paul. [School of Computing Science, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Craven, Alan J. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Zuazo, Ian; Barges, Patrick [ArcelorMittal Maizières Research, Maizières-lès-Metz 57283 (France); MacLaren, Ian, E-mail: ian.maclaren@glasgow.ac.uk [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2016-11-15

    We have investigated the use of DualEELS in elementally sensitive tilt series tomography in the scanning transmission electron microscope. A procedure is implemented using deconvolution to remove the effects of multiple scattering, followed by normalisation by the zero loss peak intensity. This is performed to produce a signal that is linearly dependent on the projected density of the element in each pixel. This method is compared with one that does not include deconvolution (although normalisation by the zero loss peak intensity is still performed). Additionally, we compare the 3D reconstruction using a new compressed sensing algorithm, DLET, with the well-established SIRT algorithm. VC precipitates, which are extracted from a steel on a carbon replica, are used in this study. It is found that the use of this linear signal results in a very even density throughout the precipitates. However, when deconvolution is omitted, a slight density reduction is observed in the cores of the precipitates (a so-called cupping artefact). Additionally, it is clearly demonstrated that the 3D morphology is much better reproduced using the DLET algorithm, with very little elongation in the missing wedge direction. It is therefore concluded that reliable elementally sensitive tilt tomography using EELS requires the appropriate use of DualEELS together with a suitable reconstruction algorithm, such as the compressed sensing based reconstruction algorithm used here, to make the best use of the limited data volume and signal to noise inherent in core-loss EELS. - Highlights: • DualEELS is essential for chemically sensitive electron tomography using EELS. • A new compressed sensing based algorithm (DLET) gives high fidelity reconstruction. • This combination of DualEELS and DLET will give reliable results from few projections.

  1. Integrated microfluidic capillary in a waveguide resonator for chemical and biomedical sensing

    International Nuclear Information System (INIS)

    Pavuluri, S K; Lopez-Villarroya, R; McKeever, E; Goussetis, G; Desmulliez, M P Y; Kavanagh, D

    2009-01-01

    A novel microfluidic sensing device based on waveguide cavity filters is proposed for the characterisation, detection of cells in solution and chemical substances in micro-litre volumes. The sensor consists of a micromachined microfluidic channel within a waveguide-based resonator localised increased near-fields and could potentially be designed for different frequency regimes to improve the sensitivity. The present sensor has been proposed for fabrication in different manufacturing platforms and an initial prototype with a 100μm micromachined channel that is embedded within an X-band E-plane waveguide has been fabricated and tested. The design methodology for the microfluidic channel and the E-plane filter is also presented.

  2. Surface plasmon resonance based sensing of different chemical and biological samples using admittance loci method

    Science.gov (United States)

    Brahmachari, Kaushik; Ghosh, Sharmila; Ray, Mina

    2013-06-01

    The admittance loci method plays an important role in the design of multilayer thin film structures. In this paper, admittance loci method has been explored theoretically for sensing of various chemical and biological samples based on surface plasmon resonance (SPR) phenomenon. A dielectric multilayer structure consisting of a Boro silicate glass (BSG) substrate, calcium fluoride (CaF2) and zirconium dioxide (ZrO2) along with different dielectric layers has been investigated. Moreover, admittance loci as well as SPR curves of metal-dielectric multilayer structure consisting of the BSG substrate, gold metal film and various dielectric samples has been simulated in MATLAB environment. To validate the proposed simulation results, calibration curves have also been provided.

  3. A cell-microelectronic sensing technique for profiling cytotoxicity of chemicals

    International Nuclear Information System (INIS)

    Boyd, Jessica M.; Huang, Li; Xie Li; Moe, Birget; Gabos, Stephan; Li Xingfang

    2008-01-01

    A cell-microelectronic sensing technique is developed for profiling chemical cytotoxicity and is used to study different cytotoxic effects of the same class chemicals using nitrosamines as examples. This technique uses three human cell lines (T24 bladder, HepG2 liver, and A549 lung carcinoma cells) and Chinese hamster ovary (CHO-K1) cells in parallel as the living components of the sensors of a real-time cell electronic sensing (RT-CES) method for dynamic monitoring of chemical toxicity. The RT-CES technique measures changes in the impedance of individual microelectronic wells that is correlated linearly with changes in cell numbers during t log phase of cell growth, thus allowing determination of cytotoxicity. Four nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiphenylamine (NDPhA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were examined and unique cytotoxicity profiles were detected for each nitrosamine. In vitro cytotoxicity values (IC 50 ) for NDPhA (ranging from 0.6 to 1.9 mM) were significantly lower than the IC 50 values for the well-known carcinogen NDMA (15-95 mM) in all four cell lines. T24 cells were the most sensitive to nitrosamine exposure among the four cell lines tested (T24 > CHO > A549 > HepG2), suggesting that T24 may serve as a new sensitive model for cytotoxicity screening. Cell staining results confirmed that administration of the IC 50 concentration from the RT-CES experiments inhibited cell growth by 50% compared to the controls, indicating that the RT-CES method provides reliable measures of IC 50 . Staining and cell-cycle analysis confirmed that NDPhA caused cell-cycle arrest at the G0/G1 phase, whereas NDMA did not disrupt the cell cycle but induced cell death, thus explaining the different cytotoxicity profiles detected by the RT-CES method. The parallel cytotoxicity profiling of nitrosamines on the four cell lines by the RT-CES method led to the discovery of the unique cytotoxicity of NDPhA causing cell

  4. A cell-microelectronic sensing technique for profiling cytotoxicity of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Jessica M [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Huang, Li [Environmental Health Sciences, Department of Public Health Sciences, School of Public Health, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Li, Xie; Moe, Birget [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Gabos, Stephan [Public Health Surveillance and Environmental Health, Alberta Health and Wellness, 10025 Jasper Avenue, Box 1360, Edmonton, Alberta, T5J 2N3 (Canada); Xingfang, Li [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Environmental Health Sciences, Department of Public Health Sciences, School of Public Health, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada)], E-mail: xingfang.li@ualberta.ca

    2008-05-12

    A cell-microelectronic sensing technique is developed for profiling chemical cytotoxicity and is used to study different cytotoxic effects of the same class chemicals using nitrosamines as examples. This technique uses three human cell lines (T24 bladder, HepG2 liver, and A549 lung carcinoma cells) and Chinese hamster ovary (CHO-K1) cells in parallel as the living components of the sensors of a real-time cell electronic sensing (RT-CES) method for dynamic monitoring of chemical toxicity. The RT-CES technique measures changes in the impedance of individual microelectronic wells that is correlated linearly with changes in cell numbers during t log phase of cell growth, thus allowing determination of cytotoxicity. Four nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiphenylamine (NDPhA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were examined and unique cytotoxicity profiles were detected for each nitrosamine. In vitro cytotoxicity values (IC{sub 50}) for NDPhA (ranging from 0.6 to 1.9 mM) were significantly lower than the IC{sub 50} values for the well-known carcinogen NDMA (15-95 mM) in all four cell lines. T24 cells were the most sensitive to nitrosamine exposure among the four cell lines tested (T24 > CHO > A549 > HepG2), suggesting that T24 may serve as a new sensitive model for cytotoxicity screening. Cell staining results confirmed that administration of the IC{sub 50} concentration from the RT-CES experiments inhibited cell growth by 50% compared to the controls, indicating that the RT-CES method provides reliable measures of IC{sub 50}. Staining and cell-cycle analysis confirmed that NDPhA caused cell-cycle arrest at the G0/G1 phase, whereas NDMA did not disrupt the cell cycle but induced cell death, thus explaining the different cytotoxicity profiles detected by the RT-CES method. The parallel cytotoxicity profiling of nitrosamines on the four cell lines by the RT-CES method led to the discovery of the unique cytotoxicity of NDPh

  5. Transient receptor potential channels encode volatile chemicals sensed by rat trigeminal ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Matthias Lübbert

    Full Text Available Primary sensory afferents of the dorsal root and trigeminal ganglia constantly transmit sensory information depicting the individual's physical and chemical environment to higher brain regions. Beyond the typical trigeminal stimuli (e.g. irritants, environmental stimuli comprise a plethora of volatile chemicals with olfactory components (odorants. In spite of a complete loss of their sense of smell, anosmic patients may retain the ability to roughly discriminate between different volatile compounds. While the detailed mechanisms remain elusive, sensory structures belonging to the trigeminal system seem to be responsible for this phenomenon. In order to gain a better understanding of the mechanisms underlying the activation of the trigeminal system by volatile chemicals, we investigated odorant-induced membrane potential changes in cultured rat trigeminal neurons induced by the odorants vanillin, heliotropyl acetone, helional, and geraniol. We observed the dose-dependent depolarization of trigeminal neurons upon application of these substances occurring in a stimulus-specific manner and could show that distinct neuronal populations respond to different odorants. Using specific antagonists, we found evidence that TRPA1, TRPM8, and/or TRPV1 contribute to the activation. In order to further test this hypothesis, we used recombinantly expressed rat and human variants of these channels to investigate whether they are indeed activated by the odorants tested. We additionally found that the odorants dose-dependently inhibit two-pore potassium channels TASK1 and TASK3 heterologously expressed In Xenopus laevis oocytes. We suggest that the capability of various odorants to activate different TRP channels and to inhibit potassium channels causes neuronal depolarization and activation of distinct subpopulations of trigeminal sensory neurons, forming the basis for a specific representation of volatile chemicals in the trigeminal ganglia.

  6. Layer-by-Layer Enabled Nanomaterials for Chemical Sensing and Energy Conversion

    Science.gov (United States)

    Paterno, Leonardo G.; Soler, Maria A. G.

    2013-06-01

    The layer-by-layer (LbL) technique is a wet chemical method for the assembly of ultrathin films, with thicknesses up to 100 nm. This method is based on the successive transfer of molecular layers to a solid substrate that is dipped into cationic and anionic solutions in an alternating fashion. The adsorption is mainly driven by electrostatic interactions so that many molecular and nanomaterial systems can be engineered under this method. Moreover, it is inexpensive, can be easily performed, and does not demand sophisticated equipment or clean rooms. The most explored use of the LbL technique is to build up molecular devices for chemical sensing and energy conversion. Both applications require ultrathin films where specific elements must be organized with high control of thickness and spatial distribution, preferably in the nanolength and mesolength scales. In chemical sensors, the LbL technique is employed to assemble specific sensoactive materials such as conjugated polymers, enzymes, and immunological elements onto appropriated electrodes. Molecular recognition events are thus transduced by the assembled sensoactive layer. In energy-conversion devices, the LbL technique can be employed to fabricate different device's parts including electrodes, active layers, and auxiliary layers. In both applications, the devices' performance can be fully modulated and improved by simply varying film thickness and molecular architecture. The present review article highlights the main features of the LbL technique and provides a brief description of different (bio)chemical sensors, solar cells, and organic light-emitting diodes enabled by the LbL approach.

  7. Electromechanical and Chemical Sensing at the Nanoscale: DFT and Transport Modeling

    Science.gov (United States)

    Maiti, Amitesh

    Of the many nanoelectronic applications proposed for near to medium-term commercial deployment, sensors based on carbon nanotubes (CNT) and metal-oxide nanowires are receiving significant attention from researchers. Such devices typically operate on the basis of the changes of electrical response characteristics of the active component (CNT or nanowire) when subjected to an externally applied mechanical stress or the adsorption of a chemical or bio-molecule. Practical development of such technologies can greatly benefit from quantum chemical modeling based on density functional theory (DFT), and from electronic transport modeling based on non-equilibrium Green's function (NEGF). DFT can compute useful quantities like possible bond-rearrangements, binding energy, charge transfer, and changes to the electronic structure, while NEGF can predict changes in electronic transport behavior and contact resistance. Effects of surrounding medium and intrinsic structural defects can also be taken into account. In this work we review some recent DFT and transport investigations on (1) CNT-based nano-electromechanical sensors (NEMS) and (2) gas-sensing properties of CNTs and metal-oxide nanowires. We also briefly discuss our current understanding of CNT-metal contacts which, depending upon the metal, the deposition technique, and the masking method can have a significant effect on device performance.

  8. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications

    Science.gov (United States)

    Ta, Duong V.; Dunn, Andrew; Wasley, Thomas J.; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Connaughton, Colm; Shephard, Jonathan D.

    2015-12-01

    This work demonstrates superhydrophobic behavior on nanosecond laser patterned copper and brass surfaces. Compared with ultrafast laser systems previously used for such texturing, infrared nanosecond fiber lasers offer a lower cost and more robust system combined with potentially much higher processing rates. The wettability of the textured surfaces develops from hydrophilicity to superhydrophobicity over time when exposed to ambient conditions. The change in the wetting property is attributed to the partial deoxidation of oxides on the surface induced during laser texturing. Textures exhibiting steady state contact angles of up to ∼152° with contact angle hysteresis of around 3-4° have been achieved. Interestingly, the superhydrobobic surfaces have the self-cleaning ability and have potential for chemical sensing applications. The principle of these novel chemical sensors is based on the change in contact angle with the concentration of methanol in a solution. To demonstrate the principle of operation of such a sensor, it is found that the contact angle of methanol solution on the superhydrophobic surfaces exponentially decays with increasing concentration. A significant reduction, of 128°, in contact angle on superhydrophobic brass is observed, which is one order of magnitude greater than that for the untreated surface (12°), when percent composition of methanol reaches to 28%.

  9. Stand-Off Chemical Detection Using Photoacoustic Sensing Techniques—From Single Element to Phase Array

    Directory of Open Access Journals (Sweden)

    Deepa Gupta

    2018-01-01

    Full Text Available Technologies that can detect harmful chemicals, such as explosive devices, harmful gas leaks, airborne chemicals or/and biological agents, are heavily invested in by the government to prevent any possible catastrophic consequences. Some key features of such technology are, but not limited to, effective signal-to-noise ratio (SNR of the detected signal and extended distance between the detector and target. In this work, we describe the development of photoacoustic sensing techniques from simple to more complex systems. These techniques include passive and active noise filters, parabolic sound reflectors, a lock-in amplifier, and beam-forming with an array of microphones; using these techniques, we increased detection distance from a few cm in an indoor setting to over 41 feet in an outdoor setting. We also establish a theoretical mathematical model that explains the underlying principle of how SNR can be improved with an increasing number of microphone elements in the phase array. We validate this model with computational simulations as well as experimental results.

  10. An Easy to Manufacture Micro Gas Preconcentrator for Chemical Sensing Applications.

    Science.gov (United States)

    McCartney, Mitchell M; Zrodnikov, Yuriy; Fung, Alexander G; LeVasseur, Michael K; Pedersen, Josephine M; Zamuruyev, Konstantin O; Aksenov, Alexander A; Kenyon, Nicholas J; Davis, Cristina E

    2017-08-25

    We have developed a simple-to-manufacture microfabricated gas preconcentrator for MEMS-based chemical sensing applications. Cavities and microfluidic channels were created using a wet etch process with hydrofluoric acid, portions of which can be performed outside of a cleanroom, instead of the more common deep reactive ion etch process. The integrated heater and resistance temperature detectors (RTDs) were created with a photolithography-free technique enabled by laser etching. With only 28 V DC (0.1 A), a maximum heating rate of 17.6 °C/s was observed. Adsorption and desorption flow parameters were optimized to be 90 SCCM and 25 SCCM, respectively, for a multicomponent gas mixture. Under testing conditions using Tenax TA sorbent, the device was capable of measuring analytes down to 22 ppb with only a 2 min sample loading time using a gas chromatograph with a flame ionization detector. Two separate devices were compared by measuring the same chemical mixture; both devices yielded similar peak areas and widths (fwhm: 0.032-0.033 min), suggesting reproducibility between devices.

  11. Sensing signatures mediated by chemical structure of molecular solids in laser-induced plasmas.

    Science.gov (United States)

    Serrano, Jorge; Moros, Javier; Laserna, J Javier

    2015-03-03

    Laser ablation of organic compounds has been investigated for almost 30 years now, either in the framework of pulse laser deposition for the assembling of new materials or in the context of chemical sensing. Various monitoring techniques such as atomic and molecular fluorescence, time-of-flight mass spectrometry, and optical emission spectroscopy have been used for plasma diagnostics in an attempt to understand the spectral signature and potential origin of gas-phase ions and fragments from organic plasmas. Photochemical and photophysical processes occurring within these systems are generally much more complex than those suggested by observation of optical emission features. Together with laser ablation parameters, the structural and chemical-physical properties of molecules seem to be closely tied to the observed phenomena. The present manuscript, for the first time, discusses the role of molecular structure in the optical emission of organic plasmas. Factors altering the electronic distribution within the organic molecule have been found to have a direct impact on its ensuing optical emissions. The electron structure of an organic molecule, resulting from the presence, nature, and position of its atoms, governs the breakage of the molecule and, as a result, determines the extent of atomization and fragmentation that has proved to directly impact the emissions of CN radicals and C2 dimers. Particular properties of the molecule respond more positively depending on the laser irradiation wavelength, thereby redirecting the ablation process through photochemical or photothermal decomposition pathways. It is of paramount significance for chemical identification purposes how, despite the large energy stored and dissipated by the plasma and the considerable number of transient species formed, the emissions observed never lose sight of the original molecule.

  12. SU-8 cantilevers for bio/chemical sensing; Fabrication, characterisation and development of novel read-out methods

    DEFF Research Database (Denmark)

    Nordström, M.; Keller, Stephan Urs; Lillemose, Michael

    2008-01-01

    Here, we present the activities within our research group over the last five years with cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interesting polymer for fabrication of cantilevers for bio/chemical sensing due to its simple processing and low Young's modulus. We show...

  13. Functional Fixedness and Functional Reduction as Common Sense Reasonings in Chemical Equilibrium and in Geometry and Polarity of Molecules.

    Science.gov (United States)

    Furio, C.; Calatayud, M. L.; Barcenas, S. L.; Padilla, O. M.

    2000-01-01

    Focuses on learning difficulties in procedural knowledge, and assesses the procedural difficulties of grade 12 and first- and third-year university students based on common sense reasoning in two areas of chemistry--chemical equilibrium and geometry, and polarity of molecules. (Contains 55 references.) (Author/YDS)

  14. Spaceborne Remote Sensing of Aerosol Type: Global Distribution, Model Evaluation and Translation into Chemical Speciation

    Science.gov (United States)

    Kacenelenbogen, M. S.; Tan, Q.; Johnson, M. S.; Burton, S. P.; Redemann, J.; Hasekamp, O. P.; Dawson, K. W.; Hair, J. W.; Ferrare, R. A.; Butler, C. F.; Holben, B. N.; Beyersdorf, A. J.; Ziemba, L. D.; Froyd, K. D.; Dibb, J. E.; Shingler, T.; Sorooshian, A.; Jimenez, J. L.; Campuzano Jost, P.; Jacob, D.; Kim, P. S.; Travis, K.; Lacagnina, C.

    2016-12-01

    It is essential to evaluate and refine aerosol classification methods applied to passive satellite remote sensing. We have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground-based passive remote sensing instruments [1]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. We apply the SCMC method to inversions from the ground-based AErosol RObotic NETwork (AERONET [2]) and retrievals from the space-borne Polarization and Directionality of Earth's Reflectances instrument (POLDER, [3]). The POLDER retrievals that we use differ from the standard POLDER retrievals [4] as they make full use of multi-angle, multispectral polarimetric data [5]. We analyze agreement in the aerosol types inferred from both AERONET and POLDER and evaluate GEOS-Chem [6] simulations over the globe. Finally, we use in-situ observations from the SEAC4RS airborne field experiment to bridge the gap between remote sensing-inferred qualitative SCMC aerosol types and their corresponding quantitative chemical speciation. We apply the SCMC method to airborne in-situ observations from the NASA Langley Aerosol Research Group Experiment (LARGE, [7]) and the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP, [8]) instruments; we then relate each coarsely defined SCMC type to a sum of percentage of individual aerosol species, using in-situ observations from the Particle Analysis by Laser Mass Spectrometry (PALMS, [9]), the Soluble Acidic Gases and Aerosol (SAGA, [10]), and the High - Resolution Time - of - Flight Aerosol Mass Spectrometer (HR ToF AMS, [11]). [1] Russell P. B., et al., JGR, 119.16 (2014) [2] Holben B. N., et al., RSE, 66.1 (1998) [3] Tanré D., et al., AMT, 4.7 (2011

  15. Chemical Composition and Disruption of Quorum Sensing Signaling in Geographically Diverse United States Propolis

    Directory of Open Access Journals (Sweden)

    Michael A. Savka

    2015-01-01

    Full Text Available Propolis or bee glue has been used for centuries for various purposes and is especially important in human health due to many of its biological and pharmacological properties. In this work we showed quorum sensing inhibitory (QSI activity of ten geographically distinct propolis samples from the United States using the acyl-homoserine lactone- (AHL- dependent Chromobacterium violaceum strain CV026. Based on GC-MS chemical profiling the propolis samples can be classified into several groups that are as follows: (1 rich in cinnamic acid derivatives, (2 rich in flavonoids, and (3 rich in triterpenes. An in-depth analysis of the propolis from North Carolina led to the isolation and identification of a triterpenic acid that was recently isolated from Hondurian propolis (Central America and ethyl ether of p-coumaric alcohol not previously identified in bee propolis. QSI activity was also observed in the second group US propolis samples which contained the flavonoid pinocembrin in addition to other flavonoid compounds. The discovery of compounds that are involved in QSI activity has the potential to facilitate studies that may lead to the development of antivirulence therapies that can be complementary and/or alternative treatments against antibiotic resistant bacterial pathogens and/or emerging pathogens that have yet to be identified.

  16. Fully solar-powered photoelectrochemical conversion for simultaneous energy storage and chemical sensing.

    Science.gov (United States)

    Wang, Yongcheng; Tang, Jing; Peng, Zheng; Wang, Yuhang; Jia, Dingsi; Kong, Biao; Elzatahry, Ahmed A; Zhao, Dongyuan; Zheng, Gengfeng

    2014-06-11

    We report the development of a multifunctional, solar-powered photoelectrochemical (PEC)-pseudocapacitive-sensing material system for simultaneous solar energy conversion, electrochemical energy storage, and chemical detection. The TiO2 nanowire/NiO nanoflakes and the Si nanowire/Pt nanoparticle composites are used as photoanodes and photocathodes, respectively. A stable open-circuit voltage of ∼0.45 V and a high pseudocapacitance of up to ∼455 F g(-1) are obtained, which also exhibit a repeating charging-discharging capability. The PEC-pseudocapacitive device is fully solar powered, without the need of any external power supply. Moreover, this TiO2 nanowire/NiO nanoflake composite photoanode exhibits excellent glucose sensitivity and selectivity. Under the sun light illumination, the PEC photocurrent shows a sensitive increase upon different glucose additions. Meanwhile in the dark, the open-circuit voltage of the charged pseudocapacitor also exhibits a corresponding signal over glucose analyte, thus serving as a full solar-powered energy conversion-storage-utilization system.

  17. Slow-light enhanced absorption for bio-chemical sensing applications: potential of low-contrast lossy materials

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Xiao, Sanshui; Mortensen, Niels Asger

    2008-01-01

    Slow-light enhanced absorption in liquid-infiltrated photonic crystals has recently been proposed as a route to compensate for the reduced optical path in typical lab-on-a-chip systems for bio-chemical sensing applications. A simple perturbative expression has been applied to ideal structures...... composed of lossless dielectrics. In this work we study the enhancement in structures composed of lossy dielectrics such as a polymer. For this particular sensing application we find that the material loss has an unexpected limited drawback and surprisingly, it may even add to increase the bandwidth...

  18. Optofluidic refractive-index sensors employing bent waveguide structures for low-cost, rapid chemical and biomedical sensing.

    Science.gov (United States)

    Liu, I-Chen; Chen, Pin-Chuan; Chau, Lai-Kwan; Chang, Guo-En

    2018-01-08

    We propose and develop an intensity-detection-based refractive-index (RI) sensor for low-cost, rapid RI sensing. The sensor is composed of a polymer bent ridge waveguide (BRWG) structure on a low-cost glass substrate and is integrated with a microfluidic channel. Different-RI solutions flowing through the BRWG sensing region induce output optical power variations caused by optical bend losses, enabling simple and real-time RI detection. Additionally, the sensors are fabricated using rapid and cost-effective vacuum-less processes, attaining the low cost and high throughput required for mass production. A good RI solution of 5.31 10 -4 × RIU -1 is achieved from the RI experiments. This study demonstrates mass-producible and compact RI sensors for rapid and sensitive chemical analysis and biomedical sensing.

  19. Multifunctional fluorescent sensing of chemical and physical stimuli using smart riboflavin-5'-phosphate/Eu3+ coordination polymers.

    Science.gov (United States)

    Xue, Shi-Fan; Zhang, Jing-Fei; Chen, Zi-Han; Han, Xin-Yue; Zhang, Min; Shi, Guoyue

    2018-07-05

    A novel type of stimuli-responsive fluorescent polymers has been developed via the self-assembly of riboflavin-5'-phosphate (RiP) as ligand and europium (III) (Eu 3+ ) as central metal ion coordinated with the ligand. The as-prepared RiP/Eu 3+ coordination polymers (RiP/Eu 3+ CPs) are smart and multifunctional for respectively responding to chemical and physical stimuli, in which RiP acts as the stimuli-responsive fluorescent signal indicator. For sensing chemical stimuli, 2,6-pyridinedicarboxylic acid (DPA, an anthrax biomarker) having higher bonding force towards Eu 3+ can grab it from smart RiP/Eu 3+ CPs through competition reaction, resulting in the release of RiP for highly sensitive and selective DPA monitoring in a mix-and-read fluorescent enhancement format, and the detection limit is as low as 41.5 nM. Density functional theory (DFT) calculations has been also performed to verify the DPA sensing principle. For sensing physical stimuli, the smart RiP/Eu 3+ CPs can be acting as a novel sensory probe for the determination of temperature from 10 °C to 40 °C based on the thermal-induced disruption of the binding between Eu 3+ and RiP and the disassembly of the smart RiP/Eu 3+ CPs accompanying with the recovery of the fluorescence of RiP. This work establishes an effective platform for multifunctional sensing of chemical and physical stimuli utilizing both smart lanthanide nanoscale coordination polymers (LNCPs) and novel sensing strategies. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Chemically synthesized TiO2 and PANI/TiO2 thin films for ethanol sensing applications

    Science.gov (United States)

    Gawri, Isha; Ridhi, R.; Singh, K. P.; Tripathi, S. K.

    2018-02-01

    Ethanol sensing properties of chemically synthesized titanium dioxide (TiO2) and polyaniline/titanium dioxide nanocomposites (PANI/TiO2) had been performed at room temperature. In-situ oxidative polymerization process had been employed with aniline as a monomer in presence of anatase titanium dioxide nanoparticles. The prepared samples were structurally and morphologically characterized by x-ray diffraction, fourier transform infrared spectra, high resolution-transmission electron microscopy and field emission-scanning electron microscopy. The crystallinity of PANI/TiO2 nanocomposite was revealed by XRD and FTIR spectra confirmed the presence of chemical bonding between the polymer chains and metal oxide nanoparticles. HR-TEM micrographs depicted that TiO2 particles were embedded in polymer matrix, which provides an advantage over pure TiO2 nanoparticles in efficient adsorption of vapours. These images also revealed that the TiO2 nanoparticles were irregular in shape with size around 17 nm. FE-SEM studies revealed that in the porous structure of PANI/TiO2 film, the intercalation of TiO2 in PANI chains provides an advantage over pure TiO2 film for uniform interaction with ethanol vapors. The sensitivity values of prepared samples were examined towards ethanol vapours at room temperature. The PANI/TiO2 nanocomposite exhibited better sensing response and faster response-recovery examined at different ethanol concentrations ranging from 5 ppm to 20 ppm in comparison to pure TiO2 nanoparticles. The increase in vapour sensing of PANI/TiO2 sensing film as compared to pure TiO2 film had been explained in detail with the help of gas sensing mechanism of TiO2 and PANI/TiO2. This provides strong evidence that gas sensing properties of TiO2 had been considerably improved and enhanced with the addition of polymer matrix.

  1. Real-time sensing and discrimination of single chemicals using the channel of phi29 DNA packaging nanomotor.

    Science.gov (United States)

    Haque, Farzin; Lunn, Jennifer; Fang, Huaming; Smithrud, David; Guo, Peixuan

    2012-04-24

    A highly sensitive and reliable method to sense and identify a single chemical at extremely low concentrations and high contamination is important for environmental surveillance, homeland security, athlete drug monitoring, toxin/drug screening, and earlier disease diagnosis. This article reports a method for precise detection of single chemicals. The hub of the bacteriophage phi29 DNA packaging motor is a connector consisting of 12 protein subunits encircled into a 3.6 nm channel as a path for dsDNA to enter during packaging and to exit during infection. The connector has previously been inserted into a lipid bilayer to serve as a membrane-embedded channel. Herein we report the modification of the phi29 channel to develop a class of sensors to detect single chemicals. The lysine-234 of each protein subunit was mutated to cysteine, generating 12-SH ring lining the channel wall. Chemicals passing through this robust channel and interactions with the SH group generated extremely reliable, precise, and sensitive current signatures as revealed by single channel conductance assays. Ethane (57 Da), thymine (167 Da), and benzene (105 Da) with reactive thioester moieties were clearly discriminated upon interaction with the available set of cysteine residues. The covalent attachment of each analyte induced discrete stepwise blockage in current signature with a corresponding decrease in conductance due to the physical blocking of the channel. Transient binding of the chemicals also produced characteristic fingerprints that were deduced from the unique blockage amplitude and pattern of the signals. This study shows that the phi29 connector can be used to sense chemicals with reactive thioesters or maleimide using single channel conduction assays based on their distinct fingerprints. The results demonstrated that this channel system could be further developed into very sensitive sensing devices.

  2. Chemosensors — Welcome to a New Open Access Journal Intended to Cover All Aspects of Chemical Sensing

    Directory of Open Access Journals (Sweden)

    Igor L. Medintz

    2012-12-01

    Full Text Available It gives me great pleasure to welcome you to Chemosensors, a new online-only journal established by the Multidisciplinary Digital Publishing Institute (MDPI, Basel, Switzerland with the intent of covering all aspects of chemical sensing. The ability to sense or detect/identify and quantitate a chemical entity, and in particular accomplish this through the use of chemical means, has never been a more important part of our society. Chemosensing permeates diverse fields including healthcare (e.g., blood chemistry analysis, food safety (e.g., detecting contamination and spoilage, environmental monitoring (e.g., air and water quality, product and manufacturing assurance (e.g., purity and efficacy, household safety (e.g., smoke detection, forensics (e.g., drug analysis, and biological research (e.g., quantitating DNA or monitoring intracellular homeostasis, to name but a paltry few areas. Indeed, the application of chemosensing has become such an integrated aspect of modern society that trying to compile a comprehensive list of where it is utilized or relied on is almost impossible. Equally daunting is trying to compile a comprehensive list of all the different sensing techniques, types of analysis, modes of signal transduction, instruments and similar type aspects. The pace of new developments in this field is both remarkable and continuously accelerating with new products and applications being developed on an almost unceasing basis. [...

  3. All-soft, battery-free, and wireless chemical sensing platform based on liquid metal for liquid- and gas-phase VOC detection.

    Science.gov (United States)

    Kim, Min-Gu; Alrowais, Hommood; Kim, Choongsoon; Yeon, Pyungwoo; Ghovanloo, Maysam; Brand, Oliver

    2017-06-27

    Lightweight, flexible, stretchable, and wireless sensing platforms have gained significant attention for personal healthcare and environmental monitoring applications. This paper introduces an all-soft (flexible and stretchable), battery-free, and wireless chemical microsystem using gallium-based liquid metal (eutectic gallium-indium alloy, EGaIn) and poly(dimethylsiloxane) (PDMS), fabricated using an advanced liquid metal thin-line patterning technique based on soft lithography. Considering its flexible, stretchable, and lightweight characteristics, the proposed sensing platform is well suited for wearable sensing applications either on the skin or on clothing. Using the microfluidic sensing platform, detection of liquid-phase and gas-phase volatile organic compounds (VOC) is demonstrated using the same design, which gives an opportunity to have the sensor operate under different working conditions and environments. In the case of liquid-phase chemical sensing, the wireless sensing performance and microfluidic capacitance tunability for different dielectric liquids are evaluated using analytical, numerical, and experimental approaches. In the case of gas-phase chemical sensing, PDMS is used both as a substrate and a sensing material. The gas sensing performance is evaluated and compared to a silicon-based, solid-state gas sensor with a PDMS sensing film.

  4. Construction of conductive multilayer films of biogenic triangular gold nanoparticles and their application in chemical vapour sensing

    Science.gov (United States)

    Singh, Amit; Chaudhari, Minakshi; Sastry, Murali

    2006-05-01

    Metal nanoparticles are interesting building blocks for realizing films for a number of applications that include bio- and chemical sensing. To date, spherical metal nanoparticles have been used to generate functional electrical coatings. In this paper we demonstrate the synthesis of electrically conductive coatings using biologically prepared gold nanotriangles as the building blocks. The gold nanotriangles are prepared by the reduction of aqueous chloroaurate ions using an extract of the lemongrass plant (Cymbopogon flexuosus) which are thereafter assembled onto a variety of substrates by simple solution casting. The conductivity of the film shows a drastic fall upon mild heat treatment, leading to the formation of electrically conductive thin films of nanoparticles. We have also investigated the possibility of using the gold nanotriangle films in vapour sensing. A large fall in film resistance is observed upon exposure to polar molecules such as methanol, while little change occurs upon exposure to weakly polar molecules such as chloroform.

  5. Resonant-cantilever bio/chemical sensors with an integrated heater for both resonance exciting optimization and sensing repeatability enhancement

    International Nuclear Information System (INIS)

    Yu Haitao; Li Xinxin; Gan Xiaohua; Liu Yongjing; Liu Xiang; Xu Pengcheng; Li Jungang; Liu Min

    2009-01-01

    With an integrated resonance exciting heater and a self-sensing piezoresistor, resonant micro-cantilever bio/chemical sensors are optimally designed and fabricated by micromachining techniques. This study is emphasized on the optimization of the integrated heating resistor. Previous research has put the heater at either the cantilever clamp end, the midpoint or the free end. Aiming at sufficiently high and stable resonant amplitude, our research indicates that the optimized location of the thermal-electric exciting resistor is the clamp end instead of other positions. By both theoretical analysis and resonance experiments where three heating resistors are placed at the three locations of the fabricated cantilever, it is clarified that the clamp end heating provides the most efficient resonance excitation in terms of resonant amplitude, Q-factor and resonance stability. Besides, the optimized combination of dc bias and ac voltage is determined by both analysis and experimental verification. With the optimized heating excitation, the resonant cantilever is used for biotin–avidin-specific detection, resulting in a ±0.1 Hz ultra-low noise floor of the frequency signal and a 130 fg mass resolution. In addition to resonance excitation, the heater is used to heat up the cantilever for speed-up desorption after detection that helps rapid and repeated sensing to chemical vapor. The clamp end is determined (by simulation) as the optimal heating location for uniform temperature distribution on the cantilever. Using the resonant cantilever, a rapid and repeated sensing experiment on dimethyl methylphosphonate (DMMP) vapor shows that a short-period heating at the detection interval significantly quickens the signal recovery and enhances the sensing repeatability

  6. Dielectric Sensing of Toxic and Explosive Chemicals via Impedance Spectroscopy and Plasmonic Resonance

    Science.gov (United States)

    2017-05-07

    who thoroughly characterized the rapid decontamination of chemical warfare agents VX, soman (GD) and distilled mustard gas (HD)18. The work shows...Joshua J. Phillips, Jennifer R. Soliz, and Adam J. Hauser, “XMCD and Impedance Analysis of Fe2O3 Nanoparticles for Explosive and Chemical Warfare ...Virender K Sharma,"Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate (VI)/(III) composite" Journal of hazardous

  7. SU-8 Cantilevers for Bio/chemical Sensing; Fabrication, Characterisation and Development of Novel Read-out Methods

    OpenAIRE

    Anja Boisen; Mogens Havsteen-Jakobsen; Gabriela Blagoi; Daniel Haefliger; Søren Dohn; Alicia Johansson; Michael Lillemose; Stephan Keller; Maria Nordström

    2008-01-01

    Here, we present the activities within our research group over the last five years with cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interesting polymer for fabrication of cantilevers for bio/chemical sensing due to its simple processing and low Young's modulus. We show examples of different integrated read-out methods and their characterisation. We also show that SU-8 cantilevers have a reduced sensitivity to changes in the environmental temperature and pH of the bu...

  8. Sorption and Diffusion of Water Vapor and Carbon Dioxide in Sulfonated Polyaniline as Chemical Sensing Materials

    Directory of Open Access Journals (Sweden)

    Qiuhua Liang

    2016-04-01

    Full Text Available A hybrid quantum mechanics (QM/molecular dynamics (MD simulation is performed to investigate the effect of an ionizable group (–SO3−Na+ on polyaniline as gas sensing materials. Polymers considered for this work include emeraldine base of polyaniline (EB-PANI and its derivatives (Na-SPANI (I, (II and (III whose rings are partly monosubstituted by –SO3−Na+. The hybrid simulation results show that the adsorption energy, Mulliken charge and band gap of analytes (CO2 and H2O in polyaniline are relatively sensitive to the position and the amounts of –SO3−Na+, and these parameters would affect the sensitivity of Na-SPANI/EB-PANI towards CO2. The sensitivity of Na-SPANI (III/EB-PANI towards CO2 can be greatly improved by two orders of magnitude, which is in agreement with the experimental study. In addition, we also demonstrate that introducing –SO3−Na+ groups at the rings can notably affect the gas transport properties of polyaniline. Comparative studies indicate that the effect of ionizable group on polyaniline as gas sensing materials for the polar gas molecule (H2O is more significant than that for the nonpolar gas molecule (CO2. These findings contribute in the functionalization-induced variations of the material properties of polyaniline for CO2 sensing and the design of new polyaniline with desired sensing properties.

  9. Al2O3- BSST Based Chemical Sensors for Ammonia Gas Sensing

    Directory of Open Access Journals (Sweden)

    L. A. Patil

    2009-10-01

    Full Text Available Gas sensing behaviour of pure and modified (Ba0.9Sr0.1(Sn0.5Ti0.5O3 (BSST thick films is reported in this article. The surface of the BSST thick film was modified by dipping it into aqueous solution of AlCl3, for different intervals of time. These films were then dried at 500 0C for 24 hours in air ambient for transformation of AlCl3 into Al2O3, for the evaporation of organic binders and also to improve the texture of the film. The gas response, selectivity, response and recovery time of the sensors were measured and presented. The role played by the aluminium species to improve the gas sensing performance of the sensors is discussed.

  10. Design and Fabrication of Slotted Multimode Interference Devices for Chemical and Biological Sensing

    Directory of Open Access Journals (Sweden)

    M. Mayeh

    2009-01-01

    Full Text Available We present optical sensors based on slotted multimode interference waveguides. The sensor can be tuned to highest sensitivity in the refractive index ranges necessary to detect protein-based molecules or other water-soluble chemical or biological materials. The material of choice is low-loss silicon oxynitride (SiON which is highly stable to the reactivity with biological agents and processing chemicals. Sensors made with this technology are suited to high volume manufacturing.

  11. Sample handling in surface sensitive chemical and biological sensing: a practical review of basic fluidics and analyte transport.

