WorldWideScience

Sample records for chemical recovery cycle

  1. Chemical agent recoveries

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dataset shows the calculation of reported decontamination efficacies from the raw data (i.e., measured amount of chemical recovered from test coupons and positive...

  2. Chemicals in material cycles

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksson, Eva; Astrup, Thomas Fruergaard

    2015-01-01

    Material recycling has been found beneficial in terms of resource and energy performance and is greatly promoted throughout the world. A variety of chemicals is used in materials as additives and data on their presence is sparse. The present work dealt with paper as recyclable material and diisob...

  3. Rankine cycle waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  4. Modular approach to analysis of chemically recuperated gas turbine cycles

    Energy Technology Data Exchange (ETDEWEB)

    Carcasci, C.; Facchini, B. [University of Florence, `Sergio Stecco` (Italy). Dept. of Energy Engineering; Harvey, S. [Chalmers Institute of Technology, Goeteberg (Sweden). Dept. of Heat and Power Technology

    1998-12-31

    Current research programmes such as the CAGT programme investigate the opportunity for advanced power generation cycles based on state-of-the-art aeroderivative gas turbine technology. Such cycles would be primarily aimed at intermediate duty applications. Compared to industrial gas turbines, aeroderivatives offer high simple cycle efficiency, and the capability to start quickly and frequently without a significant maintenance cost penalty. A key element for high system performance is the development of improved heat recovery systems, leading to advanced cycles such as the humid air turbine (HAT) cycle, the chemically recuperated gas turbine (CRGT) cycle and the Kalina combined cycle. When used in combination with advanced technologies and components, screening studies conducted by research programmes such as the CAGT programme predict that such advanced cycles could theoretically lead to net cycle efficiencies exceeding 60%. In this paper, the authors present the application of the modular approach to cycle simulation and performance predictions of CRGT cycles. The paper first presents the modular simulation code concept and the main characteristics of CRGT cycles. The paper next discusses the development of the methane-steam reformer unit model used for the simulations. The modular code is then used to compute performance characteristics of a simple CRGT cycle and a reheat CRGT cycle, both based on the General Electric LM6000 aeroderivative gas turbine. (author)

  5. Life Cycle assessment of basic chemicals

    DEFF Research Database (Denmark)

    Olsen, Stig Irving

    The present report results as part of a ph.d. project aiming at developing general rules for LCA of basic chemicals. Part 1 reviews the state of the art framework for life-cycle assessment and part 2 relates that framework to the chemical industry and gives some proposals for LCAs of basic...... chemicals. A survey of the use of LCA in the European chemical industry has been conducted and is reported in appendix 1. Life cycle assessment (LCA) is a tool/process to evaluate the potential environmental impacts of a system (most often a product) through its whole life cycle by collecting input...... from a variety of sources and will constitute a mix of actual measurements, literature data and estimates. Actually, during the case studies and from other studies, data availability was identified as a major problem. Therefore, data sources for process data from the chemical industry were investigated...

  6. Chemical contamination of material cycles

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Astrup, Thomas Fruergaard

    2015-01-01

    acceptance of recycledmaterial‐based products. Paper and plastics are conventional materials used to manufacture a variety of products within main sectors of economy (i.e. packaging, transportation, construction, services, and other). A number of chemicals can be either intentionally or unintentionally added...

  7. Chemical process safety at fuel cycle facilities

    International Nuclear Information System (INIS)

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document

  8. Low chemical concentrating steam generating cycle

    Science.gov (United States)

    Mangus, James D.

    1983-01-01

    A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.

  9. A comparison of advanced heat recovery power cycles in a combined cycle for large ships

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Sigthorsson, Oskar; Haglind, Fredrik

    2014-01-01

    Strong motivation exists within the marine sector to reduce fuel expenses and to comply with ever stricter emission regulations. Heat recovery can address both of these issues. The ORC (organic Rankine cycle), the Kalina cycle and the steam Rankine cycle have received the majority of the focus...... model is combined with a turbocharger model and bottoming cycle models written in Matlab. Genetic algorithm optimisation results suggest that the Kalina cycle possess no significant advantages compared to the ORC or the steam cycle. While contributing to very high efficiencies, the organic working...... in the literature. In the present work we compare these cycles in a combined cycle application with a large marine two-stroke diesel engine. We present an evaluation of the efficiency and the environmental impact, safety concerns and practical aspects of each of the cycles. A previously validated numerical engine...

  10. A comparison of advanced heat recovery power cycles in a combined cycle for large ships

    International Nuclear Information System (INIS)

    Larsen, Ulrik; Sigthorsson, Oskar; Haglind, Fredrik

    2014-01-01

    Strong motivation exists within the marine sector to reduce fuel expenses and to comply with ever stricter emission regulations. Heat recovery can address both of these issues. The ORC (organic Rankine cycle), the Kalina cycle and the steam Rankine cycle have received the majority of the focus in the literature. In the present work we compare these cycles in a combined cycle application with a large marine two-stroke diesel engine. We present an evaluation of the efficiency and the environmental impact, safety concerns and practical aspects of each of the cycles. A previously validated numerical engine model is combined with a turbocharger model and bottoming cycle models written in Matlab. Genetic algorithm optimisation results suggest that the Kalina cycle possess no significant advantages compared to the ORC or the steam cycle. While contributing to very high efficiencies, the organic working fluids possess high global warming potentials and hazard levels. It is concluded that the ORC has the greatest potential for increasing the fuel efficiency, and the combined cycle offers very high thermal efficiency. While being less efficient, the steam cycle has the advantages of being well proven, harmless to the environment as well as being less hazardous in comparison. - Highlights: • We compare steam, ORC (organic Rankine cycle) and Kalina cycles for waste heat recovery in marine engines. • We evaluate the efficiency and important qualitative differences. • The Kalina cycle presents no apparent advantages. • The steam cycle is well known, harmless and has a high efficiency. • The ORC has the highest efficiency but also important drawbacks

  11. Energy recovery system using an organic rankine cycle

    Science.gov (United States)

    Ernst, Timothy C

    2013-10-01

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  12. Recovery from disturbance requires resynchronization of ecosystem nutrient cycles.

    Science.gov (United States)

    Rastetter, E B; Yanai, R D; Thomas, R Q; Vadeboncoeur, M A; Fahey, T J; Fisk, M C; Kwiatkowski, B L; Hamburg, S P

    2013-04-01

    Nitrogen (N) and phosphorus (P) are tightly cycled in most terrestrial ecosystems, with plant uptake more than 10 times higher than the rate of supply from deposition and weathering. This near-total dependence on recycled nutrients and the stoichiometric constraints on resource use by plants and microbes mean that the two cycles have to be synchronized such that the ratio of N:P in plant uptake, litterfall, and net mineralization are nearly the same. Disturbance can disrupt this synchronization if there is a disproportionate loss of one nutrient relative to the other. We model the resynchronization of N and P cycles following harvest of a northern hardwood forest. In our simulations, nutrient loss in the harvest is small relative to postharvest losses. The low N:P ratio of harvest residue results in a preferential release of P and retention of N. The P release is in excess of plant requirements and P is lost from the active ecosystem cycle through secondary mineral formation and leaching early in succession. Because external P inputs are small, the resynchronization of the N and P cycles later in succession is achieved by a commensurate loss of N. Through succession, the ecosystem undergoes alternating periods of N limitation, then P limitation, and eventually co-limitation as the two cycles resynchronize. However, our simulations indicate that the overall rate and extent of recovery is limited by P unless a mechanism exists either to prevent the P loss early in succession (e.g., P sequestration not stoichiometrically constrained by N) or to increase the P supply to the ecosystem later in succession (e.g., biologically enhanced weathering). Our model provides a heuristic perspective from which to assess the resynchronization among tightly cycled nutrients and the effect of that resynchronization on recovery of ecosystems from disturbance.

  13. Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami Nathan [Eaton Corporation

    2017-06-30

    Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach to reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.

  14. Chemically assisted in situ recovery of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Ramierz, W.F.

    1993-12-31

    The purpose of the research project was to investigate the feasibility of the chemically assisted in situ retort method for recovering shale oil from Colorado oil shale. The chemically assisted in situ procedure uses hydrogen chloride (HCl), steam (H{sub 2}O), and carbon dioxide (CO{sub 2}) at moderate pressure to recovery shale oil from Colorado oil shale at temperatures substantially lower than those required for the thermal decomposition of kerogen. The process had been previously examined under static, reaction-equilibrium conditions, and had been shown to achieve significant shale oil recoveries from powdered oil shale. The purpose of this research project was to determine if these results were applicable to a dynamic experiment, and achieve penetration into and recovery of shale oil from solid oil shale. Much was learned about how to perform these experiments. Corrosion, chemical stability, and temperature stability problems were discovered and overcome. Engineering and design problems were discovered and overcome. High recovery (90% of estimated Fischer Assay) was observed in one experiment. Significant recovery (30% of estimated Fischer Assay) was also observed in another experiment. Minor amounts of freed organics were observed in two more experiments. Penetration and breakthrough of solid cores was observed in six experiments.

  15. Insight into chemical phosphate recovery from municipal wastewater.

    Science.gov (United States)

    Ye, Yuanyao; Ngo, Huu Hao; Guo, Wenshan; Liu, Yiwen; Li, Jixiang; Liu, Yi; Zhang, Xinbo; Jia, Hui

    2017-01-15

    Phosphate plays an irreplaceable role in the production of fertilizers. However, its finite availability may not be enough to satisfy increasing demands for the fertilizer production worldwide. In this scenario, phosphate recovery can effectively alleviate this problem. Municipal wastewater has received high priority to recover phosphate because its quantity is considerable. Therefore, phosphate recovery from municipal wastewater can bring many benefits such as relieving the burden of increasing production of fertilizers and reduction in occurrence of eutrophication caused by the excessive concentration of phosphate in the released effluent. The chemical processes are the most widely applied in phosphate recovery in municipal wastewater treatment because they are highly stable and efficient, and simple to operate. This paper compares chemical technologies for phosphate recovery from municipal wastewater. As phosphate in the influent is transferred to the liquid and sludge phases, a technical overview of chemical phosphate recovery in both phases is presented with reference to mechanism, efficiency and the main governing parameters. Moreover, an analysis on their applications at plant-scale is also presented. The properties of recovered phosphate and its impact on crops and plants are also assessed with a discussion on the economic feasibility of the technologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Enhanced oil recovery chemicals from renewable wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Grune, W.N.; Compere, A.L.; Griffith, W.L.; Crenshaw, J.M.

    1979-04-01

    Most of the wood pulp in the U.S. is produced by cooking, or digesting, wood chips in a chemical solution. These pulping processes have effluent streams which contain dissolved lignins, lignin breakdown products, and carbohydrates. There is a substantial economic incentive to use these materials as feedstocks for the production of high-valued micellar flood chemicals. The pulp and paper industries have practiced chemical recovery for almost a century. The largest chemical recycle processes are the internal recycle of inorganic salts for reuse in pulping. This is coupled with the use of waste organic compounds in the liquor as a fuel for directly-fired evaporation processes. Diversion of effluent and low valued streams for chemical recovery using fermentation, purification, or synthesis methods appears technically feasible in several cases. The use of new recovery processes could yield a variety of different wood-effluent based products. Some of the sugar acids in pulping liquors might be used as sequestering agents in reservoirs where there are large amounts of multivalent cations in flood brines. Fermentation production of high viscosity polymers, sequestering agents, and coagent alcohols appears worth further investigation. Tall oil acids and their derivatives can be used as surfactants in some reservoirs. Some waste constituents may adsorb preferentially on formations and thereby reduce loss of surfactants and other higher-valued chemicals.

  17. Life cycle greenhouse gases and non-renewable energy benefits of kraft black liquor recovery

    International Nuclear Information System (INIS)

    Gaudreault, Caroline; Malmberg, Barry; Upton, Brad; Miner, Reid

    2012-01-01

    The life cycle greenhouse gas (GHG) and fossil fuel benefits of black liquor recovery are analyzed. These benefits are due to the production of energy that can be used in the pulping process or sold, and the recovery of the pulping chemicals that would otherwise need to be produced from other resources. The fossil GHG emissions and non-renewable energy consumption of using black liquor in the kraft recovery system are approximately 90% lower than those for a comparable fossil fuel-based system. Across all scenarios, the systems relying on black liquor solids achieve a median reduction of approximately 140 kg CO 2 eq./GJ of energy produced, compared to the systems relying on fossil fuels to provide the same energy and pulping chemical production functions. The benefits attributable to the recovery of pulping chemicals vary from 44% to 75% of the total benefit. Applied to the total production of kraft pulp in the U.S., the avoided emissions are equivalent to the total Scopes 1 and 2 emissions from the entire U.S. forest products industry. These results do not depend on the accounting method for biogenic carbon (because biogenic CO 2 emissions are the same for the systems compared) and the results are valid across a range of assumptions about the displaced fossil fuel, the GHG-intensity of the electricity grid, the fossil fuels used in the lime kiln, and the level of cogeneration at pulp and paper mills. The benefits occur without affecting the amount of wood harvested or the amount of chemical pulp produced. -- Highlights: ► Black liquor, a by-product of kraft pulping, represents about half of the energy used in the paper industry. ► The greenhouse gases (GHG) benefits of black liquor recovery compared to an equivalent fossil fuel system were analyzed. ► The GHG emissions of the black liquor system are approximately 90% lower than those for the fossil fuel system. ► The benefits from the recovery of the chemicals vary from 44% to 75% of the total benefit.

  18. AN INVESTIGATION OF CHEMICAL PROCESSES IN GOLD RECOVERY

    Directory of Open Access Journals (Sweden)

    Namık GÜNEŞ

    1997-02-01

    Full Text Available Currently, investigations undertaken on different types of gold bearing ore deposits show that the type of deposit plays an important role for the selection of mineral processing technologies in gold and other precious metals production. During recent years, studies on the discovery and growth of new gold deposits have been gradually progressing in many provinces of Turkey and this will undoubtedly contribute to development of new technologies in other metal mining industries. Recently, it has been established that approximately 15-20 % of gold recovery is realised by physical and 80-85 % of that is carried out by chemical and biological processes. Chemical and sometimes biological processes are prefered due to low cost and simplicity. This study gives a brief description on gold recovery methods with special reference to currently popular chemical processes.

  19. Solar power satellite life-cycle energy recovery consideration

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  20. Solar power satellite—Life-cycle energy recovery considerations

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    1995-05-01

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for a cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead of monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power plant components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on Earth (rectenna) requires in the order of 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production, installation and operation, is in the order of two years.

  1. The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment

    International Nuclear Information System (INIS)

    Liu, Chao; He, Chao; Gao, Hong; Xie, Hui; Li, Yourong; Wu, Shuangying; Xu, Jinliang

    2013-01-01

    The LCA (life-cycle assessment) was applied to evaluate EI (the environmental impact) of ORCPW (organic Rankine cycle power-plant for waste-heat-recovery) in this paper. The model of LCA on the ORCPW was established. The life-cycle of ORCPW was divided into construction, operation and decommissioning phases. The inventory of environmental emissions was listed for the ORCPW with 7 different working fluids. The GWP (global warming potential), AP (acidification potential), EP (eutrophication potential), HTP (human toxicity potential), SWP (solid waste potential) and SAP (soot and dust potential) were investigated. Some EIs of ORCPW were compared with the EIs of other power generation modes. The results show that the construction phase of ORCPW contributes mostly to the GWP and EP. GWP is the most serious EI followed by HTP among all the environmental impacts. The average pay back times of greenhouse gas discharged from ORCPW is calculated on the basis of five other power generation modes. For 7 different working fluids, it is 3–5 years for CO 2 , about one year for CH 4 and 3–6 years for NO x . But CO cannot be paid back during the life-cycle of ORCPW according to the average pay back time. - Highlights: • LCA was proposed to evaluate the environmental performance of ORC. • The ORC life cycle environmental emissions inventory was established. • GWP is the most serious environmental impact, followed by HTP. • The ORC with R113 exhibits the lowest environment impact load, followed by Pentane. • The total GWP of ORC could be paid back in 5 years

  2. Viscous fingering and channeling in chemical enhanced oil recovery

    Science.gov (United States)

    Daripa, Prabir; Dutta, Sourav

    2017-11-01

    We have developed a hybrid numerical method based on discontinuous finite element method and modified method of characteristics to compute the multiphase multicomponent fluid flow in porous media in the context of chemical enhanced oil recovery. We use this method to study the effect of various chemical components on the viscous fingering and channeling in rectilinear and radial flow configurations. We will also discuss about the efficiency of various flooding schemes based on these understandings. Time permitting, we will discuss about the effect of variable injection rates in these practical setting. U.S. National Science Foundation Grant DMS-1522782.

  3. Thermodynamic analysis of heat recovery steam generator in combined cycle power plant

    OpenAIRE

    Ravi Kumar Naradasu; Rama Krishna Konijeti; Sita Rama Raju Venkata Alluru

    2007-01-01

    Combined cycle power plants play an important role in the present energy sector. The main challenge in designing a combined cycle power plant is proper utilization of gas turbine exhaust heat in the steam cycle in order to achieve optimum steam turbine output. Most of the combined cycle developers focused on the gas turbine output and neglected the role of the heat recovery steam generator which strongly affects the overall performance of the combined cycle power plant. The present paper is a...

  4. Towards a Life Cycle Based Chemical Alternative Assessment (LCAA)

    DEFF Research Database (Denmark)

    Jolliet, O.; Huang, L.; Overcash, Michael

    2017-01-01

    There is a need for an operational quantitative screening-level assessment of alternatives, that is life-cycle based and able to serve both Life cycle Assessment (LCA and chemical alternatives assessment (CAA). This presentation therefore aims to develop and illustrate a new approach called “Life...... Cycle Based Chemical Alternative Assessment (LCAA)” that will quantify exposure and life cycle impacts consistently and efficiently over the main life cycle stages. The new LCAA approach is illustrated though a proof-of-concept case study of alternative plasticizers in vinyl flooring. The proposed LCAA...... ingredient in the product, first-order inter-compartmental transfer fractions and a matrix approach to determine Product Intake Fractions, and c) toxicity-related outcomes are compared with other life cycle impacts to evaluate the relevance of different impact categories for different consumer product...

  5. Sepiapterin Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells*

    Science.gov (United States)

    Yang, Shaojun; Jan, Yi-Hua; Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2013-01-01

    In the lung, chemical redox cycling generates highly toxic reactive oxygen species that can cause alveolar inflammation and damage to the epithelium, as well as fibrosis. In this study, we identified a cytosolic NADPH-dependent redox cycling activity in mouse lung epithelial cells as sepiapterin reductase (SPR), an enzyme important for the biosynthesis of tetrahydrobiopterin. Human SPR was cloned and characterized. In addition to reducing sepiapterin, SPR mediated chemical redox cycling of bipyridinium herbicides and various quinones; this activity was greatest for 1,2-naphthoquinone followed by 9,10-phenanthrenequinone, 1,4-naphthoquinone, menadione, and 2,3-dimethyl-1,4-naphthoquinone. Whereas redox cycling chemicals inhibited sepiapterin reduction, sepiapterin had no effect on redox cycling. Additionally, inhibitors such as dicoumarol, N-acetylserotonin, and indomethacin blocked sepiapterin reduction, with no effect on redox cycling. Non-redox cycling quinones, including benzoquinone and phenylquinone, were competitive inhibitors of sepiapterin reduction but noncompetitive redox cycling inhibitors. Site-directed mutagenesis of the SPR C-terminal substrate-binding site (D257H) completely inhibited sepiapterin reduction but had minimal effects on redox cycling. These data indicate that SPR-mediated reduction of sepiapterin and redox cycling occur by distinct mechanisms. The identification of SPR as a key enzyme mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. This activity, together with inhibition of sepiapterin reduction by redox-active chemicals and consequent deficiencies in tetrahydrobiopterin, may contribute to tissue injury. PMID:23640889

  6. Metabolic Engineering of TCA Cycle for Production of Chemicals

    NARCIS (Netherlands)

    Vuoristo, K.S.; Mars, A.E.; Sanders, J.P.M.; Eggink, G.; Weusthuis, R.A.

    2016-01-01

    The tricarboxylic acid (TCA) cycle has been used for decades in the microbial production of chemicals such as citrate, L-glutamate, and succinate. Maximizing yield is key for cost-competitive production. However, for most TCA cycle products, the maximum pathway yield is lower than the theoretical

  7. High-temperature isothermal chemical cycling for solar-driven fuel production.

    Science.gov (United States)

    Hao, Yong; Yang, Chih-Kai; Haile, Sossina M

    2013-10-28

    The possibility of producing chemical fuel (hydrogen) from the solar-thermal energy input using an isothermal cycling strategy is explored. The canonical thermochemical reactive oxide, ceria, is reduced under high temperature and inert sweep gas, and in the second step oxidized by H2O at the same temperature. The process takes advantage of the oxygen chemical potential difference between the inert sweep gas and high-temperature steam, the latter becoming more oxidizing with increasing temperature as a result of thermolysis. The isothermal operation relieves the need to achieve high solid-state heat recovery for high system efficiency, as is required in a conventional two-temperature process. Thermodynamic analysis underscores the importance of gas-phase heat recovery in the isothermal approach and suggests that attractive efficiencies may be practically achievable on the system level. However, with ceria as the reactive oxide, the isothermal approach is not viable at temperatures much below 1400 °C irrespective of heat recovery. Experimental investigations show that an isothermal cycle performed at 1500 °C can yield fuel at a rate of ~9.2 ml g(-1) h(-1), while providing exceptional system simplification relative to two-temperature cycling.

  8. Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Andreasen, Jesper Graa; Haglind, Fredrik

    2017-01-01

    recovery. Inthis paper, an organic Rankine cycle process and its pure working fluid are designed simultaneously forwaste heat recovery of the exhaust gas from a marine diesel engine. This approach can overcome designissues caused by the high sensitivity between the fluid and cycle design variables...... the simultaneousdesign approach the optimum solution was found in 5.04 s, while a decomposed approach found thesame solution in 5.77 h. However, the decomposed approach provided insights on the correlationbetween the fluid and cycle design variables by analyzing all possible solutions. It was shown that thehigh...... sensitivity between the fluid and cycle design variables was overcome by using the simultaneousapproach. Correlation between net power output and the product of the overall heat transfer coefficientand the heat transfer area could further be addressed by employing a new solution strategy includingmaximum...

  9. Monitoring Perceived Stress and Recovery in Relation to Cycling Performance in Female Athletes.

    Science.gov (United States)

    Otter, R T A; Brink, M S; van der Does, H T D; Lemmink, K A P M

    2016-01-01

    The purpose was to investigate perceived stress and recovery related to cycling performance of female athletes over one full year. 20 female athletes (age, 27±8 years; ˙VO2max, 50.3±4.6 mL·kg(-1)·min(-1)) were measured 8 times in one year to determine perceived stress and recovery (RESTQ-Sport) in relation to cycling performance (Lamberts and Lambert Submaximal Cycle Test (LSCT)). All 19 RESTQ-Sport scales were calculated and scores of the 4 main categories were determined (i. e., general stress, general recovery, sport-specific stress and sport-specific recovery). A balance score of total stress and recovery was calculated by recovery-stress. Power at the second stage (P80), third stage (P90) and heart rate recovery (HRR60 s) of the LSCT were determined as performance parameters. 110 RESTQ-Sports and LSCTs were analysed using a multilevel approach (random intercepts model). Higher self-efficacy was related to improvement of all performance parameters. Higher total recovery stress, and lower emotional stress were related to improvement of P90 and HRR60 s. Higher sport-specific recovery was related to P80, higher general stress, fatigue and physical complaints were related to decreased P90 and higher social stress and injury were related to decreased HRR60 s. Improved perceived recovery and stress contributed to an improved performance. Relevant information could be provided by monitoring changes in perceived stress and recovery of female athletes. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Chemical Engineering Education in a Bologna Three Cycle Degree System

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    For the purpose of harmonization of European higher education, Europe’s education system has been going through major changes under what is commonly known as the ”Bologna Process”. The Bologna declaration in 1999 was the start of the introduction of a three cycle degree system in higher education...... such as applied chemistry and process engineering throughout Europe. The result has been a set of recommendations for the first (BS), second (MS) and third (PhD) cycle chemical engineering education aligned to the Bologna Process. They recommend that students studying towards bachelor and masters qualifications...... in Europe. To date, many European universities have adopted this degree structure. The Working Party on Education (WPE) of the European Federation of Chemical Engineering (EFCE) carried out research to determine the contents of higher education in chemical engineering (ChE) and related disciplines...

  11. Metabolic Engineering of TCA Cycle for Production of Chemicals.

    Science.gov (United States)

    Vuoristo, Kiira S; Mars, Astrid E; Sanders, Johan P M; Eggink, Gerrit; Weusthuis, Ruud A

    2016-03-01

    The tricarboxylic acid (TCA) cycle has been used for decades in the microbial production of chemicals such as citrate, L-glutamate, and succinate. Maximizing yield is key for cost-competitive production. However, for most TCA cycle products, the maximum pathway yield is lower than the theoretical maximum yield (Y(E)). For succinate, this was solved by creating two pathways to the product, using both branches of the TCA cycle, connected by the glyoxylate shunt (GS). A similar solution cannot be applied directly for production of compounds from the oxidative branch of the TCA cycle because irreversible reactions are involved. Here, we describe how this can be overcome and what the impact is on the yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Crisis and economic recovery in the states of the northern border. Analysis of economic cycles

    Directory of Open Access Journals (Sweden)

    Eliseo Díaz González

    2012-01-01

    Full Text Available This paper analyzes the prospect of economic recovery and the comovement of regional and national economy with a focus on business cycles theory in 1997–2010. We estimate the trend and cycle of composition of growth in each entity with the Hodrick–Prescott filter and an autoregressive model, using employment data. The evidence shows that Nuevo Leon has the capacity to return to its trend growth, but Baja California and Chihuahua has less possibility. Finally, short–term dynamics of these economies shows that the degree of synchronization with the national economy seems to play for the recovery of growth.

  13. Recovery time and state change of terrestrial carbon cycle after disturbance

    Science.gov (United States)

    Fu, Zheng; Li, Dejun; Hararuk, Oleksandra; Schwalm, Christopher; Luo, Yiqi; Yan, Liming; Niu, Shuli

    2017-10-01

    Ecosystems usually recover from disturbance until a stable state, during which carbon (C) is accumulated to compensate for the C loss associated with disturbance events. However, it is not well understood how likely it is for an ecosystem to recover to an alternative state and how long it takes to recover toward a stable state. Here, we synthesized the results from 77 peer-reviewed case studies that examined ecosystem recovery following disturbances to quantify state change (relative changes between pre-disturbance and fully recovered states) and recovery times for various C cycle variables and disturbance types. We found that most ecosystem C pools and fluxes fully recovered to a stable state that was not significantly different from the pre-disturbance state, except for leaf area index and net primary productivity, which were 10% and 35% higher than the pre-disturbance value, respectively, in forest ecosystem. Recovery times varied largely among variables and disturbance types in the forest, with the longest recovery time required for total biomass (104 ± 33 years) and the shortest time required for C fluxes (23 ± 5 years). The longest and shortest recovery times for different disturbance types are deforestation (101 ± 28 years) and drought (10 ± 1 years), respectively. The recovery time was related to disturbance severity with severer disturbances requiring longer recovery times. However, in the long term, recovery had a strong tendency to drive ecosystem C accumulation towards an equilibrium state. Although we assumed disturbances are static, the recovery-related estimates and relationships revealed in this study are crucial for improving the estimates of disturbance impacts and long-term C balance in terrestrial ecosystems within a disturbance-recovery cycle.

  14. The feasibility study on supercritical methane Recuperated Brayton Cycle for waste heat recovery

    KAUST Repository

    Dyuisenakhmetov, Aibolat

    2017-05-01

    Recuperated Brayton Cycle (RBC) has attracted the attention of research scientists not only as a possible replacement for the steam cycle at nuclear power plants but also as an efficient bottoming cycle for waste heat recovery and for concentrated solar power. RBC’s compactness and the ease at which it can be integrated into existent power plants for waste heat recovery require few modifications. Methane, carbon dioxide and trifluoromethane are analyzed as possible working fluids. This work shows that it is possible to achieve higher efficiencies using methane under some operating conditions. However, as it turns out, the performance of Recuperated Brayton Cycle should be evaluated based on net output work. When the performance is assessed on the net output work criteria carbon dioxide still proves to be superior to other gases. This work also suggests that piston engines as compressors and expanders may be used instead of rotating turbines since reciprocating pistons have higher isentropic efficiencies.

  15. Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Alberto Benato

    2017-03-01

    Full Text Available Italy is a leading country in the biogas sector. Energy crops and manure are converted into biogas using anaerobic digestion and, then, into electricity using internal combustion engines (ICEs. Therefore, there is an urgent need for improving the efficiency of these engines taking the real operation into account. To this purpose, in the present work, the organic Rankine cycle (ORC technology is used to recover the waste heat contained in the exhaust gases of a 1 MWel biogas engine. The ICE behavior being affected by the biogas characteristics, the ORC unit is designed, firstly, using the ICE nameplate data and, then, with data measured during a one-year monitoring activity. The optimum fluid and the plant configuration are selected in both cases using an “in-house” optimization tool. The optimization goal is the maximization of the net electric power while the working fluid is selected among 115 pure fluids and their mixtures. Results show that a recuperative ORC designed using real data guarantees a 30% higher net electric power than the one designed with ICE nameplate conditions.

  16. Study on an advanced adsorption desalination cycle with evaporator–condenser heat recovery circuit

    KAUST Repository

    Thu, Kyaw

    2011-01-01

    This paper presents the results of an investigation on the efficacy of a silica gel-water based advanced adsorption desalination (AD) cycle with internal heat recovery between the condenser and the evaporator. A mathematical model of the AD cycle was developed and the performance data were compared with the experimental results. The advanced AD cycle is able to produce the specific daily water production (SDWP) of 9.24 m3/tonne of silica gel per day at 70 °C hot water inlet temperature while the corresponding performance ratio (PR) is comparatively high at 0.77. It is found that the cycle can be operational at 50 °C hot water temperature with SDWP 4.3. The SDWP of the advanced cycle is almost twice that of the conventional AD cycle. © 2010 Elsevier Ltd. All rights reserved.

  17. Key Planning Factors for Recovery from a Chemical Warfare Agent Incident

    Science.gov (United States)

    2012-07-01

    GB], Franke, S., Manual of Military Chemistry , Volume 1. Chemistry of Chemical Warfare Agents, Deutscher Militîrverlag: Berlin (East), 1967... Chemistry , Volume 1. Chemistry of Chemical Warfare Agents, Deutscher Militîrverlag: Berlin (East), 1967. Translated from German by U.S. Department of...Response and Recovery Phases A common misconception is that recovery begins after the response phase. Recovery, however, actually begins during

  18. Landslide disturbance: implications for chemical weathering, vegetation and carbon cycling

    Science.gov (United States)

    Milledge, D.; Hilton, R. G.

    2011-12-01

    Landslides disturb physical and ecological systems by periodically stripping away soil and vegetation. This turnover influences the makeup and productivity of vegetation as well as the chemical weathering rate for the soil. Recent research has highlighted these links focusing on landslide magnitude and frequency and calculating turnover on a catchment wide basis. However, landslide probability and therefore turnover is not uniform in space. We investigate the influence of this spatial variability on the frequency distribution of landslide turnover and its implications for: vegetation disturbance, carbon cycling and chemical weathering. We use first synthetic landslide risk distributions then real distributions from the Western Southern Alps and Oregon Coast Range. We use these to generate turnover distributions then compare these with the turnover rate predicted assuming spatially uniform landslide probability. We use published relations to work through the implications for: vegetation disturbance, carbon cycling and chemical weathering. We find that: 1) landslide turnover rates are too slow even in the most active parts of the landscape to chronically disturb the vegetation; 2) the changes to productivity are generally subtle leading to only minor changes in the carbon flux; and 3) landslide related chemical weathering rates are reduced in areas with strongly non-uniform landslide risk distributions.

  19. Fate of recovery boiler smelt nitrogen in the recovery cycle; Soodakattilan sulan typpiyhdisteitten kaeyttaeytyminen talteenottoprosessissa

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Forssen, M.; Backman, R.; Ek, P.; Hulden, S.G.; Kilpinen, P.; Kymaelaeinen, M.; Malm, H. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The purpose of this project is to study the fate of the nitrogen bound in the inorganic smelt after it enters the dissolving tank. Of special interest is to find in what form this nitrogen can be found further down in the recovery process and especially in what form it can be removed from the process. The aim is to clarify if the nitrogen can be a potential problem in the process or if it can become a potential emission. The work is divided into choosing methods for the analysis of different nitrogen species, collection and analysis of mill samples, laboratory studies and theoretical studies on nitrogen chemistry in alkaline solutions and reporting

  20. Monitoring Perceived Stress and Recovery in Relation to Cycling Performance in Female Athletes

    NARCIS (Netherlands)

    Otter, R. T. A.; Brink, M. S.; van der Does, H. T. D.; Lemmink, K. A. P. M.

    The purpose was to investigate perceived stress and recovery related to cycling performance of female athletes over one full year. 20 female athletes ( age, 27 +/- 8 years; VO2max, 50.3 +/- 4.6 mL center dot kg(-1) center dot min(-1)) were measured 8 times in one year to determine perceived stress

  1. Different SEP recovery cycle in adolescent migraineurs with exploding or imploding pain.

    Science.gov (United States)

    Iacovelli, Elisa; Tarantino, Samuela; Capuano, Alessandro; De Luca, Massimiliano; De Ranieri, Cristiana; Vigevano, Federico; Arendt-Nielsen, Lars; Valeriani, Massimiliano

    2013-01-01

    Our aim was to investigate whether migraine adolescents with pain directed inside (imploding pain--IP) and outside (exploding pain--EP) the head may have different levels of cortical excitability underlying their migraineous syndrome. Ten migraine children referring prevalent EP (mean age 14.5 ± 1.4 years, 3 girls, 7 boys), 10 patients with IP (mean age 14.1 ± 2.2 years, 4 girls, 6 boys), and 13 control subjects (mean age 13 ± 1.8 years, 6 males, 7 females) participated to the study. The recovery cycle of the somatosensory evoked potentials to electrical median nerve stimuli at interstimulus intervals of 5, 20, and 40 ms was measured. Anger expression, anxiety, and somatic concerns were investigated in migraine patients. Overall, SEP recovery cycle was shorter in migraineurs than in healthy controls. The recovery cycle of the frontal N30 SEP component was significantly shorter in IP than in EP patients. While among the EP patients those with faster N30 recovery cycle had higher Trait-Anger score, the opposite was found among the IP patients. Our results suggest that the inhibitory mechanisms within the somatosensory cortex are more impaired in IP than in EP migraine adolescents. The pathophysiological difference between IP and EP migraineurs was strengthened also by the opposite correlations between the brain excitability and the anger expression. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  2. Draft report: application of organic Rankine cycle heat recovery systems to diesel powered marine vessels

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-15

    The analysis and results of an investigation of the application of organic Rankine cycle heat recovery systems to diesel-powered marine vessels are described. The program under which this study was conducted was sponsored jointly by the US Energy Research and Development Administration, the US Navy, and the US Maritime Administration. The overall objective of this study was to investigate diesel bottoming energy recovery systems, currently under development by three US concerns, to determine the potential for application to marine diesel propulsion and auxiliary systems. The study primarily focused on identifying the most promising vessel applications (considering vessel type, size, population density, operational duty cycle, etc.) so the relative economic and fuel conservation merits of energy recovery systems could be determined and assessed. Vessels in the current fleet and the projected 1985 fleet rated at 1000 BHP class and above were investigated.

  3. Anthropogenic chemical carbon cycle for a sustainable future.

    Science.gov (United States)

    Olah, George A; Prakash, G K Surya; Goeppert, Alain

    2011-08-24

    Nature's photosynthesis uses the sun's energy with chlorophyll in plants as a catalyst to recycle carbon dioxide and water into new plant life. Only given sufficient geological time, millions of years, can new fossil fuels be formed naturally. The burning of our diminishing fossil fuel reserves is accompanied by large anthropogenic CO(2) release, which is outpacing nature's CO(2) recycling capability, causing significant environmental harm. To supplement the natural carbon cycle, we have proposed and developed a feasible anthropogenic chemical recycling of carbon dioxide. Carbon dioxide is captured by absorption technologies from any natural or industrial source, from human activities, or even from the air itself. It can then be converted by feasible chemical transformations into fuels such as methanol, dimethyl ether, and varied products including synthetic hydrocarbons and even proteins for animal feed, thus supplementing our food chain. This concept of broad scope and framework is the basis of what we call the Methanol Economy. The needed renewable starting materials, water and CO(2), are available anywhere on Earth. The required energy for the synthetic carbon cycle can come from any alternative energy source such as solar, wind, geothermal, and even hopefully safe nuclear energy. The anthropogenic carbon dioxide cycle offers a way of assuring a sustainable future for humankind when fossil fuels become scarce. While biosources can play a limited role in supplementing future energy needs, they increasingly interfere with the essentials of the food chain. We have previously reviewed aspects of the chemical recycling of carbon dioxide to methanol and dimethyl ether. In the present Perspective, we extend the discussion of the innovative and feasible anthropogenic carbon cycle, which can be the basis of progressively liberating humankind from its dependence on diminishing fossil fuel reserves while also controlling harmful CO(2) emissions to the atmosphere. We also

  4. Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Knudsen, Thomas; Larsen, Ulrik; Haglind, Fredrik

    2014-01-01

    The Kalina split-cycle is a thermodynamic process for converting thermal energy into electrical power. It uses an ammonia–water mixture as a working fluid (like a conventional Kalina cycle) and has a varying ammonia concentration during the pre-heating and evaporation steps. This second feature results in an improved match between the heat source and working fluid temperature profiles, decreasing the entropy generation in the heat recovery system. The present work compares the thermodynamic performance of this power cycle with the conventional Kalina process, and investigates the impact of varying boundary conditions by conducting an exergy analysis. The design parameters of each configuration were determined by performing a multi-variable optimisation. The results indicate that the Kalina split-cycle with reheat presents an exergetic efficiency by 2.8% points higher than a reference Kalina cycle with reheat, and by 4.3% points without reheat. The cycle efficiency varies by 14% points for a variation of the exhaust gas temperature of 100 °C, and by 1% point for a cold water temperature variation of 30 °C. This analysis also pinpoints the large irreversibilities in the low-pressure turbine and condenser, and indicates a reduction of the exergy destruction by about 23% in the heat recovery system compared to the baseline cycle. - Highlights: • The thermodynamic performance of the Kalina split-cycle is assessed. • The Kalina split-cycle is compared to the Kalina cycle, with and without reheat. • An exergy analysis is performed to evaluate its thermodynamic performance. • The impact of varying boundary conditions is investigated. • The Kalina split-cycle displays high exergetic efficiency for low- and medium-temperature applications

  5. Thermodynamic modelling of a recompression CO2 power cycle for low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Banik, Shubham; Ray, Satyaki; De, Sudipta

    2016-01-01

    Highlights: • Thermodynamic model for recompression T-CO 2 is developed. • Energetic and exergetic analysis compared with S-CO 2 and Reg. Brayton cycle. • Maximum efficiency of 13.6% is obtained for T-CO 2 cycle. • Optimum recompression ratio of 0.48 is obtained for minimum irreversibility. • Reg. Brayton has better efficiency, T-CO 2 offers minimum irreversibility. - Abstract: Due to the rising prices of conventional fossil fuels, increasing the overall thermal efficiency of a power plant is essential. One way of doing this is waste heat recovery. This recovery is most difficult for low temperature waste heat, below 240 °C, which also covers majority of the waste heat source. Carbon dioxide, with its low critical temperature and pressure, offers an advantage over ozone-depleting refrigerants used in Organic Rankine Cycles (ORCs) and hence is most suitable for the purpose. This paper introduces parametric optimization of a transcritical carbon dioxide (T-CO 2 ) power cycle which recompresses part of the total mass flow of working fluid before entering the precooler, thereby showing potential for higher cycle efficiency. Thermodynamic model for a recompression T-CO 2 power cycle has been developed with waste heat source of 2000 kW and at a temperature of 200 °C. Results obtained from this model are analysed to estimate effects on energetic and exergetic performances of the power cycle with varying pressure and mass recompression ratio. Higher pressure ratio always improves thermodynamic performance of the cycle – both energetic and exergetic. Higher recompression ratio also increases exergetic efficiency of the cycle. However, it increases energy efficiency, only if precooler inlet temperature remains constant. Maximum thermal efficiency of the T-CO 2 cycle with a recompression ratio of 0.26 has been found to be 13.6%. To minimize total irreversibility of the cycle, an optimum ratio of 0.48 was found to be suitable.

  6. Performance investigation on a 4-bed adsorption desalination cycle with internal heat recovery scheme

    KAUST Repository

    Thu, Kyaw

    2016-10-08

    Multi-bed adsorption cycle with the internal heat recovery between the condenser and the evaporator is investigated for desalination application. A numerical model is developed for a 4-bed adsorption cycle implemented with the master-and-slave configuration and the aforementioned internal heat recovery scheme. The present model captures the reversed adsorption/desorption phenomena frequently associated with the unmatched switching periods. Mesoporous silica gel and water vapor emanated from the evaporation of the seawater are employed as the adsorbent and adsorbate pair. The experimental data and investigation for such configurations are reported for the first time at heat source temperatures from 50 °C to 70 °C. The numerical model is validated rigorously and the parametric study is conducted for the performance of the cycle at assorted operation conditions such as hot and cooling water inlet temperatures and the cycle times. The specific daily water production (SDWP) of the present cycle is found to be about 10 m/day per tonne of silica gel for the heat source temperature at 70 °C. Performance comparison is conducted for various types of adsorption desalination cycles. It is observed that the AD cycle with the current configuration provides superior performance whilst is operational at unprecedentedly low heat source temperature as low as 50 °C.

  7. Ecological Indicators of Ecosystem Recovery : Microbial Communities as Ecological Indicators of Ecosystem Recovery Following Chemical Pollution

    OpenAIRE

    Pesce, Stéphane; Ghiglione, Jean-François; Martin-Laurent, Fabrice

    2017-01-01

    ‘Ecosystem recovery’ is a concept that emerged from the need to preserve our environment against increasing contamination from human activity. However, ecological indicators of ecosystem recovery remain scarce, and it is still difficult to assess recovery of ecological processes at relevant spatial and temporal scales. Microbial communities hold key relevance as indicators of ecosystem recovery as they are ubiquitous among diverse ecosystems, respond rapidly to environmental changes, and supp...

  8. A novel split cycle internal combustion engine with integral waste heat recovery

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert; Heikal, Morgan

    2015-01-01

    Highlights: • A novel engine thermodynamic cycle is proposed. • Theoretical analysis is applied to identify the key parameters of the thermodynamic cycle. • The key stages of the split cycle are analysed via one-dimensional modelling work. • The effecting mechanism of the split cycle efficiency is analysed. - Abstract: To achieve a step improvement in engine efficiency, a novel split cycle engine concept is proposed. The engine has separate compression and combustion cylinders and waste heat is recovered between the two. Quasi-isothermal compression of the charge air is realised in the compression cylinder while isobaric combustion of the air/fuel mixture is achieved in the combustion cylinder. Exhaust heat recovery between the compression and combustion chamber enables highly efficient recovery of waste heat within the cycle. Based on cycle analysis and a one-dimensional engine model, the fundamentals and the performance of the split thermodynamic cycle is estimated. Compared to conventional engines, the compression work can be significantly reduced through the injection of a controlled quantity of water in the compression cylinder, lowering the gas temperature during compression. Thermal energy can then be effectively recovered from the engine exhaust in a recuperator between the cooled compressor cylinder discharge air and the exhaust gas. The resulting hot high pressure air is then injected into a combustor cylinder and mixed with fuel, where near isobaric combustion leads to a low combustion temperature and reduced heat transferred from the cylinder wall. Detailed cycle simulation indicates a 32% efficiency improvement can be expected compared to the conventional diesel engines.

  9. Comparative life cycle assessment of alternative strategies for energy recovery from used cooking oil.

    Science.gov (United States)

    Lombardi, Lidia; Mendecka, Barbara; Carnevale, Ennio

    2017-05-15

    The separate collection of Used Cooking Oil (UCO) is gaining popularity through several countries in Europe. An appropriate management of UCO waste stream leads to substantial benefits. In this study, we analyse two different possibilities of UCO energy reuse: the direct feed to a reciprocating internal combustion engine (ICE) for cogeneration purpose, and the processing to generate biodiesel. Concerning biodiesel production, we analyse four among conventional and innovative technologies, characterised by different type and amount of used chemicals, heat and electricity consumptions and yields. We perform a systematic evaluation of environmental benefits and drawbacks by applying life cycle assessment (LCA) analysis to compare the alternatives. For the impact assessment, two methods are selected: the Global Warming Potential (GWP) and Cumulative Exergy Consumption (CExC). Results related only to the processing phases (i.e. not including yet the avoided effects) show that the recovery of UCO in cogeneration plant has in general lower values in terms of environmental impacts than its employment in biodiesel production. When products and co-products substitution are included, the savings obtained by the substitution of conventional diesel production, in the biodiesel cases, are significantly higher than the avoided effects for electricity and heat in the cogeneration case. In particular, by using the UCO in the biodiesel production processes, the savings vary from 41.6 to 54.6 GJ ex per tUCO, and from 2270 to 2860 kg CO 2eq per tUCO for CExC and GWP, respectively. A particular focus is put on sensitivity and uncertainty analyses. Overall, high uncertainty of final results for process impacts is observed, especially for the supercritical methanol process. Low uncertainty values are evaluated for the avoided effects. Including the uncertain character of the impacts, cogeneration scenario and NaOH catalysed process of biodiesel production result to be the most suitable

  10. Chemical footprint: a methodological framework for bridging life cycle assessment and planetary boundaries for chemical pollution.

    Science.gov (United States)

    Sala, Serenella; Goralczyk, Malgorzata

    2013-10-01

    The development and use of footprint methodologies for environmental assessment are increasingly important for both the scientific and political communities. Starting from the ecological footprint, developed at the beginning of the 1990s, several other footprints were defined, e.g., carbon and water footprint. These footprints-even though based on a different meaning of "footprint"-integrate life cycle thinking, and focus on some challenging environmental impacts including resource consumption, CO2 emission leading to climate change, and water consumption. However, they usually neglect relevant sources of impacts, as those related to the production and use of chemicals. This article presents and discusses the need and relevance of developing a methodology for assessing the chemical footprint, coupling a life cycle-based approach with methodologies developed in other contexts, such as ERA and sustainability science. Furthermore, different concepts underpin existing footprint and this could be the case also of chemical footprint. At least 2 different approaches and steps to chemical footprint could be envisaged, applicable at the micro- as well as at the meso- and macroscale. The first step (step 1) is related to the account of chemicals use and emissions along the life cycle of a product, sector, or entire economy, to assess potential impacts on ecosystems and human health. The second step (step 2) aims at assessing to which extent actual emission of chemicals harm the ecosystems above their capability to recover (carrying capacity of the system). The latter step might contribute to the wide discussion on planetary boundaries for chemical pollution: the thresholds that should not be surpassed to guarantee a sustainable use of chemicals from an environmental safety perspective. The definition of what the planetary boundaries for chemical pollution are and how the boundaries should be identified is an on-going scientific challenge for ecotoxicology and ecology. In

  11. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    Science.gov (United States)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  12. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Vadenbo, Carl; Boldrin, Alessio

    2015-01-01

    scrap metals may limit recycling potential, and the utilisation of aggregates may cause the release of toxic substances into the natural environment through leaching. A life cycle assessment (LCA) was applied to a full-scale MSWI bottom ash management and recovery system to identify environmental...... breakeven points beyond which the burdens of the recovery processes outweigh the environmental benefits from valorising metals and mineral aggregates. Experimental data for the quantity and quality of individual material fractions were used as a basis for LCA modelling. For the aggregates, three disposal......, while large savings were obtained in terms of non-toxic impacts. However, by varying the substitution rate for aluminium recycling between 0.35 and 0.05 (on the basis of aluminium scrap and secondary aluminium alloy market value), it was found that the current recovery system might reach a breakeven...

  13. Analysis of material recovery facilities for use in life-cycle assessment

    OpenAIRE

    Pressley, Phillip N.; Levis, James W.; Damgaard, Anders; Barlaz, Morton A.; DeCarolis, Joseph F.

    2015-01-01

    Insights derived from life-cycle assessment of solid waste management strategies depend critically on assumptions, data, and modeling at the unit process level. Based on new primary data, a process model was developed to estimate the cost and energy use associated with material recovery facilities (MRFs), which are responsible for sorting recyclables into saleable streams and as such represent a key piece of recycling infrastructure. The model includes four modules, each with a different proc...

  14. Exergy analysis of the Szewalski cycle with a waste heat recovery system

    Science.gov (United States)

    Kowalczyk, Tomasz; Ziółkowski, Paweł; Badur, Janusz

    2015-09-01

    The conversion of a waste heat energy to electricity is now becoming one of the key points to improve the energy efficiency in a process engineering. However, large losses of a low-temperature thermal energy are also present in power engineering. One of such sources of waste heat in power plants are exhaust gases at the outlet of boilers. Through usage of a waste heat regeneration system it is possible to attain a heat rate of approximately 200 MWth, under about 90 °C, for a supercritical power block of 900 MWel fuelled by a lignite. In the article, we propose to use the waste heat to improve thermal efficiency of the Szewalski binary vapour cycle. The Szewalski binary vapour cycle provides steam as the working fluid in a high temperature part of the cycle, while another fluid - organic working fluid - as the working substance substituting conventional steam over the temperature range represented by the low pressure steam expansion. In order to define in detail the efficiency of energy conversion at various stages of the proposed cycle the exergy analysis was performed. The steam cycle for reference conditions, the Szewalski binary vapour cycle as well as the Szewalski hierarchic vapour cycle cooperating with a system of waste heat recovery have been comprised.

  15. Exergy analysis of the Szewalski cycle with a waste heat recovery system

    Directory of Open Access Journals (Sweden)

    Kowalczyk Tomasz

    2015-09-01

    Full Text Available The conversion of a waste heat energy to electricity is now becoming one of the key points to improve the energy efficiency in a process engineering. However, large losses of a low-temperature thermal energy are also present in power engineering. One of such sources of waste heat in power plants are exhaust gases at the outlet of boilers. Through usage of a waste heat regeneration system it is possible to attain a heat rate of approximately 200 MWth, under about 90 °C, for a supercritical power block of 900 MWel fuelled by a lignite. In the article, we propose to use the waste heat to improve thermal efficiency of the Szewalski binary vapour cycle. The Szewalski binary vapour cycle provides steam as the working fluid in a high temperature part of the cycle, while another fluid – organic working fluid – as the working substance substituting conventional steam over the temperature range represented by the low pressure steam expansion. In order to define in detail the efficiency of energy conversion at various stages of the proposed cycle the exergy analysis was performed. The steam cycle for reference conditions, the Szewalski binary vapour cycle as well as the Szewalski hierarchic vapour cycle cooperating with a system of waste heat recovery have been comprised.

  16. Preliminary Study on Effect of Chemical Composition Alteration on Elastic Recovery and Stress Recovery of Nitrile Gloves

    Directory of Open Access Journals (Sweden)

    Tan Kai Yang

    2018-01-01

    Full Text Available Nitrile gloves are widely used in the medical and automobile field due to its superiority in hypo-allergic component and chemical resistance over natural latex gloves. However, poor elastic recovery of nitrile glove to compressive force also creates an aesthetic issue for customers with high levels of wrinkling after removing from glove box. This paper demonstrates the preliminary study on the varies chemical composition such as crosslinking agents, sulphur and zinc oxide, the accelerator agent added during curing process, and the rubber filler Titanium Dioxide, on the elastic recovery and stress relaxation in nitrile gloves manufacturing. These chemical were studied at different concentration level comparing the high and low level versus the normal production range. Due to the inconsistency in the analysis technique on the surface imaging, the elastic recovery result was unable to be quantified and was not conclusive at this point. The cross linking agents, sulphur and zinc oxide, and the accelerator agent, played a significant role in the mechanical strength of the gloves. Increment of these chemicals result in higher tensile strength, but a reduction in the elasticity of the materials in which causes a lesser elongation at break percentage for the gloves. Both cross-linkers demonstrate different behaviour where higher sulphur content, provide higher stress relaxation (SR% yet zinc oxide shows otherwise.

  17. Successfully breaking a 20-year cycle of hospitalizations with recovery-oriented cognitive therapy for schizophrenia.

    Science.gov (United States)

    Grant, Paul M; Reisweber, Jarrod; Luther, Lauren; Brinen, Aaron P; Beck, Aaron T

    2014-05-01

    Individuals with severe and persistent schizophrenia can present challenges (e.g., difficulties sustaining motivation and conducting information processing tasks) to the implementation of recovery-oriented care. We present a successful application of recovery-oriented cognitive therapy (CT-R), a fusion of the spirit and principles of the recovery movement with the evidence base and know-how of cognitive therapy, that helped an individual with schizophrenia move along her recovery path by overcoming specific obstacles, including a 20-year cycle of hospitalizations (five per year), daily phone calls to local authorities, threatening and berating "voices," the belief that she would be killed at any moment, and social isolation. Building on strengths, treatment included collaboratively identifying meaningful personal goals that were broken down into successfully accomplishable tasks (e.g., making coffee) that disconfirmed negative beliefs and replaced the phone calling. At the end of treatment and at a 6-month follow-up, the phone calls had ceased, psychosocial functioning and neurocognitive performance had increased, and avolition and positive symptoms had decreased. She was not hospitalized once in 24 months. Results suggest that individuals with schizophrenia have untapped potential for recovery that can be mobilized through individualized, goal-focused psychosocial interventions. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. Bistability in the chemical master equation for dual phosphorylation cycles

    Science.gov (United States)

    Bazzani, Armando; Castellani, Gastone C.; Giampieri, Enrico; Remondini, Daniel; Cooper, Leon N.

    2012-06-01

    Dual phospho/dephosphorylation cycles, as well as covalent enzymatic-catalyzed modifications of substrates are widely diffused within cellular systems and are crucial for the control of complex responses such as learning, memory, and cellular fate determination. Despite the large body of deterministic studies and the increasing work aimed at elucidating the effect of noise in such systems, some aspects remain unclear. Here we study the stationary distribution provided by the two-dimensional chemical master equation for a well-known model of a two step phospho/dephosphorylation cycle using the quasi-steady state approximation of enzymatic kinetics. Our aim is to analyze the role of fluctuations and the molecules distribution properties in the transition to a bistable regime. When detailed balance conditions are satisfied it is possible to compute equilibrium distributions in a closed and explicit form. When detailed balance is not satisfied, the stationary non-equilibrium state is strongly influenced by the chemical fluxes. In the last case, we show how the external field derived from the generation and recombination transition rates, can be decomposed by the Helmholtz theorem, into a conservative and a rotational (irreversible) part. Moreover, this decomposition allows to compute the stationary distribution via a perturbative approach. For a finite number of molecules there exists diffusion dynamics in a macroscopic region of the state space where a relevant transition rate between the two critical points is observed. Further, the stationary distribution function can be approximated by the solution of a Fokker-Planck equation. We illustrate the theoretical results using several numerical simulations.

  19. Performance investigation of advanced adsorption desalination cycle with condenser-evaporator heat recovery scheme

    KAUST Repository

    Thu, Kyaw

    2013-01-01

    Energy or heat recovery schemes are keys for the performance improvement of any heat-activated cycles such as the absorption and adsorption cycles. We present two innovative heat recovery schemes between the condensing and evaporating units of an adsorption desalination (AD) cycle. By recovering the latent heat of condenser and dumping it into the evaporative process of the evaporator, it elevates the evaporating temperature and hence the adsorption pressure seen by the adsorbent. From isotherms, this has an effect of increasing the vapour uptake. In the proposed configurations, one approach is simply to have a run-about water circuit between the condenser and the evaporator and a pump is used to achieve the water circulation. This run-around circuit is a practical method for retrofitting purposes. The second method is targeted towards a new AD cycle where an encapsulated condenser-evaporator unit is employed. The heat transfer between the condensing and evaporative vapour is almost immediate and the processes occur in a fully integrated vessel, thereby minimizing the heat transfer resistances of heat exchangers. © 2013 Desalination Publications.

  20. A comprehensive study on waste heat recovery from internal combustion engines using organic Rankine cycle

    Directory of Open Access Journals (Sweden)

    Tahani Mojtaba

    2013-01-01

    Full Text Available There are a substantial amount of waste heat through exhaust gas and coolant of an Internal Combustion Engine. Organic Rankine cycle is one of the opportunities in Internal Combustion Engines waste heat recovery. In this study, two different configurations of Organic Rankine cycle with the capability of simultaneous waste heat recovery from exhaust gas and coolant of a 12L diesel engine were introduced: Preheat configuration and Two-stage. First, a parametric optimization process was performed for both configurations considering R-134a, R-123, and R-245fa as the cycle working fluids. The main objective in optimization process was maximization of the power generation and cycle thermal efficiency. Expander inlet pressure and preheating temperature were selected as design parameters. Finally, parameters like hybrid generated power and reduction of fuel consumption were studied for both configurations in different engine speeds and full engine load. It was observed that using R-123 as the working fluid, the best performance in both configurations was obtained and as a result the 11.73% and 13.56% reduction in fuel consumption for both preheat and Two-stage configurations were found respectively.

  1. Performance analysis of double organic Rankine cycle for discontinuous low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Wang Dongxiang; Ling Xiang; Peng Hao

    2012-01-01

    This research proposes a double organic Rankine cycle for discontinuous waste heat recovery. The optimal operation conditions of several working fluids have been calculated by a procedure employing MATLAB and REFPROP. The influence of outlet temperature of heat source on the net power output, thermal efficiency, power consumption, mass flow rate, expander outlet temperature, cycle irreversibility and exergy efficiency at a given pinch point temperature difference (PPTD) has been analyzed. Pinch point analysis has also been employed to obtain a thermodynamic understanding of the ORC performance. Of all the working fluids investigated, some performances between each working fluid are rather similar. For a fixed low temperature heat source, the optimal operation condition should be mainly determined by the heat carrier of the heat source, and working fluids have limited influence. Lower outlet temperature of heat source does not always mean more efficient energy use. Acetone exhibits the least exergy destruction, while R245fa possesses the maximal exergy efficiency at a fixed PPTD. Wet fluids exhibit lower thermal efficiency than the others with the increasing of PPTD at a fixed outlet temperature of heat source. Dry and isentropic fluids offer attractive performance. - Highlights: ► We propose a double organic Rankine cycle for discontinuous waste heat recovery. ► Performance of organic Rankine cycle (ORC) is analyzed by pinch point analysis. ► The heat carrier of the heat source determines ORC optimal operation condition. ► Design of ORC heat exchangers prefers lower pinch point temperature difference.

  2. Life cycle assessment as development and decision support tool for wastewater resource recovery technology.

    Science.gov (United States)

    Fang, Linda L; Valverde-Pérez, Borja; Damgaard, Anders; Plósz, Benedek Gy; Rygaard, Martin

    2016-01-01

    Life cycle assessment (LCA) has been increasingly used in the field of wastewater treatment where the focus has been to identify environmental trade-offs of current technologies. In a novel approach, we use LCA to support early stage research and development of a biochemical system for wastewater resource recovery. The freshwater and nutrient content of wastewater are recognized as potential valuable resources that can be recovered for beneficial reuse. Both recovery and reuse are intended to address existing environmental concerns, for example, water scarcity and use of non-renewable phosphorus. However, the resource recovery may come at the cost of unintended environmental impacts. One promising recovery system, referred to as TRENS, consists of an enhanced biological phosphorus removal and recovery system (EBP2R) connected to a photobioreactor. Based on a simulation of a full-scale nutrient and water recovery system in its potential operating environment, we assess the potential environmental impacts of such a system using the EASETECH model. In the simulation, recovered water and nutrients are used in scenarios of agricultural irrigation-fertilization and aquifer recharge. In these scenarios, TRENS reduces global warming up to 15% and marine eutrophication impacts up to 9% compared to conventional treatment. This is due to the recovery and reuse of nutrient resources, primarily nitrogen. The key environmental concerns obtained through the LCA are linked to increased human toxicity impacts from the chosen end use of wastewater recovery products. The toxicity impacts are from both heavy metals release associated with land application of recovered nutrients and production of AlCl3, which is required for advanced wastewater treatment prior to aquifer recharge. Perturbation analysis of the LCA pinpointed nutrient substitution and heavy metals content of algae biofertilizer as critical areas for further research if the performance of nutrient recovery systems such as

  3. Transformation products in the life cycle impact assessment of chemicals.

    Science.gov (United States)

    van Zelm, Rosalie; Huijbregts, Mark A J; van de Meent, Dik

    2010-02-01

    The current life cycle impact assessment (LCIA) of chemicals focuses only on the fate and effects of the parent compound, neglecting the potential impact of transformation products. Here, we assess the importance of including the potential impact of transformation products in the calculation of characterization factors (CF). The developed method is applied to freshwater ecotoxicity for 15 pesticides and perchloroethylene, which are all known to have potentially persistent transformation products. The inclusion of transformation products resulted in a median increase in CF that varied from negligible to more than 5 orders of magnitude. This increase, however, can be highly uncertain, particularly due to a lack of toxicity data for transformation products and a lack of mode of action-specific data. We show in a case study that replacement of atrazine with other pesticides for application on corn results in a median impact score of 2 orders of magnitude lower when the fate and effects of only the parent compounds are included. When transformation products are included, the reduction in median impact score would likely be lower (less than 1 order of magnitude). An uncertainty analysis showed that the difference in impact scores of atrazine and the atrazine replacements was not statistically significant when only the parent chemical was considered. When transformation products were included, the uncertainty in impact scores was even greater.

  4. Electrodialytic recovery of phosphorus from chemically precipitated sewage sludge ashes

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    Phosphorus scarcity requires improved recover and reuse of urban sources; the recycling of this nutrient from sewage sludge has become increasingly important in the last years. Using an innovative electrodialytic process, the present study shows the potential for P separation from Fe and Al...... precipitated sewage sludge ash using this technique, with a recovery rate of around 70%. Furthermore, heavy metals were removed from the phosphorous fraction, producing a pure and safe phosphorus source in the end....

  5. Electrodialytic recovery of phosphorus from chemically precipitated sewage sludge ashes

    DEFF Research Database (Denmark)

    Viader, Raimon Parés; Erland Jensen, Pernille; Ottosen, Lisbeth M.

    Phosphorus scarcity requires improved recover and reuse of urban sources; the recycling of this nutrient from sewage sludge has become increasingly important in the last years. Using an innovative electrodialytic process, the present study shows the potential for P separation from Fe and Al...... precipitated sewage sludge ash using this technique, with a recovery rate of around 70%. Furthermore, heavy metals were removed from the phosphorous fraction, producing a pure and safe phosphorus source in the end...

  6. Recovery from chemical, biological, and radiological incidents. Critical infrastructure and economic impact considerations

    Energy Technology Data Exchange (ETDEWEB)

    Franco, David Oliver [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Yang, Lynn I. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hammer, Ann E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2012-06-01

    To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

  7. Factors influencing the life cycle burdens of the recovery of energy from residual municipal waste.

    Science.gov (United States)

    Burnley, Stephen; Coleman, Terry; Peirce, Adam

    2015-05-01

    A life cycle assessment was carried out to assess a selection of the factors influencing the environmental impacts and benefits of incinerating the fraction of municipal waste remaining after source-separation for reuse, recycling, composting or anaerobic digestion. The factors investigated were the extent of any metal and aggregate recovery from the bottom ash, the thermal efficiency of the process, and the conventional fuel for electricity generation displaced by the power generated. The results demonstrate that incineration has significant advantages over landfill with lower impacts from climate change, resource depletion, acidification, eutrophication human toxicity and aquatic ecotoxicity. To maximise the benefits of energy recovery, metals, particularly aluminium, should be reclaimed from the residual bottom ash and the energy recovery stage of the process should be as efficient as possible. The overall environmental benefits/burdens of energy from waste also strongly depend on the source of the power displaced by the energy from waste, with coal giving the greatest benefits and combined cycle turbines fuelled by natural gas the lowest of those considered. Regardless of the conventional power displaced incineration presents a lower environmental burden than landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tianqi He

    2016-04-01

    Full Text Available In this study, two systems are brought forward to recover the waste heat of a proton exchange membrane fuel cell (PEMFC, which are named the organic Rankine cycle (ORC, and heat pump (HP combined organic Rankine cycle (HPORC. The performances of both systems are simulated on the platform of MATLAB with R123, R245fa, R134a, water, and ethanol being selected as the working fluid, respectively. The results show that, for PEMFC where operating temperature is constantly kept at 60 °C, there exists an optimum working temperature for each fluid in ORC and HPORC. In ORC, the maximal net power can be achieved with R245fa being selected as the working fluid. The corresponding thermal efficiency of the recovery system is 4.03%. In HPORC, the maximal net power can be achieved with water being selected in HP and R123 in ORC. The thermal efficiency of the recovery system increases to 4.73%. Moreover, the possibility of using ORC as the cooling system of PEMFC is also studied. The heat released from PEMFC stack is assumed to be wholly recovered by the ORC or HPORC system. The results indicate that the HPORC system is much more feasible for the cooling system of a PEMFC stack, since the heat recovery ability can be promoted due to the presence of HP.

  9. Life cycle assessment as development and decision support tool for wastewater resource recovery technology

    DEFF Research Database (Denmark)

    Fang, Linda L.; Valverde Perez, Borja; Damgaard, Anders

    2016-01-01

    Life cycle assessment (LCA) has been increasingly used in the field of wastewater treatment where the focus has been to identify environmental trade-offs of current technologies. In a novel approach, we use LCA to support early stage research and development of a biochemical system for wastewater......, TRENS reduces global warming up to 15% and marine eutrophication impacts up to 9% compared to conventional treatment. This is due to the recovery and reuse of nutrient resources, primarily nitrogen. The key environmental concerns obtained through the LCA are linked to increased human toxicity impacts...... of the LCA pinpointed nutrient substitution and heavy metals content of algae biofertilizer as critical areas for further research if the performance of nutrient recovery systems such as TRENS is to be better characterized. Our study provides valuable feedback to the TRENS developers and identifies...

  10. Arsenic control during aquifer storage recovery cycle tests in the Floridan Aquifer.

    Science.gov (United States)

    Mirecki, June E; Bennett, Michael W; López-Baláez, Marie C

    2013-01-01

    Implementation of aquifer storage recovery (ASR) for water resource management in Florida is impeded by arsenic mobilization. Arsenic, released by pyrite oxidation during the recharge phase, sometimes results in groundwater concentrations that exceed the 10 µg/L criterion defined in the Safe Drinking Water Act. ASR was proposed as a major storage component for the Comprehensive Everglades Restoration Plan (CERP), in which excess surface water is stored during the wet season, and then distributed during the dry season for ecosystem restoration. To evaluate ASR system performance for CERP goals, three cycle tests were conducted, with extensive water-quality monitoring in the Upper Floridan Aquifer (UFA) at the Kissimmee River ASR (KRASR) pilot system. During each cycle test, redox evolution from sub-oxic to sulfate-reducing conditions occurs in the UFA storage zone, as indicated by decreasing Fe(2+) /H2 S mass ratios. Arsenic, released by pyrite oxidation during recharge, is sequestered during storage and recovery by co-precipitation with iron sulfide. Mineral saturation indices indicate that amorphous iron oxide (a sorption surface for arsenic) is stable only during oxic and sub-oxic conditions of the recharge phase, but iron sulfide (which co-precipitates arsenic) is stable during the sulfate-reducing conditions of the storage and recovery phases. Resultant arsenic concentrations in recovered water are below the 10 µg/L regulatory criterion during cycle tests 2 and 3. The arsenic sequestration process is appropriate for other ASR systems that recharge treated surface water into a sulfate-reducing aquifer. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  11. Activity and recovery cycles of National Rugby League matches involving higher and lower ranked teams.

    Science.gov (United States)

    Gabbett, Tim J

    2013-06-01

    This study investigated the influence of ladder position on ball-in-play and recovery periods in elite National Rugby League (NRL) competitive matches. Video recordings of 192 NRL matches and 18 NRL finals matches played over 2 competitive seasons were coded for activity and recovery cycles. Time when the ball was continuously in play was considered activity, whereas any stoppages during the match (e.g., for scrums, penalties, line drop outs, tries, and video referee decisions) were considered recovery. In comparison to matches involving lower standard teams, there was a greater proportion (effect size [ES] = 0.37-0.67) of long duration (>91 seconds) and a smaller proportion (ES = 0.49-0.68) of short duration (teams were competing against other Top 4 teams. No meaningful differences were found between teams of different ladder positions for the proportion of short (ES = 0.04-0.16) and long (ES = 0.06-0.28) recovery periods. In comparison to fixture matches involving the top 4 teams, finals matches had a smaller proportion (ES = 0.56) of long duration activity periods, and a greater proportion (ES = 0.54) of short duration activity periods. Only small differences were found between finals matches and matches involving the Top 4 teams for the proportion of short (ES = 0.42) and long (ES = 0.41) recovery periods. These findings suggest that the competitive advantage of the best NRL teams is closely linked to their ability to maintain a higher playing intensity than less successful teams. Furthermore, long ball-in-play periods in high-standard fixture matches (i.e., involving the top 4 teams) ensure that players are adequately prepared for the ball-in-play demands of finals matches.

  12. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash.

    Science.gov (United States)

    Allegrini, Elisa; Vadenbo, Carl; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2015-03-15

    Bottom ash, the main solid output from municipal solid waste incineration (MSWI), has significant potential for the recovery of resources such as scrap metals and aggregates. The utilisation of these resources ideally enables natural resources to be saved. However, the quality of the recovered scrap metals may limit recycling potential, and the utilisation of aggregates may cause the release of toxic substances into the natural environment through leaching. A life cycle assessment (LCA) was applied to a full-scale MSWI bottom ash management and recovery system to identify environmental breakeven points beyond which the burdens of the recovery processes outweigh the environmental benefits from valorising metals and mineral aggregates. Experimental data for the quantity and quality of individual material fractions were used as a basis for LCA modelling. For the aggregates, three disposal routes were compared: landfilling, road sub-base and aggregate in concrete, while specific leaching data were used as the basis for evaluating toxic impacts. The recovery and recycling of aluminium, ferrous, stainless steel and copper scrap were considered, and the importance of aluminium scrap quality, choice of marginal energy technologies and substitution rates between primary and secondary aluminium, stainless steel and ferrous products, were assessed and discussed. The modelling resulted in burdens to toxic impacts associated with metal recycling and leaching from aggregates during utilisation, while large savings were obtained in terms of non-toxic impacts. However, by varying the substitution rate for aluminium recycling between 0.35 and 0.05 (on the basis of aluminium scrap and secondary aluminium alloy market value), it was found that the current recovery system might reach a breakeven point between the benefits of recycling and energy expended on sorting and upgrading the scrap. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Cycle-slip-less low-complexity phase recovery algorithm for coherent optical receivers.

    Science.gov (United States)

    Rozental, Valery Nobl; Kong, Deming; Foo, Benjamin; Corcoran, Bill; Lowery, Arthur James

    2017-09-15

    We propose and experimentally validate a blind phase recovery algorithm based on tracking low-frequency components of the phase noise, which we call "filtered carrier-phase estimation (F-CPE)." Tracking only the low-frequency components allows F-CPE to reduce the computational complexity by using a frequency-domain equalizer and to simplify the partitioning of a 16 quadrature amplitude modulation (16QAM) constellation. Further, this approach eliminates cycle slips by suppressing the impact of amplified spontaneous emission on phase noise estimation. The experimental results demonstrate cycle-slip-free operation for 15 and 32 GBd 16QAM signals. Additionally, the proposed method showed similar or better sensitivity compared with the blind-phase-search algorithm, near standard forward error correction thresholds of modern wavelength division multiplexing systems.

  14. Immersion with menthol improves recovery between two cycling exercises in hot and humid environment.

    Science.gov (United States)

    Rinaldi, Kévin; Tran Trong, Than; Riera, Florence; Appel, Katharina; Hue, Olivier

    2018-03-13

    Endurance exercise performance is impaired in a hot and humid environment. This study compared the effects of cold water immersion, with (CMWI) and without (CWI) menthol, on the recovery of cycling performance. Eight heat-acclimatized cyclists (24.1 ± 4.4 years; 65.3 ± 5.2 kg) performed two randomized sessions, each consisting of a 20-min cycling trial (T1) followed by 10 min of immersion during recovery and then a second 20-min cycling trial (T2). Mean power output (PO) and perceived exertion (RPE) were recorded for both trials. Rectal and skin temperatures (Trec and Tskin) were measured before and immediately after T1, immersion, and T2. Perceived thermal sensation (TS) and comfort (TC) were measured immediately after T1 and T2. Power output was significantly improved in T2 compared with T1 in the CMWI condition (+15.6%). Performance did not change in the CWI condition. After immersion, Trec was lower in CWI (-1.17°C) than in CMWI (-0.6°C). TS decreased significantly after immersion in both conditions. This decline was significantly more pronounced in CMWI (5.9 ± 1 to 3.6 ± 0.5) than in CWI (5.6 ± 0.9 to 4.4 ± 1.2). In CMWI, RPE was significantly higher in T1 (6.57 ± 0.9) than in T2 (5.14 ± 1.25). However there was no difference in TC. This study suggests that menthol immersion probably (1) improves the performance of a repeated 20-min cycling bout, (2) decreases TS, and (3) impairs thermoregulation processes.

  15. Biological responses to the chemical recovery of acidified fresh waters in the UK

    International Nuclear Information System (INIS)

    Monteith, D.T.; Hildrew, A.G.; Flower, R.J.; Raven, P.J.; Beaumont, W.R.B.; Collen, P.; Kreiser, A.M.; Shilland, E.M.; Winterbottom, J.H.

    2005-01-01

    We report biological changes at several UK Acid Waters Monitoring Network lakes and streams that are spatially consistent with the recovery of water chemistry induced by reductions in acid deposition. These include trends toward more acid-sensitive epilithic diatom and macroinvertebrate assemblages, an increasing proportional abundance of macroinvertebrate predators, an increasing occurrence of acid-sensitive aquatic macrophyte species, and the recent appearance of juvenile (<1 year old) brown trout in some of the more acidic flowing waters. Changes are often shown to be directly linked to annual variations in acidity. Although indicative of biological improvement in response to improving water chemistry, 'recovery' in most cases is modest and very gradual. While specific ecological recovery endpoints are uncertain, it is likely that physical and biotic interactions are influencing the rate of recovery of certain groups of organisms at particular sites. - Recently observed changes in the species composition of UK lakes and streams are consistent with chemical recovery from acidification

  16. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    OpenAIRE

    P.-H. Rao; W.-Q. Zhang; W. Yao; A.-Y. Zhu; J.-L. Xia; Y.-F. Tan; T.-Z. Liu

    2015-01-01

    Carboxymethyl cellulose (CMC) is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD) and salinity (>10 %), which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover val...

  17. Recovery of useful chemicals from palm oil mill wastewater

    Science.gov (United States)

    Ratanaporn, Yuangsawad; Duangkamol, Na-Ranong; Teruoki, Tago; Takao, Masuda

    2017-11-01

    A two-step process consisting of pyrolysis of dried sludge and catalytic upgrading of pyrolysed liquid was proposed. Wastewater from a palm oil mill was separated to solid cake and liquid by filtration. The solid cake was dried and pyrolysed at 773 K. Liquid product obtained from the pyrolysis had two immiscible aqueous and oil phases (PL-A and PL-O). Identification of chemicals in PL-A and PL-O indicated that both phases contained various chemicals with unsaturated bonds, such as carboxylic acids and alcohols, however, most of the chemicals could not be identified. Catalytic upgrading of PL-A and PL-O over ZrO2·FeOx were separately performed using a fixed bed reactor at various conditions, T = 513-723 K and mass of catalyst to feed rate = 0.25-10 h. The main components in the liquid products of PL-A upgrading were methanol and acetone whereas they were acetone and phenol in the case of PL-O upgrading. More than 15% of carbon in raw material was deposited on the catalyst. To reduce the carbon deposition, the used catalyst was treated with air at 823 K. This simple treatment could reasonably regenerate the catalyst only for the case of PL-A catalytic upgrading.

  18. System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Nguyen, Tuong-Van; Knudsen, Thomas

    2014-01-01

    change characteristics of the ammonia-water working fluid. The present study investigates a unique type of Kalina process called the Split-cycle, applied to the exhaust heat recovery from large marine engines. In the Split-cycle, the working fluid concentration can be changed during the evaporation...

  19. Second law analysis of novel working fluid pairs for waste heat recovery by the Kalina cycle

    International Nuclear Information System (INIS)

    Eller, Tim; Heberle, Florian; Brüggemann, Dieter

    2017-01-01

    The organic Rankine cycle (ORC) and the Kalina cycle (KC) are potential thermodynamic concepts for decentralized power generation from industrial waste heat at a temperature level below 500 °C. The aim of this work is to investigate in detail novel zeotropic mixtures as working fluid for the KC and compare to sub- and supercritical ORC based on second law efficiency. Heat source temperature is varied between 200 °C and 400 °C. The results show that second law efficiency of KC can be increased by applying alcohol/alcohol mixtures as working fluid instead of ammonia/water mixtures; especially for heat source temperatures above 250 °C. Efficiency increase is in the range of 16% and 75%. Despite this efficiency improvements, ORC with zeotropic mixtures in sub- and supercritical operation mode proves to be superior to KC in the examined temperature range. Second law efficiency is up to 13% higher than for KC. A maximum second law efficiency of 59.2% is obtained for supercritical ORC with benzene/toluene 36/64 at 400 °C heat source temperature. The higher level of efficiency and the lower complexity of ORC in comparison to KC indicate that ORC with zeotropic mixtures offers the greater potential for waste heat recovery. - Highlights: • Kalina Cycle with novel alcohol mixtures as working fluid is investigated. • Results are compared to ammonia/water-Kalina Cycle and ORC. • Second law efficiency of Kalina Cycle can be increased by novel alcohol mixtures. • Efficiency increase is in the range of 16% and 75%. • ORC with zeotropic mixtures proves to be superior to Kalina Cycle.

  20. The profile of the recovery cycle in human primary and secondary somatosensory cortex: a magnetoencephalography study.

    Science.gov (United States)

    Hamada, Yasukazu; Otsuka, So; Okamoto, Takashi; Suzuki, Ryoji

    2002-11-01

    To estimate the lifetime of sensory memory in human primary (SI) and secondary (SII) somatosensory cortex with a view to furthering our understanding of the roles played by these cortices in the processing of tactile information. Somatosensory evoked fields (SEFs) were recorded following trains of 5 electrical pulses applied to the right median nerve at the wrist using a whole-head 80 channel magnetoencephalography (MEG) system. Recordings were acquired for trains of pulses with differing interstimulus intervals (ISIs) occurring at 100, 200, 300, 400 and 500 ms. The profile of SEF intensities for the different ISIs provided an estimate of the recovery cycle of evoked neuronal activity, and the time constant of the exponential curve fitted to the recovery cycle was calculated to obtain a putative measure of the lifetime of somatic sensory memory in SI and SII. The estimated time constants were 0.11+/-0.06 s (mean+/-SD) in SI and 0.82+/-0.34 s in SII. The mean time constant in SII was significantly longer than that in SI (Student's paired t test: P=0.021; analysis of variance: F(1,3)=19.7, P=0.021). These data indicate that the lifetime of somatic sensory memory is of longer duration in higher order cortical areas than in primary sensory cortex in the somatosensory information processing system.

  1. Solar-generated steam for oil recovery: Reservoir simulation, economic analysis, and life cycle assessment

    International Nuclear Information System (INIS)

    Sandler, Joel; Fowler, Garrett; Cheng, Kris; Kovscek, Anthony R.

    2014-01-01

    Highlights: • Integrated assessment of solar thermal enhanced oil recovery (TEOR). • Analyses of reservoir performance, economics, and life cycle factors. • High solar fraction scenarios show economic viability for TEOR. • Continuous variable-rate steam injection meets the benchmarks set by conventional steam flood. - Abstract: The viability of solar thermal steam generation for thermal enhanced oil recovery (TEOR) in heavy-oil sands was evaluated using San Joaquin Valley, CA data. The effectiveness of solar TEOR was quantified through reservoir simulation, economic analysis, and life-cycle assessment. Reservoir simulations with continuous but variable rate steam injection were compared with a base-case Tulare Sand steamflood project. For equivalent average injection rates, comparable breakthrough times and recovery factors of 65% of the original oil in place were predicted, in agreement with simulations in the literature. Daily cyclic fluctuations in steam injection rate do not greatly impact recovery. Oil production rates do, however, show seasonal variation. Economic viability was established using historical prices and injection/production volumes from the Kern River oil field. For comparison, this model assumes that present day steam generation technologies were implemented at TEOR startup in 1980. All natural gas cogeneration and 100% solar fraction scenarios had the largest and nearly equal net present values (NPV) of $12.54 B and $12.55 B, respectively. Solar fraction refers to the steam provided by solar steam generation. Given its large capital cost, the 100% solar case shows the greatest sensitivity to discount rate and no sensitivity to natural gas price. Because there are very little emissions associated with day-to-day operations from the solar thermal system, life-cycle emissions are significantly lower than conventional systems even when the embodied energy of the structure is considered. We estimate that less than 1 g of CO 2 /MJ of refined

  2. An improved CO2-based transcritical Rankine cycle (CTRC) used for engine waste heat recovery

    International Nuclear Information System (INIS)

    Shu, Gequn; Shi, Lingfeng; Tian, Hua; Li, Xiaoya; Huang, Guangdai; Chang, Liwen

    2016-01-01

    Highlights: • Propose an improved CTRC system (PR-CTRC) for engine waste heat recovery. • The PR-CTRC achieves a significant increase in thermodynamic performance. • The PR-CTRC possesses a strong coupling capability for high and low grade waste heat. • The PR-CTRC uses smaller turbine design parameters than ORC systems. • Total cooling load analysis of combined engine and recovery system was conducted. - Abstract: CO 2 -based transcritical Rankine cycle (CTRC) is a promising technology for the waste heat recovery of an engine considering its safety and environment friendly characteristics, which also matchs the high temperature of the exhaust gas and satisfies the miniaturization demand of recovery systems. But the traditional CTRC system with a basic configuration (B-CTRC) has a poor thermodynamic performance. This paper introduces an improved CTRC system containing both a preheater and regenerator (PR-CTRC), for recovering waste heat in exhaust gas and engine coolant of an engine, and compares its performance with that of the B-CTRC system and also with that of the traditional excellent Organic Rankine Cycle (ORC) systems using R123 as a working fluid. The utilization rate of waste heat, total cooling load, net power output, thermal efficiency, exergy loss, exergy efficiency and component size have been investigated. Results show that, the net power output of the PR-CTRC could reach up to 9.0 kW for a 43.8 kW engine, which increases by 150% compared with that of the B-CTRC (3.6 kW). The PR-CTRC also improves the thermal efficiency and exergy efficiency of the B-CTRC, with increases of 184% and 227%, respectively. Compared with the ORC system, the PR-CTRC shows the significant advantage of highly recycling the exhaust gas and engine coolant simultaneously due to the special property of supercritical CO 2 ’s specific heat capacity. The supercritical property of CO 2 also generates a better heat transfer and flowing performances. Meanwhile, the PR

  3. Resource recovery from residual household waste: An application of exergy flow analysis and exergetic life cycle assessment.

    Science.gov (United States)

    Laner, David; Rechberger, Helmut; De Soete, Wouter; De Meester, Steven; Astrup, Thomas F

    2015-12-01

    Exergy is based on the Second Law of thermodynamics and can be used to express physical and chemical potential and provides a unified measure for resource accounting. In this study, exergy analysis was applied to four residual household waste management scenarios with focus on the achieved resource recovery efficiencies. The calculated exergy efficiencies were used to compare the scenarios and to evaluate the applicability of exergy-based measures for expressing resource quality and for optimizing resource recovery. Exergy efficiencies were determined based on two approaches: (i) exergy flow analysis of the waste treatment system under investigation and (ii) exergetic life cycle assessment (LCA) using the Cumulative Exergy Extraction from the Natural Environment (CEENE) as a method for resource accounting. Scenario efficiencies of around 17-27% were found based on the exergy flow analysis (higher efficiencies were associated with high levels of material recycling), while the scenario efficiencies based on the exergetic LCA lay in a narrow range around 14%. Metal recovery was beneficial in both types of analyses, but had more influence on the overall efficiency in the exergetic LCA approach, as avoided burdens associated with primary metal production were much more important than the exergy content of the recovered metals. On the other hand, plastic recovery was highly beneficial in the exergy flow analysis, but rather insignificant in exergetic LCA. The two approaches thereby offered different quantitative results as well as conclusions regarding material recovery. With respect to resource quality, the main challenge for the exergy flow analysis is the use of exergy content and exergy losses as a proxy for resource quality and resource losses, as exergy content is not per se correlated with the functionality of a material. In addition, the definition of appropriate waste system boundaries is critical for the exergy efficiencies derived from the flow analysis, as it

  4. Aqua Cycling Does Not Affect Recovery of Performance, Damage Markers, and Sensation of Pain.

    Science.gov (United States)

    Wahl, Patrick; Sanno, Maximilian; Ellenberg, Karoline; Frick, Hosea; Böhm, Ezra; Haiduck, Björn; Goldmann, Jan-Peter; Achtzehn, Silvia; Brüggemann, Gert-Peter; Mester, Joachim; Bloch, Wilhelm

    2017-01-01

    Wahl, P, Sanno, M, Ellenberg, K, Frick, H, Böhm, E, Haiduck, B, Goldmann, J-P, Achtzehn, S, Brüggemann, G-P, Mester, J, and Bloch, W. Aqua cycling does not affect recovery of performance, damage markers, and sensation of pain. J Strength Cond Res 31(1): 162-170, 2017-To examine the effects of aqua cycling (AC) vs. passive recovery (P) on performance, markers of muscle damage, delayed onset of muscle soreness (DOMS), and the persons perceived physical state (PEPS) after 300 countermovement jumps (CMJs). Twenty male participants completed 300 CMJs. Afterward, they were randomly assigned to either the P group or the AC group, the latter performing 30 minutes of AC. Before, directly after the 300 CMJs, after the recovery session, and up to 72 hours post, performance of leg extensor muscles, damage markers, the PEPS, and DOMS were measured. Jumping height during 300 CMJs significantly decreased in both groups (AC: 13.4% and P: 14.6%). Maximal isometric strength (AC: 21% and P: 22%) and dynamic fatigue test (AC: 35% and P: 39%) of leg extensor muscles showed significant decreases in both groups. Myoglobin, creatine kinase, and lactate dehydrogenase significantly increased over time in both groups. Each of the 4 dimensions of the PEPS and DOMS showed significant changes over time. However, no significant differences between both groups were found for any of the parameters. Coaches and athletes should be aware that vertical jumping-induced fatigue decreases the ability to generate maximal isometric and submaximal dynamic force for more than 3 days after training. A single 30-minute session of AC was not able to attenuate the effects on muscular performance, markers of muscle damage, DOMS, or the PEPS compared with passive rest.

  5. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao

    2015-05-01

    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  6. The Misselhorn Cycle: Batch-Evaporation Process for Efficient Low-Temperature Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Moritz Gleinser

    2016-05-01

    Full Text Available The concept of the Misselhorn cycle is introduced as a power cycle that aims for efficient waste heat recovery of temperature sources below 100 °C. The basic idea shows advantages over a standard Organic Rankine Cycle (ORC in overall efficiency and utilization of the heat source. The main characteristic of this cycle is the use of at least three parallel batch evaporators instead of continuous heat exchangers. The operational phases of the evaporators are shifted so that there is always one vaporizer in discharge mode. A transient MATLAB® model (The MathWorks: Natick, MA, USA is used to simulate the achievable performance of the Misselhorn cycle. The calculations of the thermodynamic states of the system are based on the heat flux, the equations for energy conservation and the equations of state found in the NIST Standard Reference Database 23 (Reference Fluid Thermodynamic and Transport Properties - REFPROP, National Institute of Standards and Technology: Gaithersburg, MD, USA. In the isochoric batch evaporation, the pressure and the corresponding boiling temperature rise over time. With a gradually increasing boiling temperature, no pinch point limitation occurs. Furthermore, the heat source medium is passed through the evaporators in serial order to obtain a quasi-counter flow setup. It could be shown that these features offer the possibility to gain both high thermal efficiencies and an enhanced utilization of the heat source at the same time. A basic model with a fixed estimated heat transfer coefficient promises a possible system exergy efficiency of 44.4%, which is an increase of over 60% compared to a basic ORC with a system exergy efficiency of only 26.8%.

  7. Cell cycle controls: potential targets for chemical carcinogens?

    OpenAIRE

    Afshari, C A; Barrett, J C

    1993-01-01

    The progression of the cell cycle is controlled by the action of both positive and negative growth regulators. The key players in this activity include a family of cyclins and cyclin-dependent kinases, which are themselves regulated by other kinases and phosphatases. Maintenance of balanced cell cycle controls may be directly linked to genomic stability. Loss of the check-points involved in cell cycle control may result in unrepaired DNA damage during DNA synthesis or mitosis leading to genet...

  8. Bio-/Photo-Chemical Separation and Recovery of Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Francis,A.J.; Dodge, C.J.

    2008-03-12

    Citric acid forms bidentate, tridentate, binuclear or polynuclear species with transition metals and actinides. Biodegradation of metal citrate complexes is influenced by the type of complex formed with metal ions. While bidentate complexes are readily biodegraded, tridentate, binuclear and polynuclear species are recalcitrant. Likewise certain transition metals and actinides are photochemically active in the presence of organic acids. Although the uranyl citrate complex is not biodegraded, in the presence of visible light it undergoes photochemical oxidation/reduction reactions which result in the precipitation of uranium as UO{sub 3} {center_dot} H{sub 2}O. Consequently, we developed a process where uranium is extracted from contaminated soils and wastes by citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, whereas uranyl citrate which is recalcitrant remains in solution. Photochemical degradation of the uranium citrate complex resulted in the precipitation of uranium. Thus the toxic metals and uranium in mixed waste are recovered in separate fractions for recycling or for disposal. The use of naturally-occurring compounds and the combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in cost.

  9. Sulfomethylated lignosulfonates as additives in oil recovery processes involving chemical recovery agents

    Energy Technology Data Exchange (ETDEWEB)

    Kalfoglou, G.

    1981-05-26

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of sulfomethylated lignosulfonate salt as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the sulfomethylated lignosulfonates into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well.

  10. Sulfomethylated lignosulfonates as additives in oil recovery processes involving chemical recovery agents

    Energy Technology Data Exchange (ETDEWEB)

    Kalfoglou, G.

    1979-10-30

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of sulfomethylated lignosulfonate salt as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the sulfomethylated lignosulfonates into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well.

  11. Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle

    OpenAIRE

    Irmis, Randall B.; Whiteside, Jessica H.

    2011-01-01

    During the end-Permian mass extinction, marine ecosystems suffered a major drop in diversity, which was maintained throughout the Early Triassic until delayed recovery during the Middle Triassic. This depressed diversity in the Early Triassic correlates with multiple major perturbations to the global carbon cycle, interpreted as either intrinsic ecosystem or external palaeoenvironmental effects. In contrast, the terrestrial record of extinction and recovery is less clear; the effects and magn...

  12. Human exposure modeling in a life cycle framework for chemicals and products

    Science.gov (United States)

    A chemical enters into commerce to serve a specific function in a product or process. This decision triggers both the manufacture of the chemical and its potential release over the life cycle of the product. Efficiently evaluating chemical safety and sustainability requires combi...

  13. Modeling and optimization of a sequence of chemical cleaning cycles in dead-end ultrafiltration

    NARCIS (Netherlands)

    Zondervan, Edwin; Betlem, Ben H.L.; Blankert, Bastiaan; Roffel, Brian

    2008-01-01

    In this paper a chemical cleaning sequence model is proposed that can be used to predict the fouling status of a membrane during multiple chemical cleaning cycles. The proposed model is used to minimize the overall operating costs – based on chemicals consumption, energy consumption and investment

  14. Recovery from a chemical weapons accident or incident: A concept paper on planning

    Energy Technology Data Exchange (ETDEWEB)

    Herzenberg, C.L.; Haffenden, R.; Lerner, K.; Meleski, S.A.; Tanzman, E.A. [Argonne National Lab., IL (United States); Lewis, L.M. [US Dept. of Agriculture (United States); Hemphill, R.C. [Niagara Mohawk Power Corporation (United States); Adams, J.D. [US Environmental Protection Agency (United States)

    1994-04-01

    Emergency planning for an unintended release of chemical agent from the nation`s chemical weapons stockpile should include preparation for. the period following implementation of immediate emergency response. That period -- the recovery, reentry, and restoration stage -- is the subject of this report. The report provides an overview of the role of recovery, reentry, and restoration planning in the Chemical Stockpile Emergency Preparedness Program (CSEPP), describes the transition from immediate emergency response to restoration, and analyzes the legal framework that would govern restoration activities. Social, economic, and administrative issues, as well as technical ones, need to be considered in the planning effort. Because of possible jurisdictional conflicts, appropriate federal, state, and local agencies need to be included in a coordinated planning process. Advance consideration should be given to the pertinent federal and state statutes and regulations. On the federal level, the principal statutes and regulations to be considered are those associated with the Comprehensive Environmental Response, Compensation, and Liability Act; the Resource Conservation and Recovery Act; and the National Environmental Policy Act. This report recommends that extensive preaccident planning be undertaken for the recovery, reentry, and restoration stage and outlines several key issues that should be considered in that planning. The need for interagency cooperation and coordination at all levels of the planning process is emphasized.

  15. Life cycle assessment as decision support tool in early stage development of a new technology for wastewater resource recovery

    DEFF Research Database (Denmark)

    Fang, Linda L.; Valverde Perez, Borja; Damgaard, Anders

    2015-01-01

    Life cycle assessment (LCA) has been increasingly used in the field of wastewater treatment where the focus has been to identify environmental trade-offs of current technologies. In a novel approach, we use LCA to support early stage research and development of a biochemical system for wastewater...... resource recovery. The freshwater and nutrient content of wastewater are to a large extent recognized as potential valuable resources that can be recovered for beneficial reuse. Both recovery and reuse are intended to address existing environmental concerns, for example water scarcity and use of non......-renewable phosphorus. However, the resource recovery may come at the cost of unintended environmental impacts. One promising recovery system, referred to as TRENS, consists of an enhanced biological phosphorus removal and recovery system (EBP2R) connected to a photobioreactor. We present the environmental impact...

  16. Life cycle cost of a hybrid forward osmosis – low pressure reverse osmosis system for seawater desalination and wastewater recovery

    KAUST Repository

    Valladares Linares, Rodrigo

    2015-10-19

    In recent years, forward osmosis (FO) hybrid membrane systems have been investigated as an alternative to conventional high-pressure membrane processes (i.e. reverse osmosis (RO)) for seawater desalination and wastewater treatment and recovery. Nevertheless, their economic advantage in comparison to conventional processes for seawater desalination and municipal wastewater treatment has not been clearly addressed. This work presents a detailed economic analysis on capital and operational expenses (CAPEX and OPEX) for: i) a hybrid forward osmosis – low-pressure reverse osmosis (FO-LPRO) process, ii) a conventional seawater reverse osmosis (SWRO) desalination process, and iii) a membrane bioreactor – reverse osmosis – advanced oxidation process (MBR-RO-AOP) for wastewater treatment and reuse. The most important variables affecting economic feasibility are obtained through a sensitivity analysis of a hybrid FO-LPRO system. The main parameters taken into account for the life cycle costs are the water quality characteristics (similar feed water and similar water produced), production capacity of 100,000 m3 d−1 of potable water, energy consumption, materials, maintenance, operation, RO and FO module costs, and chemicals. Compared to SWRO, the FO-LPRO systems have a 21% higher CAPEX and a 56% lower OPEX due to savings in energy consumption and fouling control. In terms of the total water cost per cubic meter of water produced, the hybrid FO-LPRO desalination system has a 16% cost reduction compared to the benchmark for desalination, mainly SWRO. Compared to the MBR-RO-AOP, the FO-LPRO systems have a 7% lower CAPEX and 9% higher OPEX, resulting in no significant cost reduction per m3 produced by FO-LPRO. Hybrid FO-LPRO membrane systems are shown to have an economic advantage compared to current available technology for desalination, and comparable costs with a wastewater treatment and recovery system. Based on development on FO membrane modules, packing density, and

  17. Seed recovery and regeneration in coal-fired, open-cycle magnetohydrodynamic systems

    International Nuclear Information System (INIS)

    Sheth, A.C.; Jackson, D.M.; Attig, R.C.

    1986-01-01

    Coal-fired magnetohydrodynamic (MHD) power systems not only have high cycle efficiency, but they also have an inherent sulfur removal capability. The potassium compound uses as ''seed'' plays a dual role. It 1) increases the electrical conductivity of the plasma needed to produce power in the MHD electrical topping cycle, and 2) reacts with sulfur dioxide to form potassium sulfate, thereby eliminating most of the sulfur oxides from the gaseous effluent. For economical reasons, the spent seed must be recovered, desulfurized and recycled to the MHD power plant. This paper reviews some of the available experimental results and literature relating to SO 2 removal and seed recovery, and will also discuss several potential seed regeneration processes. Three methods of potassium extraction are discussed, i.e., hot aqueous digestion with CA(OH) 2 /NaOH, acid washing, and aqueous extraction. The selected candidate regeneration systems are discussed from the viewpoint of energy and process water requirements and environmental considerations such as waste discharges and emissions of gaseous, particulate and trace element pollutants

  18. Thermal performance analysis of Brayton cycle with waste heat recovery boiler for diesel engines of offshore oil production facilities

    International Nuclear Information System (INIS)

    Liu, Xianglong; Gong, Guangcai; Wu, Yi; Li, Hangxin

    2016-01-01

    Highlights: • Comparison of Brayton cycle with WHRB adopted in diesel engines with and without fans by thermal performance. • Waste heat recovery technology for FPSO. • The thermoeconomic analysis for the heat recovery for FPSO. - Abstract: This paper presents the theoretical analysis and on-site testing on the thermal performance of the waste heat recovery system for offshore oil production facilities, including the components of diesel engines, thermal boilers and waste heat boilers. We use the ideal air standard Brayton cycle to analyse the thermal performance. In comparison with the traditional design, the fans at the engine outlet of the waste heat recovery boiler is removed due to the limited space of the offshore platform. The cases with fan and without fan are compared in terms of thermal dynamics performance, energy efficiency and thermo-economic index of the system. The results show that the application of the WHRB increases the energy efficiency of the whole system, but increases the flow resistance in the duct. It is proved that as the waste heat recovery boiler takes the place of the thermal boiler, the energy efficiency of whole system without fan is slightly reduced but heat recovery efficiency is improved. This research provides an important guidance to improve the waste heat recovery for offshore oil production facilities.

  19. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment

    International Nuclear Information System (INIS)

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-01-01

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the

  20. Fuzzy Nonlinear Dynamic Evaporator Model in Supercritical Organic Rankine Cycle Waste Heat Recovery Systems

    Directory of Open Access Journals (Sweden)

    Jahedul Islam Chowdhury

    2018-04-01

    Full Text Available The organic Rankine cycle (ORC-based waste heat recovery (WHR system operating under a supercritical condition has a higher potential of thermal efficiency and work output than a traditional subcritical cycle. However, the operation of supercritical cycles is more challenging due to the high pressure in the system and transient behavior of waste heat sources from industrial and automotive engines that affect the performance of the system and the evaporator, which is the most crucial component of the ORC. To take the transient behavior into account, the dynamic model of the evaporator using renowned finite volume (FV technique is developed in this paper. Although the FV model can capture the transient effects accurately, the model has a limitation for real-time control applications due to its time-intensive computation. To capture the transient effects and reduce the simulation time, a novel fuzzy-based nonlinear dynamic evaporator model is also developed and presented in this paper. The results show that the fuzzy-based model was able to capture the transient effects at a data fitness of over 90%, while it has potential to complete the simulation 700 times faster than the FV model. By integrating with other subcomponent models of the system, such as pump, expander, and condenser, the predicted system output and pressure have a mean average percentage error of 3.11% and 0.001%, respectively. These results suggest that the developed fuzzy-based evaporator and the overall ORC-WHR system can be used for transient simulations and to develop control strategies for real-time applications.

  1. Heat Recovery from High Temperature Slags: A Review of Chemical Methods

    Directory of Open Access Journals (Sweden)

    Yongqi Sun

    2015-03-01

    Full Text Available Waste heat recovery from high temperature slags represents the latest potential way to remarkably reduce the energy consumption and CO2 emissions of the steel industry. The molten slags, in the temperature range of 1723–1923 K, carry large amounts of high quality energy. However, the heat recovery from slags faces several fundamental challenges, including their low thermal conductivity, inside crystallization, and discontinuous availability. During past decades, various chemical methods have been exploited and performed including methane reforming, coal and biomass gasification, and direct compositional modification and utilization of slags. These methods effectively meet the challenges mentioned before and help integrate the steel industry with other industrial sectors. During the heat recovery using chemical methods, slags can act as not only heat carriers but also as catalysts and reactants, which expands the field of utilization of slags. Fuel gas production using the waste heat accounts for the main R&D trend, through which the thermal heat in the slag could be transformed into high quality chemical energy in the fuel gas. Moreover, these chemical methods should be extended to an industrial scale to realize their commercial application, which is the only way by which the substantial energy in the slags could be extracted, i.e., amounting to 16 million tons of standard coal in China.

  2. Quantum chemical investigation of thermochemistry in Calvin cycle

    Indian Academy of Sciences (India)

    RuBP and ADP.5,6 Goldberg et al. in their series of review papers7–13 consolidated huge experimental data on thermodynamic parameters such as enthalpy change and apparent equilibrium constant of different classes of enzyme-catalyzed reactions from a large number of references. The important steps of Calvin cycle ...

  3. Influence of chemical inhibitors on cell recovery after exposure to different LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Evstratova, Ekaterina S.; Petin, Vladislav G. [Medical Radiological Research Center, Obninsk (Russian Federation); Kim, Jin Kyu; KIm, Jin Hong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2016-12-15

    Chemical radiosensitizers are often used to increase cell radiosensitivity. It is known that the ability of chemical drugs to increase cell radiosensitivity is related with inhibition of cell recovery from damage induced by ionizing radiation. However, there are little comparative investigations of cell sensitivity modification after exposure to radiation with high linear energy transfer (LET). Therefore, we studied the anticancer drugs cisplatin and endoxan and their impact on the ability of yeast cells to recover after cell exposure to radiations with different LET. The ability of cell recovery from radiation damage was less effective after exposure to high-LET radiation, when cells were irradiated without drug, with the increase in cisplatin concentration resulting in the disappearance of this difference. The increase of cisplatin concentration results in progressive increase in the fraction of irreversible damage independently of radiation quality.

  4. Monitoring chemical and biological recovery at a confined aquatic disposal site, Oslofjord, Norway.

    Science.gov (United States)

    Oen, Amy M P; Pettersen, Arne; Eek, Espen; Glette, Tormod; Brooks, Lucy; Breedveld, Gijs D

    2017-09-01

    The recovery of the confined aquatic disposal (CAD) facility located at Malmøykalven in Oslofjord, Norway, has been assessed using an array of field measurement techniques. These methods were used prior to the disposal of dredged sediments as well as during 3 annual postdisposal monitoring campaigns. Traditional sampling to assess chemical recovery indicates that an immediate reduction in total sediment concentrations and surface sediments can be characterized as having good quality. Deposition of new material indicates that the quality of depositing material at the CAD is stabile and representative of the natural background quality in the area. Continued deposition of this material will improve the long-term chemical recovery of the CAD. A positive biological recovery of the benthic community has been observed and is expected to continue along a typical benthic succession pattern. To supplement traditional sampling, passive samplers were deployed at the CAD. Results suggest that the flux and concentrations of polycyclic aromatic hydrocarbon 16 and polychlorinated biphenyl 7 released from the CAD will continue to decrease over time. The combined results from these multiple lines of evidence indicate that the CAD and capping layer function as predicted 3 yr after the construction was completed. There is not only an improvement in the efficacy of the CAD itself but also a general improvement of the area, compared with the situation prior to disposal. Environ Toxicol Chem 2017;36:2552-2559. © 2017 SETAC. © 2017 SETAC.

  5. Recovery of plant diversity following N cessation: effects of recruitment, litter, and elevated N cycling.

    Science.gov (United States)

    Clark, Christopher M; Tilman, David

    2010-12-01

    Plant species richness has declined and composition shifted in response to elevated atmospheric deposition of biologically active nitrogen over much of the industrialized world. Litter thickness, litter nitrogen (N) content, and soil N mineralization rates often remain elevated long after inputs cease, clouding the prospects that plant community diversity and composition would recover should N inputs be reduced. Here we determined how N cycling, litter accumulation, and recruitment limitation influenced community recovery following cessation of long-term N inputs to prairie-like grasslands. We alleviated each of these potential inhibitors through a two-year full-factorial experiment involving organic carbon addition, litter removal, and seed addition. Seed addition had the largest effect on increasing seedling and species numbers and may be necessary to overcome long-term burial of seeds of target perennial grassland species. Litter removal increased light availability and bare sites for colonization, though it had little effect on reducing the biomass of competing neighbors or altering extractable soil N. Nonetheless, these positive influences were enough to lead to small increases in species richness within one year. We found that, although C addition quickly altered many factors assumed favorable for the target community (decreased N availability and biomass of nearby competitors, increased light and site availability), these changes were insufficient to positively impact species richness or seedling numbers over the experimental duration. However, only carbon addition had species-specific effects on the existing plant community, suggesting that its apparent limited utility may be more a result of slow recovery under ambient recruitment rather than from a lack of a restorative effect. There were dramatic interactions among treatments, with the positive effects of litter removal largely negated by carbon addition, and the positive effects of seed addition

  6. Development of Chemical Technology in Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Jee, Kwang Yong; Kim, W. H.; Kim, J. S.

    2007-06-01

    This project mainly concentrates on the development of technologies related to elemental analysis for the mass balance of pyro-chemical process, on the development of in-line measurement system for high temperature molten salt, and on the development of radiation shielded LA-ICP-MS and micro-XRD system to evaluate the integrity of nuclear fuel. Chemical analysis methods for the quantitative determination of fissile elements, minor actinide elements, fission products, chemical additive and corrosion products in Uranium Metal Ingots are established. It will be applied to the evaluation of mass balance in electrolytic reduction process for the optimization of the process. Optical fiber based UV-VIS spectrophotometer combined with reaction cell was developed for the measurement of reactions in high temperature molten salt. This system is applicable to in-line monitoring of electro-refining process and contribute to clarify the chemical reactions. Radiation shielded LA-ICP-MS and micro-XRD systems are planned to be used for the analysis of isotopic distribution and structural changes from core to rim of spent nuclear fuel pellet, respectively. The developed techniques can contribute to produce database needed for authorization and practical use of ultra high burn-up fuel. In addition, it can be applicable to the other industries such as microelectronics, nano material science and semiconductor to analyze micro region

  7. Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications

    International Nuclear Information System (INIS)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Lee, Dong Hyun; Usman, Muhammad; Heo, Manki

    2014-01-01

    Highlights: • Thermo-economic optimization of regenerative ORC is performed. • Optimization is performed using multi objective genetic algorithm. • Objective function is maximum cycle efficiency and minimum specific investment. • Evaporation pressure, pinch point and superheat are decision variables. • Sensitivity analysis is performed to investigate effect of decision variables. - Abstract: Organic Rankine Cycle (ORC) is low grade and waste heat conversion technology. The current article deal with the thermo-economic optimization of basic ORC and regenerative ORC for waste heat recovery applications under constant heat source condition. Thermal efficiency and specific investment cost of basic ORC, single stage regenerative and double stage regenerative ORC has been optimized by using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Maximum thermal efficiency and minimum specific investment cost were selected as objective functions and relative increase in thermal efficiency and cost has been analyzed taking the basic ORC as base case. The constraint set consist of evaporation pressure, superheat, pinch point temperature difference in evaporator and condenser. The optimization was performed for five different working fluids. The optimization result show that R245fa is best working under considered conditions and basic ORC has low specific investment cost and thermal efficiency compared to regenerative ORC. R245fa is low boiling organic fluid, which has high degree of thermal stability and compatible with common construction materials of ORC. The average increase in thermal efficiency from basic ORC to single stage regenerative ORC was 1.01% with an additional cost of 187 $/kW while from basic ORC to double stage regenerative ORC was 1.45% with an average increase in cost of 297 $/kW. The sensitivity analysis was also performed to investigate the effect of operating conditions which show that evaporation pressure has promising effect on thermal

  8. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Meroni, Andrea; Haglind, Fredrik

    2017-01-01

    This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt %) and low-sulfur (0.5 wt...... %) fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane), toluene, n-pentane, i-pentane and c-pentane. The results of the comparison...... indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit...

  9. Explosion of limit cycles and chaotic waves in a simple nonlinear chemical system

    DEFF Research Database (Denmark)

    Brøns, Morten; Sturis, Jeppe

    2001-01-01

    A model of an autocatalytic chemical reaction was employed to study the explosion of limit cycles and chaotic waves in a nonlinear chemical system. The bifurcation point was determined using asymptotic analysis and perturbations. Scaling laws for amplitude and period were derived. A strong...