    Science.gov (United States)

    Orgovan, Norbert; Patko, Daniel; Hos, Csaba; Kurunczi, Sándor; Szabó, Bálint; Ramsden, Jeremy J; Horvath, Robert

    2014-09-01

    This paper gives an overview of the advantages and associated caveats of the most common sample handling methods in surface-sensitive chemical and biological sensing. We summarize the basic theoretical and practical considerations one faces when designing and assembling the fluidic part of the sensor devices. The influence of analyte size, the use of closed and flow-through cuvettes, the importance of flow rate, tubing length and diameter, bubble traps, pressure-driven pumping, cuvette dead volumes, and sample injection systems are all discussed. Typical application areas of particular arrangements are also highlighted, such as the monitoring of cellular adhesion, biomolecule adsorption-desorption and ligand-receptor affinity binding. Our work is a practical review in the sense that for every sample handling arrangement considered we present our own experimental data and critically review our experience with the given arrangement. In the experimental part we focus on sample handling in optical waveguide lightmode spectroscopy (OWLS) measurements, but the present study is equally applicable for other biosensing technologies in which an analyte in solution is captured at a surface and its presence is monitored. Explicit attention is given to features that are expected to play an increasingly decisive role in determining the reliability of (bio)chemical sensing measurements, such as analyte transport to the sensor surface; the distorting influence of dead volumes in the fluidic system; and the appropriate sample handling of cell suspensions (e.g. their quasi-simultaneous deposition). At the appropriate places, biological aspects closely related to fluidics (e.g. cellular mechanotransduction, competitive adsorption, blood flow in veins) are also discussed, particularly with regard to their models used in biosensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Fusing Mobile In Situ Observations and Satellite Remote Sensing of Chemical Release Emissions to Improve Disaster Response

    Directory of Open Access Journals (Sweden)

    Ira Leifer

    2016-09-01

    Full Text Available Chemical release disasters have serious consequences, disrupting ecosystems, society, and causing significant loss of life. Mitigating the destructive impacts relies on identification and mapping, monitoring, and trajectory forecasting. Improvements in sensor capabilities are enabling airborne and spacebased remote sensing to support response activities. Key applications are improving transport models in complex terrain and improved disaster response.Chemical release disasters have serious consequences, disrupting ecosystems, society, and causing significant loss of life. Mitigating the destructive impacts relies on identification and mapping, monitoring, and trajectory forecasting. Improvements in sensor capabilities are enabling airborne and space-based remote sensing to support response activities. Key applications are improving transport models in complex terrain and improved disaster response.Understanding urban atmospheric transport in the Los Angeles Basin, where topographic influences on transport patterns are significant, was improved by leveraging the Aliso Canyon leak as an atmospheric tracer. Plume characterization data was collected by the AutoMObile trace Gas (AMOG Surveyor, a commuter car modified for science. Mobile surface in situ CH4 and winds were measured by AMOG Surveyor under Santa Ana conditions to estimate an emission rate of 365±30% Gg yr-1. Vertical profiles were collected by AMOG Surveyor by leveraging local topography for vertical profiling to identify the planetary boundary layer at ~700 m. Topography significantly constrained plume dispersion by up to a factor of two. The observed plume trajectory was used to validate satellite aerosol optical depth-inferred atmospheric transport, which suggested the plume first was driven offshore, but then veered back towards land. Numerical long-range transport model predictions confirm this interpretation. This study demonstrated a novel application of satellite aerosol remote

  13. Synthesis and integration of one-dimensional nanostructures for chemical gas sensing applications

    Science.gov (United States)

    Parthangal, Prahalad Madhavan

    The need for improved measurement technology for the detection and monitoring of gases has increased tremendously for maintenance of domestic and industrial health and safety, environmental surveys, national security, food-processing, medical diagnostics and various other industrial applications. Among the several varieties of gas sensors available in the market, solid-state sensors are the most popular owing to their excellent sensitivity, ruggedness, versatility and low cost. Semiconducting metal oxides such as tin oxide (SnO2), zinc oxide (ZnO), and tungsten oxide (WO3) are routinely employed as active materials in these sensors. Since their performance is directly linked to the exposed surface area of the sensing material, one-dimensional nanostructures possessing very high surface to volume ratios are attractive candidates for designing the next generation of sensors. Such nano-sensors also enable miniaturization thereby reducing power consumption. The key to achieve success in one-dimensional nanotechnologies lies in assembly. While synthesis techniques and capabilities continue to expand rapidly, progress in controlled assembly has been sluggish due to numerous technical challenges. In this doctoral thesis work, synthesis and characterization of various one-dimensional nanostructures including nanotubes of SnO2, and nanowires of WO3 and ZnO, as well as their direct integration into miniature sensor platforms called microhotplates have been demonstrated. The key highlights of this research include devising elegant strategies for growing metal oxide nanotubes using carbon nanotubes as templates, substantially reducing process temperatures to enable growth of WO3 nanowires on microhotplates, and successfully fabricating a ZnO nanowire array based sensor using a hybrid nanowire-nanoparticle assembly approach. In every process, the gas-sensing properties of one-dimensional nanostructures were observed to be far superior in comparison with thin films of the same

  14. REMOTE SENSING AND GIS IN THE REMEDIATION OF CHEMICAL WEAPONS CONTAMINATION IN AN URBAN LANDSCAPE

    Science.gov (United States)

    During World War I, The American University in Washington D.C. was used by the U.S. Army as an experiment station for the development and testing of a variety of battlefield munitions including chemical weapons such as Mustard Gas, Phosgene, Ricin and Lewisite. After the end of t...

  15. REMOTE SENSING DAMAGE ASSESSMENT OF CHEMICAL PLANTS AND REFINERIES FOLLOWING HURRICANES KATRINA AND RITA

    Science.gov (United States)

    The massive destruction brought by Hurricanes Katrina and Rita also impacted the many chemical plants and refineries in the region. The achievement of this rapid analysis capability highlights the advancement of this technology for air quality assessment and monitoring. Case st...

  16. Density functional theory study of chemical sensing on surfaces of single-layer MoS2 and graphene

    International Nuclear Information System (INIS)

    Mehmood, F.; Pachter, R.

    2014-01-01

    In this work, density functional theory (DFT) calculations have been used to investigate chemical sensing on surfaces of single-layer MoS 2 and graphene, considering the adsorption of the chemical compounds triethylamine, acetone, tetrahydrofuran, methanol, 2,4,6-trinitrotoluene, o-nitrotoluene, o-dichlorobenzene, and 1,5-dicholoropentane. Physisorption of the adsorbates on free-standing surfaces was analyzed in detail for optimized material structures, considering various possible adsorption sites. Similar adsorption characteristics for the two surface types were demonstrated, where inclusion of a correction to the DFT functional for London dispersion was shown to be important to capture interactions at the interface of molecular adsorbate and surface. Charge transfer analyses for adsorbed free-standing surfaces generally demonstrated very small effects. However, charge transfer upon inclusion of the underlying SiO 2 substrate rationalized experimental observations for some of the adsorbates considered. A larger intrinsic response for the electron-donor triethylamine adsorbed on MoS 2 as compared to graphene was demonstrated, which may assist in devising chemical sensors for improved sensitivity

  17. CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route

    International Nuclear Information System (INIS)

    Aslani, Alireza; Oroojpour, Vahid

    2011-01-01

    CuO nanostructures with different morphologies and sizes were grown in a controlled manner using a simple low-temperature hydrothermal technique. By controlling the pH of reaction mixture, spherical nanoparticles and cloudlike CuO structures were synthesized at 100-150 o C with excellent efficiency. These CuO nanostructures have been tested for CO gas monitoring by depositing them as thick films on an interdigitated alumina substrate and evaluated the surface resistance of the deposited layer as a function of operating temperature and CO concentrations. The gas sensitivity tests have demonstrated that the CuO nanostructures, especially cloudlike morphology, exhibit high sensitivity to CO proving their applicability in gas sensors. The role of the nanostructure on the sensing properties of CuO is also discussed.

  18. Microelectromechanical Systems (MEMS) Photoacoustic (PA) Detector of Terahertz (THz) Radiation for Chemical Sensing

    Science.gov (United States)

    2014-03-01

    films. The seed layer established the desired orientation and texture for the preferential crystal formation of the PZT . Deposited by chemical...34Stoichiometry and crystal orientation of YAG-PLD derived ferroelectric PZT thin film," Journal of the European Ceramic Society, vol. 24, no. 6, pp...results performed on the lead zirconate titanate ( PZT ) target used in previous attempts at fabricating piezoelectric cantilever. It is shown that the

  19. Determination of physicochemical and optical parameters of xerogel layers for chemical sensing

    Czech Academy of Sciences Publication Activity Database

    Matějec, Vlastimil; Mrázek, Jan; Chomát, Miroslav; Skokánková, Jana; Raileanu, M.; Zaharescu, M.

    2003-01-01

    Roč. 12,3 P.IVSup.(2003), s. 1545-1554 ISSN 1224-9513. [Physical Chemistry Conference ROMPHYSCHEM /11./. Timisoara, 02.09.2003-05.09.2003] R&D Projects: GA ČR(CZ) GA102/02/0779; GA AV ČR(CZ) KSK2067107 Keywords : chemical sensor s * sol-gel processing * aerogels * gases Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  20. SU-8 Cantilevers for Bio/chemical Sensing; Fabrication, Characterisation and Development of Novel Read-out Methods

    Directory of Open Access Journals (Sweden)

    Anja Boisen

    2008-03-01

    Full Text Available Here, we present the activities within our research group over the last five yearswith cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interestingpolymer for fabrication of cantilevers for bio/chemical sensing due to its simple processingand low Young’s modulus. We show examples of different integrated read-out methodsand their characterisation. We also show that SU-8 cantilevers have a reduced sensitivity tochanges in the environmental temperature and pH of the buffer solution. Moreover, weshow that the SU-8 cantilever surface can be functionalised directly with receptormolecules for analyte detection, thereby avoiding gold-thiol chemistry.

  1. Investigating chlorophyll and nitrogen levels of mangroves at Al-Khor, Qatar: an integrated chemical analysis and remote sensing approach.

    Science.gov (United States)

    Al-Naimi, Noora; Al-Ghouti, Mohammad A; Balakrishnan, Perumal

    2016-05-01

    Mangroves are unique ecosystems that dominate tropical and subtropical coastlines around the world. They provide shelter and nursery to wide variety of species such as fish and birds. Around 73 species of mangroves were recognized around the world. In Qatar, there is only one mangrove species Avicennia marina that is predominant along the northeastern coast. Assessing the health of these valuable ecosystems is vital for protection, management, and conservation of those resources. In this study, an integrated approach of chemical and remote sensing analysis was implemented to investigate the current status of the mangrove trees in Al-Khor, Qatar. Fifteen different A. marina trees from different locations in the mangrove forest were examined for their chlorophyll and nitrogen content levels. Soil analysis was also conducted to understand the effect of moisture on nitrogen availability. Results shows that currently, mangroves are in a good status in terms of nitrogen availability and chlorophyll levels which are related and both are key factors for photosynthesis. Remote sensing techniques were used for chlorophyll prediction. The results showed that these methods have the potential to be used for chlorophyll prediction and estimation.

  2. Metal-Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform.

    Science.gov (United States)

    Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T; Ohodnicki, Paul R

    2018-02-23

    Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal-organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability of MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2 , N 2 , O 2 , and CO) with rapid (optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.

  3. Improving subjective pattern recognition in chemical senses through reduction of nonlinear effects in evaluation of sparse data

    Science.gov (United States)

    Assadi, Amir H.; Rasouli, Firooz; Wrenn, Susan E.; Subbiah, M.

    2002-11-01

    Artificial neural network models are typically useful in pattern recognition and extraction of important features in large data sets. These models are implemented in a wide variety of contexts and with diverse type of input-output data. The underlying mathematics of supervised training of neural networks is ultimately tied to the ability to approximate the nonlinearities that are inherent in network"s generalization ability. The quality and availability of sufficient data points for training and validation play a key role in the generalization ability of the network. A potential domain of applications of neural networks is in analysis of subjective data, such as in consumer science, affective neuroscience and perception of chemical senses. In applications of ANN to subjective data, it is common to rely on knowledge of the science and context for data acquisition, for instance as a priori probabilities in the Bayesian framework. In this paper, we discuss the circumstances that create challenges for success of neural network models for subjective data analysis, such as sparseness of data and cost of acquisition of additional samples. In particular, in the case of affect and perception of chemical senses, we suggest that inherent ambiguity of subjective responses could be offset by a combination of human-machine expert. We propose a method of pre- and post-processing for blind analysis of data that that relies on heuristics from human performance in interpretation of data. In particular, we offer an information-theoretic smoothing (ITS) algorithm that optimizes that geometric visualization of multi-dimensional data and improves human interpretation of the input-output view of neural network implementations. The pre- and post-processing algorithms and ITS are unsupervised. Finally, we discuss the details of an example of blind data analysis from actual taste-smell subjective data, and demonstrate the usefulness of PCA in reduction of dimensionality, as well as ITS.

  4. Geometrical Considerations for Piezoresistive Microcantilever Response to Surface Stress during Chemical Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Loui, A; Goericke, F; Ratto, T; Lee, J; Hart, B; King, W

    2008-04-25

    We have designed, fabricated, and tested five piezoresistive cantilever configurations to investigate the effect of shape and piezoresistor placement on the sensitivity of microcantilevers under either point loading and surface stress loading. The experimental study reveals that: (1) high aspect ratio cantilevers that are much longer than they are wide are optimal for point-loading applications such as microscopy and force measurements; (2) low aspect ratio cantilevers that are short and wide are optimal for surface stress loading scenarios such as those that occur in biological and chemical sensor applications. The sensitivity data for both point loads and surface stress are consistent with previously developed finite-element models.

  5. Chemical sensing of Benzo[a]pyrene using Corchorus depressus fluorescent flavonoids.

    Science.gov (United States)

    Ahmad, Wajiha; Rana, Nosheen Fatima; Riaz, Sundus; Ahmad, Nasir Mehmood; Hameed, Maryam; Naeem, Ayesha; Tahir, Rabbiya

    2018-04-01

    Plant phytochemicals, such as flavonoids are in use for the development of optical biosensor. Benzo[a]pyrene (B[a]P), is a pervasive environmental and dietary carcinogen. A fluorescent assay is developed using plant isolated flavonoid for the detection of B[a]P. High content saponins are excluded from the flavonoid-containing methanolic extract of Corchorus depressus by implying reduction of silver ions by saponins resulting in formation of silver nanoparticles. Isolated plant flavonoids are used to develop a spectrofluorometric assay for the detection of B[a]P. Decrease in the flavonoid fluorescence intensity by B[a]P is found to be based on both static and dynamic quenching. Specificity of the assay for B[a]P was tested for other carcinogens belonging to different classes of compounds. Flavonoids-mediated sensing can be implied for the development of new generation of nanoparticle-based biosensors that can be more sensitive and less susceptible to external factors, such as temperature and humidity.

  6. Optimization of chemical composition in the manufacturing process of flotation balls based on intelligent soft sensing

    Directory of Open Access Journals (Sweden)

    Dučić Nedeljko

    2016-01-01

    Full Text Available This paper presents an application of computational intelligence in modeling and optimization of parameters of two related production processes - ore flotation and production of balls for ore flotation. It is proposed that desired chemical composition of flotation balls (Mn=0.69%; Cr=2.247%; C=3.79%; Si=0.5%, which ensures minimum wear rate (0.47 g/kg during copper milling is determined by combining artificial neural network (ANN and genetic algorithm (GA. Based on the results provided by neuro-genetic combination, a second neural network was derived as an ‘intelligent soft sensor’ in the process of white cast iron production. The proposed ANN 12-16-12-4 model demonstrated favourable prediction capacity, and can be recommended as a ‘intelligent soft sensor’ in the alloying process intended for obtaining favourable chemical composition of white cast iron for production of flotation balls. In the development of intelligent soft sensor data from the two real production processes was used. [Projekat Ministarstva nauke Republike Srbije, br. TR35037 i br. TR35015

  7. Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions.

    Science.gov (United States)

    Zhou, Jin; Lyu, Yihua; Richlen, Mindy; Anderson, Donald M; Cai, Zhonghua

    2016-01-01

    Algae are ubiquitous in the marine environment, and the ways in which they interact with bacteria are of particular interest in marine ecology field. The interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape microbial diversity. Although algal-bacterial interactions are well known and studied, information regarding the chemical-ecological role of this relationship remains limited, particularly with respect to quorum sensing (QS), which is a system of stimuli and response correlated to population density. In the microbial biosphere, QS is pivotal in driving community structure and regulating behavioral ecology, including biofilm formation, virulence, antibiotic resistance, swarming motility, and secondary metabolite production. Many marine habitats, such as the phycosphere, harbour diverse populations of microorganisms and various signal languages (such as QS-based autoinducers). QS-mediated interactions widely influence algal-bacterial symbiotic relationships, which in turn determine community organization, population structure, and ecosystem functioning. Understanding infochemicals-mediated ecological processes may shed light on the symbiotic interactions between algae host and associated microbes. In this review, we summarize current achievements about how QS modulates microbial behavior, affects symbiotic relationships, and regulates phytoplankton chemical ecological processes. Additionally, we present an overview of QS-modulated co-evolutionary relationships between algae and bacterioplankton, and consider the potential applications and future perspectives of QS.

  8. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    Science.gov (United States)

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy.

  9. Color changing block copolymer films for chemical sensing of simple sugars.

    Science.gov (United States)

    Ayyub, Omar B; Sekowski, Jennifer W; Yang, Ta-I; Zhang, Xin; Briber, Robert M; Kofinas, Peter

    2011-10-15

    We investigated the use of functionalized photonic block copolymer films for the detection of glucose. Polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) block copolymers were chemically functionalized with 2-(bromomethyl)phenylboronic acid and cast into films that reflect a visible color when exposed to aqueous media. The 2-(bromomethyl)phenylboronic acid functionality can reversibly bind to glucose. When exposed to high concentrations of glucose the polymer responded with a red shift in color. Low concentration exposure of glucose caused the polymer films to blue shift in color. The BCP films also exhibited a selective response to fructose, mannose or galactose, giving a different response depending on which sugar is present. The color of the polymer was tuned to blue, green, yellow or orange by varying the film's crosslink density. The color change can be visually observed without the use of equipment such as a spectrometer. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. An approach to enhance self-compensation capability in paper-based devices for chemical sensing.

    Science.gov (United States)

    Lo, Shih-Jie; Chen, Kuan-Hung; Yao, Da-Jeng

    2015-12-01

    This paper describes a simple design for increasing the tolerance of reagent dislocation on a paper-based platform using a combination of wax-treated paper and a vortex mixer. To date, massive budgetary funds are required in the biotechnological industry to develop new applications; a large part of that cost is attributable to the screening of specific chemical compounds. Here, we propose using a liquid-handling robot to automatically deposit selected reagents on a paper-based platform. We also present a preliminary concept approach for developing a reagent placing device with simple and inexpensive features. A defect of inaccuracy was observed between droplet location and test well location after viewing the performance of the liquid-handling robot on our paper-based platform. Because of dislocation error resulting from robotic reagent placement, we decided to apply an external, rotational force following droplet placement in order to compensate for the distance of reagent dislocation. Note, the largest distance of reagent dislocation was determined by examining the results of altering applied reagent volume, but not concentration, in volumes from 5 µL to 30 µL in a series of experiments. As a result of these experiments, we observed that dislocation was positively affected by an increase in applied volume. A colorimetric assay for nitrite detection was also performed to confirm the feasibility of this method. This work, we believe, can minimize the cost of chemical compound screening for the biotechnological industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Proton-sensing transistor systems for detecting ion leakage from plasma membranes under chemical stimuli.

    Science.gov (United States)

    Imaizumi, Yuki; Goda, Tatsuro; Schaffhauser, Daniel F; Okada, Jun-Ichi; Matsumoto, Akira; Miyahara, Yuji

    2017-03-01

    The membrane integrity of live cells is routinely evaluated for cytotoxicity induced by chemical or physical stimuli. Recent progress in bioengineering means that high-quality toxicity validation is required. Here, we report a pH-sensitive transistor system developed for the continuous monitoring of ion leakage from cell membranes upon challenge by toxic compounds. Temporal changes in pH were generated with high reproducibility via periodic flushing of HepG2 cells on a gate insulator of a proton-sensitive field-effect transistor with isotonic buffer solutions with/without NH 4 Cl. The pH transients at the point of NH 4 Cl addition/withdrawal originated from the free permeation of NH 3 across the semi-permeable plasma membranes, and the proton sponge effect produced by the ammonia equilibrium. Irreversible attenuation of the pH transient was observed when the cells were subjected to a membrane-toxic reagent. Experiments and simulations proved that the decrease in the pH transient was proportional to the area of the ion-permeable pores on the damaged plasma membranes. The pH signal was correlated with the degree of hemolysis produced by the model reagents. The pH assay was sensitive to the formation of molecularly sized pores that were otherwise not measurable via detection of the leakage of hemoglobin, because the hydrodynamic radius of hemoglobin was greater than 3.1nm in the hemolysis assay. The pH transient was not disturbed by inherent ion-transporter activity. The ISFET assay was applied to a wide variety of cell types. The system presented here is fast, sensitive, practical and scalable, and will be useful for validating cytotoxins and nanomaterials. The plasma membrane toxicity and hemolysis are widely and routinely evaluated in biomaterials science and biomedical engineering. Despite the recent development of a variety of methods/materials for efficient gene/drug delivery systems to the cytosol, the methodologies for safety validation remain unchanged in

  12. Quantum chemical spectral characterization of CH2NH2+ for remote sensing of Titan's atmosphere

    Science.gov (United States)

    Thackston, Russell; Fortenberry, Ryan C.

    2018-01-01

    Cassini has shown that CH2NH2+ is likely present in relatively high abundance in Titan's upper atmosphere. Relatively little is known about this molecule even though it contains the same number of electrons as ethylene, a molecule of significance to Titan's chemistry. Any studies on CH2NH2+ with application to Titan or its atmospheric chemistry will have to be done remotely at this point with the end of the fruitful Cassini mission. Consequently, trusted quantum chemical techniques are utilized here to produce the rotational, vibrational, and rovibrational spectroscopic constants for CH2NH2+ for the first time. The methodology produces a tightly fit potential energy surface here that is well-behaved indicating a strong credence in the accuracy for the produced values. Most notably, the 884.1 cm-1 NH2 out-of-plane bend is the brightest of the vibrational frequencies reported here for CH2NH2+ , and an observed and unattributed feature in this spectral region has been documented but never assigned to a molecular carrier. Follow-up IR or radio observations making use of the 540 GHz to 660 GHz range with the 0.45 D molecular dipole moment will have to be undertaken in order to confirm this or any attribution, but the data provided in this work will greatly assist in any such studies related to CH2NH2+.

  13. Optimized network of multi-walled carbon nanotubes for chemical sensing

    International Nuclear Information System (INIS)

    Gohier, A; Chancolon, J; Porterat, D; Mayne-L'Hermite, M; Reynaud, C; Chenevier, P

    2011-01-01

    This work reports the design of a resistive gas sensor based on 2D mats of multi-walled carbon nanotubes (MWCNTs) grown by aerosol-assisted chemical vapour deposition. The sensor sensitivity was optimized using chlorine as analyte by tuning both CNT network morphology and CNT electronic properties. Optimized devices, operating at room temperature, have been calibrated over a large range of concentration and are shown to be sensitive down to 27 ppb of chlorine. The as-grown MWCNT response is compared with responses of 2000 deg. C annealed CNTs, as well as of nitrogen-doped CNTs and CNTs functionalized with polyethyleneimine (PEI). Under chlorine exposure, the resistance decrease of as-grown and annealed CNTs is attributed to charge transfer from chlorine to CNTs and demonstrates their p-type semiconductor behaviour. XPS analysis of CNTs exposed to chlorine shows the presence of chloride species that confirms electron charge transfer from chlorine to CNTs. By contrast, the resistance of nitrogen-doped and PEI functionalized CNTs exposed to chlorine increases, in agreement with their n-type semiconductor nature. The best response is obtained using annealed CNTs and is attributed to their higher degree of crystallinity.

  14. Sensing performance of plasma-enhanced chemical vapor deposition SiC-SiO2-SiC horizontal slot waveguides

    NARCIS (Netherlands)

    Pandraud, G.; Margallo-Balbas, E.; Sarro, P.M.

    2012-01-01

    We have studied, for the first time, the sensing capabilities of plasma-enhanced chemical vapor deposition (PECVD) SiC-SiO2-SiC horizontal slot waveguides. Optical propagation losses were measured to be 23.9 dB?cm for the quasi-transverse magnetic mode. To assess the potential of this device as a

  15. Functional fixedness and functional reduction as common sense reasonings in chemical equilibrium and in geometry and polarity of molecules

    Science.gov (United States)

    Furió, C.; Calatayud, M. L.; Bárcenas, S. L.; Padilla, O. M.

    2000-09-01

    Many of the learning difficulties in the specific domain of chemistry are found not only in the ideas already possessed by students but in the strategic and procedural knowledge that is characteristic of everyday thinking. These defects in procedural knowledge have been described as functional fixedness and functional reduction. This article assesses the procedural difficulties of students (grade 12 and first and third year of university) based on common sense reasoning in two areas of chemistry: chemical equilibrium and geometry and polarity of molecules. In the first area, the theme of external factors affecting equilibria (temperature and concentration change) was selected because the explanations given by the students could be analyzed easily. The existence of a functional fixedness where Le Chatelier's principle was almost exclusively applied by rote could be observed, with this being the cause of the incorrect responses given to the proposed items. Functional fixedness of the Lewis structure also led to an incorrect prediction of molecular geometry. When molecular geometry was correctly determined by the students, it seemed that other methodological or procedural difficulties appeared when the task was to determine molecular polarity. The students showed a tendency, in many cases, to reduce the factors affecting molecular polarity in two possible ways: (a) assuming that polarity depends only on shape (geometric functional reduction) or (b) assuming that molecular polarity depends only on the polarity of bonds (bonding functional reduction).

  16. Air-gating and chemical-gating in transistors and sensing devices made from hollow TiO2 semiconductor nanotubes

    Science.gov (United States)

    Alivov, Yahya; Funke, Hans; Nagpal, Prashant

    2015-07-01

    Rapid miniaturization of electronic devices down to the nanoscale, according to Moore’s law, has led to some undesirable effects like high leakage current in transistors, which can offset additional benefits from scaling down. Development of three-dimensional transistors, by spatial extension in the third dimension, has allowed higher contact area with a gate electrode and better control over conductivity in the semiconductor channel. However, these devices do not utilize the large surface area and interfaces for new electronic functionality. Here, we demonstrate air gating and chemical gating in hollow semiconductor nanotube devices and highlight the potential for development of novel transistors that can be modulated using channel bias, gate voltage, chemical composition, and concentration. Using chemical gating, we reversibly altered the conductivity of nanoscaled semiconductor nanotubes (10-500 nm TiO2 nanotubes) by six orders of magnitude, with a tunable rectification factor (ON/OFF ratio) ranging from 1-106. While demonstrated air- and chemical-gating speeds were slow here (˜seconds) due to the mechanical-evacuation rate and size of our chamber, the small nanoscale volume of these hollow semiconductors can enable much higher switching speeds, limited by the rate of adsorption/desorption of molecules at semiconductor interfaces. These chemical-gating effects are completely reversible, additive between different chemical compositions, and can enable semiconductor nanoelectronic devices for ‘chemical transistors’, ‘chemical diodes’, and very high-efficiency sensing applications.

  17. Optical sensing method to analyze germination rate of Capsicum annum seeds treated with growth-promoting chemical compounds using optical coherence tomography

    Science.gov (United States)

    Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Kim, Pilun; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun

    2017-09-01

    Seed germination rate differs based on chemical treatments, and nondestructive measurements of germination rate have become an essential requirement in the field of agriculture. Seed scientists and other biologists are interested in optical sensing technologies-based biological discoveries due to nondestructive detection capability. Optical coherence tomography (OCT) has recently emerged as a powerful method for biological and plant material discoveries. We report an extended application of OCT by monitoring the germination rate acceleration of chemically primed seeds. To validate the versatility of the method, Capsicum annum seeds were primed using three chemical compounds: sterile distilled water (SDW), butandiol, and 1-hexadecene. Monitoring was performed using a 1310-nm swept source OCT system. The results confirmed more rapid morphological variations in the seeds treated with 1-hexadecene medium than the seeds treated with SDW and butandiol within 8 consecutive days. In addition, fresh weight measurements (gold standard) of seeds were monitored for 15 days, and the obtained results were correlated with the OCT results. Thus, such a method can be used in various agricultural fields, and OCT shows potential as a rigorous sensing method for selecting the optimal plant growth-promoting chemical compounds rapidly, when compared with the gold standard methods.

  18. Nanostructure-Directed Chemical Sensing: The IHSAB Principle and the Effect of Nitrogen and Sulfur Functionalization on Metal Oxide Decorated Interface Response

    Directory of Open Access Journals (Sweden)

    James L. Gole

    2013-08-01

    Full Text Available The response matrix, as metal oxide nanostructure decorated n-type semiconductor interfaces are modified in situ through direct amination and through treatment with organic sulfides and thiols, is demonstrated. Nanostructured TiO2, SnOx, NiO and CuxO (x = 1,2, in order of decreasing Lewis acidity, are deposited to a porous silicon interface to direct a dominant electron transduction process for reversible chemical sensing in the absence of significant chemical bond formation. The metal oxide sensing sites can be modified to decrease their Lewis acidity in a process appearing to substitute nitrogen or sulfur, providing a weak interaction to form the oxynitrides and oxysulfides. Treatment with triethylamine and diethyl sulfide decreases the Lewis acidity of the metal oxide sites. Treatment with acidic ethane thiol modifies the sensor response in an opposite sense, suggesting that there are thiol (SH groups present on the surface that provide a Brønsted acidity to the surface. The in situ modification of the metal oxides deposited to the interface changes the reversible interaction with the analytes, NH3 and NO. The observed change for either the more basic oxynitrides or oxysulfides or the apparent Brønsted acid sites produced from the interaction of the thiols do not represent a simple increase in surface basicity or acidity, but appear to involve a change in molecular electronic structure, which is well explained using the recently developed inverse hard and soft acids and bases (IHSAB model.

  19. Room Temperature Gas Sensing Properties of Sn-Substituted Nickel Ferrite (NiFe2O4) Thin Film Sensors Prepared by Chemical Co-Precipitation Method

    Science.gov (United States)

    Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.

    2018-04-01

    Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.

  20. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  1. Mini-lidar sensor for the remote stand-off sensing of chemical/biological substances and method for sensing same

    Science.gov (United States)

    Ray, Mark D.; Sedlacek, Arthur J.

    2003-08-19

    A method and apparatus for remote, stand-off, and high efficiency spectroscopic detection of biological and chemical substances. The apparatus including an optical beam transmitter which transmits a beam having an axis of transmission to a target, the beam comprising at least a laser emission. An optical detector having an optical detection path to the target is provided for gathering optical information. The optical detection path has an axis of optical detection. A beam alignment device fixes the transmitter proximal to the detector and directs the beam to the target along the optical detection path such that the axis of transmission is within the optical detection path. Optical information gathered by the optical detector is analyzed by an analyzer which is operatively connected to the detector.

  2. Toxicity and disruption of quorum sensing in Aliivibrio fisheri by environmental chemicals: Impacts of selected contaminants and microplastics

    Directory of Open Access Journals (Sweden)

    François Gagné

    2017-11-01

    Full Text Available The purpose of this study was to examine the effects of dissolved and particulate compounds on quorum sensing in the marine luminescent bacterium Aliivibrio fisheri. Bacteria were exposed to increasing concentrations of CuSO4 (Cu2+, gadolinium chloride (Gd3+, 20-nm silver nanoparticles (nanoAg and 1-3 μm microplastic polyethylene beads for 250 min. During this period, luminescence measurements were taken at 5-min intervals. Toxicity was first examined by measuring luminescence output at 5-min and 30-min incubation time. Based on the effective concentration that decreases luminescence by 20% (EC20, the compounds were toxic at the following concentrations in decreasing toxicity: Cu2+ (3.2 mg/L < nanoAg (3.4 mg/L, reported < Gd3+ (34 mg/L < microplastics (2.6 g/L. The data revealed that luminescence changed non-linearly over time. In control bacteria, luminescence changed at eight specific major frequencies between 0.04 and 0.27 cycle/min after Fourier transformation of time-dependent luminescence data. The addition of dissolved Cu2+ and Gd3+ eliminated the amplitude changes at these frequencies in a concentration-dependent manner, indicating loss of quorum sensing between bacteria at concentrations below EC20. In the presence of nanoAg and microplastic beads, the decreases in amplitudes were modest but compressed the luminescence profiles, with shorter frequencies appearing at concentrations well below EC20. Thus, loss of communication between bacteria occurs at non-toxic concentrations. In addition, with exposure to a mixture of the above compounds at concentrations that do not produce effects for Gd3+, nanoAg and microplastics, Cu2+ toxicity was significantly enhanced, suggesting synergy. This study revealed for the first time that small microplastic particles and nanoparticles can disrupt quorum sensing in marine bacteria.

  3. Metal-organic framework thin films on a surface of optical fibre long period grating for chemical sensing

    Science.gov (United States)

    Hromadka, J.; Tokay, B.; James, S.; Korposh, S.

    2017-04-01

    An optical fibre long period grating (LPG) modified with a thin film of HKUST-1, a material from metal organic framework (MOF) family, was employed for the detection of carbon dioxide. The sensing mechanism is based on the measurement of the change of the refractive index (RI) of the coating that is induced by the penetration of CO2 molecules into the HKUST-1 pores. The responses of the resonance bands in the transmission spectrum of an LPG modified with 40 layers of HKUST-1 upon exposure to carbon dioxide in mixture with nitrogen were investigated.

  4. Characterization of Surface-Enhanced Raman Scattering of Nicotine Utilizing Plasmonic Nanometals for the Applications of Medical and Chemical Sensing

    Science.gov (United States)

    Jackson, Ashley; Rigo, Maria; Seo, Jaetae; HU Team

    2011-05-01

    Raman spectroscopy has received a great deal of interest for its applications in biological sensing and cell imaging due to the ease with which it can be used to extract significant data from tissue and cells. This study has focused on the application of SERS for nicotine detection. Liquid nicotine was diluted and combined with Au nanoparticles (NPs). The nicotine-gold solution was analyzed by acquiring Raman spectra data using a Delta Nu Spectrometer. Absorption data shows the characteristic peak of Au NPs at ~528 nm while showing successful aggregation of the nicotine particles. Data taken from Raman spectra shows characteristic Raman shifts of nicotine at ~1030 cm-1 and ~1590 cm-1. Currently work is being done to optimize the SERS signal for nicotine in the 1590-1600 region using higher concentrations of nicotine and various sizes of Au NPs. This work at Hampton University was supported by the National Science Foundation (HRD-0734635 and HRD-063037).

  5. A chemical biology approach to interrogate quorum-sensing regulated behaviors at the molecular and cellular level.

    Science.gov (United States)

    Lowery, Colin A; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan; Lively, Jenny M; Cravatt, Benjamin F; Miller, Samuel I; Kaufmann, Gunnar F; Janda, Kim D

    2013-07-25

    Small molecule probes have been used extensively to explore biologic systems and elucidate cellular signaling pathways. In this study, we use an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering unrecognized processes regulated by AI-2-based quorum-sensing (QS), a mechanism of bacterial intercellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intercellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Making Sense of the 'Chemical Revolution'. Patients' Voices on the Introduction of Neuroleptics in the 1950s.

    Science.gov (United States)

    Majerus, Benoît

    2016-01-01

    The so-called chemical revolution has produced a vast historiographical corpus. Yet the patient's voice remains surprisingly absent from these stories. Based on the archives of the Institut de Psychiatrie (Brussels), this paper traces the introduction of Largactil as recounted in patient letters, physician records and nurse notes. The paper thus contributes to the history of therapies from below, but also participates in the historiographical debate about whether the introduction of neuroleptics can indeed be considered a revolution.

  7. Self-assembled micro-/nanostructured WO3 thin films by aqueous chemical growth and their applications in H2 and CO2 sensing

    Science.gov (United States)

    Sone, B. T.; Nkosi, S. S.; Nkosi, M. M.; Coetsee-Hugo, E.; Swart, H. C.; Maaza, M.

    2018-05-01

    Application of thin film technology is increasing in many areas such as energy production, energy saving, telecommunications, protective and smart coatings, etc. This increased application creates a need for simple, cost-effective methods for the synthesis of highly multifunctional metal oxide thin films. The technique of Aqueous Chemical Growth is presented in this paper as a simple inexpensive means of producing WO3 thin films that find applications in gas sensing, electrochromism and photocatalysis. We demonstrate, through this technique, that heterogeneous nucleation and growth of WO3 thin films on plain glass substrates takes place at low pHs and low temperatures (75-95 °C) without the use of surfactants and template directing methods. The substrates used needed no surface-modification. On the plain glass substrates (soda lime silicates) a variety of micro-nanostructures could be observed most important of which were nanoplatelets that acted as a basic building block for the self-assembly of more hierarchical 3-d microspheres and thin films. The dominant crystallographic structure observed through X-ray diffraction analysis was found to be hexagonal-WO3 and monoclinic WO3. The thin films produced showed a fair degree of porosity. Some of the thin films on glass showed ability to sense, unaided, H2 at 250 °C. Sensor responses were observed to be 1 - 2 orders of magnitude. The films also demonstrated potential to sense CO2 even though this could only be achieved using high concentrations of CO2 gas at temperatures of 300 °C and above. The sensor responses at 300 °C were estimated to be less than 1 order of magnitude.

  8. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, Diana; Gonzalez, Maria Cristina [Departamento de Quimica Analitica e Ingenieria Quimica, Facultad de Quimica, Edificio Polivalente, Universidad de Alcala, Ctra. Madrid-Barcelona km 33,600, 28871 Alcala de Henares, Madrid (Spain); Escarpa, Alberto, E-mail: alberto.escarpa@uah.es [Departamento de Quimica Analitica e Ingenieria Quimica, Facultad de Quimica, Edificio Polivalente, Universidad de Alcala, Ctra. Madrid-Barcelona km 33,600, 28871 Alcala de Henares, Madrid (Spain)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer Visual detection based gold and silver nanoparticles aggregation. Black-Right-Pointing-Pointer Functionalized and non-functionalized nanoparticles. Black-Right-Pointing-Pointer High selectivity and sensitivity. Black-Right-Pointing-Pointer No complex instrumentation is required/chemical creativity for analyte detection. - Abstract: Localized surface plasmon resonance (LSPR) is one of the most remarkable features of gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs). Due to these inherent optical properties, colloidal solutions of Au and Ag NPs have high extinction coefficients and different colour in the visible region of the spectrum when they are well-spaced in comparison with when they are aggregated. Therefore, a well-designed chemical interaction between the analyte and NPs surroundings leads to a change of colour (red to blue for Au NPs and yellow to brown for Ag NPs from well-spaced to aggregated ones, respectively) allowing the visual detection of the target analyte. These approaches have exhibited an excellent analytical performance with high sensitivities due to the strong LSPR and excellent selectivity strategically driven by the interaction analyte-NPs surroundings involving mainly electrostatic and hydrogen bond interactions as well as donor-acceptor chemical reactions, among others. In addition, this kind of colorimetric assays has received considerable attention in the analytical field because of their simplicity and low cost since they do not require any expensive or complex instrumentation. As a consequence of this, detection of molecules with a high significance in the bio-medical, clinical, food safety and environmental fields including DNA, proteins and a wide spectrum of organic molecules as well as inorganic ions have been impressively reported in the most relevant literature using these assays. This timely review offers a rational vision of the main achievements yielded in the relevant

  9. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review

    International Nuclear Information System (INIS)

    Vilela, Diana; González, María Cristina; Escarpa, Alberto

    2012-01-01

    Highlights: ► Visual detection based gold and silver nanoparticles aggregation. ► Functionalized and non-functionalized nanoparticles. ► High selectivity and sensitivity. ► No complex instrumentation is required/chemical creativity for analyte detection. - Abstract: Localized surface plasmon resonance (LSPR) is one of the most remarkable features of gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs). Due to these inherent optical properties, colloidal solutions of Au and Ag NPs have high extinction coefficients and different colour in the visible region of the spectrum when they are well-spaced in comparison with when they are aggregated. Therefore, a well-designed chemical interaction between the analyte and NPs surroundings leads to a change of colour (red to blue for Au NPs and yellow to brown for Ag NPs from well-spaced to aggregated ones, respectively) allowing the visual detection of the target analyte. These approaches have exhibited an excellent analytical performance with high sensitivities due to the strong LSPR and excellent selectivity strategically driven by the interaction analyte-NPs surroundings involving mainly electrostatic and hydrogen bond interactions as well as donor–acceptor chemical reactions, among others. In addition, this kind of colorimetric assays has received considerable attention in the analytical field because of their simplicity and low cost since they do not require any expensive or complex instrumentation. As a consequence of this, detection of molecules with a high significance in the bio-medical, clinical, food safety and environmental fields including DNA, proteins and a wide spectrum of organic molecules as well as inorganic ions have been impressively reported in the most relevant literature using these assays. This timely review offers a rational vision of the main achievements yielded in the relevant literature according to this exciting and creative analytical field.