  10. Introduction of Life Cycle Assessment and Sustainability Concepts in Chemical Engineering Curricula

    Science.gov (United States)

    Gallego-Schmid, Alejandro; Schmidt Rivera, Ximena C.; Stamford, Laurence

    2018-01-01

    Purpose: The implementation of life cycle assessment (LCA) and carbon footprinting represents an important professional and research opportunity for chemical engineers, but this is not broadly reflected in chemical engineering curricula worldwide. This paper aims to present the implementation of a coursework that is easy to apply, free of cost,…

  11. Regulation of chemical safety at fuel cycle facilities by the United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Ramsey, Kevin M.

    2013-01-01

    When the U.S. Nuclear Regulatory Commission (NRC) was established in 1975, its regulations were based on radiation dose limits. Chemical hazards rarely influenced NRC regulations. After the Three Mile Island reactor accident in 1979, the NRC staff was directed to address emergency planning at non-reactor facilities. Several fuel cycle facilities were ordered to submit emergency plans consistent with reactor emergency plans because no other guidance was available. NRC published a notice that it was writing regulations to codify the requirements in the Orders and upgrade the emergency plans to address all hazards, including chemical hazards. The legal authority of NRC to regulate chemical safety was questioned. In 1986, an overfilled uranium hexafluoride cylinder ruptured and killed a worker. The NRC staff was directed to address emergency planning for hazardous chemicals in its regulations. The final rule included a requirement for fuel cycle facilities to certify compliance with legislation requiring local authorities to establish emergency plans for hazardous chemicals. As with emergency planning, NRC's authority to regulate chemical safety during routine operations was limited. NRC established memoranda of understanding (MOUs) with other regulatory agencies to encourage exchange of information between the agencies regarding occupational hazards. In 2000, NRC published new, performance-based, regulations for fuel cycle facilities. The new regulations required an integrated safety analysis (ISA) which used quantitative standards to assess chemical exposures. Some unique chemical exposure cases were addressed while implementing the new regulations. In addition, some gaps remain in the regulation of hazardous chemicals at fuel cycle facilities. The status of ongoing efforts to improve regulation of chemical safety at fuel cycle facilities is discussed. (authors)

  12. A comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery: A case study for CGAM cogeneration system

    Directory of Open Access Journals (Sweden)

    Arash Nemati

    2017-03-01

    Full Text Available A thermodynamic modeling and optimization is carried out to compare the advantages and disadvantages of organic Rankine cycle (ORC and Kalina cycle (KC as a bottoming cycle for waste heat recovery from CGAM cogeneration system. Thermodynamic models for combined CGAM/ORC and CGAM/KC systems are performed and the effects of some decision variables on the energy and exergy efficiency and turbine size parameter of the combined systems are investigated. Solving simulation equations and optimization process have been done using direct search method by EES software. It is observed that at the optimum pressure ratio of air compressor, produced power of bottoming cycles has minimum values. Also, evaporator pressure optimizes the performance of cycle, but this optimum pressure level in ORC (11 bar is much lower than that of Kalina (46 bar. In addition, ORC's simpler configuration, higher net produced power and superheated turbine outlet flow, which leads to a reliable performance for turbine, are other advantages of ORC. Kalina turbine size parameter is lower than that of the ORC which is a positive aspect of Kalina cycle. However, by a comprehensive comparison between Kalina and ORC, it is concluded that the ORC has significant privileges for waste heat recovery in this case.

  13. Analysis of Combined Cycle Power Plants with Chemical Looping Reforming of Natural Gas and Pre-Combustion CO2 Capture

    Directory of Open Access Journals (Sweden)

    Shareq Mohd Nazir

    2018-01-01

    Full Text Available In this paper, a gas-fired combined cycle power plant subjected to a pre-combustion CO2 capture method has been analysed under different design conditions and different heat integration options. The power plant configuration includes the chemical looping reforming (CLR of natural gas (NG, water gas shift (WGS process, CO2 capture and compression, and a hydrogen fuelled combined cycle to produce power. The process is denoted as a CLR-CC process. One of the main parameters that affects the performance of the process is the pressure for the CLR. The process is analysed at different design pressures for the CLR, i.e., 5, 10, 15, 18, 25 and 30 bar. It is observed that the net electrical efficiency increases with an increase in the design pressure in the CLR. Secondly, the type of steam generated from the cooling of process streams also effects the net electrical efficiency of the process. Out of the five different cases including the base case presented in this study, it is observed that the net electrical efficiency of CLR-CCs can be improved to 46.5% (lower heating value of NG basis by producing high-pressure steam through heat recovery from the pre-combustion process streams and sending it to the Heat Recovery Steam Generator in the power plant.

  14. Improvement of chemical control in the water-steam cycle of thermal power plants

    International Nuclear Information System (INIS)

    Rajakovic-Ognjanovic, Vladana N.; Zivojinovic, Dragana Z.; Grgur, Branimir N.; Rajakovic, Ljubinka V.

    2011-01-01

    A more effective chemical control in the water-steam cycle (WSC) of thermal power plants (TPP) is proposed in this paper. Minimization of corrosion effects by the production of ultra pure water and its strict control is the basis of all the investigated processes. The research involved the analysis of water samples in the WSC through key water quality parameters and by the most convenient analytical tools. The necessity for the stricter chemical control is demonstrated through a concrete example of the TPP Nikola Tesla, Serbia. After a thorough analysis of the chemical control system of the WSC, diagnostic and control parameters were chosen for continuous systematic measurements. Sodium and chloride ions were recognized as the ions which indicate the corrosion potential of the water and give insight into the proper production and maintenance of water within the WSC. Chemical transformations of crucial corrosion elements, iron and silica, were considered and related to their quantitative values. - Research highlights: → The more effective chemical control in the water-steam cycle of thermal power plant Nikola Tesla, Serbia. → In chemical control the diagnostic and control parameters were optimized and introduced for the systematic measurements in the water-steam cycle. → Sodium and chloride ions were recognized as ions which indicate corrosion potential of water and give insight to proper function of production and maintenance of water within water-team cycle. → Chemical transformations of crucial corrosion elements, iron and silica are considered and related with their quantitative values.

  15. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    Directory of Open Access Journals (Sweden)

    Jesper Graa Andreasen

    2017-04-01

    Full Text Available This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt % and low-sulfur (0.5 wt % fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane, toluene, n-pentane, i-pentane and c-pentane. The results of the comparison indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit turbines compared to the steam turbines. When the efficiency of the c-pentane turbine was allowed to be 10% points larger than the steam turbine efficiency, the organic Rankine cycle unit reaches higher net power outputs than the steam Rankine cycle unit at all engine loads for the low-sulfur fuel case. The net power production from the waste heat recovery units is generally higher for the low-sulfur fuel case. The steam Rankine cycle unit produces 18% more power at design compared to the high-sulfur fuel case, while the organic Rankine cycle unit using MM produces 33% more power.

  16. Study on CO{sub 2} Recovery System Design in Supercritical CO{sub 2} Cycle for SFR Application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Seok; Jung, Hwa-Young; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    As a part of Sodium-cooled Fast Reactor (SFR) development in Korea, the supercritical CO{sub 2} (S-CO{sub 2}) Brayton cycle is considered as an alternative power conversion system to eliminate sodium-water reaction (SWR) when the current conventional steam Rankine cycle is utilized with SFR. The parasitic loss caused by the leakage flow should be minimized since this greatly influences the cycle efficiency. Thus, a simple model for estimating the critical flow in a turbo-machinery seal was developed to predict the leakage flow rate and calculate the required total mass of working fluid in a S-CO{sub 2} power system to minimize the parasitic loss. In this work, study on CO{sub 2} recovery system design was conducted by finding the suitable recovery point with the developed simple CO{sub 2} critical flow model and sensitivity analysis was performed on the power system performance with respect to multiple CO{sub 2} recovery process options. The study of a CO{sub 2} recovery system design was conducted to minimize the thermal efficiency losses caused by CO{sub 2} inventory recovery system. For the first step, the configuration of a seal was selected. A labyrinth seal has suitable features for the S-CO{sub 2} power cycle application. Then, thermal efficiency losses with different CO{sub 2} leak rate and recovery point were evaluated. To calculate the leak rate in turbo-machinery by using the developed CO{sub 2} critical flow model, the conditions of storage tank is set to be closer to the recovery point. After modifying the critical flow model appropriately, total mass flow rate of leakage flow was calculated. Finally, the CO{sub 2} recovery system design work was performed to minimize the loss of thermal efficiency. The suggested system is not only simple and intuitive but also has relatively very low additional work loss from the compressor than other considered systems. When each leak rate is set to the conventional leakage rate of 1 kg/s per seal, the minimum and

  17. Leucine-protein supplemented recovery feeding enhances subsequent cycling performance in well-trained men.

    Science.gov (United States)

    Thomson, Jasmine S; Ali, Ajmol; Rowlands, David S

    2011-04-01

    The purpose of this study was to determine whether a practical leucine-protein, high-carbohydrate postexercise feeding regimen could improve recovery, as measured by subsequent cycling performance and mechanistic markers, relative to control feeding. In a crossover, 10 male cyclists performed 2- to 2.5-h interval training bouts on 3 consecutive evenings, ingesting either leucine-protein, high-carbohydrate nutrition (0.1/0.4/1.2/0.2 g·kg(-1)·h(-1); leucine, protein, carbohydrate, fat, respectively) or isocaloric control (0.06/1.6/0.2 g·kg(-1)·h(-1); protein, carbohydrate, fat, respectively) nutrition for 1.5 h postexercise. Throughout the experimental period diet was controlled, energy and macronutrient intake balanced, and protein intake clamped at 1.6 g·kg(-1)·day(-1). The alternate supplement was provided the next morning, thereby isolating the postexercise nutrition effect. Following 39 h of recovery, cyclists performed a repeat-sprint performance test. Postexercise leucine-protein ingestion improved mean sprint power by 2.5% (99% confidence limit, ±2.6%; p = 0.013) and reduced perceived overall tiredness during the sprints by 13% (90% confidence limit, ±9.2%), but perceptions of leg tiredness and soreness were unaffected. Before exercise, creatine-kinase concentration was lowered by 19% (90% confidence limits, ±18%), but lactate dehydrogenase and pressure-pain threshold were unaltered. There was a small reduction in anger (25% ± 18%), but other moods were unchanged. Plasma leucine (3-fold) and essential amino acid (47%) concentrations were elevated postexercise. Net nitrogen balance trended mildly negative in both conditions (mean ± SD: leucine-protein, -20 ± 46 mg·kg(-1) per 24 h; control, -25 ± 36 mg·kg(-1) per 24 h). The ingestion of a leucine-protein supplement along with other high-carbohydrate food following intense training on consecutive days enhances subsequent high-intensity endurance performance and may attenuate

  18. Acute effects of chocolate milk and a commercial recovery beverage on postexercise recovery indices and endurance cycling performance.

    Science.gov (United States)

    Pritchett, Kelly; Bishop, Philip; Pritchett, Robert; Green, Matt; Katica, Charlie

    2009-12-01

    To maximize training quality, athletes have sought nutritional supplements that optimize recovery. This study compared chocolate milk (CHOC) with a carbohydrate replacement beverage (CRB) as a recovery aid after intense exercise, regarding performance and muscle damage markers in trained cyclists. Ten regional-level cyclists and triathletes (maximal oxygen uptake 55.2 +/- 7.2 mL.kg(-1).min(-1)) completed a high-intensity intermittent exercise protocol, then 15-18 h later performed a performance trial at 85% of maximal oxygen uptake to exhaustion. Participants consumed 1.0 g carbohydrate.kg-1.h-1 of a randomly assigned isocaloric beverage (CHOC or CRB) after the first high-intensity intermittent exercise session. The same protocol was repeated 1 week later with the other beverage. A 1-way repeated measures analysis of variance revealed no significant difference (p = 0.91) between trials for time to exhaustion at 85% of maximal oxygen uptake (CHOC 13 +/- 10.2 min, CRB 13.5 +/- 8.9 min). The change in creatine kinase (CK) was significantly (p < 0.05) greater in the CRB trial than in the CHOC trial (increase CHOC 27.9 +/- 134.8 U.L(-1), CRB 211.9 +/- 192.5 U.L(-1)), with differences not significant for CK levels before the second exercise session (CHOC 394.8 +/- 166.1 U.L(-1), CRB 489.1 +/- 264.4 U.L(-1)) between the 2 trials. These findings indicate no difference between CHOC and this commercial beverage as potential recovery aids for cyclists between intense workouts.

  19. Genipin as a novel chemical activator of EBV lytic cycle.

    Science.gov (United States)

    Son, Myoungki; Lee, Minjung; Ryu, Eunhyun; Moon, Aree; Jeong, Choon-Sik; Jung, Yong Woo; Park, Gyu Hwan; Sung, Gi-Ho; Cho, Hyosun; Kang, Hyojeung

    2015-02-01

    Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus that causes acute infection and establishes life-long latency. EBV causes several human cancers, including Burkitt's lymphoma, nasopharyngeal and gastric carcinoma. Antiviral agents can be categorized as virucides, antiviral chemotherapeutic agents, and immunomodulators. Most antiviral agents affect actively replicating viruses, but not their latent forms. Novel antiviral agents must be active on both the replicating and the latent forms of the virus. Gardenia jasminoides is an evergreen flowering plant belonging to the Rubiaceae family and is most commonly found growing wild in Vietnam, Southern China, Taiwan, Japan, Myanmar, and India. Genipin is an aglycone derived from an iridoid glycoside called geniposide, which is present in large quantities in the fruit of G. jasminoides. In this study, genipin was evaluated for its role as an antitumor and antiviral agent that produces inhibitory effects against EBV and EBV associated gastric carcinoma (EBVaGC). In SNU719 cells, one of EBVaGCs, genipin caused significant cytotoxicity (70 μM), induced methylation on EBV C promoter and tumor suppressor gene BCL7A, arrested cell-cycle progress (S phases), upregulated EBV latent/lytic genes in a dose-dependent manner, stimulated EBV progeny production, activated EBV F promoter for EBV lytic activation, and suppressed EBV infection. These results indicated that genipin could be a promising candidate for antiviral and antitumor agents against EBV and EBVaGC.

  20. A novel solar thermal cycle with chemical looping combustion. Paper no. IGEC-1-020

    International Nuclear Information System (INIS)

    Hong, H.; Jin, H.

    2005-01-01

    In this paper, we have proposed a thermal cycle with the integration of chemical-looping combustion and solar thermal energy with the temperature of about 500-600 o C. Chemical-looping combustion may be carried out in two successive reactions between a reduction of hydrocarbon fuel with metal oxides and a reduced metal with oxygen in air. This loop of chemical reaction is substituted for conventional combustion of fuel. Methane as a fuel and nickel oxides as oxygen carrier were employed in this cycle. Collected high-temperature solar thermal energy is provided for the endothermic reduction reaction. The feature of the proposed cycle is investigated through Energy-Utilization Diagram methodology. As a result, at the turbine inlet temperature of 1200 o C, the exergy efficiency of the proposed cycle would expected to be about 4 percentage points higher than that of conventional gas turbine combined cycle. Compared to the previous study of chemical-looping combustion energy system, the proposed cycle with the integration of green energy and traditional hydrocarbon fuels will offer the possibility of both greenhouse gas mitigation with green energy and a new approach of efficient use of solar energy. (author)

  1. Life cycle cost of a hybrid forward osmosis - low pressure reverse osmosis system for seawater desalination and wastewater recovery.

    Science.gov (United States)

    Valladares Linares, R; Li, Z; Yangali-Quintanilla, V; Ghaffour, N; Amy, G; Leiknes, T; Vrouwenvelder, J S

    2016-01-01

    In recent years, forward osmosis (FO) hybrid membrane systems have been investigated as an alternative to conventional high-pressure membrane processes (i.e. reverse osmosis (RO)) for seawater desalination and wastewater treatment and recovery. Nevertheless, their economic advantage in comparison to conventional processes for seawater desalination and municipal wastewater treatment has not been clearly addressed. This work presents a detailed economic analysis on capital and operational expenses (CAPEX and OPEX) for: i) a hybrid forward osmosis - low-pressure reverse osmosis (FO-LPRO) process, ii) a conventional seawater reverse osmosis (SWRO) desalination process, and iii) a membrane bioreactor - reverse osmosis - advanced oxidation process (MBR-RO-AOP) for wastewater treatment and reuse. The most important variables affecting economic feasibility are obtained through a sensitivity analysis of a hybrid FO-LPRO system. The main parameters taken into account for the life cycle costs are the water quality characteristics (similar feed water and similar water produced), production capacity of 100,000 m(3) d(-1) of potable water, energy consumption, materials, maintenance, operation, RO and FO module costs, and chemicals. Compared to SWRO, the FO-LPRO systems have a 21% higher CAPEX and a 56% lower OPEX due to savings in energy consumption and fouling control. In terms of the total water cost per cubic meter of water produced, the hybrid FO-LPRO desalination system has a 16% cost reduction compared to the benchmark for desalination, mainly SWRO. Compared to the MBR-RO-AOP, the FO-LPRO systems have a 7% lower CAPEX and 9% higher OPEX, resulting in no significant cost reduction per m(3) produced by FO-LPRO. Hybrid FO-LPRO membrane systems are shown to have an economic advantage compared to current available technology for desalination, and comparable costs with a wastewater treatment and recovery system. Based on development on FO membrane modules, packing density, and

  2. Environmental performances of different configurations of a material recovery facility in a life cycle perspective.

    Science.gov (United States)

    Ardolino, Filomena; Berto, Chiara; Arena, Umberto

    2017-10-01

    The study evaluated the environmental performances of an integrated material recovery facility (MRF) able to treat 32kt/y of unsorted mixed waste, made of residuals from household source separation and separate collection. The facility includes a mechanical sorting platform for the production of a solid recovered fuel (SRF) utilized in an external waste-to-energy plant, bio-cells for tunnel composting of organic fraction, and a sanitary landfill for the safe disposal of ultimate waste. All the MRF sub-units have been analysed in depth in order to acquire reliable data for a life cycle assessment study, focused on the environmental performances of different configurations of the facility. The study investigated a "past" configuration, including just mechanical sorting, landfilling and biogas combustion in a gas engine, and the "present" one, which includes also a composting unit. Two possible "future" configurations, having a gasifier inside the MRF battery limits, have been also analysed, assessing the performances of two fluidized bed reactors of different size, able to gasify only the residues generated by the sorting platform or the whole amount of produced SRF, respectively. The analysis evaluated the contributions of each unit in the different configurations and allowed a reliable assessment of the technological evolution of the facility. The results quantified the positive effect of the inclusion of an aerobic treatment of the waste organic fraction. The SRF gasification in situ appears to improve the MRF environmental performances in all the impact categories, with the exclusion of that of global warming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Exergoenvironmental optimization of Heat Recovery Steam Generators in combined cycle power plant through energy and exergy analysis

    International Nuclear Information System (INIS)

    Kaviri, Abdolsaeid Ganjeh; Jaafar, Mohammad Nazri Mohd.; Lazim, Tholudin Mat; Barzegaravval, Hassan

    2013-01-01

    Highlights: ► Comprehensive thermodynamic modeling of a heat recovery steam generator used in CCPP. ► To conduct exergy analysis to find the location of reversibility. ► To increase the system performance using optimization. ► Better performance assessment of the system. - Abstract: Combined cycle power plants (CCPPs) are preferred technology for electricity generation due to less emission and high efficiency. These cycles are made of a gas turbine, a steam turbine and Heat Recovery Steam Generator (HRSG). In the present research study, a combined cycle power plant with dual pressure and supplementary firing is selected. The optimum design procedure included designing objective function, exergy destruction per unit of inlet gas to the HRSG subject to a list of constraints. The design parameters (design variables) were drum pressure and pinch temperature difference as well as steam mass flow of HRSG high and low pressure levels. The influence of HRSG inlet gas temperature on the steam cycle efficiency is discussed. The result show increasing HRSG inlet gas temperature until 650 °C leads to increase the thermal efficiency and exergy efficiency of the cycle and after that has less improvement and start to decrease them. And also from the exergy analysis of each part of HRSG, it is cleared that the HP-EV and 2st HP-SH have the most exergy destruction respectively. In other hand, effects of HRSG inlet gas temperature on SI (sustainability index) and CO 2 emission are considered

  4. Climate change mitigation by recovery of energy from the water cycle: a new challenge for water management.

    Science.gov (United States)

    van der Hoek, J P

    2012-01-01

    Waternet is responsible for drinking water treatment and distribution, wastewater collection and treatment, and surface water management and control (quality and quantity) in and around Amsterdam. Waternet has the ambition to operate climate neutral in 2020. To realise this ambition, measures are required to compensate for the emission of 53,000 ton CO(2)-eq/year. Energy recovery from the water cycle looks very promising. First, calculations reveal that energy recovery from the water cycle in and around Amsterdam may contribute to a total reduction in greenhouse gas emissions up to 148,000 ton CO(2)-eq/year. The challenge for the coming years is to choose combinations of all the possibilities to fulfil the energy demand as much as possible. Only then the use of fossil fuel can be minimized and inevitable greenhouse gas emissions can be compensated, supporting the target to operate climate neutral in 2020.

  5. Differences in Blood Urea and Creatinine Concentrations in Earthed and Unearthed Subjects during Cycling Exercise and Recovery

    OpenAIRE

    Paweł Sokal; Zbigniew Jastrzębski; Ewelina Jaskulska; Karol Sokal; Maria Jastrzębska; Łukasz Radzimiński; Robert Dargiewicz; Piotr Zieliński

    2013-01-01

    Contact of humans with the earth, either directly (e.g., with bare feet) or using a metal conductor, changes their biochemical parameters. The effects of earthing during physical exercise are unknown. This study was carried out to evaluate selected biochemical parameters in subjects who were earthed during cycling. In a double-blind, crossover study, 42 participants were divided into two groups and earthed during exercise and recovery. One group was earthed in the first week during 30 minutes...

  6. Recovery of Americium-241 from lightning rod by the method of chemical treatment

    International Nuclear Information System (INIS)

    Cruz, W.H.

    2013-01-01

    About 95% of the lightning rods installed in the Peruvian territory have set in their structures, pose small amounts of radioactive sources such as Americium-241 ( 241 Am), fewer and Radium 226 ( 226 Ra) these are alpha emitters and have a half life of 432 years and 1600 years respectively. In this paper describes the recovery of radioactive sources of 241 Am radioactive lightning rods using the conventional chemical treatment method using agents and acids to break down the slides. The 241 Am recovered was as excitation source and alpha particle generator for analysing samples by X Ray Fluorescence, for fixing the stainless steel 241 Am technique was used electrodeposition. (author)

  7. Chemical recovery process using break up steam control to prevent smelt explosions

    Science.gov (United States)

    Kohl, Arthur L.; Stewart, Albert E.

    1988-08-02

    An improvement in a chemical recovery process in which a hot liquid smelt is introduced into a dissolving tank containing a pool of green liquor. The improvement comprises preventing smelt explosions in the dissolving tank by maintaining a first selected superatmospheric pressure in the tank during normal operation of the furnace; sensing the pressure in the tank; and further impinging a high velocity stream of steam upon the stream of smelt whenever the pressure in the tank decreases below a second selected superatmospheric pressure which is lower than said first pressure.

  8. Chemically evolving systems for oil recovery enhancement in heavy oil deposits

    Science.gov (United States)

    Altunina, L. K.; Kuvshinov, I. V.; Kuvshinov, V. A.; Stasyeva, L. A.

    2017-12-01

    This work presents the results of laboratory studies and field tests of new physicochemical technologies for enhanced oil recovery of heavy oil fields under natural development conditions and with thermal-steam stimulation using oil-displacing "smart" systems. The systems are based on surfactants and buffer systems. Their rheological and acid-base properties can be regulated by their chemical evolution directly in the formation. Field tests of the technologies carried out on high-viscosity oil deposit in the Usinskoye oilfield have shown that the EOR technologies are environmentally friendly and technologically effective.

  9. Environmental Product Development Combining the Life Cycle Perspective with Chemical Hazard Information

    DEFF Research Database (Denmark)

    Askham, Cecilia

    ) are essential. Many life cycle assessments of product systems are performed without the inclusion of toxicity data and indicators. Ecodesign processes for products are often based upon just one, or very few, environmental indicators. Regulatory issues are sometimes addressed in an ad hoc fashion, often late......Concerns regarding the short- and long-term detrimental effects of chemicals on human health and ecosystems have made the minimisation of chemical hazards a vitally important issue. If sustainable development is to be achieved, environmental efficient products (and product life cycles...... in the design or redesign process. This thesis concerns marrying the life cycle perspective with chemical hazard information, in order to advance the practice of environmental product development, and hence takes further steps towards sustainable development. The need to consider the full value chain...

  10. Temperature cycling improves in vivo recovery of cold-stored human platelets in a mouse model of transfusion.

    Science.gov (United States)

    Xu, Fei; Gelderman, Monique P; Farrell, John; Vostal, Jaroslav G

    2013-06-01

    Platelet (PLT) storage at room temperature (RT) is limited to 5 days to prevent growth of bacteria, if present, to high levels. Storage in cold temperatures would reduce bacterial proliferation, but cold-exposed PLTs are rapidly cleared from circulation by the hepatic Ashwell-Morell (AM) receptor, which recognizes PLT surface carbohydrates terminated by β-galactose. We cycled storage temperature between 4 and 37°C to preserve PLT function and reduce bacterial growth. Temperature-cycled (TC) human PLTs were stored at 4°C for 12 hours and then incubated at 37°C for 30 minutes before returning back to cold storage. PLTs stored at RT or at 4°C (COLD) or TC for 2, 5, and 7 days were infused into SCID mice and the in vivo recovery was determined at 5, 20, and 60 minutes after transfusion. PLTs stored for 2 days in COLD had significantly lower in vivo recoveries than RT PLTs. TC PLTs had improved recoveries over COLD and comparable to RT PLTs. After 5- and 7-day storage, TC PLTs had better recoveries than RT and COLD PLTs. PLT surface β-galactose was increased significantly for both COLD and TC PLTs compared to RT. Blocking of the AM receptor by asialofetuin increased COLD but not TC PLT recovery. TC cold storage may be an effective method to store PLTs without loss of in vivo recovery. The increased β-galactose exposure in TC PLTs suggests that mechanisms in addition to AM receptors may mediate clearance of cold-stored PLTs. © 2012 American Association of Blood Banks.

  11. Weighted Time-Band Approximation Model for Flight Operations Recovery considering Simplex Group Cycle Approaches in China

    Directory of Open Access Journals (Sweden)

    Haiwen Xu

    2016-01-01

    Full Text Available The time-band approximation model for flight operations recovery following disruption (Bard, Yu, Arguello, IIE Transactions, 33, 931–947, 2001 is constructed by partitioning the recovery period into time bands and by approximating the delay costs associated with the possible flight connections. However, for disruptions occurring in a hub-and-spoke network, a large number of possible flight connections are constructed throughout the entire flight schedule, so as to obtain the approximate optimal. In this paper, we show the application of the simplex group cycle approach to hub-and-spoke airlines in China, along with the related weighted threshold necessary for controlling the computation time and the flight disruption scope and depth. Subsequently, we present the weighted time-band approximation model for flight operations recovery, which incorporates the simplex group cycle approach. Simple numerical experiments using actual data from Air China show that the weighted time-band approximation model is feasible, and the results of stochastic experiments using actual data from Sichuan Airlines show that the flight disruption and computation time are controlled by the airline operations control center, which aims to achieve a balance between the flight disruption scope and depth, computation time, and recovery value.

  12. Possibilities for recovery and prospects of the Serbian chemical industry in the light of sustainable development

    Directory of Open Access Journals (Sweden)

    Đukić Petar M.

    2014-01-01

    Full Text Available There are numerous dilemmas related to the meaning of common terms associated with modern economic sectors, and especially the ones concerning industry. Chemical industry is a typical example of a term which changes rapidly and qualitatively, exactly with the pace of changing of the very technology based on knowledge, procedure, processes, raw materials, energy, as well as on the products themselves and on the way of their use. Numerous difficulties caused by huge changes in global market, by transition of command economies towards market system, as well as by the latest global economic-financial crisis, have brought the chemical industry in modern Serbia to an unenviable position. We cannot generally claim that chemical industry is collapsing, but the recovery of the whole chemical industry, as well as of the industry in general, necessitates many favourable presumptions from the environment, as well as strategic, systemic and operative measures, of the state within the so-called industry policy, as well as of the very companies which deal with chemical industry. The re-industrialization strategy, adopted officially during the first crisis blow, but to the full extent only during the prolonged crisis period in Serbia (2009-2013 should not be based on direct state incentives, but above all on the institutional infrastructure and business environment improvement which will lead to the investments in technological reconstruction and re-organization of the entire sector. However, chemical industry cannot be observed as a chance for economic growth per se, nor it can lead to higher employment rate in such a short period of time, but above all to productive use of profession, or of growth potential based on knowledge factor. This is why a proper evolution and prosperity of the Serbian chemical industry can be comprehended, not only through contribution of one separate sector, but as complementary and useful technologies within many other industries

  13. Effect of biofeedback cycling training on functional recovery and walking ability of lower extremity in patients with stroke.

    Science.gov (United States)

    Yang, Huei-Ching; Lee, Chia-Ling; Lin, Roxane; Hsu, Miao-Ju; Chen, Chia-Hsin; Lin, Jau-Hong; Lo, Sing Kai

    2014-01-01

    This study aimed to investigate the effectiveness of biofeedback cycling training on lower limb functional recovery, walking endurance, and walking speed for patients with chronic stroke. Thirty-one patients with stroke (stroke onset >3 months) were randomly assigned into two groups using a crossover design. One group (N = 16; mean: 53.6 ± 10.3 years) underwent conventional rehabilitation and cycling training (30 minutes/time, 5 times per week for 4 weeks), followed by only conventional rehabilitation for another 4 weeks. The other group (N = 15; mean: 54.5 ± 8.0 years) underwent the same training in reverse order. The bike used in this biofeedback cycling training was the MOTOmed viva2 Movement Trainer. Outcome measures included the lower extremity subscale of Fugl-Meyer assessment (LE-FMA), the 6-minute walk test (6MWT), the 10-meter walk test (10MWT), and the modified Ashworth scale (MAS). All participants were assessed at the beginning of the study, at the end of the 4(th) week, and at the end of the 8(th) week. Thirty participants completed the study, including the cycling training interventions and all assessments. The results showed that improvements in the period with cycling training were significantly better than the noncycling period in the LE-FMA (p cycling period and the noncycling period after adjusting for potential confounding factors in the multivariate analysis of variance (p cycling training could lead to improved LE functional recovery, walking endurance, and speed for patients with chronic stroke. Copyright © 2013. Published by Elsevier B.V.

  14. A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles

    International Nuclear Information System (INIS)

    Yari, Mortaza; Mahmoudi, S.M.S.

    2011-01-01

    This paper presents an investigation on the utilization of waste heat from a gas turbine-modular helium reactor (GT-MHR) using different arrangements of organic Rankine cycles (ORCs) for power production. The considered organic Rankine cycles were: simple organic Rankine cycle (SORC), ORC with internal heat exchanger (HORC) and regenerative organic Rankine cycle (RORC). The performances of the combined cycles were studied from the point of view of first and second-laws of thermodynamics. Individual models were developed for each component and the effects of some important parameters such as compressor pressure ratio, turbine inlet temperature, and evaporator and environment temperatures on the efficiencies and on the exergy destruction rate were studied. Finally the combined cycles were optimized thermodynamically using the EES (Engineering Equation Solver) software. Based on the identical operating conditions for the GT-MHR cycle, a comparison between the three combined cycles and a simple GT-MHR cycle is also were made. This comparison was also carried out from the point of view of economics. The GT-MHR/SORC combined cycle proved to be the best among all the cycles from the point of view of both thermodynamics and economics. The efficiency of this cycle was about 10% higher than that of GT-MHR alone. (orig.)

  15. Simulation of an Integrated Gasification Combined Cycle with Chemical-Looping Combustion and CO2 sequestration

    OpenAIRE

    Jiménez Alvaro, Ángel; López Paniagua, Ignacio; González Fernández, M. Celina; Rodríguez Martín, Javier; Nieto Carlier, Rafael

    2014-01-01

    Chemical-looping combustion allows an integration of CO2 capture in a thermal power plant without energy penalty; secondly, a less exergy destruction in the combustion chemical transformation is achieved, leading to a greater overall thermal efficiency. This paper focus on the study of the energetic performance of this concept of combustion in an integrated gasification combined cycle power plant when synthesis gas is used as fuel for the gas turbines. After thermodynamic modelling and optimi...

  16. Functional fatigue recovery of superelastic cycled NiTi wires based on near 100 °C aging treatments

    Directory of Open Access Journals (Sweden)

    Isalgue Antonio

    2015-01-01

    Full Text Available Functional fatigue affecting superelastic behaviour of NiTi wires includes an accumulation of residual strain and an uneven decrement of transformation stress on cycling. Although this evolution is observed to diminish asymptotically, it represents an important loss in the maximum recoverable strain level and in the hysteretic dissipative capacity of the material. In this work, the effect of moderate temperature aging treatment on the functionally degraded material properties was studied with two experimental setups. NiTi pseudoelastic wire samples of 0.5 and 2.46 mm diameter were subjected to different cycling programs intercalated by aging treatments of different durations up to 48 h at 100°C. Results show that important levels of recovery on the residual strains and the transformation stresses were attained after the aging treatments. The analysis indicates that the characteristics of the recovered cycles are rather independent from the treatment duration and from the reached condition before each treatment.

  17. Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery

    International Nuclear Information System (INIS)

    Peris, Bernardo; Navarro-Esbrí, Joaquín; Molés, Francisco

    2013-01-01

    This work is focused on waste heat recovery of jacket cooling water from Internal Combustion Engines (ICEs). Cooling water heat does not always find use due to its low temperature, typically around 90 °C, and usually is rejected to the ambient despite its high thermal power. An efficient way to take benefit from the ICE cooling water waste heat can be to increase the power output through suitable bottoming Organic Rankine Cycles (ORCs). Thereby, this work simulates six configurations using ten non flammable working fluids and evaluates their performances in efficiency, safety, cost and environmental terms. Results show that the Double Regenerative ORC using SES36 gets the maximum net efficiency of 7.15%, incrementing the ICE electrical efficiency up to 5.3%, although requires duplicating the number of main components and high turbine size. A more rigorous analysis, based on the system feasibility, shows that small improvements in the basic cycle provide similar gains compared to the most complex schemes proposed. So, the single Regenerative ORC using R236fa and the Reheat Regenerative ORC using R134a seem suitable cycles which provide a net efficiency of 6.55%, incrementing the ICE electrical efficiency up to 4.9%. -- Highlights: • Suitable bottoming cycles for ICE cooling water waste heat recovery are studied. • Non flammable working fluids and various ORC configurations are evaluated. • Double regenerative cycle using SES36 is the most efficient configuration. • Regenerative and reheat regenerative ORCs seem feasible cycles. • Electrical efficiency of the ICE can be improved up to 5.3%

  18. Procedure of Destructive Chemical Recovery of Precious Metals in Nitric Acid Production

    Directory of Open Access Journals (Sweden)

    Ljubičić, M.

    2012-07-01

    Full Text Available The heart of the nitric acid production process is the chemical reactor containing a platinum-based catalyst pack and an associated catchment system, which allows the ammonia oxidation reaction to take place efficiently. Under the severe operating conditions imposed by the high-pressure ammonia oxidation process, the catalyst gauzes experience progressive deterioration, as shown by the restricted surface of the catalyst wires, the loss of catalytic activity and the loss of catalytic materials. The higher the pressure of gaseous ammonia oxidation, the greater the loss of platinum group metals from the surface of the applied selective heterogeneous catalysts. Total losses for one batch over the whole period of using selective heterogeneous catalysts may account in the range from 20 to 40 % of the total installed quantity of precious metals. An important part of the platinum removed from the platinum-rhodium alloy wires can be recovered at the outlet of the reactor by means of palladium catchment gauzes. However, this catchment process, which is based on the great ability of palladium to alloy with platinum, is not 100 % effective and a fraction of the platinum and practically all of the rhodium lost by the catalyst wires, evades the catchment package and is then deposited in other parts of the plant, especially heat exchangers. From the above mentioned operating equipment, the retained mass of precious metals can be recovered by the technical procedure of non-destructive and destructive chemical solid-liquid extraction.Shown is the technical procedure of destructive chemical recovery of preheater and boiler for preheating and production of steam by applying sulfuric acid (w = 20 % and subsequent procedure of raffination of derived sludge, to the final recovery of precious metals. The technical procedure of destructive chemical recovery of precious metals from preheater and boiler for preheating and production of steam in nitric acid production is

  19. Building a model based on scientific consensus for Life Cycle Impact Assessment of chemicals:

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Huijbregts, Mark; Jolliet, Olivier

    2008-01-01

    Achieving consensus among scientists is often a challenge - particularly in model development. In this article we describe a recent scientific consensus-building process for Life Cycle Impact Assessment (LCIA) models applied to chemical emissions - including the strategy, execution, and results...

  20. Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development.

    Science.gov (United States)

    Senese, S; Lo, Y C; Huang, D; Zangle, T A; Gholkar, A A; Robert, L; Homet, B; Ribas, A; Summers, M K; Teitell, M A; Damoiseaux, R; Torres, J Z

    2014-10-16

    Cancer cell proliferation relies on the ability of cancer cells to grow, transition through the cell cycle, and divide. To identify novel chemical probes for dissecting the mechanisms governing cell cycle progression and cell division, and for developing new anti-cancer therapeutics, we developed and performed a novel cancer cell-based high-throughput chemical screen for cell cycle modulators. This approach identified novel G1, S, G2, and M-phase specific inhibitors with drug-like properties and diverse chemotypes likely targeting a broad array of processes. We further characterized the M-phase inhibitors and highlight the most potent M-phase inhibitor MI-181, which targets tubulin, inhibits tubulin polymerization, activates the spindle assembly checkpoint, arrests cells in mitosis, and triggers a fast apoptotic cell death. Importantly, MI-181 has broad anti-cancer activity, especially against BRAF(V600E) melanomas.

  1. Differences in Blood Urea and Creatinine Concentrations in Earthed and Unearthed Subjects during Cycling Exercise and Recovery.

    Science.gov (United States)

    Sokal, Paweł; Jastrzębski, Zbigniew; Jaskulska, Ewelina; Sokal, Karol; Jastrzębska, Maria; Radzimiński, Lukasz; Dargiewicz, Robert; Zieliński, Piotr

    2013-01-01

    Contact of humans with the earth, either directly (e.g., with bare feet) or using a metal conductor, changes their biochemical parameters. The effects of earthing during physical exercise are unknown. This study was carried out to evaluate selected biochemical parameters in subjects who were earthed during cycling. In a double-blind, crossover study, 42 participants were divided into two groups and earthed during exercise and recovery. One group was earthed in the first week during 30 minutes of cycling exercise and during recovery, and a second group was earthed in the second week. A double-blind technique was applied. Blood samples were obtained before each training session, after 15 and 30 minutes of exercise, and after 40 minutes of recovery. Significantly lower blood urea levels were observed in subjects earthed during exercise and relaxation. These significant differences were noted in both groups earthed at the beginning of exercise (P 30 minutes (P minutes of relaxation (P < 0.0001). Creatinine concentrations in earthed subjects during exercise were unchanged. Conclusions. Earthing during exercise lowers blood urea concentrations and may inhibit hepatic protein catabolism or increase renal urea excretion. Exertion under earthing may result in a positive protein balance.

  2. Differences in Blood Urea and Creatinine Concentrations in Earthed and Unearthed Subjects during Cycling Exercise and Recovery

    Directory of Open Access Journals (Sweden)

    Paweł Sokal

    2013-01-01

    Full Text Available Contact of humans with the earth, either directly (e.g., with bare feet or using a metal conductor, changes their biochemical parameters. The effects of earthing during physical exercise are unknown. This study was carried out to evaluate selected biochemical parameters in subjects who were earthed during cycling. In a double-blind, crossover study, 42 participants were divided into two groups and earthed during exercise and recovery. One group was earthed in the first week during 30 minutes of cycling exercise and during recovery, and a second group was earthed in the second week. A double-blind technique was applied. Blood samples were obtained before each training session, after 15 and 30 minutes of exercise, and after 40 minutes of recovery. Significantly lower blood urea levels were observed in subjects earthed during exercise and relaxation. These significant differences were noted in both groups earthed at the beginning of exercise (P<0.0001, after 15 (P<0.0001 and 30 minutes (P<0.0001 of exercise, and after 40 minutes of relaxation (P<0.0001. Creatinine concentrations in earthed subjects during exercise were unchanged. Conclusions. Earthing during exercise lowers blood urea concentrations and may inhibit hepatic protein catabolism or increase renal urea excretion. Exertion under earthing may result in a positive protein balance.

  3. Material Cycles and Chemicals: Dynamic Material Flow Analysis of Contaminants in Paper Recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Laner, David; Astrup, Thomas Fruergaard

    2016-01-01

    This study provides a systematic approach for assessment of contaminants in materials for recycling. Paper recycling is used as an illustrative example. Three selected chemicals, bisphenol A (BPA), diethylhexyl phthalate (DEHP) and mineral oil hydrocarbons (MOHs), are evaluated within the paper...... cycle. The approach combines static material flow analysis (MFA) with dynamic material and substance flow modeling. The results indicate that phasing out of chemicals is the most effective measure for reducing chemical contamination. However, this scenario was also associated with a considerable lag...... phase (between approximately one and three decades) before the presence of chemicals in paper products could be considered insignificant. While improved decontamination may appear to be an effective way of minimizing chemicals in products, this may also result in lower production yields. Optimized waste...

  4. Effects of Hygrothermal Cycling on the Chemical, Thermal, and Mechanical Properties of 862/W Epoxy Resin

    Science.gov (United States)

    Miller, Sandi G.; Roberts, Gary D.; Copa, Christine C.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.

    2011-01-01

    The hygrothermal aging characteristics of an epoxy resin were characterized over 1 year, which included 908 temperature and humidity cycles. The epoxy resin quickly showed evidence of aging through color change and increased brittleness. The influence of aging on the material s glass transition temperature (Tg) was evaluated by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The Tg remained relatively constant throughout the year long cyclic aging profile. The chemical composition was monitored by Fourier Transform Infrared Spectroscopy (FTIR) where evidence of chemical aging and advancement of cure was noted. The tensile strength of the resin was tested as it aged. This property was severely affected by the aging process in the form of reduced ductility and embrittlement. Detailed chemical evaluation suggests many aging mechanisms are taking place during exposure to hygrothermal conditions. This paper details the influence of processes such as: advancement of cure, chemical degradation, and physical aging on the chemical and physical properties of the epoxy resin.

  5. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work

  6. Combined heating and chemical treatment for oil recovery from aging crude oil.

    Science.gov (United States)

    Hou, Chunjuan; Jiang, Qingzhe; Song, Zhaozheng; Tan, Guorong; Shi, Zhan

    2016-07-01

    With increasing use of chemical oil displacement agents in tertiary recovery and the application of various demulsifiers for crude oil dehydration, a large amount of aging crude oil containing a high ratio of water is produced, and it is very difficult for processing and utilisation. In this article, we chose aging crude oil samples from a union station in an oilfield in China. Sample composition was analysed to demonstrate that the key of aging crude oil dehydration is the removal of solid impurities. Thus, an efficient method of combining heating and chemical treatments was developed to treat aging crude oil. It includes two steps: The first step is washing of aging crude oil with hot water with sodium dodecylbenzene sulfonate; the second step is chemical demulsification of the above mixture with hydrochloric acid and sodium chloride solution. The result showed that 2.9% of solid impurities and 29.2% of water were removed in the first step; 27.2% of oil, 24.3% of water, and 3.47% of solid impurities in the aging crude oil were recycled in the second step. A total 87.07% of aging crude oil could be solved with this method. The present two-step treatment method can ensure that the dehydration process runs normally and efficiently in the union station, making it a promising method in the recycling of aging crude oil. © The Author(s) 2016.

  7. Simulation of an integrated gasification combined cycle with chemical-looping combustion and carbon dioxide sequestration

    International Nuclear Information System (INIS)

    Jiménez Álvaro, Ángel; López Paniagua, Ignacio; González Fernández, Celina; Rodríguez Martín, Javier; Nieto Carlier, Rafael

    2015-01-01

    Highlights: • A chemical-looping combustion based integrated gasification combined cycle is simulated. • The energetic performance of the plant is analyzed. • Different hydrogen-content synthesis gases are under study. • Energy savings accounting carbon dioxide sequestration and storage are quantified. • A notable increase on thermal efficiency up to 7% is found. - Abstract: Chemical-looping combustion is an interesting technique that makes it possible to integrate power generation from fuels combustion and sequestration of carbon dioxide without energy penalty. In addition, the combustion chemical reaction occurs with a lower irreversibility compared to a conventional combustion, leading to attain a somewhat higher overall thermal efficiency in gas turbine systems. This paper provides results about the energetic performance of an integrated gasification combined cycle power plant based on chemical-looping combustion of synthesis gas. A real understanding of the behavior of this concept of power plant implies a complete thermodynamic analysis, involving several interrelated aspects as the integration of energy flows between the gasifier and the combined cycle, the restrictions in relation with heat balances and chemical equilibrium in reactors and the performance of the gas turbines and the downstream steam cycle. An accurate thermodynamic modeling is required for the optimization of several design parameters. Simulations to evaluate the energetic efficiency of this chemical-looping-combustion based power plant under diverse working conditions have been carried out, and a comparison with a conventional integrated gasification power plant with precombustion capture of carbon dioxide has been made. Two different synthesis gas compositions have been tried to check its influence on the results. The energy saved in carbon capture and storage is found to be significant and even notable, inducing an improvement of the overall power plant thermal efficiency of

  8. Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Knudsen, Thomas; Larsen, Ulrik

    2014-01-01

    The Kalina split-cycle is a thermodynamic process for converting thermal energy into electrical power. It uses an ammonia–water mixture as a working fluid (like a conventional Kalina cycle) and has a varying ammonia concentration during the pre-heating and evaporation steps. This second feature...

  9. Material Cycles and Chemicals: Dynamic Material Flow Analysis of Contaminants in Paper Recycling.

    Science.gov (United States)

    Pivnenko, Kostyantyn; Laner, David; Astrup, Thomas F

    2016-11-15

    This study provides a systematic approach for assessment of contaminants in materials for recycling. Paper recycling is used as an illustrative example. Three selected chemicals, bisphenol A (BPA), diethylhexyl phthalate (DEHP) and mineral oil hydrocarbons (MOHs), are evaluated within the paper cycle. The approach combines static material flow analysis (MFA) with dynamic material and substance flow modeling. The results indicate that phasing out of chemicals is the most effective measure for reducing chemical contamination. However, this scenario was also associated with a considerable lag phase (between approximately one and three decades) before the presence of chemicals in paper products could be considered insignificant. While improved decontamination may appear to be an effective way of minimizing chemicals in products, this may also result in lower production yields. Optimized waste material source-segregation and collection was the least effective strategy for reducing chemical contamination, if the overall recycling rates should be maintained at the current level (approximately 70% for Europe). The study provides a consistent approach for evaluating contaminant levels in material cycles. The results clearly indicate that mass-based recycling targets are not sufficient to ensure high quality material recycling.

  10. Chemical recovery of thallium-203 following production and separation of lead-201

    International Nuclear Information System (INIS)

    Kayfus, G.P.; Boothe, T.E.; Campbell, J.A.; Finn, R.D.; Gilson, A.J.

    1982-01-01

    Because of the cost and limited availabilty of isotopically enriched thallium (>92% 203 Tl), its use in the 203 Tl(p, 3n) 201 Pb nuclear reaction necessitates chemical recovery. An adaptive method has been developed and evaluated. After the separation of 201 Pb, the 203 Tl(I) is oxidized to 203 Tl(III) by Cl 2 , Br 2 or [Fe(CN) 6 ] -2 , precipitated as Tl(OH) 3 with NaOH and subsequently converted to Tl 2 O 3 by heating. Due to potential loss during recovery, the solubilities of Tl(OH) 3 and Tl 2 O 3 in aqueous solution as a function of pH have been studied using the internal tracer 202 Tl(T=12.2 d), produced during cyclotron irradiation. Effective solubility product constants have been determined to be 5.4x10 -48 and 2.5x10 -47 for Tl(OH) 3 and Tl 2 O 3 , respectively. (author)

  11. Effects of G-trainer, cycle ergometry, and stretching on physiological and psychological recovery from endurance exercise.

    Science.gov (United States)

    West, Amy D; Cooke, Matthew B; LaBounty, Paul M; Byars, Allyn G; Greenwood, Mike

    2014-12-01

    The purpose of this study was to compare the effectiveness of 3 treatment modes (Anti-Gravity Treadmill [G-trainer], stationary cycling [CompuTrainer], and static stretching) on the physiological and psychological recovery after an acute bout of exhaustive exercise. In a crossover design, 12 aerobically trained men (21.3 ± 2.3 years, 72.1 ± 8.1 kg, 178.4 ± 6.3 cm, (Equation is included in full-text article.): 53.7 ± 6.3 ml·kg·min) completed a 29-km stationary cycling time trial. Immediately after the time trial, subjects completed 30 minutes of G-trainer or CompuTrainer (40% (Equation is included in full-text article.)) or static stretching exercises. A significant time effect was detected for plasma lactate (p = 0.010) and serum cortisol (p = 0.039) after exercise. No treatment or treatment by time interaction was identified for lactate or cortisol, respectively. No main effects for time, treatment, or treatment by time interaction were identified for interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). No differences were observed among treatments in skeletal muscle peak power output, mean power output, time to peak power, and rate to fatigue at 24 hours postexercise bout. Finally, no significant changes in mood status were observed after exercise and between treatment groups. When compared with stationary cycling and static stretching, exercise recovery performed on the G-trainer was unable to reduce systemic markers of stress and inflammation, blood lactate, or improve anaerobic performance and psychological mood states after an exhaustive bout of endurance exercise. Further research is warranted that includes individualized recovery modalities to create balances between the stresses of training and competition.

  12. The contribution of enzymes and process chemicals to the life cycle of ethanol

    International Nuclear Information System (INIS)

    MacLean, Heather L; Spatari, Sabrina

    2009-01-01

    Most life cycle studies of biofuels have not examined the impact of process chemicals and enzymes, both necessary inputs to biochemical production and which vary depending upon the technology platform (feedstock, pretreatment and hydrolysis system). We examine whether this omission is warranted for sugar-platform technologies. We develop life cycle ('well-to-tank') case studies for a corn dry-mill and for one 'mature' and two near-term lignocellulosic ethanol technologies. Process chemical and enzyme inputs contribute only 3% of fossil energy use and greenhouse gas (GHG) emissions for corn ethanol. Assuming considerable improvement compared to current enzyme performance, the inputs for the near-term lignocellulosic technologies studied are found to be responsible for 30%-40% of fossil energy use and 30%-35% of GHG emissions, not an insignificant fraction given that these models represent technology developers' nth plant performance. Mature technologies which assume lower chemical and enzyme loadings, high enzyme specific activity and on-site production utilizing renewable energy would significantly improve performance. Although the lignocellulosic technologies modeled offer benefits over today's corn ethanol through reducing life cycle fossil energy demand and GHG emissions by factors of three and six, achieving those performance levels requires continued research into and development of the manufacture of low dose, high specific activity enzyme systems. Realizing the benefits of low carbon fuels through biological conversion will otherwise not be possible. Tracking the technological performance of process conversion materials remains an important step in measuring the life cycle performance of biofuels.

  13. Recovery of phosphate from the supernatant of activated sludge pretreated by microwave irradiation through chemical precipitation.

    Science.gov (United States)

    Xiao, Dean; Huang, Haiming; Jiang, Yang; Ding, Li

    2017-12-01

    This paper presents a technology of releasing phosphate from activated sludge by using a combined process of microwave irradiation and anaerobic stirring, followed by phosphate recovery from the resulting supernatant via chemical precipitation without addition of chemicals, except for a pH regulator. A series of experiments was conducted to examine the effects of microwave irradiation time, sludge solution pH, sludge concentration, and anaerobic stirring time on the release of phosphate. The results revealed that all of these parameters had a significant effect on the release of phosphate via the proposed combined process, and the combination of 180 s of microwave irradiation and 1 h of anaerobic stirring was found to give optimal phosphate release. When the sludge solution was acidized before pretreatment, the phosphate concentration of the supernatant increased rapidly. A 25 g/L sludge concentration was found to be optimal for the release of phosphate, beyond this concentration, there was no increase in the phosphate release. Under the optimal conditions of phosphate release (irradiation time, 180 s; solution pH, 2; sludge concentration, 25 g/L; anaerobic stirring time, 1 h), the total orthophosphate (P T ) concentration in the supernatant reached 396 mg/L, accompanied by high concentrations of metal cations such as Ca, Mg, K, Al, and Fe. When the pH of the supernatant was adjusted to 9-10, the recovery efficiency of phosphate reached approximately 95 %. The analysis results indicated that the main components of the collected precipitates were amorphous calcium phosphate and struvite, which can be used as alternate phosphate minerals.

  14. Sulfa Drugs Inhibit Sepiapterin Reduction and Chemical Redox Cycling by Sepiapterin Reductase

    Science.gov (United States)

    Yang, Shaojun; Jan, Yi-Hua; Mishin, Vladimir; Richardson, Jason R.; Hossain, Muhammad M.; Heindel, Ned D.; Heck, Diane E.; Laskin, Debra L.

    2015-01-01

    Sepiapterin reductase (SPR) catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4), a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism. SPR also mediates chemical redox cycling, catalyzing one-electron reduction of redox-active chemicals, including quinones and bipyridinium herbicides (e.g., menadione, 9,10-phenanthrenequinone, and diquat); rapid reaction of the reduced radicals with molecular oxygen generates reactive oxygen species (ROS). Using recombinant human SPR, sulfonamide- and sulfonylurea-based sulfa drugs were found to be potent noncompetitive inhibitors of both sepiapterin reduction and redox cycling. The most potent inhibitors of sepiapterin reduction (IC50s = 31–180 nM) were sulfasalazine, sulfathiazole, sulfapyridine, sulfamethoxazole, and chlorpropamide. Higher concentrations of the sulfa drugs (IC50s = 0.37–19.4 μM) were required to inhibit redox cycling, presumably because of distinct mechanisms of sepiapterin reduction and redox cycling. In PC12 cells, which generate catecholamine and monoamine neurotransmitters via BH4-dependent amino acid hydroxylases, sulfa drugs inhibited both BH2/BH4 biosynthesis and redox cycling mediated by SPR. Inhibition of BH2/BH4 resulted in decreased production of dopamine and dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 5-hydroxytryptamine. Sulfathiazole (200 μM) markedly suppressed neurotransmitter production, an effect reversed by BH4. These data suggest that SPR and BH4-dependent enzymes, are “off-targets” of sulfa drugs, which may underlie their untoward effects. The ability of the sulfa drugs to inhibit redox cycling may ameliorate ROS-mediated toxicity generated by redox active drugs and chemicals, contributing to their anti-inflammatory activity. PMID:25550200

  15. HEAT RECOVERY FROM A NATURAL GAS POWERED INTERNAL COMBUSTION ENGINE BY CO2 TRANSCRITICAL POWER CYCLE

    Directory of Open Access Journals (Sweden)

    Mahmood Farzaneh-Gord

    2010-01-01

    Full Text Available The present work provides details of energy accounting of a natural gas powered internal combustion engine and achievable work of a utilized CO2 power cycle. Based on experimental performance analysis of a new designed IKCO (Iran Khodro Company 1.7 litre natural gas powered engine, full energy accounting of the engine were carried out on various engine speeds and loads. Further, various CO2 transcritical power cycle configurations have been appointed to take advantages of exhaust and coolant water heat lost. Based on thermodynamic analysis, the amount of recoverable work obtainable by CO2 transcritical power cycles have been calculated on various engine conditions. The results show that as much as 18 kW power could be generated by the power cycle. This would be considerable amount of power especially if compared with the engine brake power.

  16. Effect of biofeedback cycling training on functional recovery and walking ability of lower extremity in patients with stroke

    Directory of Open Access Journals (Sweden)

    Huei-Ching Yang

    2014-01-01

    Full Text Available This study aimed to investigate the effectiveness of biofeedback cycling training on lower limb functional recovery, walking endurance, and walking speed for patients with chronic stroke. Thirty-one patients with stroke (stroke onset >3 months were randomly assigned into two groups using a crossover design. One group (N = 16; mean: 53.6 ± 10.3 years underwent conventional rehabilitation and cycling training (30 minutes/time, 5 times per week for 4 weeks, followed by only conventional rehabilitation for another 4 weeks. The other group (N = 15; mean: 54.5 ± 8.0 years underwent the same training in reverse order. The bike used in this biofeedback cycling training was the MOTOmed viva2 Movement Trainer. Outcome measures included the lower extremity subscale of Fugl-Meyer assessment (LE-FMA, the 6-minute walk test (6MWT, the 10-meter walk test (10MWT, and the modified Ashworth scale (MAS. All participants were assessed at the beginning of the study, at the end of the 4th week, and at the end of the 8th week. Thirty participants completed the study, including the cycling training interventions and all assessments. The results showed that improvements in the period with cycling training were significantly better than the noncycling period in the LE-FMA (p < 0.05, 6MWT (p < 0.001, 10MWT (p < 0.001, and MAS (p < 0.001 scores. No significant carryover effects were observed. The improvements on outcome measures were significantly different between the cycling period and the noncycling period after adjusting for potential confounding factors in the multivariate analysis of variance (p < 0.001. The study result indicates that the additional 4-week biofeedback cycling training could lead to improved LE functional recovery, walking endurance, and speed for patients with chronic stroke.

  17. Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery

    International Nuclear Information System (INIS)

    Shu, Gequn; Gao, Yuanyuan; Tian, Hua; Wei, Haiqiao; Liang, Xingyu

    2014-01-01

    For high temperature ORC (Organic Rankine Cycle) used in engine waste heat recovery, it's very critical to select a high temperature working fluid. HCs (Hydrocarbons) usually have excellent cycle performance, but the flammability limits their practical application. Considering that some retardants can be used to suppress flammability, the paper presents an application of mixtures based on hydrocarbons blending with refrigerant retardants to engine waste heat ORC. Three pure hydrocarbons (cyclopentane, cyclohexane, benzene) and two retardants (R11, R123) are selected for combination. Thermal efficiency and exergy loss are selected as the main objective functions. Based on thermodynamic model, the effects of retardants mass fraction, evaporation temperature and IHE (internal heat exchanger) are investigated. Results show that zeotropic mixtures do have higher thermal efficiency and lower exergy loss than pure fluids, at a certain mixture ratio. There exists the OMR (optimal mixture ratio) for different mixtures, and it changes with the evaporation temperature. When adding IHE to system, cycle performance could be obviously improved, and for benzene/R11 (0.7/0.3), the efficiency growth is about 7.12%∼9.72%. Using it, the maximum thermal efficiency of the system can achieve 16.7%, and minimum exergy loss is only 30.76 kW. - Highlights: • A theoretical analysis of Organic Rankine Cycle for engine exhaust heat recovery is proposed. • Mixtures based on hydrocarbons as working fluids have been suggested. • Effects of the IHE (internal heat exchanger) on ORC system are investigated. • OMR (Optimal mixture ratio) changes with the evaporation temperature. • Using the system, maximum thermal efficiency can achieve 16.7%

  18. Optimised heat recovery steam generators for integrated solar combined cycle plants

    Science.gov (United States)

    Peterseim, Jürgen H.; Huschka, Karsten

    2017-06-01

    The cost of concentrating solar power (CSP) plants is decreasing but, due to the cost differences and the currently limited value of energy storage, implementation of new facilities is still slow compared to photovoltaic systems. One recognized option to lower cost instantly is the hybridization of CSP with other energy sources, such as natural gas or biomass. Various references exist for the combination of CSP with natural gas in combined cycle plants, also known as Integrated Solar Combined Cycle (ISCC) plants. One problem with current ISCC concepts is the so called ISCC crisis, which occurs when CSP is not contributing and cycle efficiency falls below efficiency levels of solely natural gas only fired combined cycle plants. This paper analyses current ISCC concepts and compares them with two optimised designs. The comparison is based on a Kuraymat type ISCC plant and shows that cycle optimization enables a net capacity increase of 1.4% and additional daily generation of up to 7.9%. The specific investment of the optimised Integrated Solar Combined Cycle plant results in a 0.4% cost increase, which is below the additional net capacity and daily generation increase.

  19. Getting the chemicals right: Gaps and opportunities in addressing inorganics in life cycle assessment

    DEFF Research Database (Denmark)

    Fantke, Peter; Kirchhübel, Nienke

    2017-01-01

    chemicals in LCIA toxicity characterization. The analysis of existing LCIA approaches of specific organic and inorganic chemical groups including PFASs, nanoparticles, salts causing salinization, and common ionic liquids show that the fate, exposure and effect modeling have to be adapted at various levels...... for the characterization of inorganic substances other than cationic metals. Differences in physicochemical properties and environmental fate and transformation processes of these specific substance groups compared to inorganic substance groups show that the existing LCIA model USEtox cannot be applied to inorganic...... and certain cationic metals is included in existing characterization models within life cycle impact assessment (LCIA). However, a variety of additional inorganic substances used e.g. in the textile, personal care, and building and construction industry are included neither in current life cycle inventory...

  20. A Generic Life Cycle Assessment Tool for Chemical-biochemical Processes

    DEFF Research Database (Denmark)

    Kalakul, Sawitree; Malakul, Pomthong; Siemanond, Kitipat

    2013-01-01

    As environmental impacts and resource depletion are serious concerns for the modern society, they also provide the motivation and need to design processes that are not only economically and operationally feasible, but also environmentally friendly. In this respect, life cycle assessment (LCA......) is a tool for quantifying potential environmental impacts throughout the life cycle of the product or process. It can be used in conjunction with an economic tool to evaluate the design of any existing and/or new chemical-biochemical process and create improvement options in order to arrive at the best...... design among various alternatives. Although there are several commercial LCA software, there is still need to for a simple LCA software that can be integrated with process design tools. The objective of this paper is to present a new LCA software, LCSoft, which is exclusively designed for chemical...

  1. Recovery of the Cell Cycle Inhibition in CCl4-Induced Cirrhosis by the Adenosine Derivative IFC-305

    Directory of Open Access Journals (Sweden)

    Victoria Chagoya de Sánchez

    2012-01-01

    Full Text Available Introduction. Cirrhosis is a chronic degenerative illness characterized by changes in normal liver architecture, failure of hepatic function, and impairment of proliferative activity. The aim of this study is to know how IFC-305 compound induces proliferation of the liver during reversion of cirrhosis. Methods. Once cirrhosis has been installed by CCl4 treatment for 10 weeks in male Wistar rats, they were divided into four groups: two received saline and two received the compound; all were euthanized at 5 and 10 weeks of treatment. Liver homogenate, mitochondria, and nucleus were used to measure cyclins, CDKs, and cell cycle regulatory proteins PCNA, pRb, p53, E2F, p21, p27, HGF, liver ATP, and mitochondrial function. Results. Diminution and small changes were observed in the studied proteins in the cirrhotic animals without treatment. The IFC-305-treated rats showed a clear increase in most of the proteins studied mainly in PCNA and CDK6, and a marked increased in ATP and mitochondrial function. Discussion/Conclusion. IFC-305 induces a recovery of the cell cycle inhibition promoting recovery of DNA damage through the action of PCNA and p53. The increase in energy and preservation of mitochondrial function contribute to recovering the proliferative function.

  2. Economic assessment of greenhouse gas reduction through low-grade waste heat recovery using organic Rankine cycle (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Usman, Muhammad [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Dong Hyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-02-15

    Low-grade waste heat recovery technologies reduce the environmental impact of fossil fuels and improve overall efficiency. This paper presents the economic assessment of greenhouse gas (GHG) reduction through waste heat recovery using organic Rankine cycle (ORC). The ORC engine is one of the mature low temperature heat engines. The low boiling temperature of organic working fluid enables ORC to recover low-temperature waste heat. The recovered waste heat is utilized to produce electricity and hot water. The GHG emissions for equivalent power and hot water from three fossil fuels-coal, natural gas, and diesel oil-are estimated using the fuel analysis approach and corresponding emission factors. The relative decrease in GHG emission is calculated using fossil fuels as the base case. The total cost of the ORC system is used to analyze the GHG reduction cost for each of the considered fossil fuels. A sensitivity analysis is also conducted to investigate the effect of the key parameter of the ORC system on the cost of GHG reduction. Throughout the 20-year life cycle of the ORC plant, the GHG reduction cost for R245fa is 0.02 $/kg to 0.04 $/kg and that for pentane is 0.04 $/kg to 0.05 $/kg. The working fluid, evaporation pressure, and pinch point temperature difference considerably affect the GHG emission.

  3. Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines

    International Nuclear Information System (INIS)

    Song, Jian; Song, Yin; Gu, Chun-wei

    2015-01-01

    Escalating fuel prices and imposition of carbon dioxide emission limits are creating renewed interest in methods to increase the thermal efficiency of marine diesel engines. One viable means to achieve such improved thermal efficiency is the conversion of engine waste heat to a more useful form of energy, either mechanical or electrical. Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology to recover waste heat. This paper examines waste heat recovery of a marine diesel engine using ORC technology. Two separated ORC apparatuses for the waste heat from both the jacket cooling water and the engine exhaust gas are designed as the traditional recovery system. The maximum net power output is chosen as the evaluation criterion to select the suitable working fluid and define the optimal system parameters. To simplify the waste heat recovery, an optimized system using the jacket cooling water as the preheating medium and the engine exhaust gas for evaporation is presented. The influence of preheating temperature on the system performance is evaluated to define the optimal operating condition. Economic and off-design analysis of the optimized system is conducted. The simulation results reveal that the optimized system is technically feasible and economically attractive. - Highlights: • ORC is used to recover waste heat from both exhaust gas and jacket cooling water. • Comparative study is conducted for different ORC systems. • Thermal performance, system structure and economic feasibility are considered. • Optimal preheating temperature of the system is selected

  4. Muscle glycogen resynthesis during recovery from cycle exercise: no effect of additional protein ingestion

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Shirreffs, S M; Calbet, J A

    2000-01-01

    and then every 15 min a 150-ml bolus containing 1) 1.67 g. kg body wt(-1). l(-1) of sucrose and 0.5 g. kg body wt(-1). l(-1) of a whey protein hydrolysate (CHO/protein), 2) 1.67 g. kg body wt(-1). l(-1) of sucrose (CHO), and 3) water. CHO/protein and CHO ingestion caused an increased arterial glucose...... concentration compared with water ingestion during 4 h of recovery. With CHO ingestion, glucose concentration was 1-1.5 mmol/l higher during the first hour of recovery compared with CHO/protein ingestion. Leg glucose uptake was initially 0.7 mmol/min with water ingestion and decreased gradually...... with no measurable glucose uptake observed at 3 h of recovery. Leg glucose uptake was rather constant at 0.9 mmol/min with CHO/protein and CHO ingestion, and insulin levels were stable at 70, 45, and 5 mU/l for CHO/protein, CHO, and water ingestion, respectively. Glycogen resynthesis rates were 52 +/- 7, 48 +/- 5...

  5. Computational exploration of the chemical structure space of possible reverse tricarboxylic acid cycle constituents.

    Science.gov (United States)

    Meringer, Markus; Cleaves, H James

    2017-12-13

    The reverse tricarboxylic acid (rTCA) cycle has been explored from various standpoints as an idealized primordial metabolic cycle. Its simplicity and apparent ubiquity in diverse organisms across the tree of life have been used to argue for its antiquity and its optimality. In 2000 it was proposed that chemoinformatics approaches support some of these views. Specifically, defined queries of the Beilstein database showed that the molecules of the rTCA are heavily represented in such compound databases. We explore here the chemical structure "space," e.g. the set of organic compounds which possesses some minimal set of defining characteristics, of the rTCA cycle's intermediates using an exhaustive structure generation method. The rTCA's chemical space as defined by the original criteria and explored by our method is some six to seven times larger than originally considered. Acknowledging that each assumption in what is a defining criterion making the rTCA cycle special limits possible generative outcomes, there are many unrealized compounds which fulfill these criteria. That these compounds are unrealized could be due to evolutionary frozen accidents or optimization, though this optimization may also be for systems-level reasons, e.g., the way the pathway and its elements interface with other aspects of metabolism.

  6. Recovery of Information from the Fast Flux Test Facility for the Advanced Fuel Cycle Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Deborah L.; Makenas, Bruce J.; Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.

    2009-09-30

    The Fast Flux Test Facility is the most recent Liquid Metal Reactor to operate in the United States. Information from the design, construction, and operation of this reactor was at risk as the facilities associated with the reactor are being shut down. The Advanced Fuel Cycle Initiative is a program managed by the Office of Nuclear Energy of the U.S. Department of Energy with a mission to develop new fuel cycle technologies to support both current and advanced reactors. Securing and preserving the knowledge gained from operation and testing in the Fast Flux Test Facility is an important part of the Knowledge Preservation activity in this program.

  7. Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2017-02-01

    Full Text Available Industrial waste heat recovery by means of an Organic Rankine Cycle (ORC can contribute to the reduction of CO2 emissions from industries. Before market penetration, high efficiency modular concepts have to be developed to achieve appropriate economic value for industrial decision makers. This paper aims to investigate modularly designed ORC systems from a thermoeconomic point of view. The main goal is a recommendation for a suitable chemical class of working fluids, preferable ORC design and a range of heat source temperatures and thermal capacities in which modular ORCs can be economically feasible. For this purpose, a thermoeconomic model has been developed which is based on size and complexity parameters of the ORC components. Special emphasis has been laid on the turbine model. The paper reveals that alkylbenzenes lead to higher exergetic efficiencies compared to alkanes and siloxanes. However, based on the thermoeconomic model, the payback periods of the chemical classes are almost identical. With the ORC design, the developed model and the boundary conditions of this study, hexamethyldisiloxane is a suitable working fluid and leads to a payback period of less than 5 years for a heat source temperature of 400 to 600 °C and a mass flow rate of the gaseous waste heat stream of more than 4 kg/s.

  8. 40 CFR 60.2025 - What if my chemical recovery unit is not listed in § 60.2020(n)?

    Science.gov (United States)

    2010-07-01

    ... materials that are recovered. (3) A description (including a process flow diagram) of the process in which... process. (4) A description (including a process flow diagram) of the chemical constituent recovery process, highlighting the type, design, and operation of the equipment used in this process. (5) A description of the...

  9. 40 CFR 60.2558 - What if a chemical recovery unit is not listed in § 60.2555(n)?

    Science.gov (United States)

    2010-07-01

    ... process flow diagram) of the process in which the materials are burned, highlighting the type, design, and operation of the equipment used in this process. (4) A description (including a process flow diagram) of the chemical constituent recovery process, highlighting the type, design, and operation of the equipment used...

  10. Nanoscale Hydrophobic Recovery: A Chemical Force Microscopy Study of UV/Ozone-Treated Cross-Linked Poly(dimethylsiloxane)

    NARCIS (Netherlands)

    Hillborg, Henrik; Tomczak, N.; Oláh, A.; Schönherr, Holger; Vancso, Gyula J.

    2004-01-01

    Chemical force microscopy (CFM) in water was used to map the surface hydrophobicity of UV/ozone-treated poly(dimethylsiloxane) (PDMS; Sylgard 184) as a function of the storage/recovery time. In addition to CFM pull-off force mapping, we applied indentation mapping to probe the changes in the

  11. Investigation of certain physical–chemical features of oil recovery by an optimized alkali–surfactant–foam (ASF) system

    NARCIS (Netherlands)

    Hosseini Nasab, S.M.; Zitha, P.L.J.

    2017-01-01

    The objective of this study is to discover a synergistic effect between foam stability in bulk and micro-emulsion phase behaviour to design a high-performance chemical system for an optimized alkaline–surfactant–foam (ASF) flooding for enhanced oil recovery (EOR). The focus is on the interaction

  12. Thermodynamic analysis of a novel multigeneration energy system based on heat recovery from a biomass CHP cycle

    International Nuclear Information System (INIS)

    Soltani, Reza; Dincer, Ibrahim; Rosen, Marc A.

    2015-01-01

    A multigeneration energy system with one fuel intake (sawdust biomass fuel) and five useful outputs is proposed and energy and exergy analyses are carried out to assess its performance. Instead of using a simple heat exchanger to satisfy district heating needs, applying a deaerator is found to result in 10% more hot water mass flow rate for the same conditions. The energy and exergy efficiencies of the multigeneration system are found to be around 60% and 25%, respectively, while the corresponding energy and exergy efficiencies of a biomass system with only electricity generation are 11% and 13%, respectively. When investigating the effect of adding various product outputs to biomass power generation, steam generation and then domestic hot water production are found to have the greatest enhancing effects on the system efficiencies. Heat recovery from exhaust gases for district heating and wood drying is found to enhance the energy efficiency more than the exergy efficiency. Also, due to the size of the heat recovery system, which is smaller than the biomass CHP cycle, district heating and drying cannot increase the energy and exergy efficiencies of the primary system like steam generation. A parametric study shows that the biomass fuel input rate affects significantly the district heating heat load and the electricity generation rate, in a linear manner. However, increasing the biomass input rate has no effect on the CHP system energy and exergy efficiencies, while increasing the exergy efficiency of the entire system and decreasing its corresponding energy efficiency slightly. Of the several heat recovery options from exhaust gases, electricity generation and wood drying result in the highest exergy efficiency while district heating and drying lead to highest energy efficiency. - Highlights: • Novel heat recovery based energy system is proposed. • There is one energy input while system has 5 useful outputs. • Combustion excess air increases district heating

  13. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.

    Science.gov (United States)

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H

    2010-07-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas

  14. Organic Rankine cycle unit for waste heat recovery on ships (PilotORC)

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Montagud, Maria E. Mondejar; Andreasen, Jesper Graa

    The project PilotORC was aimed at evaluating the technical and economic feasibility of the use of organic Rankine cycle (ORC) units to recover low-temperature waste heat sources (i.e. exhaust gases, scavenge air, engine cooling system, and lubricant oil system) on container vessels. The project...

  15. Evaluation of resistance development and viability recovery by a non-enveloped virus after repeated cycles of aPDT.

    Science.gov (United States)

    Costa, Liliana; Tomé, João P C; Neves, Maria G P M S; Tomé, Augusto C; Cavaleiro, José A S; Faustino, Maria A F; Cunha, Ângela; Gomes, Newton C M; Almeida, Adelaide

    2011-09-01

    Nowadays, the emergence of drug resistant microorganisms is a public health concern. The antimicrobial photodynamic therapy (aPDT) has an efficient action against a wide range of microorganisms and can be viewed as an alternative approach for treating microbial infections. The aim of this study was to determine if a model target virus (T4-like bacteriophage), in the presence of the tricationic porphyrin 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide (Tri-Py(+)-Me-PF), can develop resistance to aPDT and recover its viability after photodynamic treatments. To assess the development of aPDT resistance after repeated treatments, a suspension of T4-like bacteriophage was irradiated with white light (40 Wm(-2)) for 120 min in the presence of 5.0 μM of Tri-Py(+)-Me-PF (99.99% of inactivation) and new phage suspensions were produced from the surviving phages, after each cycle of light exposure. The procedure was repeated ten times. To evaluate the recovery of viral viability after photoinactivation, a suspension of T4-like bacteriophage was irradiated with white light for 120 min in the presence of 5.0 μM of Tri-Py(+)-Me-PF on five consecutive days. In each day, an aliquot of the irradiated suspension was plated and the number of lysis plaques was counted after 24, 48, 72, 96 and 120 h of dark incubation at 37 °C. The profile of bacteriophage photoinactivation did not change after ten consecutive cycles and no recovery of viability was detected after five accumulated cycles of photodynamic treatment. The results suggest that aPDT represents a valuable and promising alternative therapy to treat viral infections, overcoming the problem of microbial resistance. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Model based control for waste heat recovery rankine cycle system in heavy duty trucks

    OpenAIRE

    Grelet, Vincent; Dufour, Pascal; Nadri, Madiha; Lemort, Vincent; Reiche, Thomas

    2015-01-01

    Driven by future emissions legislations and increase in fuel prices engine, gas heat recovering has recently attracted a lot of interest. In the past few years, a high number of studies have shown the interest of energy recovery Rankine based systems for heavy duty trucks engine compounding. Recent studies have brought a significant potential for such a system in a Heavy Duty (HD) vehicle, which can lead to a decrease in fuel consumption of about 5% [Wang et al. (2011)] and reduce engine emis...

  17. A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery

    International Nuclear Information System (INIS)

    Conklin, James C.; Szybist, James P.

    2010-01-01

    A concept adding two strokes to the Otto or Diesel engine cycle to increase fuel efficiency is presented here. It can be thought of as a four-stroke Otto or Diesel cycle followed by a two-stroke heat recovery steam cycle. A partial exhaust event coupled with water injection adds an additional power stroke. Waste heat from two sources is effectively converted into usable work: engine coolant and exhaust gas. An ideal thermodynamics model of the exhaust gas compression, water injection and expansion was used to investigate this modification. By changing the exhaust valve closing timing during the exhaust stroke, the optimum amount of exhaust can be recompressed, maximizing the net mean effective pressure of the steam expansion stroke (MEP steam ). The valve closing timing for maximum MEP steam is limited by either 1 bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens. The range of MEP steam calculated for the geometry of a conventional gasoline engine and is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEP combustion ) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy.

  18. Diacetyl/l-Xylulose Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells.

    Science.gov (United States)

    Yang, Shaojun; Jan, Yi-Hua; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2017-07-17

    Reactive carbonyls such as diacetyl (2,3-butanedione) and 2,3-pentanedione in tobacco and many food and consumer products are known to cause severe respiratory diseases. Many of these chemicals are detoxified by carbonyl reductases in the lung, in particular, dicarbonyl/l-xylulose reductase (DCXR), a multifunctional enzyme important in glucose metabolism. DCXR is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Using recombinant human enzyme, we discovered that DCXR mediates redox cycling of a variety of quinones generating superoxide anion, hydrogen peroxide, and, in the presence of transition metals, hydroxyl radicals. Redox cycling activity preferentially utilized NADH as a cosubstrate and was greatest for 9,10-phenanthrenequinone and 1,2-naphthoquinone, followed by 1,4-naphthoquinone and 2-methyl-1,4-naphthoquinone (menadione). Using 9,10-phenanthrenequinone as the substrate, quinone redox cycling was found to inhibit DCXR reduction of l-xylulose and diacetyl. Competitive inhibition of enzyme activity by the quinone was observed with respect to diacetyl (K i = 190 μM) and l-xylulose (K i = 940 μM). Abundant DCXR activity was identified in A549 lung epithelial cells when diacetyl was used as a substrate. Quinones inhibited reduction of this dicarbonyl, causing an accumulation of diacetyl in the cells and culture medium and a decrease in acetoin, the reduced product of diacetyl. The identification of DCXR as an enzyme activity mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. These activities, together with the inhibition of dicarbonyl/l-xylulose metabolism by redox-active chemicals, as well as consequent deficiencies in pentose metabolism, are likely to contribute to lung injury following exposure to dicarbonyls and quinones.

  19. Themoeconomic optimization of triple pressure heat recovery steam generator operating parameters for combined cycle plants

    Directory of Open Access Journals (Sweden)

    Mohammd Mohammed S.

    2015-01-01

    Full Text Available The aim of this work is to develop a method for optimization of operating parameters of a triple pressure heat recovery steam generator. Two types of optimization: (a thermodynamic and (b thermoeconomic were preformed. The purpose of the thermodynamic optimization is to maximize the efficiency of the plant. The selected objective for this purpose is minimization of the exergy destruction in the heat recovery steam generator (HRSG. The purpose of the thermoeconomic optimization is to decrease the production cost of electricity. Here, the total annual cost of HRSG, defined as a sum of annual values of the capital costs and the cost of the exergy destruction, is selected as the objective function. The optimal values of the most influencing variables are obtained by minimizing the objective function while satisfying a group of constraints. The optimization algorithm is developed and tested on a case of CCGT plant with complex configuration. Six operating parameters were subject of optimization: pressures and pinch point temperatures of every three (high, intermediate and low pressure steam stream in the HRSG. The influence of these variables on the objective function and production cost are investigated in detail. The differences between results of thermodynamic and the thermoeconomic optimization are discussed.

  20. Uranium recovery from waste of the nuclear fuel cycle plants at IPEN-CNEN/SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Antonio A.; Ferreira, Joao C.; Zini, Josiane; Scapin, Marcos A.; Carvalho, Fatima Maria Sequeira de, E-mail: afreitas@ipen.b, E-mail: jcferrei@ipen.b, E-mail: jzini@ipen.b, E-mail: mascapin@ipen.b, E-mail: fatimamc@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Sodium diuranate (DUS) is a uranium concentrate produced in monazite industry with 80% typical average grade of U{sup 3}O{sup 8}, containing sodium, silicon, phosphorus, thorium and rare earths as main impurities. Purification of such concentrate was achieved at the nuclear fuel cycle pilot plants of uranium at IPEN by nitric dissolution and uranium extraction into an organic phase using TBP/Varsol, while the aqueous phase retains impurities and a small quantity of non extracted uranium; both can be recovered later by precipitation with sodium hydroxide. Then the residual sodium diuranate goes to a long term storage at a safeguards deposit currently reaching 20 tonnes. This work shows how uranium separation and purification from such bulk waste can be achieved by ion exchange chromatography, aiming at decreased volume and cost of storage, minimization of environmental impacts and reduction of occupational doses. Additionally, the resulting purified uranium can be reused in nuclear fuel cycle.(author)

  1. Recovery of phosphorus and aluminium from sewage sludge ash by a new wet chemical elution process (SESAL-Phos-recovery process).

    Science.gov (United States)

    Petzet, S; Peplinski, B; Bodkhe, S Y; Cornel, P

    2011-01-01

    The potential of a new wet chemical process for phosphorus and aluminium recovery from sewage sludge ash by sequential elution with acidic and alkaline solutions has been investigated: SESAL-Phos (sequential elution of sewage sludge ash for aluminium and phosphorus recovery). Its most innovative aspect is an acidic pre-treatment step in which calcium is leached from the sewage sludge ash. Thus the percentage of alkaline soluble aluminium phosphates is increased from 20 to 67%. This aluminium phosphate is then dissolved in alkali. Subsequently, the dissolved phosphorus is precipitated as calcium phosphate with low heavy metal content and recovered from the alkaline solution. Dissolved aluminium is recovered and may be reused as a precipitant in wastewater treatment plants.

  2. Design and optimization of air bottoming cycles for waste heat recovery in off-shore platforms

    International Nuclear Information System (INIS)

    Pierobon, Leonardo; Haglind, Fredrik

    2014-01-01

    Highlights: • Theory of power maximization used to design an air bottoming cycle. • Theory of power maximization extended by a multi-objective optimization method. • Three objective functions considered: net power output, recuperator volume and net present value. • Comparison between the theory of power maximization and the multi-objective optimization method. • Case study: a methodology applied to recover exhaust heat on off-shore platforms. - Abstract: This paper aims at comparing two methodologies to design an air bottoming cycle recovering the waste heat from the power generation system on the Draugen off-shore oil and gas platform. Firstly, the design is determined using the theory of the power maximization. Subsequently, the multi-objective optimization approach is employed to maximize the economic revenue, the compactness and the power production of the air bottoming cycle. The system compactness is assessed by introducing a detailed model of the shell and tube recuperator and including geometric quantities in the set of optimization variables. Findings indicate that using the power production, the volume of the recuperator and the net present value as objective functions the optimal pressure ratio (2.52) and the exhaust gas temperature (178.8 °C) differ from the values (2.80 and 145.5 °C) calculated using the theory of the power maximization. The highest net present value (2.8 M$) is found for a volume of the recuperator of 128 m 3 . Thus, it can be concluded that the multi-objective optimization approach enables extending the theory of power maximization bridging the gap between a mere optimization of the thermodynamic cycle and the practical feasibility of a power generation system

  3. Modification of chemical and physical factors in steamflood to increase heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Y.C.

    1991-04-01

    Three aspects of vapor-liquid flow in porous media were addressed: (i) Extension of a previous vapor-liquid model for solution gas-drive to a water liquid-water vapor (steam) system in a pore network; (ii) Visualization of steam injection in Hele-Shaw cells and glass micromodels; and (iii) Macroscopic description of concurrent vapor-liquid flow in porous media. Significant progress was made in the study of reservoir heterogeneity and its effects on flow processes. The authors have considered three general areas: (i) The representation of naturally fractured systems; (ii) The large-scale averaging (derivation of pseudo-functions) for displacement in macroscopically heterogeneous systems; and (iii) The study of parallel flow, typically encountered in long and narrow reservoirs. The third area of research in this report involves chemical additives for the improvement of recovery efficiencies. The authors have been studying the following three aspects: (i) Caustic additives at elevated temperatures; (ii) Foam generation; and (iii) Non-Newtonian flow in porous media. The study of caustic injection at elevated temperatures, specifically the silica dissolution and caustic consumption, has been terminated. A technical report will summarize the results obtained. Here, the authors address the remaining aspects (ii) and (iii). 107 refs., 87 figs., 4 tabs.

  4. Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Nguyen, Tuong-Van; Larsen, Ulrik

    2013-01-01

    This paper aims at finding the optimal design of MW-size organic Rankine cycles by employing the multi-objective optimization with the genetic algorithm as the optimizer. We consider three objective functions: thermal efficiency, total volume of the system and net present value. The optimization....... The methodology is applied to recover the waste heat from the SGT-500 gas turbine installed on the Draugen off-shore oil and gas platform in the North Sea. Results suggest two optimal working fluids, i.e. acetone and cyclopentane. Thermal efficiency and net present value are higher for cyclopentane than...... for acetone. Other promising working fluids are cyclohexane, hexane and isohexane. The present methodology can be utilized in waste heat recovery applications where a compromise between performance, compactness and economic revenue is required. © 2013 Elsevier Ltd. All rights reserved....

  5. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration

    DEFF Research Database (Denmark)

    Damgaard, Anders; Riber, C.; Fruergaard, Thilde

    2010-01-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion...... of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction...... in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85–174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control...

  6. Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Steven Lecompte

    2015-04-01

    Full Text Available Organic Rankine cycles (ORCs are an established technology to convert waste heat to electricity. Although several commercial implementations exist, there is still considerable potential for thermo-economic optimization. As such, a novel framework for designing optimized ORC systems is proposed based on a multi-objective optimization scheme in combination with financial appraisal in a post-processing step. The suggested methodology provides the flexibility to quickly assess several economic scenarios and this without the need of knowing the complex design procedure. This novel way of optimizing and interpreting results is applied to a waste heat recovery case. Both the transcritical ORC and subcritical ORC are investigated and compared using the suggested optimization strategy.

  7. Recovery from a cycling time trial is enhanced with carbohydrate-protein supplementation vs. isoenergetic carbohydrate supplementation

    Directory of Open Access Journals (Sweden)

    Lemon Peter WR

    2008-12-01

    Full Text Available Abstract Background In this study we assessed whether a liquid carbohydrate-protein (C+P supplement (0.8 g/kg C; 0.4 g/kg P ingested early during recovery from a cycling time trial could enhance a subsequent 60 min effort on the same day vs. an isoenergetic liquid carbohydrate (CHO supplement (1.2 g/kg. Methods Two hours after a standardized breakfast, 15 trained male cyclists completed a time trial in which they cycled as far as they could in 60 min (AMex using a Computrainer indoor trainer. Following AMex, subjects ingested either C+P, or CHO at 10, 60 and 120 min, followed by a standardized meal at 4 h post exercise. At 6 h post AMex subjects repeated the time trial (PMex. Results There was a significant reduction in performance for both groups in PMex versus AMex. However, performance and power decreases between PMex and AMex were significantly greater (p ≤ 0.05 with CHO (-1.05 ± 0.44 km and -16.50 ± 6.74 W vs C+P (-0.30 ± 0.50 km and -3.86 ± 6.47 W. Fat oxidation estimated from RER values was significantly greater (p ≤ 0.05 in the C+P vs CHO during the PMex, despite a higher average workload in the C+P group. Conclusion Under these experimental conditions, liquid C+P ingestion immediately after exercise increases fat oxidation, increases recovery, and improves subsequent same day, 60 min efforts relative to isoenergetic CHO ingestion.

  8. Cycling capacity recovery effect: A coulombic efficiency and post-mortem study

    Science.gov (United States)

    Wilhelm, Jörn; Seidlmayer, Stefan; Keil, Peter; Schuster, Jörg; Kriele, Armin; Gilles, Ralph; Jossen, Andreas

    2017-10-01

    The analysis of lithium-ion battery aging relies on correct differentiation between irreversible and reversible capacity changes. Anode overhang regions have been observed to influence Coulombic Efficiency (CE) measurements through lithium diffusion into and out of these areas, complicating precise capacity determination. This work presents an analysis of the extent of graphite anode overhang lithiation after calendar storage by means of local X-ray diffraction (XRD), CE measurements, and color change analysis. We found LiC12 lithiation of the anode overhang area after 20 month storage at 40 °C at high state of charge (SoC) and partial lithiation (LiC18) at medium SoC storage at 40 °C and 25 °C. Graphite color changes in the overhang areas are observed and consistent with the state of lithiation measured by XRD. Coulombic efficiencies greater than unity and increasing capacity during 1200 h of cycling are detected for high SoC storage cells. The capacity difference between high and low storage SoC batteries decreases by up to 40 mAh (3.6% of nominal capacity) after cycling compared to tests directly after storage. Consequently, the size of the anode overhang areas as well as the battery storage temperature and duration need to be considered in CE analysis and state of health assessment.

  9. Remifentanil versus Fentanyl for Assisted Reproductive Technologies:Effect on Hemodynamic Recovery from Anesthesia and Outcome of ART Cycles

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Jarahzadeh

    2011-01-01

    Full Text Available Background: We conducted this study to compare the outcome of assisted reproductive technology(ART procedures and recovery from anesthesia in women who received opioid analgesia withremifentanil versus fentanyl.Materials and Methods: This double-blind, randomized clinical trial was carried out inthe Yazd Research and Clinical Center for Infertility, Yazd, Iran. We studied 145 womenwho were participants in an ART program. During the first phase of the study, all patientsunderwent induction of anesthesia with thiopental and received analgesia with remifentanilor fentanyl. The primary endpoint was pregnancy rate per transfer. The numbers of oocytescollected, fertilized and cleaved were recorded, as was the number of oocytes transferredand recovery profile. In the second phase of the study, all patients were followed foroutcome of ART cycle.Results: This study suggested that in women undergoing transvaginal ultrasound-guided oocyteretrieval procedures, the likelihood of a successful pregnancy was higher with a remifentanil-basedmonitored anesthesia care (MAC technique than with a fentanyl-based MAC technique. Therecovery from anesthesia was significantly better in the remifentanil group versus fentanyl group.Conclusion: The results of this study suggest that remifentanil in clinical practice is superior tofentanyl (Registeration Number: IRCT201009283468N3.

  10. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.

    Science.gov (United States)

    Kaya, Muammer

    2016-11-01

    This paper reviews the existing and state of art knowledge for electronic waste (e-waste) recycling. Electrical and/or electronic devices which are unwanted, broken or discarded by their original users are known as e-waste. The main purpose of this article is to provide a comprehensive review of e-waste problem, strategies of e-waste management and various physical, chemical and metallurgical e-waste recycling processes, their advantages and disadvantages towards achieving a cleaner process of waste utilization, with special attention towards extraction of both metallic values and nonmetallic substances. The hazards arise from the presence of heavy metals Hg, Cd, Pb, etc., brominated flame retardants (BFRs) and other potentially harmful substances in e-waste. Due to the presence of these substances, e-waste is generally considered as hazardous waste and, if improperly managed, may pose significant human and environmental health risks. This review describes the potential hazards and economic opportunities of e-waste. Firstly, an overview of e-waste/printed circuit board (PCB) components is given. Current status and future perspectives of e-waste/PCB recycling are described. E-waste characterization, dismantling methods, liberation and classification processes are also covered. Manual selective dismantling after desoldering and metal-nonmetal liberation at -150μm with two step crushing are seen to be the best techniques. After size reduction, mainly physical separation processes employing gravity, electrostatic, magnetic separators, froth floatation, etc. have been critically reviewed here for separation of metals and nonmetals, along with useful utilizations of the nonmetallic materials. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical or biohydrometallurgical routes is also discussed along with purification and refining. Suitable PCB recycling flowsheets for industrial applications are also given

  11. Design and optimization of air bottoming cycles for waste heat recovery in off-shore platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Haglind, Fredrik

    2014-01-01

    . Findings indicate that using the power production, the volume of the recuperator and the net present value as objective functions the optimal pressure ratio (2.52) and the exhaust gas temperature (178.8 °C) differ from the values (2.80 and 145.5 °C) calculated using the theory of the power maximization....... The highest net present value (2.8 M$) is found for a volume of the recuperator of 128 m3. Thus, it can be concluded that the multi-objective optimization approach enables extending the theory of power maximization bridging the gap between a mere optimization of the thermodynamic cycle and the practical...

  12. Life cycle assessment (LCA) of an energy recovery plant in the olive oil industries

    Energy Technology Data Exchange (ETDEWEB)

    Intini, Francesca; Kuhtz, Silvana [Dep. Engineering and Environmental Physics, Faculty of Engineering, University of Basilicata (Italy); Gianluca Rospi, [Dep. Engineering and Environmental Physics, Faculty of Architecture, University of Basilicata (Italy)

    2012-07-01

    To reduce the GHG emissions in the UE and to increase the produced energy it is important to spread out decentralized technologies for renewable energy production. In this paper a power plant fed with biomass is studied, in particular the biomass considered is the waste of the olive oil industries. This study focuses on the possibility of using the de-oiled pomace and waste wood as fuel. A life cycle assessment (LCA) of a biomass power plant located in the South of Italy was performed. The global warming potential has been calculated and compared with that of a plant for energy production that uses refuse derived fuel (RDF) and that of one that uses coal. The LCA shows the important environmental advantages of biomass utilization in terms of greenhouse gas emissions reduction. An improved impact assessment methodology may better underline the advantages due to the biomass utilization.

  13. Brayton-cycle heat recovery-system characterization program. Subatmospheric-system test report

    Energy Technology Data Exchange (ETDEWEB)

    Burgmeier, L.; Leung, S.

    1981-07-31

    The turbine tests and results for the Brayton cycle subatmospheric system (SAS) are summarized. A scaled model turbine was operated in the same environment as that which a full-scale SAS machine would experience from the hot effluent flue gas from a glass container furnace. The objective of the testing was to evaluate the effects of a simulated furnace flue gas stream on the turbine nozzles and blades. The following specific areas were evaluated: erosion of the turbine nozzles and blades from the dust in the flue gas, hot corrosion from alkali metal salts in the dust and acid vapor (sulfur trioxide and hydrogen chloride) in the flue gas, and fouling and flow blockage due to deposition and/or condensation from the flue gas constituents.

  14. Assessment of chemical emissions in life cycle impact assessment - focus on low substance data availability and

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred

    2004-01-01

    , is addressed by carrying out an inventory of existing ecotoxicity effect indicator approaches, including a qualitative evaluation based on developed performance criteria. Both impact approaches, and damage approaches, which are all at an early development stage, are included. The evaluation of the existing......Life cycle assessment (LCA) studies on products or services seem generally to be carried out without a proper inclusion of potential toxic impacts from emissions of chemicals. The first goal of the thesis is to investigate this statement and to clarify whether or not the outcome of an LCA can...... of substance data on known emissions. To be able to characterize the potential toxic impacts on humans and the environment of chemical emissions, substance data on fate and effect are needed. The second goal of this thesis is to investigate how to deal with low substance data availability on especially effect...

  15. Case study of an organic Rankine cycle applied for excess heat recovery: Technical, economic and policy matters

    International Nuclear Information System (INIS)

    Lemmens, Sanne; Lecompte, Steven

    2017-01-01

    Highlights: • Case study of an organic Rankine cycle for heat recovery from an industrial kiln. • The costs and financial feasibility of the system are discussed in detail. • The cost structure is most defined by the capital costs, annual costs are limited. • The system is financially feasible, but subsidies remain important. • The results are most sensitive to changes in load hours and electricity price. - Abstract: Many industrial processes inevitably produce excess heat as by-product. Recovering this heat is a matter of waste management and provides opportunities to improve the energy use efficiency. The excess heat can be used for heating purposes (e.g., in processes, or delivered to district heating systems or buildings) or to generate electricity. An increasingly applied technology for industrial excess heat recovery is the organic Rankine cycle (ORC), suitable to recover low-grade heat from 90 °C onwards. Although ORCs are studied intensively, few studies have examined the economics of commissioned ORC systems. This paper investigates a 375 kW gross ORC system employed for flue gas heat recovery from an industrial kiln in Flanders, Belgium. The purpose of the study is twofold: providing insight into a practical ORC case; and evaluating the financial feasibility while taking the specific policy circumstances into account. The financial appraisal takes account of the specific technical setup, the diverse costs of the system, the external economic parameters, and the policy circumstances in Europe, Belgium and Flanders. A sensitivity analysis illustrates the influence of each parameter on the results. The analysis demonstrates the dominance of the investment costs (4217 € 2013 /kW gross ) in the expenses. Under the valid conditions the investment has a positive financial return, but the financial support from the government is indispensable. Finally, the sensitivity analysis reveals the importance of attaining sufficient load hours and the

  16. Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Yourong Li

    2012-08-01

    Full Text Available The performance analysis of a supercritical organic Rankine cycle system driven by exhaust heat using 18 organic working fluids is presented. Several parameters, such as the net power output, exergy efficiency, expander size parameter (SP, and heat exchanger requirement of evaporator and the condenser, were used to evaluate the performance of this recovery cycle and screen the working fluids. The results reveal that in most cases, raising the expander inlet temperature is helpful to improve the net power output and the exergy efficiency. However, the effect of the expander inlet pressure on those parameters is related to the expander inlet temperature and working fluid used. Either lower expander inlet temperature and pressure, or higher expander inlet temperature and pressure, generally makes the net power output more. Lower expander inlet temperature results in larger total heat transfer requirement and expander size. According to the screening criteria of both the higher output and the lower investment, the following working fluids for the supercritical ORC system are recommended: R152a and R143a.

  17. Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2016-03-01

    Full Text Available We present a thermo-economic analysis of an Organic Rankine Cycle (ORC for waste heat recovery. A case study for a heat source temperature of 150 °C and a subcritical, saturated cycle is performed. As working fluids R245fa, isobutane, isopentane, and the mixture of isobutane and isopentane are considered. The minimal temperature difference in the evaporator and the condenser, as well as the mixture composition are chosen as variables in order to identify the most suitable working fluid in combination with optimal process parameters under thermo-economic criteria. In general, the results show that cost-effective systems have a high minimal temperature difference ΔTPP,C at the pinch-point of the condenser and a low minimal temperature difference ΔTPP,E at the pinch-point of the evaporator. Choosing isobutane as the working fluid leads to the lowest costs per unit exergy with 52.0 €/GJ (ΔTPP,E = 1.2 K; ΔTPP,C = 14 K. Considering the major components of the ORC, specific costs range between 1150 €/kW and 2250 €/kW. For the zeotropic mixture, a mole fraction of 90% isobutane leads to the lowest specific costs per unit exergy. A further analysis of the ORC system using isobutane shows high sensitivity of the costs per unit exergy for the selected cost estimation methods and for the isentropic efficiency of the turbine.

  18. Preliminary Design of Compact Condenser in an Organic Rankine Cycle System for the Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available The aim of this paper is to present a thermodynamic cycle for the production of electrical power in the 2–5 kW range, suitable for all types of thermally propelled vehicles. The sensible heat recovered from the exhaust gases feeds the energy recovery system, which is able to produce sufficient power to sustain the air conditioning system or other auxiliaries. The working fluids R134a and R245fa have been used in the ORC system, and the systems are simulated by CAMEL-ProTM software. The cycles are generated starting from the same heat source: the exhaust gas of a typical 2.0 L Diesel engine (or from a small size turbine engine. The design of the condenser has been performed to obtain a very compact component, evaluating the heat exchanger tube and fins type design. Through empirical formulas, the area of heat exchange, the heat required to exchange and the pressure drop in the element have been calculated. A commercial software package is used to build the model of the condenser, then a thermal and mechanical analysis and a CFD analysis are realized to estimate the heat exchange. Finally the evaluations, the possible future studies and possible improvements of the system are shown.

  19. Potential for improving the energy efficiency of cryogenic air separation unit (ASU) using binary heat recovery cycles

    International Nuclear Information System (INIS)

    Aneke, Mathew; Wang, Meihong

    2015-01-01

    In this paper, the potential of improving the energy efficiency of a conventional cryogenic air separation unit (ASU) was investigated through modelling and simulation using Aspen Plus ® v 8.1. It is achieved through converting the heat from the compressor effluent to electricity using organic Ranking cycle (ORC). Two different arrangements of combining compressor and waste heat recovery ORC system were compared with the conventional cryogenic ASU which was used as the benchmark. The benchmark is a conventional cryogenic ASU with 3 stages of compression which uses water for intercooling. In the first arrangement the water used as the cooling fluid of the intercooler/after cooler heat exchanger of a conventional cryogenic ASU process was replaced by R134a which also acts as the working fluid for the ORC system (C3WHR) while in the second arrangement, the 3 stages compressor of the conventional process was replaced with a single stage compressor with the same overall pressure ratio as the conventional process and the hot compressor effluent cooled with R134a which also acts as the working fluid of the ORC system (C1WHR). The simulation results based on a cryogenic ASU capable of processing 100 kg/s of atmospheric air at 30  ° C as feedstock show that the specific power consumption for the pure products which was 0.32 kWh/kg, 0.37 kWh/kg and 17.35 kWh/kg for oxygen, nitrogen and argon respectively for the conventional cryogenic ASU process was reduced by the addition of the waste heat recovery ORC system. The C1WHR reduced the specific power consumption by an average of 0.2% across the aforementioned pure products while the C3WHR reduced it by an average of 11%. The net power consumption of the conventional cryogenic ASU which was 21826.19 kW was also found to be reduced by the same percentage. - Highlights: • We model two cryogenic air separation unit with compressor waste heat recovery. • We compare the specific energy consumption of the models. • We

  20. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen

  1. Thermodynamic performance simulation and design optimisation of trilateral-cycle engines for waste heat recovery-to-power generation

    International Nuclear Information System (INIS)

    Ajimotokan, H.A.; Sher, I.

    2015-01-01

    Highlights: • Steady-state models of trilateral cycle (TLC) power plants are established and implemented. • Thermodynamic performance simulation and design optimisation of the TLCs are conducted. • Four configurations of the TLCs are analysed and compared their performance metrics. • Results show that thermal integration of the simple TLC enhanced energy conversion efficiency. • Comparative study shows that the recuperated TLC achieved the best performance metrics. - Abstract: The trilateral cycle (TLC) is one of the most promising alternatives among the heat recovery-to-power technologies, due to its compact system configuration and high performance at relatively low compression work and low-to-moderate expander inlet temperature. These feats make the TLC beneficial for off-grid applications particularly in remote or offshore applications where power-to-weight ratio of the power plant is of significance. This study presents the thermodynamic performance simulation and design optimisation of the TLCs using unconventional working fluid for heat recovery-to-power generation from low-grade waste heat, which is considered for process development and integration of the TLC. Four system configurations, comprising the simple TLC, recuperated TLC, reheat TLC and regenerative TLC are analysed and compared their performance metrics. Based on the theory of steady-state steady-flow thermodynamics, the simulation models of the TLC power plants, corresponding to their thermodynamic processes are established and implemented using engineering equation solver. The results show that the thermal efficiencies of the simple TLC, recuperated TLC, reheat TLC and regenerative TLC employing n-pentane are 11.85–21.97%, 12.32–23.91%, 11.86–22.07% and 12.01–22.9% respectively at subcritical operating conditions with low-grade heat in the temperature limit of 393–473 K. These suggest that the thermal integration of the optimised design of the simple TLC enhanced heat

  2. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery.

    Science.gov (United States)

    Hosseini-Nasab, S M; Zitha, P L J

    2017-10-19

    Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. This study presents a novel chemical-foam flooding process for enhanced oil recovery (EOR) from water-flooded reservoirs. The presented method involved the use of chemically designed foam to mobilize the remaining oil after water flooding and then to displace the mobilized oil to the production well. A blend of two anionic surfactant formulations was formulated for this method: (a) IOS, for achieving ultralow interfacial tension (IFT), and (b) AOS, for generating a strong foam. Experiments were performed using Bentheimer sandstone cores, where X-ray CT images were taken during foam generation to find the stability of the advancing front of foam propagation and to map the gas saturation for both the transient and the steady-state flow regimes. Then the proposed chemical-foam strategy for incremental oil recovery was tested through the coinjection of immiscible nitrogen gas and surfactant solutions with three different formulation properties in terms of IFT reduction and foaming strength capability. The discovered optimal formulation contains a foaming agent surfactant, a low IFT surfactant, and a cosolvent, which has a high foam stability and a considerably low IFT (1.6 × 10 -2 mN/m). Coinjection resulted in higher oil recovery and much less MRF than the same process with only using a foaming agent. The oil displacement experiment revealed that coinjection of gas with a blend of surfactants, containing a cosolvent, can recover a significant amount of oil (33% OIIP) over water flooding with a larger amount of clean oil and less emulsion.

  3. Concurrent reduction and distillation: an improved technique for the recovery and chemical refinement of the isotopes of cadmium and zinc

    International Nuclear Information System (INIS)

    Caudill, H.H.; McBride, L.E.; McDaniel, E.W.

    1982-01-01

    The Electromagnetic Isotope Separations Program of the Oak Ridge National Laboratory has been involved in the separation, chemical recovery, and refinement of the stable isotopes of cadmium and zinc since 1946. Traditionally, the chemical refinement procedures for these elements consisted of ion exchange separations using anion exchange resins followed by pH-controlled hydrogen sulfide precipitations. The procedures were quite time-consuming and made it difficult to remove trace quantities of sulfur which interferes in subsequent attempts to prepare rolled metal foils. As demands for 113 Cd and 68 Zn (a precursor for the production of the radiopharmaceutical 67 Ga) increased, it became evident that a quicker, more efficient refinement procedure was needed. Details of an improved method, which employs concurrent hydrogen reduction and distillation in the recovery and refinement of isotopically enriched zinc, are described. Modifications of the procedure suitable for the refinement of cadmium isotopes are also described. 3 figures, 1 table

  4. Market disruption, cascading effects, and economic recovery:a life-cycle hypothesis model.

    Energy Technology Data Exchange (ETDEWEB)

    Sprigg, James A.

    2004-11-01

    This paper builds upon previous work [Sprigg and Ehlen, 2004] by introducing a bond market into a model of production and employment. The previous paper described an economy in which households choose whether to enter the labor and product markets based on wages and prices. Firms experiment with prices and employment levels to maximize their profits. We developed agent-based simulations using Aspen, a powerful economic modeling tool developed at Sandia, to demonstrate that multiple-firm economies converge toward the competitive equilibria typified by lower prices and higher output and employment, but also suffer from market noise stemming from consumer churn. In this paper we introduce a bond market as a mechanism for household savings. We simulate an economy of continuous overlapping generations in which each household grows older in the course of the simulation and continually revises its target level of savings according to a life-cycle hypothesis. Households can seek employment, earn income, purchase goods, and contribute to savings until they reach the mandatory retirement age; upon retirement households must draw from savings in order to purchase goods. This paper demonstrates the simultaneous convergence of product, labor, and savings markets to their calculated equilibria, and simulates how a disruption to a productive sector will create cascading effects in all markets. Subsequent work will use similar models to simulate how disruptions, such as terrorist attacks, would interplay with consumer confidence to affect financial markets and the broader economy.

  5. On-chip isothermal, chemical cycling polymerase chain reaction (ccPCR)

    Science.gov (United States)

    Persat, Alexandre; Santiago, Juan

    2008-11-01

    We demonstrate a novel ccPCR technique for microfluidic DNA amplification where temperature is held constant in space and time. The polymerase chain reaction is a platform of choice for biological assays and typically based on a three-step thermal cycling: DNA denaturation, primers annealing and extension by an enzyme. We here demonstrate a novel technique where high concentration chemical denaturants (solvents) denature DNA. We leverage the high electrophoretic mobility of DNA and the electrical neutrality of denaturants to achieve chemical cycling. We focus DNA with isotachophoresis (ITP); a robust electrophoretic preconcentration technique which generates strong electric field gradients and protects the sample from dispersion. We apply a pressure-driven flow to balance electromigration velocity and keep the DNA sample stationary in a microchannel. We drive the DNA through a series of high denaturant concentration zones. DNA denatures at high denaturant concentration. At low denaturant concentration, the enzyme creates complementary strands. DNA reaction kinetics are slower than buffer reactions involved in ITP. We demonstrate successful ccPCR amplification for detection of E. Coli. The ccPCR has the potential for simpler chemistry than traditional PCR.

  6. Anionic Extraction for Efficient Recovery of Biobased 2,3-Butanediol-A Platform for Bulk and Fine Chemicals

    DEFF Research Database (Denmark)

    Drabo, Peter; Tiso, Till; Heyman, Benedikt

    2017-01-01

    2,3-Butanediol (BDO) presents a promising platform molecule for the synthesis of basic and fine chemicals. Biotechnological production of BDO from renewable resources with living microbes enables high concentrations in the fermentation broth. The recovery of high-boiling BDO from an aqueous ferme...... in the presence of sulfuric acid for the synthesis of methyl ethyl ketone, an established organic solvent and discussed tailor-made biofuel....