  10. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    Science.gov (United States)

    Martin, S.J.; Ricco, A.J.

    1993-08-10

    A chemical or intrinsic physical property sensor is described comprising: (a) a substrate; (b) an interaction region of said substrate where the presence of a chemical or physical stimulus causes a detectable change in the velocity and/or an attenuation of an acoustic wave traversing said region; and (c) a plurality of paired input and output interdigitated electrodes patterned on the surface of said substrate where each of said paired electrodes has a distinct periodicity, where each of said paired electrodes is comprised of an input and an output electrode; (d) an input signal generation means for transmitting an input signal having a distinct frequency to a specified input interdigitated electrode of said plurality so that each input electrode receives a unique input signal, whereby said electrode responds to said input signal by generating an acoustic wave of a specified frequency, thus, said plurality responds by generating a plurality of acoustic waves of different frequencies; (e) an output signal receiving means for determining an acoustic wave velocity and an amplitude of said acoustic waves at several frequencies after said waves transverses said interaction region and comparing these values to an input acoustic wave velocity and an input acoustic wave amplitude to produce values for perturbations in acoustic wave velocities and for acoustic wave attenuation as a function of frequency, where said output receiving means is individually coupled to each of said output interdigitated electrode; (f) a computer means for analyzing a data stream comprising information from said output receiving means and from said input signal generation means to differentiate a specified response due to a perturbation from a subsequent specified response due to a subsequent perturbation to determine the chemical or intrinsic physical properties desired.

  11. Advances in chemical sensing technologies for VOCs in breath for security/threat assessment, illicit drug detection, and human trafficking activity.

    Science.gov (United States)

    Giannoukos, S; Agapiou, A; Taylor, S

    2018-01-17

    On-site chemical sensing of compounds associated with security and terrorist attacks is of worldwide interest. Other related bio-monitoring topics include identification of individuals posing a threat from illicit drugs, explosive manufacturing, as well as searching for victims of human trafficking and collapsed buildings. The current status of field analytical technologies is directed towards the detection and identification of vapours and volatile organic compounds (VOCs). Some VOCs are associated with exhaled breath, where research is moving from individual breath testing (volatilome) to cell breath (microbiome) and most recently to crowd breath metabolites (exposome). In this paper, an overview of field-deployable chemical screening technologies (both stand-alone and those with portable characteristics) is given with application to early detection and monitoring of human exposome in security operations. On-site systems employed in exhaled breath analysis, i.e. mass spectrometry (MS), optical spectroscopy and chemical sensors are reviewed. Categories of VOCs of interest include (a) VOCs in human breath associated with exposure to threat compounds, and (b) VOCs characteristic of, and associated with, human body odour (e.g. breath, sweat). The latter are relevant to human trafficking scenarios. New technological approaches in miniaturised detection and screening systems are also presented (e.g. non-scanning digital light processing linear ion trap MS (DLP-LIT-MS), nanoparticles, mid-infrared photo-acoustic spectroscopy and hyphenated technologies). Finally, the outlook for rapid and precise, real-time field detection of threat traces in exhaled breath is revealed and discussed.

  12. Comparative analysis of physico-chemical and gas sensing characteristics of two different forms of SnO_2 films

    International Nuclear Information System (INIS)

    Kwoka, M.; Ottaviano, L.; Szuber, J.

    2017-01-01

    Highlights: • Two different forms of SnO_2 deposited on Si substrate. • Crystallinity and surface/subsurface morphology controlled by XRD, SEM and AFM. • Surface/subsurface chemistry including stoichiometry and contaminations derived from XPS. • Comparative analysis of gas sensor characteristics of SnO_2 in NO_2 atmosphere. • Correlations between physico-chemical properties and gas sensor characteristics. - Abstract: In this paper the results of studies of comparative studies on the crystallinity, morphology and chemistry combined with the gas sensor response of two different forms of tin dioxide (SnO_2) films prepared by the Rheotaxial Growth and Thermal Oxidation (RGTO) and by the Laser-enhanced Chemical Vapour Deposition (L-CVD) methods, respectively, are presented. For this purpose the X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray Photoelectron spectroscopy (XPS) have been used. XRD studies for both samples show the contribution from the crystalline SnO_2 in the cassiterite rutile phase without any evident contribution from the tin oxide (SnO) phase. SEM and AFM studies show that the surface morphology of RGTO and L-CVD SnO_2 samples are characterized by grains/nanograins of different size and surface roughness. In turn XPS studies confirm that for both SnO_2 samples a slight nonstoichiometry with a relative [O]/[Sn] concentration of 1.8, and slightly different amount of C contamination at the surface of internal grains with relative [C]/[Sn] concentration of 3.5 and 3.2, respectively. This undesired C contamination cannot be ignored because it creates an uncontrolled barrier for the potential gas adsorption at the internal surface of sensor material. This is confirmed by the gas sensor response in NO_2 atmosphere of both SnO_2 samples because the sensitivity is evidently smaller for RGTO SnO_2 with respect to the L-CVD SnO_2 samples, whereas the response time showed a completely opposite tendency

  13. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 2; Chemical Sensing Using Optical Fibers with Bragg Gratings

    Science.gov (United States)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.

  14. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of

  15. Long-period gratings in photonic crystal fibers operating near the phase-matching turning point for evanescent chemical and biochemical sensing

    Science.gov (United States)

    Kanka, Jiri

    2012-06-01

    Fiber-optic long-period grating (LPG) operating near the dispersion turning point in its phase matching curve (PMC), referred to as a Turn Around Point (TAP) LPG, is known to be extremely sensitive to external parameters. Moreover, in a TAP LPG the phase matching condition can be almost satisfied over large spectral range, yielding a broadband LPG operation. TAP LPGs have been investigated, namely for use as broadband mode convertors and biosensors. So far TAP LPGs have been realized in specially designed or post-processed conventional fibers, not yet in PCFs, which allow a great degree of freedom in engineering the fiber's dispersion properties through the control of the PCF structural parameters. We have developed the design optimization technique for TAP PCF LPGs employing the finite element method for PCF modal analysis in a combination with the Nelder-Mead simplex method for minimizing the objective function based on target-specific PCF properties. Using this tool we have designed TAP PCF LPGs for specified wavelength ranges and refractive indices of medium in the air holes. Possible TAP PCF-LPG operational regimes - dual-resonance, broadband mode conversion and transmitted intensity-based operation - will be demonstrated numerically. Potential and limitations of TAP PCF-LPGs for evanescent chemical and biochemical sensing will be assessed.

  16. Capacitive chemical sensor

    Science.gov (United States)

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  17. Sensing in tissue bioreactors

    Science.gov (United States)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  18. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  19. Chemical and biological sensing applications of integrated photonics with an introduction to the American Institute for Manufacturing Integrated Photonics (AIM Photonics)

    Science.gov (United States)

    Bickford, Justin; Guicheteau, Jason

    2016-05-01

    Integrated photonics affords an opportunity to explore novel sensing and lab-on-a-chip concepts. It offers a route to high sensitivity, high selectivity, and low SWaP-C test systems that can be operated autonomously or by minimallytrained field personnel. We'll introduce the topic, discuss possible sensing modalities, and highlight the advantages and limitations of this technology. We'll also introduce the recent American Institute for Manufacturing Integrated Photonics (AIM Photonics), give an overview of its vision and capabilities, how to utilize its Electronic-Photonic Design Automation (EPDA) tools and its Multi-Project Wafer and Assembly (MPWA) services, how to engage in its road mapping efforts, and how to become a contributing member.

  20. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  1. Make Sense?

    DEFF Research Database (Denmark)

    Gyrd-Jones, Richard; Törmälä, Minna

    Purpose: An important part of how we sense a brand is how we make sense of a brand. Sense-making is naturally strongly connected to how we cognize about the brand. But sense-making is concerned with multiple forms of knowledge that arise from our interpretation of the brand-related stimuli......: Declarative, episodic, procedural and sensory. Knowledge is given meaning through mental association (Keller, 1993) and / or symbolic interaction (Blumer, 1969). These meanings are centrally related to individuals’ sense of identity or “identity needs” (Wallpach & Woodside, 2009). The way individuals make...... sense of brands is related to who people think they are in their context and this shapes what they enact and how they interpret the brand (Currie & Brown, 2003; Weick, Sutcliffe, & Obstfeld, 2005; Weick, 1993). Our subject of interest in this paper is how stakeholders interpret and ascribe meaning...

  2. Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals

    Directory of Open Access Journals (Sweden)

    Ralf Ostendorf

    2016-05-01

    Full Text Available External-cavity quantum cascade lasers (EC-QCL are now established as versatile wavelength-tunable light sources for analytical spectroscopy in the mid-infrared (MIR spectral range. We report on the realization of rapid broadband spectral tuning with kHz scan rates by combining a QCL chip with a broad gain spectrum and a resonantly driven micro-opto-electro-mechanical (MOEMS scanner with an integrated diffraction grating in Littrow configuration. The capability for real-time spectroscopic sensing based on MOEMS EC-QCLs is demonstrated by transmission measurements performed on polystyrene reference absorber sheets, as well as on hazardous substances, such as explosives. Furthermore, different applications for the EC-QCL technology in spectroscopic sensing are presented. These include the fields of process analysis with on- or even inline capability and imaging backscattering spectroscopy for contactless identification of solid and liquid contaminations on surfaces. Recent progress in trace detection of explosives and related precursors in relevant environments as well as advances in food quality monitoring by discriminating fresh and mold contaminated peanuts based on their MIR backscattering spectrum is shown.

  3. Self-Assembly Template Driven 3D Inverse Opal Microspheres Functionalized with Catalyst Nanoparticles Enabling a Highly Efficient Chemical Sensing Platform.

    Science.gov (United States)

    Wang, Tianshuang; Can, Inci; Zhang, Sufang; He, Junming; Sun, Peng; Liu, Fangmeng; Lu, Geyu

    2018-02-14

    The design of semiconductor metal oxides (SMOs) with well-ordered porous structure has attracted tremendous attention owing to their larger specific surface area. Herein, three-dimensional inverse opal In 2 O 3 microspheres (3D-IO In 2 O 3 MSs) were fabricated through one-step ultrasonic spray pyrolysis (USP) which employed self-assembly sulfonated polystyrene (S-PS) spheres as a sacrificial template. The spherical pores observed in the 3D-IO In 2 O 3 MSs had diameters of about 4 and 80 nm. Subsequently, the catalytic palladium oxide nanoparticles (PdO NPs) were loaded on 3D-IO In 2 O 3 MSs via a simple impregnation method, and their gas sensing properties were investigated. In a comparison with pristine 3D-IO In 2 O 3 MSs, the 3D-IO PdO@In 2 O 3 MSs exhibited a 3.9 times higher response (R air /R gas = 50.9) to 100 ppm acetone at 250 °C and a good acetone selectivity. The detection limit for acetone could extend down to ppb level. Furthermore, the 3D-IO PdO@In 2 O 3 MSs-based sensor also possess good long-term stability. The extraordinary sensing performance can be attributed to the novel 3D periodic porous structure, highly three-dimensional interconnection, larger specific surface area, size-tunable (meso- and macroscale) bimodal pores, and PdO NP catalysts.

  4. Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO2–Pt) composite nanoclusters on GaN nanowires: a new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors

    International Nuclear Information System (INIS)

    Aluri, Geetha S; Motayed, Abhishek; Davydov, Albert V; Oleshko, Vladimir P; Bertness, Kris A; Sanford, Norman A; Mulpuri, Rao V

    2012-01-01

    We demonstrate a new method for tailoring the selectivity of chemical sensors using semiconductor nanowires (NWs) decorated with metal and metal oxide multicomponent nanoclusters (NCs). Here we present the change of selectivity of titanium dioxide (TiO 2 ) nanocluster-coated gallium nitride (GaN) nanowire sensor devices on the addition of platinum (Pt) nanoclusters. The hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO 2 and/or Pt nanoclusters (NCs) using the sputtering technique. This paper present the sensing characteristics of GaN/(TiO 2 –Pt) nanowire–nanocluster (NWNC) hybrids and GaN/(Pt) NWNC hybrids, and compare their selectivity with that of the previously reported GaN/TiO 2 sensors. The GaN/TiO 2 NWNC hybrids showed remarkable selectivity to benzene and related aromatic compounds, with no measurable response for other analytes. Addition of Pt NCs to GaN/TiO 2 sensors dramatically altered their sensing behavior, making them sensitive only to methanol, ethanol and hydrogen, but not to any other chemicals we tested. The GaN/(TiO 2 –Pt) hybrids were able to detect ethanol and methanol concentrations as low as 100 nmol mol −1 (ppb) in air in approximately 100 s, and hydrogen concentrations from 1 µmol mol −1 (ppm) to 1% in nitrogen in less than 60 s. However, GaN/Pt NWNC hybrids showed limited sensitivity only towards hydrogen and not towards any alcohols. All these hybrid sensors worked at room temperature and are photomodulated, i.e. they responded to analytes only in the presence of ultraviolet (UV) light. We propose a qualitative explanation based on the heat of adsorption, ionization energy and solvent polarity to explain the observed selectivity of the different hybrids. These results are significant from the standpoint of applications requiring room-temperature hydrogen sensing and sensitive alcohol monitoring. These results demonstrate the tremendous potential

  5. Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO(2)-Pt) composite nanoclusters on GaN nanowires: a new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors.

    Science.gov (United States)

    Aluri, Geetha S; Motayed, Abhishek; Davydov, Albert V; Oleshko, Vladimir P; Bertness, Kris A; Sanford, Norman A; Mulpuri, Rao V

    2012-05-04

    We demonstrate a new method for tailoring the selectivity of chemical sensors using semiconductor nanowires (NWs) decorated with metal and metal oxide multicomponent nanoclusters (NCs). Here we present the change of selectivity of titanium dioxide (TiO(2)) nanocluster-coated gallium nitride (GaN) nanowire sensor devices on the addition of platinum (Pt) nanoclusters. The hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO(2) and/or Pt nanoclusters (NCs) using the sputtering technique. This paper present the sensing characteristics of GaN/(TiO(2)-Pt) nanowire-nanocluster (NWNC) hybrids and GaN/(Pt) NWNC hybrids, and compare their selectivity with that of the previously reported GaN/TiO(2) sensors. The GaN/TiO(2) NWNC hybrids showed remarkable selectivity to benzene and related aromatic compounds, with no measurable response for other analytes. Addition of Pt NCs to GaN/TiO(2) sensors dramatically altered their sensing behavior, making them sensitive only to methanol, ethanol and hydrogen, but not to any other chemicals we tested. The GaN/(TiO(2)-Pt) hybrids were able to detect ethanol and methanol concentrations as low as 100 nmol mol(-1) (ppb) in air in approximately 100 s, and hydrogen concentrations from 1 µmol mol(-1) (ppm) to 1% in nitrogen in less than 60 s. However, GaN/Pt NWNC hybrids showed limited sensitivity only towards hydrogen and not towards any alcohols. All these hybrid sensors worked at room temperature and are photomodulated, i.e. they responded to analytes only in the presence of ultraviolet (UV) light. We propose a qualitative explanation based on the heat of adsorption, ionization energy and solvent polarity to explain the observed selectivity of the different hybrids. These results are significant from the standpoint of applications requiring room-temperature hydrogen sensing and sensitive alcohol monitoring. These results demonstrate the tremendous potential for

  6. Azadirachta indica plant-assisted green synthesis of Mn3O4 nanoparticles: Excellent thermal catalytic performance and chemical sensing behavior.

    Science.gov (United States)

    Sharma, Jitendra Kumar; Srivastava, Pratibha; Ameen, Sadia; Akhtar, M Shaheer; Singh, Gurdip; Yadava, Sudha

    2016-06-15

    The leaf extract of Azadirachta indica (Neem) plant was utilized as reducing agent for the green synthesis of Mn3O4 nanoparticles (NPs). The crystalline analysis demonstrated the typical tetragonal hausmannite crystal structure of Mn3O4, which confirmed the formation of Mn3O4 NPs without the existence of other oxides. Green synthesized Mn3O4 NPs were applied for the catalytic thermal decomposition of ammonium perchlorate (AP) and as working electrode for fabricating the chemical sensor. The excellent catalytic effect for the thermal decomposition of AP was observed by decreasing the decomposition temperature by 175 °C with single decomposing step. The fabricated chemical sensor based on green synthesized Mn3O4 NPs displayed high, reliable and reproducible sensitivity of ∼569.2 μA mM(-1) cm(-2) with reasonable limit of detection (LOD) of ∼22.1 μM and the response time of ∼10 s toward the detection of 2-butanone chemical. A relatively good linearity in the ranging from ∼20 to 160 μM was detected for Mn3O4 NPs electrode based 2-butanone chemical sensor. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. PRESENTED 03/01/2006: 2006 REMOTE SENSING AND GIS IN THE REMEDIATION OF CHEMICAL WEAPONS CONTAMINATION IN AN URBAN LANDSCAPE

    Science.gov (United States)

    During World War 1, The American University in Washington, DC was used by the U.S. Army as an experiment station for the development and testing of a variety of battlefield munitions including chemical weapons such as Mustard Gas, Phosgene, Ricin and Lewisite

  8. Sulfur-Hz(CHx)y(z = 0,1) functionalized metal oxide nanostructure decorated interfaces: Evidence of Lewis base and Brönsted acid sites – Influence on chemical sensing

    International Nuclear Information System (INIS)

    Laminack, William; Baker, Caitlin; Gole, James

    2015-01-01

    Nanostructure metal oxide decorated n-type extrinsic porous silicon (PS) semiconductor interfaces are modified through in-situ interaction with acidic ethane and butane thiols (EtSH, BuSH) and basic diethyl sulfide (Et 2 S). Highly sensitive conductometric sensor evaluations and X-ray Photoelectron Spectroscopy demonstrate the effect of sulfur group functionalization modifying the acidity of the metal oxides and their interaction with NH 3 . SEM micrographs demonstrate that the sulfur treated particles are less than 30 nm in size. EDAX studies confirm the chemical composition of the modified nanoparticles and suggest the surface interaction of the sulfides and thiols. The acidic thiols can form Brönsted acidic sites enhancing the acidity of the metal oxides, thus broadening the initial metal oxide acidity range. The sulfides interact to lower the Lewis acidity of nanostructured metal oxide sites. Conductometric response matrices with NH 3 at room temperature, corresponding to the thiol and sulfide treated nanostructures of the metal oxides TiO 2 , SnO x , Ni x O, Cu x O, and Au x O (x >> 1) are evaluated for a dominant electron transduction process forming the basis for reversible chemical sensing in the absence of chemical bond formation. Treatment with the acidic thiols enhances the metal center acidity. It is suggested that the thiols can interact to increase the Brönsted acidity of the doped metal oxide surface if they maintain SH bonds. This process may account for the shift in Lewis acidity as the Brönsted acid sites counter the decrease in Lewis acidity resulting from the interaction of S-(CH x ) y groups. In contrast, treatment with basic Et 2 S decreases the Lewis acidity of the metal oxide sites, enhancing the basicity of the decorated interface. XPS measurements indicate a change in binding energy (BE) of the metal and oxygen centers. The observed changes in conductometric response do not represent a simple increase in surface acidity or basicity but

  9. An external-cavity quantum cascade laser operating near 5.2 µm combined with cavity ring-down spectroscopy for multi-component chemical sensing

    Science.gov (United States)

    Dutta Banik, Gourab; Maity, Abhijit; Som, Suman; Pal, Mithun; Pradhan, Manik

    2018-04-01

    We report on the performance of a widely tunable continuous wave mode-hop-free external-cavity quantum cascade laser operating at λ ~ 5.2 µm combined with cavity ring-down spectroscopy (CRDS) technique for high-resolution molecular spectroscopy. The CRDS system has been utilized for simultaneous and molecule-specific detection of several environmentally and bio-medically important trace molecular species such as nitric oxide, nitrous oxide, carbonyl sulphide and acetylene (C2H2) at ultra-low concentrations by probing numerous rotationally resolved ro-vibrational transitions in the mid-IR spectral region within a relatively small spectral range of ~0.035 cm-1. This continuous wave external-cavity quantum cascade laser-based multi-component CRDS sensor with high sensitivity and molecular specificity promises applications in environmental sensing as well as non-invasive medical diagnosis through human breath analysis.

  10. Electroactive polymers for sensing

    Science.gov (United States)

    2016-01-01

    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846

  11. 3D-printed poly(vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Z. C.; Christ, J. F.; Evans, K. A.; Arey, B. W.; Sweet, L. E.; Warner, M. G.; Erikson, R. L.; Barrett, C. A.

    2017-01-01

    We report the production of flexible, highly-conductive poly(vinylidene flouride) (PVDF) and multi-walled carbon nanotube (MWCNT) composites as filament feedstock for 3D-printing. This account further describes, for the first-time, fused deposition modelling (FDM) derived 3D-printed objects with chemiresistive properties in response to volatile organic compounds. The typically prohibitive thermal expansion and die swell characteristics of PVDF were minimized by the presence of MWCNTs in the composites enabling straightforward processing and printing. The nanotubes form a dispersed network as characterized by helium ion microscopy, contributing to excellent conductivity (1 x 10-2 S / cm). The printed composites contain little residual metal particulate relative to parts from commercial PLA-nanocomposite material visualized by micro X-ray computed tomography (μ-CT) and corroborated with thermogravimetric analysis. Printed sensing strips, with MWCNT loadings up to 15 % mass, function as reversible vapour sensors with the strongest responses arising with organic compounds capable of readily intercalating, and subsequently swelling the PVDF matrix (acetone and ethyl acetate). A direct correlation between MWCNT concentration and resistance change was also observed, with larger responses (up to 161 % after 3 minutes) generated with decreased MWCNT loadings. These findings highlight the utility of FDM printing in generating low-cost sensors that respond strongly and reproducibly to target vapours. Furthermore, the sensors can be easily printed in different geometries, expanding their utility to wearable form factors. The proposed formulation strategy may be tailored to sense diverse sets of vapour classes through structural modification of the polymer backbone and/or functionalization of the nanotubes within the composite.

  12. Ammonia detection of 1-D ZnO/polypyrrole nanocomposite: Effect of CSA doping and their structural, chemical, thermal and gas sensing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Shilpa [Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai-400098,India (India); Karmakar, Narayan [Department of Physics, University of Mumbai, Santacruz (East), Mumbai-400098,India (India); Shah, Akshara [Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai-400098,India (India); Kothari, D.C. [Department of Physics, University of Mumbai, Santacruz (East), Mumbai-400098,India (India); National Centre for Nanosciences& Nanotechnology, University of Mumbai, Santacruz (East), Mumbai-400098,India (India); Mishra, Satyendra [University Institute of Chemical Technology, North Maharashtra University, Jalgaon (India); Shimpi, Navinchandra G, E-mail: navin_shimpi@rediffmail.com [Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai-400098,India (India)

    2017-02-28

    Highlights: • Synthesis of 1-Dimensional ZnO-Polypyrrole nanocomposite using In-situ oxidative polymerization technique. • High response ammonia sensing. • Optimization of ZnO content in nanocomposites for maximum sensor response. • Effect of CSA doping on structural, thermal, optical and sensing behavior. • Optimization of CSA concentration for high sensitivity, fast response and recovery time. - Abstract: Nanocomposites of polypyrrole (PPy) with varying concentration of ZnO nanorods (ZnO NRs) were synthesized using in-situ oxidative polymerization technique. The prepared nanocomposites (PPy, PPy-ZnO and CSA doped PPy-ZnO) were studied for various oxidizing and reducing gases at room temperature and found to be more selective towards ammonia gas. Various concentrations of ZnO NRs in Ppy matrix were studied and 15% was found to be optimum in terms of sensor response (66% towards 120 ppm NH{sub 3}). Further, with 15% doping of camphor sulphonic acid (CSA) in PPy-ZnO nanocomposite for 15% ZnO NRs in Ppy matrix, sensor response increased from 66 to 79% towards 120 ppm of NH{sub 3}. Structural, Optical and thermal behavior of nanocomposites were studied using powder X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy, X-ray Photoelectron Spectroscopy (XPS), UV–vis (UV–vis) absorption spectroscopy, room temperature Photoluminescence (PL) Spectroscopy, Thermo-gravimetric analysis (TGA) and Field Emission Scanning Electron Microscopy (FESEM). ZnO has been completely embedded inside the polymeric chains as observed from in SEM. Meanwhile, FT-IR spectra indicate better conjugation and interaction in nanocomposites. With CSA doping interaction grows stronger due to extended delocalization over π electrons leading to higher sensor response and with response time and recovery time of 24 s and 34 s respectively. CSA doped PPy-ZnO (15%) nanocomposites observed to be a potential candidate for ammonia detection at lower ppm level.

  13. A Novel Mechanism for Chemical Sensing Based on Solvent-Fluorophore-Substrate Interaction: Highly Selective Alcohol and Water Sensor with Large Fluorescence Signal Contrast.

    Science.gov (United States)

    Chung, Kyeongwoon; Yang, Da Seul; Jung, Jaehun; Seo, Deokwon; Kwon, Min Sang; Kim, Jinsang

    2016-10-06

    Differentiation of solvents having similar physicochemical properties, such as ethanol and methanol, is an important issue of interest. However, without performing chemical analyses, discrimination between methanol and ethanol is highly challenging due to their similarity in chemical structure as well as properties. Here, we present a novel type of alcohol and water sensor based on the subtle differences in interaction among solvent analytes, fluorescent organic molecules, and a mesoporous silica gel substrate. A gradual change in the chemical structure of the fluorescent diketopyrrolopyrrole (DPP) derivatives alters their interaction with the substrate and solvent analyte, which creates a distinct intermolecular aggregation of the DPP derivatives on the silica gel substrate depending on the solvent environment and produces a change in the fluorescence color and intensity as a sensory signal. The devised sensor device, which is fabricated with simple drop-casting of the DPP derivative solutions onto a silica gel substrate, exhibited a completely reversible fluorescence signal change with large fluorescence signal contrast, which allows selective solvent detection by simple optical observation with the naked eye under UV light. Superior selectivity of the alcohol and water sensor system, which can clearly distinguish among ethanol, methanol, ethylene glycol, and water, is demonstrated.

  14. Quantitative chemical exchange saturation transfer with hyperpolarized nuclei (qHyper-CEST): sensing xenon-host exchange dynamics and binding affinities by NMR.

    Science.gov (United States)

    Kunth, M; Witte, C; Schröder, L

    2014-11-21

    The reversible binding of xenon to host molecules has found numerous applications in nuclear magnetic resonance studies. Quantitative characterization of the Xe exchange dynamics is important to understand and optimize the physico-chemical behavior of such Xe hosts, but is often challenging to achieve at low host concentrations. We have investigated a sensitive quantification technique based on chemical exchange saturation transfer with hyperpolarized nuclei, qHyper-CEST. Using simulated signals we demonstrated that qHyper-CEST yielded accurate and precise results and was robust in the presence of large amounts of noise (10%). This is of particular importance for samples with completely unknown exchange rates. Using these findings we experimentally determined the following exchange parameters for the Xe host cryptophane-A monoacid in dimethyl sulfoxide in one type of experiment: the ratio of bound and free Xe, the Xe exchange rate, the resonance frequencies of free and bound Xe, the Xe host occupancy, and the Xe binding constant. Taken together, qHyper-CEST facilitates sensitive quantification of the Xe exchange dynamics and binding to hydrophobic cavities and has the potential to analyze many different host systems or binding sites. This makes qHyper-CEST an indispensable tool for the efficient design of highly specific biosensors.

  15. Towards a better Understanding and reducing of the Groundwater Contamination in Saint Katherine area, Sinai, Egypt; Using Remote Sensing and Chemical Analyses

    Science.gov (United States)

    Fekri, A.; Mohamed, L.

    2017-12-01

    Egypt has a big water shortage problem because of the high population density and the lack of the surface water resources. So it was necessary to identify additional clean water resources and among all of the other alternative water resources, groundwater should be the most appropriate choice for Egyptians to explore and develop. Saint Katherine area is located in the highest mountainous area of southern Sinai including parallel ridges separated by deep wadis which have been cut along faults and fractures and enlarged through intense precipitation events during the old pluvial periods. Katherina volcanics and the surrounding granitic rocks in Saint Katherine area, which are generally impermeable except through fractures such as faults, joints and shear zones, are recharged with 50 mm annual precipitation. The groundwater recharge find a way through sets of interconnected joints to feed the existing wells in the low-lying fault zones. After the St. Katherine Protectorate was activated in 1996, public awareness of the possible harmful impact of the existing inadequate sewage disposal increased. The groundwater contamination (nitrates and coliform bacteria) in St. Katherine area causes health problems such as diarrhea and skin infections due to the use of well water for household purposes. This study will focus on; monitoring, evaluating and cleaning up the contaminant distribution in St. Katherine groundwater, using a conceptual model for the fault control on the groundwater flow in fractured basement aquifers to understand the possible pathways for the contaminated groundwater (using remote sensing data), and by preparing disinfectant tracers. It is known that Coliform bacteria could be treated by using Sulfanilamide drug, but in this study we will modify the Sulfanilamide compounds which are considered as ligands containing N, O, S donor atoms that could be used to uptake the transition metals, and produce a colored complex. The produced complex will work as a

  16. Prediction of soil chemical attributes using optical remote sensing=Predição de atributos químicos do solo utilizando sensoriamento remoto ótico.

    Directory of Open Access Journals (Sweden)

    José Alexandre Melo Demattê

    2011-10-01

    Full Text Available Soil fertility variability management is one of the pioneering and important areas in which Precision Agriculture has been commercially applied. Consequently, the objective of this work was to predict soil chemical attributes through spectral responses. The 1,000 ha study area used for this report was located in Uberlândia, Minas Gerais State, Brazil. Thirty sampling points were established, at which the soil was collected at 3 different depths. The samples were chemically and physically analyzed and the radiometric data obtained in the 400 – 2500 nm range. Multiple regression equations were generated for sum of bases, cation exchange capacity, base saturation, aluminum saturation, pH, P, K, Ca, Mg, Al, and H, all using 60 soil samples. H, Al, m%, and pH were found to have R2 values less than 0.50. Equations with an R2 > 0.50 for the other attributes were tested for the 30 unknown soil samples, and the estimated values were obtained. These values were then compared with those determined by conventional analysis. The coefficients of correlation were higher than 50% for all attributes except P and V%. Results indicated that determining chemical attributes with models that are specific for the region is feasible. Uma das primeiras e mais importantes áreas nas quais a Agricultura de Precisão está sendo comercialmente aplicada é o manejo da variabilidade da fertilidade do solo. Desta forma, o objetivo deste trabalho foi predizer o teor dos atributos químicos do solo através da sua resposta espectral. A área de estudo de 1000 ha localiza-se em Uberlândia, Estado de Minas Gerais. Estabeleceu-se 30 pontos de amostragem nos quais o solo foi coletado em 3 profundidades. As amostras foram analisadas química e fisicamente e, os dados radiométricos obtidos com um sensor em laboratório na faixa de 400 – 2500 nm. Equações de regressão múltipla foram geradas para soma de bases, CTC, saturação por bases, saturação por alumínio, pH, P, K

  17. Comparative analysis of physico-chemical and gas sensing characteristics of two different forms of SnO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Kwoka, M., E-mail: Monika.Kwoka@polsl.pl [Institute of Electronics, Silesian University of Technology, 44-100 Gliwice (Poland); Ottaviano, L. [CNR- SPIN & Department of Physics and Chemical Sciences, University of L’Aquila, 67100 (Italy); Szuber, J. [Institute of Electronics, Silesian University of Technology, 44-100 Gliwice (Poland)

    2017-04-15

    Highlights: • Two different forms of SnO{sub 2} deposited on Si substrate. • Crystallinity and surface/subsurface morphology controlled by XRD, SEM and AFM. • Surface/subsurface chemistry including stoichiometry and contaminations derived from XPS. • Comparative analysis of gas sensor characteristics of SnO{sub 2} in NO{sub 2} atmosphere. • Correlations between physico-chemical properties and gas sensor characteristics. - Abstract: In this paper the results of studies of comparative studies on the crystallinity, morphology and chemistry combined with the gas sensor response of two different forms of tin dioxide (SnO{sub 2}) films prepared by the Rheotaxial Growth and Thermal Oxidation (RGTO) and by the Laser-enhanced Chemical Vapour Deposition (L-CVD) methods, respectively, are presented. For this purpose the X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray Photoelectron spectroscopy (XPS) have been used. XRD studies for both samples show the contribution from the crystalline SnO{sub 2} in the cassiterite rutile phase without any evident contribution from the tin oxide (SnO) phase. SEM and AFM studies show that the surface morphology of RGTO and L-CVD SnO{sub 2} samples are characterized by grains/nanograins of different size and surface roughness. In turn XPS studies confirm that for both SnO{sub 2} samples a slight nonstoichiometry with a relative [O]/[Sn] concentration of 1.8, and slightly different amount of C contamination at the surface of internal grains with relative [C]/[Sn] concentration of 3.5 and 3.2, respectively. This undesired C contamination cannot be ignored because it creates an uncontrolled barrier for the potential gas adsorption at the internal surface of sensor material. This is confirmed by the gas sensor response in NO{sub 2} atmosphere of both SnO{sub 2} samples because the sensitivity is evidently smaller for RGTO SnO{sub 2} with respect to the L-CVD SnO{sub 2} samples, whereas

  18. Pervasive sensing

    Science.gov (United States)

    Nagel, David J.

    2000-11-01

    The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.

  19. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  20. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  1. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  2. HORIZON SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Stolarczyk

    2003-03-18

    With the aid of a DOE grant (No. DE-FC26-01NT41050), Stolar Research Corporation (Stolar) developed the Horizon Sensor (HS) to distinguish between the different layers of a coal seam. Mounted on mining machine cutter drums, HS units can detect or sense the horizon between the coal seam and the roof and floor rock, providing the opportunity to accurately mine the section of the seam most desired. HS also enables accurate cutting of minimum height if that is the operator's objective. Often when cutting is done out-of-seam, the head-positioning function facilitates a fixed mining height to minimize dilution. With this technology, miners can still be at a remote location, yet cut only the clean coal, resulting in a much more efficient overall process. The objectives of this project were to demonstrate the feasibility of horizon sensing on mining machines and demonstrate that Horizon Sensing can allow coal to be cut cleaner and more efficiently. Stolar's primary goal was to develop the Horizon Sensor (HS) into an enabling technology for full or partial automation or ''agile mining''. This technical innovation (R&D 100 Award Winner) is quickly demonstrating improvements in productivity and miner safety at several prominent coal mines in the United States. In addition, the HS system can enable the cutting of cleaner coal. Stolar has driven the HS program on the philosophy that cutting cleaner coal means burning cleaner coal. The sensor, located inches from the cutting bits, is based upon the physics principles of a Resonant Microstrip Patch Antenna (RMPA). When it is in proximity of the rock-coal interface, the RMPA impedance varies depending on the thickness of uncut coal. The impedance is measured by the computer-controlled electronics and then sent by radio waves to the mining machine. The worker at the machine can read the data via a Graphical User Interface, displaying a color-coded image of the coal being cut, and direct the machine

  3. Sensing at the nanoscale

    Science.gov (United States)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    properties are an important indicator for sensing. In search of a better understanding of these systems Zhang et al from Southern Illinois University inspect the role of Joule heating, exothermal reactions and heat dissipation in gas sensing using nanowires [7]. The mechanisms behind electrical chemical sensors are also further scrutinized in a kinetics study by Joan Ramon Morante from the University of Barcelona in Spain. 'In spite of the growing commercial success many basic issues remain still open and under discussion limiting the broad use of this technology,' he explains. He discusses surface chemical reaction kinetics and the experimental results for different representative gas molecules to gain an insight into the chemical to electrical transduction mechanisms taking place [8]. Perhaps one of the most persistent targets in sensing research is increasing the sensitivity. Gauging environmental health issues around the commercial use of nanomaterials places high demands on low-level detection and spurred a collaboration of researchers in the UK, Croatia and Canada to look into the use of particle-impact voltammetry for detecting nanoparticles in environmental media [9]. At the University of Illinois Urbana-Champaign in the US, researchers have applied wave transform analysis techniques to the oscillations of an atomic force microscopy cantilever and tailored a time-frequency-domain filter to identify the region of highest vibrational energy [10]. The approach allows them to improve the signal to noise ratio by a factor 32 on current high-performance devices. In addition, researchers in Korea report how doping NiO nanofibres can improve the sensitivity to a number of gases, including ethanol, where the response was enhanced by as much as a factor of 217.86 [11]. Biomedicine is one of the largest industries for the application of nanotechnology in sensing. Demonstrating the state of the art, researchers in China use silicon wafers decorated with gold nanoparticles for

  4. Spatially resolved electrochemical sensing of chemical gradients

    Czech Academy of Sciences Publication Activity Database

    Mensack, N.M.; Wydallis, J.B.; Lynn, Nicholas Scott; Dandy, D.S.; Henry, C.S.

    2013-01-01

    Roč. 13, č. 2 (2013), s. 208-2013 ISSN 1473-0197 Institutional support: RVO:67985882 Keywords : CARBON * CHEMOTAXIS * ELECTRODES Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 5.748, year: 2013

  5. Toward practical SERS sensing

    Science.gov (United States)

    Zhao, Yiping

    2012-06-01

    Since its discovery more than 30 years ago, surface-enhanced Raman scattering (SERS) has been recognized as a highly sensitive detection technique for chemical and biological sensing and medical diagnostics. However, the practical application of this remarkably sensitive technique has not been widely accepted as a viable diagnostic method due to the difficulty in preparing robust and reproducible substrates that provide maximum SERS enhancement. Here, we demonstrate that the aligned silver nanorod (AgNR) array substrates engineered by the oblique angle deposition method are capable of providing extremely high SERS enhancement factors (>108). The substrates are large area, uniform, reproducible, and compatible with general microfabrication process. The enhancement factor depends strongly on the length and shape of the Ag nanorods and the underlying substrate coating. By optimizing AgNR SERS substrates, we show that SERS is able to detect trace amount of toxins, virus, bacteria, or other chemical and biological molecules, and distinguish different viruses/bacteria and virus/bacteria strains. The substrate can be tailored into a multi-well chip for high throughput screening, integrated into fiber tip for portable sensing, incorporated into fluid/microfluidic devices for in situ real-time monitoring, fabricated onto a flexible substrate for tracking and identification, or used as on-chip separation device for ultra-thin layer chromatography and diagnostics. By combining the unique SERS substrates with a handheld Raman system, it can become a practical and portable sensor system for field applications. All these developments have demonstrated that AgNR SERS substrates could play an important role in the future for practical clinical, industrial, defense, and security sensing applications.