  7. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    Energy Technology Data Exchange (ETDEWEB)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  8. Thermo-Economic Performance Analysis of a Regenerative Superheating Organic Rankine Cycle for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Zhonghe Han

    2017-10-01

    Full Text Available The Organic Rankine Cycle (ORC is a promising form of technology for recovering low-grade waste heat. In this study, a regenerative ORC system is established to recover the waste flue gas of 160 °C. Focusing on thermodynamic and economic performance while simultaneously considering the limitations of volume flow ratio (VFR and the effect of superheat, working fluid selection and parameter optimization have been investigated. The optimization of the evaporation temperature is carried out by analyzing the variation of net power output and specific investment cost (SIC. Then, the net power output, specific net power output, total exergy destruction rate, VFR, total capital cost, and levelized electricity cost (LEC are selected as criteria, and a fuzzy multi-criteria evaluation method is adopted to select a more suitable working fluid and determine the optimal degree of superheat. In addition, the preheating coefficient, latent heat coefficient, superheating coefficient, and internal heat coefficient were proposed to explore the effect of working fluid critical temperature on thermal efficiency. Research studies demonstrate that there is an optimal evaporation temperature, maximizing net power output and minimizing the SIC. Isohexane and butane have greater specific net power output due to greater latent heat. A suitable degree of superheat is not only conducive to improving the working capacity of working fluids, but also reduces the VFR, total capital cost, SIC, and LEC for different working fluids. Thus, the system’s thermodynamic and economic performance—as well as the operational stability—are improved. Among the six working fluids, butane exhibits the best comprehensive performance, and its optimal evaporation temperature and degree of superheat are 100 °C and 5 °C, respectively.

  9. A novel design methodology for waste heat recovery systems using organic Rankine cycle

    International Nuclear Information System (INIS)

    Budisulistyo, Denny; Krumdieck, Susan

    2017-01-01

    Highlights: • A design methodology is based on a new design to resource method. • The method aims to obtain the most cost-effective and the best resource utilization. • The methodology can be implemented to a new and existing plant for modifications. • The methodology is tested to a small scale experimental ORC plant. - Abstract: This paper discusses a comprehensive design methodology for optimization of organic Rankine cycle designs using a new design to resource method. The objective of the design to resource method is to obtain the best designs, which are the closest match to the resource and the most cost-effective. The design analysis is constrained by the available main components and heat resource. The ratio of net power output to the total heat exchanger area is used as the objective function. The new design methodology was implemented on an existing lab-scale as a case study. Experiments were conducted to obtain the data to identify the heat transfer coefficients of the real processes and validate the simulation model results. Design evaluations were carried out on the plant by using three Capstone gas turbine load conditions and four design alternatives. The results indicate that design 1 has the highest objective function of all the alternatives. It is able to increase the objective function from 100% to 391% of the base case depending on the Capstone gas turbine load conditions. The results also reveal that the current small scale plant is more suitable to Capstone gas turbine load condition 1 with the highest waste heat utilization rate of 76.9%.

  10. Waste heat recovery from the exhaust of a diesel generator using Rankine Cycle

    International Nuclear Information System (INIS)

    Hossain, Shekh Nisar; Bari, Saiful

    2013-01-01

    Highlights: • Diesel engine exhaust contains 40% energy which can be used to produce extra power. • Extra 11% power gained with optimized heat exchangers using water as working fluid. • As a result brake specific fuel consumption improved by 12%. • Parallel arrangement of heat exchangers showed better performance than series. • Optimum working fluid pressure varies with the engine power. - Abstract: Exhaust heat from diesel engines can be an important heat source to provide additional power using a separate Rankine Cycle (RC). In this research, experiments were conducted to measure the available exhaust heat from a 40 kW diesel generator using two ‘off-the-shelf’ heat exchangers. The effectiveness of the heat exchangers using water as the working fluid was found to be 0.44 which seems to be lower than a standard one. This lower performance of the existing heat exchangers indicates the necessity of optimization of the design of the heat exchangers for this particular application. With the available experimental data, computer simulations were carried out to optimize the design of the heat exchangers. Two heat exchangers were used to generate super-heated steam to expand in the turbine using two orientations: series and parallel. The optimized heat exchangers were then used to estimate additional power considering actual turbine isentropic efficiency. The proposed heat exchanger was able to produce 11% additional power using water as the working fluid at a pressure of 15 bar at rated engine load. This additional power resulted into 12% improvement in brake-specific fuel consumption (bsfc). The effects of the working fluid pressure were also investigated to maximize the additional power production. The pressure was limited to 15 bar which was constrained by the exhaust gas temperature. However, higher pressure is possible for higher exhaust gas temperatures from higher capacity engines. This would yield more additional power with further improvements in

  11. Modification of chemical and physical factors in steamflood to increase heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Yanis C.

    2000-01-19

    This report covers the work performed in the various physicochemical factors for the improvement of oil recovery efficiency. In this context the following general areas were studied: (1) The understanding of vapor-liquid flows in porous media, including processes in steam injection; (2) The effect of reservoir heterogeneity in a variety of foams, from pore scale to macroscopic scale; (3) The flow properties of additives for improvement of recovery efficiency, particularly foams and other non-Newtonian fluids; and (4) The development of optimization methods to maximize various measures of oil recovery.

  12. Chemical inhibition of cell recovery after irradiation with sparsely and densely ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Evastratova, Ekaterina S.; Petin, Vladislav [A. Tsyb Medical Radiological Research Centre-branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk (Russian Federation); Kim, Jin Hong; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute (ARTI), Jeongeup (Korea, Republic of); Lim, Youg Khi [Dept. of Radiological Science, Gachon University, Incheon (Korea, Republic of)

    2017-02-15

    The dependence of cell survival on exposure dose and the duration of the liquid holding recovery (LHR) was obtained for diploid yeast cells irradiated with ionizing radiation of different linear energy transfer (LET) and recovering from radiation damage without and with various concentrations of cisplatin - the most widely used anticancer drug. The ability of yeast cells to recover from radiation damage was less effective after cell exposure to high-LET radiation, when cells were irradiated without drug. The increase in cisplatin concentration resulted in the disappearance of this difference whereas the fraction of irreversible damage was permanently enlarged independently of radiation quality. The probability of cell recovery was shown to be constant for various conditions of irradiation and recovery. A new mechanism of cisplatin action was suggested according with which the inhibition of cell recovery after exposure to ionizing radiations was completely explained by the production of irreversible damage.

  13. Assessment of Risk Due to Chemicals Transferred in a Watershed: A Case of an Aquifer Storage Transfer and Recovery Site

    Directory of Open Access Journals (Sweden)

    Hyon Wook Ji

    2016-06-01

    Full Text Available This paper presents an analysis of the potential risks of chemicals that can affect an aquifer storage transfer and recovery (ASTR site. ASTR is a water supply system that injects surface water into an aquifer and then extracts naturally filtered groundwater. The pilot site of the ASTR supplying drinking water is located downstream of the Nakdong River in South Korea. Hazard analysis and critical control points (HACCP was adopted to ensure suitable water quality in response to the deteriorated water quality of the Nakdong River. HACCP is a proactive management system for ensuring consistent confidence in food (or water. Hazard analysis, the first of the seven principles of HACCP, assesses physical, microbial, chemical, and radioactive hazards. This study focuses on the chemicals that are most likely to be involved in major hazardous events. Pollutant release and transfer register (PRTR data were used to analyze potential risks of chemicals. A PRTR is a national environmental database of potentially hazardous chemicals. Potential risk analysis considers the total amount of chemicals transferred off-site for treatment or disposal. Fifty-five cities and the top 10 chemicals released in the Nakdong River basin were investigated. Potential risk was defined as a function of total transfers, the relative distance, and toxicity. The top 10 cities with high potential risks were identified, and the city with the highest potential risk turned out to be Ulju.

  14. The effect of milk on recovery from repeat-sprint cycling in female team-sport athletes.

    Science.gov (United States)

    Rankin, Paula; Lawlor, Michael J; Hills, Frank A; Bell, Phillip G; Stevenson, Emma J; Cockburn, Emma

    2018-02-01

    The consumption of milk following eccentric exercise attenuates the effects of muscle damage in team-sport athletes. However, participation in team sport involves both concentric-eccentric loading and metabolic stress. Therefore, the aim of this study was to investigate the effects of postexercise milk consumption on recovery from a cycling protocol designed to simulate the metabolic demands of team sport. Ten female team-sport athletes participated in a randomised crossover investigation. Upon completion of the protocol participants consumed 500 mL of milk (MILK) or 500 mL of an energy-matched carbohydrate (CHO) drink. Muscle function (peak torque, rate of force development, countermovement jump, 20-m sprint), muscle soreness and tiredness, serum creatine kinase, high-sensitivity C-reactive protein, and measures of oxidative stress (protein carbonyls and reduced glutathione/oxidized glutathione (GSH/GSSG) ratio) were determined at pre-exercise and 24 h, 48 h, and 72 h postexercise. MILK had a possible beneficial effect in attenuating losses in peak torque (180°/s) from baseline to 24 h (3.2% ± 7.8% vs. -6.2% ± 7.5%, MILK vs. CHO) and a possible beneficial effect in minimising soreness (baseline-48 h; baseline-72 h) and tiredness (baseline-24 h; baseline-72 h). There was no change in oxidative stress following the exercise protocol, though a likely benefit of milk was observed for GSH/GSSG ratio at baseline-24 h (0.369 ×/÷ 1.89, 1.103 ×/÷ 3.96, MILK vs. CHO). MILK had an unclear effect on all other variables. Consumption of 500 mL of milk after repeat sprint cycling had little to no benefit in minimising losses in peak torque or minimising increases in soreness and tiredness and had no effect on serum markers of muscle damage and inflammation.

  15. Resource recovery from residual household waste: An application of exergy flow analysis and exergetic life cycle assessment

    DEFF Research Database (Denmark)

    Laner, David; Rechberger, Helmut; De Soete, Wouter

    2015-01-01

    Exergy is based on the Second Law of thermodynamics and can be used to express physical and chemical potential and provides a unified measure for resource accounting. In this study, exergy analysis was applied to four residual household waste management scenarios with focus on the achieved resource...... of the waste treatment system under investigation and (ii) exergetic life cycle assessment (LCA) using the Cumulative Exergy Extraction from the Natural Environment (CEENE) as a method for resource accounting. Scenario efficiencies of around 17-27% were found based on the exergy flow analysis (higher...... with the functionality of a material. In addition, the definition of appropriate waste system boundaries is critical for the exergy efficiencies derived from the flow analysis, as it is constrained by limited information available about the composition of flows in the system as well as about secondary production...

  16. Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study

    International Nuclear Information System (INIS)

    Wang, Xurong; Dai, Yiping

    2016-01-01

    Highlights: • An exergoeconomic analysis is performed for sCO 2 /tCO 2 cycle. • Performance of the sCO 2 /tCO 2 cycle and sCO 2 /ORC cycle are presented and compared. • The sCO 2 /tCO 2 cycle performs better than the sCO 2 /ORC cycle at lower PRc. • The sCO 2 /tCO 2 cycle has comparable total product unit cost with the sCO 2 /ORC cycle. - Abstract: Two combined cogeneration cycles are examined in which the waste heat from a recompression supercritical CO 2 Brayton cycle (sCO 2 ) is recovered by either a transcritical CO 2 cycle (tCO 2 ) or an Organic Rankine Cycle (ORC) for generating electricity. An exergoeconomic analysis is performed for sCO 2 /tCO 2 cycle performance and its comparison to the sCO 2 /ORC cycle. The following organic fluids are considered as the working fluids in the ORC: R123, R245fa, toluene, isobutane, isopentane and cyclohexane. Thermodynamic and exergoeconomic models are developed for the cycles on the basis of mass and energy conservations, exergy balance and exergy cost equations. Parametric investigations are conducted to evaluate the influence of decision variables on the performance of sCO 2 /tCO 2 and sCO 2 /ORC cycles. The performance of these cycles is optimized and then compared. The results show that the sCO 2 /tCO 2 cycle is preferable and performs better than the sCO 2 /ORC cycle at lower PRc. When the sCO 2 cycle operates at a cycle maximum pressure of around 20 MPa (∼2.8 of PRc), the tCO 2 cycle is preferable to be integrated with the recompression sCO 2 cycle considering the off-design conditions. Moreover, contrary to the sCO 2 /ORC system, a higher tCO 2 turbine inlet temperature improves exergoeconomic performance of the sCO 2 /tCO 2 cycle. The thermodynamic optimization study reveals that the sCO 2 /tCO 2 cycle has comparable second law efficiency with the sCO 2 /ORC cycle. When the optimization is conducted based on the exergoeconomics, the total product unit cost of the sCO 2 /ORC is slightly lower than that of

  17. A Novel Ion Exchange System to Purify Mixed ISS Waste Water Brines for Chemical Production and Enhanced Water Recovery

    Science.gov (United States)

    Lunn, Griffin; Spencer, LaShelle; Ruby, Anna-Maria; McCaskill, Andrew

    2014-01-01

    Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.

  18. Modification of chemical and physical factors in steamflood to increase heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Y.C.

    1992-04-01

    This report covers work performed in the area related to the physicochemical factors for the improvement of the oil recovery efficiency in steamfloods. In this context, three general areas are studied: (1) The understanding of vapor-liquid flow in porous media, whether the flow is internal (boiling), external (steam injection) or countercurrent (as in vertical heat pipes). (2) The effect of reservoir heterogeneity, particularly as it regards fractured systems and long and narrow reservoirs (which are typical of oil reservoirs). (3) The flow properties of additives for the improvement of recovery efficiency, in particular the properties of foams.

  19. Evaluation of alternatives for radium recovery of phosphogysum waste from chemical treatment of phosphatic ore

    International Nuclear Information System (INIS)

    Santos, J.A. dos.

    1986-12-01

    The results from the research work undertaken to evaluate the economic recovery of the Itataia, Ceara phosphogypsum waste, obtained during the treatment of uranium bearing phosphatic ore are present. The implications involved in the waste storage taking into account different aspects of environmental safety, are discussed. (M.A.C.) [pt

  20. A study of the relationship between surfactant/oil/brine system phase behavior and chemical flood recovery in short cores

    Energy Technology Data Exchange (ETDEWEB)

    Ashrawi, S.S.

    1984-04-01

    This study correlates the phase behavior of surfactant/oil/brine systems with their chemical flood performance in short cores. The study focuses on the influence of two important system composition variables: viz. the brine salinity and the nominal equivalent weight of a petroleum sulfonate blend. Furthermore, it investigates the influence of the addition of an alkylether sulfate in terms of optimal salinities, increased salinity tolerance and tertiary recovery efficiency. The oil displacement experiments employ a very fast, near-continuous, constant salinity flooding process in 3-inch long Berea cores, using a microwave instrument to determine the oil saturations. A typical turn-around time for a flooding experiment was seven hours.

  1. An Assessment of the Potential Effects of Aquifer Storage and Recovery on Mercury Cycling in South Florida

    Science.gov (United States)

    Krabbenhoft, David P.; Aiken, George R.; Anderson, Mary P.

    2007-01-01

    Mercury contamination in the environment is a global concern, especially in areas with abundant wetlands, such as south Florida. As the causal factors of this concern improve, scientists find that many factors that do not necessarily affect mercury concentrations, such as flooding and drying cycles, or changes to carbon and sulfate loading, can profoundly affect net mercury toxicity. Especially important are ecological factors that alter the conversion of mercury to methylmercury, which is the most bioaccumulative and toxic form of mercury in the environment. Resource managers, therefore, need to be aware of possible deleterious affects to mercury toxicity that could result from land and water management decisions. Several aspects of the Comprehensive Everglades Restoration Plan (CERP), including the planned Aquifer Storage and Recovery (ASR) program, have the potential to affect the abundance of methylmercury. In response to these concerns, the U.S. Geological Survey and U.S. Army Corps of Engineers collaborated on a study to evaluate how the proposed ASR program may affect mercury cycling and toxicity. This project was conducted as an initial assessment of the possible effects of the CERP ASR program on mercury in the south Florida environment. A twofold approach was employed: field sampling and controlled laboratory benchmark experiments. The field sampling survey collected ground-water samples from the Floridan and surficial aquifer systems for the ASR program to determine existing levels of mercury and methylmercury. Laboratory experiments, on the other hand, were designed to determine how the injected surface water would interact with the aquifer during storage periods. Overall, very low levels of mercury and methylmercury (mean values of 0.41 and 0.07 nanograms per liter, respectively) were observed in ground-water samples collected from the Floridan and surficial aquifer systems. These results indicate that 'recovered water' from the CERP ASR program would

  2. Thermoeconomic multi-objective optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel engine

    International Nuclear Information System (INIS)

    Yang, Fubin; Zhang, Hongguang; Song, Songsong; Bei, Chen; Wang, Hongjin; Wang, Enhua

    2015-01-01

    In this paper, the ORC (Organic Rankine cycle) technology is adopted to recover the exhaust waste heat of diesel engine. The thermodynamic, economic and optimization models of the ORC system are established, respectively. Firstly, the effects of four key parameters, including evaporation pressure, superheat degree, condensation temperature and exhaust temperature at the outlet of the evaporator on the thermodynamic performances and economic indicators of the ORC system are investigated. Subsequently, based on the established optimization model, GA (genetic algorithm) is employed to solve the Pareto solution of the thermodynamic performances and economic indicators for maximizing net power output and minimizing total investment cost under diesel engine various operating conditions using R600, R600a, R601a, R245fa, R1234yf and R1234ze as working fluids. The most suitable working fluid used in the ORC system for diesel engine waste heat recovery is screened out, and then the corresponding optimal parameter regions are analyzed. The results show that thermodynamic performance of the ORC system is improved at the expense of economic performance. Among these working fluids, R245fa is considered as the most suitable working fluid for the ORC waste heat application of the diesel engine with comprehensive consideration of thermoeconomic performances, environmental impacts and safety levels. Under the various operating conditions of the diesel engine, the optimal evaporation pressure is in the range of 1.1 MPa–2.1 MPa. In addition, the optimal superheat degree and the exhaust temperature at the outlet of the evaporator are mainly influenced by the operating conditions of the diesel engine. The optimal condensation temperature keeps a nearly constant value of 298.15 K. - Highlights: • Thermoeconomic multi-objective optimization of an ORC (Organic Rankine cycle) system is conducted. • Sensitivity analysis of the decision variables is performed. • Genetic algorithm

  3. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis

    Directory of Open Access Journals (Sweden)

    Gowtham Mohan

    2014-10-01

    Full Text Available Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a electricity by combining steam rankine cycle using heat recovery steam generator (HRSG; (b clean water by air gap membrane distillation (AGMD plant; and (c cooling by single stage vapor absorption chiller (VAC. The flue gases liberated from the gas turbine power cycle is the prime source of energy for the tri-generation system. The heat recovered from condenser of steam cycle and excess heat available at the flue gases are utilized to drive cooling and desalination cycles which are optimized based on the cooling energy demands of the villas. Economic and environmental benefits of the tri-generation system in terms of cost savings and reduction in carbon emissions were analyzed. Energy efficiency of about 82%–85% is achieved by the tri-generation system compared to 50%–52% for combined cycles. Normalized carbon dioxide emission per MW·h is reduced by 51.5% by implementation of waste heat recovery tri-generation system. The tri-generation system has a payback period of 1.38 years with cumulative net present value of $66 million over the project life time.

  4. Simplified recovery process of Ralstonia solanacearum-synthesized polyhydroxyalkanoates via chemical extraction complemented by liquid-liquid phase separation

    Directory of Open Access Journals (Sweden)

    Karine L. Macagnan

    Full Text Available Poly (3-hydroxybutyrate (P(3HB is the most studied thermoplastic biopolymer belonging to the polyhydroxyalkanoate (PHA family, the main features of which include rapid biodegradability and biocompatibility. The bioplastic recovery process is an important step during production and can directly influence the characteristics of PHAs. However, more efficient methods for the production of P(3HB are necessary to make it economically viable. The aim of the present study was to improve the standard, chloroform-based, extraction step for the recovery of P(3HB. The polymer was produced using a Ralstonia solanacearum strain. The following parameters were improved in the recovery process: heating time, separation method (filtration or liquid-liquid phase separation, biomass state (fresh or dry cell concentrate and the solvent:biomass ratio. By improving the chemical extraction of P(3HB we recovered 98% of the cumulative polymer and reduced the heating time by 75%. Furthermore, we improved the separation process and developed an extraction solution that was faster and more economical.

  5. High Recovery Desalination of Brackish Water by Chemically-Enhanced Seeded Precipitation

    OpenAIRE

    McCool, Brian Carey

    2012-01-01

    Various regions around the world are confronted with dwindling water supplies and thus the need for exploiting non-traditional inland brackish water resource, as well as reclamation and reuse of municipal wastewater and agricultural drainage (AD) water. Reverse osmosis (RO) membrane desalination is the primary technology for inland brackish water desalting. However, successful implementation of RO technology requires operation at high product water recovery (>85%) in order to minimize the vol...

  6. Chemical cocktails in aquatic systems: Pesticide effects on the response and recovery of >20 animal taxa

    International Nuclear Information System (INIS)

    Hua, Jessica; Relyea, Rick

    2014-01-01

    Natural systems are often exposed to individual insecticides or combinations of multiple insecticides. Using an additive and substitutive design, we examined how populations and communities containing >20 animal taxa are affected by four insecticides applied individually and as a mixture for 18 wks in aquatic mesocosms. The four insecticides had distinct lethal effects on the response and recovery of cladocerans, copepods, amphipods, isopods, and amphibians but not snails. The lethal effect on cladocerans and copepods induced trophic cascades that facilitated algal blooms and abiotic changes (higher pH and dissolved oxygen, but lower light transmission). Exposure to endosulfan resulted in a lag effect reducing cladocerans and spring-breeding amphibian abundance. The reduction in spring-breeding amphibian abundance led to cascading indirect effects on summer-breeding amphibians. Finally, the mixture treatment had lethal effects throughout the community that led to long-term effects on amphibian mass and unique indirect consequences on phytoplankton and abiotic variables. - Highlights: • Insecticides had unique direct and indirect effects on response and recovery. • Due to lag effects, endosulfan was more toxic than expected based on 4d tests. • Variation in oviposition phenology led to positive effects on amphibians. • Lethal direct effects of mixtures were pervasive and led to unique indirect effects. - Insecticides applied individually and in a mixture have complex direct and indirect consequences on aquatic system response and recovery

  7. Advanced Ultrafast Spectroscopy for Chemical Detection of Nuclear Fuel Cycle Materials

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Aleman, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Houk, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Spencer, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    The development of new signatures and observables from processes related to proliferation activities are often related to the development of technologies. In our physical world, the intensity of observables is linearly related to the input drivers (light, current, voltage, etc.). Ultrafast lasers with high peak energies, opens the door to a new regime where the intensity of the observables is not necessarily linear with the laser energy. Potential nonlinear spectroscopic applications include chemical detection via remote sensing through filament generation, material characterization and processing, chemical reaction specificity, surface phenomena modifications, X-ray production, nuclear fusion, etc. The National Security Directorate laser laboratory is currently working to develop new tools for nonproliferation research with femtosecond and picosecond lasers. Prior to this project, we could only achieve laser energies in the 5 nano-Joule range, preventing the study of nonlinear phenomena. To advance our nonproliferation research into the nonlinear regime we require laser pulses in the milli-Joule (mJ) energy range. We have procured and installed a 35 fs-7 mJ laser, operating at one-kilohertz repetition rate, to investigate elemental and molecular detection of materials in the laboratory with potential applications in remote sensing. Advanced, nonlinear Raman techniques will be used to study materials of interest that are in a matrix of many materials and currently with these nonlinear techniques we can achieve greater than three orders of magnitude signal enhancement. This work studying nuclear fuel cycle materials with nonlinear spectroscopies will advance SRNL research capabilities and grow a core capability within the DOE complex.

  8. A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery

    International Nuclear Information System (INIS)

    Chen, Y.; Lundqvist, P.; Johansson, A.; Platell, P.

    2006-01-01

    The organic rankine cycle (ORC) as a bottoming cycle to convert low-grade waste heat into useful work has been widely investigated for many years. The CO 2 transcritical power cycle, on the other hand, is scarcely treated in the open literature. A CO 2 transcritical power cycle (CO 2 TPC) shows a higher potential than an ORC when taking the behavior of the heat source and the heat transfer between heat source and working fluid in the main heat exchanger into account. This is mainly due to better temperature glide matching between heat source and working fluid. The CO 2 cycle also shows no pinch limitation in the heat exchanger. This study treats the performance of the CO 2 transcritical power cycle utilizing energy from low-grade waste heat to produce useful work in comparison to an ORC using R123 as working fluid. Due to the temperature gradients for the heat source and heat sink the thermodynamic mean temperature has been used as a reference temperature when comparing both cycles. The thermodynamic models have been developed in EES The relative efficiencies have been calculated for both cycles. The results obtained show that when utilizing the low-grade waste heat with the same thermodynamic mean heat rejection temperature, a transcritical carbon dioxide power system gives a slightly higher power output than the organic rankine cycle

  9. A predictive model of chemical flooding for enhanced oil recovery purposes: Application of least square support vector machine

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi

    2016-06-01

    Full Text Available Applying chemical flooding in petroleum reservoirs turns into interesting subject of the recent researches. Developing strategies of the aforementioned method are more robust and precise when they consider both economical point of views (net present value (NPV and technical point of views (recovery factor (RF. In the present study huge attempts are made to propose predictive model for specifying efficiency of chemical flooding in oil reservoirs. To gain this goal, the new type of support vector machine method which evolved by Suykens and Vandewalle was employed. Also, high precise chemical flooding data banks reported in previous works were employed to test and validate the proposed vector machine model. According to the mean square error (MSE, correlation coefficient and average absolute relative deviation, the suggested LSSVM model has acceptable reliability; integrity and robustness. Thus, the proposed intelligent based model can be considered as an alternative model to monitor the efficiency of chemical flooding in oil reservoir when the required experimental data are not available or accessible.

  10. Developing a Robust Surrogate Model of Chemical Flooding Based on the Artificial Neural Network for Enhanced Oil Recovery Implications

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi

    2015-01-01

    Full Text Available Application of chemical flooding in petroleum reservoirs turns into hot topic of the recent researches. Development strategies of the aforementioned technique are more robust and precise when we consider both economical points of view (net present value, NPV and technical points of view (recovery factor, RF. In current study many attempts have been made to propose predictive model for estimation of efficiency of chemical flooding in oil reservoirs. To gain this end, a couple of swarm intelligence and artificial neural network (ANN is employed. Also, lucrative and high precise chemical flooding data banks reported in previous attentions are utilized to test and validate proposed intelligent model. According to the mean square error (MSE, correlation coefficient, and average absolute relative deviation, the suggested swarm approach has acceptable reliability, integrity and robustness. Thus, the proposed intelligent model can be considered as an alternative model to predict the efficiency of chemical flooding in oil reservoir when the required experimental data are not available or accessible.

  11. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws.

    Science.gov (United States)

    Polettini, Matteo; Esposito, Massimiliano

    2014-07-14

    In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = s(Y) between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats s(Y). We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction.

  12. SYSTEM FOR DETECTION AND CONTROL OF DEPOSITION IN KRAFT CHEMICAL RECOVERY BOILERS AND MONITORING GLASS FURNACES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Peter Ariessohn

    2003-04-15

    Combustion Specialists, Inc. has just completed a project designed to develop the capability to monitor and control the formation of deposits on the outside of boiler tubes inside an operating kraft recovery furnace. This project, which was carried out in the period from April 1, 2001 to January 31, 2003, was funded by the Department of Energy's Inventions and Innovations program. The primary objectives of the project included the development and demonstration of the ability to produce clear images of deposits throughout the convective sections of operating recovery boilers using newly developed infrared imaging technology, to demonstrate the automated detection and quantification of these deposits using custom designed image processing software developed as part of the project, and to demonstrate the feasibility of all technical elements required for a commercial ''smart'' sootblowing control system based on direct feedback from automated imaging of deposits in real-time. All of the individual tasks have been completed and all objectives have been substantially achieved. Imaging of deposits throughout the convective sections of several recovery boilers has been demonstrated, a design for a combined sootblower/deposit inspection probe has been developed and a detailed heat transfer analysis carried out to demonstrate the feasibility of this design, an improved infrared imager which can be sufficiently miniaturized for this application has been identified, automated deposit detection software has been developed and demonstrated, a detailed design for all the necessary communications and control interfaces has been developed, and a test has been carried out in a glass furnace to demonstrate the applicability of the infrared imaging sensor in that environment. The project was completed on time and within the initial budget. A commercial partner has been identified and further federal funding will be sought to support a project to develop a

  13. Evaluation of a combined cycle based on an HCCI (Homogenous Charge Compression Ignition) engine heat recovery employing two organic Rankine cycles

    International Nuclear Information System (INIS)

    Khaljani, M.; Saray, R. Khoshbakhti; Bahlouli, K.

    2016-01-01

    In this work, a combined power cycle which includes a HCCI (Homogenous Charge Compression Ignition) engine and two ORCs (Organic Rankine Cycles) is introduced. In the proposed cycle, the waste heats from the engine cooling water and exhaust gases are utilized to drive the ORCs. A parametric study is conducted to show the effects of decision parameters on the performance and on the total cost rate of cycle. Results of the parametric study reveal that increasing the pinch point temperature difference of evaporator and temperature of the condenser leads to reduction in both exergy efficiency and total cost rate of the bottoming cycle. There is a specific evaporator temperature where exergy efficiency is improved, but the total cost rate of the bottoming cycle is maximized. Also, a multi-objective optimization strategy is performed to achieve the best system design parameters from both thermodynamic and economic aspects. The exergy efficiency and the total cost rate of the system have been considered as objective functions. Optimization results indicate that the exergy efficiency of the cycle increases from 44.96% for the base case to 46.02%. Also, approximately1.3% reduction in the cost criteria is achieved. Results of the multi-objective optimization justify the results obtained through the parametric study and demonstrate that the design parameters of both ORCs have conflict effect on the objective functions. - Highlights: • Two Organic Rankine bottoming cycles are coupled with an HCCI Engine. • Exergetic and Exergo-economic analysis of the bottoming cycle are reported. • The system is optimized using multi-objective genetic algorithm. • Objective functions are exergy efficiency and total cost rate of the system. • The exergy efficiency of the cycle increases from 44.96% to 46.02%.

  14. Effects of Degree of Superheat on the Running Performance of an Organic Rankine Cycle (ORC Waste Heat Recovery System for Diesel Engines under Various Operating Conditions

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-04-01

    Full Text Available This study analyzed the variation law of engine exhaust energy under various operating conditions to improve the thermal efficiency and fuel economy of diesel engines. An organic Rankine cycle (ORC waste heat recovery system with internal heat exchanger (IHE was designed to recover waste heat from the diesel engine exhaust. The zeotropic mixture R416A was used as the working fluid for the ORC. Three evaluation indexes were presented as follows: waste heat recovery efficiency (WHRE, engine thermal efficiency increasing ratio (ETEIR, and output energy density of working fluid (OEDWF. In terms of various operating conditions of the diesel engine, this study investigated the variation tendencies of the running performances of the ORC waste heat recovery system and the effects of the degree of superheat on the running performance of the ORC waste heat recovery system through theoretical calculations. The research findings showed that the net power output, WHRE, and ETEIR of the ORC waste heat recovery system reach their maxima when the degree of superheat is 40 K, engine speed is 2200 r/min, and engine torque is 1200 N·m. OEDWF gradually increases with the increase in the degree of superheat, which indicates that the required mass flow rate of R416A decreases for a certain net power output, thereby significantly decreasing the risk of environmental pollution.

  15. WW LCI v2: A second-generation life cycle inventory model for chemicals discharged to wastewater systems

    DEFF Research Database (Denmark)

    Kalbar, Pradip P; Muñoz, Ivan; Birkved, Morten

    2017-01-01

    We present a second-generation wastewater treatment inventory model, WW LCI 2.0, which on many fronts represents considerable advances compared to its previous version WW LCI 1.0. WW LCI 2.0 is a novel and complete wastewater inventory model integrating WW LCI 1.0, i.e. a complete life cycle...... inventory, including infrastructure requirement, energy consumption and auxiliary materials applied for the treatment of wastewater and disposal of sludge and SewageLCI, i.e. fate modelling of chemicals released to the sewer. The model is expanded to account for different wastewater treatment levels, i....... Higher treatment levels lead to lower CC and FET burden compared to direct discharge. WW LCI 2.0 makes it possible to generate complete detailed life cycle inventories and fate analyses for chemicals released to wastewater systems. Our test of the WW LCI 2.0 model with five chemicals illustrates how...

  16. Thermodynamic analysis of a dual loop heat recovery system with trilateral cycle applied to exhaust gases of internal combustion engine for propulsion of the 6800 TEU container ship

    International Nuclear Information System (INIS)

    Choi, Byung Chul; Kim, Young Min

    2013-01-01

    A dual loop waste heat recovery power generation system that comprises an upper trilateral cycle and a lower organic Rankine cycle, in which discharged exhaust gas heat is recovered and re-used for propulsion power, was theoretically applied to an internal combustion engine for propulsion in a 6800 TEU container ship. The thermodynamic properties of this exhaust gas heat recovery system, which vary depending on the boundary temperature between the upper and lower cycles, were also investigated. The results confirmed that this dual loop exhaust gas heat recovery power generation system exhibited a maximum net output of 2069.8 kW, and a maximum system efficiency of 10.93% according to the first law of thermodynamics and a maximum system exergy efficiency of 58.77% according to the second law of thermodynamics. In this case, the energy and exergy efficiencies of the dual loop system were larger than those of the single loop trilateral cycle. Further, in the upper trilateral cycle, the volumetric expansion ratio of the turbine could be considerably reduced to an adequate level to be employed in the practical system. When this dual loop exhaust gas heat recovery power generation system was applied to the main engine of the container ship, which was actually in operation, a 2.824% improvement in propulsion efficiency was confirmed in comparison to the case of a base engine. This improvement in propulsion efficiency resulted in about 6.06% reduction in the specific fuel oil consumption and specific CO 2 emissions of the main engine during actual operation. - Highlights: • WHRS was theoretically applied to exhaust gas of a main engine for ship propulsion. • A dual loop EG-WHRS using water and R1234yf as working fluids has been suggested. • Limitation of single loop trilateral cycle was improved by the dual loop system. • The propulsion efficiency of 2.824% was improved by the dual loop EG-WHRS. • This resulted in about 6.06% reduction in the SFOC and specific CO

  17. Groundwater chemical baseline values to assess the Recovery Plan in the Matanza-Riachuelo River basin, Argentina.

    Science.gov (United States)

    Zabala, M E; Martínez, S; Manzano, M; Vives, L

    2016-01-15

    The two most exploited aquifers in the Matanza-Riachuelo River basin are being monitored in the framework of the Integrated Environmental Sanitation Plan that implements the Basin Authority, Autoridad de Cuenca Matanza Riachuelo. In this context, this work identifies the groundwater chemical types and the natural processes behind them; determines spatial and temporal changes; establishes ranges of variation for chemical components, and proposes concentration values for the upper limit of the natural chemical background. A total of 1007 samples from three aquifer-layers (Upper Aquifer, top and bottom of Puelche Aquifer) have been studied. As concrete guidelines for practical determination of baseline values are not available in the region, the methodology used follows the proposals of European projects which assessed European water directives. The groundwater composition is very stable in terms of both chemical facies and mineralization degree, and the changes observed in the dry and wet periods analysed are subtle in general. Most of the groundwater is Na-HCO3 type, except a few samples that are Ca-HCO3, Na-ClSO4 and Na-Cl types. The Ca-HCO3 waters are the result of calcium carbonate dissolution, Na-HCO3 waters result from cation exchange and carbonate dissolution, while in the Na-ClSO4 and Na-Cl waters, mixing with connate and with encroached old marine water from the underlying and overlying sediments are the most relevant processes. The proposed values for the upper limit of the natural background consider the influence of geology and Holocene marine ingressions in the baseline of coastal groundwater. This study allowed to know the initial chemical conditions of the groundwater system of the Matanza-Riachuelo River basin and to establish the reference from which Basin Authority can start to evaluate trends and monitor the recovery plan. At the same time, it sets a precedent for future studies in the region. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna Post [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zia, Jalal [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the

  19. Chemical process for recovery of uranium values contained in phosphoric mineral lixivia

    International Nuclear Information System (INIS)

    Conceicao, E.L.H. da; Awwal, M.A.; Coelho, S. V.

    1980-01-01

    A recovery process of uranium values from phosporic mineral lixivia for obtaining uranio oxide concentrate adjusted to specifications of purity for its commercialization the process consists of the adjustment of electromotive force of lixiviem to suitable values for uranium extraction, extraction with organic solvent containing phosphoric acid ester and oxidant reextraction from this solvent with phosphoric acid solution, suggesting a new solvent extraction containing synergetic mixture of di-2-ethyl hexyl phosphoric acid and tri-octyl phosphine, leaching this solvent with water and re-extraction/precipitation with ammonium carbonate solution, resulting in the formation of uranyl tricarbonate and ammonium, that by drying and calcination gives the uranium oxide with purity degree for commercialization. (M.C.K.) [pt

  20. Chemical Engineering Division fuel cycle programs. Progress report, January--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1979-04-01

    Fuel cycle studies reported for this period include studies of advanced solvent extraction techniques focussed on the development of centrifugal contactors for use in Purex processes. Miniature single-stage and eight-stage centrifugal contactors are being employed in studies of contactor performance and the kinetics of extraction. A 9-cm-ID centrifugal contactor has been completed, and fabrication drawings are being prepared for a plant-scale contactor. In other work, tricaprylmethyl-ammonium nitrate and di-n-amyl n-amylphosphonate are being evaluated as extractants in the Thorex process. Literature on the dispersion of liquids by explosions is being reviewed. A process was developed for extracting TBP degradation products from TBP-Na/sub 2/CO/sub 3/ scrub solutions while the actinides remain with the raffinate. In the program on pyrochemical and dry processing of nuclear fuel, the literature is being reviewed for acceptable materials for containment vessels, decladding methods are being evaluated, salt transport processes are being studied, a candidate flow sheet (based upon the Dow Aluminum Pyrometallurgical process) for reprocessing spent uranium metal fuel was prepared, work was begun on the use of molten salts for reprocessing actinide oxides, and the reprocessing of (Th,U)O/sub 2/ solid solution in a KCl-LiCl salt containing ThCl/sub 4/ and thorium chips was studied. Work on the encapsulation of solidified radioactive waste in a metal matrix includes study of (1) chemical interactions between simulated waste forms and matrix metals, (2) the leach rates of simulated encapsulated waste forms, and (3) the corrosion of candidate matrix metals and canister materials in brine solutions.Work to establish criteria for the handling of waste cladding hulls is continuing. The transport properties of nuclear waste in geologic media are being studied to estimate leaching of radionuclides from deep repositories by groundwater.

  1. Impact of sodium citrate ingestion during recovery after dehydrating exercise on rehydration and subsequent 40-km cycling time-trial performance in the heat.

    Science.gov (United States)

    Suvi, Silva; Mooses, Martin; Timpmann, Saima; Medijainen, Luule; Narõškina, Daria; Unt, Eve; Ööpik, Vahur

    2018-01-11

    The purpose of this study was to assess the impact of sodium citrate (CIT) ingestion (600 mg·kg -1 ) during recovery from dehydrating cycling exercise (DE) on subsequent 40-km cycling performance in a warm environment (32 °C). Twenty male nonheat-acclimated endurance athletes exercised in the heat until 4% body mass (BM) loss occurred. After 16 h recovery with consumption of water ad libitum and prescribed diet (evening meal 20 kcal·kg -1 , breakfast 12 kcal·kg -1 ) supplemented in a double-blind, randomized, crossover manner with CIT or placebo (PLC), they performed 40-km time-trial (TT) on a cycle ergometer in a warm environment. During recovery greater increases in BM and plasma volume (PV) concomitant with greater water intake and retention occurred in the CIT trial compared with the PLC trial (p 0.05) in sweat loss, PV decrement, ratings of perceived exertion, or TT time (CIT 68.10 ± 3.28 min, PLC 68.11 ± 2.87 min). At the end of TT blood lactate concentration was higher (7.58 ± 2.44 mmol·L -1 vs 5.58 ± 1.32 mmol·L -1 ; p = 0.0002) and rectal temperature lower (39.54 ± 0.50 °C vs 39.65 ± 0.52 °C; p = 0.033) in the CIT trial than in the PLC trial. Compared with pre-DE time point, PV had decreased to a lower level in the PLC trial than in the CIT trial (p = 0.0001). In conclusion, CIT enhances rehydration after exercise-induced dehydration but has no impact on subsequent 40-km cycling TT performance in a warm uncompensable environment.

  2. Inorganic ion exchangers and adsorbents for chemical processing in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1985-07-01

    The application of inorganic ion exchangers and adsorbents to both waste treatment and the recovery of fission products and actinides were of primary concern at this meeting. The meeting covered the two major fields of fundamental studies and industrial applications

  3. A Road Map to Canadian Chemical Recovery Handbook for Inhabited Areas: Scoping Study

    Science.gov (United States)

    2014-05-01

    Jan 18, 2013) Building Decontamination Alternatives (2005) http://cfpub.epa.gov/ si /si_public_record_report.cfm?dirEntryId=222706 (Accessed Jan 28...21, 2013) Thouin, G, K. Volchek, D. Cooper, W. Kuang , and K. Li 2011. Release of Toxic Organic Chemicals from Surface Materials: Laboratory...2012-CD-1019 2 Volchek, K., M. Fingas, G. Thouin, S. Harrison, W. Kuang , K. Li, D. Velicogna, A. Obenauf, S. Potaraju, and H. Sabiston. 2006

  4. Effect of low B-Lynch suture on menstrual cycle recovery and sex hormone levels in patients after cesarean section for placenta previa

    Directory of Open Access Journals (Sweden)

    Su-Lan Zhang

    2016-03-01

    Full Text Available Objective: To explore the effect of low B-Lynch suture on the menstrual cycle recovery and sex hormone levels in patients after cesarean section for placenta previa. Methods: A total of 40 patients who were admitted in our hospital from August, 2013 to August, 2015 for cesarean section due to placenta previa were included in the study and randomized into the observation group and the control group. The patients in the observation group were given low B-lynch suture, while in the control group, yarns were plugged in the uterus. The bleeding during operation and 24 h after operation, the postpartum lochia duration, and menstrual cycle recovery in the two groups were observed. The postpartum FSH, E2, and LH levels in the two groups were determined. Results: The amount of bleeding during operation and 24 h after operation in the observation group was significantly less than that in the control group (P0.05. The comparison of FSH, E2, and LH levels between the two groups was not statistically significant (P>0.05. Conclusions: Low B-Lynch suture can effectively reduce the amount of bleeding after cesarean section for placenta previa, and has no effect on the menstrual recovery and ovarian function with a simple operation and less postoperative complications; therefore, it deserves to be widely recommended in the clinic.

  5. Methods for chemical recovery of non-carrier-added radioactive tin from irradiated intermetallic Ti-Sb targets

    Science.gov (United States)

    Lapshina, Elena V [Troitsk, RU; Zhuikov, Boris L [Troitsk, RU; Srivastava, Suresh C [Setauket, NY; Ermolaev, Stanislav V [Obninsk, RU; Togaeva, Natalia R [Obninsk, RU

    2012-01-17

    The invention provides a method of chemical recovery of no-carrier-added radioactive tin (NCA radiotin) from intermetallide TiSb irradiated with accelerated charged particles. An irradiated sample of TiSb can be dissolved in acidic solutions. Antimony can be removed from the solution by extraction with dibutyl ether. Titanium in the form of peroxide can be separated from tin using chromatography on strong anion-exchange resin. In another embodiment NCA radiotin can be separated from iodide solution containing titanium by extraction with benzene, toluene or chloroform. NCA radiotin can be finally purified from the remaining antimony and other impurities using chromatography on silica gel. NCA tin-117m can be obtained from this process. NCA tin-117m can be used for labeling organic compounds and biological objects to be applied in medicine for imaging and therapy of various diseases.

  6. Evaluation of improved chemical waste disposal and recovery methods for N reactor fuel fabrication operations: 1984 annual report

    International Nuclear Information System (INIS)

    Stewart, T.L.; Hartley, J.N.

    1984-12-01

    Pacific Northwest Laboratory personnel identified and evaluated alternative methods for recovery, recycle, and disposal of waste acids produced during N Reactor fuel operations. This work was conducted under a program sponsored by UNC Nuclear Industries, Inc.; the program goals were to reduce the volume of liquid waste by rejuvenating and recycling acid solutions and to generate a residual waste low in nitrates, fluorides, and metals. Disposal methods under consideration included nitric acid reclamation, grout encapsulation of final residual waste, nitrogen fertilizer production, biodenitrifaction, chemical or thermal destruction of NO 3 , and short-term impoundment of liquid NO 3 /SO 4 wastes. Preliminary testing indicated that the most feasible and practicable of these alternatives were (1) nitric acid reclamation followed by grouting of residual waste and (2) nitrogen fertilizer production. This report summarizes the investigations, findings, and recommendations for the 1984 fiscal year

  7. The Role of Dissolved Organic Carbon and Preadaptation in the Biotransformation of Trace Organic Chemicals during Aquifer Recharge and Recovery

    KAUST Repository

    Ouf, Mohamed

    2012-05-01

    Aquifer recharge and recovery (ARR) is a low-cost and environmentally-friendly treatment technology which uses conventionally treated wastewater effluent for groundwater recharge and subsequent recovery for agricultural, industrial or drinking water uses. This study investigated the effect of different dissolved organic carbon (DOC) composition in wastewater effluent on the fate of trace organic chemicals (TOrCs) during ARR. Four biologically active columns were setup receiving synthetic wastewater effluent with varying DOC compositions. The difference in DOC composition triggered variations in the microbial community’s diversity and hence its ability to degrade TOrCs. It was found that the presence of protein-like DOC enhances the removal of DOC in comparison with the presence of humic-like DOC. On the other hand, the presence of humic-like DOC, which is more difficult to degrade, improved the removal of several degradable TOrCs. Other column experiments were also carried out to investigate the role of previous and continuous exposure to TOrCs in their removal. The use of soil pre-exposed to low concentrations of TOrCs and DOC provided better removal of both DOC and TOrCs. The findings of this study suggest that the presence of more humic-like DOC in the effluent enhances the biotransformation of TOrCs during ARR. In addition, long exposure to both DOC and TOrCs increases the degree of their removal over time

  8. MicroRNA-93 controls perfusion recovery after hindlimb ischemia by modulating expression of multiple genes in the cell cycle pathway.

    Science.gov (United States)

    Hazarika, Surovi; Farber, Charles R; Dokun, Ayotunde O; Pitsillides, Achillieas N; Wang, Tao; Lye, R John; Annex, Brian H

    2013-04-30

    MicroRNAs are key regulators of gene expression in response to injury, but there is limited knowledge of their role in ischemia-induced angiogenesis, such as in peripheral arterial disease. Here, we used an unbiased strategy and took advantage of different phenotypic outcomes that follow surgically induced hindlimb ischemia between inbred mouse strains to identify key microRNAs involved in perfusion recovery from hindlimb ischemia. From comparative microRNA profiling between inbred mouse strains that display profound differences in their extent of perfusion recovery after hindlimb ischemia, we found that the mouse strain with higher levels of microRNA-93 (miR-93) in hindlimb muscle before ischemia and the greater ability to upregulate miR-93 in response to ischemia had better perfusion recovery. In vitro, overexpression of miR-93 attenuated hypoxia-induced apoptosis in both endothelial and skeletal muscle cells and enhanced proliferation in both cell types. In addition, miR-93 overexpression enhanced endothelial cell tube formation. In vivo, miR-93 overexpression enhanced capillary density and perfusion recovery from hindlimb ischemia, and antagomirs to miR-93 attenuated perfusion recovery. Both in vitro and in vivo modulation of miR-93 resulted in alterations in the expression of >1 cell cycle pathway gene in 2 different cell types. Our data indicate that miR-93 enhances perfusion recovery from hindlimb ischemia by modulation of multiple genes that coordinate the functional pathways of cell proliferation and apoptosis. Thus, miR-93 is a strong potential target for pharmacological modulation to promote angiogenesis in ischemic tissue.

  9. Electrical resistivity and strain recovery studies on the effect of thermal cycling under constant stress on R-phase in NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Uchil, J.; Mahesh, K.K.; Kumara, K. Ganesh

    2002-01-01

    In this paper, the results of electrical resistivity and strain recovery measurements involved in the study of the stability of R-phase in NiTi shape memory alloy upon thermal cycling under a constant tensile stress of 100 and 200 MPa are presented. Two wire samples are chosen such that the one heat-treated at 560 deg. C exhibits a pure martensitic phase and the other heat-treated at 380 deg. C consists of a mixture of R-phase and martensitic phase with residual austenites at ambient temperature. In both cases, the applied stress has been found to promote the R→A transformation during the heating part of the thermal cycling unlike the case of stress free condition in which R-phase is found to exist only in the cooling part of thermal cycling. R-phase is found to become more prominent with increasing applied stress. It is also found that the applied tensile stress enables the development of R-phase in the cooling part of the first thermal cycle itself in the sample heat-treated at 560 deg. C whereas under stress-free condition it requires about 15 thermal cycles to develop R-phase. The NiTi wire heat-treated at 560 deg. C exhibits more recoverable strain in the initial cycles than the wire heat-treated at 380 deg. C, but after a large number of thermal cycles of the order of 1000 the recoverable strain in both samples is found to be almost the same. Under tensile stress, the sample heat-treated at 380 deg. C is found to be more stable against plastic deformation with thermal cycling and hence can be preferred over the sample heat-treated at 560 deg. C for two-way applications of SMA

  10. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mac Dougall, James [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, and pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.

  11. Effects of caffeine on daytime recovery sleep: A double challenge to the sleep-wake cycle in aging.

    Science.gov (United States)

    Carrier, Julie; Paquet, Jean; Fernandez-Bolanos, Marta; Girouard, Laurence; Roy, Joanie; Selmaoui, Brahim; Filipini, Daniel

    2009-10-01

    Caffeine is the most widely used stimulant to counteract the effects of sleepiness, but it also produces important detrimental effects on subsequent sleep, especially when sleep is initiated at a time when the biological clock sends a strong waking signal such as during daytime. This study compares the effects of caffeine on daytime recovery sleep in young (20-30 y.) and middle-aged subjects (45-60 y.). Subjects participated in both caffeine (200mg) and placebo conditions (double-blind cross-over design), spaced one month apart. For each condition, subjects initially came to the laboratory for a nocturnal sleep episode. Daytime recovery sleep started in the morning after 25h of wakefulness. Subjects were administered either one caffeine (100mg) or placebo capsule three hours before daytime recovery sleep and the remaining dose one hour before daytime recovery sleep. Middle-aged subjects showed greater decrements of sleep duration and sleep efficiency than young subjects during daytime recovery under placebo compared to nocturnal sleep. Caffeine decreased sleep efficiency, sleep duration, slow-wave sleep (SWS) and REM sleep during daytime recovery sleep similarly in both age groups. Caffeine also reduced N-REM sleep EEG synchronization during daytime recovery sleep (reduced delta, theta, and alpha power, and greater beta power). The combined influence of age and caffeine made the sleep of middle-aged subjects particularly vulnerable to the circadian waking signal. We propose that lower brain synchronization due to age and caffeine produces greater difficulty in overriding the circadian waking signal during daytime sleep and leads to fragmented sleep. These results have implications for the high proportion of the population using caffeine to cope with night work and jet lag, particularly the middle-aged.

  12. Thermo-economic optimization of low-grade waste heat recovery in Yazd combined-cycle power plant (Iran) by a CO2 transcritical Rankine cycle

    International Nuclear Information System (INIS)

    Amini, Ali; Mirkhani, Nima; Pakjesm Pourfard, Pedram; Ashjaee, Mehdi; Khodkar, Mohammad Amin

    2015-01-01

    A transcritical CO 2 Rankine cycle is proposed for recovering low-grade waste heat of Yazd combined-cycle power plant in Iran. Each power generation module of this plant consists of two 159 MW Siemens SGT-5-2000E gas turbines and one 132 MW steam turbine. Reducing exhaust gas temperature from 150 °C to 70 °C, the plant can generate excessive power. From thermodynamics approach, it is demonstrated that by fixing the maximum temperature at 145 °C and varying the maximum pressure, the efficiency and the net power output are maximized at P max  = 185 bar. In the aforementioned operating point, about 6.3 MW is retained for the selected power plant with a nominal 450 MW of power generation. A more actual case considering thermodynamic losses and economic considerations is then investigated. Genetic algorithm is implanted to conduct a parametric optimization to maximize the benefit-cost ratio which is defined on the basis of total bare module cost and net power output. The results indicate that the cycle costs are more influenced by the maximum pressure rather than the maximum temperature. Through this parametric optimization, the CO 2 cycle can produce about 4.04 MW. This is about 0.9% of the plant capacity and increases the total efficiency about 0.4%. - Highlights: • CO 2 transcritical Rankine cycle is used to recover heat in Yazd 450 MW power plant. • The cycle behavior is examined as its maximum temperature and maximum pressure vary. • 6.3 MW could be retained for the plant on the basis of ideal thermodynamic behavior. • Thermo-economic optimization is conducted subject to actual operating conditions. • 4.04 MW is recovered considering the actual thermo-economic conditions

  13. The comparison of cold-water immersion and cold air therapy on maximal cycling performance and recovery markers following strength exercises

    Directory of Open Access Journals (Sweden)

    Kane J. Hayter

    2016-03-01

    Full Text Available This study examined the effects of cold-water immersion (CWI and cold air therapy (CAT on maximal cycling performance (i.e. anaerobic power and markers of muscle damage following a strength training session. Twenty endurance-trained but strength-untrained male (n = 10 and female (n = 10 participants were randomised into either: CWI (15 min in 14 °C water to iliac crest or CAT (15 min in 14 °C air immediately following strength training (i.e. 3 sets of leg press, leg extensions and leg curls at 6 repetition maximum, respectively. Creatine kinase, muscle soreness and fatigue, isometric knee extensor and flexor torque and cycling anaerobic power were measured prior to, immediately after and at 24 (T24, 48 (T48 and 72 (T72 h post-strength exercises. No significant differences were found between treatments for any of the measured variables (p > 0.05. However, trends suggested recovery was greater in CWI than CAT for cycling anaerobic power at T24 (10% ± 2%, ES = 0.90, T48 (8% ± 2%, ES = 0.64 and T72 (8% ± 7%, ES = 0.76. The findings suggest the combination of hydrostatic pressure and cold temperature may be favourable for recovery from strength training rather than cold temperature alone.

  14. Fluid diversion and sweep improvement with chemical gels in oil recovery processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Seright, R.S.; Martin, F.D.