  6. Plasmonic sensing

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo

    2015-01-01

    Plasmonic sensors typically rely on detection of changes in the refractive index of the surrounding medium. Here, an alternative approach is reported based on electrical surface screening and controlled dissolution of ultrasmall silver nanoparticles (NPs; R ... in the plasmon band. This is demonstrated by using the strong nucleophiles, cyanide and cysteamine, as ligands. The “dissolution paths” in terms of peak wavelength and amplitude shifts differ significantly between different types of analytes, which are suggested as a means to obtain selectivity of the detection...... that cannot be obtained by traditional refractive index sensing, without the use of bioprobes. A simple modified Drude model is used to account for shifts in the plasmon band position due to electrical charging. Here, a screening parameter is introduced in the expression for the free electron density...

  7. Ion sensing method

    Science.gov (United States)

    Smith, Richard Harding; Martin, Glenn Brian

    2004-05-18

    The present invention allows the determination of trace levels of ionic substances in a sample solution (ions, metal ions, and other electrically charged molecules) by coupling a separation method, such as liquid chromatography, with ion selective electrodes (ISE) prepared so as to allow detection at activities below 10.sup.-6 M. The separation method distributes constituent molecules into fractions due to unique chemical and physical properties, such as charge, hydrophobicity, specific binding interactions, or movement in an electrical field. The separated fractions are detected by means of the ISE(s). These ISEs can be used singly or in an array. Accordingly, modifications in the ISEs are used to permit detection of low activities, specifically, below 10.sup.-6 M, by using low activities of the primary analyte (the molecular species which is specifically detected) in the inner filling solution of the ISE. Arrays constructed in various ways allow flow-through sensing for multiple ions.

  8. Plants' essential chemical elements

    Science.gov (United States)

    Kevin T. Smith

    2007-01-01

    Every garden center and hardware store sells fertilizer guaranteed to "feed" plants. In a strict sense, we can't feed plants. Food contains an energy source. Green plants capture solar energy and make their own food through photosynthesis! Photosynthesis and other metabolic processes require chemical elements in appropriate doses for plants to survive...

  9. Chemical Peels

    Science.gov (United States)

    ... care Kids’ zone Video library Find a dermatologist Chemical peels Overview Chemical peels: Overview Also called chemexfoliation , derma peeling Do ... Overview Chemical peels: FAQs Chemical peels: Preparation FAQs Chemical peels: FAQs To help you decide whether this ...

  10. Sensing H+ with conventional neural probes

    International Nuclear Information System (INIS)

    Trantidou, T.; Tsiligkiridis, V.; Chang, Y.-C.; Toumazou, C.; Prodromakis, T.

    2013-01-01

    In this paper, we demonstrate a technique for transforming commercially available neural probes used for electrical recordings, into chemical sensing devices for detection of ionic concentrations in electrolytes, with particular emphasis to pH. This transformation requires a single post-processing step to incorporate a thin indium tin oxide membrane for sensing H + . Measured results indicate a chemical sensitivity of 28 mV/pH, and relatively low leakage currents (2–10 nA) and drifts (1–10 mV/h). The proposed sensing device demonstrates the possibility of a low-cost implementation that can be reusable and thus versatile, with potential applications in real-time extracellular but mainly intracellular chemical monitoring.

  11. Exploring microdischarges for portable sensing applications.

    Science.gov (United States)

    Gianchandani, Y B; Wright, S A; Eun, C K; Wilson, C G; Mitra, B

    2009-10-01

    This paper describes the use of microdischarges as transducing elements in sensors and detectors. Chemical and physical sensing of gases, chemical sensing of liquids, and radiation detection are described. These applications are explored from the perspective of their use in portable microsystems, with emphasis on compactness, power consumption, the ability to operate at or near atmospheric pressure (to reduce pumping challenges), and the ability to operate in an air ambient (to reduce the need for reservoirs of carrier gases). Manufacturing methods and performance results are described for selected examples.

  12. Wearable bio and chemical sensors

    OpenAIRE

    Coyle, Shirley; Curto, Vincenzo F.; Benito-Lopez, Fernando; Florea, Larisa; Diamond, Dermot

    2014-01-01

    Chemical and biochemical sensors have experienced tremendous growth in the past decade due to advances in material chemistry combined with the emergence of digital communication technologies and wireless sensor networks (WSNs) [1]. The emergence of wearable chemical and biochemical sensors is a relatively new concept that poses unique challenges to the field of wearable sensing. This is because chemical sensors have a more complex mode of operation, compared to physical transducers, in that t...

  13. Optical fibre sensing of plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Woolsey, G.A.; Scelsi, G.B. [School of Physical Sciences and Engineering, Univ. of New England, Armidale, NSW (Australia)

    2000-03-01

    The progress of optical fiber technology for communications has induced an interest in, among others, the sensing of a wide range of physical, and chemical quantities. Any application of optical fibers that are crucial for communication are significant for sensing, e.g. small dimension, insulating materials, immunity to high voltage field etc. In the present paper basic points of optical fiber sensing are summarized. It is noted optical fiber sensors come in two forms, intrinsic and extrinsic. In the former the fiber itself works as sensing element, in addition to data transmission lines. In an intrinsic sensor, a single fiber transmits the light from the source to the detector and the light is modulated while it is in the fiber. On the other hand, in the extrinsic sensor, the light leaves the input fiber to be modulated before being collected by the second output fiber. Characteristic of the light that can be modulated are amplitude, phase, polarization, and wavelength. The paper describes the modulation in some details. (author)

  14. Optical fibre sensing of plasmas

    International Nuclear Information System (INIS)

    Woolsey, G.A.; Scelsi, G.B.

    2000-01-01

    The progress of optical fiber technology for communications has induced an interest in, among others, the sensing of a wide range of physical, and chemical quantities. Any application of optical fibers that are crucial for communication are significant for sensing, e.g. small dimension, insulating materials, immunity to high voltage field etc. In the present paper basic points of optical fiber sensing are summarized. It is noted optical fiber sensors come in two forms, intrinsic and extrinsic. In the former the fiber itself works as sensing element, in addition to data transmission lines. In an intrinsic sensor, a single fiber transmits the light from the source to the detector and the light is modulated while it is in the fiber. On the other hand, in the extrinsic sensor, the light leaves the input fiber to be modulated before being collected by the second output fiber. Characteristic of the light that can be modulated are amplitude, phase, polarization, and wavelength. The paper describes the modulation in some details. (author)

  15. Mobile Sensing Systems

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  16. Mobile sensing systems.

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-12-16

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  17. Mobile Sensing Systems

    Directory of Open Access Journals (Sweden)

    Elsa Macias

    2013-12-01

    Full Text Available Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  18. Chemical Emergencies

    Science.gov (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  19. Electrochemical sensing carcinogens in beverages

    CERN Document Server

    Zia, Asif Iqbal

    2016-01-01

    This book describes a robust, low-cost electrochemical sensing system that is able to detect hormones and phthalates – the most ubiquitous endocrine disruptor compounds – in beverages and is sufficiently flexible to be readily coupled with any existing chemical or biochemical sensing system. A novel type of silicon substrate-based smart interdigital transducer, developed using MEMS semiconductor fabrication technology, is employed in conjunction with electrochemical impedance spectroscopy to allow real-time detection and analysis. Furthermore, the presented interdigital capacitive sensor design offers a sufficient penetration depth of the fringing electric field to permit bulk sample testing. The authors address all aspects of the development of the system and fully explain its benefits. The book will be of wide interest to engineers, scientists, and researchers working in the fields of physical electrochemistry and biochemistry at the undergraduate, postgraduate, and research levels. It will also be high...

  20. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  1. Introduction to remote sensing

    CERN Document Server

    Cracknell, Arthur P

    2007-01-01

    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  2. Sense of moving

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Grünbaum, Thor

    2017-01-01

    In this chapter, we assume the existence of a sense of “movement activity” that arises when a person actively moves a body part. This sense is usually supposed to be part of sense of agency (SoA). The purpose of the chapter is to determine whether the already existing experimental paradigms can...

  3. Spectroelectrochemical sensing: planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Susan E.; Shi Yining; Seliskar, Carl J.; Heineman, William R

    2003-09-30

    The spectroelectrochemical sensor combines in a single device electrochemistry, spectroscopy, and selective partitioning into a film, giving improved selectivity for applications that involve complex samples. Sensing is based on the change in optical signal that accompanies electrochemical modulation of analyte that has partitioned into the film. Two classes of optical quality chemically-selective films based on two different host materials, namely, sol-gel processed silica and cross-linked poly(vinyl alcohol) have been developed. Films are typically 400-700 nm thick. Three types of sensor platforms are discussed: a multiple internal reflection (MIR) optic consisting of a bilayer of an indium tin oxide (ITO) optically transparent electrode deposited on a 1-mm thick glass substrate, a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide (5-9 {mu}m thick) was over-coated with a thin film of ITO, and a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide channel was formed and a pair of electrodes deposited along side the channel. These sensors were evaluated with ferrocyanide and a selective film of PDMDAAC-SiO{sub 2}, where PDMDAAC=poly(dimethyl diallylammonium chloride)

  4. Spectroelectrochemical sensing: planar waveguides

    International Nuclear Information System (INIS)

    Ross, Susan E.; Shi Yining; Seliskar, Carl J.; Heineman, William R.

    2003-01-01

    The spectroelectrochemical sensor combines in a single device electrochemistry, spectroscopy, and selective partitioning into a film, giving improved selectivity for applications that involve complex samples. Sensing is based on the change in optical signal that accompanies electrochemical modulation of analyte that has partitioned into the film. Two classes of optical quality chemically-selective films based on two different host materials, namely, sol-gel processed silica and cross-linked poly(vinyl alcohol) have been developed. Films are typically 400-700 nm thick. Three types of sensor platforms are discussed: a multiple internal reflection (MIR) optic consisting of a bilayer of an indium tin oxide (ITO) optically transparent electrode deposited on a 1-mm thick glass substrate, a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide (5-9 μm thick) was over-coated with a thin film of ITO, and a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide channel was formed and a pair of electrodes deposited along side the channel. These sensors were evaluated with ferrocyanide and a selective film of PDMDAAC-SiO 2 , where PDMDAAC=poly(dimethyl diallylammonium chloride)

  5. Chemical sensor system

    Science.gov (United States)

    Darrach, Murray R. (Inventor); Chutjian, Ara (Inventor)

    2008-01-01

    A chemical sensing apparatus and method for the detection of sub parts-per-trillion concentrations of molecules in a sample by optimizing electron utilization in the formation of negative ions is provided. A variety of media may be sampled including air, seawater, dry sediment, or undersea sediment. An electrostatic mirror is used to reduce the kinetic energy of an electron beam to zero or near-zero kinetic energy.

  6. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya

    2018-01-30

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  7. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas; Kosel, Jü rgen

    2018-01-01

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  8. Gas sensing in 2D materials

    Science.gov (United States)

    Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai

    2017-06-01

    Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.

  9. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  10. REMOTE SENSING IN OCEANOGRAPHY.

    Science.gov (United States)

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  11. Hyperspectral sensing of forests

    Science.gov (United States)

    Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash

    2007-11-01

    Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.

  12. LIGO sensing system performance

    CERN Document Server

    Landry, M

    2002-01-01

    The optical sensing subsystem of a LIGO interferometer is described. The system includes two complex interferometric sensing schemes to control test masses in length and alignment. The length sensing system is currently employed on all LIGO interferometers to lock coupled cavities on resonance. Auto-alignment is to be accomplished by a wavefront-sensing scheme which automatically corrects for angular fluctuations of the test masses. Improvements in lock stability and duration are noted when the wavefront auto-alignment system is employed. Preliminary results from the commissioning of the 2 km detector in Washington are shown.

  13. Intelligent environmental sensing

    CERN Document Server

    Mukhopadhyay, Subhas

    2015-01-01

    Developing environmental sensing and monitoring technologies become essential especially for industries that may cause severe contamination. Intelligent environmental sensing uses novel sensor techniques, intelligent signal and data processing algorithms, and wireless sensor networks to enhance environmental sensing and monitoring. It finds applications in many environmental problems such as oil and gas, water quality, and agriculture. This book addresses issues related to three main approaches to intelligent environmental sensing and discusses their latest technological developments. Key contents of the book include:   Agricultural monitoring Classification, detection, and estimation Data fusion Geological monitoring Motor monitoring Multi-sensor systems Oil reservoirs monitoring Sensor motes Water quality monitoring Wireless sensor network protocol  

  14. Advanced Remote Sensing Research

    Science.gov (United States)

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  15. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  16. Synthetic quorum sensing in model microcapsule colonies

    Science.gov (United States)

    Shum, Henry; Balazs, Anna C.

    2017-08-01

    Biological quorum sensing refers to the ability of cells to gauge their population density and collectively initiate a new behavior once a critical density is reached. Designing synthetic materials systems that exhibit quorum sensing-like behavior could enable the fabrication of devices with both self-recognition and self-regulating functionality. Herein, we develop models for a colony of synthetic microcapsules that communicate by producing and releasing signaling molecules. Production of the chemicals is regulated by a biomimetic negative feedback loop, the “repressilator” network. Through theory and simulation, we show that the chemical behavior of such capsules is sensitive to both the density and number of capsules in the colony. For example, decreasing the spacing between a fixed number of capsules can trigger a transition in chemical activity from the steady, repressed state to large-amplitude oscillations in chemical production. Alternatively, for a fixed density, an increase in the number of capsules in the colony can also promote a transition into the oscillatory state. This configuration-dependent behavior of the capsule colony exemplifies quorum-sensing behavior. Using our theoretical model, we predict the transitions from the steady state to oscillatory behavior as a function of the colony size and capsule density.

  17. Calcium sensing in exocytosis

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wu, Bingbing; Han, Weiping

    2012-01-01

    an increase in intracellular calcium levels. Besides the triggering role, calcium signaling modulates the precise amount and kinetics of vesicle release. Thus, it is a central question to understand the molecular machineries responsible for calcium sensing in exocytosis. Here we provide an overview of our...... current understanding of calcium sensing in neurotransmitter release and hormone secretion....

  18. Sense and Sensibility

    NARCIS (Netherlands)

    Austen, Jane

    2005-01-01

    Two sisters of opposing temperament but who share the pangs of tragic love provide the subjects for Sense and Sensibility. Elinor, practical and conventional, the epitome of sense, desires a man who is promised to another woman. Marianne, emotional and sentimental, the epitome of sensibility, loses

  19. Mobile teleoperator remote sensing

    International Nuclear Information System (INIS)

    Hall, E.L.

    1986-01-01

    Sensing systems are an important element of mobile teleoperators and robots. This paper discusses certain problems and limitations of vision and other sensing systems with respect to operations in a radiological accident environment. Methods which appear promising for near-term improvements to sensor technology are described. 3 refs

  20. Deterministic Compressed Sensing

    Science.gov (United States)

    2011-11-01

    39 4.3 Digital Communications . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Group Testing ...deterministic de - sign matrices. All bounds ignore the O() constants. . . . . . . . . . . 131 xvi List of Algorithms 1 Iterative Hard Thresholding Algorithm...sensing is information theoretically possible using any (2k, )-RIP sensing matrix . The following celebrated results of Candès, Romberg and Tao [54

  1. Hyperspectral remote sensing

    CERN Document Server

    Eismann, Michael

    2012-01-01

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications that builds on the principles of material spectroscopy, radiative transfer, imaging spectrometry, and hyperspectral data processing. This book provides a holistic treatment that captures its multidisciplinary nature, emphasizing the physical principles of hyperspectral remote sensing.

  2. Mapping sense(s) of place

    DEFF Research Database (Denmark)

    Skovse, Astrid Ravn; Hovy, Dirk; Johannsen, Anders Trærup

    2016-01-01

    , the question of how to tap into this constitutes a methodological challenge to researchers (Latham 2003, Hall 2009). This paper presents an experimental method aimed at eliciting data on sense of place and everyday mobility in a feasible and low-tech manner through the use of mental maps and mobility maps...... for answering questions about the relationship between places, speakers and linguistic practice....

  3. Hydroball string sensing system

    International Nuclear Information System (INIS)

    Hurwitz, M.J.; Ekeroth, D.E.; Squarer, D.

    1991-01-01

    This patent describes a hydroball string sensing system for a nuclear reactor having a core containing a fluid at a fluid pressure. It comprises a tube connectable to the nuclear reactor so that the fluid can flow within the tube at a fluid pressure that is substantially the same as the fluid pressure of the nuclear reactor core; a hydroball string including - a string member having objects positioned therealong with a specified spacing, the object including a plurality of hydroballs, and bullet members positioned at opposing ends of the string member; first sensor means, positioned outside a first segment of the tube, for sensing one of the objects being positioned within the first segment, and for providing a sensing signal responsive to the sensing of the first sensing means

  4. Cavity-enhanced spectroscopy and sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Gianluca [CNR-Istituto Nazionale di Ottica (INO), Pozzuoli (Italy); Loock, Hans-Peter (ed.) [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry

    2014-07-01

    The book reviews the dramatic recent advances in the use of optical resonators for high sensitivity and high resolution molecular spectroscopy as well as for chemical, mechanical and physical sensing. It encompasses a variety of cavities including those made of two or more mirrors, optical fiber loops, fiber gratings and spherical cavities. The book focuses on novel techniques and their applications. Each chapter is written by an expert and/or pioneer in the field. These experts also provide the theoretical background in optics and molecular physics where needed. Examples of recent breakthroughs include the use of frequency combs (Nobel prize 2005) for cavity enhanced sensing and spectroscopy, the use of novel cavity materials and geometries, the development of optical heterodyne detection techniques combined to active frequency-locking schemes. These methods allow the use and interrogation of optical resonators with a variety of coherent light sources for trace gas detection and sensing of strain, temperature and pressure.

  5. Cavity-enhanced spectroscopy and sensing

    CERN Document Server

    Loock, Hans-Peter

    2014-01-01

    The book reviews the dramatic recent advances in the use of optical resonators for high sensitivity and high resolution molecular spectroscopy as well as for chemical, mechanical and physical sensing.  It encompasses a variety of cavities including those made of two or more mirrors, optical fiber loops, fiber gratings and spherical cavities. The book focuses on novel techniques and their applications. Each chapter is written by an expert and/or pioneer in the field. These experts also provide the theoretical background in optics and molecular physics where needed. Examples of recent breakthroughs include the use of frequency combs (Nobel prize 2005) for cavity enhanced sensing and spectroscopy, the use of novel cavity materials and geometries, the development of optical heterodyne detection techniques combined to active frequency-locking schemes. These methods allow the use and interrogation of optical resonators with a variety of coherent light sources for trace gas detection and sensing of strain, temperat...

  6. SAW Sensors for Chemical Vapors and Gases.

    Science.gov (United States)

    Devkota, Jagannath; Ohodnicki, Paul R; Greve, David W

    2017-04-08

    Surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identify new opportunities and needs for additional research in this area moving into the future.

  7. SAW Sensors for Chemical Vapors and Gases

    Science.gov (United States)

    Devkota, Jagannath; Ohodnicki, Paul R.; Greve, David W.

    2017-01-01

    Surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identify new opportunities and needs for additional research in this area moving into the future. PMID:28397760

  8. TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties

    Directory of Open Access Journals (Sweden)

    Giorgio Sberveglieri

    2013-10-01

    Full Text Available Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes

  9. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  10. Atomic and Molecular Manipulation of Chemical Interactions

    National Research Council Canada - National Science Library

    Ho, Wilson

    2007-01-01

    .... In effect, the goal is to carry out chemical changes by manipulating individual atoms and molecules to induce different bonding geometry and to create new interactions with their environment. These studies provide the scientific basis for the advancement of technology in catalysis, molecular electronics, optics, chemical and biological sensing, and magnetic storage.

  11. Chemical Peels

    Science.gov (United States)

    ... for Every Season How to Choose the Best Skin Care Products In This Section Dermatologic Surgery What is dermatologic ... for Every Season How to Choose the Best Skin Care Products Chemical Peels Uses for Chemical Peels Learn more ...

  12. Chemical Oscillations

    Indian Academy of Sciences (India)

    IMTECH),. Chandigarh. Praveen Kumar is pursuing his PhD in chemical dynamics at. Panjab University,. Chandigarh. Keywords. Chemical oscillations, autoca-. talYSis, Lotka-Volterra model, bistability, hysteresis, Briggs-. Rauscher reaction.

  13. Chemical ecotoxicology

    International Nuclear Information System (INIS)

    Paasivirta, J.

    1991-01-01

    This book discusses risk assessment, chemical cycles, structure-activity relations, organohalogens, oil residues, mercury, sampling and analysis of trace chemicals, and emissions from the forestry industry. Topics include: Cycles of chemicals in the environment. Rick assessment and management, strucuture and toxicity, sampling and analysis of trace chemicals in environment, interpretation of the environmental analysis results, mercury in the environment, organohalogen compounds in the environment, emissions from forestry industry, oil residues in the environment: oil spills in the marine environment

  14. Chemical sensor

    Science.gov (United States)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  15. Remote Sensing Information Gateway

    Science.gov (United States)

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  16. Hyperspectral remote sensing

    National Research Council Canada - National Science Library

    Eismann, Michael Theodore

    2012-01-01

    ..., and hyperspectral data processing. While there are many resources that suitably cover these areas individually and focus on specific aspects of the hyperspectral remote sensing field, this book provides a holistic treatment...

  17. [Use of Remote Sensing for Crop and Soil Analysis

    Science.gov (United States)

    Johannsen, Chris J.

    1997-01-01

    The primary agricultural objective of this research is to determine what soil and crop information can be verified from remotely sensed images during the growing season. Specifically: (1) Elements of crop stress due to drought, weeds, disease and nutrient deficiencies will be documented with ground truth over specific agricultural sites and (2) Use of remote sensing with GPS and GIS technology for providing a safe and environmentally friendly application of fertilizers and chemicals will be documented.

  18. [Chemical weapons and chemical terrorism].

    Science.gov (United States)

    Nakamura, Katsumi

    2005-10-01

    Chemical Weapons are kind of Weapons of Mass Destruction (WMD). They were used large quantities in WWI. Historically, large quantities usage like WWI was not recorded, but small usage has appeared now and then. Chemical weapons are so called "Nuclear weapon for poor countrys" because it's very easy to produce/possession being possible. They are categorized (1) Nerve Agents, (2) Blister Agents, (3) Cyanide (blood) Agents, (4) Pulmonary Agents, (5) Incapacitating Agents (6) Tear Agents from the viewpoint of human body interaction. In 1997 the Chemical Weapons Convention has taken effect. It prohibits chemical weapons development/production, and Organization for the Prohibition of Chemical Weapons (OPCW) verification regime contributes to the chemical weapons disposal. But possibility of possession/use of weapons of mass destruction by terrorist group represented in one by Matsumoto and Tokyo Subway Sarin Attack, So new chemical terrorism countermeasures are necessary.

  19. Health Participatory Sensing Networks

    Directory of Open Access Journals (Sweden)

    Andrew Clarke

    2014-01-01

    Full Text Available The use of participatory sensing in relation to the capture of health-related data is rapidly becoming a possibility due to the widespread consumer adoption of emerging mobile computing technologies and sensing platforms. This has the potential to revolutionize data collection for population health, aspects of epidemiology, and health-related e-Science applications and as we will describe, provide new public health intervention capabilities, with the classifications and capabilities of such participatory sensing platforms only just beginning to be explored. Such a development will have important benefits for access to near real-time, large-scale, up to population-scale data collection. However, there are also numerous issues to be addressed first: provision of stringent anonymity and privacy within these methodologies, user interface issues, and the related issue of how to incentivize participants and address barriers/concerns over participation. To provide a step towards describing these aspects, in this paper we present a first classification of health participatory sensing models, a novel contribution to the literature, and provide a conceptual reference architecture for health participatory sensing networks (HPSNs and user interaction example case study.

  20. Hazardous Chemicals

    Centers for Disease Control (CDC) Podcasts

    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.

  1. Testing the limits of gradient sensing.

    Directory of Open Access Journals (Sweden)

    Vinal Lakhani

    2017-02-01

    Full Text Available The ability to detect a chemical gradient is fundamental to many cellular processes. In multicellular organisms gradient sensing plays an important role in many physiological processes such as wound healing and development. Unicellular organisms use gradient sensing to move (chemotaxis or grow (chemotropism towards a favorable environment. Some cells are capable of detecting extremely shallow gradients, even in the presence of significant molecular-level noise. For example, yeast have been reported to detect pheromone gradients as shallow as 0.1 nM/μm. Noise reduction mechanisms, such as time-averaging and the internalization of pheromone molecules, have been proposed to explain how yeast cells filter fluctuations and detect shallow gradients. Here, we use a Particle-Based Reaction-Diffusion model of ligand-receptor dynamics to test the effectiveness of these mechanisms and to determine the limits of gradient sensing. In particular, we develop novel simulation methods for establishing chemical gradients that not only allow us to study gradient sensing under steady-state conditions, but also take into account transient effects as the gradient forms. Based on reported measurements of reaction rates, our results indicate neither time-averaging nor receptor endocytosis significantly improves the cell's accuracy in detecting gradients over time scales associated with the initiation of polarized growth. Additionally, our results demonstrate the physical barrier of the cell membrane sharpens chemical gradients across the cell. While our studies are motivated by the mating response of yeast, we believe our results and simulation methods will find applications in many different contexts.

  2. Alarms, Chemical

    Science.gov (United States)

    cited in applicable qualitative materiel requirements, small development requirements, technical characteristics, and other requirements and documentation that pertain to automatic chemical agent alarms.

  3. Chemical oceanography

    National Research Council Canada - National Science Library

    Millero, F.J

    1996-01-01

    Chemical Oceanography presents a comprehensive examination of the chemistry of oceans through discussions of such topics as descriptive physical oceanography, the composition of seawater and the major...

  4. Sensing of RNA viruses

    DEFF Research Database (Denmark)

    Jensen, Søren; Thomsen, Allan Randrup

    2012-01-01

    pathogen-associated molecular patterns have emerged in great detail. This review presents an overview of our current knowledge regarding the receptors used to detect RNA virus invasion, the molecular structures these receptors sense, and the involved downstream signaling pathways.......Our knowledge regarding the contribution of the innate immune system in recognizing and subsequently initiating a host response to an invasion of RNA virus has been rapidly growing over the last decade. Descriptions of the receptors involved and the molecular mechanisms they employ to sense viral...

  5. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  6. Introduction to remote sensing

    CERN Document Server

    Campbell, James B

    2012-01-01

    A leading text for undergraduate- and graduate-level courses, this book introduces widely used forms of remote sensing imagery and their applications in plant sciences, hydrology, earth sciences, and land use analysis. The text provides comprehensive coverage of principal topics and serves as a framework for organizing the vast amount of remote sensing information available on the Web. Including case studies and review questions, the book's four sections and 21 chapters are carefully designed as independent units that instructors can select from as needed for their courses. Illustrations in

  7. Radar Remote Sensing

    Science.gov (United States)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  8. Fluorescent nanoparticles for intracellular sensing: A review

    International Nuclear Information System (INIS)

    Ruedas-Rama, Maria J.; Walters, Jamie D.; Orte, Angel; Hall, Elizabeth A.H.

    2012-01-01

    Highlights: ► Analytical applications of fluorescent nanoparticles (NPs) in intracellular sensing. ► Critical review on performance of QDots, metal NPs, silica NPs, and polymer NPs. ► Highlighted potential of fluorescence lifetime imaging microscopy (FLIM). - Abstract: Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.

  9. Fluorescent nanoparticles for intracellular sensing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ruedas-Rama, Maria J., E-mail: mjruedas@ugr.esmailto [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Walters, Jamie D. [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1QT (United Kingdom); Orte, Angel [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Hall, Elizabeth A.H., E-mail: lisa.hall@biotech.cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT (United Kingdom)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer Analytical applications of fluorescent nanoparticles (NPs) in intracellular sensing. Black-Right-Pointing-Pointer Critical review on performance of QDots, metal NPs, silica NPs, and polymer NPs. Black-Right-Pointing-Pointer Highlighted potential of fluorescence lifetime imaging microscopy (FLIM). - Abstract: Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.

  10. Chemical Emergencies - Multiple Languages

    Science.gov (United States)

    ... Chemical Emergencies - bosanski (Bosnian) PDF Chemical Emergencies - English MP3 Chemical Emergencies - bosanski (Bosnian) MP3 Chemical Emergencies - English MP4 Chemical Emergencies - bosanski (Bosnian) ...

  11. Optical Probes for Neurobiological Sensing and Imaging.

    Science.gov (United States)

    Kim, Eric H; Chin, Gregory; Rong, Guoxin; Poskanzer, Kira E; Clark, Heather A

    2018-04-13

    Fluorescent nanosensors and molecular probes are next-generation tools for imaging chemical signaling inside and between cells. Electrophysiology has long been considered the gold standard in elucidating neural dynamics with high temporal resolution and precision, particularly on the single-cell level. However, electrode-based techniques face challenges in illuminating the specific chemicals involved in neural cell activation with adequate spatial information. Measuring chemical dynamics is of fundamental importance to better understand synergistic interactions between neurons as well as interactions between neurons and non-neuronal cells. Over the past decade, significant technological advances in optical probes and imaging methods have enabled entirely new possibilities for studying neural cells and circuits at the chemical level. These optical imaging modalities have shown promise for combining chemical, temporal, and spatial information. This potential makes them ideal candidates to unravel the complex neural interactions at multiple scales in the brain, which could be complemented by traditional electrophysiological methods to obtain a full spatiotemporal picture of neurochemical dynamics. Despite the potential, only a handful of probe candidates have been utilized to provide detailed chemical information in the brain. To date, most live imaging and chemical mapping studies rely on fluorescent molecular indicators to report intracellular calcium (Ca 2+ ) dynamics, which correlates with neuronal activity. Methodological advances for monitoring a full array of chemicals in the brain with improved spatial, temporal, and chemical resolution will thus enable mapping of neurochemical circuits with finer precision. On the basis of numerous studies in this exciting field, we review the current efforts to develop and apply a palette of optical probes and nanosensors for chemical sensing in the brain. There is a strong impetus to further develop technologies capable of

  12. A Sense of Place

    Directory of Open Access Journals (Sweden)

    Rachel Black

    2012-09-01

    Full Text Available People increasingly want to know where their food and wine comes from and who produces it. This is part of developing a taste of place, or what the French call terroir. The academic and industry debates surrounding the concept of terroir are explored, and the efforts of Massachusetts wine producers to define their sense of place are discussed.

  13. Remote sensing: best practice

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gareth [Sgurr Energy (Canada)

    2011-07-01

    This paper presents remote sensing best practice in the wind industry. Remote sensing is a technique whereby measurements are obtained from the interaction of laser or acoustic pulses with the atmosphere. There is a vast diversity of tools and techniques available and they offer wide scope for reducing project uncertainty and risk but best practice must take into account versatility and flexibility. It should focus on the outcome in terms of results and data. However, traceability of accuracy requires comparison with conventional instruments. The framework for the Boulder protocol is given. Overviews of the guidelines for IEA SODAR and IEA LIDAR are also mentioned. The important elements of IEC 61400-12-1, an international standard for wind turbines, are given. Bankability is defined based on the Boulder protocol and a pie chart is presented that illustrates the uncertainty area covered by remote sensing. In conclusion it can be said that remote sensing is changing perceptions about how wind energy assessments can be made.

  14. The sense of agency

    DEFF Research Database (Denmark)

    Ritterband-Rosenbaum, Anina

    Imagine that you are reaching for a cup of coffee. You experience that you are moving and that you have control of the movement you are executing. This feeling of control of your own body and the movements it is performing is called the sense of agency. This thesis consists of four studies which ...

  15. Temporal compressive sensing systems

    Science.gov (United States)

    Reed, Bryan W.

    2017-12-12

    Methods and systems for temporal compressive sensing are disclosed, where within each of one or more sensor array data acquisition periods, one or more sensor array measurement datasets comprising distinct linear combinations of time slice data are acquired, and where mathematical reconstruction allows for calculation of accurate representations of the individual time slice datasets.

  16. Engaging All the Senses

    DEFF Research Database (Denmark)

    Schleicher, Marianne

    2017-01-01

    Based on an analysis of the process of making and inaugurating a Torah scroll, this article describes what is likely to trigger sensory responses in the participants in each phase of the process and the function of activating the five senses of touch, hearing, vision, smell, and taste. By disting...

  17. Section summary: Remote sensing

    Science.gov (United States)

    Belinda Arunarwati Margono

    2013-01-01

    Remote sensing is an important data source for monitoring the change of forest cover, in terms of both total removal of forest cover (deforestation), and change of canopy cover, structure and forest ecosystem services that result in forest degradation. In the context of Intergovernmental Panel on Climate Change (IPCC), forest degradation monitoring requires information...

  18. Sense and Sanitation

    NARCIS (Netherlands)

    Vliet, van B.J.M.; Spaargaren, G.

    2010-01-01

    Historically, sanitation infrastructures have been designed to do away with sensory experiences. As in the present phase of modernity the senses are assigned a crucial role in the perception of risks, a paradigm shift has emerged in the infrastructural provision of energy, water and waste services.

  19. Carbon for sensing devices

    CERN Document Server

    Tagliaferro, Alberto

    2015-01-01

    This book reveals why carbon is playing such an increasingly prominent role as a sensing material. The various steps that transform a raw material in a sensing device are thoroughly presented and critically discussed.  The authors deal with all aspects of carbon-based sensors, starting from the various hybridization and allotropes of carbon, with specific focus on micro and nanosized carbons (e.g., carbon nanotubes, graphene) and their growth processes. The discussion then moves to the role of functionalization and the different routes to achieve it. Finally, a number of sensing applications in various fields are presented, highlighting the connection with the basic properties of the various carbon allotropes.  Readers will benefit from this book’s bottom-up approach, which starts from the local bonding in carbon solids and ends with sensing applications, linking the local hybridization of carbon atoms and its modification by functionalization to specific device performance. This book is a must-have in th...

  20. Hazardous Chemicals

    Centers for Disease Control (CDC) Podcasts

    2007-04-10

    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  1. Self-actuated Polymeric Valve for Autonomous Sensing and Mixing

    DEFF Research Database (Denmark)

    Häfliger, Daniel; Marie, Rodolphe Charly Willy; Boisen, Anja

    2005-01-01

    We present an autonomously operated microvalve array for chemical sensing and mixing, which gains the actuation energy from a chemical reaction on the valve structure. An 8-μm-thick flapper valve made in SU-8 is coated with stress-loaded Al on one side and Ti on the other side. The metal films ke...... a reservoir. Calculations reveal that valve operation with stress originating from biochemical processes will require considerable enhancement of the actuation efficiency.......We present an autonomously operated microvalve array for chemical sensing and mixing, which gains the actuation energy from a chemical reaction on the valve structure. An 8-μm-thick flapper valve made in SU-8 is coated with stress-loaded Al on one side and Ti on the other side. The metal films keep...

  2. Remote shock sensing and notification system

    Science.gov (United States)

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  3. Chemical Peel

    Science.gov (United States)

    ... your expectations. Talk with your doctor about your motivations and expectations, as well as the potential risks. ... the sun permanently to prevent changes in skin color. Keep in mind that chemical peel results might ...

  4. Chemical carcinogens

    National Research Council Canada - National Science Library

    Searle, Charles E

    1976-01-01

    Cancer causing agents are now known to exist throughout the environment-in polluted air and tobacco smoke, in various plants and foods, and in many chemicals that are used in industry and laboratories...

  5. Tiltmeter Indicates Sense of Slope

    Science.gov (United States)

    Lonborg, J. O.

    1985-01-01

    Tiltmeter indicates sense and magnitude of slope used in locations where incline not visible to operator. Use of direct rather than alternating current greatly simplifies design of instrument capable of indicating sense of slope.

  6. Remote sensing for water quality

    International Nuclear Information System (INIS)

    Giardino, Claudia

    2006-01-01

    The application of remote sensing to the study of lakes is begun in years 80 with the lunch of the satellites of second generation. Many experiences have indicated the contribution of remote sensing for the limnology [it

  7. Time-sensitive remote sensing

    CERN Document Server

    Lippitt, Christopher; Coulter, Lloyd

    2015-01-01

    This book documents the state of the art in the use of remote sensing to address time-sensitive information requirements. Specifically, it brings together a group of authors who are both researchers and practitioners, who work toward or are currently using remote sensing to address time-sensitive information requirements with the goal of advancing the effective use of remote sensing to supply time-sensitive information. The book addresses the theoretical implications of time-sensitivity on the remote sensing process, assessments or descriptions of methods for expediting the delivery and improving the quality of information derived from remote sensing, and describes and analyzes time-sensitive remote sensing applications, with an emphasis on lessons learned. This book is intended for remote sensing scientists, practitioners (e.g., emergency responders or administrators of emergency response agencies), and students, but will also be of use to those seeking to understand the potential of remote sensing to addres...

  8. Smart Sensing Using Wavelets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Further refinements to the FOSS technologies are focusing on “smart” sensing techniques that adjust sensing parameters as needed in real time so that...

  9. Microelectromechanical acceleration-sensing apparatus

    Science.gov (United States)

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  10. The biophysical model for accuracy of cellular sensing spatial gradients of multiple chemoattractants

    International Nuclear Information System (INIS)

    Chang, Qiang; Zuo, Li

    2013-01-01

    Spatial gradients of surrounding chemoattractants are the key factors in determining the directionality of eukaryotic cell movement. Thus, it is important for cells to accurately measure the spatial gradients of surrounding chemoattractants. Here, we study the precision of sensing the spatial gradients of multiple chemoattractants using cooperative receptor clusters. Cooperative receptors on cells are modeled as an Ising chain of Monod–Wyman–Changeux clusters subject to multiple chemical-gradient fields to study the physical limits of multiple chemoattractants spatial gradients sensing. We found that eukaryotic cells cannot sense each chemoattractant gradient individually. Instead, cells can only sense a weighted sum of surrounding chemical gradients. Moreover, the precision of sensing one chemical gradient is signicantly affected by coexisting chemoattractant concentrations. These findings can provide a further insight into the role of chemoattractants in immune response and help develop novel treatments for inflammatory diseases. (paper)

  11. Making Sense of Natural Selection

    Science.gov (United States)

    Passmore, Cynthia; Coleman, Elizabeth; Horton, Jennifer; Parker, Heather

    2013-01-01

    At its core, science is about making sense of the world around us. Therefore, science education should engage students in that sense-making process. Helping students make sense of disciplinary core ideas and crosscutting concepts by engaging in scientific practices is the key innovation of the "Next Generation Science Standards"…

  12. Nanomaterials in glucose sensing

    CERN Document Server

    Burugapalli, Krishna

    2013-01-01

    The smartness of nano-materials is attributed to their nanoscale and subsequently unique physicochemical properties and their use in glucose sensing has been aimed at improving performance, reducing cost and miniaturizing the sensor and its associated instrumentation. So far, portable (handheld) glucose analysers were introduced for hospital wards, emergency rooms and physicians' offices; single-use strip systems achieved nanolitre sampling for painless and accurate home glucose monitoring; advanced continuous monitoring devices having 2 to 7 days operating life are in clinical and home use; and continued research efforts are being made to develop and introduce increasingly advanced glucose monitoring systems for health as well as food, biotechnology, cell and tissue culture industries. Nanomaterials have touched every aspect of biosensor design and this chapter reviews their role in the development of advanced technologies for glucose sensing, and especially for diabetes. Research shows that overall, nanomat...

  13. Taste sensing FET (TSFET)

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K.; Yasuda, R.; Ezaki, S. [Kyushu University, Fukuoka (Japan); Fujiyoshi, T. [Kumamoto University, Kumamoto (Japan). Faculty of Engineering

    1997-12-20

    Taste can be quantified using a multichannel taste sensor with lipid/polymer membranes. Its sensitivity and stability are superior to those of humans. A present study is concerned with the first step of miniaturization and integration of the taste sensor with lipid/polymer membranes using FET. As a result, it was found that gate-source voltage of the taste sensing FET showed the same behaviors as the conventional taste sensor utilizing the membrane-potential change due to five kinds of taste substances. Discrimination of foodstuffs was very easy. A thin lipid membrane formed using LB technique was also tried. These results will open doors to fabrication of a miniaturized, integrated taste sensing system. 12 refs., 6 figs.