    1992-09-01

    The objectives of this project were to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants were examined, including polymer-based gelants, a monomer-based gelant, and a colloidal-silica gelant. This research was directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work examined how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals included determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. During this three-year project, a number of theoretical analyses were performed to determine where gel treatments are expected to work best and where they are not expected to be effective. The most important, predictions from these analyses are presented. Undoubtedly, some of these predictions will be controversial. However, they do provide a starting point in establishing guidelines for the selection of field candidates for gel treatments. A logical next step is to seek field data that either confirm or contradict these predictions. The experimental work focused on four types of gels: (1) resorcinol-formaldehyde, (2) colloidal silica, (3) Cr{sup 3+}(chloride)-xanthan, and (4) Cr{sup 3+}(acetate)-polyacrylamide. All experiments were performed at 41{degrees}C.

  15. Fluid diversion and sweep improvement with chemical gels in oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Seright, F.S.; Martin, F.D.

    1991-04-01

    The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work will establish how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. This report describes progress made during the first year of this three-year study the following tasks: gel screening studies; impact of gelation pH, rock permeability, and lithology on the performance of a monomer-based gel; preliminary study of the permeability reduction for CO{sub 2} and water using a resorcinol-formaldehyde gel; preliminary study of permeability reduction for oil and water using a resorcinol-formaldehyde gel; rheology of Cr(III)-xanthan gel and gelants in porous media; impact of diffusion, dispersion, and viscous fingering on gel placement in injection wells; examination of flow-profile changes for field applications of gel treatments in injection wells; and placement of gels in production wells. Papers have been indexed separately for inclusion on the data base.

  16. Gravity packaging final waste recovery based on gravity separation and chemical imaging control.

    Science.gov (United States)

    Bonifazi, Giuseppe; Serranti, Silvia; Potenza, Fabio; Luciani, Valentina; Di Maio, Francesco

    2017-02-01

    Plastic polymers are characterized by a high calorific value. Post-consumer plastic waste can be thus considered, in many cases, as a typical secondary solid fuels according to the European Commission directive on End of Waste (EoW). In Europe the practice of incineration is considered one of the solutions for waste disposal waste, for energy recovery and, as a consequence, for the reduction of waste sent to landfill. A full characterization of these products represents the first step to profitably and correctly utilize them. Several techniques have been investigated in this paper in order to separate and characterize post-consumer plastic packaging waste fulfilling the previous goals, that is: gravity separation (i.e. Reflux Classifier), FT-IR spectroscopy, NIR HyperSpectralImaging (HSI) based techniques and calorimetric test. The study demonstrated as the proposed separation technique and the HyperSpectral NIR Imaging approach allow to separate and recognize the different polymers (i.e. PolyVinyl Chloride (PVC), PolyStyrene (PS), PolyEthylene (PE), PoliEtilene Tereftalato (PET), PolyPropylene (PP)) in order to maximize the removal of the PVC fraction from plastic waste and to perform the full quality control of the resulting products, can be profitably utilized to set up analytical/control strategies finalized to obtain a low content of PVC in the final Solid Recovered Fuel (SRF), thus enhancing SRF quality, increasing its value and reducing the "final waste". Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Kinetic-quantum chemical model for catalytic cycles: the Haber-Bosch process and the effect of reagent concentration.

    Science.gov (United States)

    Kozuch, Sebastian; Shaik, Sason

    2008-07-03

    A combined kinetic-quantum chemical model is developed with the goal of estimating in a straightforward way the turnover frequency (TOF) of catalytic cycles, based on the state energies obtained by quantum chemical calculations. We describe how the apparent activation energy of the whole cycle, so-called energetic span (delta E), is influenced by the energy levels of two species: the TOF determining transition state (TDTS) and the TOF determining intermediate (TDI). Because these key species need not be adjoining states, we conclude that for catalysis there are no rate-determining steps, only rate determining states. In addition, we add here the influence of reactants concentrations. And, finally, the model is applied to the Haber-Bosch process of ammonia synthesis, for which we show how to calculate which catalyst will be the most effective under specific reagents conditions.

  18. Improved CO sub 2 enhanced oil recovery -- Mobility control by in-situ chemical precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Ameri, S.; Aminian, K.; Wasson, J.A.; Durham, D.L.

    1991-06-01

    The overall objective of this study has been to evaluate the feasibility of chemical precipitation to improve CO{sub 2} sweep efficiency and mobility control. The laboratory experiments have indicated that carbonate precipitation can alter the permeability of the core samples under reservoir conditions. Furthermore, the relative permeability measurements have revealed that precipitation reduces the gas permeability in favor of liquid permeability. This indicates that precipitation is occurring preferentially in the larger pores. Additional experimental work with a series of connected cores have indicated that the permeability profile can be successfully modified. However, Ph control plays a critical role in propagation of the chemical precipitation reaction. A numerical reservoir model has been utilized to evaluate the effects of permeability heterogeneity and permeability modification on the CO{sub 2} sweep efficiency. The computer simulation results indicate that the permeability profile modification can significantly enhance CO{sub 2} vertical and horizontal sweep efficiencies. The scoping studies with the model have further revealed that only a fraction of high permeability zones need to be altered to achieve sweep efficiency enhancement. 64 refs., 30 figs., 16 tabs.

  19. Thermo economic life cycle energy recovery system optimization for central air-conditioning system using evolutionary technique

    International Nuclear Information System (INIS)

    Khan, L.A.; Khalil, M.S.; Mahfouz, F.

    2012-01-01

    Energy efficient systems are the most desirable systems. Due to huge rise in energy prices and lack of availability of energy, the effective use of energy has become the need of time. Energy recovery both in heating systems as well as in air-conditioning systems saves a lot of energy. In this paper energy recovery system has been designed and optimized for central air-conditioning systems for various ranges. Cost function includes capital cost along with pumping and exergy destruction cost. This shows that installation of energy recovery system with a central air-conditioning has a significant amount of saved energy and payback period is within a year. PFHE (Plate Fin Heat Exchanger) is designed and optimized using evolutionary optimization. In order to verify the capabilities of the proposed method, a case study is also presented showing that significant amount of energy is recovered at a reasonable payback period. Sensitivity analysis is also done with the energy prices. (author)

  20. Automated cold temperature cycling improves in vitro platelet properties and in vivo recovery in a mouse model compared to continuous cold storage.

    Science.gov (United States)

    Skripchenko, Andrey; Gelderman, Monique P; Awatefe, Helen; Turgeon, Annette; Thompson-Montgomery, Dedeene; Cheng, Chunrong; Vostal, Jaroslav G; Wagner, Stephen J

    2016-01-01

    Platelets (PLTs) stored at cold temperatures (CTs) for prolonged time have dramatically reduced bacterial growth but poor survival when infused. A previous study demonstrated that human PLTs stored with manual cycling between 4 °C (12 hr) and 37 °C (30 min) and infused into severe combined immunodeficient (SCID) mice had survivals similar to or greater than those stored at room temperature (RT). In this study, the in vitro and in vivo properties of PLTs stored in an automated incubator programmed to cycle between 5 °C (11 hr) and 37 °C (1 hr) were evaluated. A Trima apheresis unit (n = 12) was aliquoted (60 mL) in CLX bags. One sample was stored with continuous agitation (RT), a second sample was stored at 4-6 °C without agitation (CT), and a third sample was placed in an automated temperature cycler with 5 minutes of agitation during the warm-up period (thermocycling [TC]). PLTs were assayed for several relevant quality variables. On Day 7, PLTs were infused into SCID mice and in vivo recovery was assessed at predetermined time points after transfusion. The glucose consumption rate, morphology score, hypotonic shock recovery level, and aggregation levels were increased and mitochondrial reactive oxygen species accumulations were decreased in TC-PLTs compared to those of CT-PLTs. The pH and Annexin V binding were comparable to those of RT-PLTs. All TC-PLTs had greater recovery than CT-PLTs and were comparable to RT-PLTs. PLTs stored under automated TC conditions have improved in vivo recovery and improved results for a number of in vitro measures compared to CT-PLTs. © 2015 AABB.

  1. Analysis of ORC (Organic Rankine Cycle) systems with pure hydrocarbons and mixtures of hydrocarbon and retardant for engine waste heat recovery

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei

    2015-01-01

    The Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology for the recovery of engine waste heat. Systems with hydrocarbons as the working fluids exhibit good thermal performance. However, the flammability of hydrocarbons limits their practical applications because of safety concerns. This paper examines the potential of using mixtures of a hydrocarbon and a retardant in an ORC system for engine waste heat recovery. Refrigerants R141b and R11 are selected as the retardants and blended with the hydrocarbons to form zeotropic mixtures. The flammability is suppressed, and in addition, zeotropic mixtures provide better temperature matches with the heat source and sink, which reduces the exergy loss within the heat exchange processes, thereby increasing the cycle efficiency. Energetic and exergetic analysis of ORC systems with pure hydrocarbons and with mixtures of a hydrocarbon and a retardant are conducted and compared. The net power output and the second law efficiency are chosen as the evaluation criteria to select the suitable working fluid compositions and to define the optimal set of thermodynamic parameters. The simulation results reveal that the ORC system with cyclohexane/R141b (0.5/0.5) is optimal for this engine waste heat recovery case, thereby increasing the net power output of the system by 13.3% compared to pure cyclohexane. - Highlights: • ORC with zeotropic mixtures for engine waste heat recovery is discussed. • Energetic and exergetic analysis of ORC system are conducted. • Optimal mixture working fluid composition is identified. • Greater utilization of jacket water and lower irreversible loss are important.

  2. Including exposure variability in the life cycle impact assessment of indoor chemical emissions: the case of metal degreasing.

    Science.gov (United States)

    Golsteijn, Laura; Huizer, Daan; Hauck, Mara; van Zelm, Rosalie; Huijbregts, Mark A J

    2014-10-01

    The present paper describes a method that accounts for variation in indoor chemical exposure settings and accompanying human toxicity in life cycle assessment (LCA). Metal degreasing with dichloromethane was used as a case study to show method in practice. We compared the human toxicity related to the degreasing of 1m(2) of metal surface in different exposure scenarios for industrial workers, professional users outside industrial settings, and home consumers. The fraction of the chemical emission that is taken in by exposed individuals (i.e. the intake fraction) was estimated on the basis of operational conditions (e.g. exposure duration), and protective measures (e.g. local exhaust ventilation). The introduction of a time-dependency and a correction for protective measures resulted in reductions in the intake fraction of up to 1.5 orders of magnitude, compared to application of existing, less advanced models. In every exposure scenario, the life cycle impacts for human toxicity were mainly caused by indoor exposure to metal degreaser (>60%). Emissions released outdoors contributed up to 22% of the life cycle impacts for human toxicity, and the production of metal degreaser contributed up to 19%. These findings illustrate that human toxicity from indoor chemical exposure should not be disregarded in LCA case studies. Particularly when protective measures are taken or in the case of a short duration (1h or less), we recommend the use of our exposure scenario-specific approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation

    Directory of Open Access Journals (Sweden)

    Jin-Feng Liu

    2015-03-01

    Full Text Available Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last two decades. This paper reviews the chemical structural characteristics and molecular behaviors of surfactin, one of the representative lipopeptides of the 26 families. In particular, two novel surfactin molecules isolated from cell-free cultures of Bacillus subtilis HSO121 are presented. Surfactins exhibit strong self-assembly ability to form sphere-like micelles and larger aggregates at very low concentrations. The amphipathic and surface properties of surfactins are related to the existence of the minor polar and major hydrophobic domains in the three 3-D conformations. In addition, the application potential of surfactin in bioremediation of oil spills and oil contaminants, and microbial enhanced oil recovery are discussed.

  4. Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation

    Science.gov (United States)

    Liu, Jin-Feng; Mbadinga, Serge Maurice; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last two decades. This paper reviews the chemical structural characteristics and molecular behaviors of surfactin, one of the representative lipopeptides of the 26 families. In particular, two novel surfactin molecules isolated from cell-free cultures of Bacillus subtilis HSO121 are presented. Surfactins exhibit strong self-assembly ability to form sphere-like micelles and larger aggregates at very low concentrations. The amphipathic and surface properties of surfactins are related to the existence of the minor polar and major hydrophobic domains in the three 3-D conformations. In addition, the application potential of surfactin in bioremediation of oil spills and oil contaminants, and microbial enhanced oil recovery are discussed. PMID:25741767

  5. Management of biodiesel wastewater by the combined processes of chemical recovery and electrochemical treatment

    International Nuclear Information System (INIS)

    Jaruwat, Pattaraluk; Kongjao, Sangkorn; Hunsom, Mali

    2010-01-01

    A two stage management of raw biodiesel wastewater was carried out at a laboratory scale and ambient temperature. In the first step, biodiesel was chemically recovered from the wastewater using sulphuric acid as a proton donor with subsequent natural phase separation. Biodiesel was recovered from the raw biodiesel wastewater, in this case at 6-7% (w/w). In the second stage, the aqueous phase discharged from the first stage was supplemented with sodium chloride to 0.061 M and subject to electro-oxidation using a Ti/RuO 2 electrode. The combined treatment completely removed COD and oil and grease, and reduced BOD levels by more than 95%. The rate of removal of all three pollutants fitted a pseudo-first-order rate kinetics with oil and grease removal being approximately 8-16- and 2-7-fold faster than BOD and COD removal, respectively.

  6. Thermodynamic performance of SNG and power coproduction from MSW with recovery of chemical unreacted gas.

    Science.gov (United States)

    Fan, Junming; Hong, Hui; Zhang, Le; Li, Luling; Jin, Hongguang

    2017-09-01

    A cogeneration system for simultaneously producing synthetic natural gas (SNG) and electric power from municipal solid waste (MSW) is developed. This process provides a disposal method for MSW that is environmentally sustainable and uses as an alternative energy sources. Rather than converting all of the synthesis gas into end products, in the proposed system the unconverted gas is recovered for power generation in a combined-cycle unit. The overall efficiency of the proposed system is 36.33%. The energy efficiency of this system is approximately 8.7% higher than that of a standalone SNG production system, and 15.02% higher than that of an MSW incineration system. A sensitivity analysis shows that by increasing the H 2 /CO ratio (α), SNG production and SNG conversion efficiency can be increased, but the overall efficiency does not increase. Increasing the recycling ratio of the unconverted gas (Ru) benefits for the SNG yield up to a value before Ru/(Ru+1)=0.7, and the overall system efficiency reaches its maximum value at Ru/(Ru+1)=0.9. Therefore, partial recycling of the unreacted gas is more efficient up to a point, and higher recycling ratios are less efficient. Copyright © 2017. Published by Elsevier Ltd.

  7. Comparison of Cooling System Designs for an Exhaust Heat Recovery System Using an Organic Rankine Cycle on a Heavy Duty Truck

    Directory of Open Access Journals (Sweden)

    Nicolas Stanzel

    2016-11-01

    Full Text Available A complex simulation model of a heavy duty truck, including an Organic Rankine Cycle (ORC based waste heat recovery system and a vehicle cooling system, was applied to determine the system fuel economy potential in a typical drive cycle. Measures to increase the system performance were investigated and a comparison between two different cooling system designs was derived. The base design, which was realized on a Mercedes-Benz Actros vehicle revealed a fuel efficiency benefit of 2.6%, while a more complicated design would generate 3.1%. Furthermore, fully transient simulation results were performed and are compared to steady state simulation results. It is shown that steady state simulation can produce comparable results if averaged road data are used as boundary conditions.

  8. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Junmin; Han, Dongmei; Zuo, Xiaoxi [Department of Chemistry, South China Normal University, Guangzhou 510631 (China)

    2005-12-01

    This paper describes a new recycling process of metal values from spent lithium-ion batteries (LIBs). After the dismantling of the spent batteries steel crusts, the leaching of battery internal substances with alkaline solution and the dissolving of the residues with H{sub 2}SO{sub 4} solution were carried out. Then mass cobalt was chemically deposited as oxalate, and Acorga M5640 and Cyanex272 extracted the small quantities of copper and cobalt, respectively. Lithium was recovered as deposition of lithium carbonate. It is shown that about 90% cobalt was deposited as oxalate with less than 0.5% impurities, and Acorga M5640 and Cyanex272 were efficient and selective for the extraction of copper and cobalt in sulfate solution. Over 98% of the copper and 97% of the cobalt was recovered in the given process. In addition, the waste solution was treated innocuously, and LiCoO{sub 2} positive electrode material with good electrochemical performance was also synthesized by using the recovered compounds of cobalt and lithium as precursors. The process is feasible for the recycling of spent LIBs in scale-up. (author)

  9. Life Cycle Assessment Studies of Chemical and Biochemical Processes through the new LCSoft Software-tool

    DEFF Research Database (Denmark)

    Supawanich, Perapong; Malakul, Pomthong; Gani, Rafiqul

    2015-01-01

    Life Cycle Assessment or LCA is an effective tool for quantifying the potential environmental impacts of products, processes, or services in order to support the selection making of desired products and/or processes from different alternatives. For more sustainable process designs, technical...... (SustainPro). An extended version of LCSoft is presented in this paper. The development work consists of four main tasks. The first task consists of the Life Cycle Inventory (LCI) calculation function. The second task deals with the extension of the Life Cycle Inventory database and improvement of the Life...... Cycle Impact Assessment calculation. The third task deals with analysis to investigate the contributions of processes, LCI results, and environmental impact results with respect to the production stage. Also, an uncertainty analysis is included to investigate the influence of uncertain parameters...

  10. Electrochemically induced crystallization as a sustainable method for product recovery of building block chemicals: techno-economic evaluation of fumaric acid separation

    NARCIS (Netherlands)

    Nasrollahnejad, T.; Urbanus, J.; Horst, J.H. ter; Verdoes, D.; Roelands, C.P.M.

    2012-01-01

    Carboxylic acids are key platform chemicals for use as biobased alternatives for fossil-based applications. State-of-the-art fermentations of carboxylic acids at neutral pH with downstream product recovery by pH-shift crystallization are not sustainable due to the accompanied production of waste

  11. Electrochemically Induced Crystallization as a Sustainable Method for Product Recovery of Building Block Chemicals : Techno-Economic Evaluation of Fumaric Acid Separation

    NARCIS (Netherlands)

    Nasrollahnejad, T.; Urbanus, J.; Ter Horst, J.H.; Verdoes, D.; Roelands, C.P.M.

    2012-01-01

    Carboxylic acids are key platform chemicals for use as biobased alternatives for fossil-based applications. State-of-the-art fermentations of carboxylic acids at neutral pH with downstream product recovery by pH-shift crystallization are not sustainable due to the accompanied production of waste

  12. The potential role of Life Cycle Assessment in regulation of chemicals in the European Union

    DEFF Research Database (Denmark)

    Christensen, Frans Møller; Olsen, Stig Irving

    2003-01-01

    uses of LCA could be in overall priority setting (including non-chemical products) of environmental product policy and in standardisation work related to products/processes releasing chemicals to the environment. A number of methodological interactions between regulatory risk assessment and LCA as well...

  13. Thermodynamic performance analysis of a coupled transcritical and subcritical organic Rankine cycle system for waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xi Wu [Zhejiang Ocean University, Zhejian (China); Wang, Xiao Qiong; Li, You Rong; Wu, Chun Mei [Chongqing University, Chongqing (China)

    2015-07-15

    We present a novel coupled organic Rankine cycle (CORC) system driven by the low-grade waste heat, which couples a transcritical organic Rankine cycle with a subcritical organic Rankine cycle. Based on classical thermodynamic theory, a detailed performance analysis on the novel CORC system was performed. The results show that the pressure ratio of the expander is decreased in the CORC and the selection of the working fluids becomes more flexible and abundant. With the increase of the pinch point temperature difference of the internal heat exchanger, the net power output and thermal efficiency of the CORC all decrease. With the increase of the critical temperature of the working fluid, the system performance of the CORC is improved. The net power output and thermal efficiency of the CORC with isentropic working fluids are higher than those with dry working fluids.

  14. Thermodynamic analysis and optimization of a two-stage organic Rankine cycle for liquefied natural gas cryogenic exergy recovery

    International Nuclear Information System (INIS)

    Xue, Xiaodi; Guo, Cong; Du, Xiaoze; Yang, Lijun; Yang, Yongping

    2015-01-01

    A two-stage ORC (organic Rankine cycle) is proposed, by which low-grade heat of exhaust flue gas of a 123.5 MW gas-steam combined cycle power generating unit, as well as the cryogenic energy of LNG (liquefied natural gas) can be effectively recovered and utilized. R227ea and R116 are selected as working fluids for the system. Based on the thermodynamic mathematical models, the effects of key design parameters, including that of turbine inlet pressures, mass flow rates of working fluids and outlet steam fractions of evaporators on the system performance are investigated from the view of both thermodynamics and economics with CPP (cost per net power output) as the objective function. The results obtained the optimal inlet pressure of turbines, under which, the CPP has the minimum value. It is found that the CPP also decreases with the mass flow rate of R227ea and R116. The rate of absorbed heat in top cycle to that in bottom cycle has a positive impact on CPP, but very weak. The optimized two-stage ORC system can output net work with 1776.44 kW with the thermal efficiency of 25.64% and exergy efficiency of 31.02%. Cost per net power output is 6.3$/W, while the LNG temperature can be raised to 283.15 K. - Highlights: • Two-stage organic Rankine cycle is proposed to recover both exhaust heat of flue gas and LNG cryogenic exergy. • Flue gas from a gas-steam combined cycle power plant and LNG are employed as heat source and heat sink, respectively. • Thermodynamic and economic mathematical models are established. • Parameter optimization is studied and optimal design with the CPP of 6.3$/W is obtained. • Effects of key thermodynamic design parameters on system performance are investigated

  15. Monitoring burned and unburned hillslopes from North Carolina to southern California: insights into hydrologic and geomorphic controls on disturbance-recovery cycles

    Science.gov (United States)

    Mirus, B. B.; Kean, J. W.; Smith, J. B.; Staley, D. M.; Wooten, R.; Cattanach, B.; Rengers, F. K.; McGuire, L.; Godt, J.; Lu, N.

    2017-12-01

    On steep hillslopes, vegetation often provides an important ecosystem function by preventing landsliding, debris flows, and floods, thereby protecting human lives and infrastructure. Disturbances that disrupt vegetation - from wildfire and forest clearing to landslides themselves - can abruptly alter hillslope hydrologic and geomorphic processes thereby increasing the threat of these natural hazards. Two major challenges from a hazard assessment perspective are: (1) quantifying disturbance impacts on near-surface hydrologic responses, and (2) understanding the relevant processes and timescales associated with disturbance-recovery cycles. These challenges are complicated by the limited availability of long-term monitoring in pre- and post-disturbance environments. Therefore, many tools designed to provide rapid situational awareness and improve disaster preparedness and response rely on temporally invariant parameterization or locally derived empirical relations that are not necessarily transferrable across different geologic or climatic settings. Here we examine hillslope hydrologic response in landslide-prone terrain across the continental US, from the West Coast to Appalachia, to explore these issues related to disturbance-recovery cycles. Wildfire is a recurring disturbance along the actively uplifting mountains in semi-arid southern California, and heavy winter storms arriving from the Pacific are frequently able to produce debris flows in recently burned areas. Although wildfire is less common in the much wetter Cascades and Coast Ranges of Oregon and Washington, frequent landslides and forest clearing disturbances also influence hillslope hydrology and slope stability. In contrast, the recent wildfires in Tennessee, Georgia, and North Carolina have highlighted critical knowledge gaps related to post-fire hydrology and natural hazards in the geologically stable and humid sub-tropical southeastern US, where severe wildfires are less common than other

  16. Preliminary market analysis for Brayton cycle heat recovery system characterization program. Subtask 5. 2 of phase I program plan

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-31

    The purpose of the task is to determine the market potential of the Brayton-cycle Subatmospheric System (SAS), especially as applied to the glass processing industry. Areas which impact the sales of the Brayton-cycle systems examined are: market size; opportunities for waste heat system installation (furnace rebuild and repair); pollution control on glass furnaces; equipment costs; equipment performance; and market growth potential. Supporting data were compiled for the glass industry inventory and are presented in Appendix A. Emission control techniques in the glass industry are discussed in Appendix B. (MCW)

  17. Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Pierobon, Leonardo; Haglind, Fredrik

    2013-01-01

    , boundary conditions, hazard levels and environmental concerns. A generally applicable methodology, based on the principles of natural selection, is presented and used to determine the optimum working fluid, boiler pressure and Rankine cycle process layout for scenarios related to marine engine heat......Power cycles using alternative working fluids are currently receiving significant attention. Selection of working fluid among many candidates is a key topic and guidelines have been presented. A general problem is that the selection is based on numerous criteria, such as thermodynamic performance...

  18. Nutrient Removal and Resource Recovery: Effect on Life Cycle Cost and Environmental Impacts of Small Scale Wastewater Treatment

    Science.gov (United States)

    Many communities across the U.S. are required to upgrade wastewater treatment plants (WWTP) to meet increasingly stringent nutrient effluent standards. However, increased capital, energy and chemical requirements of upgrades create potential trade-offs between eutrophication pote...

  19. Input-dependent life-cycle inventory model of industrial wastewater-treatment processes in the chemical sector.

    Science.gov (United States)

    Köhler, Annette; Hellweg, Stefanie; Recan, Ercan; Hungerbühler, Konrad

    2007-08-01

    Industrial wastewater-treatment systems need to ensure a high level of protection for the environment as a whole. Life-cycle assessment (LCA) comprehensively evaluates the environmental impacts of complex treatment systems, taking into account impacts from auxiliaries and energy consumption as well as emissions. However, the application of LCA is limited by a scarcity of wastewater-specific life-cycle inventory (LCI) data. This study presents a modular gate-to-gate inventory model for industrial wastewater purification in the chemical and related sectors. It enables the calculation of inventory parameters as a function of the wastewater composition and the technologies applied. Forthis purpose, data on energy and auxiliaries' consumption, wastewater composition, and process parameters was collected from chemical industry. On this basis, causal relationships between wastewater input, emissions, and technical inputs were identified. These causal relationships were translated into a generic inventory model. Generic and site-specific data ranges for LCI parameters are provided for the following processes: mechanical-biological treatment, high-pressure wet-air oxidation, nanofiltration, and extraction. The input- and technology-dependent process inventories help to bridge data gaps where primary data are not available. Thus, they substantially help to perform an environmental assessment of industrial wastewater purification in the chemical and associated industries, which may be used, for instance, for technology choices.

  20. Recovery of flue gas energy in heat-integrated gasification combined cycle (IGCC) power plants using the contact economizer system

    CSIR Research Space (South Africa)

    Madzivhandila, VA

    2011-03-01

    Full Text Available (flue gas) stream of a heat-integrated gasification combined cycle (IGCC) design of the Elcogas plant adopted from previous studies. The underlying support for this idea was the direct relationship between efficiency of the IGCC and the boiler feedwater...

  1. Experimental research of the impact of the dosing of chemical reagents on the dynamic behavior of regulation system of cycle chemistry

    Science.gov (United States)

    Yegoshina, O. V.; Bolshakova, N. A.

    2017-11-01

    Organization of reliable chemical control for maintaining cycle chemistry is one of the most important problems to be solved at the present time the design and operation of thermal power plants. To maintain optimal parameters of cycle chemistry are used automated chemical control system and regulation system of dosing chemical reagents. Reliability and stability analyzer readings largely determine the reliability of the water cycle chemistry. Now the most common reagents are ammonia, alkali and film-forming amines. In this paper are presented the results of studies of the impact of concentration and composition of chemical reagents for readings stability of automatic analyzers and transients time of control systems for cycles chemistry. Research of the impact of chemical reagents on the dynamic behavior of regulation system for cycle chemistry was conducted at the experimental facility of the Department of thermal power stations of the Moscow Engineering Institute. This experimental facility is model of the work of regulation system for cycle chemistry close to the actual conditions on the energy facilities CHP. Analysis of results of the impact of chemical reagent on the dynamic behavior of ammonia and film forming amines dosing systems showed that the film-forming amines dosing system is more inertia. This emphasizes the transition process of the system, in which a half times longer dosing of ammonia. Results of the study can be used to improve the monitoring systems of water chemical treatment.

  2. The potential role of life cycle assessment in regulation of chemicals in the European Union

    DEFF Research Database (Denmark)

    Christensen, Frans Møller; Olsen, Stig Irving

    2004-01-01

    reduction. In this process, LCA results might feed into a socio-economic analysis having similar objectives, but some methodological aspects related to system boundaries need to be sorted out. Life cycle impact assessment (LCIA) of toxic effects has traditionally been inspired by the more regulatory...

  3. Comparative 4-E analysis of a bottoming pure NH3 and NH3-H2O mixture based power cycle for condenser waste heat recovery

    Science.gov (United States)

    Khankari, Goutam; Karmakar, Sujit

    2017-06-01

    This paper proposes a comparative performance analysis based on 4-E (Energy, Exergy, Environment, and Economic) of a bottoming pure Ammonia (NH3) based Organic Rankine Cycle (ORC) and Ammonia-water (NH3-H2O) based Kalina Cycle System 11(KCS 11) for additional power generation through condenser waste heat recovery integrated with a conventional 500MWe Subcritical coal-fired thermal power plant. A typical high-ash Indian coal is used for the analysis. The flow-sheet computer programme `Cycle Tempo' is used to simulate both the cycles for thermodynamic performance analysis at different plant operating conditions. Thermodynamic analysis is done by varying different NH3 mass fraction in KCS11 and at different turbine inlet pressure in both ORC and KCS11. Results show that the optimum operating pressure of ORC and KCS11 with NH3 mass fraction of 0.90 are about 15 bar and 11.70 bar, respectively and more than 14 bar of operating pressure, the plant performance of ORC integrated power plant is higher than the KCS11 integrated power plant and the result is observed reverse below this pressure. The energy and exergy efficiencies of ORC cycle are higher than the KCS11 by about 0.903 % point and 16.605 % points, respectively under similar saturation vapour temperature at turbine inlet for both the cycles. Similarly, plant energy and exergy efficiencies of ORC based combined cycle power plant are increased by 0.460 % point and 0.420 % point, respectively over KCS11 based combined cycle power plant. Moreover, the reduction of CO2 emission in ORC based combined cycle is about 3.23 t/hr which is about 1.5 times higher than the KCS11 based combined cycle power plant. Exergy destruction of the evaporator in ORC decreases with increase in operating pressure due to decrease in temperature difference of heat exchanging fluids. Exergy destruction rate in the evaporator of ORC is higher than KCS11 when the operating pressure of ORC reduces below 14 bar. This happens due to variable

  4. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100-500nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Short term recovery of soil physical, chemical, micro- and mesobiological functions in a new vineyard under organic farming

    Science.gov (United States)

    Costantini, E. A. C.; Agnelli, A. E.; Fabiani, A.; Gagnarli, E.; Mocali, S.; Priori, S.; Simoni, S.; Valboa, G.

    2014-12-01

    vineyard and time, increasing with rain precipitations in the old vineyard. Though the euedaphic forms, well adapted to soil life, were always rare. Microbiological analysis revealed a different structure of eubacterial communities between old and new vineyard in the whole period. However, the DGGE similarity values of such communities increased of about 2.5% per year, suggesting that at least 3 years more are needed to compare intra- and inter-specific diversity of the two vineyards. In conclusion, the consequences of deep earthworks on soil chemical, micro and mesobiological properties were still evident after four years from planting, indicating that more time is necessary for the recovery of soil functions, probably longer than that needed to obtain an economic grape production.

  6. The importance of terrestrial weathering changes in multimillennial recovery of the global carbon cycle: a two-dimensional perspective

    OpenAIRE

    Brault, Marc-Olivier; Matthews, H. Damon; Mysak, Lawrence A.

    2017-01-01

    In this paper, we describe the development and application of a new spatially-explicit weathering scheme within the University of Victoria Earth System Climate Model (UVic ESCM). We integrated a dataset of modern-day lithology with a number of previously devised parameterizations for weathering dependency on temperature, primary productivity, and runoff. We tested the model with simulations of future carbon cycle perturbations, comparing a number of emission scenarios and model versions wit...

  7. Life cycle assessment of different strategies for energy and nutrient recovery from source sorted organic fraction of household waste

    DEFF Research Database (Denmark)

    Khoshnevisan, Benyamin; Tsapekos, Panagiotis; Alvarado-Morales, Merlin

    2018-01-01

    This study attempted to apply life cycle assessment (LCA) methodology to compare distinctive management strategies when biologically treating source-sorted organic household waste (SSOHW). The management strategies included different pretreatment methods of SSOHW prior to anaerobic digestion...... obtained, it can be concluded that CHP production would be the best downstream management option while the results were so sensitive to the source of substituted energy....

  8. Life Cycle Assessment Studies of Chemical and Biochemical Processes through the new LCSoft Software-tool

    DEFF Research Database (Denmark)

    Supawanich, Perapong; Malakul, Pomthong; Gani, Rafiqul

    2015-01-01

    Life Cycle Assessment or LCA is an effective tool for quantifying the potential environmental impacts of products, processes, or services in order to support the selection making of desired products and/or processes from different alternatives. For more sustainable process designs, technical requ...... on the LCI assessment results. The fourth task has been added to validate and improve LCSoft by testing it against several case studies and compare the assessment results with other available tools....

  9. Modelling of chemical degradation of blended cement-based materials by leaching cycles with Callovo-Oxfordian porewater

    Science.gov (United States)

    Olmeda, Javier; Henocq, Pierre; Giffaut, Eric; Grivé, Mireia

    2017-06-01

    The present work describes a thermodynamic model based on pore water replacement cycles to simulate the chemical evolution of blended cement (BFS + FA) by interaction with external Callovo-Oxfordian (COx) pore water. In the framework of the radioactive waste management, the characterization of the radionuclide behaviour (solubility/speciation, adsorption) in cementitious materials needs to be done for several chemical degradation states (I to IV). In particular, in the context of the deep geological radioactive waste disposal project (Cigéo), cement-based materials will be chemically evolved with time in contact with the host-rock (COx formation). The objective of this study is to provide an equilibrium solution composition for each degradation state for a CEM-V cement-based material to support the adsorption and diffusion experiments reproducing any state of degradation. Calculations have been performed at 25 °C using the geochemical code PhreeqC and an up-to-date thermodynamic database (ThermoChimie v.9.0.b) coupled to SIT approach for ionic strength correction. The model replicates experimental data with accuracy. The approach followed in this study eases the analysis of the chemical evolution in both aqueous and solid phase to obtain a fast assessment of the geochemical effects associated to an external water intrusion of variable composition on concrete structures.

  10. Molybdenum and technetium cycle in the environment. Physical chemical evolution and mobility in soils and plants

    International Nuclear Information System (INIS)

    Saas, A.; Denardi, J.L.; Colle, C.; Quinault, J.M.

    1980-01-01

    Molybdenum 99 and technetium 99 from liquid discharges of base nuclear installations (reactors, reprocessing plants, UF 6 treatment, etc.) can reach the environment via irrigation waters and atmospheric deposits. The contribution to the soil by irrigation results in a physical-chemical transformation, the results of which, in the case of technetium 99, could be volatilization via microbes. The changes in the physical-chemical forms of technetium in different soils reveals the preponderant effect of the initial amount deposited. The determination of the rate of technetium and molybdenum assimilation shows a certain similarity in behaviour; yet the localization of these isotopes is not the same. The transfer of molybdenum and technetium via the root system is different in its intensity; this is mainly due to different physical-chemical forms. Finally, each isotope has an optimum assimilation threshold and a toxicity threshold. The study of the physical-chemical evolution and the mobility in the soil-plant-water table system of these two isotopes shows a new aspect with respect to certain transfer channels to the human being [fr

  11. Monitoring chemical degradation of thermally cycled glass-fibre composites using hyperspectral imaging

    NARCIS (Netherlands)

    Papadakis, V.; Muller, B.; Hagenbeek, M.; Sinke, J.; Groves, R.M.; Yu, T.; Gyekenyesi, A.L.; Shull, P.J.; Wu, H.F.

    2016-01-01

    Nowadays, the application of glass-fibre composites in light-weight structures is growing. Although mechanical characterizations of those structures are commonly performed in testing, chemical changes of materials under stresses have not yet been well documented. In the present work coupon tests and

  12. Recovery of Physiological Traits in Saplings of Invasive Bischofia Tree Compared with Three Species Native to the Bonin Islands under Successive Drought and Irrigation Cycles.

    Directory of Open Access Journals (Sweden)

    Kenichi Yazaki

    Full Text Available Partial leaf shedding induced by hydraulic failure under prolonged drought can prevent excess water consumption, resulting in delayed recovery of carbon productivity following rainfall. To understand the manner of water use of invasive species in oceanic island forests under a fluctuating water regime, leaf shedding, multiple physiological traits, and the progress of embolism in the stem xylem under repeated drought-irrigation cycles were examined in the potted saplings of an invasive species, Bischofia javanica Blume, and three endemic native species, Schima mertensiana (Sieb. Et Zucc, Koitz., Hibiscus glaber Matsum, and Distylium lepidotum Nakai, from the Bonin Islands, Japan. The progress of xylem embolism was observed by cryo-scanning electron microscopy. The samples exhibited different processes of water saving and drought tolerance based on the different combinations of partial leaf shedding involved in embolized conduits following repeated de-rehydration. Predawn leaf water potential largely decreased with each successive drought-irrigation cycle for all tree species, except for B. javanica. B. javanica shed leaves conspicuously under drought and showed responsive stomatal conductance to VPD, which contributed to recover leaf gas exchange in the remaining leaves, following a restored water supply. In contrast, native tree species did not completely recover photosynthetic rates during the repeated drought-irrigation cycles. H. glaber and D. lepidotum preserved water in vessels and adjusted leaf osmotic rates but did not actively shed leaves. S. mertensiana exhibited partial leaf shedding during the first cycle with an osmotic adjustment, but they showed less responsive stomatal conductance to VPD. Our data indicate that invasive B. javanica saplings can effectively use water supplied suddenly under drought conditions. We predict that fluctuating precipitation in the future may change tree distributions even in mesic or moist sites in the

  13. Life-cycle impacts of shower water waste heat recovery: case study of an installation at a university sport facility in the UK.

    Science.gov (United States)

    Ip, Kenneth; She, Kaiming; Adeyeye, Kemi

    2017-10-18

    Recovering heat from waste water discharged from showers to preheat the incoming cold water has been promoted as a cost-effective, energy-efficient, and low-carbon design option which has been included in the UK's Standard Assessment Procedure (SAP) for demonstrating compliance with the Building Regulation for dwellings. Incentivized by its carbon cost-effectiveness, waste water heat exchangers (WWHX) have been selected and incorporated in a newly constructed Sports Pavilion at the University of Brighton in the UK. This £2-m sports development serving several football fields was completed in August 2015 providing eight water- and energy-efficient shower rooms for students, staff, and external organizations. Six of the shower rooms are located on the ground floor and two on the first floor, each fitted with five or six thermostatically controlled shower units. Inline type of WWHX were installed, each consisted of a copper pipe section wound by an external coil of smaller copper pipe through which the cold water would be warmed before entering the shower mixers. Using the installation at Sport Pavilion as the case study, this research aims to evaluate the environmental and financial sustainability of a vertical waste heat recovery device, over a life cycle of 50 years, with comparison to the normal use of a PVC-u pipe. A heat transfer mathematical model representing the system has been developed to inform the development of the methodology for measuring the in-situ thermal performance of individual and multiple use of showers in each changing room. Adopting a system thinking modeling technique, a quasi-dynamic simulation computer model was established enabling the prediction of annual energy consumptions under different shower usage profiles. Data based on the process map and inventory of a functional unit of WWHX were applied to a proprietary assessment software to establish the relevant outputs for the life-cycle environmental impact assessment. Life-cycle cost

  14. Cycling Time Trial Performance 4 Hours After Glycogen-Lowering Exercise Is Similarly Enhanced by Recovery Nondairy Chocolate Beverages Versus Chocolate Milk.

    Science.gov (United States)

    Upshaw, Adam U; Wong, Tiffany S; Bandegan, Arash; Lemon, Peter W

    2016-02-01

    Postexercise chocolate milk ingestion has been shown to enhance both glycogen resynthesis and subsequent exercise performance. To assess whether nondairy chocolate beverage ingestion post-glycogen-lowering exercise can enhance 20-km cycling time trial performance 4 hr later, eight healthy trained male cyclists (21.8 ± 2.3y, VO2max = 61.2 ± 1.4 ml·kg-1·min-1; M ± SD) completed a series of intense cycling intervals designed to lower muscle glycogen (Jentjens & Jeukendrup, 2003) followed by 4 hr of recovery and a subsequent 20-km cycling time trial. During the first 2 hr of recovery, participants ingested chocolate dairy milk (DAIRYCHOC), chocolate soy beverage (SOYCHOC), chocolate hemp beverage (HEMPCHOC), low-fat dairy milk (MILK), or a low-energy artificially sweetened, flavored beverage (PLACEBO) at 30-min intervals in a double-blind, counterbalanced repeated-measures design. All drinks, except the PLACEBO (247 kJ) were isoenergetic (2,107 kJ), and all chocolate-flavored drinks provided 1-g CHO·kg body mass-1·h-1. Fluid intake across treatments was equalized (2,262 ± 148 ml) by ingesting appropriate quantities of water based on drink intake. The CHO:PRO ratio was 4:1, 1.5:1, 4:1, and 6:1 for DAIRYCHOC, MILK, SOYCHOC, and HEMPCHOC, respectively. One-way analysis of variance with repeated measures showed time trial performance (DAIRYCHOC = 34.58 ± 2.5 min, SOYCHOC = 34.83 ± 2.2 min, HEMPCHOC = 34.88 ± 1.1 min, MILK = 34.47 ± 1.7 min) was enhanced similarly vs PLACEBO (37.85 ± 2.1) for all treatments (p = .019) These data suggest that postexercise macronutrient and total energy intake are more important for same-day 20-km cycling time trial performance after glycogen-lowering exercise than protein type or protein-to-carbohydrate ratio.

  15. Complementary use of life cycle assessment and risk assessment for engineered nanomaterials: Lessons learned from chemicals?

    DEFF Research Database (Denmark)

    Grieger, Khara D.; Laurent, Alexis; Miseljic, Mirko

    2013-01-01

    Successful strategies to handle the potential health and environmental risks of engineered nanomaterials (ENM) often rely upon the well-established frameworks of life cycle assessment (LCA) and risk assessment (RA). However, current research and specific guidance on how to actually apply these two......, and hence, there does not appear to be much progress made specifically for ENM. We therefore provide specific recommendations for applying LCA and RA to ENM, for which the need to establish proper dose metrics within both methods is identified as an important requirement....

  16. Menstrual cycle characteristics in fertile women from Greenland, Poland and Ukraine exposed to perfluorinated chemicals

    DEFF Research Database (Denmark)

    Lyngsø, J; Ramlau-Hansen, C H; Høyer, B B

    2014-01-01

    and May 2004 in Greenland, Poland and Ukraine. PARTICIPANTS/MATERIALS, SETTING, METHODS: Information on menstrual cycle characteristics was obtained by questionnaires together with a blood sample from each pregnant woman. Serum concentrations of PFOS and PFOA were measured by liquid chromatography tandem.......7 (95% CI: 0.8; 3.5)]. The overall response rate was 45.3% with considerable variation between countries (91.3% in Greenland, 69.1% in Poland and 26.3% in Ukraine). LIMITATIONS, REASONS FOR CAUTION: Possible limitations in our study include varying participation rates across countries; a selected study...

  17. Chemical Force Microscopy Study on the Interactions of COOH Functional Groups with Kaolinite Surfaces: Implications for Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Nipada Santha

    2017-12-01

    Full Text Available Clay–oil interactions play a critical role in determining the wettability of sandstone oil reservoirs, which, in turn, governs the effectiveness of enhanced oil recovery methods. In this study, we have measured the adhesion between –COOH functional groups and the siloxane and aluminol faces of kaolinite clay minerals by means of chemical force microscopy as a function of pH, salinity (from 0.001 M to 1 M and cation identity (Na+ vs. Ca2+. Results from measurements on the siloxane face show that Ca2+ displays a reverse low-salinity effect (adhesion decreasing at higher concentrations at pH 5.5, and a low salinity effect at pH 8. At a constant Ca2+ concentration of 0.001 M, however, an increase in pH leads to larger adhesion. In contrast, a variation in the Na+ concentration showed less effect in varying the adhesion of –COOH groups to the siloxane face. Measurements on the aluminol face showed a reverse low-salinity effect at pH 5.5 in the presence of Ca2+, whereas an increase in pH with constant ion concentration resulted in a decrease in adhesion for both Ca2+ and Na+. Results are explained by looking at the kaolinite’s surface complexation and the protonation state of the functional group, and highlight a more important role of the multicomponent ion exchange mechanism in controlling adhesion than the double layer expansion mechanism.

  18. Life-cycle fossil energy consumption and greenhouse gas emissions of bioderived chemicals and their conventional counterparts.

    Science.gov (United States)

    Adom, Felix; Dunn, Jennifer B; Han, Jeongwoo; Sather, Norm

    2014-12-16

    Biomass-derived chemical products may offer reduced environmental impacts compared to their fossil-derived counterparts and could improve profit margins at biorefineries when coproduced with higher-volume, lower-profit margin biofuels. It is important to assess on a life-cycle basis the energy and environmental impacts of these bioproducts as compared to conventional, fossil-derived products. We undertook a life-cycle analysis of eight bioproducts produced from either algal-derived glycerol or corn stover-derived sugars. Selected on the basis of technology readiness and market potential, the bioproducts are propylene glycol, 1,3-propanediol, 3-hydroxypropionic acid, acrylic acid, polyethylene, succinic acid, isobutanol, and 1,4-butanediol. We developed process simulations to obtain energy and material flows in the production of each bioproduct and examined sensitivity of these flows to process design assumptions. Conversion process data for fossil-derived products were based on the literature. Conversion process data were combined with upstream parameters in the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to generate life-cycle greenhouse gas (GHG) emissions and fossil energy consumption (FEC) for each bioproduct and its corresponding petroleum-derived product. The bioproducts uniformly offer GHG emissions reductions compared to their fossil counterparts ranging from 39 to 86% on a cradle-to-grave basis. Similarly, FEC was lower for bioproducts than for conventional products.

  19. Simulation of the M13 life cycle I: Assembly of a genetically-structured deterministic chemical kinetic simulation.

    Science.gov (United States)

    Smeal, Steven W; Schmitt, Margaret A; Pereira, Ronnie Rodrigues; Prasad, Ashok; Fisk, John D

    2017-01-01

    To expand the quantitative, systems level understanding and foster the expansion of the biotechnological applications of the filamentous bacteriophage M13, we have unified the accumulated quantitative information on M13 biology into a genetically-structured, experimentally-based computational simulation of the entire phage life cycle. The deterministic chemical kinetic simulation explicitly includes the molecular details of DNA replication, mRNA transcription, protein translation and particle assembly, as well as the competing protein-protein and protein-nucleic acid interactions that control the timing and extent of phage production. The simulation reproduces the holistic behavior of M13, closely matching experimentally reported values of the intracellular levels of phage species and the timing of events in the M13 life cycle. The computational model provides a quantitative description of phage biology, highlights gaps in the present understanding of M13, and offers a framework for exploring alternative mechanisms of regulation in the context of the complete M13 life cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. RESEARCH REPORT: Eliciting students' understandings of chemical reactions using two forms of essay questions during a learning cycle

    Science.gov (United States)

    Cavallo, Ann M. L.

    2003-05-01

    We examined ninth-grade students' explanations of chemical reactions using two forms of an open-ended essay question during a learning cycle. One form provided students with key terms to be used as 'anchors' upon which to base their essay, whereas the second form did not. The essays were administered at three points: pre-learning cycle, post-concept application, and after additional concept application activities. Students' explanations were qualitatively examined and grouped according to common patterns representing their understandings or misunderstandings. Findings indicated that more misunderstandings were elicited by the use of key terms as compared to the non-use of key terms in the pre-test. Misunderstandings in the key term essay responses generally involved the misuse of these terms and their association with the concept. Findings also indicated significant positive shifts in students' understanding over the learning cycle. No perceptible increase in understanding occurred after additional application activities. Differences in gender were observed, with females showing equal or greater understanding compared to males, contradicting reports that males typically outperform females in the physical sciences and supporting the need to reconstruct assessment techniques to better reveal the conceptual understandings of all students.

  1. Transport of chemically bonded nuclear energy in a closed cycle with special consideration to energy disconnection

    International Nuclear Information System (INIS)

    Ossami, S.

    1976-01-01

    The article describes the utilisation of nuclear energy in the form of 'nuclear long-distance energy'. Heat produced by nuclear fission is bonded to a reversible chemical reaction (cracking gas) which release the heat again at the place of comsumption by catalytic transformation. The article deals in particular with the process of methane cracking/methanisation, the disconnection of the energy (heat) by the methanisation process and the decisive role of the methanisation catalyzers. (orig.) [de

  2. Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions

    International Nuclear Information System (INIS)

    Yang, Fubin; Dong, Xiaorui; Zhang, Hongguang; Wang, Zhen; Yang, Kai; Zhang, Jian; Wang, Enhua; Liu, Hao; Zhao, Guangyao

    2014-01-01

    Highlights: • Dual loop ORC system is designed to recover waste heat from a diesel engine. • R245fa is used as working fluid for the dual loop ORC system. • Waste heat characteristic under engine various operating conditions is analyzed. • Performance of the combined system under various operating conditions is studied. • The waste heat from coolant and intake air has considerable potential for recovery. - Abstract: To take full advantage of the waste heat from a diesel engine, a set of dual loop organic Rankine cycle (ORC) system is designed to recover exhaust energy, waste heat from the coolant system, and released heat from turbocharged air in the intercooler of a six-cylinder diesel engine. The dual loop ORC system consists of a high temperature loop ORC system and a low temperature loop ORC system. R245fa is selected as the working fluid for both loops. Through the engine test, based on the first and second laws of thermodynamics, the performance of the dual loop ORC system for waste heat recovery is discussed based on the analysis of its waste heat characteristics under engine various operating conditions. Subsequently, the diesel engine-dual loop ORC combined system is presented, and the effective thermal efficiency and the brake specific fuel consumption (BSFC) are chosen to evaluate the operating performances of the diesel engine-dual loop ORC combined system. The results show that, the maximum waste heat recovery efficiency (WHRE) of the dual loop ORC system can reach 5.4% under engine various operating conditions. At the engine rated condition, the dual loop ORC system achieves the largest net power output at 27.85 kW. Compared with the diesel engine, the thermal efficiency of the combined system can be increased by 13%. When the diesel engine is operating at the high load region, the BSFC can be reduced by a maximum 4%

  3. Effects of Non Process Elements in the chemical recovery system of a kraft pulp mill from the incineration in the recovery boiler of biological sludge; Effekter av PFG vid indunstning och foerbraenning av bioslam i ett massabruks sodapanna

    Energy Technology Data Exchange (ETDEWEB)

    Dahlbom, Johan

    2003-01-01

    The purpose of this project was to investigate the effects of incineration of biological sludge in the recovery boiler of a Swedish Kraft pulp mill, StoraEnso Pulp AB Skutskaers Bruk, which has practiced incineration of sludge in the recovery boiler during the last two years. The following aspects of the technique were investigated: Experience from operation of incineration of biological sludge in the recovery boiler; The content of Non-Process Elements (NPE) in process flows and evaluate the risks of incrustations in the system; The build-up of NPE in the chemicals recovery system and the estimated increase in make-up lime demand; and Technical risks for mills with different process equipment. This study comprises the following NPE: aluminium, silicon, phosphorus, magnesium, calcium, chloride, iron, manganese, potassium, copper, and nitrogen. The operational experience from the system for hydrolysis of the biological sludge and evaporation/incineration in the recovery boiler is excellent. The handling of the sludge takes place in a closed system that demands little supervision and maintenance. Overall, the mill has not seen any negative effects that can be explained by increased intake of NPEs to the chemical recovery system. Aluminium can lead to troublesome incrustations of sodium-aluminium-silicates on the heat surfaces in the evaporation plant. An effective elimination of aluminium by the green liquor dreg is obtained with the double salt hydrotalcite if the quotient Mg/Al is kept higher than 4-5 in the black liquor. The need for make-up lime has increased due to the build-up of phosphorus in the lime. Depending on the level of make-up lime the need will increase 2-5 kg/ t{sub 90} at a price of 2-5 kr/t{sub 90}. If a higher level of phosphorus is accepted instead of increasing lime make-up the running costs will be somewhat higher, 0,5-1 kr/t{sub 90} due to increased ballast. NO{sub x} in the flue gases from the recovery boiler has not increased since the

  4. On the recovery of the physical and mechanical properties of a CuCrZr alloy subjected to heat treatments simulating the thermal cycle of hot isostatic pressing

    International Nuclear Information System (INIS)

    Holzwarth, U.; Pisoni, M.; Scholz, R.; Stamm, H.; Volcan, A.

    2000-01-01

    Due to their high mechanical strength and thermal conductivity precipitation hardened CuCrZr alloys are being considered as potential heat sink material for the ITER divertor vertical target. The fabrication of the divertor component involves a joining procedure by hot isostatic pressing (HIP). The impact of this method on the degradation of the physical and mechanical properties of the CuCrZr alloy and their possible subsequent recovery by (re-)aging heat treatments have been investigated by hardness measurements, tensile testing and measurements of thermal diffusivity and electrical resistivity. The thermal cycle of hot isostatic pressing has been simulated by solution annealing finished by cooling rates between 0.03 and 1.5 K s -1 . The experiments revealed that a successful recovery of the desired mechanical strength is only achievable if cooling rates of about 1 K s -1 or higher can be realized after HIP. Otherwise the alloy becomes already over-aged during slow cooling after the joining procedure

  5. Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol

    Directory of Open Access Journals (Sweden)

    José Galindo

    2016-04-01

    Full Text Available Waste heat recovery (WHR in exhaust gas flow of automotive engines has proved to be a useful path to increase the overall efficiency of internal combustion engines (ICE. Recovery potentials of up to 7% are shown in several works in the literature. However, most of them are theoretical estimations. Some present results from prototypes fed by steady flows generated in an auxiliary gas tank and not with actual engine exhaust gases. This paper deals with the modeling and experimental validation of an organic Rankine cycle (ORC with a swash-plate expander integrated in a 2 L turbocharged petrol engine using ethanol as working fluid. A global simulation model of the ORC was developed with a maximum difference of 5%, validated with experimental results. Considering the swash-plate as the main limiting factor, an additional specific submodel was implemented to model the physical phenomena in this element. This model allows simulating the fluid dynamic behavior of the swash-plate expander using a 0D model (Amesim. Differences up to 10.5% between tests and model results were found.

  6. Energy and greenhouse gas life cycle assessment and cost analysis of aerobic and anaerobic membrane bioreactor systems: Influence of scale, population density, climate, and methane recovery.