  14. Chemical Sensing in the Marine Environment, Final Report

    National Research Council Canada - National Science Library

    Holland, Paul

    1998-01-01

    ... these analyses in the near shore environment. During the OSME program, new methods for sampling and detecting trace levels of explosives from unexploded ordinance in seawater were developed and demonstrated...

  15. Synthesis of New Vinyl Monomers for Chemical Agent Sensing Applications

    National Research Council Canada - National Science Library

    Hogen-Esch, Thieo

    2001-01-01

    The synthesis of styrene momomer p-vinylbenzoylacetophenone (monomer i) has been carried by the acetylation of 2- chloroethylbenzene and base elimination of the resulting 4-acetyl-2-chloroethylbenzene to give 4-acetylstyrene...

  16. Advanced photonic structures for biological and chemical detection

    CERN Document Server

    Fan, Xudong

    2009-01-01

    One of a series of books on Integrated Microanalytical Systems, this text discusses the latest applications of photonic technologies in bio/chemical sensing. The book is divided into four sections, each one being based on photonic structures.

  17. The sense of beauty.

    Science.gov (United States)

    Hagman, George

    2002-06-01

    This paper proposes an integrative psychoanalytic model of the sense of beauty. The following definition is used: beauty is an aspect of the experience of idealisation in which an object(s), sound(s) or concept(s) is believed to possess qualities of formal perfection. The psychoanalytic literature regarding beauty is explored in depth and fundamental similarities are stressed. The author goes on to discuss the following topics: (1) beauty as sublimation: beauty reconciles the polarisation of self and world; (2) idealisation and beauty: the love of beauty is an indication of the importance of idealisation during development; (3) beauty as an interactive process: the sense of beauty is interactive and intersubjective; (4) the aesthetic and non-aesthetic emotions: specific aesthetic emotions are experienced in response to the formal design of the beautiful object; (5) surrendering to beauty: beauty provides us with an occasion for transcendence and self-renewal; (6) beauty's restorative function: the preservation or restoration of the relationship to the good object is of utmost importance; (7) the self-integrative function of beauty: the sense of beauty can also reconcile and integrate self-states of fragmentation and depletion; (8) beauty as a defence: in psychopathology, beauty can function defensively for the expression of unconscious impulses and fantasies, or as protection against self-crisis; (9) beauty and mortality: the sense of beauty can alleviate anxiety regarding death and feelings of vulnerability. In closing the paper, the author offers a new understanding of Freud'semphasis on love of beauty as a defining trait of civilisation. For a people not to value beauty would mean that they cannot hope and cannot assert life over the inevitable and ubiquitous forces of entropy and death.

  18. Liquid Level Sensing System

    Science.gov (United States)

    Korman, Valentin (Inventor); Wiley, John T. (Inventor); Duffell, Amanda G. (Inventor)

    2014-01-01

    A liquid level sensing system includes waveguides disposed in a liquid and distributed along a path with a gap between adjacent waveguides. A source introduces electromagnetic energy into the waveguides at a first end of the path. A portion of the electromagnetic energy exits the waveguides at a second end of the path. A detector measures the portion of the electromagnetic energy exiting the second end of the path.

  19. Making Sense of Austerity

    DEFF Research Database (Denmark)

    Seabrooke, Leonard; Riisbjerg Thomsen, Rune

    2016-01-01

    such as ‘scroungers’ and ‘corporate criminals’ are identified, as are scenes such as the decline of the welfare state and the rise of technocracy. We link the storysets, story-lines, and plots together to understand how Brits and Danes are making sense of austerity. Their explanations and frustrations improve our...... understanding of who acts in everyday politics, and how everyday narratives are formed and maintained....

  20. Sensing interrail mobility

    DEFF Research Database (Denmark)

    Jensen, Martin Trandberg

    methodologies, this doctoral thesis explores the analytical prospects of non-representational theories in tourism research. The dissertation points toward a richer understanding of the ‘social’ which encompasses under-researched topics such as the implications of affective atmospheres, the sensuous and vibrant...... of Culture and Global Studies, Aalborg University, Campus Copenhagen. ’Sensing interrail mobility: Towards multimodal methodologies’ is his Ph.d. dissertation....

  1. Remote earth sensing experiments

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, Yu V

    1981-01-01

    Description of data devices for deriving multi-spectral measuring television measurement data of middle and high resolution through use of second generation Meteor-type satellites. Options for developing a permanent and active remote sensing system in USSR are discussed. It is noted that the present experiment is an important step in that direction. Design and structural data for this particular device and its application in the experiment are covered.

  2. [The recent development of fiber-optic chemical sensor].

    Science.gov (United States)

    Wang, Jian; Wei, Jian-ping; Yang, Bo; Gao, Zhi-yang; Zhang, Li-wei; Yang, Xue-feng

    2014-08-01

    The present article provides a brief review of recent research on fiber-optic chemical sensor technology and the future development trends. Especially, fiber-optic pH chemical sensor, fiber-optic ion chemicl sensor, and fiber-optic gas chemical sensor are introduced respectively. Sensing film preparation methods such as chemical bonding method and sol-gel method were briefly reviewed. The emergence of new type fiber-microstructured optical fiber opened up a new development direction for fiber-optic chemical sensor. Because of its large inner surface area, flexible design of structure, having internal sensing places in fibers, it has rapidly become an important development direction and research focus of the fiber-optic chemical sensors. The fiber-optic chemical sensor derived from microstructured optical fiber is also discussed in detail. Finally, we look to the future of the fiber-optic chemical sensor.

  3. Molecularly engineered graphene surfaces for sensing applications: A review

    International Nuclear Information System (INIS)

    Liu, Jingquan; Liu, Zhen; Barrow, Colin J.; Yang, Wenrong

    2015-01-01

    Highlights: • The importance of surface chemistry of graphene materials is clearly described. • We discuss molecularly engineered graphene surfaces for sensing applications. • We describe the latest developments of these materials for sensing technology. - Abstract: Graphene is scientifically and commercially important because of its unique molecular structure which is monoatomic in thickness, rigorously two-dimensional and highly conjugated. Consequently, graphene exhibits exceptional electrical, optical, thermal and mechanical properties. Herein, we critically discuss the surface modification of graphene, the specific advantages that graphene-based materials can provide over other materials in sensor research and their related chemical and electrochemical properties. Furthermore, we describe the latest developments in the use of these materials for sensing technology, including chemical sensors and biosensors and their applications in security, environmental safety and diseases detection and diagnosis

  4. Molecularly engineered graphene surfaces for sensing applications: A review

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jingquan, E-mail: jliu@qdu.edu.cn [College of Chemical Science and Engineering, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao (China); Liu, Zhen; Barrow, Colin J. [Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC 3217 (Australia); Yang, Wenrong, E-mail: wenrong.yang@deakin.edu.au [Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC 3217 (Australia)

    2015-02-15

    Highlights: • The importance of surface chemistry of graphene materials is clearly described. • We discuss molecularly engineered graphene surfaces for sensing applications. • We describe the latest developments of these materials for sensing technology. - Abstract: Graphene is scientifically and commercially important because of its unique molecular structure which is monoatomic in thickness, rigorously two-dimensional and highly conjugated. Consequently, graphene exhibits exceptional electrical, optical, thermal and mechanical properties. Herein, we critically discuss the surface modification of graphene, the specific advantages that graphene-based materials can provide over other materials in sensor research and their related chemical and electrochemical properties. Furthermore, we describe the latest developments in the use of these materials for sensing technology, including chemical sensors and biosensors and their applications in security, environmental safety and diseases detection and diagnosis.

  5. Quorum sensing inhibitors disable bacterial biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    It is now evident that bacteria assume the biofilm mode of growth during chronic infections. The important hallmarks of biofilm infections are development of local inflammations, extreme tolerance to the action of conventional antimicrobial agents and an almost infinite capacity to evade the host...... defence systems in particular innate immunity. In the biofilm mode, bacteria use cell to cell communication termed quorum-sensing (QS) to coordinate expression of virulence, tolerance towards a number of antimicrobial agents and shielding against the host defence system. Chemical biology approaches may...

  6. Remote sensing and actuation using unmanned vehicles

    CERN Document Server

    Chao, Haiyang

    2012-01-01

    Unmanned systems and robotics technologies have become very popular recently owing to their ability to replace human beings in dangerous, tedious, or repetitious jobs. This book fill the gap in the field between research and real-world applications, providing scientists and engineers with essential information on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes. Target scenarios include environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks.

  7. Optical techniques for sensing and measurement in hostile environments

    International Nuclear Information System (INIS)

    Gillespie, C.H.; Greenwell, R.A.

    1987-01-01

    These proceedings collect papers on optical sensing and measurement in hostile environments. Topic include: nuclear waste storage facility monitoring, monitoring of nuclear and chemical explosions, exhaust gas monitoring, fiber-optic monitoring, temperature and radiation effects on optical fibers, and interferometers

  8. Biomimetic chemical sensors using bioengineered olfactory and taste cells.

    Science.gov (United States)

    Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping; Wu, Chunsheng

    2014-01-01

    Biological olfactory and taste systems are natural chemical sensing systems with unique performances for the detection of environmental chemical signals. With the advances in olfactory and taste transduction mechanisms, biomimetic chemical sensors have achieved significant progress due to their promising prospects and potential applications. Biomimetic chemical sensors exploit the unique capability of biological functional components for chemical sensing, which are often sourced from sensing units of biological olfactory or taste systems at the tissue level, cellular level, or molecular level. Specifically, at the cellular level, there are mainly two categories of cells have been employed for the development of biomimetic chemical sensors, which are natural cells and bioengineered cells, respectively. Natural cells are directly isolated from biological olfactory and taste systems, which are convenient to achieve. However, natural cells often suffer from the undefined sensing properties and limited amount of identical cells. On the other hand, bioengineered cells have shown decisive advantages to be applied in the development of biomimetic chemical sensors due to the powerful biotechnology for the reconstruction of the cell sensing properties. Here, we briefly summarized the most recent advances of biomimetic chemical sensors using bioengineered olfactory and taste cells. The development challenges and future trends are discussed as well.

  9. Chemical sensors

    International Nuclear Information System (INIS)

    Hubbard, C.W.; Gordon, R.L.

    1987-05-01

    The revolution in analytical chemistry promised by recent developments in the field of chemical sensors has potential for significant positive impact on both research and production activities conducted by and for the Department of Energy. Analyses which were, in the past, performed only with a roomful of expensive equipment can now be performed with miniature solid-state electronic devices or small optical probes. Progress in the development of chemical sensors has been rapid, and the field is currently growing at a great rate. In accordance, Pacific Northwest Laboratory initiated a survey of recent literature so that contributors to active programs in research on analytical methods could be made aware of principles and applications of this new technology. This report presents the results of that survey. The sensors discussed here are divided into three types: micro solid-state devices, optical sensors, and piezoelectric crystal devices. The report is divided into three corresponding sections. The first section, ''Micro Solid-State Devices,'' discusses the design, operation, and application of electronic sensors that are produced in much the same way as standard solid-state electronic devices. The second section, ''Optrodes,'' covers the design and operation of chemical sensors that use fiber optics to detect chemically induced changes in optical properties. The final section, ''Piezoelectric Crystal Detectors,'' discusses two types of chemical sensors that depend on the changes in the properties of an oscillating piezoelectric crystal to detect the presence of certain materials. Advantages and disadvantages of each type of sensor are summarized in each section

  10. Lunar remote sensing and measurements

    Science.gov (United States)

    Moore, H.J.; Boyce, J.M.; Schaber, G.G.; Scott, D.H.

    1980-01-01

    Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites

  11. Concept for a hyperspectral remote sensing algorithm for floating marine macro plastics

    NARCIS (Netherlands)

    Goddijn-Murphy, Lonneke; Peters, Steef; van Sebille, Erik; James, Neil A.; Gibb, Stuart

    2018-01-01

    There is growing global concern over the chemical, biological and ecological impact of plastics in the ocean. Remote sensing has the potential to provide long-term, global monitoring but for marine plastics it is still in its early stages. Some progress has been made in hyperspectral remote sensing

  12. Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode.

    Science.gov (United States)

    Wolfbeis, Otto S

    2015-08-01

    Luminescence-based sensing schemes for oxygen have experienced a fast growth and are in the process of replacing the Clark electrode in many fields. Unlike electrodes, sensing is not limited to point measurements via fiber optic microsensors, but includes additional features such as planar sensing, imaging, and intracellular assays using nanosized sensor particles. In this essay, I review and discuss the essentials of (i) common solid-state sensor approaches based on the use of luminescent indicator dyes and host polymers; (ii) fiber optic and planar sensing schemes; (iii) nanoparticle-based intracellular sensing; and (iv) common spectroscopies. Optical sensors are also capable of multiple simultaneous sensing (such as O2 and temperature). Sensors for O2 are produced nowadays in large quantities in industry. Fields of application include sensing of O2 in plant and animal physiology, in clinical chemistry, in marine sciences, in the chemical industry and in process biotechnology. © 2015 The Author. Bioessays published by WILEY Periodicals, Inc.

  13. Transcriptome analysis of acyl-homoserine lactone-based quorum sensing regulation in Yersinia pestis [corrected].

    Directory of Open Access Journals (Sweden)

    Christopher N LaRock

    Full Text Available The etiologic agent of bubonic plague, Yersinia pestis, senses self-produced, secreted chemical signals in a process named quorum sensing. Though the closely related enteric pathogen Y. pseudotuberculosis uses quorum sensing system to regulate motility, the role of quorum sensing in Y. pestis has been unclear. In this study we performed transcriptional profiling experiments to identify Y. pestis quorum sensing regulated functions. Our analysis revealed that acyl-homoserine lactone-based quorum sensing controls the expression of several metabolic functions. Maltose fermentation and the glyoxylate bypass are induced by acyl-homoserine lactone signaling. This effect was observed at 30°C, indicating a potential role for quorum sensing regulation of metabolism at temperatures below the normal mammalian temperature. It is proposed that utilization of alternative carbon sources may enhance growth and/or survival during prolonged periods in natural habitats with limited nutrient sources, contributing to maintenance of plague in nature.

  14. Uncoated microcantilevers as chemical sensors

    Science.gov (United States)

    Thundat, Thomas G.

    2001-01-01

    A method and device are provided for chemical sensing using cantilevers that do not use chemically deposited, chemically specific layers. This novel device utilizes the adsorption-induced variation in the surfaces states on a cantilever. The methodology involves exciting charge carriers into or out of the surface states with photons having increasing discrete levels of energy. The excitation energy is provided as discrete levels of photon energy by scanning the wavelength of an exciting source that is illuminating the cantilever surface. When the charge carriers are excited into or out of the surface states, the cantilever bending changes due to changes in surface stress. The amount of cantilever bending with respect to an identical cantilever as a function of excitation energy is used to determine the energy levels associated with adsorbates.

  15. Chemical pneumonitis

    Science.gov (United States)

    ... cleaning materials such as chlorine bleach, during industrial accidents, or near swimming pools) Grain and fertilizer dust ... and the A.D.A.M. Editorial team. Chemical Emergencies ... about A.D.A.M.'s editorial policy , editorial process and privacy policy . A.D.A.M. is ...

  16. Chemical dispersants

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.

    2016-01-01

    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil

  17. Sound & The Senses

    DEFF Research Database (Denmark)

    Schulze, Holger

    2012-01-01

    How are those sounds you hear right now technically generated and post-produced, how are they aesthetically conceptualized and how culturally dependant are they really? How is your ability to hear intertwined with all the other senses and their cultural, biographical and technological constructio...... over time? And how is listening and sounding a deeply social activity – constructing our way of living together in cities as well as in apartment houses? A radio feature with Jonathan Sterne, AGF a.k.a Antye Greie, Jens Gerrit Papenburg & Holger Schulze....

  18. Semantics in mobile sensing

    CERN Document Server

    Yan, Zhixian

    2014-01-01

    The dramatic progress of smartphone technologies has ushered in a new era of mobile sensing, where traditional wearable on-body sensors are being rapidly superseded by various embedded sensors in our smartphones. For example, a typical smartphone today, has at the very least a GPS, WiFi, Bluetooth, triaxial accelerometer, and gyroscope. Alongside, new accessories are emerging such as proximity, magnetometer, barometer, temperature, and pressure sensors. Even the default microphone can act as an acoustic sensor to track noise exposure for example. These sensors act as a ""lens"" to understand t

  19. A sense of agency

    DEFF Research Database (Denmark)

    Laerkner, Eva; Egerod, Ingrid; Olesen, Finn

    2017-01-01

    familiar in the unfamiliar situation" and "Awareness of surrounding activities". Patients had the ability to interact from the first days of critical illness and a sense of agency was expressed through initiating, directing and participating in communication and other activities. Patients appreciated...... competent and compassionate nurses who were attentive and involved them as individual persons. Initiatives to enhance familiar aspects such as relatives, personal items and care, continuity and closeness of nurses contributed to the patients' experience of feeling safe and secure in the unfamiliar setting...

  20. Democracy and Sense

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    Democracy and sense questions practically all that happens in society today. Its aim is to raise a debate on the most urgent problems of economy, democracy, sustainable conduct and the framework for industry and business. A number of untraditional solutions are suggested, but without support...... to either rightwing or leftwing politics. In fact, one of the key points is that political parties have reduced democracy to one day of voting followed by four years of oligarchy. To regain a functioning democracy we must strengthen direct democracy and make the distance between population and government...

  1. Fourier Domain Sensing

    Science.gov (United States)

    Feldkhun, Daniel (Inventor); Wagner, Kelvin H. (Inventor)

    2013-01-01

    Methods and systems are disclosed of sensing an object. A first radiation is spatially modulated to generate a structured second radiation. The object is illuminated with the structured second radiation such that the object produces a third radiation in response. Apart from any spatially dependent delay, a time variation of the third radiation is spatially independent. With a single-element detector, a portion of the third radiation is detected from locations on the object simultaneously. At least one characteristic of a sinusoidal spatial Fourier-transform component of the object is estimated from a time-varying signal from the detected portion of the third radiation.

  2. Discovering Chemical Aromaticity Using Fragrant Plants

    Science.gov (United States)

    Schneider, Tanya L.

    2010-01-01

    Introductory organic chemistry is often perceived as inaccessible by students. This article describes a method used to link organic chemistry to everyday experience, asking students to explore whether fragrant molecules are also aromatic in the chemical sense. Students were engaged in this activity, excited about their results, and performed well…

  3. Differentially Private Distributed Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Glenn A.

    2016-12-11

    The growth of the Internet of Things (IoT) creates the possibility of decentralized systems of sensing and actuation, potentially on a global scale. IoT devices connected to cloud networks can offer Sensing and Actuation as a Service (SAaaS) enabling networks of sensors to grow to a global scale. But extremely large sensor networks can violate privacy, especially in the case where IoT devices are mobile and connected directly to the behaviors of people. The thesis of this paper is that by adapting differential privacy (adding statistically appropriate noise to query results) to groups of geographically distributed sensors privacy could be maintained without ever sending all values up to a central curator and without compromising the overall accuracy of the data collected. This paper outlines such a scheme and performs an analysis of differential privacy techniques adapted to edge computing in a simulated sensor network where ground truth is known. The positive and negative outcomes of employing differential privacy in distributed networks of devices are discussed and a brief research agenda is presented.

  4. Compressed sensing electron tomography

    International Nuclear Information System (INIS)

    Leary, Rowan; Saghi, Zineb; Midgley, Paul A.; Holland, Daniel J.

    2013-01-01

    The recent mathematical concept of compressed sensing (CS) asserts that a small number of well-chosen measurements can suffice to reconstruct signals that are amenable to sparse or compressible representation. In addition to powerful theoretical results, the principles of CS are being exploited increasingly across a range of experiments to yield substantial performance gains relative to conventional approaches. In this work we describe the application of CS to electron tomography (ET) reconstruction and demonstrate the efficacy of CS–ET with several example studies. Artefacts present in conventional ET reconstructions such as streaking, blurring of object boundaries and elongation are markedly reduced, and robust reconstruction is shown to be possible from far fewer projections than are normally used. The CS–ET approach enables more reliable quantitative analysis of the reconstructions as well as novel 3D studies from extremely limited data. - Highlights: • Compressed sensing (CS) theory and its application to electron tomography (ET) is described. • The practical implementation of CS–ET is outlined and its efficacy demonstrated with examples. • High fidelity tomographic reconstruction is possible from a small number of images. • The CS–ET reconstructions can be more reliably segmented and analysed quantitatively. • CS–ET is applicable to different image content by choice of an appropriate sparsifying transform

  5. Common Sense Biblical Hermeneutics

    Directory of Open Access Journals (Sweden)

    Michael B. Mangini

    2014-12-01

    Full Text Available Since the noetics of moderate realism provide a firm foundation upon which to build a hermeneutic of common sense, in the first part of his paper the author adopts Thomas Howe’s argument that the noetical aspect of moderate realism is a necessary condition for correct, universally valid biblical interpretation, but he adds, “insofar as it gives us hope in discovering the true meaning of a given passage.” In the second part, the author relies on John Deely’s work to show how semiotics may help interpreters go beyond meaning and seek the significance of the persons, places, events, ideas, etc., of which the meaning of the text has presented as objects to be interpreted. It is in significance that the unity of Scripture is found. The chief aim is what every passage of the Bible signifies. Considered as a genus, Scripture is composed of many parts/species that are ordered to a chief aim. This is the structure of common sense hermeneutics; therefore in the third part the author restates Peter Redpath’s exposition of Aristotle and St. Thomas’s ontology of the one and the many and analogously applies it to the question of how an exegete can discern the proper significance and faithfully interpret the word of God.

  6. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  7. Fluorescent nanoparticles for intracellular sensing: a review.

    Science.gov (United States)

    Ruedas-Rama, Maria J; Walters, Jamie D; Orte, Angel; Hall, Elizabeth A H

    2012-11-02

    Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Chemical Sensors Based on Cyclodextrin Derivatives.

    Science.gov (United States)

    Ogoshi, Tomoki; Harada, Akira

    2008-08-25

    This review focuses on chemical sensors based on cyclodextrin (CD) derivatives. This has been a field of classical interest, and is now of current interest for numerous scientists. First, typical chemical sensors using chromophore appended CDs are mentioned. Various "turn-off" and "turn-on" fluorescent chemical sensors, in which fluorescence intensity was decreased or increased by complexation with guest molecules, respectively, were synthesized. Dye modified CDs and photoactive metal ion-ligand complex appended CDs, metallocyclodextrins, were also applied for chemical sensors. Furthermore, recent novel approaches to chemical sensing systems using supramolecular structures such as CD dimers, trimers and cooperative binding systems of CDs with the other macrocycle [2]rotaxane and supramolecular polymers consisting of CD units are mentioned. New chemical sensors using hybrids of CDs with p-conjugated polymers, peptides, DNA, nanocarbons and nanoparticles are also described in this review.

  9. Challenges in paper-based fluorogenic optical sensing with smartphones

    Science.gov (United States)

    Ulep, Tiffany-Heather; Yoon, Jeong-Yeol

    2018-05-01

    Application of optically superior, tunable fluorescent nanotechnologies have long been demonstrated throughout many chemical and biological sensing applications. Combined with microfluidics technologies, i.e. on lab-on-a-chip platforms, such fluorescent nanotechnologies have often enabled extreme sensitivity, sometimes down to single molecule level. Within recent years there has been a peak interest in translating fluorescent nanotechnology onto paper-based platforms for chemical and biological sensing, as a simple, low-cost, disposable alternative to conventional silicone-based microfluidic substrates. On the other hand, smartphone integration as an optical detection system as well as user interface and data processing component has been widely attempted, serving as a gateway to on-board quantitative processing, enhanced mobility, and interconnectivity with informational networks. Smartphone sensing can be integrated to these paper-based fluorogenic assays towards demonstrating extreme sensitivity as well as ease-of-use and low-cost. However, with these emerging technologies there are always technical limitations that must be addressed; for example, paper's autofluorescence that perturbs fluorogenic sensing; smartphone flash's limitations in fluorescent excitation; smartphone camera's limitations in detecting narrow-band fluorescent emission, etc. In this review, physical optical setups, digital enhancement algorithms, and various fluorescent measurement techniques are discussed and pinpointed as areas of opportunities to further improve paper-based fluorogenic optical sensing with smartphones.

  10. Chemical radioprotection

    International Nuclear Information System (INIS)

    Siegel, G.

    1979-01-01

    A reivew of the problems and progress in the field of chemical radioprotection is given. After defining the field of research, the practical significance of radioprotective substances and the requirements for a utilizable radioprotective preparation are presented. Trends of development of this field of research, the state of the art, and resulting conclusions for the future development of radioprotective substances of practical value are discussed. (author)

  11. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Lange, Julia

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... state-of-the-art ‘guideline’ available for people involved in Remote Sensing in Wind Energy....

  12. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus......-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  13. Remote Sensing and Imaging Physics

    Science.gov (United States)

    2012-03-07

    Program Manager AFOSR/RSE Air Force Research Laboratory Remote Sensing and Imaging Physics 7 March 2012 Report Documentation Page Form...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Remote Sensing And Imaging Physics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Imaging of Space Objects •Information without Imaging •Predicting the Location of Space Objects • Remote Sensing in Extreme Conditions •Propagation

  14. Quorum sensing: a quantum perspective.

    Science.gov (United States)

    Majumdar, Sarangam; Pal, Sukla

    2016-09-01

    Quorum sensing is the efficient mode of communication in the bacterial world. After a lot of advancements in the classical theory of quorum sensing few basic questions of quorum sensing still remain unanswered. The sufficient progresses in quantum biology demands to explain these questions from the quantum perspective as non trivial quantum effects already have manifested in various biological processes like photosynthesis, magneto-reception etc. Therefore, it's the time to review the bacterial communications from the quantum view point. In this article we carefully accumulate the latest results and arguments to strengthen quantum biology through the addition of quorum sensing mechanism in the light of quantum mechanics.

  15. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness

    2014-01-01

    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  16. Ethylene Gas Sensing Properties of Tin Oxide Nanowires Synthesized via CVD Method

    Science.gov (United States)

    Akhir, Maisara A. M.; Mohamed, Khairudin; Rezan, Sheikh A.; Arafat, M. M.; Haseeb, A. S. M. A.; Uda, M. N. A.; Nuradibah, M. A.

    2018-03-01

    This paper studies ethylene gas sensing performance of tin oxide (SnO2) nanowires (NWs) as sensing material synthesized using chemical vapor deposition (CVD) technique. The effect of NWs diameter on ethylene gas sensing characteristics were investigated. SnO2 NWs with diameter of ∼40 and ∼240 nm were deposited onto the alumina substrate with printed gold electrodes and tested for sensing characteristic toward ethylene gas. From the finding, the smallest diameter of NWs (42 nm) exhibit fast response and recovery time and higher sensitivity compared to largest diameter of NWs (∼240 nm). Both sensor show good reversibility features for ethylene gas sensor.

  17. Chemical sensors for nuclear industry

    International Nuclear Information System (INIS)

    Gnanasekaran, K.I.

    2012-01-01

    Development of chemical sensors for detection of gases at trace levels for applications in nuclear industry will be highlighted. The sensors have to be highly sensitive, reliable and rugged with long term stability to operate in harsh industrial environment. Semiconductor and solid electrolyte based electrochemical sensors satisfy the requirements. Physico-chemical aspects underlying the development of H 2 sensors in sodium and in cover gas circuit of the Fast breeder reactors for its smooth functioning, NH 3 and H 2 S sensors for use in Heavy water production industries and NO x sensors for spent fuel reprocessing plants will be presented. Development of oxygen sensors to monitor the oxygen level in the reactor containments and sodium sensors for detection of sodium leakages will also be discussed. The talk will focus the general aspects of identification of the sensing material for the respective analyte species, development of suitable chemical route for preparing them as fine powders, the need for configuring them in thick film or thin film geometries and their performance. Pulsed laser deposition method, an elegant technique to prepare the high quality thin films of multicomponent oxides is demonstrated for preparation of nanostructured thin films of complex oxides and its use in tailoring the morphology of the complex sensing material in the desired form by optimizing the in-situ growth conditions. (author)

  18. Household Chemical Emergencies

    Science.gov (United States)

    ... Content Home Be Informed Household Chemical Emergencies Household Chemical Emergencies Although the risk of a chemical accident ... reduce the risk of injury. Before a Household Chemical Emergency It is critical to store household chemicals ...

  19. Inventory - Dollars and sense

    International Nuclear Information System (INIS)

    Samson, J.R.

    1992-01-01

    Nuclear utilities are becoming more aware of the importance of having an inventory investment that supports two opposing philosophies. The business philosophy wants a minimal inventory investment to support a better return on invested dollars. This increase in return comes from having the dollars available to invest versus having the money tied up in inventory sitting on the shelf. The opposing viewpoint is taken by maintenance/operations organizations, which desire the maximum inventory available on-site to repair any component at any time to keep the units on-line at all times. Financial managers also want to maintain cash flow throughout operations so that plants run without interruptions. Inventory management is therefore a mixture of financial logistics with an operation perspective in mind. A small amount of common sense and accurate perception also help. The challenge to the materials/inventory manager is to optimize effectiveness of the inventory by having high material availability at the lowest possible cost

  20. Making Sense for Society

    Science.gov (United States)

    van der Heide, J. J.; Grus, M. M.; Nouwens, J. C. A. J.

    2017-09-01

    The Netherlands is a densely populated country. Cities in the metropolitan area (Randstad) will be growing at a fast pace in the coming decades1. Cities like Amsterdam and Rotterdam are being overrun by tourists. Climate change effects are noticed in cities (heavy rains for instance). Call for circular economy rises. Traffic increases. People are more self-reliant. Public space is shared by many functions. These challenges call for smart answers, more specific and directly than ever before. Sensor data is a cornerstone of these answers. In this paper we'll discuss the approaches of Dutch initiatives using sensor data as the new language to live a happy life in our cities. Those initiatives have been bundled in a knowledge platform called "Making sense for society" 1 https://www.cbs.nl/nl-nl/nieuws/2016/37/pbl-cbs-prognose-groei-steden-zet-door (in dutch)

  1. Environmental radiation sensing technologies

    International Nuclear Information System (INIS)

    Nishizawa, Hiroshi; Inomata, Kenji; Tamuro, Masaru; Fujita, Kazuhiko

    2013-01-01

    After the Fukushima nuclear accident, environmental radiation monitoring and radioactivity measurement of contamination of wastes, soils, food and drinking water were needed in accurate and reliable way. Based on radiation sensing technologies and radiation and light coupled analysis method, new environmental radiation measurement system for simple monitoring post without exclusive house and also portable monitoring post for temporary use were developed with low cost. Measurement accuracy was improved by real-time processing of detected pulses and corrected non-linearity of low-energy range by analysis. Environmental performance was upgraded to assure detector gain with compensated against temperature change and aging. Inspection and maintenance were also simplified using touch panel display with standardized application menu and data format. (T. Tanaka)

  2. Tango, senses and sensuality

    Directory of Open Access Journals (Sweden)

    María de los Angeles Montes

    2014-11-01

    Full Text Available One of the most important contributions of the Peircean paradigm to semiotics consists in its opening the sign to development and modification. Sense, meaning, is no longer a static and fixed property. The Peircean paradigm allows us to wonder about how signs are interpreted, how they make sense in actual reception practices. The purpose of this paper is to address the problem of the relationship between appropriation practices (Montes, 2011 and significance processes from the analysis of an empirical case, observing how signs of sensuality are produced in the ballroom tango dance. Tango has earned international reputation mainly as a sensuality dance thanks to its spectacularization and subsequent mediatization. However, as I expect to demonstrate, at the moment of reception, people put those discourses in interaction with specific appropriation practices that shape very special interpretive habits. I will address the issue from an empirical investigation, especially focused on the production of interpretants (emotional, energetic, and logical, that is to say, looking back to the sign reception from the body to the mind. From a corpus of 25 focused interviews with people who got to know tango through mass media but that afterwards learnt to dance it as a social dance, it is my intention to show what sensuality means to them today, and how that current practice interacts with other external and previous discourses to produce interpretive habits. Finally, I wish to offer a theoretical reflection about the relationship between these three types of interpretants, their interaction with the discourse of the mass media and the place corporality has in the reception processes.

  3. Chemical cosmology

    CERN Document Server

    Boeyens, Jan CA

    2010-01-01

    The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the LAMBDA-Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by alp

  4. Gamification for Word Sense Labeling

    NARCIS (Netherlands)

    Venhuizen, Noortje; Basile, Valerio; Evang, Kilian; Bos, Johan; Erk, Kartin; Koller, Alexander

    2013-01-01

    Obtaining gold standard data for word sense disambiguation is important but costly. We show how it can be done using a “Game with a Purpose” (GWAP) called Wordrobe. This game consists of a large set of multiple-choice questions on word senses generated from the Groningen Meaning Bank. The players

  5. Quorum Sensing of Periodontal Pathogens

    Directory of Open Access Journals (Sweden)

    Darije Plančak

    2015-01-01

    Full Text Available The term ‘quorum sensing’ describes intercellular bacterial communication which regulates bacterial gene expression according to population cell density. Bacteria produce and secrete small molecules, named autoinducers, into the intercellular space. The concentration of these molecules increases as a function of population cell density. Once the concentration of the stimulatory threshold is reached, alteration in gene expression occurs. Gram-positive and Gram-negative bacteria possess different types of quorum sensing systems. Canonical LuxI/R-type/acyl homoserine lactone mediated quorum sensing system is the best studied quorum sensing circuit and is described in Gram-negative bacteria which employ it for inter-species communication mostly. Grampositive bacteria possess a peptide-mediated quorum sensing system. Bacteria can communicate within their own species (intra-species but also between species (inter-species, for which they employ an autoinducer-2 quorum sensing system which is called the universal language of the bacteria. Periodontal pathogenic bacteria possess AI-2 quorum sensing systems. It is known that they use it for regulation of biofilm formation, iron uptake, stress response and virulence factor expression. A better understanding of bacterial communication mechanisms will allow the targeting of quorum sensing with quorum sensing inhibitors to prevent and control disease.

  6. Remote Sensing and the Earth.

    Science.gov (United States)

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  7. Teaching Game Sense in Soccer

    Science.gov (United States)

    Pill, Shane

    2012-01-01

    "Game sense" is a sport-specific iteration of the teaching games for understanding model, designed to balance physical development of motor skill and fitness with the development of game understanding. Game sense can foster a shared vision for sport learning that bridges school physical education and community sport. This article explains how to…

  8. Quality as Sense-Making

    Science.gov (United States)

    Marshall, Stephen

    2016-01-01

    Sense-making is a process of engaging with complex and dynamic environments that provides organisations and their leaders with a flexible and agile model of the world. The seven key properties of sense-making describe a process that is social and that respects the range of different stakeholders in an organisation. It also addresses the need to…

  9. Science & the Senses: Perceptions & Deceptions

    Science.gov (United States)

    Stansfield, William D.

    2012-01-01

    Science requires the acquisition and analysis of empirical (sense-derived) data. Given the same physical objects or phenomena, the sense organs of all people do not respond equally to these stimuli, nor do their minds interpret sensory signals identically. Therefore, teachers should develop lectures on human sensory systems that include some…

  10. Infrared laser spectroscopic trace gas sensing

    Science.gov (United States)

    Sigrist, Markus

    2016-04-01

    Chemical sensing and analyses of gas samples by laser spectroscopic methods are attractive owing to several advantages such as high sensitivity and specificity, large dynamic range, multi-component capability, and lack of pretreatment or preconcentration procedures. The preferred wavelength range comprises the fundamental molecular absorption range in the mid-infared between 3 and 15 μm, whereas the near-infrared range covers the (10-100 times weaker) higher harmonics and combination bands. The availability of near-infrared and, particularly, of broadly tunable mid-infrared sources like external cavity quantum cascade lasers (EC-QCLs), interband cascade lasers (ICLs), difference frequency generation (DFG), optical parametric oscillators (OPOs), recent developments of diode-pumped lead salt semiconductor lasers, of supercontinuum sources or of frequency combs have eased the implementation of laser-based sensing devices. Sensitive techniques for molecular absorption measurements include multipass absorption, various configurations of cavity-enhanced techniques such as cavity ringdown (CRD), or of photoacoustic spectroscopy (PAS) including quartz-enhanced (QEPAS) or cantilever-enhanced (CEPAS) techniques. The application requirements finally determine the optimum selection of laser source and detection scheme. In this tutorial talk I shall discuss the basic principles, present various experimental setups and illustrate the performance of selected systems for chemical sensing of selected key atmospheric species. Applications include an early example of continuous vehicle emission measurements with a mobile CO2-laser PAS system [1]. The fast analysis of C1-C4 alkanes at sub-ppm concentrations in gas mixtures is of great interest for the petrochemical industry and was recently achieved with a new type of mid-infrared diode-pumped piezoelectrically tuned lead salt vertical external cavity surface emitting laser (VECSEL) [2]. Another example concerns measurements on short

  11. Compressive sensing in medical imaging.

    Science.gov (United States)

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  12. Subsurface remote sensing

    International Nuclear Information System (INIS)

    Schweitzer, Jeffrey S.; Groves, Joel L.

    2002-01-01

    Subsurface remote sensing measurements are widely used for oil and gas exploration, for oil and gas production monitoring, and for basic studies in the earth sciences. Radiation sensors, often including small accelerator sources, are used to obtain bulk properties of the surrounding strata as well as to provide detailed elemental analyses of the rocks and fluids in rock pores. Typically, instrument packages are lowered into a borehole at the end of a long cable, that may be as long as 10 km, and two-way data and instruction telemetry allows a single radiation instrument to operate in different modes and to send the data to a surface computer. Because these boreholes are often in remote locations throughout the world, the data are frequently transmitted by satellite to various locations around the world for almost real-time analysis and incorporation with other data. The complete system approach that permits rapid and reliable data acquisition, remote analysis and transmission to those making decisions is described

  13. Motion sensing energy controller

    International Nuclear Information System (INIS)

    Saphir, M.E.; Reed, M.A.

    1984-01-01

    A moving object sensing processor responsive to slowly varying motions of a human being or other moving object in a zone of interest employs high frequency pulse modulated non-visible radiation generated by a radiation generating source, such as an LED, and detected by a detector sensitive to radiation of a preselected wavelength which generates electrical signals representative of the reflected radiation received from the zone of interest. The detectorsignals are processed to normalize the base level and remove variations due to background level changes, and slowly varying changes in the signals are detected by a bi-polar threshold detector. The control signals generated by the threshold detector in response to slowly varying motion are used to control the application of power to a utilization device, such as a set of fluoroescent lights in a room, the power being applied in response to detection of such motion and being automatically terminated in the absence of such motion after a predetermined time period established by a settable incrementable counter

  14. Common sense codified

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    At CERN, people of more than a hundred different nationalities and hundreds of different professions work together towards a common goal. The new Code of Conduct is a tool that has been designed to help us keep our workplace pleasant and productive through common standards of behaviour. Its basic principle is mutual respect and common sense. This is only natural, but not trivial…  The Director-General announced it in his speech at the beginning of the year, and the Bulletin wrote about it immediately afterwards. "It" is the new Code of Conduct, the document that lists our Organization's values and describes the basic standards of behaviour that we should both adopt and expect from others. "The Code of Conduct is not going to establish new rights or new obligations," explains Anne-Sylvie Catherin, Head of the Human Resources Department (HR). But what it will do is provide a framework for our existing rights and obligations." The aim of a co...

  15. Wireless sensor networks in chemical industry

    International Nuclear Information System (INIS)

    Minhas, A.A.; Jawad, S.