    Science.gov (United States)

    Cashman, Sarah; Ma, Xin; Mosley, Janet; Garland, Jay; Crone, Brian; Xue, Xiaobo

    2018-04-01

    This study calculated the energy and greenhouse gas life cycle and cost profiles of transitional aerobic membrane bioreactors (AeMBR) and anaerobic membrane bioreactors (AnMBR). Membrane bioreactors (MBR) represent a promising technology for decentralized wastewater treatment and can produce recycled water to displace potable water. Energy recovery is possible with methane generated from AnMBRs. Scenarios for these technologies were investigated for different scale systems serving various population densities under a number of climate conditions with multiple methane recovery options. When incorporating the displacement of drinking water, AeMBRs started to realize net energy benefits at the 1 million gallons per day (MGD) scale and mesophilic AnMBRs at the 5 MGD scale. For all scales, the psychrophilic AnMBR resulted in net energy benefits. This study provides insights into key performance characteristics needed before an informed decision can be made for a community to transition towards the adoption of MBR technologies. Copyright © 2018. Published by Elsevier Ltd.

  7. White popular (Populus alba L.) - Litter impact on chemical and biochemical parameters related to nitrogen cycle in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ciadamidaro, L.; Madejon, P.; Cabrera, F.; Madejon, E.

    2014-06-01

    Aim of study: The aim of this study was to determine the effect of litter from Populus alba on chemical and biochemical properties related to the N cycle in soils with different pH values and trace element contents. We hypothesized that this litter would influence several parameters related to the N cycle and consequently to soil health. Area of study: we collected two reforested contaminated soils of different pH values (AZ pH 7.23 and DO pH 2.66) and a non-contaminated soil (RHU pH 7.19). Materials and methods: Soil samples were placed in 2,000 cm{sup 3} microcosms and were incubated for 40 weeks in controlled conditions. Each soil was mixed with its corresponding litter, and soils without litter were also tested for comparison. Ammonium (NH{sub 4}{sup 4}+-N) and nitrate (NO{sub 3}{sup -} -N) content, potential nitrification rate (PNR), microbial biomass nitrogen (MBN), protease activity, and several chemical properties such as pH, available trace element concentrations (extracted with 0.01 M CaCl{sub 2}) were determined at different times of incubation. Main results: Values of available trace elements did not vary during the incubation and were always higher in acid soil. In neutral soils litter presence increased values of Kjeldahl-N, NO{sub 3} –-N content, potential nitrification rate (PNR), microbial biomass nitrogen (MBN) and protease activity. Presence of trace elements in neutral soils did not alter the parameters studied. However, acidic pH and high content of available trace elements strongly affected NH{sub 4}{sup +}-N and NO{sub 3}{sup -} -N, microbial biomass N and protease activity. Research highlights: Our results showed the negative effect of the acidity and trace element availability in parameters related with the N-cycle. (Author)

  8. White poplar (Populus alba L. - Litter impact on chemical and biochemical parameters related to nitrogen cycle in contaminated soils

    Directory of Open Access Journals (Sweden)

    Paula Madejon

    2014-04-01

    Full Text Available Aim of study: The aim of this study was to determine the effect of litter from Populus alba on chemical and biochemical properties related to the N cycle in soils with different pH values and trace element contents. We hypothesized that this litter would influence several parameters related to the N cycle and consequently to soil health.Area of study: we collected two reforested contaminated soils of different pH values (AZ pH 7.23 and DO pH = 2.66 and a non-contaminated soil (RHU pH 7.19.Materials and methods: Soil samples were placed in 2,000 cm3 microcosms and were incubated for 40 weeks in controlled conditions. Each soil was mixed with its corresponding litter, and soils without litter were also tested for comparison. Ammonium (NH4+-N and nitrate (NO3–-N content, potential nitrification rate (PNR, microbial biomass nitrogen (MBN, protease activity, and several chemical properties such as pH, available trace element concentrations (extracted with 0.01 M CaCl2 were determined at different times of incubation.Main results: Values of available trace elements did not vary during the incubation and were always higher in acid soil. In neutral soils litter presence increased values of Kjeldahl-N, NO3–-N content, potential nitrification rate (PNR, microbial biomass nitrogen (MBN and protease activity. Presence of trace elements in neutral soils did not alter the parameters studied. However, acidic pH and high content of available trace elements strongly affected NH4+-N andNO3–-N, microbial biomass N and protease activity.Research highlights: Our results showed the negative effect of the acidity and trace element availability in parameters related with the N-cycle.Key words: microbial biomass N; protease activity; soil pH; N mineralization; nitrification; phytoremediation.

  9. Life Cycle Inventory (LCI) Data-Treatment Chemicals, Construction Materials, Transportation, On-site Equipment, and Other Processes for Use in Spreadsheets for Environmental Footprint Analysis (SEFA)

    Science.gov (United States)

    This report estimates environmental emission factors (EmF) for key chemicals, construction and treatment materials, transportation/on-site equipment, and other processes used at remediation sites. The basis for chemical, construction, and treatment material EmFs is life cycle inv...

  10. Experimental study on Rankine cycle evaporator efficiency intended for exhaust waste heat recovery of a diesel engine

    Directory of Open Access Journals (Sweden)

    Milkov Nikolay

    2017-01-01

    Full Text Available The paper pressents an experimental study of Rankine cycle evaporator efficiency. Water was chosen as the working fluid in the system. The experimental test was conducted on a test bench equipped with a burner charged by compressed fresh air. Generated exhaust gases parameters were previously determined over the diesel engine operating range (28 engine operating points were studied. For each test point the working fluid parameters (flow rate and evaporating pressure were varied. Thus, the enthalpy flow through the heat exchanger was determined. Heat exchanger was designed as 23 helical tubes are inserted. On the basis of the results, it was found out that efficiency varies from 25 % to 51,9 %. The optimal working fluid pressure is 20 bar at most of the operating points while the optimum fluid mass flow rate varies from 2 g/s to 10 g/s.

  11. Prediction of dynamic Rankine Cycle waste heat recovery performance and fuel saving potential in passenger car applications considering interactions with vehicles’ energy management

    International Nuclear Information System (INIS)

    Horst, Tilmann Abbe; Tegethoff, Wilhelm; Eilts, Peter; Koehler, Juergen

    2014-01-01

    Highlights: • Method for evaluating fuel saving potential of vehicle waste heat recovery systems. • Analysis of interactions between waste heat recovery system and vehicle. • Evaluation of fuel saving potential in dynamic motorway driving scenario. • Parameter study for increasing fuel saving potential of integrated system. - Abstract: Waste heat recovery (WHR) by means of a Rankine Cycle is a promising approach for achieving reductions in fuel consumption and, as a result, exhaust emissions of passenger car engines. To find the best compromise between complexity and fuel saving potential, methods for predicting the WHR performance for different system configurations and stationary as well as dynamic driving scenarios are needed. Since WHR systems are usually not included in today’s car concepts, they are mostly designed as add-on systems. As a result their integration may lead to negative interactions due to increased vehicle weight, engine backpressure and cooling demand. These effects have to be considered when evaluating the fuel saving potential. A new approach for predicting WHR performance and fuel saving potential was developed and is presented in this paper. It is based on simple dynamic models of a system for recovering exhaust gas waste heat and its interfaces with the vehicle: the exhaust system for heat input, the on-board electric system for power delivery and the engine cooling system for heat rejection. The models are validated with test bench measurements of the cycle components. A study of fuel saving potential in an exemplary dynamic motorway driving scenario shows the effect of vehicle integration: while the WHR system could improve fuel economy by 3.4%, restrictions in power output due to the architecture of the on-board electric system, package considerations, increased weight, cooling demand and exhaust gas backpressure lead to a reduction of fuel saving potential by 60% to 1.3%. A parameter study reveals that, in addition to weight

  12. The response and recovery of the dissolved organic carbon cycle in ephemeral streams to large flood events

    Science.gov (United States)

    Larsen, J.; Shutova, Y.; Hartland, A.; Andersen, M. S.; Baker, A.; O'Carroll, D. M.

    2012-12-01

    The supply, transport, and cycling of dissolved organic carbon (DOC) within river systems is a critical component of the carbon cycle, determines freshwater ecosystem primary productivity, and is a key driver of water quality through associated redox transformations. Despite this importance, there is very little understanding of how both the concentration and quality of DOC are influenced by natural variations in hydrology, particularly extreme events such as floods, and within different climatic zones. In this study, we examined the evolution of DOC within an ephemeral catchment in semi-arid Australia during a 1:20 year flood event. Total DOC concentrations increased ~3 fold compared to pre-flood concentrations, with peak concentrations occurring in the rising limb of the hydrograph, similar to previous studies of event based DOC. Although we found the DOC to be dominated by Humic substances, the behaviour of the Humic fraction more closely followed the flood hydrograph, suggesting there is a contrast between the large pool of DOC that can be released quickly at the beginning of an event, and DOC which is transported and mixed within the actual flood wave. We also analysed the fluorescence characteristics of the dissolved organic matter, which provides insights into the ability of micro-organisms to process DOC within floods, and also how these systems respond during flow recession. In terms of the total DOC budget, this one event accounts for ~ 6 times the mean annual DOC export of this catchment, within 2% of the time. This work extends our knowledge of riverine DOC fluxes to ephemeral environments, and highlights the potential importance of extreme events to ecosystem carbon processing.

  13. Exergy Analysis of a Syngas-Fueled Combined Cycle with Chemical-Looping Combustion and CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Álvaro Urdiales Montesino

    2016-08-01

    Full Text Available Fossil fuels are still widely used for power generation. Nevertheless, it is possible to attain a short- and medium-term substantial reduction of greenhouse gas emissions to the atmosphere through a sequestration of the CO2 produced in fuels’ oxidation. The chemical-looping combustion (CLC technique is based on a chemical intermediate agent, which gets oxidized in an air reactor and is then conducted to a separated fuel reactor, where it oxidizes the fuel in turn. Thus, the oxidation products CO2 and H2O are obtained in an output flow in which the only non-condensable gas is CO2, allowing the subsequent sequestration of CO2 without an energy penalty. Furthermore, with shrewd configurations, a lower exergy destruction in the combustion chemical transformation can be achieved. This paper focus on a second law analysis of a CLC combined cycle power plant with CO2 sequestration using syngas from coal and biomass gasification as fuel. The key thermodynamic parameters are optimized via the exergy method. The proposed power plant configuration is compared with a similar gas turbine system with a conventional combustion, finding a notable increase of the power plant efficiency. Furthermore, the influence of syngas composition on the results is investigated by considering different H2-content fuels.

  14. Dietary Intake, Body Composition, and Menstrual Cycle Changes during Competition Preparation and Recovery in a Drug-Free Figure Competitor: A Case Study.

    Science.gov (United States)

    Halliday, Tanya M; Loenneke, Jeremy P; Davy, Brenda M

    2016-11-20

    Physique competitions are events in which competitors are judged on muscular appearance and symmetry. The purpose of this retrospective case study was to describe changes in dietary intake, body mass/composition, and the menstrual cycle during the 20-week competition preparation (PREP) and 20-week post competition recovery (REC) periods of a drug-free amateur female figure competitor (age = 26-27, BMI = 19.5 kg/m²). Dietary intake (via weighed food records) and body mass were assessed daily and averaged weekly. Body composition was estimated via Dual-energy X-ray absorptiometry (DXA) and 7-site skinfold measurements. Energy intake, body mass and composition, and energy availability decreased during the 20-week PREP period (changes of ~298 kcals, 5.1 kg, 6.5% body fat, and 5.4 kcal/kg fat free mass, respectively) and returned to baseline values by end of the 20-week REC period. Menstrual cycle irregularity was reported within the first month of PREP and the last menstruation was reported at week 11 of PREP. Given the potentially adverse health outcomes associated with caloric restriction, future, prospective cohort studies on the physiological response to PREP and REC are warranted in drug-free, female physique competitors.

  15. Dietary Intake, Body Composition, and Menstrual Cycle Changes during Competition Preparation and Recovery in a Drug-Free Figure Competitor: A Case Study

    Science.gov (United States)

    Halliday, Tanya M.; Loenneke, Jeremy P.; Davy, Brenda M.

    2016-01-01

    Physique competitions are events in which competitors are judged on muscular appearance and symmetry. The purpose of this retrospective case study was to describe changes in dietary intake, body mass/composition, and the menstrual cycle during the 20-week competition preparation (PREP) and 20-week post competition recovery (REC) periods of a drug-free amateur female figure competitor (age = 26–27, BMI = 19.5 kg/m2). Dietary intake (via weighed food records) and body mass were assessed daily and averaged weekly. Body composition was estimated via Dual-energy X-ray absorptiometry (DXA) and 7-site skinfold measurements. Energy intake, body mass and composition, and energy availability decreased during the 20-week PREP period (changes of ~298 kcals, 5.1 kg, 6.5% body fat, and 5.4 kcal/kg fat free mass, respectively) and returned to baseline values by end of the 20-week REC period. Menstrual cycle irregularity was reported within the first month of PREP and the last menstruation was reported at week 11 of PREP. Given the potentially adverse health outcomes associated with caloric restriction, future, prospective cohort studies on the physiological response to PREP and REC are warranted in drug-free, female physique competitors. PMID:27879627

  16. Short-term recovery of soil physical, chemical, micro- and mesobiological functions in a new vineyard under organic farming

    Science.gov (United States)

    Costantini, E. A. C.; Agnelli, A. E.; Fabiani, A.; Gagnarli, E.; Mocali, S.; Priori, S.; Simoni, S.; Valboa, G.

    2015-06-01

    abundances and community structures, in relation to both vineyard and time. Rainfall appeared to have an enhancing effect on microarthropod abundance, but only in the old vineyard, where the biota was more structured than in the new one. The euedaphic forms, well adapted to soil life, were always rare. Microbiological analysis revealed a different structure of eubacterial communities between the old and the new vineyard in the whole period. However, the DGGE similarity values of these communities increased by about 2.5% per year, suggesting that at least 3 years more are needed to compare intra- and inter-specific diversity of the two vineyards. In conclusion, the consequences of deep earthworks on soil chemical, micro- and mesobiological properties were still evident 4 years after planting, indicating that more time is necessary for the recovery of soil functions, probably longer than the time needed to reach a state of economically viable grape production.

  17. Carbon cycling and exports over diel and flood-recovery timescales in a subtropical rainforest headwater stream.

    Science.gov (United States)

    Looman, Arún; Santos, Isaac R; Tait, Douglas R; Webb, Jackie R; Sullivan, Caroline A; Maher, Damien T

    2016-04-15

    Catchment headwaters comprise the majority of all stream length globally, however, carbon (C) dynamics in these systems remains poorly understood. We combined continuous measurements of pCO2 and radon ((222)Rn, a natural groundwater tracer) with discrete sampling for particulate organic, dissolved organic and inorganic carbon (POC, DOC, and DIC) to assess the short-term carbon dynamics of a pristine subtropical headwater stream in Australia, over contrasting hydrologic regimes of drought, flash-flooding and recovery. Observations over 23days revealed a shift from carbon losses dominated by CO2 outgassing under conditions of low flow (66.4±0.4% of carbon export) to downstream exports of carbon during the flood (87.8±9.7% of carbon export). DOC was the dominant form of downstream exports throughout the study (DOC:DIC:POC=0.82:0.05:0.13). The broadest diel variability among variables occurred during the drought phase, with diel variability up to 662μatmd(-1) (or 27μM[CO2*]d(-1)), 17μMd(-1) and 268Bqm(-3)d(-1) for pCO2, dissolved oxygen and (222)Rn, respectively. Diel dynamics indicated multiple interrelated drivers of stream water chemistry including groundwater seepage and in-stream metabolism. The catchment exported terrestrial carbon throughout the field campaign, with a mean net stream flux of 4.7±7.8mmolCm(-2)(catchment area)d(-1) which is equivalent to 1.4±2.3% of the estimated local terrestrial net primary production. Our observations highlight the importance of accounting for hydrological extremes when assessing the carbon budgets and ecosystem metabolism of headwater streams, and provide a first estimate of aquatic carbon exports from a pristine Australian subtropical rainforest. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit

  19. Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm

    International Nuclear Information System (INIS)

    Wang, Jiangfeng; Yan, Zhequan; Wang, Man; Li, Maoqing; Dai, Yiping

    2013-01-01

    Highlights: • Multi-objective optimization of an ORC is conducted to obtain optimum performance. • NSGA-II is employed to solve this multi-objective optimization problem. • The effects of parameters on the exergy efficiency and capital cost are examined. - Abstract: Organic Rankine cycle (ORC) can effectively recover low grade waste heat due to its excellent thermodynamic performance. Based on the examinations of the effects of key thermodynamic parameters on the exergy efficiency and overall capital cost, multi-objective optimization of the ORC with R134a as working fluid is conducted to achieve the system optimization design from both thermodynamic and economic aspects using Non-dominated sorting genetic algorithm-II (NSGA-II). The exergy efficiency and overall capital cost are selected as two objective functions to maximize the exergy efficiency and minimize the overall capital cost under the given waste heat conditions. Turbine inlet pressure, turbine inlet temperature, pinch temperature difference, approach temperature difference and condenser temperature difference are selected as the decision variables owing to their significant effects on the exergy efficiency and overall capital cost. A Pareto frontier obtained shows that an increase in the exergy efficiency can increase the overall capital cost of the ORC system. The optimum design solution with their corresponding decision variables is selected from the Pareto frontier. The optimum exergy efficiency and overall capital cost are 13.98% and 129.28 × 10 4 USD, respectively, under the given waste heat conditions

  20. Performance analysis of exhaust heat recovery using organic Rankine cycle in a passenger car with a compression ignition engine

    Science.gov (United States)

    Ghilvacs, M.; Prisecaru, T.; Pop, H.; Apostol, V.; Prisecaru, M.; Pop, E.; Popescu, Gh; Ciobanu, C.; Mohanad, A.; Alexandru, A.

    2016-08-01

    Compression ignition engines transform approximately 40% of the fuel energy into power available at the crankshaft, while the rest part of the fuel energy is lost as coolant, exhaust gases and other waste heat. An organic Rankine cycle (ORC) can be used to recover this waste heat. In this paper, the characteristics of a system combining a compression ignition engine with an ORC which recover the waste heat from the exhaust gases are analyzed. The performance map of the diesel engine is measured on an engine test bench and the heat quantities wasted by the exhaust gases are calculated over the engine's entire operating region. Based on this data, the working parameters of ORC are defined, and the performance of a combined engine-ORC system is evaluated across this entire region. The results show that the net power of ORC is 6.304kW at rated power point and a maximum of 10% reduction in brake specific fuel consumption can be achieved.

  1. Modelling the Influence of Climate on the Performance of the Organic Rankine Cycle for Industrial Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Ivan Korolija

    2016-05-01

    Full Text Available This paper describes a study of the relative influences of different system design decisions upon the performance of an organic Rankine cycle (ORC used to generate electricity from foundry waste heat. The design choices included concern the working fluid, whether to use a regenerator and the type of condenser. The novelty of the research lies in its inclusion of the influence of both the ORC location and the auxiliary electricity used by the pumps and fans in the ORC power system. Working fluids suitable for high temperature applications are compared, including three cyclic siloxanes, four linear siloxanes and three aromatic fluids. The ORC is modelled from first principles and simulation runs carried out using weather data for 106 European locations and a heat input profile that was derived from empirical data. The impact of design decisions upon ORC nominal efficiency is reported followed by the impact upon annual system efficiency in which variations in heat input and the condition of outdoor air over a year are considered. The main conclusion is that the location can have a significant impact upon the efficiency of ORC systems due to the influence of climate upon the condenser and auxiliary electricity requirements.

  2. Life cycle impact assessment modeling for particulate matter: A new approach based on physico-chemical particle properties.

    Science.gov (United States)

    Notter, Dominic A

    2015-09-01

    Particulate matter (PM) causes severe damage to human health globally. Airborne PM is a mixture of solid and liquid droplets suspended in air. It consists of organic and inorganic components, and the particles of concern range in size from a few nanometers to approximately 10μm. The complexity of PM is considered to be the reason for the poor understanding of PM and may also be the reason why PM in environmental impact assessment is poorly defined. Currently, life cycle impact assessment is unable to differentiate highly toxic soot particles from relatively harmless sea salt. The aim of this article is to present a new impact assessment for PM where the impact of PM is modeled based on particle physico-chemical properties. With the new method, 2781 characterization factors that account for particle mass, particle number concentration, particle size, chemical composition and solubility were calculated. Because particle sizes vary over four orders of magnitudes, a sound assessment of PM requires that the exposure model includes deposition of particles in the lungs and that the fate model includes coagulation as a removal mechanism for ultrafine particles. The effects model combines effects from particle size, solubility and chemical composition. The first results from case studies suggest that PM that stems from emissions generally assumed to be highly toxic (e.g. biomass combustion and fossil fuel combustion) might lead to results that are similar compared with an assessment of PM using established methods. However, if harmless PM emissions are emitted, established methods enormously overestimate the damage. The new impact assessment allows a high resolution of the damage allocatable to different size fractions or chemical components. This feature supports a more efficient optimization of processes and products when combating air pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Technetium-99 cycling in maple trees: Characterization of changes in chemical form

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Lomax, R.D.

    1989-01-01

    Prior field studies near an old radioactive waste disposal site at Oak Ridge, TN, indicated that following root uptake, metabolism by deciduous trees rendered 99Tc less biogeochemically mobile than expected, based on chemistry of the pertechnetate (TcO-4) anion. Subsequently, the form of technetium (Tc) in maple tree (Acer sp.) sap, leaves, wood and forest leaf litter was characterized using one or more of the following methods: dialysis, physical fractionation, chemical extraction, gel permeation chromatography, enzymatic extraction, or thin layer chromatography (TLC) on silica gel. Chromatography (Sephadex G-25) of TcO-4 incubated in vitro with tree sap showed it to behave similar to TcO-4 anion. When labeled wood and leaf tissues were processed using a tissue homogenizer, 15% and 40%, respectively, of the Tc was solubilized into phosphate buffer. Most (65% to 80%) of the solubilized Tc passing a 0.45-micron filter also passed through an ultrafiltration membrane with a nominal molecular weight cutoff of 10,000 atomic mass units (amu). A majority (72% to 80%) of the Tc in wood could be chemically removed by successive extractions with ethanol, water and weak mineral acid. These same extractants removed only 23% to 31% of the Tc from maple leaves or forest floor leaf litter. Most of the Tc in leaves and leaf litter was removed only by strongly alkaline reagents typically used to release structural polysaccharides (hemicelluloses) from plant tissues. Chromatography (Sephadex G-25) of the ethanol-water extract from wood and the alkaline extract from leaves demonstrated that Tc in these extracts was not principally TcO-4 but was complexed with molecules greater than 1000 amu. Incubations of leaf and wood homogenates with protease approximately doubled the amount of Tc released from contaminated tissues

  4. Carbon cycling and exports over diel and flood-recovery timescales in a subtropical rainforest headwater stream

    Energy Technology Data Exchange (ETDEWEB)

    Looman, Arún, E-mail: arun.looman@scu.edu.au [National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales (Australia); School of Environment, Science, and Engineering, Southern Cross University, Lismore, New South Wales (Australia); Santos, Isaac R.; Tait, Douglas R.; Webb, Jackie R. [National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales (Australia); School of Environment, Science, and Engineering, Southern Cross University, Lismore, New South Wales (Australia); Sullivan, Caroline A.; Maher, Damien T. [School of Environment, Science, and Engineering, Southern Cross University, Lismore, New South Wales (Australia)

    2016-04-15

    Catchment headwaters comprise the majority of all stream length globally, however, carbon (C) dynamics in these systems remains poorly understood. We combined continuous measurements of pCO{sub 2} and radon ({sup 222}Rn, a natural groundwater tracer) with discrete sampling for particulate organic, dissolved organic and inorganic carbon (POC, DOC, and DIC) to assess the short-term carbon dynamics of a pristine subtropical headwater stream in Australia, over contrasting hydrologic regimes of drought, flash-flooding and recovery. Observations over 23 days revealed a shift from carbon losses dominated by CO{sub 2} outgassing under conditions of low flow (66.4 ± 0.4% of carbon export) to downstream exports of carbon during the flood (87.8 ± 9.7% of carbon export). DOC was the dominant form of downstream exports throughout the study (DOC:DIC:POC = 0.82:0.05:0.13). The broadest diel variability among variables occurred during the drought phase, with diel variability up to 662 μatm d{sup −1} (or 27 μM [CO{sub 2}*] d{sup −1}), 17 μM d{sup −1} and 268 Bq m{sup −3} d{sup −1} for pCO{sub 2}, dissolved oxygen and {sup 222}Rn, respectively. Diel dynamics indicated multiple interrelated drivers of stream water chemistry including groundwater seepage and in-stream metabolism. The catchment exported terrestrial carbon throughout the field campaign, with a mean net stream flux of 4.7 ± 7.8 mmol C m{sup −2} (catchment area) d{sup −1} which is equivalent to 1.4 ± 2.3% of the estimated local terrestrial net primary production. Our observations highlight the importance of accounting for hydrological extremes when assessing the carbon budgets and ecosystem metabolism of headwater streams, and provide a first estimate of aquatic carbon exports from a pristine Australian subtropical rainforest. - Highlights: • First carbon export estimates of a pristine Australian subtropical headwater catchment. • Metabolism and hydrology were drivers of aquatic carbon flux.

  5. Carbon cycling and exports over diel and flood-recovery timescales in a subtropical rainforest headwater stream

    International Nuclear Information System (INIS)

    Looman, Arún; Santos, Isaac R.; Tait, Douglas R.; Webb, Jackie R.; Sullivan, Caroline A.; Maher, Damien T.

    2016-01-01

    Catchment headwaters comprise the majority of all stream length globally, however, carbon (C) dynamics in these systems remains poorly understood. We combined continuous measurements of pCO 2 and radon ( 222 Rn, a natural groundwater tracer) with discrete sampling for particulate organic, dissolved organic and inorganic carbon (POC, DOC, and DIC) to assess the short-term carbon dynamics of a pristine subtropical headwater stream in Australia, over contrasting hydrologic regimes of drought, flash-flooding and recovery. Observations over 23 days revealed a shift from carbon losses dominated by CO 2 outgassing under conditions of low flow (66.4 ± 0.4% of carbon export) to downstream exports of carbon during the flood (87.8 ± 9.7% of carbon export). DOC was the dominant form of downstream exports throughout the study (DOC:DIC:POC = 0.82:0.05:0.13). The broadest diel variability among variables occurred during the drought phase, with diel variability up to 662 μatm d −1 (or 27 μM [CO 2 *] d −1 ), 17 μM d −1 and 268 Bq m −3 d −1 for pCO 2 , dissolved oxygen and 222 Rn, respectively. Diel dynamics indicated multiple interrelated drivers of stream water chemistry including groundwater seepage and in-stream metabolism. The catchment exported terrestrial carbon throughout the field campaign, with a mean net stream flux of 4.7 ± 7.8 mmol C m −2 (catchment area) d −1 which is equivalent to 1.4 ± 2.3% of the estimated local terrestrial net primary production. Our observations highlight the importance of accounting for hydrological extremes when assessing the carbon budgets and ecosystem metabolism of headwater streams, and provide a first estimate of aquatic carbon exports from a pristine Australian subtropical rainforest. - Highlights: • First carbon export estimates of a pristine Australian subtropical headwater catchment. • Metabolism and hydrology were drivers of aquatic carbon flux. • Catchment exports ranged between 1.1 and 18.6 mmol C m −2 d

  6. Chemical Engineering Division Fuel Cycle Programs. Quarterly progress report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M. J.; Ader, M.; Barletta, R. E.

    1978-01-01

    Fuel cycle studies reported for this period include studies of advanced solvent extraction techniques focussed on the development of centrifugal contactors for use in Purex processes. Miniature single-stage and eight-stage centrifugal contactors are being employed in performance studies applicable to larger units. In other work, literature on the dispersion of reagents as a result of explosions is being reviewed to develop systematic data applicable to fuel reprocessing and useful in identifying source terms. In yet other work, scouting studies were performed to obtain criteria for identifying organic solutions suitable for the separation of actinides from fission products. A program has been initiated on pyrochemical and dry processing of nuclear fuel. Literature reviews have been initiated on material development, carbide fuel reprocessing, and thorium-uranium reprocessing in fused salts. A review and evaluation of the encapsulation of high-level waste in a metal matrix is under way. Corrosion and leach rates of simulated waste forms are being measured and a model has been proposed to describe the reaction between solidified high-level waste and metals. In other work, criteria for the handling of fuel assembly hulls are being developed on the basis of past work on the pyrophoricity of zirconium alloys and related criteria from several sources. Experimental work is underway to determine whether nuclear wastes can be safely confined in geologic formations. Information is being obtained on the migration of radionuclides in aqueous solution-rock systems. 17 figures, 27 tables.

  7. Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces.

    Science.gov (United States)

    Qian, Hong; Kjelstrup, Signe; Kolomeisky, Anatoly B; Bedeaux, Dick

    2016-04-20

    Nonequilibrium thermodynamics (NET) investigates processes in systems out of global equilibrium. On a mesoscopic level, it provides a statistical dynamic description of various complex phenomena such as chemical reactions, ion transport, diffusion, thermochemical, thermomechanical and mechanochemical fluxes. In the present review, we introduce a mesoscopic stochastic formulation of NET by analyzing entropy production in several simple examples. The fundamental role of nonequilibrium steady-state cycle kinetics is emphasized. The statistical mechanics of Onsager's reciprocal relations in this context is elucidated. Chemomechanical, thermomechanical, and enzyme-catalyzed thermochemical energy transduction processes are discussed. It is argued that mesoscopic stochastic NET in phase space provides a rigorous mathematical basis of fundamental concepts needed for understanding complex processes in chemistry, physics and biology. This theory is also relevant for nanoscale technological advances.

  8. Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces

    Science.gov (United States)

    Qian, Hong; Kjelstrup, Signe; Kolomeisky, Anatoly B.; Bedeaux, Dick

    2016-04-01

    Nonequilibrium thermodynamics (NET) investigates processes in systems out of global equilibrium. On a mesoscopic level, it provides a statistical dynamic description of various complex phenomena such as chemical reactions, ion transport, diffusion, thermochemical, thermomechanical and mechanochemical fluxes. In the present review, we introduce a mesoscopic stochastic formulation of NET by analyzing entropy production in several simple examples. The fundamental role of nonequilibrium steady-state cycle kinetics is emphasized. The statistical mechanics of Onsager’s reciprocal relations in this context is elucidated. Chemomechanical, thermomechanical, and enzyme-catalyzed thermochemical energy transduction processes are discussed. It is argued that mesoscopic stochastic NET in phase space provides a rigorous mathematical basis of fundamental concepts needed for understanding complex processes in chemistry, physics and biology. This theory is also relevant for nanoscale technological advances.

  9. Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Feng, Yongqiang; Zhang, Yaning; Li, Bingxi; Yang, Jinfu; Shi, Yang

    2015-01-01

    The sensitivity analysis for low temperature ORCs (organic Rankine cycles), as well as the thermoeconomic comparison between the basic ORC and regenerative ORC using Non-dominated sorting genetic algorithm-II (NSGA-II), are conducted in this paper. The derivatives of five system parameters on system performance are used to evaluate the parametric sensitiveness. The exergy efficiency and the APR (heat exchanger area per unit net power output) are selected as the objective functions for multi-objective optimization using R123 under the low temperature heat source of 423 K. The Pareto frontier solution with bi-objective for maximizing exergy efficiency and minimizing APR is obtained and compared with the corresponding single-objective solutions. The results indicate that the prior consideration of improving thermal efficiency and exergy efficiency is to increase the evaporator outlet temperature. A fitting curve can be yielded from the Pareto frontier between the thermodynamic performance and economic factor. The optimum exergy efficiency and APR of the regenerative ORC obtained from the Pareto-optimal solution are 59.93% and 3.07 m 2 /kW, which are 8.10% higher and 15.89% lower than that of the basic ORC, respectively. The Pareto optimization compromises the thermodynamic performance and economic factor, therefore being more suitable for decision making. - Highlights: • The sensitivity analysis of the basic ORC is conducted. • The Pareto-optimal solution is compared with the single-objective solutions. • Evaporator outlet temperature should be preferentially considered. • 8.10% higher exergy efficiency and 15.89% lower APR for the regenerative ORC

  10. Scenario comparisons of gasification technology using energy life cycle assessment for bioenergy recovery from rice straw in Taiwan

    International Nuclear Information System (INIS)

    Shie, J.L.; Lee, C.H.; Chen, C.S.; Lin, K.L.; Chang, C.Y.

    2014-01-01

    Highlights: • The energy balances of potential gasification technology and limitation boundary are evaluated. • The transportation and pre-treatment are the greatest parts of energy use. • Every technology process has positive energy benefits at all on-site pre-treatment cases. • The optimal ranges of transportation distance and treatment capacity are suggested. • The optimal technology from the tendency model is addressed. - Abstract: This study uses different scenarios to evaluate, by means of energy life-cycle assessments (ELCAs), the energy balance of potential gasification technology and limitation boundaries in Taiwan. Rice straw is chosen as the target material in this study because it is the most significant agriculture waste in Taiwan. Energy products include syngas (CO + H 2 ), methane, carbon dioxide and carbon black residue. The scenarios simulate capacities of 50,000–200,000 tons/year. The distances of collection and transportation are calculated by a circular area 50–100 km in diameter. Also, the on-site and off-site pretreatments of rice straw are evaluated. For this optimum scenario case, the average of the total input energy for the assessed systems is about 15.9% of the average output energy; the value of the net energy balance (NEB) is 0.841. Every technological process has positive energy benefits at all on-site scenario cases. As the capacity is increased, the energy consumption required for transportation increases and the values of the energy indicators decrease. According to the limitation boundaries from the tendency model at on-site cases, the suggested transportation distance and treatment capacity are below 114.72 km and 251,533 tons/year, respectively, while the energy return on investment (EROI) value is greater than 1

  11. Chemical Engineering Division fuel cycle programs. Quarterly progress report, July-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-01-01

    Fuel cycle work included hydraulic performance and extraction efficiency of eight-stage centrifugal contactors, flowsheet for the Aralex process, Ru and Zr extraction in a miniature centrifugal contactor, study of Zr aging in the organic phase and its effect on Zr extraction and hydraulic testing of the 9-cm-ID contactor. Work for predicting accident consequences in LWR fuel processing covered the relation between energy input (to subdivide a solid) and the modes of particle size frequency distribution. In the pyrochemical and dry processing program corrosion-testing materials for containment vessels and equipment for studying carbide reactions in bismuth is under way. Analytical studies have been made of salt-transport processes; efforts to spin tungsten crucibles 13 cm dia continue, and other information on tungsten fabrication is being assembled; the process steps of the chloride volatility process have been demonstrated and the thoria powder product used to produce oxide pellets; solubility of UO/sub 2/, PuO/sub 2/, and fission products in molten alkali nitrates is being investigated; work was continued on reprocessing actinide oxides by extracting the actinides into ammonium chloroaluminate from bismuth; the preparation of thorium-uranium carbide from the oxide is being studied as a means of improving the oxide reactivity; studies are in progress on producing uranium metal and decontaminated ThO/sub 2/ by the reaction of (Th,U)O/sub 2/ solid solution in molten salts containing ThCl/sub 4/ and thorium metal chips. In the molten tin process, no basic thermodynamic or kinetic factors have been found that may limit process development.

  12. Quantifying components of the hydrologic cycle in Virginia using chemical hydrograph separation and multiple regression analysis

    Science.gov (United States)

    Sanford, Ward E.; Nelms, David L.; Pope, Jason P.; Selnick, David L.

    2012-01-01

    This study by the U.S. Geological Survey, prepared in cooperation with the Virginia Department of Environmental Quality, quantifies the components of the hydrologic cycle across the Commonwealth of Virginia. Long-term, mean fluxes were calculated for precipitation, surface runoff, infiltration, total evapotranspiration (ET), riparian ET, recharge, base flow (or groundwater discharge) and net total outflow. Fluxes of these components were first estimated on a number of real-time-gaged watersheds across Virginia. Specific conductance was used to distinguish and separate surface runoff from base flow. Specific-conductance data were collected every 15 minutes at 75 real-time gages for approximately 18 months between March 2007 and August 2008. Precipitation was estimated for 1971–2000 using PRISM climate data. Precipitation and temperature from the PRISM data were used to develop a regression-based relation to estimate total ET. The proportion of watershed precipitation that becomes surface runoff was related to physiographic province and rock type in a runoff regression equation. Component flux estimates from the watersheds were transferred to flux estimates for counties and independent cities using the ET and runoff regression equations. Only 48 of the 75 watersheds yielded sufficient data, and data from these 48 were used in the final runoff regression equation. The base-flow proportion for the 48 watersheds averaged 72 percent using specific conductance, a value that was substantially higher than the 61 percent average calculated using a graphical-separation technique (the USGS program PART). Final results for the study are presented as component flux estimates for all counties and independent cities in Virginia.

  13. Chemical engineering division fuel cycle programs. Progress report, January--September 1977

    International Nuclear Information System (INIS)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1977-01-01

    Fuel-cycle studies reported for this period include pyrochemical separation of plutonium and americium oxides from contaminated materials of construction such as steel. When slag and actinide-contaminated metal in the same process vessel are heated until liquefied, the actinides are partitioned to a high degree into the slags. Also, studies of advanced solvent extraction techniques are focused on the development of centrifugal contactors for use in Purex processes. A miniature contactor is to be used for performance studies applicable to larger units. In other work, literature on the process chemistry of zirconium and ruthenium has been reviewed to aid in improving the process when short-residence-time contactors are used. In addition, a review of information on the dispersion of reagents and products during accidents in fuel reprocessing facilities has been initiated to develop systematic data useful in identifying source terms. A review and evaluation of the encapsulation of high-level waste in a metal matrix are continuing. The data will be used to identify the state of the art and the importance of selected features of this process. In other work, criteria for the handling of hulls are being developed on the basis of past work on the pyrophoricity of zirconium alloys and related criteria from several sources. These suggested criteria will be assembled with the necessary technical rationalization into a package for review by interested parties. Other work consists of a brief program to explore the disposal of noble gas fission products by deep-well injection and laboratory-scale experiments to study the migratory characteristics of nuclear waste confined in geologic formations. 28 figures, 26 tables

  14. Alteration of Chemical Composition of Soil-leached Dissolved Organic Matter under Cryogenic Cycles

    Science.gov (United States)

    Zhang, X.; Bianchi, T. S.; Schuur, E.

    2016-02-01

    Arctic permafrost thawing has drawn great attention because of the large amount of organic carbon (OC) storage in Arctic soils that are susceptible to increasing global temperatures. Due to microbial activities, some of the OC pool is converted in part to greenhouse gases, like CH4 and CO2 gas, which can result in a positive feedback on global warming. In Artic soils, a portion of OC can be mobilized by precipitation, drainage, and groundwater circulation which can in some cases be transported to rivers and eventually the coastal margins. To determine some of the mechanisms associated with the mobilization of OC from soils to aquatic ecosystems, we conducted a series of laboratory soil leaching experiments. Surface soil samples collected from Healy, Alaska were eluted with artificial rain at a constant rate. Leachates were collected over time and analyzed for dissolved organic carbon (DOC) concentrations. Concentrations began from 387-705 mg/L and then dropped to asymptote states to 25-219 mg/L. High-resolution spectroscopy was used to characterize colored dissolved organic matter (CDOM) and CDOM fluorescence intensity also dropped with time. Fluorescence maximum intensity (Fmax) for peak C ranged from 0.7-4.2 RU, with Exmax/Emmax = 310/450 nm. Fmax for peak T ranged from 0.5-3.2 RU, with Exmax/Emmax = 275/325 nm. Peak C: peak T values indicated preferential leaching of humic-like components over protein-like components. After reaching asymptotic levels, samples were stored frozen and then thawed to study the cryogenic impact on OC composition. CDOM intensity and DOC concentration increased after the freeze-thaw cycle. It was likely that cryogenic processes promoted the breakdown of OC and the releases of more DOC from soils. PARAFAC of CDOM excitation and emission matrices (EEMs) will be used to analyze CDOM composition of the soil leachates.

  15. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes

    International Nuclear Information System (INIS)

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-01-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11 kg/m 3 of copper and 1.35 kg/m 3 of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100–500 nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. - Highlights: • From the Indium-Tin-Oxide etching wastewater

  16. Chemical Engineering Division fuel cycle programs. Quarterly progress report, October-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M J; Ader, M; Barletta, R E

    1980-01-01

    In the program on pyrochemical and dry processing methods (PDPM) for nuclear fuel, tungsten crucibles were successfully spun for use in laboratory-scale experiments. Corrosion testing of refractory metals and alloys in PDPM environments was done. Ceramic substrates were successfully coated with tungsten. Solubility measurements were made to determine Cd/Mg alloy composition and temperature at which dissolved Th will precipitate. Experiments were started to study the reduction of high-fired ThO/sub 2/ with Ca in a molten metal-molten salt system. Work on the fused salt electrolysis of CaO was started. Equipment for determining phase diagrams for U-Cu-Mg system was set up. The reaction of UO/sub 2/ with molten equimolar NaNO/sub 3/-KNO/sub 3/ was studied as part of a project to identify chemically feasible nonaqueous fuel reprocessing methods. Work was continued on development of a flowsheet for reprocessing actinide oxides by extracting actinides into ammonium chloro-aluminate (and alternative salts) from a bismuth solution. Preparation of Th, U, and Pu nitrides after dissolution of spent fuel elements in molten tin is being studied. Leach rates of glass beads, pulverized beads, and beads encapsulated in a lead matrix with no protective envelope were studied. A method (employing no pressure or vacuum systems) of encapsulating various solid wastes in a lead metal matrix was developed and tested. A preliminary integration was made of earlier data on effects of impacts on metal-matrix waste forms.Leach migration experiments were compared with conventional infiltration experiments as methods of evaluating geologic formations as barriers to nuclide migration. The effect of the streaming potential on the rates of transport of radioactive I/sup -/ and Na/sup +/ through kaolinite columns was measured, as well as adsorption of iodide and iodate by several compounds; implications of the results upon the disposal of radioactive iodine are discussed.

  17. S-(2-Succinyl)cysteine: a novel chemical modification of tissue proteins by a Krebs cycle intermediate.

    Science.gov (United States)

    Alderson, Nathan L; Wang, Yuping; Blatnik, Matthew; Frizzell, Norma; Walla, Michael D; Lyons, Timothy J; Alt, Nadja; Carson, James A; Nagai, Ryoji; Thorpe, Suzanne R; Baynes, John W

    2006-06-01

    S-(2-Succinyl)cysteine (2SC) has been identified as a chemical modification in plasma proteins, in the non-mercaptalbumin fraction of human plasma albumin, in human skin collagen, and in rat skeletal muscle proteins and urine. 2SC increases in human skin collagen with age and is increased in muscle protein of diabetic vs. control rats. The concentration of 2SC in skin collagen and muscle protein correlated strongly with that of the advanced glycation/lipoxidation end-product (AGE/ALE), N(epsilon)-(carboxymethyl)lysine (CML). 2SC is formed by a Michael addition reaction of cysteine sulfhydryl groups with fumarate at physiological pH. Fumarate, but not succinate, inactivates the sulfhydryl enzyme, glyceraldehyde-3-phosphate dehydrogenase in vitro, in concert with formation of 2SC. 2SC is the first example of spontaneous chemical modification of protein by a metabolic intermediate in the Krebs cycle. These observations identify fumarate as an endogenous electrophile and suggest a role for fumarate in regulation of metabolism.

  18. Differential influence of TGFβ1 and TGFβ3 isoforms on cell cycle kinetics and postirradiation recovery of normal and malignant colorectal epithelial cells

    International Nuclear Information System (INIS)

    Robson, Helen; Spence, Katherine; Anderson, Elizabeth; Potten, Christopher S.; Hendry, Jolyon H.

    1997-01-01

    Purpose: A clonogenic assay was used to determine the effects of the growth factors TGFβ1 and TGFβ3 on the radiation responses of a normal rat epithelial cell line (IEC6) and a human colonic carcinoma epithelial cell line (Widr). Methods and Materials: The radiation sensitivity and ability to recover from potentially lethal damage (PLD), of preconfluent monolayer cultures, was assessed in the presence of the growth factors for 24 h prior to, during, and after irradiation. Results: The surviving fractions of both cell lines assessed immediately following irradiation were unaffected by TGFβ1 or TGFβ3. However, TGFβ3 (but not TGFβ1) significantly reduced the amount of PLD recovery in the Widr cells (but not in the IEC6 cells). This was associated with a reduction in the shoulder region of the survival curve, rather than a change in slope. A comparative analysis of the effects of TGFβs 1 and 3 on cell cycle events in the two cell lines demonstrated significantly more Widr cells in the S phase, in the presence of TGFβ3 only, compared to the controls. This remained constant both before and immediately following irradiation. In the IEC6 cell line TGFβ3 produced an increase in the numbers of G1 phase cells, characteristic of a G1 arrest. Conclusion: It seems likely that TGFβ3-induced radiosensitisation in Widr cells, 6 h after a single dose of irradiation, is related to its effects on cell cycle events such that the failure of these cells to arrest in G1, either before or after irradiation, results in significantly reduced recovery from DNA damage. This, however, may not be the only mechanism by which this growth factor produces this effect. Indeed, it will also be necessary to investigate these effects in in vivo models and to determine the response to fractionated irradiation before the potential therapeutic benefit of both the differential effects observed between the two TGFβ isoforms and also between the malignant and normal cell lines can be fully assessed

  19. Understanding the impacts of allocation approaches during process-based life cycle assessment of water treatment chemicals.

    Science.gov (United States)

    Alvarez-Gaitan, Juan P; Peters, Gregory M; Short, Michael D; Schulz, Matthias; Moore, Stephen

    2014-01-01

    Chemicals are an important component of advanced water treatment operations not only in terms of economics but also from an environmental standpoint. Tools such as life cycle assessment (LCA) are useful for estimating the environmental impacts of water treatment operations. At the same time, LCA analysts must manage several fundamental and as yet unresolved methodological challenges, one of which is the question of how best to "allocate" environmental burdens in multifunctional processes. Using water treatment chemicals as a case study example, this article aims to quantify the variability in greenhouse gas emissions estimates stemming from methodological choices made in respect of allocation during LCA. The chemicals investigated and reported here are those most important to coagulation and disinfection processes, and the outcomes are illustrated on the basis of treating 1000 ML of noncoagulated and nondisinfected water. Recent process and economic data for the production of these chemicals is used and methodological alternatives for solving the multifunctionality problem, including system expansion and mass, exergy, and economic allocation, are applied to data from chlor-alkali plants. In addition, Monte Carlo simulation is included to provide a comprehensive picture of the robustness of economic allocation results to changes in the market price of these industrial commodities. For disinfection, results demonstrate that chlorine gas has a lower global warming potential (GWP) than sodium hypochlorite regardless of the technique used to solve allocation issues. For coagulation, when mass or economic allocation is used to solve the multifunctionality problem in the chlor-alkali facility, ferric chloride was found to have a higher GWP than aluminum sulfate and a slightly lower burden where system expansion or exergy allocation are applied instead. Monte Carlo results demonstrate that when economic allocation is used, GWP results were relatively robust and resilient

  20. Integration of Gas Enhanced Oil Recovery in Multiphase Fermentations for the Microbial Production of Fuels and Chemicals.

    Science.gov (United States)

    Pedraza-de la Cuesta, Susana; Keijzers, Lore; van der Wielen, Luuk A M; Cuellar, Maria C

    2018-01-18

    In multiphase fermentations where the product forms a second liquid phase or where solvents are added for product extraction, turbulent conditions disperse the oil phase as droplets. Surface-active components (SACs) present in the fermentation broth can stabilize the product droplets thus forming an emulsion. Breaking this emulsion increases process complexity and consequently the production cost. In previous works, it has been proposed to promote demulsification of oil/supernatant emulsions in an off-line batch bubble column operating at low gas flow rate. The aim of this study is to test the performance of this recovery method integrated to a fermentation, allowing for continuous removal of the oil phase. A 500 mL bubble column is successfully integrated with a 2 L reactor during 24 h without affecting cell growth or cell viability. However, higher levels of surfactants and emulsion stability are measured in the integrated system compared to a base case, reducing its capacity for oil recovery. This is related to release of SACs due to cellular stress when circulating through the recovery column. Therefore, it is concluded that the gas bubble-induced oil recovery method allows for oil separation and cell recycling without compromising fermentation performance; however, tuning of the column parameters considering increased levels of SACs due to cellular stress is required for improving oil recovery. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCHVerlag GmbH & Co. KGaA, Weinheim.

  1. Phosphorus cycle - possibilities for its rebuilding.

    Science.gov (United States)

    Gorazda, Katarzyna; Wzorek, Zbigniew; Tarko, Barbara; Nowak, Anna K; Kulczycka, Joanna; Henclik, Anna

    2013-01-01

    The rebuilding of the phosphorus cycle can be performed with the use of both biotechnology and chemical technology. This paper presents a review of the phosphorus cycle and the different approaches that can be taken to the recovery of phosphorus from phosphate-rich waste. Critical issues in the phosphorus cycle are also discussed. Methods for the recovery of phosphorus form sewage sludge ash are widely explored and divided into two groups: wet extraction methods and thermochemical methods. Laboratory-scale methods are described, as well as proposed industrial technologies, with particular regard to the possibilities for their implementation in Poland. Phosphorus recovery methods from SSA (sewage sludge ash) in our country seems to be promising due to the increasing number of sewage sludge incineration plants, which could easily supply ash to future recovery installations. For the effective recovery of P from sewage sludge ash, it is essential to make the right choice in determining the appropriate method to use with respect to the particular properties of the ash composition available. A patented method of phosphorus recovery by acid extraction methods, developed by Cracow University of Technology, results in an efficiency of 80-96% for phosphorus recovery. 3000 to 4000 tons of phosphorus per year can be recycled and introduced back into the environment, that covers around 7% of the total amount of phosphorus ore imported into Poland between 2008 and 2009.

  2. Role of hydraulic and chemical signals in leaves, stems and roots in the stomatal behaviour of olive trees under water stress and recovery conditions.

    Science.gov (United States)

    Torres-Ruiz, Jose M; Diaz-Espejo, Antonio; Perez-Martin, Alfonso; Hernandez-Santana, Virginia

    2015-04-01

    The control of plant transpiration by stomata under water stress and recovery conditions is of paramount importance for plant performance and survival. Although both chemical and hydraulic signals emitted within a plant are considered to play a major role in controlling stomatal dynamics, they have rarely been assessed together. The aims of this study were to evaluate (i) the dynamics of chemical and hydraulic signals at leaf, stem and root level, and (ii) their effect on the regulation of stomatal conductance (gs) during water stress and recovery. Measurements of gs, water potential, abscisic acid (ABA) content and loss of hydraulic functioning at leaf, stem and root level were conducted during a water stress and recovery period imposed on 1-year-old olive plants (Olea europaea L.). Results showed a strong hydraulic segmentation in olive plants, with higher hydraulic functioning losses in roots and leaves than in stems. The dynamics of hydraulic conductance of roots and leaves observed as water stress developed could explain both a protection of the hydraulic functionality of larger organs of the plant (i.e., branches, etc.) and a role in the down-regulation of gs. On the other hand, ABA also increased, showing a similar pattern to gs dynamics, and thus its effect on gs in response to water stress cannot be ruled out. However, neither hydraulic nor non-hydraulic factors were able to explain the delay in the full recovery of gs after soil water availability was restored. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. RE-UTILIZATION OF INORGANIC SOLID WASTE (LIME MUD AS FOREST ROAD STABILIZER FROM THE CHEMICAL RECOVERY PROCESS IN KRAFT PULP MILL

    Directory of Open Access Journals (Sweden)

    Habip Eroğlu

    2005-04-01

    Full Text Available Waste handling is a concern in all pulp and paper mills. Best available techniques for reducing waste is to minimize the generation of solid waste and/or reuse these materials, wherever practicable. One of the most important solid wastes is lime mud which is generated from the kraft pulping in its chemical recovery process. This paper explores the composition of lime mud resulting from the chemical recovery unite of kraft pulp mill and investigation of this waste for re-using beneficially on sub grade and pavement of forest road as a alternative disposal method. Lime mud obtained from the re-causticising process in SEKA pulp mill that utilizes wheat straw and reed as the principal raw material was supplied with % 47 water content and its chemical and physical characterisations was performed according to standard methods. Dried waste to environmental condition was mixed with certain amount to composite cement for using on pavement and sandy clay, loamy clay and clay soils for enriching forest road sub grade properties. In order to investigate the lime mud addition on pavement and sub grade properties necessary physical tests were performed. As a consequence this study reveals that while waste of lime mud causes environmental and economical problem with conventional disposal techniques and/or abandoning to environment, this waste can be used as good stabilisation materials on forest road sub-grade and pavement without any environmental problem.

  4. Cell-cycle kinetics and ultraviolet light survival in UV-1, a Chinese hamster ovary cell mutant defective in post-replication recovery

    International Nuclear Information System (INIS)

    Collins, A.

    1982-01-01

    UV-I, an ultraviolet-sensitive mutant of CHO-KI, is abnormally slow to recover from the inhibition of DNA synthesis caused by u.v. irradiation. When synchronized UV-I cells are irradiated in G 1 , their movement into S phase is unaltered, but thymidine incorporation is depressed. When irradiated in S phase, again incorporation is more depressed, and S phase suffers a greater delay in UV-I than in the parent cell. UV-I and its parent have similar capacities for excision repair of u.v.-induced damage inflicted in G 1 , and so enter S phase with similar amounts of unrepaired damage. The single-cell survival was measured after irradiation at different points in the cell cycle. The mutant and parent cells have similar values of D 0 (mean lethal dose) except in mitosis, when the parent cell shows markedly greater resistance to u.v. irradiation. Dsub(q) (quasi-threshold dose) is fairly constant for the parent cell, but in UV-I it falls to a minimum in S phase. The responses of UV-I to u.v. irradiation are generally consistent with its known defect in post-replication recovery, i.e. the ability to join up the abnormally small DNA fragments synthesized on a u.v.-damaged template. (author)

  5. A Life Cycle Assessment (LCA) comparison of three management options for waste papers: bioethanol production, recycling and incineration with energy recovery.

    Science.gov (United States)

    Wang, Lei; Templer, Richard; Murphy, Richard J

    2012-09-01

    This study uses Life Cycle Assessment (LCA) to assess the environmental profiles and greenhouse gas (GHG) emissions for bioethanol production from waste papers and to compare them with the alternative waste management options of recycling or incineration with energy recovery. Bioethanol production scenarios both with and without pre-treatments were conducted. It was found that an oxidative lime pre-treatment reduced GHG emissions and overall environmental burdens for a newspaper-to-bioethanol process whereas a dilute acid pre-treatment raised GHG emissions and overall environmental impacts for an office paper-to-bioethanol process. In the comparison of bioethanol production systems with alternative management of waste papers by different technologies, it was found that the environmental profiles of each system vary significantly and this variation affects the outcomes of the specific comparisons made. Overall, a number of configurations of bioethanol production from waste papers offer environmentally favourable or neutral profiles when compared with recycling or incineration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Life-Cycle Cost and Environmental Assessment of Decentralized Nitrogen Recovery Using Ion Exchange from Source-Separated Urine through Spatial Modeling.