    2010-01-01

    Recent advances in wireless technology are a clear indication of the commercial promise of wireless networks. Industrial wireless sensing has now become more economical, efficient and secure as compared to traditional wired sensing. Wireless Sensor Networks (WSN) are successfully being used for process monitoring and control of many industrial plants. This paper explores how Chemical Industry in particular can benefit from the application of WSN technology. Various examples of successful implementation are cited. In order to address the industrial requirements, we propose a low power and low cost solution for process monitoring by implementing WSN. (author)

  16. Emergency Evacuation of Hazardous Chemical Accidents Based on Diffusion Simulation

    OpenAIRE

    Jiang-Hua Zhang; Hai-Yue Liu; Rui Zhu; Yang Liu

    2017-01-01

    The recent rapid development of information technology, such as sensing technology, communications technology, and database, allows us to use simulation experiments for analyzing serious accidents caused by hazardous chemicals. Due to the toxicity and diffusion of hazardous chemicals, these accidents often lead to not only severe consequences and economic losses, but also traffic jams at the same time. Emergency evacuation after hazardous chemical accidents is an effective means to reduce the...

  17. Sensing and tactile artificial muscles from reactive materials.

    Science.gov (United States)

    Conzuelo, Laura Valero; Arias-Pardilla, Joaquín; Cauich-Rodríguez, Juan V; Smit, Mascha Afra; Otero, Toribio Fernández

    2010-01-01

    Films of conducting polymers can be oxidized and reduced in a reversible way. Any intermediate oxidation state determines an electrochemical equilibrium. Chemical or physical variables acting on the film may modify the equilibrium potential, so that the film acts as a sensor of the variable. The working potential of polypyrrole/DBSA (Dodecylbenzenesulfonic acid) films, oxidized or reduced under constant currents, changes as a function of the working conditions: electrolyte concentration, temperature or mechanical stress. During oxidation, the reactive material is a sensor of the ambient, the consumed electrical energy being the sensing magnitude. Devices based on any of the electrochemical properties of conducting polymers must act simultaneously as sensors of the working conditions. Artificial muscles, as electrochemical actuators constituted by reactive materials, respond to the ambient conditions during actuation. In this way, they can be used as actuators, sensing the surrounding conditions during actuation. Actuating and sensing signals are simultaneously included by the same two connecting wires.

  18. Modification of sensing properties of metallophthalocyanine by an ECR plasma

    International Nuclear Information System (INIS)

    Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S.V.; Mandale, A.B.

    2002-01-01

    Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H 2 and 75% N 2 . Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping

  19. Modification of sensing properties of metallophthalocyanine by an ECR plasma

    Science.gov (United States)

    Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S. V.; Mandale, A. B.

    2002-07-01

    Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H 2 and 75% N 2. Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping.

  20. Modification of sensing properties of metallophthalocyanine by an ECR plasma

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S.V. E-mail: svb@physics.unipune.ernet.in; Mandale, A.B

    2002-07-01

    Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H{sub 2} and 75% N{sub 2}. Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping.

  1. Transparent Substrates for Plasmonic Sensing by Lithography-Free Fabrication

    DEFF Research Database (Denmark)

    Thilsted, Anil Haraksingh

    This Ph.D. thesis presents fabrication and optimization of transparent plasmonic substrates that can be used for biological and chemical sensing by surface enhanced Raman spectroscopy (SERS) sensing and localized surface plasmon resonance refractive index (LSPR RI) sensing. These substrates are......-free fabrication methods, and resulted in large-area, high throughput and low cost production techniques. The fabrication techniques consisted of using aluminum patterned areas and reactive ion etching (RIE) to achieve nanopillars or nanocylinders in glass; using RIE to achieve nanopillars in silicon as a mould......, respectively. As the substrates were transparent, measurements from the backside were possible, showing a 44%, 1:7% and 71% Raman signal intensity in comparison to the measurements from the front, for the glass nanopillars, the polymer injected nanopillars and the transferred metal nanocaps, respectively...

  2. Advances in Physarum machines sensing and computing with Slime mould

    CERN Document Server

    2016-01-01

    This book is devoted to Slime mould Physarum polycephalum, which is a large single cell capable for distributed sensing, concurrent information processing, parallel computation and decentralized actuation. The ease of culturing and experimenting with Physarum makes this slime mould an ideal substrate for real-world implementations of unconventional sensing and computing devices The book is a treatise of theoretical and experimental laboratory studies on sensing and computing properties of slime mould, and on the development of mathematical and logical theories of Physarum behavior. It is shown how to make logical gates and circuits, electronic devices (memristors, diodes, transistors, wires, chemical and tactile sensors) with the slime mould. The book demonstrates how to modify properties of Physarum computing circuits with functional nano-particles and polymers, to interface the slime mould with field-programmable arrays, and to use Physarum as a controller of microbial fuel cells. A unique multi-agent model...

  3. Modification of sensing properties of metallophthalocyanine by an Ecr plasma

    International Nuclear Information System (INIS)

    Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S.V.; Mandale, A.B

    2004-01-01

    Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H 2 and 75% N 2 . Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping. (author)

  4. Chemical basis for minimal cognition

    DEFF Research Database (Denmark)

    Hanczyc, Martin; Ikegami, Takashi

    tension between the drop of oil and its environment. We embed a chemical reaction in the oil phase that reacts with water when an oily precursor comes in contact with the water phase at the liquidliquid interface. This reaction not only powers the droplet to move in the aqueous phase but also allows...... for sustained movement. The direction of the movement is governed by a self-generated pH gradient that surrounds the droplet. In addition this self-generated gradient can be overridden by an externally imposed pH gradient, and therefore the direction of droplet motion may be controlled. Also we noticed...... that convection flow is generated inside the oil droplet to cause the movement, which was also confirmed by simulating the fluid dynamics integrated with chemical reactions (Matsuno et al., 2007, ACAL 07, Springer, p.179, Springer). We can observe that the droplet senses the gradient in the environment (either...

  5. Integrated microcantilevers for high-resolution sensing and probing

    International Nuclear Information System (INIS)

    Li, Xinxin; Lee, Dong-Weon

    2012-01-01

    This topical review is focused on microcantilever-based sensing and probing functions that are realized by integrating a mechanically compliant cantilever with self-sensing and self-actuating elements, specific sensing materials as well as functionalized nano-tips. Such integrated cantilever devices have shown great promise in ultra-sensitive applications such as on-the-spot portable bio/chemical detection and in situ micro/nanoscale surface analysis and manipulation. The technical details of this review will be given in a sequence of cantilever sensors and, then, cantilever-tip probes. For the integrated cantilever sensors, the frequency-output style dynamic cantilevers are described first, with the contents including optimized resonance modes, sensing-group-modified nanostructures for specific bio/chemical mass adsorption and nanoscale sensing effects, etc. Thereafter, the static cantilever sensors for surface-stress detection are described in the sequence of the sensing mechanism, surface modification of the sensitive molecule layer and the model of specific reaction-induced surface-energy variation. After technical description of the cantilever sensors, the emphasis of the review moves to functionalized nano-tip equipped cantilever-tip probing devices. The probing functions are not only integrated on the cantilever but also integrated at the sharp apex of the tip. After description of single integrated cantilever probes and their applications in surface scanning and imaging, arrayed cantilever-tip devices and their simultaneous parallel operation for high throughput imaging and nanomechanical data storage are also addressed. With cantilever-tip probes as key elements, micro-analysis instruments are introduced that can be widely used for macro/nanoscale characterizations. (topical review)

  6. Nanofluidic structures for coupled sensing and remediation of toxins

    Science.gov (United States)

    Shaw, K.; Contento, N. M.; Xu, Wei; Bohn, P. W.

    2014-05-01

    One foundational motivation for chemical sensing is that knowledge of the presence and level of a chemical agent informs decisions about treatment of the agent, for example by sequestration, separation or chemical conversion to a less harmful substance. Commonly the sensing and treatment steps are separate. However, the disjoint detection/treatment approach is neither optimal, nor required. Thus, we are investigating how nanostructured architectures can be constructed so that molecular transport (analyte/reagent delivery), chemical sensing (optical or electrochemical) and subsequent treatment can all be coupled in the same physical space during the same translocation event. Chemical sensors that are uniquely well-poised for integration into 3-D micro-/nanofluidic architectures include those based on plasmonics and impedance. Following detection, treatment can be substantially enhanced if mass transport limitations can be overcome. In this context, in situ generation of reactive species within confined geometries, such as nanopores or nanochannels, is of significant interest, because of its potential utility in overcoming mass transport limitations in chemical reactivity. Solvent electrolysis in electrochemically coupled nanochannels supporting electrokinetic flow for the generation of reactive species, can produce arbitrarily tunable quantities of reagents, such as O2 or H2, in situ in close proximity to the site of a hydrogenation catalyst, for example. Semi-quantitative estimates of the local H2 concentration are obtained by comparing the spatiotemporal fluorescence behavior and current measurements with finite element simulations accounting for electrolysis and subsequent convection and diffusion within the confined geometry. H2 saturation can easily be achieved at modest overpotentials.

  7. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Badger, Merete

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art ‘guideline’ available for people involved in Remote Sensing...

  8. Sensing voltage across lipid membranes

    Science.gov (United States)

    Swartz, Kenton J.

    2009-01-01

    The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to fully understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing. PMID:19092925

  9. Predicting word sense annotation agreement

    DEFF Research Database (Denmark)

    Martinez Alonso, Hector; Johannsen, Anders Trærup; Lopez de Lacalle, Oier

    2015-01-01

    High agreement is a common objective when annotating data for word senses. However, a number of factors make perfect agreement impossible, e.g. the limitations of the sense inventories, the difficulty of the examples or the interpretation preferences of the annotations. Estimating potential...... agreement is thus a relevant task to supplement the evaluation of sense annotations. In this article we propose two methods to predict agreement on word-annotation instances. We experiment with a continuous representation and a three-way discretization of observed agreement. In spite of the difficulty...

  10. Sensing of volatile organic compounds by copper phthalocyanine thin films

    Science.gov (United States)

    Ridhi, R.; Saini, G. S. S.; Tripathi, S. K.

    2017-02-01

    Thin films of copper phthalocyanine have been deposited by thermal evaporation technique. We have subsequently exposed these films to the vapours of methanol, ethanol and propanol. Optical absorption, infrared spectra and electrical conductivities of these films before and after exposure to chemical vapours have been recorded in order to study their sensing mechanisms towards organic vapours. These films exhibit maximum sensing response to methanol while low sensitivities of the films towards ethanol and propanol have been observed. The changes in sensitivities have been correlated with presence of carbon groups in the chemical vapours. The effect of different types of electrodes on response-recovery times of the thin film with organic vapours has been studied and compared. The electrodes gap distance affects the sensitivity as well as response-recovery time values of the thin films.

  11. Molecules for Fluorescence Detection of Specific Chemicals

    Science.gov (United States)

    Fedor, Steve

    2008-01-01

    A family of fluorescent dye molecules has been developed for use in on-off fluorescence detection of specific chemicals. By themselves, these molecules do not fluoresce. However, when exposed to certain chemical analytes in liquid or vapor forms, they do fluoresce (see figure). These compounds are amenable to fixation on or in a variety of substrates for use in fluorescence-based detection devices: they can be chemically modified to anchor them to porous or non-porous solid supports or can be incorporated into polymer films. Potential applications for these compounds include detection of chemical warfare agents, sensing of acidity or alkalinity, and fluorescent tagging of proteins in pharmaceutical research and development. These molecules could also be exploited for use as two-photon materials for photodynamic therapy in the treatment of certain cancers and other diseases. A molecule in this family consists of a fluorescent core (such as an anthracene or pyrene) attached to two end groups that, when the dye is excited by absorption of light, transfer an electron to the core, thereby quenching the fluorescence. The end groups can be engineered so that they react chemically with certain analytes. Upon reaction, electrons on the end groups are no longer available for transfer to the core and, consequently, the fluorescence from the core is no longer quenched. The chemoselectivity of these molecules can be changed by changing the end groups. For example, aniline end groups afford a capability for sensing acids or acid halides (including those contained in chemical warfare agents). Pyridine or bipyridyl end groups would enable sensing of metal ions. Other chemicals that can be selectively detected through suitable choice of end groups include glucose and proteins. Moreover, the fluorescent cores can be changed to alter light-absorption and -emission characteristics: anthracene cores fluoresce at wavelengths around 500 nm, whereas perylene cores absorb and emit at

  12. Humidity Sensing in Drosophila.

    Science.gov (United States)

    Enjin, Anders; Zaharieva, Emanuela E; Frank, Dominic D; Mansourian, Suzan; Suh, Greg S B; Gallio, Marco; Stensmyr, Marcus C

    2016-05-23

    Environmental humidity influences the fitness and geographic distribution of all animals [1]. Insects in particular use humidity cues to navigate the environment, and previous work suggests the existence of specific sensory mechanisms to detect favorable humidity ranges [2-5]. Yet, the molecular and cellular basis of humidity sensing (hygrosensation) remains poorly understood. Here we describe genes and neurons necessary for hygrosensation in the vinegar fly Drosophila melanogaster. We find that members of the Drosophila genus display species-specific humidity preferences related to conditions in their native habitats. Using a simple behavioral assay, we find that the ionotropic receptors IR40a, IR93a, and IR25a are all required for humidity preference in D. melanogaster. Yet, whereas IR40a is selectively required for hygrosensory responses, IR93a and IR25a mediate both humidity and temperature preference. Consistent with this, the expression of IR93a and IR25a includes thermosensory neurons of the arista. In contrast, IR40a is excluded from the arista but is expressed (and required) in specialized neurons innervating pore-less sensilla of the sacculus, a unique invagination of the third antennal segment. Indeed, calcium imaging showed that IR40a neurons directly respond to changes in humidity, and IR40a knockdown or IR93a mutation reduced their responses to stimuli. Taken together, our results suggest that the preference for a specific humidity range depends on specialized sacculus neurons, and that the processing of environmental humidity can happen largely in parallel to that of temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. When paranoia makes sense.

    Science.gov (United States)

    Kramer, Roderick M

    2002-07-01

    On September 11, 2001, in the space of a few horrific minutes, Americans realized the fragility of trust. The country's evident vulnerability to deadly terrorism rocked our faith in the systems we rely on for security. Our trust was shaken again only a few months later with the stunning collapse of Enron, forcing us to question many of the methods and assumptions underpinning the way we work. These two crises are obviously very different, yet both serve as reminders of the perils of trusting too much. The abiding belief that trust is a strength now seems dangerously naive. This new doubtfulness runs contrary to most management literature, which has traditionally touted trust as an organizational asset. It's an easy case to make. When there are high levels of trust, employees can fully commit themselves to the organization because they can be confident that their efforts will be recognized and rewarded. Trust also means that leaders don't have to worry so much about putting the right spin on things. They can act and speak forthrightly and focus on essentials. In short, trust is an organizational superglue. Nevertheless, two decades of research on trust and cooperation in organizations have convinced social psychologist Roderick Kramer that--despite its costs--distrust can be beneficial in the workplace. Kramer has observed that a moderate form of suspicion, which he calls prudent paranoia, can in many cases prove highly beneficial to the distrustful individual or organization. In this article, he describes situations in which prudent paranoia makes sense and shows how, when properly deployed, it can serve as a powerful morale booster--even a competitive weapon--for organizations.

  14. A computational model for how cells choose temporal or spatial sensing during chemotaxis.

    Science.gov (United States)

    Tan, Rui Zhen; Chiam, Keng-Hwee

    2018-03-01

    Cell size is thought to play an important role in choosing between temporal and spatial sensing in chemotaxis. Large cells are thought to use spatial sensing due to large chemical difference at its ends whereas small cells are incapable of spatial sensing due to rapid homogenization of proteins within the cell. However, small cells have been found to polarize and large cells like sperm cells undergo temporal sensing. Thus, it remains an open question what exactly governs spatial versus temporal sensing. Here, we identify the factors that determines sensing choices through mathematical modeling of chemotactic circuits. Comprehensive computational search of three-node signaling circuits has identified the negative integral feedback (NFB) and incoherent feedforward (IFF) circuits as capable of adaptation, an important property for chemotaxis. Cells are modeled as one-dimensional circular system consisting of diffusible activator, inactivator and output proteins, traveling across a chemical gradient. From our simulations, we find that sensing outcomes are similar for NFB or IFF circuits. Rather than cell size, the relevant parameters are the 1) ratio of cell speed to the product of cell diameter and rate of signaling, 2) diffusivity of the output protein and 3) ratio of the diffusivities of the activator to inactivator protein. Spatial sensing is favored when all three parameters are low. This corresponds to a cell moving slower than the time it takes for signaling to propagate across the cell diameter, has an output protein that is polarizable and has a local-excitation global-inhibition system to amplify the chemical gradient. Temporal sensing is favored otherwise. We also find that temporal sensing is more robust to noise. By performing extensive literature search, we find that our prediction agrees with observation in a wide range of species and cell types ranging from E. coli to human Fibroblast cells and propose that our result is universally applicable.

  15. Biomolecule-Functionalized Smart Polydiacetylene for Biomedical and Environmental Sensing.

    Science.gov (United States)

    Cho, Eunae; Jung, Seunho

    2018-01-04

    Polydiacetylene (PDA) has attracted interest for use as a sensing platform in biomedical, environmental, and chemical engineering applications owing to its capacity for colorimetric and fluorescent transition in response to external stimuli. Many researchers have attempted to develop a tailor-made PDA sensor via conjugation of chemical or biological substances to PDA. Here, we review smart bio-conjugates of PDA with various biomolecules such as carbohydrates, lipids, nucleic acids, and proteins. In addition, materialization and signal amplification strategies to improve handling and sensitivity are described.

  16. CAMEO Chemicals Software

    Science.gov (United States)

    CAMEO Chemicals is an extensive chemical database, available for download, with critical response information for thousands of chemicals, and a tool that tells you what reactions might occur if chemicals were mixed together.

  17. Uncladded sensing fiber for refractive index measurement

    International Nuclear Information System (INIS)

    Bhardwaj, V.; Gangwar, R. K.; Pathak, A. K.; Singh, V. K.

    2016-01-01

    The formation of chemically etched optical fiber for use in refractive index sensor is addressed. This presented design of a refractive index (RI) sensor is based on recording the power loss exhibited by radiation propagating through an etched multimode fiber (MMF) immersed in the liquid under study. The decreasing diameters of fibers are found to be strongly dependent on the temperature and etchant composition. This experiment was performed for different unclad etched fibers for same sensing length and the RI changes from 1.33 RIU to 1.38 RIU. When the multimode fiber (MMF) is etched for 12 hours the sensitivity of the sensor is approximately 204.25dBm/RIU, which is larger than without etched fiber having sensitivity 127.2dBm/RIU.

  18. Uncladded sensing fiber for refractive index measurement

    Science.gov (United States)

    Bhardwaj, V.; Gangwar, R. K.; Pathak, A. K.; Singh, V. K.

    2016-05-01

    The formation of chemically etched optical fiber for use in refractive index sensor is addressed. This presented design of a refractive index (RI) sensor is based on recording the power loss exhibited by radiation propagating through an etched multimode fiber (MMF) immersed in the liquid under study. The decreasing diameters of fibers are found to be strongly dependent on the temperature and etchant composition. This experiment was performed for different unclad etched fibers for same sensing length and the RI changes from 1.33 RIU to 1.38 RIU. When the multimode fiber (MMF) is etched for 12 hours the sensitivity of the sensor is approximately 204.25dBm/RIU, which is larger than without etched fiber having sensitivity 127.2dBm/RIU.

  19. Uncladded sensing fiber for refractive index measurement

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, V., E-mail: bhardwajphyism@gmail.com; Gangwar, R. K.; Pathak, A. K.; Singh, V. K. [Department of Applied Physics Indian School of Mines Dhanbad, Jharkhand (India)

    2016-05-06

    The formation of chemically etched optical fiber for use in refractive index sensor is addressed. This presented design of a refractive index (RI) sensor is based on recording the power loss exhibited by radiation propagating through an etched multimode fiber (MMF) immersed in the liquid under study. The decreasing diameters of fibers are found to be strongly dependent on the temperature and etchant composition. This experiment was performed for different unclad etched fibers for same sensing length and the RI changes from 1.33 RIU to 1.38 RIU. When the multimode fiber (MMF) is etched for 12 hours the sensitivity of the sensor is approximately 204.25dBm/RIU, which is larger than without etched fiber having sensitivity 127.2dBm/RIU.

  20. DNA-Enabled Integrated Molecular Systems for Computation and Sensing

    Science.gov (United States)

    2014-05-21

    Computational devices can be chemically conjugated to different strands of DNA that are then self-assembled according to strict Watson − Crick binding rules... DNA -Enabled Integrated Molecular Systems for Computation and Sensing Craig LaBoda,† Heather Duschl,† and Chris L. Dwyer*,†,‡ †Department of...guided folding of DNA , inspired by nature, allows designs to manipulate molecular-scale processes unlike any other material system. Thus, DNA can be

  1. CHEMICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1965-06-01

    How did life come to be on the surface of the earth? Darwin himself recognized that his basic idea of evolution by variation and natural selection must be a continuous process extending backward in time through that period in which the first living things arose and into the period of 'Chemical Evolution' which preceded it. We are approaching the examination of these events by two routes. One is to seek for evidence in the ancient rocks of the earth which were laid down prior to that time in which organisms capable of leaving their skeletons in the rocks to be fossilized were in existence. This period is sometime prior to approximately 600 million years ago. The earth is believed to have taken its present form approximately 4700 million years ago. We have found in rocks whose age is about 1000 million years certain organic molecules which are closely related to the green pigment of plants, chlorophyll. This seems to establish that green plants were already fluorishing prior to that time. We have now found in rocks of still greater age, namely, 2500 million years, the same kinds of molecules mentioned above which can be attributed to the presence of living organisms. If these molecules are as old as the rocks, we have thus shortened the time available for the generation of the complex biosynthetic sequences which give rise to these specific hydrocarbons (polyisoprenoids) to less than 2000 million years.

  2. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  3. Displacement sensing system and method

    Science.gov (United States)

    VunKannon, Jr., Robert S

    2006-08-08

    A displacement sensing system and method addresses demanding requirements for high precision sensing of displacement of a shaft, for use typically in a linear electro-dynamic machine, having low failure rates over multi-year unattended operation in hostile environments. Applications include outer space travel by spacecraft having high-temperature, sealed environments without opportunity for servicing over many years of operation. The displacement sensing system uses a three coil sensor configuration, including a reference and sense coils, to provide a pair of ratio-metric signals, which are inputted into a synchronous comparison circuit, which is synchronously processed for a resultant displacement determination. The pair of ratio-metric signals are similarly affected by environmental conditions so that the comparison circuit is able to subtract or nullify environmental conditions that would otherwise cause changes in accuracy to occur.

  4. Remote sensing of oil slicks

    Digital Repository Service at National Institute of Oceanography (India)

    Fondekar, S.P.; Rao, L.V.G.

    the drawback of expensive conventional surveying methods. An airborne remote sensing system used for monitoring and surveillance of oil comprises different sensors such as side-looking airborne radar, synthetic aperture radar, infrared/ultraviolet line scanner...

  5. Studying Sensing-Based Systems

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    2013-01-01

    Recent sensing-based systems involve a multitude of users, devices, and places. These types of systems challenge existing approaches for conducting valid system evaluations. Here, the author discusses such evaluation challenges and revisits existing system evaluation methodologies....

  6. Compressed sensing for distributed systems

    CERN Document Server

    Coluccia, Giulio; Magli, Enrico

    2015-01-01

    This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to...

  7. Time and constitution of sense

    Directory of Open Access Journals (Sweden)

    Pedro Gerardo Acosta

    2014-06-01

    Full Text Available This article proposes a reflection over our time-consciousness under the Phenomenology of Edmund Husserl. The idea is make a release the key role of the sense constitution like the fundament and development of the ongoing intentionality, a shape that make the possibility to catch sight of the sense of every life situation like conscience experience that displays itself over the time, and open the world of the Phenomenon World, constituted in the flux and flow of our live experience. The immanent time in which the things served in a lived-present inevitably displays to its own immediate-past of retentions, then of commemorations, constituting and enabling, not just the sense of ever present, but the sense of our own past like memory and our future like expectative. This reflection is based and supporter over the text “Phenomenology Lesson of the Internal Time-Consiusness” (Husserl, 2002.

  8. Remote sensing technology: symposium proceedings

    International Nuclear Information System (INIS)

    1985-01-01

    Papers were presented in four subject areas: applications of remote sensing; data analysis, digital and analog; acquisition systems; and general. Abstracts of individual items from the conference were prepared separately for the data base

  9. Classification of remotely sensed images

    CSIR Research Space (South Africa)

    Dudeni, N

    2008-10-01

    Full Text Available For this research, the researchers examine various existing image classification algorithms with the aim of demonstrating how these algorithms can be applied to remote sensing images. These algorithms are broadly divided into supervised...

  10. Environmental sensing and combustion diagnostics

    International Nuclear Information System (INIS)

    Santoleri, J.J.

    1991-01-01

    This book contains proceedings of Environmental Sensing and Combustion Diagnostics. Topics covered include: Incineration Systems Applications, Permitting, And Monitoring Overview; Infrared Techniques Applied to Incineration Systems; Continuous Emission Monitors; Analyzers and Sensors for Process Control And Environmental Monitoring

  11. Compressive Sensing in Communication Systems

    DEFF Research Database (Denmark)

    Fyhn, Karsten

    2013-01-01

    . The need for cheaper, smarter and more energy efficient wireless devices is greater now than ever. This thesis addresses this problem and concerns the application of the recently developed sampling theory of compressive sensing in communication systems. Compressive sensing is the merging of signal...... acquisition and compression. It allows for sampling a signal with a rate below the bound dictated by the celebrated Shannon-Nyquist sampling theorem. In some communication systems this necessary minimum sample rate, dictated by the Shannon-Nyquist sampling theorem, is so high it is at the limit of what...... with using compressive sensing in communication systems. The main contribution of this thesis is two-fold: 1) a new compressive sensing hardware structure for spread spectrum signals, which is simpler than the current state-of-the-art, and 2) a range of algorithms for parameter estimation for the class...

  12. Sensing our Environment: Remote sensing in a physics classroom

    Science.gov (United States)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit

    2017-04-01

    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora

  13. Nanomaterials and Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Sukumar BASU

    2011-11-01

    Full Text Available Nanomaterials and nanosensors are two most important iconic words of the modern science & Technology. Though nano technology is relatively a new area of research & development it will soon be included in the most modern electronic circuitry used for advanced computing systems. Since it will provide the potential link between the nanotechnology and the macroscopic world the development is primarily directed towards exploitation of nanotechnology to computer chip miniaturization and vast storage capacity. However, for implementation in the consumer products the present high cost of production must be overcome. There are different ways to make nanosensors e.g. top-down lithography, bottom-up assembly, and self molecular assembly. Consequently, nanomaterials & nanosensors have to be made compatible with the consumer technologies. The progress in detecting and sensing different chemical species with increased accuracy may transform the human society from uncertainty and inaccuracy to more precise and definite world of information. For example, extremely low concentrations of air pollutants or toxic materials in air & water around us can be accurately and economically detected in no time to save the human beings from the serious illnesses. Also, the medical sensors will help in diagnoses of the diseases, their treatment and in predicting the future profile of the individual so that the health insurance companies may exploit the opportunity to grant or to deny the health coverage. Other social issues like privacy invasion and security may be best monitored by the widespread use of the surveillance devices using nanosensors.

  14. Philosophy vs the common sense

    OpenAIRE

    V. V. Chernyshov

    2017-01-01

    The paper deals with the antinomy of philosophy and the common sense. Philosophy emerges as a way of specifically human knowledge, which purposes analytics of the reality of subjective experience. The study reveals that in order to alienate philosophy from the common sense it was essential to revise the understanding of wisdom. The new, philosophical interpretation of wisdom – offered by Pythagoras – has laid the foundation of any future philosophy. Thus, philosophy emerges, alienating itself...

  15. Remote sensing for vineyard management

    Science.gov (United States)

    Philipson, W. R.; Erb, T. L.; Fernandez, D.; Mcleester, J. N.

    1980-01-01

    Cornell's Remote Sensing Program has been involved in a continuing investigation to assess the value of remote sensing for vineyard management. Program staff members have conducted a series of site and crop analysis studies. These include: (1) panchromatic aerial photography for planning artificial drainage in a new vineyard; (2) color infrared aerial photography for assessing crop vigor/health; and (3) color infrared aerial photography and aircraft multispectral scanner data for evaluating yield related factors. These studies and their findings are reviewed.

  16. Scale issues in remote sensing

    CERN Document Server

    Weng, Qihao

    2014-01-01

    This book provides up-to-date developments, methods, and techniques in the field of GIS and remote sensing and features articles from internationally renowned authorities on three interrelated perspectives of scaling issues: scale in land surface properties, land surface patterns, and land surface processes. The book is ideal as a professional reference for practicing geographic information scientists and remote sensing engineers as well as a supplemental reading for graduate level students.

  17. Remote sensing and resource exploration

    International Nuclear Information System (INIS)

    El-Baz, F.; Hassan, M.H.A.; Cappellini, V.

    1989-01-01

    The purpose of the Workshop was to study in depth the application of remote sensing technology to the fields of archaeology, astronomy, geography, geology, and physics. Some emphasis was placed on utilizing remote sensing methods and techniques in the search for water, mineral and land resources. The Workshop was attended by 90 people from 35 countries. The proceedings of this meeting includes 15 papers, 12 of them have a separate abstract in the INIS Database. Refs, figs and tabs

  18. Tungsten Oxide Photonic Crystals as Optical Transducer for Gas Sensing.

    Science.gov (United States)

    Amrehn, Sabrina; Wu, Xia; Wagner, Thorsten

    2018-01-26

    Some metal oxide semiconductors, such as tungsten trioxide or tin dioxide, are well-known as resistive transducers for gas sensing and offer high sensitivities down to the part per billion level. Electrical signal read-out, however, limits the information obtained on the electronic properties of metal oxides to a certain frequency range and its application because of the required electrical contacts. Therefore, a novel approach for building an optical transducer for gas reactions utilizing metal oxide photonic crystals is presented here. By the rational design of the structure and composition it is possible to synthesize a functional material which allows one to obtain insight into its electronic properties in the optical frequency range with simple experimental measures. The concept is demonstrated by tungsten trioxide inverse opal structure as optical transducer material for hydrogen sensing. The sensing behavior is analyzed in a temperature range from room temperature to 500 °C and in a wide hydrogen concentration range (3000 ppm to 10%). The sensing mechanism is mainly the refractive index change resulting from hydrogen intercalation in tungsten trioxide, but the back reaction has also impact on the optical properties of this system. Detailed chemical reaction studies provide suggestions for specific sensing conditions.

  19. Sensing using rare-earth-doped upconversion nanoparticles.

    Science.gov (United States)

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near infrared (NIR) light that are silent to tissues. These features allow not only a high penetration depth in biological tissues but also a high detection sensitivity. Indeed, the energy transfer between UCNPs and biomolecular or chemical indicators provide opportunities for high-sensitive bio- and chemical-sensing. A temperature-sensitive change of the intensity ratio between two close UC bands promises them for use in temperature mapping of a single living cell. In this work, we review recent investigations on using UCNPs for the detection of biomolecules (avidin, ATP, etc.), ions (cyanide, mecury, etc.), small gas molecules (oxygen, carbon dioxide, ammonia, etc.), as well as for in vitro temperature sensing. We also briefly summarize chemical methods in synthesizing UCNPs of high efficiency that are important for the detection limit.

  20. Online sensing and control of oil in process wastewater

    Science.gov (United States)

    Khomchenko, Irina B.; Soukhomlinoff, Alexander D.; Mitchell, T. F.; Selenow, Alexander E.

    2002-02-01

    Industrial processes, which eliminate high concentration of oil in their waste stream, find it extremely difficult to measure and control the water purification process. Most oil separation processes involve chemical separation using highly corrosive caustics, acids, surfactants, and emulsifiers. Included in the output of this chemical treatment process are highly adhesive tar-like globules, emulsified and surface oils, and other emulsified chemicals, in addition to suspended solids. The level of oil/hydrocarbons concentration in the wastewater process may fluctuate from 1 ppm to 10,000 ppm, depending upon the specifications of the industry and level of water quality control. The authors have developed a sensing technology, which provides the accuracy of scatter/absorption sensing in a contactless environment by combining these methodologies with reflective measurement. The sensitivity of the sensor may be modified by changing the fluid level control in the flow cell, allowing for a broad range of accurate measurement from 1 ppm to 10,000 ppm. Because this sensing system has been designed to work in a highly invasive environment, it can be placed close to the process source to allow for accurate real time measurement and control.

  1. Sensing the wind profile

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.

    2009-03-15

    This thesis consists of two parts. The first is a synopsis of the theoretical progress of the study that is based on a number of journal papers. The papers, which constitute the second part of the report, aim to analyze, measure, and model the wind prole in and beyond the surface layer by combining observations from cup anemometers with lidars. The lidar is necessary to extend the measurements on masts at the Horns Rev offshore wind farm and over at land at Hoevsoere, Denmark. Both sensing techniques show a high degree of agreement for wind speed measurements performed at either sites. The wind speed measurements are averaged for several stability conditions and compare well with the surface-layer wind profile. At Hoevsoere, it is sufficient to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added, due to the variant roughness length. This new scaling is coupled to wind prole models derived for flow over the sea and tested against the wind proles up to 160 m at Horns Rev. The models, which account for the boundary-layer height in stable conditions, show better agreement with the measurements than compared to the traditional theory. Mixing-length parameterizations for the neutral wind prole compare well with length-scale measurements up to 300 m at Hoevsoere and 950 m at Leipzig. The mixing-length-derived wind proles strongly deviate from the logarithmic wind prole, but agree better with the wind speed measurements. The length-scale measurements are compared to the length scale derived from a spectral analysis performed up to 160 m at Hoevsoere showing high agreement. Mixing-length parameterizations are corrected to account for stability and used to derive wind prole models. These compared better to wind speed measurements up to 300 m at Hoevsoere than the surface-layer wind prole. The boundary-layer height is derived in nearneutral and stable conditions based on turbulent momentum uxes only and in unstable conditions

  2. Smart sensing surveillance system

    Science.gov (United States)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    An effective public safety sensor system for heavily-populated applications requires sophisticated and geographically-distributed infrastructures, centralized supervision, and deployment of large-scale security and surveillance networks. Artificial intelligence in sensor systems is a critical design to raise awareness levels, improve the performance of the system and adapt to a changing scenario and environment. In this paper, a highly-distributed, fault-tolerant, and energy-efficient Smart Sensing Surveillance System (S4) is presented to efficiently provide a 24/7 and all weather security operation in crowded environments or restricted areas. Technically, the S4 consists of a number of distributed sensor nodes integrated with specific passive sensors to rapidly collect, process, and disseminate heterogeneous sensor data from near omni-directions. These distributed sensor nodes can cooperatively work to send immediate security information when new objects appear. When the new objects are detected, the S4 will smartly select the available node with a Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR camera to track the objects and capture associated imagery. The S4 provides applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. Other imaging processes can be updated to meet specific requirements and operations. In the S4, all the sensor nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology. This UWB RF technology can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The Service Oriented Architecture of S4 enables remote applications to interact with the S4

  3. Smart sensing surveillance system

    Science.gov (United States)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    Unattended ground sensor (UGS) networks have been widely used in remote battlefield and other tactical applications over the last few decades due to the advances of the digital signal processing. The UGS network can be applied in a variety of areas including border surveillance, special force operations, perimeter and building protection, target acquisition, situational awareness, and force protection. In this paper, a highly-distributed, fault-tolerant, and energyefficient Smart Sensing Surveillance System (S4) is presented to efficiently provide 24/7 and all weather security operation in a situation management environment. The S4 is composed of a number of distributed nodes to collect, process, and disseminate heterogeneous sensor data. Nearly all S4 nodes have passive sensors to provide rapid omnidirectional detection. In addition, Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR cameras are integrated to selected nodes to track the objects and capture associated imagery. These S4 camera-connected nodes will provide applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. In the S4, all the nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology, which can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The S4 utilizes a Service Oriented Architecture such that remote applications can interact with the S4 network and use the specific presentation methods. The S4 capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded

  4. Remote sensing of atmospheric chemistry; Proceedings of the Meeting, Orlando, FL, Apr. 1-3, 1991

    Science.gov (United States)

    McElroy, James L.; McNeal, Robert J.

    The present volume on remote sensing of atmospheric chemistry discusses special remote sensing space observations and field experiments to study chemical change in the atmosphere, network monitoring for detection of stratospheric chemical change, stratospheric chemistry studies, and the combining of model, in situ, and remote sensing in atmospheric chemistry. Attention is given to the measurement of tropospheric carbon monoxide using gas filter radiometers, long-path differential absorption measurements of tropospheric molecules, air quality monitoring with the differential optical absorption spectrometer, and a characterization of tropospheric methane through space-based remote sensing. Topics addressed include microwave limb sounder experiments for UARS and EOS, an overview of the spectroscopy of the atmosphere using an FIR emission experiment, the detection of stratospheric ozone trends by ground-based microwave observations, and a FIR Fabry-Perot spectrometer for OH measurements. (For individual items see A93-31377 to A93-31412)

  5. Chemical Gas Sensors for Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.; Liu, C. C.

    1998-01-01

    Chemical sensors often need to be specifically designed (or tailored) to operate in a given environment. It is often the case that a chemical sensor that meets the needs of one application will not function adequately in another application. The more demanding the environment and specialized the requirement, the greater the need to adapt exiting sensor technologies to meet these requirements or, as necessary, develop new sensor technologies. Aerospace (aeronautic and space) applications are particularly challenging since often these applications have specifications which have not previously been the emphasis of commercial suppliers. Further, the chemical sensing needs of aerospace applications have changed over the years to reflect the changing emphasis of society. Three chemical sensing applications of particular interest to the National Aeronautics and Space Administration (NASA) which illustrate these trends are launch vehicle leak detection, emission monitoring, and fire detection. Each of these applications reflects efforts ongoing throughout NASA. As described in NASA's "Three Pillars for Success", a document which outlines NASA's long term response to achieve the nation's priorities in aerospace transportation, agency wide objectives include: improving safety and decreasing the cost of space travel, significantly decreasing the amount of emissions produced by aeronautic engines, and improving the safety of commercial airline travel. As will be discussed below, chemical sensing in leak detection, emission monitoring, and fire detection will help enable the agency to meet these objectives. Each application has vastly different problems associated with the measurement of chemical species. Nonetheless, the development of a common base technology can address the measurement needs of a number of applications.

  6. Defect-engineered graphene chemical sensors with ultrahigh sensitivity.

    Science.gov (United States)

    Lee, Geonyeop; Yang, Gwangseok; Cho, Ara; Han, Jeong Woo; Kim, Jihyun

    2016-05-25

    We report defect-engineered graphene chemical sensors with ultrahigh sensitivity (e.g., 33% improvement in NO2 sensing and 614% improvement in NH3 sensing). A conventional reactive ion etching system was used to introduce the defects in a controlled manner. The sensitivity of graphene-based chemical sensors increased with increasing defect density until the vacancy-dominant region was reached. In addition, the mechanism of gas sensing was systematically investigated via experiments and density functional theory calculations, which indicated that the vacancy defect is a major contributing factor to the enhanced sensitivity. This study revealed that defect engineering in graphene has significant potential for fabricating ultra-sensitive graphene chemical sensors.

  7. Chemical sensor with oscillating cantilevered probe

    Science.gov (United States)

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  8. Dioxin sensing which uses fluorescent cyclodextrin; Keikosei shikurodekisutorin wo mochiita daiokishin senshingu

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, F. [Akita Univ., Akita (Japan)

    2000-05-01

    Environmental hormones are called pluricausal endocrine disrupting chemical substances (endocrine disrupters) that are deemed to disrupt effects of vital hormones and give influence to homeostasis of in vivo environment. Today, 70,000 to 80,000 kinds of chemical substances are used in the world, and about 70 kinds among them are suspected of being environmental hormones. The present authors have clarified that a host with fluorescent residue chemically bonded to cyclodextrin responses at a high sensitivity to bile acids having a steroid skeleton. In this paper, dioxin sensing that uses fluorescent cyclodextrin is described. Florescent sensing of a dansyl group or anthranyl ground modified cyclodextrin having somewhat different molecular sizes; and sensing of hetero-2 substituted-dansyl-tosyl, modified {beta}-, cyclodextrin are examined. (NEDO)

  9. FeltRadio: Sensing and Making Sense of Wireless Traffic

    DEFF Research Database (Denmark)

    Gronvall, Erik; Fritsch, Jonas; Vallgårda, Anna

    2016-01-01

    Radio waves surround us but still they remain largely undetected by our senses. Unless we use specifically tuned hardware, such as FM radios, cell phones or WiFi modems, human beings cannot perceive wirelessly transmitted data. This paper presents FeltRadio, a portable and wireless technology...... that makes it possible to turn radio signals into visual and tactile stimuli as a form of sensorial augmentation. FeltRadio explores and makes us reflect upon what it would be like if we could sense, and feel, wireless traffic such as WiFi or Bluetooth. We present the technological design behind Felt...

  10. Joint position sense and vibration sense: anatomical organisation and assessment.

    Science.gov (United States)

    Gilman, S

    2002-11-01

    Clinical examination of joint position sense and vibration sense can provide important information concerning specific cutaneous sensory receptors, peripheral nerves, dorsal roots, and central nervous system pathways and should be included as a regular component of the neurological examination. Although these sensory modalities share a spinal cord and brainstem pathway, they arise in different receptors and terminate in separate distributions within the thalamus and cerebral cortex. Consequently, both modalities should be tested as part of the neurological examination. Clinical testing of these modalities requires simultaneous stimulation of tactile receptors; hence this review will include information about the receptors and pathways responsible for tactile sensation.

  11. Photogrammetry - Remote Sensing and Geoinformation

    Science.gov (United States)

    Lazaridou, M. A.; Patmio, E. N.

    2012-07-01

    Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS) is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc), and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers) in the Lab. of Photogrammetry - Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  12. Remote sensing in meteorology, oceanography and hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Cracknell, A P [ed.

    1981-01-01

    Various aspects of remote sensing are discussed. Topics include: the EARTHNET data acquisition, processing, and distribution facility the design and implementation of a digital interactive image processing system geometrical aspects of remote sensing and space cartography remote sensing of a complex surface legal aspects of remote sensing remote sensing of pollution, dust storms, ice masses, and ocean waves and currents use of satellite images for weather forecasting. Notes on field trips and work-sheets for laboratory exercises are included.

  13. Substitutionally doped phosphorene: electronic properties and gas sensing.

    Science.gov (United States)

    Suvansinpan, Nawat; Hussain, Fayyaz; Zhang, Gang; Chiu, Cheng Hsin; Cai, Yongqing; Zhang, Yong-Wei

    2016-02-12

    Phosphorene, a new elemental two-dimensional material, has attracted increasing attention owing to its intriguing electronic properties. In particular, pristine phospohorene, due to its ultrahigh surface-volume ratio and high chemical activity, has been shown to be promising for gas sensing (Abbas et al 2015 ACS Nano 9 5618). To further enhance its sensing ability, we perform first-principles calculations based on density functional theory to study substitutionally doped phosphorene with 17 different atoms, focusing on structures, energetics, electronic properties and gas sensing. Our calculations reveal that anionic X (X = O, C and S) dopants have a large binding energy and highly dispersive electronic states, signifying the formation of covalent X-P bonds and thus strong structural stability. Alkali atom (Li and Na) doping is found to donate most of the electrons in the outer s-orbital by forming ionic bonds with P, and the band gap decreases by pushing down the conduction band, suggesting that the optical and electronic properties of the doped phosphorene can be tailored. For doping with VIIIB-group (Fe, Co and Ni) elements, a strong affinity is predicted and the binding energy and charge transfer are correlated strongly with their electronegativity. By examining NO molecule adsorption, we find that these metal doped phosphorenes (MDPs) in general exhibit a significantly enhanced chemical activity compared with pristine phosphorene. Our study suggests that substitutionally doped phosphorene shows many intriguing electronic and optic properties different from pristine phosphorene and MDPs are promising in chemical applications involving molecular adsorption and desorption processes, such as materials growth, catalysis, gas sensing and storage.

  14. A Single-Walled Carbon Nanotube Network Gas Sensing Device

    Directory of Open Access Journals (Sweden)

    I-Ju Teng

    2011-08-01

    Full Text Available The goal of this research was to develop a chemical gas sensing device based on single-walled carbon nanotube (SWCNT networks. The SWCNT networks are synthesized on Al2O3-deposted SiO2/Si substrates with 10 nm-thick Fe as the catalyst precursor layer using microwave plasma chemical vapor deposition (MPCVD. The development of interconnected SWCNT networks can be exploited to recognize the identities of different chemical gases by the strength of their particular surface adsorptive and desorptive responses to various types of chemical vapors. The physical responses on the surface of the SWCNT networks cause superficial changes in the electric charge that can be converted into electronic signals for identification. In this study, we tested NO2 and NH3 vapors at ppm levels at room temperature with our self-made gas sensing device, which was able to obtain responses to sensitivity changes with a concentration of 10 ppm for NO2 and 24 ppm for NH3.

  15. Pulse mode actuation-readout system based on MEMS resonator for liquid sensing

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Davis, Zachary James

    2014-01-01

    A MEMS (Micro-Electro-Mechanical Systems) bulk disk resonator is applied for mass sensing under its dynamic mode. The classical readout circuitry involves sophisticated feedback loop and feedthrough compensation. We propose a simple straightforward non-loop pulse mode actuation and capacitive...... readout scheme. In order to verify its feasibility in liquid bio-chemical sensing environment, an experimental measurement is conducted with humidity sensing application. The measured resonant frequency changes 60kHz of 67.7MHz with a humidity change of 0~80%....

  16. Chemical Function Predictions for Tox21 Chemicals

    Data.gov (United States)

    U.S. Environmental Protection Agency — Random forest chemical function predictions for Tox21 chemicals in personal care products uses and "other" uses. This dataset is associated with the following...

  17. Optimal census by quorum sensing

    Science.gov (United States)

    Taillefumier, Thibaud

    Bacteria regulate their gene expression in response to changes in local cell density in a process called quorum sensing. To synchronize their gene-expression programs, these bacteria need to glean as much information as possible about local density. Our study is the first to physically model the flow of information in a quorum-sensing microbial community, wherein the internal regulator of the individual's response tracks the external cell density via an endogenously generated shared signal. Combining information theory and Lagrangian optimization, we find that quorum-sensing systems can improve their information capabilities by tuning circuit feedbacks. At the population level, external feedback adjusts the dynamic range of the shared input to individuals' detection channels. At the individual level, internal feedback adjusts the regulator's response time to dynamically balance output noise reduction and signal tracking ability. Our analysis suggests that achieving information benefit via feedback requires dedicated systems to control gene expression noise, such as sRNA-based regulation.

  18. Wireless Damage Location Sensing System

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)

    2012-01-01

    A wireless damage location sensing system uses a geometric-patterned wireless sensor that resonates in the presence of a time-varying magnetic field to generate a harmonic response that will experience a change when the sensor experiences a change in its geometric pattern. The sensing system also includes a magnetic field response recorder for wirelessly transmitting the time-varying magnetic field and for wirelessly detecting the harmonic response. The sensing system compares the actual harmonic response to a plurality of predetermined harmonic responses. Each predetermined harmonic response is associated with a severing of the sensor at a corresponding known location thereof so that a match between the actual harmonic response and one of the predetermined harmonic responses defines the known location of the severing that is associated therewith.

  19. Mississippi Sound Remote Sensing Study

    Science.gov (United States)

    Atwell, B. H.

    1973-01-01

    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  20. Number-unconstrained quantum sensing

    Science.gov (United States)

    Mitchell, Morgan W.

    2017-12-01

    Quantum sensing is commonly described as a constrained optimization problem: maximize the information gained about an unknown quantity using a limited number of particles. Important sensors including gravitational wave interferometers and some atomic sensors do not appear to fit this description, because there is no external constraint on particle number. Here, we develop the theory of particle-number-unconstrained quantum sensing, and describe how optimal particle numbers emerge from the competition of particle-environment and particle-particle interactions. We apply the theory to optical probing of an atomic medium modeled as a resonant, saturable absorber, and observe the emergence of well-defined finite optima without external constraints. The results contradict some expectations from number-constrained quantum sensing and show that probing with squeezed beams can give a large sensitivity advantage over classical strategies when each is optimized for particle number.

  1. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus...... in the Meteorology and Test and Measurements Programs from the Wind Energy Division at Risø DTU in the PhD Summer Schools. We hope to add more topics in future editions and to update as necessary, to provide a truly state-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  2. Remote Sensing of Environmental Pollution

    Science.gov (United States)

    North, G. W.

    1971-01-01

    Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available.

  3. Current perspective on remote sensing

    International Nuclear Information System (INIS)

    Goodman, R.H.

    1992-01-01

    Surveillance and tracking of oil spills has been a feature of most spill response situations for many years. The simplest and most direct method uses visual observations from an aircraft and hand-plotting of the data on a map. This technique has proven adequate for most small spills and for responses in fair weather. As the size of the spill increases or the weather deteriorates, there is a need to augment visual aerial observations with remote sensing methods. Remote sensing and its associated systems are one of the most technically complex and sophisticated elements of an oil spill response. During the past few years, a number of initiatives have been undertaken to use contemporary electronic and computing systems to develop new and improved remote sensing systems

  4. Making sense of project management

    DEFF Research Database (Denmark)

    Kjærgaard, Annemette; Kautz, Karl; Nielsen, Peter Axel

    2007-01-01

    How can a software company make sense of project management when it becomes involved in software process improvement? In software development most research has an instrumental view of knowledge management thus neglecting what is probably the most important part of knowledge management namely making...... sense of practice by developers and project managers. Through an action case, we study the knowledge management processes in a Danish software company. We analyse the case through the lens of a theoretical framework. The theoretical framework focuses in particular on sensemaking, collective construed...... substantial insight which could not have been achieved through an instrumental perspective on knowledge management....

  5. TACTILE SENSING FOR OBJECT IDENTIFICATION

    DEFF Research Database (Denmark)

    Drimus, Alin; Marian, Nicolae; Bilberg, Arne

    2009-01-01

    The artificial sense of touch is a research area that can be considered still in demand, compared with the human dexterity of grasping a wide variety of shapes and sizes, perform complex tasks, and switch between grasps in response to changing task requirements. For handling unknown objects...... in unstructured environments, tactile sensing can provide more than valuable to complementary vision information about mechanical properties such as recognition and characterization, force, pressure, torque, compliance, friction, and mass as well as object shape, texture, position and pose. In this paper, we...

  6. Sensing charges of the Ciona intestinalis voltage-sensing phosphatase.

    Science.gov (United States)

    Villalba-Galea, Carlos A; Frezza, Ludivine; Sandtner, Walter; Bezanilla, Francisco

    2013-11-01

    Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing.

  7. Integrated optics ring-resonator chemical sensor for detection of air contamination

    Science.gov (United States)

    Manfreda, A. M.; Homer, M. L.; Ksendzov, A.

    2004-01-01

    We report a silicon nitride-based ring resonator chemical sensor with sensing polymer coating. Its sensitivity to isopropanol in air is at least 50 ppm - well under the permissible exposure level of 400 ppm.

  8. Intregrated optics ring-resonator chemical sensor for detection of air contamination

    Science.gov (United States)

    Ksendzov, Alexander; Homer, Margie L.; Manfreda, Allison M.

    2004-01-01

    We report a silicon nitride-based ring resonator chemical sensor with sensing polymer coating. Its sensitivity to isopropanol in air is at least 50 ppm - well under the permissible exposure level of 400 ppm.

  9. Endocrine Disrupting Chemicals (EDCs)

    Science.gov (United States)

    ... Center Pacientes y Cuidadores Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone ... Hormones and Health › Endocrine Disrupting Chemicals (EDCs) The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) EDCs Myth vs. ...

  10. Microfluidic chemical reaction circuits

    Science.gov (United States)

    Lee, Chung-cheng [Irvine, CA; Sui, Guodong [Los Angeles, CA; Elizarov, Arkadij [Valley Village, CA; Kolb, Hartmuth C [Playa del Rey, CA; Huang, Jiang [San Jose, CA; Heath, James R [South Pasadena, CA; Phelps, Michael E [Los Angeles, CA; Quake, Stephen R [Stanford, CA; Tseng, Hsian-rong [Los Angeles, CA; Wyatt, Paul [Tipperary, IE; Daridon, Antoine [Mont-Sur-Rolle, CH

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  11. Chemical Emergencies Overview

    Science.gov (United States)

    ... Address What's this? Submit What's this? Submit Button Chemical Emergencies Overview Recommend on Facebook Tweet Share Compartir ... themselves during and after such an event. What chemical emergencies are A chemical emergency occurs when a ...

  12. LCA of Chemicals and Chemical Products

    DEFF Research Database (Denmark)

    Fantke, Peter; Ernstoff, Alexi

    2018-01-01

    This chapter focuses on the application of Life Cycle Assessment (LCA) to evaluate the environmental performance of chemicals as well as of products and processes where chemicals play a key role. The life cycle stages of chemical products, such as pharmaceuticals drugs or plant protection products......, are discussed and differentiated into extraction of abiotic and biotic raw materials, chemical synthesis and processing, material processing, product manufacturing, professional or consumer product use, and finally end-of-life . LCA is discussed in relation to other chemicals management frameworks and concepts...... including risk assessment , green and sustainable chemistry , and chemical alternatives assessment. A large number of LCA studies focus on contrasting different feedstocks or chemical synthesis processes, thereby often conducting a cradle to (factory) gate assessment. While typically a large share...

  13. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  14. Chemical Security Analysis Center

    Data.gov (United States)

    Federal Laboratory Consortium — In 2006, by Presidential Directive, DHS established the Chemical Security Analysis Center (CSAC) to identify and assess chemical threats and vulnerabilities in the...

  15. Remote Sensing of Water Pollution

    Science.gov (United States)

    White, P. G.

    1971-01-01

    Remote sensing, as a tool to aid in the control of water pollution, offers a means of making rapid, economical surveys of areas that are relatively inaccessible on the ground. At the same time, it offers the only practical means of mapping pollution patterns that cover large areas. Detection of oil slicks, thermal pollution, sewage, and algae are discussed.

  16. Satellite Remote Sensing: Aerosol Measurements

    Science.gov (United States)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  17. Making Sense of Extraneous Solutions

    Science.gov (United States)

    Zelkowski, Jeremy S.

    2013-01-01

    Principles and Standards for School Mathematics (NCTM 2000) states, "Technology is essential in teaching and learning mathematics; it influences the mathematics that is taught and enhances students' learning." The focus on reasoning and sense making with technology in the lesson presented in this article will enable students to do more…

  18. Capturing a Sense of Place.

    Science.gov (United States)

    Riley, Cheryl K.

    1995-01-01

    Outdoor educators can help students, program participants, and colleagues find a special place in nature that enables them to cherish nature's gifts, its healing power, and its ability to bring inner peace. Becoming emotionally connected with nature promotes development of an environmental ethic and a sense of stewardship for the land. (LP)

  19. Even More Sense and Sustainability

    Science.gov (United States)

    Huckle, John

    2012-01-01

    In this paper, the author reviews "Sense & Sustainability: Educating for a Circular Economy," by Ken Webster and Craig Johnson. He reviews the core text that underpins the work of the education team at the Ellen MacArthur Foundation (http://www.ellenmacarthurfoundation.org/). He shows that while it is strong on some technical aspects of…

  20. ASPIRE: Added-value Sensing

    DEFF Research Database (Denmark)

    Anggorojati, Bayu; Cetin, Kamil; Mihovska, Albena D.

    2010-01-01

    and privacy friendly RFID middleware. Advances in active RFID integration with WSNs allow for more RFID-based applications to be developed. In order to fill the gap between the active RFID system and the existing middleware, a HAL for active reader and ALE server extension to support sensing data from active...

  1. Unobtrusive Sensing of Emotions (USE).

    NARCIS (Netherlands)

    van den Broek, Egon; Schut, Marleen H.; Westerink, Joyce H.D.M.; Tuinenbreijer, Kees

    2009-01-01

    Emotions are acknowledged as a crucial element for artificial intelligence; this is, as is illustrated, no different for Ambient Intelligence (AmI). Unobtrusive Sensing of Emotions (USE) is introduced to enrich AmI with empathic abilities. USE coins the combination of speech and the

  2. Optical display for radar sensing

    Science.gov (United States)

    Szu, Harold; Hsu, Charles; Willey, Jefferson; Landa, Joseph; Hsieh, Minder; Larsen, Louis V.; Krzywicki, Alan T.; Tran, Binh Q.; Hoekstra, Philip; Dillard, John T.; Krapels, Keith A.; Wardlaw, Michael; Chu, Kai-Dee

    2015-05-01

    Boltzmann headstone S = kB Log W turns out to be the Rosette stone for Greek physics translation optical display of the microwave sensing hieroglyphics. The LHS is the molecular entropy S measuring the degree of uniformity scattering off the sensing cross sections. The RHS is the inverse relationship (equation) predicting the Planck radiation spectral distribution parameterized by the Kelvin temperature T. Use is made of the conservation energy law of the heat capacity of Reservoir (RV) change T Δ S = -ΔE equals to the internal energy change of black box (bb) subsystem. Moreover, an irreversible thermodynamics Δ S > 0 for collision mixing toward totally larger uniformity of heat death, asserted by Boltzmann, that derived the so-called Maxwell-Boltzmann canonical probability. Given the zero boundary condition black box, Planck solved a discrete standing wave eigenstates (equation). Together with the canonical partition function (equation) an average ensemble average of all possible internal energy yielded the celebrated Planck radiation spectral (equation) where the density of states (equation). In summary, given the multispectral sensing data (equation), we applied Lagrange Constraint Neural Network (LCNN) to solve the Blind Sources Separation (BSS) for a set of equivalent bb target temperatures. From the measurements of specific value, slopes and shapes we can fit a set of Kelvin temperatures T's for each bb targets. As a result, we could apply the analytical continuation for each entropy sources along the temperature-unique Planck spectral curves always toward the RGB color temperature display for any sensing probing frequency.

  3. Coherence and Sense of Coherence

    DEFF Research Database (Denmark)

    Dau, Susanne

    2014-01-01

    Constraints in the implementation of models of blended learning can be explained by several causes, but in this paper, it is illustrated that lack of sense of coherence is a major factor of these constraints along with the referential whole of the perceived learning environments. The question exa...

  4. Reaching with the sixth sense

    DEFF Research Database (Denmark)

    Reichenbach, Alexandra; Bresciani, Jean-Pierre; Bulthoff, Heinrich H.

    2016-01-01

    The vestibular system constitutes the silent sixth sense: It automatically triggers a variety of vital reflexes to maintain postural and visual stability. Beyond their role in reflexive behavior, vestibular afferents contribute to several perceptual and cognitive functions and also support volunt...

  5. Label-free surface plasmon sensing towards cancer diagnostics

    Science.gov (United States)

    Sankaranarayanan, Goutham

    The main objective of this thesis is to develop a conventional, home-built SPR bio-sensor to demonstrate bio-sensing applications. This emphasizes the understanding of basic concepts of Surface Plasmon Resonance and various interrogation techniques. Intensity Modulation was opted to perform the label-free SPR bio-sensing experiments due to its cost-efficient and compact setup. Later, label-free surface plasmon sensing was carried out to study and understand the bio-molecular interactions between (1). BSA and Anti BSA molecules and (2). Exosome/Liposome on thin metal (Au) films. Exosomes are cell-derived vesicles present in bodily fluids like blood, saliva, urine, epididymal fluid containing miRNAs, RNA, proteins, etc., at stable quantities during normal health conditions. The exosomes comprise varied constituents based on their cell origin from where they are secreted and is specific to that particular origin. However an exacerbated release is observed during tumor or cancer conditions. This increased level of exosomes present in the sample, can be detected using the SPR bio-sensor demonstrated in this thesis and effective thickness of adsorption on Au surface can be estimated. Also, chemically synthesized liposome particles were studied to determine if they can generate an equivalent sensor response to that of exosomes to consider them as an alternate. Finally a 10ppb Mercury (Hg) sensing was performed as part of Environment Monitoring application and results have been tabulated and compared.

  6. Do we know how plants sense a drying soil?

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2004-01-01

    Full Text Available The reduction of crop growth and yield in dry areas is largely due to stomatal closure in response to dry soil, which decreases photosynthesis. However, the mechanism that causes stomatal closure in a drying soil is a controversial issue. Experienced and respected plant physiologists around the world have different views about the primary sensor of soil water shortage in plants. The goal of this review is to present a chronological synthesis about the evidence of the possible candidates for the mechanism by which plants sense a drying soil. Hydraulic signals in the leaves as the mechanism that causes stomatal closure dominated the view on how plants sense a drying soil during the 70?s and the early 80?s. In the middle 80?s, studies suggested that stomatal conductance is better correlated with soil and root water status than with leaf water status. Thus, chemical signals produced in the roots dominated the view on how plants sense a drying soil during the late 80?s and early 90?s. During the second half of the 90?s, however, studies provided evidence that hydraulic signals in the leaves are still better candidates for the mechanism by which plants sense a drying soil. After more than 60 years of studies in plant-water relations, the question raised in the title still has no unanimous answer. This controversial issue is a good research rationale for the current generation of plant physiologists.

  7. Quorum sensing regulates the osmotic stress response in Vibrio harveyi.

    Science.gov (United States)

    van Kessel, Julia C; Rutherford, Steven T; Cong, Jian-Ping; Quinodoz, Sofia; Healy, James; Bassler, Bonnie L

    2015-01-01

    Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Material requirements for bio-inspired sensing systems

    Science.gov (United States)

    Biggins, Peter; Lloyd, Peter; Salmond, David; Kusterbeck, Anne

    2008-10-01

    The aim of developing bio-inspired sensing systems is to try and emulate the amazing sensitivity and specificity observed in the natural world. These capabilities have evolved, often for specific tasks, which provide the organism with an advantage in its fight to survive and prosper. Capabilities cover a wide range of sensing functions including vision, temperature, hearing, touch, taste and smell. For some functions, the capabilities of natural systems are still greater than that achieved by traditional engineering solutions; a good example being a dog's sense of smell. Furthermore, attempting to emulate aspects of biological optics, processing and guidance may lead to more simple and effective devices. A bio-inspired sensing system is much more than the sensory mechanism. A system will need to collect samples, especially if pathogens or chemicals are of interest. Other functions could include the provision of power, surfaces and receptors, structure, locomotion and control. In fact it is possible to conceive of a complete bio-inspired system concept which is likely to be radically different from more conventional approaches. This concept will be described and individual component technologies considered.

  9. Pattern recognition of neurotransmitters using multimode sensing.

    Science.gov (United States)

    Stefan-van Staden, Raluca-Ioana; Moldoveanu, Iuliana; van Staden, Jacobus Frederick

    2014-05-30

    Pattern recognition is essential in chemical analysis of biological fluids. Reliable and sensitive methods for neurotransmitters analysis are needed. Therefore, we developed for pattern recognition of neurotransmitters: dopamine, epinephrine, norepinephrine a method based on multimode sensing. Multimode sensing was performed using microsensors based on diamond paste modified with 5,10,15,20-tetraphenyl-21H,23H-porphyrine, hemin and protoporphyrin IX in stochastic and differential pulse voltammetry modes. Optimized working conditions: phosphate buffer solution of pH 3.01 and KCl 0.1mol/L (as electrolyte support), were determined using cyclic voltammetry and used in all measurements. The lowest limits of quantification were: 10(-10)mol/L for dopamine and epinephrine, and 10(-11)mol/L for norepinephrine. The multimode microsensors were selective over ascorbic and uric acids and the method facilitated reliable assay of neurotransmitters in urine samples, and therefore, the pattern recognition showed high reliability (RSDneurotransmitters on biological fluids at a lower determination level than chromatographic methods. The sampling of the biological fluids referees only to the buffering (1:1, v/v) with a phosphate buffer pH 3.01, while for chromatographic methods the sampling is laborious. Accordingly with the statistic evaluation of the results at 99.00% confidence level, both modes can be used for pattern recognition and quantification of neurotransmitters with high reliability. The best multimode microsensor was the one based on diamond paste modified with protoporphyrin IX. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    Science.gov (United States)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical

  11. Philosophy vs the common sense

    Directory of Open Access Journals (Sweden)

    V. V. Chernyshov

    2017-01-01

    Full Text Available The paper deals with the antinomy of philosophy and the common sense. Philosophy emerges as a way of specifically human knowledge, which purposes analytics of the reality of subjective experience. The study reveals that in order to alienate philosophy from the common sense it was essential to revise the understanding of wisdom. The new, philosophical interpretation of wisdom – offered by Pythagoras – has laid the foundation of any future philosophy. Thus, philosophy emerges, alienating itself from the common sense, which refers to the common or collective experience. Moreover, the study examines the role of emotions, conformity and conventionality which they play with respect to the common sense. Next the author focuses on the role of philosophical intuition, guided with principles of rationality, nonconformity and scepticism, which the author professes the foundation stones of any sound philosophy. The common sense, described as deeply routed in the world of human emotions, aims at empathy, as the purpose of philosophy is to provide the rational means of knowledge. Therefore, philosophy uses thinking, keeping the permanent efforts to check and recheck data of its own experience. Thus, the first task of philosophical thinking appears to overcome the suggestion of the common sense, which purposes the social empathy, as philosophical intuition aims at independent thinking, the analytics of subjective experience. The study describes the fundamental principles of the common sense, on the one hand, and those of philosophy, on the other. The author arrives to conclusion that the common sense is unable to exceed the limits of sensual experience. Even there, where it apparently rises to a form of any «spiritual unity», even there it cannot avoid referring to the data of commonly shared sensual experience; though, philosophy, meanwhile, goes beyond sensuality, creating a discourse that would be able to alienate from it, and to make its rational

  12. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.

    Science.gov (United States)

    Lou, Zheng; Li, La; Wang, Lili; Shen, Guozhen

    2017-12-01

    Wearable/flexible electronic sensing systems are considered to be one of the key technologies in the next generation of smart personal electronics. To realize personal portable devices with mobile electronics application, i.e., wearable electronic sensors that can work sustainably and continuously without an external power supply are highly desired. The recent progress and advantages of wearable self-powered electronic sensing systems for mobile or personal attachable health monitoring applications are presented. An overview of various types of wearable electronic sensors, including flexible tactile sensors, wearable image sensor array, biological and chemical sensor, temperature sensors, and multifunctional integrated sensing systems is provided. Self-powered sensing systems with integrated energy units are then discussed, separated as energy harvesting self-powered sensing systems, energy storage integrated sensing systems, and all-in-on integrated sensing systems. Finally, the future perspectives of self-powered sensing systems for wearable electronics are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Combining Remote Temperature Sensing with in-Situ Sensing to Track Marine/Freshwater Mixing Dynamics

    Directory of Open Access Journals (Sweden)

    Margaret McCaul

    2016-08-01

    Full Text Available The ability to track the dynamics of processes in natural water bodies on a global scale, and at a resolution that enables highly localised behaviour to be visualized, is an ideal scenario for understanding how local events can influence the global environment. While advances in in-situ chem/bio-sensing continue to be reported, costs and reliability issues still inhibit the implementation of large-scale deployments. In contrast, physical parameters like surface temperature can be tracked on a global scale using satellite remote sensing, and locally at high resolution via flyovers and drones using multi-spectral imaging. In this study, we show how a much more complete picture of submarine and intertidal groundwater discharge patterns in Kinvara Bay, Galway can be achieved using a fusion of data collected from the Earth Observation satellite (Landsat 8, small aircraft and in-situ sensors. Over the course of the four-day field campaign, over 65,000 in-situ temperatures, salinity and nutrient measurements were collected in parallel with high-resolution thermal imaging from aircraft flyovers. The processed in-situ data show highly correlated patterns between temperature and salinity at the southern end of the bay where freshwater springs can be identified at low tide. Salinity values range from 1 to 2 ppt at the southern end of the bay to 30 ppt at the mouth of the bay, indicating the presence of a freshwater wedge. The data clearly show that temperature differences can be used to track the dynamics of freshwater and seawater mixing in the inner bay region. This outcome suggests that combining the tremendous spatial density and wide geographical reach of remote temperature sensing (using drones, flyovers and satellites with ground-truthing via appropriately located in-situ sensors (temperature, salinity, chemical, and biological can produce a much more complete and accurate picture of the water dynamics than each modality used in isolation.

  14. Combining Remote Temperature Sensing with in-Situ Sensing to Track Marine/Freshwater Mixing Dynamics.

    Science.gov (United States)

    McCaul, Margaret; Barland, Jack; Cleary, John; Cahalane, Conor; McCarthy, Tim; Diamond, Dermot

    2016-08-31

    The ability to track the dynamics of processes in natural water bodies on a global scale, and at a resolution that enables highly localised behaviour to be visualized, is an ideal scenario for understanding how local events can influence the global environment. While advances in in-situ chem/bio-sensing continue to be reported, costs and reliability issues still inhibit the implementation of large-scale deployments. In contrast, physical parameters like surface temperature can be tracked on a global scale using satellite remote sensing, and locally at high resolution via flyovers and drones using multi-spectral imaging. In this study, we show how a much more complete picture of submarine and intertidal groundwater discharge patterns in Kinvara Bay, Galway can be achieved using a fusion of data collected from the Earth Observation satellite (Landsat 8), small aircraft and in-situ sensors. Over the course of the four-day field campaign, over 65,000 in-situ temperatures, salinity and nutrient measurements were collected in parallel with high-resolution thermal imaging from aircraft flyovers. The processed in-situ data show highly correlated patterns between temperature and salinity at the southern end of the bay where freshwater springs can be identified at low tide. Salinity values range from 1 to 2 ppt at the southern end of the bay to 30 ppt at the mouth of the bay, indicating the presence of a freshwater wedge. The data clearly show that temperature differences can be used to track the dynamics of freshwater and seawater mixing in the inner bay region. This outcome suggests that combining the tremendous spatial density and wide geographical reach of remote temperature sensing (using drones, flyovers and satellites) with ground-truthing via appropriately located in-situ sensors (temperature, salinity, chemical, and biological) can produce a much more complete and accurate picture of the water dynamics than each modality used in isolation.

  15. Generalized eigenvalue based spectrum sensing

    KAUST Repository

    Shakir, Muhammad

    2012-01-01

    Spectrum sensing is one of the fundamental components in cognitive radio networks. In this chapter, a generalized spectrum sensing framework which is referred to as Generalized Mean Detector (GMD) has been introduced. In this context, we generalize the detectors based on the eigenvalues of the received signal covariance matrix and transform the eigenvalue based spectrum sensing detectors namely: (i) the Eigenvalue Ratio Detector (ERD) and two newly proposed detectors which are referred to as (ii) the GEometric Mean Detector (GEMD) and (iii) the ARithmetic Mean Detector (ARMD) into an unified framework of generalize spectrum sensing. The foundation of the proposed framework is based on the calculation of exact analytical moments of the random variables of the decision threshold of the respective detectors. The decision threshold has been calculated in a closed form which is based on the approximation of Cumulative Distribution Functions (CDFs) of the respective test statistics. In this context, we exchange the analytical moments of the two random variables of the respective test statistics with the moments of the Gaussian (or Gamma) distribution function. The performance of the eigenvalue based detectors is compared with the several traditional detectors including the energy detector (ED) to validate the importance of the eigenvalue based detectors and the performance of the GEMD and the ARMD particularly in realistic wireless cognitive radio network. Analytical and simulation results show that the newly proposed detectors yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, the presented results based on proposed approximation approaches are in perfect agreement with the empirical results. © 2012 Springer Science+Business Media Dordrecht.

  16. Decoration of vertical graphene with aerosol nanoparticles for gas sensing

    International Nuclear Information System (INIS)

    Cui, Shumao; Guo, Xiaoru; Ren, Ren; Zhou, Guihua; Chen, Junhong

    2015-01-01

    A facile method was demonstrated to decorate aerosol Ag nanoparticles onto vertical graphene surfaces using a mini-arc plasma reactor. The vertical graphene was directly grown on a sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method. The aerosol Ag nanoparticles were synthesized by a simple vapor condensation process using a mini-arc plasma source. Then, the nanoparticles were assembled on the surface of vertical graphene through the assistance of an electric field. Based on our observation, nonagglomerated Ag nanoparticles formed in the gas phase and were assembled onto vertical graphene sheets. Nanohybrids of Ag nanoparticle-decorated vertical graphene were characterized for ammonia gas detection at room temperature. The vertical graphene served as the conductance channel, and the conductance change upon exposure to ammonia was used as the sensing signal. The sensing results show that Ag nanoparticles significantly improve the sensitivity, response time, and recovery time of the sensor. (paper)

  17. Displaced Sense: Displacement, Religion and Sense-making

    OpenAIRE

    Naidu, Maheshvari

    2016-01-01

    Whether formally categorized as refugees or not, displaced migrants experience varying degrees of vulnerability in relation to where they find themselves displaced. The internally displaced furthermore squat invisibly and outside the boundaries of the legal framework and incentive structures accorded to those classified as 'refugee'. They are thus arguably, by and large, left to source sustaining solutions for themselves. This article works through the theoretical prism of sense-making theory...

  18. Discrete Wigner Function Reconstruction and Compressed Sensing

    OpenAIRE

    Zhang, Jia-Ning; Fang, Lei; Ge, Mo-Lin

    2011-01-01

    A new reconstruction method for Wigner function is reported for quantum tomography based on compressed sensing. By analogy with computed tomography, Wigner functions for some quantum states can be reconstructed with less measurements utilizing this compressed sensing based method.

  19. Operational Use of Remote Sensing within USDA

    Science.gov (United States)

    Bethel, Glenn R.

    2007-01-01

    A viewgraph presentation of remote sensing imagery within the USDA is shown. USDA Aerial Photography, Digital Sensors, Hurricane imagery, Remote Sensing Sources, Satellites used by Foreign Agricultural Service, Landsat Acquisitions, and Aerial Acquisitions are also shown.

  20. ACCURACY DIMENSIONS IN REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    Á. Barsi

    2018-04-01

    Full Text Available The technological developments in remote sensing (RS during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS, which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users’ needs. The present paper gives the theoretic overview of the issue, besides

  1. Accuracy Dimensions in Remote Sensing

    Science.gov (United States)

    Barsi, Á.; Kugler, Zs.; László, I.; Szabó, Gy.; Abdulmutalib, H. M.

    2018-04-01

    The technological developments in remote sensing (RS) during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS), which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users' needs. The present paper gives the theoretic overview of the issue, besides selected, practice

  2. Room temperature CO and H2 sensing with carbon nanoparticles

    International Nuclear Information System (INIS)

    Kim, Daegyu; Pikhitsa, Peter V; Yang, Hongjoo; Choi, Mansoo

    2011-01-01

    We report on a shell-shaped carbon nanoparticle (SCNP)-based gas sensor that reversibly detects reducing gas molecules such as CO and H 2 at room temperature both in air and inert atmosphere. Crystalline SCNPs were synthesized by laser-assisted reactions in pure acetylene gas flow, chemically treated to obtain well-dispersed SCNPs and then patterned on a substrate by the ion-induced focusing method. Our chemically functionalized SCNP-based gas sensor works for low concentrations of CO and H 2 at room temperature even without Pd or Pt catalysts commonly used for splitting H 2 molecules into reactive H atoms, while metal oxide gas sensors and bare carbon-nanotube-based gas sensors for sensing CO and H 2 molecules can operate only at elevated temperatures. A pristine SCNP-based gas sensor was also examined to prove the role of functional groups formed on the surface of functionalized SCNPs. A pristine SCNP gas sensor showed no response to reducing gases at room temperature but a significant response at elevated temperature, indicating a different sensing mechanism from a chemically functionalized SCNP sensor.

  3. Remote Sensing Best Paper Award 2013

    OpenAIRE

    Prasad Thenkabail

    2013-01-01

    Remote Sensing has started to institute a “Best Paper” award to recognize the most outstanding papers in the area of remote sensing techniques, design and applications published in Remote Sensing. We are pleased to announce the first “Remote Sensing Best Paper Award” for 2013. Nominations were selected by the Editor-in-Chief and selected editorial board members from among all the papers published in 2009. Reviews and research papers were evaluated separately.

  4. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  5. Design of chemical plant

    International Nuclear Information System (INIS)

    Lee, Dong Il; Kim, Seung Jae; Yang, Jae Ho; Ryu, Hwa Won

    1993-01-01

    This book describes design of chemical plant, which includes chemical engineer and plan for chemical plant, development of chemical process, cost engineering pattern, design and process development, general plant construction plan, project engineering, foundation for economy on assets and depreciation, estimation for cost on capital investment and manufacturing cost, design with computers optimal design and method like fluid mechanics design chemical device and estimation for cost, such as dispatch of material and device writing on design report and appendixes.

  6. Plant-Derived Natural Products as Sources of Anti-Quorum Sensing Compounds

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2013-05-01

    Full Text Available Quorum sensing is a system of stimuli and responses in relation to bacterial cell population density that regulates gene expression, including virulence determinants. Consequently, quorum sensing has been an attractive target for the development of novel anti-infective measures that do not rely on the use of antibiotics. Anti-quorum sensing has been a promising strategy to combat bacterial infections as it is unlikely to develop multidrug resistant pathogens since it does not impose any selection pressure. A number of anti-quorum sensing approaches have been documented and plant-based natural products have been extensively studied in this context. Plant matter is one of the major sources of chemicals in use today in various industries, ranging from the pharmaceutical, cosmetic, and food biotechnology to the textile industries. Just like animals and humans, plants are constantly exposed to bacterial infections, it is therefore logical to expect that plants have developed sophisticated of chemical mechanisms to combat pathogens. In this review, we have surveyed the various types of plant-based natural products that exhibit anti-quorum sensing properties and their anti-quorum sensing mechanisms.

  7. How to explore dancers’ sense experiences?

    DEFF Research Database (Denmark)

    Ravn, Susanne; Hansen, Helle Ploug

    2013-01-01

    sense of how the body feels in preference to working with specific modalities of sensing. Furthermore, the dancers’ sensing of the physicality of their moving bodies appears to be shaped by their unique intention is at the same time given form through their interactions with other dancers....

  8. Remote sensing for agriculture, ecosystems, and hydrology

    International Nuclear Information System (INIS)

    Engman, E.T.

    1998-01-01

    This volume contains the proceedings of SPIE's remote sensing symposium which was held September 22--24, 1998, in Barcelona, Spain. Topics of discussion include the following: calibration techniques for soil moisture measurements; remote sensing of grasslands and biomass estimation of meadows; evaluation of agricultural disasters; monitoring of industrial and natural radioactive elements; and remote sensing of vegetation and of forest fires

  9. Assessment Can Support Reasoning and Sense Making

    Science.gov (United States)

    Suurtam, Christine

    2012-01-01

    "Reasoning and sense making should occur in every classroom every day," states "Focus in High School Mathematics: Reasoning and Sense Making" (NCTM 2009, p. 5). As this book suggests, reasoning can take many forms, including explorations and conjectures as well as explanations and justifications of student thinking. Sense making, on the other…

  10. Sense of Place in Environmental Education

    Science.gov (United States)

    Kudryavtsev, Alex; Stedman, Richard C.; Krasny, Marianne E.

    2012-01-01

    Although environmental education research has embraced the idea of sense of place, it has rarely taken into account environmental psychology-based sense of place literature whose theory and empirical studies can enhance related studies in the education context. This article contributes to research on sense of place in environmental education from…

  11. Mesoporous Silicate Materials in Sensing

    Directory of Open Access Journals (Sweden)

    Paul T. Charles

    2008-08-01

    Full Text Available Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through cocondensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  12. Studies on Five Senses Treatment

    Science.gov (United States)

    Sato, Sadaka; Miao, Tiejun; Oyama-Higa, Mayumi

    2011-06-01

    This study proposed a therapy from complementary and alternative medicine to treat mental disorder by through interactions of five senses between therapist and patient. In this method sounding a certain six voices play an important role in healing and recovery. First, we studied effects of speaking using scalp- EEG measurement. Chaos analysis of EEG showed a largely enhanced largest Lyapunov exponent (LLE) during the speaking. In addition, EEG power spectrum showed an increase over most frequencies. Second, we performed case studies on mental disorder using the therapy. Running power spectrum of EEG of patients indicated decreasing power at end of treatment, implying five senses therapy induced relaxed and lowered energy in central neural system. The results agreed with patient's reports that there were considerable decline in anxiety and improvements in mood.

  13. Sensitivity analysis in remote sensing

    CERN Document Server

    Ustinov, Eugene A

    2015-01-01

    This book contains a detailed presentation of general principles of sensitivity analysis as well as their applications to sample cases of remote sensing experiments. An emphasis is made on applications of adjoint problems, because they are more efficient in many practical cases, although their formulation may seem counterintuitive to a beginner. Special attention is paid to forward problems based on higher-order partial differential equations, where a novel matrix operator approach to formulation of corresponding adjoint problems is presented. Sensitivity analysis (SA) serves for quantitative models of physical objects the same purpose, as differential calculus does for functions. SA provides derivatives of model output parameters (observables) with respect to input parameters. In remote sensing SA provides computer-efficient means to compute the jacobians, matrices of partial derivatives of observables with respect to the geophysical parameters of interest. The jacobians are used to solve corresponding inver...

  14. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  15. Surface holograms for sensing application

    Science.gov (United States)

    Zawadzka, M.; Naydenova, I.

    2018-01-01

    Surface gratings with periodicity of 2 μm and amplitude in the range of 175 and 240 nm were fabricated in a plasticized polyvinylchloride doped with a metalloporphyrin (ZnTPP), via a single laser pulse holographic ablation process. The effect of the laser pulse energy on the profiles of the fabricated surface structure was investigated. The sensing capabilities of the fabricated diffractive structures towards amines (triethylamine, diethylamine) and pyridine vapours were then explored; the holographic structures were exposed to the analyte vapours and changes in the intensity of the diffracted light were monitored in real time at 473 nm. It was demonstrated that surface structures, fabricated in a polymer doped with a metalloporphyrin which acts as analyte receptor, have a potential in sensing application.

  16. Oxygen and carbon dioxide sensing

    Science.gov (United States)

    Ren, Fan (Inventor); Pearton, Stephen John (Inventor)

    2012-01-01

    A high electron mobility transistor (HEMT) capable of performing as a CO.sub.2 or O.sub.2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.

  17. Chemical pathology - to be or not to be?

    African Journals Online (AJOL)

    psychiatrists, radiologists and paediatricians. Indeed, all medical specialists are instantly identifiable by ... are often directly involved in the management of patients, that they 'can contribute significantly to the cost- ... action, chemical pathology will continue to lose the critical mass and sense of direction essential to a viable ...

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 3. Synthesis and characterization of gold nanoparticles incorporated bentonite clay for electrocatalytic sensing of arsenic(III). Pankaj Kumar Rastogi Dharmendra Kumar Yadav Shruti Pandey Vellaichamy Ganesan Piyush Kumar Sonkar Rupali Gupta.

  19. Incentive Schemes for Participatory Sensing

    OpenAIRE

    Radanovic, Goran; Faltings, Boi

    2015-01-01

    We consider a participatory sensing scenario where a group of private sensors observes the same phenomenon, such as air pollution. Since sensors need to be installed and maintained, owners of sensors are inclined to provide inaccurate or random data. We design a novel payment mechanism that incentivizes honest behavior by scoring sensors based on the quality of their reports. The basic principle follows the standard Bayesian Truth Serum (BTS) paradigm, where highest rewards are obtained for r...

  20. LIDAR and atmosphere remote sensing

    CSIR Research Space (South Africa)

    Venkataraman, S

    2008-05-01

    Full Text Available using state of the art Light Detection And Ranging (LiDAR) instrumentation and other active and passive remote sensing tools. First “Lidar Field Campaign” • 2-day measurement campaign at University of Pretoria • First 23-hour continuous measurement... head2rightCirrus cloud morphology and dynamics. Atmospheric Research in Southern Africa and Indian Ocean (ARSAIO) Slide 24 © CSIR 2008 www.csir.co.za Middle atmosphere dynamics and thermal structure: comparative studies from...

  1. Remote Sensing Information Science Research

    Science.gov (United States)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  2. Acetaminophen and acetone sensing capabilities of nickel ferrite nanostructures

    Science.gov (United States)

    Mondal, Shrabani; Kumari, Manisha; Madhuri, Rashmi; Sharma, Prashant K.

    2017-07-01

    Present work elucidates the gas sensing and electrochemical sensing capabilities of sol-gel-derived nickel ferrite (NF) nanostructures based on the electrical and electrochemical properties. In current work, the choices of target species (acetone and acetaminophen) are strictly governed by their practical utility and concerning the safety measures. Acetone, the target analyte for gas sensing measurement is a common chemical used in varieties of application as well as provides an indirect way to monitor diabetes. The gas sensing experiments were performed within a homemade sensing chamber designed by our group. Acetone gas sensor (NF pellet sensor) response was monitored by tracking the change in resistance both in the presence and absence of acetone. At optimum operating temperature 300 °C, NF pellet sensor exhibits selective response for acetone in the presence of other common interfering gases like ethanol, benzene, and toluene. The electrochemical sensor fabricated to determine acetaminophen is prepared by coating NF onto the surface of pre-treated/cleaned pencil graphite electrode (NF-PGE). The common name of target analyte acetaminophen is paracetamol (PC), which is widespread worldwide as a well-known pain killer. Overdose of PC can cause renal failure even fatal diseases in children and demand accurate monitoring. Under optimal conditions NF-PGE shows a detection limit as low as 0.106 μM with selective detection ability towards acetaminophen in the presence of ascorbic acid (AA), which co-exists in our body. Use of cheap and abundant PGE instead of other electrodes (gold/Pt/glassy carbon electrode) can effectively reduce the cost barrier of such sensors. The obtained results elucidate an ample appeal of NF-sensors in real analytical applications viz. in environmental monitoring, pharmaceutical industry, drug detection, and health monitoring.

  3. A Novel Sensing Circuit with Large Sensing Margin for Embedded Spin-Transfer Torque MRAMs

    DEFF Research Database (Denmark)

    Bagheriye, Leila; Toofan, Siroos; Saeidi, Roghayeh

    -disturbance and high yield. In this paper, to deal with the read reliability challenge, a high sensing margin sensing circuit with strong positive feedback is proposed. It improves the sensing margin (SM) by 10.42X/3.3X and a with 1.24X/1.59X lower read energy at iso-sensing time (2ns) in comparison...

  4. Orientation decoding: Sense in spirals?

    Science.gov (United States)

    Clifford, Colin W G; Mannion, Damien J

    2015-04-15

    The orientation of a visual stimulus can be successfully decoded from the multivariate pattern of fMRI activity in human visual cortex. Whether this capacity requires coarse-scale orientation biases is controversial. We and others have advocated the use of spiral stimuli to eliminate a potential coarse-scale bias-the radial bias toward local orientations that are collinear with the centre of gaze-and hence narrow down the potential coarse-scale biases that could contribute to orientation decoding. The usefulness of this strategy is challenged by the computational simulations of Carlson (2014), who reported the ability to successfully decode spirals of opposite sense (opening clockwise or counter-clockwise) from the pooled output of purportedly unbiased orientation filters. Here, we elaborate the mathematical relationship between spirals of opposite sense to confirm that they cannot be discriminated on the basis of the pooled output of unbiased or radially biased orientation filters. We then demonstrate that Carlson's (2014) reported decoding ability is consistent with the presence of inadvertent biases in the set of orientation filters; biases introduced by their digital implementation and unrelated to the brain's processing of orientation. These analyses demonstrate that spirals must be processed with an orientation bias other than the radial bias for successful decoding of spiral sense. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Passive infrared motion sensing technology

    International Nuclear Information System (INIS)

    Doctor, A.P.

    1994-01-01

    In the last 10 years passive IR based (8--12 microns) motion sensing has matured to become the dominant method of volumetric space protection and surveillance. These systems currently cost less than $25 to produce and yet use traditionally expensive IR optics, filters, sensors and electronic circuitry. This IR application is quite interesting in that the volumes of systems produced and the costs and performance level required prove that there is potential for large scale commercial applications of IR technology. This paper will develop the basis and principles of operation of a staring motion sensor system using a technical approach. A model for the motion of the target is developed and compared to the background. The IR power difference between the target and the background as well as the optical requirements are determined from basic principles and used to determine the performance of the system. Low cost reflective and refractive IR optics and bandpass IR filters are discussed. The pyroelectric IR detector commonly used is fully discussed and characterized. Various schemes for ''false alarms'' have been developed and are also explained. This technology is also used in passive IR based motion sensors for other applications such as lighting control. These applications are also discussed. In addition the paper will discuss new developments in IR surveillance technology such as the use of linear motion sensing arrays. This presentation can be considered a ''primer'' on the art of Passive IR Motion Sensing as applied to Surveillance Technology

  6. Remote sensing for wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.; Bay Hasager, C.; Lange, J. [Technical Univ. of Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark) (and others

    2013-06-15

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risoe) during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to theory. The report will allow alumni to trace back details after the course and benefit from the collection of information. This is the third edition of the report (first externally available), after very successful and demanded first two, and we warmly acknowledge all the contributing authors for their work in the writing of the chapters, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art 'guideline' available for people involved in Remote Sensing in Wind Energy. (Author)

  7. George Combe and common sense.

    Science.gov (United States)

    Dyde, Sean

    2015-06-01

    This article examines the history of two fields of enquiry in late eighteenth- and early nineteenth-century Scotland: the rise and fall of the common sense school of philosophy and phrenology as presented in the works of George Combe. Although many previous historians have construed these histories as separate, indeed sometimes incommensurate, I propose that their paths were intertwined to a greater extent than has previously been given credit. The philosophy of common sense was a response to problems raised by Enlightenment thinkers, particularly David Hume, and spurred a theory of the mind and its mode of study. In order to succeed, or even to be considered a rival of these established understandings, phrenologists adapted their arguments for the sake of engaging in philosophical dispute. I argue that this debate contributed to the relative success of these groups: phrenology as a well-known historical subject, common sense now largely forgotten. Moreover, this history seeks to question the place of phrenology within the sciences of mind in nineteenth-century Britain.

  8. Dry adhesives with sensing features

    International Nuclear Information System (INIS)

    Krahn, J; Menon, C

    2013-01-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm 2 . (paper)

  9. Dry adhesives with sensing features

    Science.gov (United States)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  10. Chemical Data Reporting Fact Sheet: Chemicals Snapshot

    Science.gov (United States)

    This fact sheet provides a brief overview of the chemical manufacturing, processing, and use information collected for the 2012 Chemical Data Reporting (CDR) rule. Users do not have access to the complete CDR data set and should draw conclusions with care.

  11. chemical safety and chemical security overview

    African Journals Online (AJOL)

    IICBA01

    Wafaa M. Abdou. Chemical Industries Division, National Research Centre, ... substances to attain an acceptably low risk of exposure. Security is: ... Sharing locations of chemicals can publicize targets for theft .... D. Personal Protective Equipments (PPE): ... E. Lighting & Noise Levels ... PPE. ➢ Autoclave or sterilize wastes.

  12. Array-based sensing using nanoparticles: an alternative approach for cancer diagnostics.

    Science.gov (United States)

    Le, Ngoc D B; Yazdani, Mahdieh; Rotello, Vincent M

    2014-07-01

    Array-based sensing using nanoparticles (NPs) provides an attractive alternative to specific biomarker-focused strategies for cancer diagnosis. The physical and chemical properties of NPs provide both the recognition and transduction capabilities required for biosensing. Array-based sensors utilize a combined response from the interactions between sensors and analytes to generate a distinct pattern (fingerprint) for each analyte. These interactions can be the result of either the combination of multiple specific biomarker recognition (specific binding) or multiple selective binding responses, known as chemical nose sensing. The versatility of the latter array-based sensing using NPs can facilitate the development of new personalized diagnostic methodologies in cancer diagnostics, a necessary evolution in the current healthcare system to better provide personalized treatments. This review will describe the basic principle of array-based sensors, along with providing examples of both invasive and noninvasive samples used in cancer diagnosis.

  13. Sense

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Pasold, Anke

    2013-01-01

    COMPETITION SPONSORS SKIN is generously sponsored by Buro Happold through engineering support and the A. Zahner Co. is the competition’s fabrication sponsor. INSTITUTIONAL SUPPORT TEX-FAB is generously supported in its mission of collecting, disseminating and generating information on digital fab...... fabrication within the Texas region by the University of Houston, University of Texas at Arlington, University of Texas at Austin and the University of Texas at San Antonio....

  14. Application of remote sensing in aquatic ecosystems

    Science.gov (United States)

    Yousef, Foad

    I utilized state the art remote sensing and GIS (Geographical Information System) techniques to study large scale biological, physical and ecological processes of coastal, nearshore, and offshore waters of Lake Michigan and Lake Superior. These processes ranged from chlorophyll alpha and primary production time series analysies in Lake Michigan to coastal stamp sand threats on Buffalo Reef in Lake Superior. I used SeaWiFS (Sea-viewing Wide Field-of-view Sensor) satellite imagery to trace various biological, chemical and optical water properties of Lake Michigan during the past decade and to investigate the collapse of early spring primary production. Using spatial analysis techniques, I was able to connect these changes to some important biological processes of the lake (quagga mussels filtration). In a separate study on Lake Superior, using LiDAR (Light Detection and Ranging) and aerial photos, we examined natural coastal erosion in Grand Traverse Bay, Michigan, and discussed a variety of geological features that influence general sediment accumulation patterns and interactions with migrating tailings from legacy mining. These sediments are moving southwesterly towards Buffalo Reef, creating a threat to the lake trout and lake whitefish breeding ground.

  15. Collective gradient sensing and chemotaxis: modeling and recent developments

    Science.gov (United States)

    Camley, Brian A.

    2018-06-01

    Cells measure a vast variety of signals, from their environment’s stiffness to chemical concentrations and gradients; physical principles strongly limit how accurately they can do this. However, when many cells work together, they can cooperate to exceed the accuracy of any single cell. In this topical review, I will discuss the experimental evidence showing that cells collectively sense gradients of many signal types, and the models and physical principles involved. I also propose new routes by which experiments and theory can expand our understanding of these problems.

  16. Optical Fiber Sensing Based on Reflection Laser Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gianluca Gagliardi

    2010-03-01

    Full Text Available An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  17. Vanadium Doped Tungsten Oxide Material - Electrical Physical and Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shishkin N. Y.

    2008-05-01

    Full Text Available The electrical physical and sensing (to VOCs and inorganic gases properties of vanadium doped tungsten oxide in the regions of phase transition temperature were investigated. Vanadium oxide (II dimerization was observed in the doped material, corresponding to new phase transition. The extreme sensitivity and selectivity to chemically active gases and vapors in small concentrations: CO, NOx, NH3 acetone, ethanol near phase transitions temperature was found. Sensor elements were manufactured for the quantitative detection (close to 1 ppm of alcohol and ammonia.

  18. Hybrid fiber grating cavity for multi-parametric sensing.

    Science.gov (United States)

    Paladino, Domenico; Quero, Giuseppe; Caucheteur, Christophe; Mégret, Patrice; Cusano, Andrea

    2010-05-10

    We propose an all-fiber hybrid cavity involving two unbalanced uniform fiber Bragg gratings (FBGs) written at both sides of a tilted FBG (TFBG) to form an all-fiber interferometer. This configuration provides a wavelength gated reflection signal with interference fringes depending on the cavity features modulated by spectral dips associated to the wavelength dependent optical losses due to cladding mode coupling occurring along the TFBG. Such a robust structure preserves the advantages of uniform FBGs in terms of interrogation methods and allows the possibility of simultaneous physical and chemical sensing. (c) 2010 Optical Society of America.

  19. Tunable resistive pulse sensing: potential applications in nanomedicine.

    Science.gov (United States)

    Sivakumaran, Muttuswamy; Platt, Mark

    2016-08-01

    An accurate characterization of nanomaterials used in clinical diagnosis and therapeutics is of paramount importance to realize the full potential of nanotechnology in medicine and to avoid unexpected and potentially harmful toxic effects due to these materials. A number of technical modalities are currently in use to study the physical, chemical and biological properties of nanomaterials but they all have advantages and disadvantages. In this review, we discuss the potential of a relative newcomer, tunable resistive pulse sensing, for the characterization of nanomaterials and its applications in nanodiagnostics.

  20. Gas sensing with AlGaN/GaN 2DEG channels

    NARCIS (Netherlands)

    Offermans, P.; Vitushinsky, R.; Crego-Calama, M.; Brongersma, S.H.

    2011-01-01

    AlGaN/GaN shows great promise as a generic platform for (bio-)chemical sensing because of its robustness and intrinsic sensitivity to surface charge or dipoles. Here, we employ the two-dimensional electron gas (2DEG) formed at the interface of AlGaN/GaN layers grown on Si substrates for the

  1. Gas Phase Sensing of Alcohols by Metal Organic Framework-Polymer Composite Materials

    NARCIS (Netherlands)

    Sachdeva, S.; Koper, S.J.H.; Sabetghadam Esfahani, A.; Soccol, Dimitri; Gravesteijn, Dirk J.; Kapteijn, F.; Sudholter, E.J.R.; Gascon Sabate, J.; de Smet, L.C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al)

  2. Gas Phase Sensing of Alcohols by Metal Organic Framework-Polymer Composite Materials

    NARCIS (Netherlands)

    Sachdeva, Sumit; Koper, Sander J.H.; Sabetghadam, Anahid; Soccol, Dimitri; Gravesteijn, Dirk J.; Kapteijn, Freek; Sudhölter, Ernst J.R.; Gascon, Jorge; Smet, De Louis C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al) were dispersed in

  3. Gas phase sensing of alcohols by Metal Organic Framework – polymer composite materials

    NARCIS (Netherlands)

    Sachdeva, S.; Koper, Sander J.H.; Sabetghadam, Anahid; Soccol, D.; Gravesteijn, Dirk J; Kapteijn, Freek; Sudholter, Ernst J.R.; Gascon, Jorge; de Smet, Louis C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al) were dispersed in

  4. SF6 laser remote sensing by CO2 laser DIAL lidar

    International Nuclear Information System (INIS)

    Parvin, P.; Basam, Z.; Zamanipour, Z.; Kariminezhad, H.; Boyook, N.; Borna, F.; Azari, T.; Eshragi, N.; Ataran, A.; Ghods Ahmad Zadeh, R.

    2004-01-01

    A DIAL system using tunable CO 2 laser has been demonstrated practically for remote sensing of SF 6 components in Mashad Shahid Motahhari Research Complex. Non toxic components of SF 6 as a rare isotope is studied to calibrate the lidar function in several conditions. The whole system enables us to detect ppm amounts of chemical gases as well as pollutants and poisonous species

  5. A broad range quorum sensing inhibitor working through sRNA inhibition

    DEFF Research Database (Denmark)

    Jakobsen, Tim H.; Warming, Anders N.; Vejborg, Rebecca M.

    2017-01-01

    For the last decade, chemical control of bacterial virulence has received considerable attention. Ajoene, a sulfur-rich molecule from garlic has been shown to reduce expression of key quorum sensing regulated virulence factors in the opportunistic pathogen Pseudomonas aeruginosa. Here we show...

  6. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Science.gov (United States)

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  7. Ultrathin Tungsten Oxide Nanowires/Reduced Graphene Oxide Composites for Toluene Sensing

    Directory of Open Access Journals (Sweden)

    Muhammad Hassan

    2017-09-01

    Full Text Available Graphene-based composites have gained great attention in the field of gas sensor fabrication due to their higher surface area with additional functional groups. Decorating one-dimensional (1D semiconductor nanomaterials on graphene also show potential benefits in gas sensing applications. Here we demonstrate the one-pot and low cost synthesis of W18O49 NWs/rGO composites with different amount of reduced graphene oxide (rGO which show excellent gas-sensing properties towards toluene and strong dependence on their chemical composition. As compared to pure W18O49 NWs, an improved gas sensing response (2.8 times higher was achieved in case of W18O49 NWs composite with 0.5 wt. % rGO. Promisingly, this strategy can be extended to prepare other nanowire based composites with excellent gas-sensing performance.

  8. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Megan R. Leahy-Hoppa

    2010-04-01

    Full Text Available Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS, coherent Raman spectroscopy, and terahertz (THz spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications.

  9. Mathematics of Sensing, Exploitation, and Execution (MSEE) Hierarchical Representations for the Evaluation of Sensed Data

    Science.gov (United States)

    2016-06-01

    AFRL-RY-WP-TR-2016-0123 MATHEMATICS OF SENSING, EXPLOITATION, AND EXECUTION (MSEE) Hierarchical Representations for the Evaluation of Sensed...December 2015 4. TITLE AND SUBTITLE MATHEMATICS OF SENSING, EXPLOITATION, AND EXECUTION (MSEE) Hierarchical Representations for the Evaluation of...8-98) Prescribed by ANSI Std. Z39-18 Hierarchical Representations for the Evaluation of Sensed Data Final Report Mathematics of Sensing

  10. Compressive sensing using optimized sensing matrix for face verification

    Science.gov (United States)

    Oey, Endra; Jeffry; Wongso, Kelvin; Tommy

    2017-12-01

    Biometric appears as one of the solutions which is capable in solving problems that occurred in the usage of password in terms of data access, for example there is possibility in forgetting password and hard to recall various different passwords. With biometrics, physical characteristics of a person can be captured and used in the identification process. In this research, facial biometric is used in the verification process to determine whether the user has the authority to access the data or not. Facial biometric is chosen as its low cost implementation and generate quite accurate result for user identification. Face verification system which is adopted in this research is Compressive Sensing (CS) technique, in which aims to reduce dimension size as well as encrypt data in form of facial test image where the image is represented in sparse signals. Encrypted data can be reconstructed using Sparse Coding algorithm. Two types of Sparse Coding namely Orthogonal Matching Pursuit (OMP) and Iteratively Reweighted Least Squares -ℓp (IRLS-ℓp) will be used for comparison face verification system research. Reconstruction results of sparse signals are then used to find Euclidean norm with the sparse signal of user that has been previously saved in system to determine the validity of the facial test image. Results of system accuracy obtained in this research are 99% in IRLS with time response of face verification for 4.917 seconds and 96.33% in OMP with time response of face verification for 0.4046 seconds with non-optimized sensing matrix, while 99% in IRLS with time response of face verification for 13.4791 seconds and 98.33% for OMP with time response of face verification for 3.1571 seconds with optimized sensing matrix.

  11. Bioinspired Infrared Sensing Materials and Systems.

    Science.gov (United States)

    Shen, Qingchen; Luo, Zhen; Ma, Shuai; Tao, Peng; Song, Chengyi; Wu, Jianbo; Shang, Wen; Deng, Tao

    2018-05-11

    Bioinspired engineering offers a promising alternative approach in accelerating the development of many man-made systems. Next-generation infrared (IR) sensing systems can also benefit from such nature-inspired approach. The inherent compact and uncooled operation of biological IR sensing systems provides ample inspiration for the engineering of portable and high-performance artificial IR sensing systems. This review overviews the current understanding of the biological IR sensing systems, most of which are thermal-based IR sensors that rely on either bolometer-like or photomechanic sensing mechanism. The existing efforts inspired by the biological IR sensing systems and possible future bioinspired approaches in the development of new IR sensing systems are also discussed in the review. Besides these biological IR sensing systems, other biological systems that do not have IR sensing capabilities but can help advance the development of engineered IR sensing systems are also discussed, and the related engineering efforts are overviewed as well. Further efforts in understanding the biological IR sensing systems, the learning from the integration of multifunction in biological systems, and the reduction of barriers to maximize the multidiscipline collaborations are needed to move this research field forward. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Calibration-free optical chemical sensors

    Science.gov (United States)

    DeGrandpre, Michael D.

    2006-04-11

    An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.

  13. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2012-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics. This volume explores: Quantum Dynamical Resonances in Ch

  14. Diabetes HealthSense: Resources for Living Well

    Medline Plus

    Full Text Available ... E-MAIL UPDATES External Link Disclaimer National Diabetes Education Program HealthSense Home Make a Plan Articles About HealthSense Diabetes HealthSense Title/Keywords: Go Diabetes HealthSense ...

  15. Non-native acylated homoserine lactones reveal that LuxIR quorum sensing promotes symbiont stability

    Science.gov (United States)

    Ho, Jessica S.; Geske, Grant D.; Blackwell, Helen E.; Ruby, Edward G.

    2014-01-01

    SUMMARY Quorum sensing, a group behavior coordinated by a diffusible pheromone signal and a cognate receptor, is typical of bacteria that form symbioses with plants and animals. LuxIR-type acyl homoserine-lactone (AHL) quorum sensing is common in Gram-negative proteobacteria, and many members of this group have additional quorum-sensing networks. The bioluminescent symbiont Vibrio fischeri encodes two AHL signal synthases: AinS and LuxI. AinS-dependent quorum sensing converges with LuxI-dependent quorum sensing at the LuxR regulatory element. Both AinS- and LuxI-mediated signaling are required for efficient and persistent colonization of the squid host, Euprymna scolopes. The basis of the mutualism is symbiont bioluminescence, which is regulated by both LuxI- and AinS-dependent quorum sensing, and is essential for maintaining a colonization of the host. Here, we used chemical and genetic approaches to probe the dynamics of LuxI- and AinS-mediated regulation of bioluminescence during symbiosis. We demonstrate that both native AHLs and non-native AHL analogs can be used to non-invasively and specifically modulate induction of symbiotic bioluminescence via LuxI-dependent quorum sensing. Our data suggest that the first day of colonization, during which symbiont bioluminescence is induced by LuxIR, is a critical period that determines the stability of the V. fischeri population once symbiosis is established. PMID:24191970

  16. From chemical or biochemical microsensors to fast detection systems

    International Nuclear Information System (INIS)

    Pistre, J.; Dejous, C.; Rebiere, D.

    2011-01-01

    The market of chemical and biochemical sensors is increasing and represents a large opportunity. The problem of chemical and biochemicaldetection involves the use of one/several transducing layer/interface. Several types of detection exist. Among them, acoustic wave devices present many advantages. The paper deals with surface acoustic waves devices and their implementation. The role and properties of the sensing layer are discussed for chemical sensors and biochemical sensors as well. Examples of realizations are presented taking into account the microfluidic approach.

  17. Methanol sensing characteristics of conducting polypyrrole-silver nanocomposites

    Science.gov (United States)

    Kabir, L.; Mandal, S. K.

    2012-05-01

    Methanol sensing characteristics of conducting polypyrrole-silver nanocomposites are reported here. The nanocomposites are synthesized by wet chemical technique with different amount of silver loadings (5-15 mol%). The sensitivity of the nanocomposites upon exposure to gas molecules is critically dependent on the silver loadings and the concentration of the exposed gas. This is possibly instigated by the modified metal-polymer interface and the polar nature of the constituent metal and the exposed gas. Interaction of the alcohol gas with the polypyrrole chains in the presence of silver effectively determines the change in resistance and hence the sensitivity of the nanocomposites upon exposure to methanol. The adsorption of methanol molecules within the nanocomposites and the subsequent chemical reactions are studied by Fourier transform infrared (FTIR) spectroscopy.

  18. Critical review of pH sensing with optical fibers

    Science.gov (United States)

    Baldini, Francesco

    1999-02-01

    The chemical parameter most investigated with optical fibers is doubtless pH. The first pH optical fiber sensor was described in 1980. Since then, more than one hundred and twenty original papers describing different pH sensors have been published, based on absorption-based indicators on fluorophores. Such interest is perfectly justified, since pH detection is essential in many fields of application, ranging from the environment and medicine to industry and process control. Moreover, pH transduction can be used for measuring different chemical species, such as carbon dioxide, ammonia and pesticides. Notwithstanding the great number of prototypes realized in different laboratories all over the world, only a few products are available on the market. A critical analysis of the state of art in pH sensing using optical fibers is described, outlining the advantages and disadvantages of an optical approach.

  19. Personal Chemical Exposure informatics

    Science.gov (United States)

    Chemical Exposure science is the study of human contact with chemicals (from manufacturing facilities, everyday products, waste) occurring in their environments and advances knowledge of the mechanisms and dynamics of events that cause or prevent adverse health outcomes. (adapted...

  20. Chemical Weapons Convention

    National Research Council Canada - National Science Library

    1997-01-01

    On April 29, 1997, the Convention on the Prohibition of the Development, Production, Stockpiling, and Use of Chemical Weapons and on Their Destruction, known as the Chemical Weapons Convention (CWC...

  1. Tobacco and chemicals (image)

    Science.gov (United States)

    Some of the chemicals associated with tobacco smoke include ammonia, carbon dioxide, carbon monoxide, propane, methane, acetone, hydrogen cyanide and various carcinogens. Other chemicals that are associated with chewing ...

  2. Chemical Transformation Simulator

    Science.gov (United States)

    The Chemical Transformation Simulator (CTS) is a web-based, high-throughput screening tool that automates the calculation and collection of physicochemical properties for an organic chemical of interest and its predicted products resulting from transformations in environmental sy...

  3. Chemicals Industry Vision

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  4. Chemical Industry Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  5. Chemical Search Web Utility

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Chemical Search Web Utility is an intuitive web application that allows the public to easily find the chemical that they are interested in using, and which...

  6. Chemical cleaning review

    International Nuclear Information System (INIS)

    Dow, B.L.; Thomas, R.C.

    1995-01-01

    Three main chemical processes for cleaning steam generators have evolved from the early work of the industry. Of the more than 50 chemical cleanings carried out to date most have been considered a success by the utilities performing them. (author)

  7. Head and neck position sense.

    Science.gov (United States)

    Armstrong, Bridget; McNair, Peter; Taylor, Denise

    2008-01-01

    Traumatic minor cervical strains are common place in high-impact sports (e.g. tackling) and premature degenerative changes have been documented in sports people exposed to recurrent impact trauma (e.g. scrummaging in rugby) or repetitive forces (e.g. Formula 1 racing drivers, jockeys). While proprioceptive exercises have been an integral part of rehabilitation of injuries in the lower limb, they have not featured as prominently in the treatment of cervical injuries. However, head and neck position sense (HNPS) testing and re-training may have relevance in the management of minor sports-related neck injuries, and play a role in reducing the incidence of ongoing pain and problems with function. For efficacious programmes to be developed and tested, fundamental principles associated with proprioception in the cervical spine should be considered. Hence, this article highlights the importance of anatomical structures in the cervical spine responsible for position sense, and how their interaction with the CNS affects our ability to plan and execute effective purposeful movements. This article includes a review of studies examining position sense in subjects with and without pathology and describes the effects of rehabilitation programmes that have sought to improve position sense. In respect to the receptors providing proprioceptive information for the CNS, the high densities and complex arrays of spindles found in cervical muscles suggest that these receptors play a key role. There is some evidence suggesting that ensemble encoding of discharge patterns from muscle spindles is relayed to the CNS and that a pattern recognition system is used to establish joint position and movement. Sensory information from neck proprioceptive receptors is processed in tandem with information from the vestibular system. There are extensive anatomical connections between neck proprioceptive inputs and vestibular inputs. If positional information from the vestibular system is inaccurate or

  8. MRI of chemical reactions and processes.

    Science.gov (United States)

    Britton, Melanie M

    2017-08-01

    As magnetic resonance imaging (MRI) can spatially resolve a wealth of molecular information available from nuclear magnetic resonance (NMR), it is able to non-invasively visualise the composition, properties and reactions of a broad range of spatially-heterogeneous molecular systems. Hence, MRI is increasingly finding applications in the study of chemical reactions and processes in a diverse range of environments and technologies. This article will explain the basic principles of MRI and how it can be used to visualise chemical composition and molecular properties, providing an overview of the variety of information available. Examples are drawn from the disciplines of chemistry, chemical engineering, environmental science, physics, electrochemistry and materials science. The review introduces a range of techniques used to produce image contrast, along with the chemical and molecular insight accessible through them. Methods for mapping the distribution of chemical species, using chemical shift imaging or spatially-resolved spectroscopy, are reviewed, as well as methods for visualising physical state, temperature, current density, flow velocities and molecular diffusion. Strategies for imaging materials with low signal intensity, such as those containing gases or low sensitivity nuclei, using compressed sensing, para-hydrogen or polarisation transfer, are discussed. Systems are presented which encapsulate the diversity of chemical and physical parameters observable by MRI, including one- and two-phase flow in porous media, chemical pattern formation, phase transformations and hydrodynamic (fingering) instabilities. Lastly, the emerging area of electrochemical MRI is discussed, with studies presented on the visualisation of electrochemical deposition and dissolution processes during corrosion and the operation of batteries, supercapacitors and fuel cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  9. Computing Equilibrium Chemical Compositions

    Science.gov (United States)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  10. Remote sensing investigations at a hazardous-waste landfill

    Science.gov (United States)

    Stohr, C.; Su, W.-J.; DuMontelle, P.B.; Griffin, R.A.

    1987-01-01

    In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches. These features can be more effectively identified by photointerpretation than by conventional field reconnaissance. A ground-based, post-sunset survey of the trench covers that showed that a distinction between depressions which hold moisture at the surface from freely-draining depressions which permit rapid recharge to the burial trenches could be made using thermal infrared imagery.In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches.

  11. Sensing technologies for precision irrigation

    CERN Document Server

    Ćulibrk, Dubravko; Minic, Vladan; Alonso Fernandez, Marta; Alvarez Osuna, Javier; Crnojevic, Vladimir

    2014-01-01

    This brief provides an overview of state-of-the-art sensing technologies relevant to the problem of precision irrigation, an emerging field within the domain of precision agriculture. Applications of wireless sensor networks, satellite data and geographic information systems in the domain are covered. This brief presents the basic concepts of the technologies and emphasizes the practical aspects that enable the implementation of intelligent irrigation systems. The authors target a broad audience interested in this theme and organize the content in five chapters, each concerned with a specific technology needed to address the problem of optimal crop irrigation. Professionals and researchers will find the text a thorough survey with practical applications.

  12. Modeling Common-Sense Decisions

    Science.gov (United States)

    Zak, Michail

    This paper presents a methodology for efficient synthesis of dynamical model simulating a common-sense decision making process. The approach is based upon the extension of the physics' First Principles that includes behavior of living systems. The new architecture consists of motor dynamics simulating actual behavior of the object, and mental dynamics representing evolution of the corresponding knowledge-base and incorporating it in the form of information flows into the motor dynamics. The autonomy of the decision making process is achieved by a feedback from mental to motor dynamics. This feedback replaces unavailable external information by an internal knowledgebase stored in the mental model in the form of probability distributions.

  13. Sensing behaviour in healthcare design

    DEFF Research Database (Denmark)

    Thorpe, Julia Rosemary; Hysse Forchhammer, Birgitte; Maier, Anja

    2017-01-01

    We are entering an era of distributed healthcare that should fit and respond to individual needs, behaviour and lifestyles. Designing such systems is a challenging task that requires continuous information about human behaviour on a large scale, for which pervasive sensing (e.g. using smartphones...... specifically on activity and location data that can easily be obtained from smartphones or wearables. We further demonstrate how these are applied in healthcare design using an example from dementia care. Comparing a current and proposed scenario exemplifies how integrating sensor-derived information about...... user behaviour can support the healthcare design goals of personalisation, adaptability and scalability, while emphasising patient quality of life....

  14. Size of quorum sensing communities

    DEFF Research Database (Denmark)

    Ferkinghoff-Borg, Jesper; Sams, Thomas

    2014-01-01

    Ensembles of bacteria are able to coordinate their phenotypic behavior in accordance with the size, density, and growth state of the ensemble. This is achieved through production and exchange of diffusible signal molecules in a cell–cell regulatory system termed quorum sensing. In the generic....... For a disk-shaped biofilm the geometric factor is the horizontal dimension multiplied by the height, and the square of the height of the biofilm if there is significant flow above the biofilm. A remarkably simple factorized expression for the size is obtained, which separates the all-or-none ignition caused...

  15. Wavefront error sensing for LDR

    Science.gov (United States)

    Tubbs, Eldred F.; Glavich, T. A.

    1988-01-01

    Wavefront sensing is a significant aspect of the LDR control problem and requires attention at an early stage of the control system definition and design. A combination of a Hartmann test for wavefront slope measurement and an interference test for piston errors of the segments was examined and is presented as a point of departure for further discussion. The assumption is made that the wavefront sensor will be used for initial alignment and periodic alignment checks but that it will not be used during scientific observations. The Hartmann test and the interferometric test are briefly examined.

  16. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications.

    Science.gov (United States)

    Le, Duc V; Nguyen, Thuong; Scholten, Hans; Havinga, Paul J M

    2017-11-29

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  17. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Directory of Open Access Journals (Sweden)

    Duc V. Le

    2017-11-01

    Full Text Available Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  18. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Science.gov (United States)

    Scholten, Hans; Havinga, Paul J. M.

    2017-01-01

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring. PMID:29186037

  19. Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks.

    Science.gov (United States)

    Wang, Hao; Lustig, William P; Li, Jing

    2018-03-13

    Toxic and hazardous chemical species are ubiquitous, predominantly emitted by anthropogenic activities, and pose serious risks to human health and the environment. Thus, the sensing and subsequent capture of these chemicals, especially in the gas or vapor phase, are of extreme importance. To this end, metal-organic frameworks have attracted significant interest, as their high porosity and wide tunability make them ideal for both applications. These tailorable framework materials are particularly promising for the specific sensing and capture of targeted chemicals, as they can be designed to fit a diverse range of required conditions. This review will discuss the advantages of metal-organic frameworks in the sensing and capture of harmful gases and vapors, as well as principles and strategies guiding the design of these materials. Recent progress in the luminescent detection of aromatic and aliphatic volatile organic compounds, toxic gases, and chemical warfare agents will be summarized, and the adsorptive removal of fluorocarbons/chlorofluorocarbons, volatile radioactive species, toxic industrial gases and chemical warfare agents will be discussed.

  20. Advances in sensing and biosensing of bisphenols: A review.

    Science.gov (United States)

    Dhanjai; Sinha, Ankita; Wu, Lingxia; Lu, Xianbo; Chen, Jiping; Jain, Rajeev

    2018-01-15

    Bisphenols (BPs) are well known endocrine disrupting chemicals (EDCs) that cause adverse effects on the environment, biotic life and human health. BPs have been studied extensively because of an increasing concern for the safety of the environment and for human health. They are major raw materials for manufacturing polycarbonates, thermal papers and epoxy resins and are considered hazardous environmental contaminants. A vast array of sensors and biosensors have been developed for the sensitive screening of BPs based on carbon nanomaterials (carbon nanotubes, fullerenes, graphene and graphene oxide), quantum dots, metal and metal oxide nanocomposites, polymer nanocomposites, metal organic frameworks, ionic liquids and molecularly imprinted polymers. This review is devoted mainly to a variety of sensitive, selective and reliable sensing and biosensing methods for the detection of BPs using electrochemistry, fluorescence, colorimetry, surface plasmon resonance, luminescence, ELISAs, circular dichroism, resonance Rayleigh scattering and adsorption techniques in plastic products, food samples, food packaging, industrial wastes, pharmaceutical products, human body fluids and many other matrices. It summarizes the advances in sensing and biosensing methods for the detection of BPs since 2010. Furthermore, the article discusses challenges and future perspectives in the development of novel sensing methods for the detection of BP analogs. Copyright © 2017 Elsevier B.V. All rights reserved.