    Science.gov (United States)

    Kavvada, Olga; Tarpeh, William A; Horvath, Arpad; Nelson, Kara L

    2017-11-07

    Nitrogen standards for discharge of wastewater effluent into aquatic bodies are becoming more stringent, requiring some treatment plants to reduce effluent nitrogen concentrations. This study aimed to assess, from a life-cycle perspective, an innovative decentralized approach to nitrogen recovery: ion exchange of source-separated urine. We modeled an approach in which nitrogen from urine at individual buildings is sorbed onto resins, then transported by truck to regeneration and fertilizer production facilities. To provide insight into impacts from transportation, we enhanced the traditional economic and environmental assessment approach by combining spatial analysis, system-scale evaluation, and detailed last-mile logistics modeling using the city of San Francisco as an illustrative case study. The major contributor to energy intensity and greenhouse gas (GHG) emissions was the production of sulfuric acid to regenerate resins, rather than transportation. Energy and GHG emissions were not significantly sensitive to the number of regeneration facilities. Cost, however, increased with decentralization as rental costs per unit area are higher for smaller areas. The metrics assessed (unit energy, GHG emissions, and cost) were not significantly influenced by facility location in this high-density urban area. We determined that this decentralized approach has lower cost, unit energy, and GHG emissions than centralized nitrogen management via nitrification-denitrification if fertilizer production offsets are taken into account.

  7. A roadmap for the synthesis of separation networks for the recovery of bio-based chemicals: Matching biological and process feasibility.

    Science.gov (United States)

    Yenkie, Kirti M; Wu, WenZhao; Clark, Ryan L; Pfleger, Brian F; Root, Thatcher W; Maravelias, Christos T

    2016-12-01

    Microbial conversion of renewable feedstocks to high-value chemicals is an attractive alternative to current petrochemical processes because it offers the potential to reduce net CO 2 emissions and integrate with bioremediation objectives. Microbes have been genetically engineered to produce a growing number of high-value chemicals in sufficient titer, rate, and yield from renewable feedstocks. However, high-yield bioconversion is only one aspect of an economically viable process. Separation of biologically synthesized chemicals from process streams is a major challenge that can contribute to >70% of the total production costs. Thus, process feasibility is dependent upon the efficient selection of separation technologies. This selection is dependent on upstream processing or biological parameters, such as microbial species, product titer and yield, and localization. Our goal is to present a roadmap for selection of appropriate technologies and generation of separation schemes for efficient recovery of bio-based chemicals by utilizing information from upstream processing, separation science and commercial requirements. To achieve this, we use a separation system comprising of three stages: (I) cell and product isolation, (II) product concentration, and (III) product purification and refinement. In each stage, we review the technology alternatives available for different tasks in terms of separation principles, important operating conditions, performance parameters, advantages and disadvantages. We generate separation schemes based on product localization and its solubility in water, the two most distinguishing properties. Subsequently, we present ideas for simplification of these schemes based on additional properties, such as physical state, density, volatility, and intended use. This simplification selectively narrows down the technology options and can be used for systematic process synthesis and optimal recovery of bio-based chemicals. Copyright © 2016 Elsevier

  8. Effect of repeated cycles of chemical disinfection on the roughness and hardness of hard reline acrylic resins.

    Science.gov (United States)

    Pinto, Luciana de Rezende; Acosta, Emílio José T Rodríguez; Távora, Flora Freitas Fernandes; da Silva, Paulo Maurício Batista; Porto, Vinícius Carvalho

    2010-06-01

    The aim of this study was to assess the effect of repeated cycles of five chemical disinfectant solutions on the roughness and hardness of three hard chairside reliners. A total of 180 circular specimens (30 mm x 6 mm) were fabricated using three hard chairside reliners (Jet; n = 60, Kooliner; n = 60, Tokuyama Rebase II Fast; n = 60), which were immersed in deionised water (control), and five disinfectant solutions (1%, 2%, 5.25% sodium hypochlorite; 2% glutaraldehyde; 4% chlorhexidine gluconate). They were tested for Knoop hardness (KHN) and surface roughness (microm), before and after 30 simulated disinfecting cycles. Data was analysed by the factorial scheme (6 x 2), two-way analysis of variance (anova), followed by Tukey's test. For Jet (from 18.74 to 13.86 KHN), Kooliner (from 14.09 to 8.72 KHN), Tokuyama (from 12.57 to 8.28 KHN) a significant decrease in hardness was observed irrespective of the solution used on all materials. For Jet (from 0.09 to 0.11 microm) there was a statistically significant increase in roughness. Kooliner (from 0.36 to 0.26 microm) presented a statistically significant decrease in roughness and Tokuyama (from 0.15 to 0.11 microm) presented no statistically significant difference after 30 days. This study showed that all disinfectant solutions promoted a statistically significant decrease in hardness, whereas with roughness, the materials tested showed a statistically significant increase, except for Tokuyama. Although statistically significant values were registered, these results could not be considered clinically significant.

  9. Mining Available Data from the United States Environmental Protection Agency to Support Rapid Life Cycle Inventory Modeling of Chemical Manufacturing.

    Science.gov (United States)

    Cashman, Sarah A; Meyer, David E; Edelen, Ashley N; Ingwersen, Wesley W; Abraham, John P; Barrett, William M; Gonzalez, Michael A; Randall, Paul M; Ruiz-Mercado, Gerardo; Smith, Raymond L

    2016-09-06

    Demands for quick and accurate life cycle assessments create a need for methods to rapidly generate reliable life cycle inventories (LCI). Data mining is a suitable tool for this purpose, especially given the large amount of available governmental data. These data are typically applied to LCIs on a case-by-case basis. As linked open data becomes more prevalent, it may be possible to automate LCI using data mining by establishing a reproducible approach for identifying, extracting, and processing the data. This work proposes a method for standardizing and eventually automating the discovery and use of publicly available data at the United States Environmental Protection Agency for chemical-manufacturing LCI. The method is developed using a case study of acetic acid. The data quality and gap analyses for the generated inventory found that the selected data sources can provide information with equal or better reliability and representativeness on air, water, hazardous waste, on-site energy usage, and production volumes but with key data gaps including material inputs, water usage, purchased electricity, and transportation requirements. A comparison of the generated LCI with existing data revealed that the data mining inventory is in reasonable agreement with existing data and may provide a more-comprehensive inventory of air emissions and water discharges. The case study highlighted challenges for current data management practices that must be overcome to successfully automate the method using semantic technology. Benefits of the method are that the openly available data can be compiled in a standardized and transparent approach that supports potential automation with flexibility to incorporate new data sources as needed.

  10. Characteristics of Chemical and Functional Properties of Modified Cassava Flour (Manihot esculenta) by Autoclaving-Cooling Cycles Method

    Science.gov (United States)

    Cecep Erwan Andriansyah, Raden; Rahman, Taufik; Herminiati, Ainia; Rahman, Nurhaidar; Luthfiyanti, Rohmah

    2017-12-01

    The modified cassava flour can be made using the method of the autoclaving cooling cycle (AAC). The stability of the warming can be seen from the decreasing value of breakdown viscosity, while the stability of the stirring process can be seen by the decreasing value of setback viscosity. The stages of research include: (1) the making of cassava flour, (2) the making of modified cassava flour by the method of treatment of ACC with a variety of flour concentration and autoclaving time, (3) chemical analysis of the moisture, ash, fat, protein, carbohydrate; The functional properties of the pasting characteristics to the initial temperature of the pasting, peak viscosity, hot paste viscosity, breakdown viscosity, cold paste viscosity and setback viscosity. The result shows that cassava flour modified by treatment of flour concentration 16% and autoclaving time 41 minutes having pasting code and pasting viscosity which is resistant to high temperature. Flour with this character is flour that is expected to maintain the texture of processed products with a paste form that remains stable. Utilization of modified cassava flour by the ACC method can be applied to the pasting product such as noodle and spaghetti, hoping to support for food diversification program to reduce dependence on wheat flour in Indonesia.

  11. An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond

    NARCIS (Netherlands)

    Bajracharya, S.; Sharma, M.; Mohanakrishna, Gunda; Benneton, Xochitl Dominguez; Strik, D.P.B.T.B.; Sarma, Priyangshu M.; Pant, Deepak

    2016-01-01

    Bioelectrochemical systems (BESs) are unique systems capable of converting chemical energy into electrical energy (and vice-versa) while employing microbes as catalysts. Such organic wastes including low-strength wastewaters and lignocellulosic biomass were converted into electricity with microbial

  12. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. [Physical and chemical interactions of Enhanced Oil Recovery reagents with hydrocarbons present in petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  13. Research on removing reservoir core water sensitivity using the method of ultrasound-chemical agent for enhanced oil recovery.

    Science.gov (United States)

    Wang, Zhenjun; Huang, Jiehao

    2018-04-01

    The phenomenon of water sensitivity often occurs in the oil reservoir core during the process of crude oil production, which seriously affects the efficiency of oil extraction. In recent years, near-well ultrasonic processing technology attaches more attention due to its safety and energy efficient. In this paper, the comparison of removing core water sensitivity by ultrasonic wave, chemical injection and ultrasound-chemical combination technique are investigated through experiments. Results show that: lower ultrasonic frequency and higher power can improve the efficiency of core water sensitivity removal; the effects of removing core water sensitivity under ultrasonic treatment get better with increase of core initial permeability; the effect of removing core water sensitivity using ultrasonic treatment won't get better over time. Ultrasonic treatment time should be controlled in a reasonable range; the effect of removing core water sensitivity using chemical agent alone is slightly better than that using ultrasonic treatment, however, chemical injection could be replaced by ultrasonic treatment for removing core water sensitivity from the viewpoint of oil reservoir protection and the sustainable development of oil field; ultrasound-chemical combination technique has the best effect for water sensitivity removal than using ultrasonic treatment or chemical injection alone. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Comparison of the performance of two different Dual-loop organic Rankine cycles (DORC) with nanofluid for engine waste heat recovery

    International Nuclear Information System (INIS)

    Huang, Haozhong; Zhu, Juan; Yan, Bo

    2016-01-01

    Highlights: • Comparison of two DORC systems with the addition of nanoparticles in coolant. • One-stage DORC system is better than two-stage DORC system. • Water-based one-stage DORC system performs the best. • The addition of nanoparticles in coolant can improve DORC system’s performance. - Abstract: To recover the heat from engine exhaust, coolant liquid and high-temperature loop, two different Dual-loop organic Rankine cycles (DORC) are studied in this paper. The two systems differ for the number of stages of heat recovery from engine exhaust, and both include high temperature loop and low temperature loop in each system. R123, R245fa, ethanol, R141b, and water are the candidate working fluids of HT loop, and R143a is the working fluid of LT loop. Because the coolant water in engines has lower temperature, it is more difficult to recover its heat. Therefore, in this study, graphene nanoparticles and carbon nanotubes are added to coolant water to enhance its heat transfer. Net output power, thermal efficiency, and exergy efficiency are selected as the objective functions. Results show that the single stage system (S1) is a little better than the other. Water-based S1 performs the best and the net output power, the thermal efficiency, and the exergy efficiency are 96.92 kW, 14.13% and 64.04%, respectively. High evaporation pressure and turbine inlet temperature are better for performance optimization. And when the coolant water contains 0.5 wt% carbon nanotubes, system reaches the max net output power increment of 3.84 kW.

  15. A consideration of potential confounding factors limiting chemical and biological recovery at Lochnagar, a remote mountain loch in Scotland

    Directory of Open Access Journals (Sweden)

    Derek MUIR

    2004-02-01

    Full Text Available Lochnagar, a remote loch in the Grampian Mountains of Scotland is one of the most studied freshwater bodies in the UK. It represents a key site in a number of monitoring programmes and has become the UK’s 'flag-ship' mountain lake in various EU funded projects over the last 15 years. Palaeolimnological studies have revealed the extent and diverse provenance of atmospherically deposited pollution at the site and show that the loch began to acidify in the mid-19th century. However, despite abatement strategies dramatically reducing the emission and deposition of non-marine sulphate and trace metals since the 1970s, the loch pH shows little sign of recovery and full basin fluxes of, for example, Pb and Hg show no decline or even a continued increase. It is suggested that the lack of recovery from acidification over the last 15 years of monitoring results from the balancing of the decline in sulphate by increased nitrate, and that this increase is related to winter duration and severity. The lack of response by the sediment record to declines in metal deposition is thought to be due to a continuing input of previously deposited metals from the catchment. Hypotheses for these enhanced catchment inputs involve responses to a changing climate. Site specific climate reconstructions and predictions for the 21st century suggest an accelerated increase in temperature rise and increased winter precipitation and storminess. These predicted changes are likely to exacerbate the input of metals (and other stored pollutants from the catchment but higher temperatures may also help to promote recovery from acidification.

  16. Integrated computer-aided framework for chemical product and process application design and optimization for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Woodley, John; Abildskov, Jens

    2017-01-01

    This contribution presents an integrated framework for product-process design. The framework integrates the two design problems into one and finds the optimal solution through simultaneous optimization. The framework consists of four hierarchical steps and uses a set of methods, tools and databases...... for property prediction, novel fluid design and mathematical programming. The application of the framework is targeted for waste heat recovery design systems, where the sensitivity of product and process design variables is high and the simultaneous design is necessary. The sustainable design solutions...... are showcased in this paper for mixed refrigeration design....

  17. Process Parameters for Successful Synthesis of Carbon Nanotubes by Chemical Vapor Deposition: Implications for Chemical Mechanisms and Life-cycle Assessment

    Science.gov (United States)

    Xue, Ke

    Manufacturing of carbon nanotubes (CNTs) via chemical vapor deposition (CVD) calls for thermal treatment associated with gas-phase rearrangement and catalyst deposition to achieve high cost efficiency and limited influence on environmental impact. Taking advantage of higher degree of structure control and economical efficiency, catalytic chemical vapor deposition (CCVD) has currently become the most prevailing synthesis approach for the synthesis of large-scale pure CNTs in past years. Because the synthesis process of CNTs dominates the potential ecotoxic impacts, materials consumption, energy consumption and greenhouse gas emissions should be further limited to efficiently reduce life cycle ecotoxicity of carbon naotubes. However, efforts to reduce energy and material requirements in synthesis of CNTs by CCVD are hindered by a lack of mechanistic understanding. In this thesis, the effect of operating parameters, especially the temperature, carbon source concentration, and residence time on the synthesis were studied to improve the production efficiency in a different angle. Thus, implications on the choice of operating parameters could be provided to help the synthesis of carbon nanotubes. Here, we investigated the typical operating parameters in conditions that have yielded successful CNT production in the published academic literature of over seventy articles. The data were filtered by quality of the resultant product and deemed either "successful" or "unsuccessful" according to the authors. Furthermore, growth rate data were tabulated and used as performance metric for the process whenever possible. The data provided us an opportunity to prompt possible and common methods for practioners in the synthesis of CNTs and motivate routes to achieve energy and material minimization. The statistical analysis revealed that methane and ethylene often rely on thermal conversion process to form direct carbon precursor; further, methane and ethylene could not be the direct

  18. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  19. The Potential of the MAGIC TOM Parental Accessions to Explore the Genetic Variability in Tomato Acclimation to Repeated Cycles of Water Deficit and Recovery.

    Science.gov (United States)

    Ripoll, Julie; Urban, Laurent; Bertin, Nadia

    2015-01-01

    Episodes of water deficit (WD) during the crop cycle of tomato may negatively impact plant growth and fruit yield, but they may also improve fruit quality. Moreover, a moderate WD may induce a plant "memory effect" which is known to stimulate plant acclimation and defenses for upcoming stress episodes. The objective of this study was to analyze the positive and negative impacts of repeated episodes of WD at the plant and fruit levels. Three episodes of WD (-38, -45, and -55% of water supply) followed by three periods of recovery ("WD treatments"), were applied to the eight parents of the Multi-Parent Advanced Generation Inter-Cross population which offers the largest allelic variability observed in tomato. Predawn and midday water potentials, chlorophyll a fluorescence, growth and fruit quality traits [contents in sugars, acids, carotenoids, and ascorbic acid (AsA)] were measured throughout the experiment. Important genotypic variations were observed both at the plant and fruit levels and variations in fruit and leaf traits were found not to be correlated. Overall, the WD treatments were at the origin of important osmotic regulations, reduction of leaf growth, acclimation of photosynthetic functioning, notably through an increase in the chlorophyll content and in the quantum yield of the electron transport flux until PSI acceptors (J 0 (RE1)/J (ABS)). The effects on fruit sugar, acid, carotenoid and AsA contents on a dry matter basis ranged from negative to positive to nil depending on genotypes and stress intensity. Three small fruit size accessions were richer in AsA on a fresh matter basis, due to concentration effects. So, fruit quality was improved under WD mainly through concentration effects. On the whole, two accessions, LA1420 and Criollo appeared as interesting genetic resources, cumulating adaptive traits both at the leaf and fruit levels. Our observations show that the complexity involved in plant responses, when considering a broad range of

  20. The potential of the MAGIC TOM Parental accessions to explore the genetic variability in tomato acclimation to repeated cycles of water deficit and recovery

    Directory of Open Access Journals (Sweden)

    Julie eRipoll

    2016-01-01

    Full Text Available Episodes of water deficit (WD during the crop cycle of tomato may negatively impact plant growth and fruit yield, but they may also improve fruit quality. Moreover, a moderate WD may induce a plant memory effect which is known to stimulate plant acclimation and defenses for upcoming stress episodes. The objective of this study was to analyze the positive and negative impacts of repeated episodes of WD at the plant and fruit levels. Three episodes of WD (-38 %, -45 % and -55 % of water supply followed by three periods of recovery (WD treatments, were applied to the 8 parents of the Multi-Parent Advanced Generation Inter-Cross population which offers the largest allelic variability observed in tomato. Predawn and midday water potentials, chlorophyll a fluorescence, growth and fruit quality traits (contents in sugars, acids, carotenoids and ascorbic acid (AsA were measured throughout the experiment. Important genotypic variations were observed both at the plant and fruit levels and variations in fruit and leaf traits were found not to be correlated. Overall, the WD treatments were at the origin of important osmotic regulations, reduction of leaf growth, acclimation of photosynthetic functioning, notably through an increase in the chlorophyll content and in the quantum yield of the electron transport flux until PSI acceptors (J0RE1/JABS. The effects on fruit sugar, acid, carotenoid and AsA contents on a dry matter basis ranged from negative to positive to nil depending on genotypes and stress intensity. Three small fruit size accessions were richer in AsA on a fresh matter basis, due to concentration effects. So, fruit quality was improved under WD mainly through concentration effects. On the whole, two accessions, LA1420 and Criollo appeared as interesting genetic resources, cumulating adaptive traits both at the leaf and fruit levels. Our observations show that the complexity involved in plant responses, when considering a broad range of

  1. Recovery of Americium-241 from lightning rod by the method of chemical treatment; Recuperacion del Americio-241 provenientes de los pararrayos por el metodo de tratamiento quimico

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, W.H., E-mail: wcruz@ipen.gob.pe [Instituto Peruano de Energia Nuclear (GRRA/IPEN), Lima (Peru). Division de Gestion de Residuos Radiactivos

    2013-07-01

    About 95% of the lightning rods installed in the Peruvian territory have set in their structures, pose small amounts of radioactive sources such as Americium-241 ({sup 241}Am), fewer and Radium 226 ({sup 226}Ra) these are alpha emitters and have a half life of 432 years and 1600 years respectively. In this paper describes the recovery of radioactive sources of {sup 241}Am radioactive lightning rods using the conventional chemical treatment method using agents and acids to break down the slides. The {sup 241}Am recovered was as excitation source and alpha particle generator for analysing samples by X Ray Fluorescence, for fixing the stainless steel {sup 241}Am technique was used electrodeposition. (author)

  2. Dynamic Modeling and Plantwide Control of a Hybrid Power and Chemical Plant: An Integrated Gasification Combined Cycle Coupled with a Methanol Plant

    Science.gov (United States)

    Robinson, Patrick J.

    Gasification has been used in industry on a relatively limited scale for many years, but it is emerging as the premier unit operation in the energy and chemical industries. The switch from expensive and insecure petroleum to solid hydrocarbon sources (coal and biomass) is occurring due to the vast amount of domestic solid resources, national security and global warming issues. Gasification (or partial oxidation) is a vital component of "clean coal" technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel gas for driving combustion turbines. Gasification units in a chemical plant generate synthesis gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The coupling of an Integrated Gasification Combined Cycle (IGCC) with a methanol plant can handle swings in power demand by diverting hydrogen gas from a combustion turbine and synthesis gas from the gasifier to a methanol plant for the production of an easily-stored, hydrogen-consuming liquid product. An additional control degree of freedom is provided with this hybrid plant, fundamentally improving the controllability of the process. The idea is to base-load the gasifier and use the more responsive gas-phase units to handle disturbances. During the summer days, power demand can fluctuate up to 50% over a 12-hour period. The winter provides a different problem where spikes of power demand can go up 15% within the hour. The following dissertation develops a hybrid IGCC / methanol plant model, validates the steady-state results with a National Energy Technical Laboratory study, and tests a proposed control structure to handle these significant disturbances. All modeling was performed in the widely used chemical process

  3. Thermodynamic analysis of the use a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water-splitting cycle for hydrogen production

    International Nuclear Information System (INIS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    2008-01-01

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved 'steam' parameters (outlet temperatures up to 625degC and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600degC. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the 'nuclear' heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted of

  4. Mining Available Data from the United States Environmental Protection Agency to Support Rapid Life Cycle Inventory Modeling of Chemical Manufacturing

    Science.gov (United States)

    Demands for quick and accurate life cycle assessments create a need for methods to rapidly generate reliable life cycle inventories (LCI). Data mining is a suitable tool for this purpose, especially given the large amount of available governmental data. These data are typically a...

  5. Organic Contaminants and Treatment Chemicals in Steam-Water Cycles : Thermal stability, decomposition products and flow-accelerated corrosion

    NARCIS (Netherlands)

    Moed, D.H.

    2015-01-01

    Boiler feedwater and steam have to be of high purity, because of the susceptibility of the steam-water cycle to corrosion. Organic contaminants break down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam-water cycle

  6. Permeability recovery of fouled forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic osmotic membrane bioreactors treating low-strength wastewater.

    Science.gov (United States)

    Wang, Xinhua; Hu, Taozhan; Wang, Zhiwei; Li, Xiufen; Ren, Yueping

    2017-10-15

    Anaerobic osmotic membrane bioreactor (AnOMBR) has gained increasing interests in wastewater treatment owing to its simultaneous recovery of biogas and water. However, the forward osmosis (FO) membrane fouling was severe during a long-term operation of AnOMBRs. Here, we aim to recover the permeability of fouled FO membranes by chemical cleaning. Specifically speaking, an optimal chemical cleaning procedure was searched for fouled thin film composite polyamide FO (TFC-FO) membranes in a novel microfiltration (MF) assisted AnOMBR (AnMF-OMBR). The results indicated that citric acid, disodium ethylenediaminetetraacetate (EDTA-2Na), hydrochloric acid (HCl), sodium dodecyl sulfate (SDS) and sodium hydroxide (NaOH) had a low cleaning efficiency of less than 15%, while hydrogen peroxide (H 2 O 2 ) could effectively remove foulants from the TFC-FO membrane surface (almost 100%) through oxidizing the functional group of the organic foulants and disintegrating the colloids and microbe flocs into fine particles. Nevertheless, the damage of H 2 O 2 to the TFC-FO membrane was observed when a high cleaning concentration and a long duration were applied. In this case, the optimal cleaning conditions including cleaning concentration and time for fouled TFC-FO membranes were selected through confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM) images and the flux recovery rate. The results suggested that the optimal cleaning procedure for fouled TFC-FO membranes was use of 0.5% H 2 O 2 at 25 °C for 6 h, and after that, the cleaned TFC-FO membrane had the same performance as a virgin one including water flux and rejection for organic matters and phosphorus during the operation of AnMF-OMBR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Synthesis and Performance of an Acrylamide Copolymer Containing Nano-SiO2 as Enhanced Oil Recovery Chemical

    Directory of Open Access Journals (Sweden)

    Zhongbin Ye

    2013-01-01

    Full Text Available A novel copolymer containing nano-SiO2 was synthesized by free radical polymerization using acrylamide (AM, acrylic acid (AA, and nano-SiO2 functional monomer (NSFM as raw materials under mild conditions. The AM/AA/NSFM copolymer was characterized by infrared (IR spectroscopy, 1H NMR spectroscopy, elemental analysis, and scanning electron microscope (SEM. It was found that the AM/AA/NSFM copolymer exhibited higher viscosity than the AM/AA copolymer at 500 s−1 shear rate (18.6 mPa·s versus 8.7 mPa·s. It was also found that AM/AA/NSFM could achieve up to 43.7% viscosity retention rate at 95°C. Mobility control results indicated that AM/AA/NSFM could establish much higher resistance factor (RF and residual resistance factor (RRF than AM/AA under the same conditions (RF: 16.52 versus 12.17, RRF: 3.63 versus 2.59. At last, the enhanced oil recovery (EOR of AM/AA/NSFM was up to 20.10% by core flooding experiments at 65°C.

  8. An exergoeconomic investigation of waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing an ammonia–water power/cooling cycle

    International Nuclear Information System (INIS)

    Zare, V.; Mahmoudi, S.M.S.; Yari, M.

    2013-01-01

    A detailed exergoeconomic analysis is performed for a combined cycle in which the waste heat from the Gas Turbine-Modular Helium Reactor (GT-MHR) is recovered by an ammonia–water power/cooling cogeneration system. Parametric investigations are conducted to evaluate the effects of decision variables on the performances of the GT-MHR and combined cycles. The performances of these cycles are then optimized from the viewpoints of first law, second law and exergoeconomics. It is found that, combining the GT-MHR with ammonia–water cycle not only enhances the first and second law efficiencies of the GT-MHR, but also it improves the cycle performance from the exergoeconomic perspective. The results show that, when the optimization is based on the exergoeconomics, the unit cost of products is reduced by 5.4% in combining the two mentioned cycles. This is achieved with a just about 1% increase in total investment cost rate since the helium mass flow in the combined cycle is lower than that in the GT-MHR alone. - Highlights: • Application of exergetic cost theory to the combined GT-MHR/ammonia–water cycle. • Enhanced exergoeconomic performance for the combined cycle compared to the GT-MHR. • Comparable investment costs for the combined cycle and the GT-MHR alone

  9. Performance Analysis of a Reciprocating Piston Expander and a Plate Type Exhaust Gas Recirculation Boiler in a Water-Based Rankine Cycle for Heat Recovery from a Heavy Duty Diesel Engine

    Directory of Open Access Journals (Sweden)

    Gunnar Latz

    2016-06-01

    Full Text Available The exhaust gas in an internal combustion engine provides favorable conditions for a waste-heat recovery (WHR system. The highest potential is achieved by the Rankine cycle as a heat recovery technology. There are only few experimental studies that investigate full-scale systems using water-based working fluids and their effects on the performance and operation of a Rankine cycle heat recovery system. This paper discusses experimental results and practical challenges with a WHR system when utilizing heat from the exhaust gas recirculation system of a truck engine. The results showed that the boiler’s pinch point necessitated trade-offs between maintaining adequate boiling pressure while achieving acceptable cooling of the EGR and superheating of the water. The expander used in the system had a geometric compression ratio of 21 together with a steam outlet timing that caused high re-compression. Inlet pressures of up to 30 bar were therefore required for a stable expander power output. Such high pressures increased the pump power, and reduced the EGR cooling in the boiler because of pinch-point effects. Simulations indicated that reducing the expander’s compression ratio from 21 to 13 would allow 30% lower steam supply pressures without adversely affecting the expander’s power output.

  10. Flow cytometric analysis of mitotic cycle perturbation by chemical carcinogens in cultured epithelial cells. [Effects of benzo(a)pyrene-diol-epoxide on mitotic cycle of cultural mouse liver epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, Andrew Leonard [Univ. of California, Berkeley, CA (United States)

    1978-08-01

    A system for kinetic analysis of mitotic cycle perturbation by various agents was developed and applied to the study of the mitotic cycle effects and dependency of the chemical carcinogen benzo(a)pyrene-diolepoxide, DE, upon a mouse lever epithelial cell line, NMuLi. The study suggests that the targets of DE action are not confined to DNA alone but may include cytoplasmic structures as well. DE was found to affect cells located in virtually every phase of the mitotic cycle, with cells that were actively synthesizing DNA showing the strongest response. However, the resulting perturbations were not confined to S-phase alone. DE slowed traversal through S-phase by about 40% regardless of the cycle phase of the cells exposed to it, and slowed traversal through G2M by about 50%. When added to G1 cells, DE delayed recruitment of apparently quiescent (G0) cells by 2 hours, and reduced the synchrony of the cohort of cells recruited into active proliferation. The kinetic analysis system consists of four elements: tissue culture methods for propagating and harvesting cell populations; an elutriation centrifugation system for bulk synchronization of cells in various phases of the mitotic cycle; a flow cytometer (FCM), coupled with appropriate staining protocols, to enable rapid analysis of the DNA distribution of any given cell population; and data reduction and analysis methods for extracting information from the DNA histograms produced by the FCM. The elements of the system are discussed. A mathematical analysis of DNA histograms obtained by FCM is presented. The analysis leads to the detailed implementation of a new modeling approach. The new modeling approach is applied to the estimation of cell cycle kinetic parameters from time series of DNA histograms, and methods for the reduction and interpretation of such series are suggested.

  11. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals.

    Science.gov (United States)

    Csiszar, Susan A; Meyer, David E; Dionisio, Kathie L; Egeghy, Peter; Isaacs, Kristin K; Price, Paul S; Scanlon, Kelly A; Tan, Yu-Mei; Thomas, Kent; Vallero, Daniel; Bare, Jane C

    2016-11-01

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products.

  12. Optimization of Initial Parameters and Fuel Afterburning Ratio in Heat-Recovery Boiler of Single- and Two-Loop Combined-Cycle Plant

    Directory of Open Access Journals (Sweden)

    B. V. Yakovlev

    2007-01-01

    Full Text Available An analysis of influence of initial parameters and fuel afterburning ratio on efficiency of sin­gle- and two-loop combined-cycle plant has been done in the paper.The paper contains fundamentals of combined-cycle plants initial parameters’ optimization and examples for the sets with gas turbines of various efficiency.

  13. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants

    International Nuclear Information System (INIS)

    De Greef, J.; Villani, K.; Goethals, J.; Van Belle, H.; Van Caneghem, J.; Vandecasteele, C.

    2013-01-01

    Highlights: • WtE plants are to be optimized beyond current acceptance levels. • Emission and consumption data before and after 5 technical improvements are discussed. • Plant performance can be increased without introduction of new techniques or re-design. • Diagnostic skills and a thorough understanding of processes and operation are essential. - Abstract: Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation – before and after optimisation – as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential

  14. Technical support for recovery phase decision-making in the event of a chemical warfare agent release

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.; Kistner, S.; Halbrook, R. [and others

    1995-12-31

    In late 1985, Congress mandated that the U.S. stockpile of lethal unitary chemical agents and munitions be destroyed by the Department of the Army in a manner that provides maximum protection to the environment, the general public and personnel involved in the disposal program (Public Law 99-1, Section 1412, Title 14, Part b). These unitary munitions were last manufactured in the late 1960`s. The stockpiled inventory is estimated to approximate 25,000-30,000 tons, an includes organophosphate ({open_quotes}nerves{close_quotes}) agents such as VX [O-ethylester of S-(diisopropyl aminoethyl) methyl phosphonothiolate, C{sub 11}H{sub 26}NO{sub 2}PS] and vesicant ({open_quotes}blister{close_quotes}) agents such as Hd [sulfur mustard; bis (2-chloroethyl sulfide), C{sub 4}H{sub 8}Cl{sub 2}S]. The method of agent destruction selected by the Department of the Army is combined high-temperature and high-residence time incineration at secured military installations where munitions are currently stockpiled. This program supports the research program to address: the biomonitoring of nerve agent exposure; agent detection limits in foods and milk; and permeation of agents through porous construction materials.

  15. STRATEGY FOR MAINTAINING AND RECOVERY OF WORKING ABILITY OF BUILDING AND ROAD-BUILDING MACHINERY WITH DUE ACCOUNT OF CHANGES IN OUTPUT PARAMETERS AT STAGE OF THEIR LIFE CYCLE OPERATION

    Directory of Open Access Journals (Sweden)

    A. N. Мaksimenko

    2013-01-01

    Full Text Available The paper proposes a strategy for maintaining and recovery of machinery working ability with due account of changes in technical and economic indicators (TEI in the process of its operation. Productivity, working cost of machine hour, operating efficiency ratio, inter-shift operating efficiency,  and other TEI are changing in the process of machine operation. While operating building and road-building machinery it is possible to obtain maximum effect only with the help of complex interacting events at stages of life cycle of a concrete machine and with due account of TEI dynamics in the process of its usage. 

  16. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    Directory of Open Access Journals (Sweden)

    Bing Mao

    Full Text Available Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  17. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    Science.gov (United States)

    Mao, Bing; Mao, Rong; Zeng, De-Hui

    2017-01-01

    Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  18. Life Cycle Risks for Human Health: A Comparison of Petroleum Versus Bio-Based Production of Five Bulk Organic Chemicals

    NARCIS (Netherlands)

    Roes, A.L.; Patel, M.K.

    2007-01-01

    This article describes the development and application of a generic approach to the comparative assessment of risks related to the production of organic chemicals by petrochemical processes versus white biotechnology. White biotechnology, also referred to as industrial biotechnology, typically uses

  19. A brief introduction to chemical hazards in the life cycle of building products with floor coverings as a case study

    CSIR Research Space (South Africa)

    Ampofo-Anti, NL

    2015-08-01

    Full Text Available Buildings play an essential role in the social and economic advancement of human societies. However, modern buildings contain numerous synthetic, chemically processed and or treated materials, most of which have never been tested to determine...

  20. Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli.

    Science.gov (United States)

    Choi, Sol; Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2016-11-01

    To address climate change and environmental problems, it is becoming increasingly important to establish biorefineries for the production of chemicals from renewable non-food biomass. Here we report the development of Escherichia coli strains capable of overproducing a four-carbon platform chemical 4-hybroxybutyric acid (4-HB). Because 4-HB production is significantly affected by aeration level, genome-scale metabolic model-based engineering strategies were designed under aerobic and microaerobic conditions with emphasis on oxidative/reductive TCA branches and glyoxylate shunt. Several different metabolic engineering strategies were employed to develop strains suitable for fermentation both under aerobic and microaerobic conditions. It was found that microaerobic condition was more efficient than aerobic condition in achieving higher titer and productivity of 4-HB. The final engineered strain produced 103.4g/L of 4-HB by microaerobic fed-batch fermentation using glycerol. The aeration-dependent optimization strategy of TCA cycle will be useful for developing microbial strains producing other reduced derivative chemicals of TCA cycle intermediates. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities

    Energy Technology Data Exchange (ETDEWEB)

    Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

    2014-07-01

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team

  2. Energy and greenhouse gas life cycle assessment and cost analysis of aerobic and anaerobic membrane bioreactor systems: Influence of scale, population density, climate, and methane recovery

    Science.gov (United States)

    This study calculated the energy and greenhouse gas life cycle and cost profiles of transitional aerobic membrane bioreactors (AeMBR) and anaerobic membrane bioreactors (AnMBR). Membrane bioreactors (MBR) represent a promising technology for decentralized wastewater treatment and...

  3. Duty cycle dependent chemical structure and wettability of RF pulsed plasma copolymers of acrylic acid and octafluorocyclobutane

    Science.gov (United States)

    Muzammil, I.; Li, Y. P.; Li, X. Y.; Lei, M. K.

    2018-04-01

    Octafluorocyclobutane and acrylic acid (C4F8-co-AA) plasma copolymer coatings are deposited using a pulsed wave (PW) radio frequency (RF) plasma on low density polyethylene (LDPE). The influence of duty cycle in pulsed process with the monomer feed rate on the surface chemistry and wettability of C4F8-co-AA plasma polymer coatings is studied. The concentration of the carboxylic acid (hydrophilic) groups increase, and that of fluorocarbon (hydrophobic) groups decrease by lowering the duty cycle. The combined effect of surface chemistry and surface morphology of the RF pulsed plasma copolymer coatings causes tunable surface wettability and surface adhesion. The gradual emergence of hydrophilic contents leads to surface heterogeneity by lowering duty cycle causing an increased surface adhesion in hydrophobic coatings. The C4F8-co-AA plasma polymer coatings on the nanotextured surfaces are tuned from repulsive superhydrophobicity to adhesive superhydrophobicity, and further to superhydrophilicity by adjusting the duty cycles with the monomer feed rates.

  4. Life-Cycle inventory/impact Assessment in the context of Chemical Risk Assessment: An Informatics-driven Scoping Review

    Science.gov (United States)

    One of the goals of Life-Cycle Assessment (LCA) is to compare the full range of environmental effects assignable to products and services in order to improve processes, support policy and provide a sound “systems-thinking” basis for decision support. How in fact LCA can be incorp...

  5. Chemical Imaging of Nanoscale Interfacial Inhomogeneity in LiFePO4Composite Electrodes from a Cycled Large-Format Battery.

    Science.gov (United States)

    Zhou, Jigang; Wang, Jian; Hu, Yongfeng; Lu, Mi

    2017-11-15

    The nanoscale interfacial inhomogeneity in a cycled large-format LiFePO 4 (LFP) composite electrode has been studied by X-ray photoemission electron microscopy at single particle spatial resolution with a probe depth of ∼5 nm. The loss of active lithium in cycled LFP causes the coexsitence of fully delithiated LFP (FePO 4 ) and partially delithiated LFP (Li 0.6 FePO 4 or Li 0.8 FePO 4 ) as a function of the extent of lithium loss. The distribution of various lithium loss phases along with local agglomeration of LFP and degradation of binder and carbon black are correlatively visualized. This is the first experimental exploration of chemical interplay between components in the composite electrode from a large-format battery, and implications on the LFP degradation in this battery are discussed.

  6. Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals?

    International Nuclear Information System (INIS)

    Grieger, Khara D.; Laurent, Alexis; Miseljic, Mirko; Christensen, Frans; Baun, Anders; Olsen, Stig I.

    2012-01-01

    While it is generally agreed that successful strategies to address the health and environmental impacts of engineered nanomaterials (NM) should consider the well-established frameworks for conducting life-cycle assessment (LCA) and risk assessment (RA), scientific research, and specific guidance on how to practically apply these methods are still very much under development. This paper evaluates how research efforts have applied LCA and RA together for NM, particularly reflecting on previous experiences with applying these methods to chemicals. Through a literature review and a separate analysis of research focused on applying LCA and RA together for NM, it appears that current research efforts have taken into account some key “lessons learned” from previous experience with chemicals while many key challenges remain for practically applying these methods to NM. We identified two main approaches for using these methods together for NM: “LC-based RA” (traditional RA applied in a life-cycle perspective) and “RA-complemented LCA” (conventional LCA supplemented by RA in specific life-cycle steps). Hence, the latter is the only identified approach which genuinely combines LC- and RA-based methods for NM-risk research efforts to date as the former is rather a continuation of normal RA according to standard assessment procedures (e.g., REACH). Both these approaches along with recommendations for using LCA and RA together for NM are similar to those made previously for chemicals, and thus, there does not appear to be much progress made specific for NM. We have identified one issue in particular that may be specific for NM when applying LCA and RA at this time: the need to establish proper dose metrics within both methods.

  7. Steam sauna and mother roasting in Lao PDR: practices and chemical constituents of essential oils of plant species used in postpartum recovery

    Science.gov (United States)

    2011-01-01

    Background Fundamental in traditional postpartum recovery in Lao PDR is the use of hotbeds, mother roasting, steam sauna and steam baths. During these treatments medicinal plants play a crucial role, but little has been published about how the treatments are carried out precisely, which species are used, the medicinal properties of these species, and the medicinal efficacy of their chemical constituents. Methods Sixty-five interviews, in 15 rural villages, with women of 4 different ethnic groups were conducted to survey confinement rituals, and postpartum plant use and salience. Essential oils from the main species used were extracted using steam distillation and the main chemical constituents characterized using gas chromatography-mass spectrometry (GC-MS). Results A total of 10 different species were used by three or more of the ethnic groups included in this study. All species were used in steam sauna and bath, but only 3 species were used in hotbed and mother roasting. Essential oils of Amomum villosum, Amomum microcarpum and Blumea balsamifera were found to contain significant amounts of the following terpenes: β-pinene, camphor, bornyl acetate, borneol, linalool, D-limonene, fenchone, terpinen-4-ol and α-terpinene. Conclusions Many of these terpenes have documented antimicrobial and analgesic properties, and some have also synergistic interactions with other terpenes. The mode of application in hotbed and mother roasting differs from the documented mechanisms of action of these terpenes. Plants in these two practices are likely to serve mainly hygienic purposes, by segregating the mother from infection sources such as beds, mats, stools, cloth and towels. Steam sauna medicinal plant use through inhalation of essential oils vapors can possibly have medicinal efficacy, but is unlikely to alleviate the ailments commonly encountered during postpartum convalescence. Steam sauna medicinal plant use through dermal condensation of essential oils, and steam bath

  8. An exergoeconomic assessment of waste heat recovery from a Gas Turbine-Modular Helium Reactor using two transcritical CO2 cycles

    International Nuclear Information System (INIS)

    Wang, Xurong; Dai, Yiping

    2016-01-01

    Highlights: • A Gas Turbine-Modular Helium Reactor is coupled with two transcritical CO 2 cycles. • Exergoeconomic analysis and optimization of the combined cycle was performed. • The energy efficiency of the cogeneration system was enhanced by 7.92% at 850 °C. • The overall exergoeconomic factor of the system could up to 55.2%. - Abstract: A comprehensive study is performed on an energy conversion system which combines a gas turbine-modular helium reactor (GT-MHR) and two transcritical CO 2 cycles (tCO 2 ). The aim of this study is to assess the energy, exergy and economic behavior of the proposed system, considering five indicators: the energy efficiency, the exergy efficiency, the total exergy destruction cost rate, the overall exergoeconomic factor and the total cost rate. A parametric study is also conducted to evaluate the influence of key decision variables on the GT-MHR/tCO 2 performance. Finally, the combined cycle is optimized to minimize the total cost rate. The results show that the energy efficiency of GT-MHR/tCO 2 cycle is 7.92% higher than that of the simple GT-MHR cycle at 850 °C. The largest exergy destruction rate takes place in the reactor, and after that in the helium turbine and the recuperator. The components in tCO 2 cycles have less exergy destruction. When the optimization is conducted based on the exergoeconomics, the overall exergoeconomic factor, the total cost rate and the total exergy destruction cost rate are 55.2%, 20,752 $/h and 9292 $/h, respectively.

  9. Migration modeling to estimate exposure to chemicals in food packaging for application in highthroughput risk-based screening and Life Cycle Assessment

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Jolliet, O.; Huang, L.

    2017-01-01

    and risk prioritization and screening. To fulfill the need for a migration model flexibly suitable for such tools, we develop an accurate and rapid (high-throughput) approach. The developed model estimates the fraction of an organic chemical migrating from polymeric packaging into food for user-defined...... instantaneously estimates migration from packaging into food for user-defined scenarios, and has improved performance over common model simplifications. The common practice of setting the package-food partition coefficient = 1 for specific "worst-case" scenarios is insufficient to predict the equilibrium......Specialty software and simplified models are often used to estimate "worst-case" migration of potentially toxic chemicals from packaging into food. Current approaches, however, cannot efficiently and accurately provide estimates of migration for emerging applications, e.g. in Life Cycle Assessment...

  10. Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals?

    DEFF Research Database (Denmark)

    Grieger, Khara Deanne; Laurent, Alexis; Miseljic, Mirko

    2012-01-01

    While it is generally agreed that successful strategies to address the health and environmental impacts of engineered nanomaterials (NM) should consider the well-established frameworks for conducting life-cycle assessment (LCA) and risk assessment (RA), scientific research, and specific guidance...... on how to practically apply these methods are still very much under development. This paper evaluates how research efforts have applied LCA and RA together for NM, particularly reflecting on previous experiences with applying these methods to chemicals. Through a literature review and a separate analysis...... of research focused on applying LCA and RA together for NM, it appears that current research efforts have taken into account some key ‘‘lessons learned’’ from previous experience with chemicals while many key challenges remain for practically applying these methods to NM. We identified two main approaches...

  11. Chemical Method to Improve CO{sub 2} Flooding Sweep Efficiency for Oil Recovery Using SPI-CO{sub 2} Gels

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Lyle D.

    2009-04-14

    hydrocarbon combustion for energy, chemical and fertilizer plants. For example, coal fired power plants emit large amounts of CO{sub 2} in order to produce electrical energy. Carbon dioxide sequestration is gaining attention as concerns mount over possible global climate change caused by rising emissions of greenhouse gases. Removing the CO{sub 2} from the energy generation process would make these plants more environmentally friendly. In addition, CO{sub 2} flooding is an attractive means to enhance oil and natural gas recovery. Capture and use of the CO{sub 2} from these plants for recycling into CO{sub 2} flooding of marginal reservoirs provides a “dual use” opportunity prior to final CO{sub 2} sequestration in the depleted reservoir. Under the right pressure, temperature and oil composition conditions, CO{sub 2} can act as a solvent, cleaning oil trapped in the microscopic pores of the reservoir rock. This miscible process greatly increases the recovery of crude oil from a reservoir compared to recovery normally seen by waterflooding. An Enhanced Oil Recovery (EOR) project that uses an industrial source of CO{sub 2} that otherwise would be vented to the atmosphere has the added environmental benefit of sequestering the greenhouse gas.

  12. Comparison of diffusion-weighted images using short inversion time inversion recovery or chemical shift selective pulse as fat suppression in patients with breast cancer

    International Nuclear Information System (INIS)

    Kazama, Toshiki; Nasu, Katsuhiro; Kuroki, Yoshifumi; Nawano, Shigeru; Ito, Hisao

    2009-01-01

    Fat suppression is essential for diffusion-weighted imaging (DWI) in the body. However, the chemical shift selective (CHESS) pulse often fails to suppress fat signals in the breast. The purpose of this study was to compare DWI using CHESS and DWI using short inversion time inversion recovery (STIR) in terms of fat suppression and the apparent diffusion coefficient (ADC) value. DWI using STIR, DWI using CHESS, and contrast-enhanced T1-weighted images were obtained in 32 patients with breast carcinoma. Uniformity of fat suppression, ADC, signal intensity, and visualization of the breast tumors were evaluated. In 44% (14/32) of patients there was insufficient fat suppression in the breasts on DWI using CHESS, whereas 0% was observed on DWI using STIR (P<0.0001). The ADCs obtained for DWI using STIR were 4.3% lower than those obtained for DWI using CHESS (P<0.02); there was a strong correlation of the ADC measurement (r=0.93, P<0.001). DWI using STIR may be excellent for fat suppression; and the ADC obtained in this sequence was well correlated with that obtained with DWI using CHESS. DWI using STIR may be useful when the fat suppression technique in DWI using CHESS does not work well. (author)

  13. The effects of multiple thermomechanical cycles on the chemical and physical properties, morphology, and mechanical properties of a polycarbonate/ABS blend

    Science.gov (United States)

    Sloop, Charles Clayton, III

    A commercial blend of Polycarbonate (PC) and Acrylonitrile-Butadiene-Styrene (ABS) was subjected to five thermomechanical processing cycles. The virgin resin was characterized by a number of techniques; Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Thermogravometric Analysis (TGA), Gel Permeation Chromatography (GPC) and Melt Flow (MFI) to determine the initial chemical and physical properties. Model resins of the PC/ABS components were also characterized by these techniques. A sequential extraction procedure was developed to isolate the PC, free Styrene-Acrylonitrile copolymer (SAN), and SAN-graft-Polybutadiene (SAN-g-PB) components for individual analysis. After each thermomechanical cycle, the PC/ABS blend was analyzed to determine the effect of the additional processing cycle. Individual components were also analyzed after each cycle. Through five thermomechancial processing cycles, the major effects on the PC/ABS were degradation of the SAN-graft-Polybutadiene rubber by crosslinking and chain scission reactions and chain scission of the SAN copolymer due to thermal degradation and mechanical shearing. The crosslinking reaction of the SAN-g-PB was monitored by FT-IR, DSC, and TGA of the isolated SAN-g-PB while chain-scission reactions were monitored by FT-IR and TGA. Chain scission of the SAN copolymer was monitored by GPC molecular weight determinations of the isolated SAN fraction. PC/ABS morphology was analyzed by Scanning and Transmission Electron Microscopy (SEM, TEM) and by a novel new technique, X-ray Absorption Near Edge Spectrocopy (XANES) that utilizes chemical specificity in the carbon K-shell absorption edge to provide phase contrast. The PC/ABS morphology consisted of a fine dispersion of ABS domains of 750-800 nm average diameter in the bulk morphology of the blend. Near the specimen surface, extended threadlike ABS domains were observed. The morphology as a result of thermomechanical cycling was analyzed qualitatively by

  14. Analyzing the Performance of a Dual Loop Organic Rankine Cycle System for Waste Heat Recovery of a Heavy-Duty Compressed Natural Gas Engine

    Directory of Open Access Journals (Sweden)

    Baofeng Yao

    2014-11-01

    Full Text Available A dual loop organic Rankine cycle (DORC system is designed to recover waste heat from a heavy-duty compressed natural gas engine (CNGE, and the performance of the DORC–CNGE combined system is simulated and discussed. The DORC system includes high-temperature (HT and low-temperature (LT cycles. The HT cycle recovers energy from the exhaust gas emitted by the engine, whereas the LT cycle recovers energy from intake air, engine coolant, and the HT cycle working fluid in the preheater. The mathematical model of the system is established based on the first and second laws of thermodynamics. The characteristics of waste heat energy from the CNGE are calculated according to engine test data under various operating conditions. Moreover, the performance of the DORC–CNGE combined system is simulated and analyzed using R245fa as the working fluid. Results show that the maximum net power output and the maximum thermal efficiency of the DORC system are 29.37 kW and 10.81%, respectively, under the rated power output condition of the engine. Compared with the original CNG engine, the maximum power output increase ratio and the maximum brake specific fuel consumption improvement ratio are 33.73% and 25%, respectively, in the DORC–CNGE combined system.

  15. Recent advancements of chemical engineering in front end fuel cycle technologies at NFC. Contributed Paper IT-01

    International Nuclear Information System (INIS)

    Saibaba, N.

    2014-01-01

    On front end fuel cycle side, Nuclear Fuel Complex (NFC) has been a pioneer in processing the uranium and zirconium ore concentrates from different sources. The uranium and zirconium ore concentrates are converted into nuclear grade uranium and zirconium di oxide powders through the conventional TBP purification and precipitation route. In case of zirconium powders, they are converted into pure nuclear grade zirconium sponge through chlorination route for the production of zirconium alloys, which are mainly used as reactor core structural material

  16. Chemical cycling and deposition of atmospheric mercury in polar regions: review of recent measurements and comparison with models

    Directory of Open Access Journals (Sweden)

    H. Angot

    2016-08-01

    Full Text Available Mercury (Hg is a worldwide contaminant that can cause adverse health effects to wildlife and humans. While atmospheric modeling traces the link from emissions to deposition of Hg onto environmental surfaces, large uncertainties arise from our incomplete understanding of atmospheric processes (oxidation pathways, deposition, and re-emission. Atmospheric Hg reactivity is exacerbated in high latitudes and there is still much to be learned from polar regions in terms of atmospheric processes. This paper provides a synthesis of the atmospheric Hg monitoring data available in recent years (2011–2015 in the Arctic and in Antarctica along with a comparison of these observations with numerical simulations using four cutting-edge global models. The cycle of atmospheric Hg in the Arctic and in Antarctica presents both similarities and differences. Coastal sites in the two regions are both influenced by springtime atmospheric Hg depletion events and by summertime snowpack re-emission and oceanic evasion of Hg. The cycle of atmospheric Hg differs between the two regions primarily because of their different geography. While Arctic sites are significantly influenced by northern hemispheric Hg emissions especially in winter, coastal Antarctic sites are significantly influenced by the reactivity observed on the East Antarctic ice sheet due to katabatic winds. Based on the comparison of multi-model simulations with observations, this paper discusses whether the processes that affect atmospheric Hg seasonality and interannual variability are appropriately represented in the models and identifies research gaps in our understanding of the atmospheric Hg cycling in high latitudes.

  17. Multi-objective optimization of a combined steam-organic Rankine cycle based on exergy and exergo-economic analysis for waste heat recovery application

    International Nuclear Information System (INIS)

    Nazari, Navid; Heidarnejad, Parisa; Porkhial, Soheil

    2016-01-01

    Highlights: • Exergo-economic optimization of combined steam-organic cycle is performed. • Genetic algorithm is used to perform multi-objective optimization. • Total product cost rate and exergy efficiency were selected as the objective function. • Three different organic fluids (R124, R152a andR134a) were chosen to monitor the system performance. • A parametric study is done using three different decision variables. - Abstract: In this paper, a combined steam-organic Rankine cycle is proposed to recover the waste heat of a gas turbine. Proposed combined system includes a subcritical steam Rankine cycle that is coupled with a transcritical organic Rankine cycle. Three different organic fluids such as R124, R152a, and R134a are selected to monitor the thermodynamic and exergo-economic performance of the system. Results show that maximum exergy efficiency and minimum total product cost rate of a studied system for the base case condition are 57.62% and 396.7 ($/h) for the combined cycle with R124 and R152a, respectively. Also, a parametric study is performed to investigate the effects of key parameters including steam turbine inlet pressure, organic turbine inlet pressure, organic preheater pinch temperature and organic condensation temperature on exergetic efficiency and total product cost rate of the system. Finally, the Genetic algorithm is employed to conduct a multi-objective optimization of the system with two objective functions including exergy efficiency and total product cost rate. The results of optimization revealed that combined cycle with R152a has the best performance from thermodynamic and exergo-economic viewpoint among analyzed fluids.

  18. Improvement in high-voltage and high rate cycling performance of nickel-rich layered cathode materials via facile chemical vapor deposition with methane

    International Nuclear Information System (INIS)

    Hyuk Son, In; Park, Kwangjin; Hwan Park, Jong

    2017-01-01

    Nickel-rich layered-oxide materials are considered promising candidates for application as cathode material in high-energy lithium ion batteries. However, their cycling performance at high voltages and rate conditions require further improvement for the purpose of commercialization. Here, we report on the facile surface modification of nickel-rich layered oxide by chemical vapor deposition with methane which yields a conductive and protective artificial solid electrolyte interphase layer consisting of amorphous carbon, alkyl lithium carbonate, and lithium carbonate. We examine the mechanism of the protective layer formation and structural deformation of the nickel-rich layered oxide during chemical vapor deposition with methane. Via optimizing the reaction conditions, we improve the electrical conductivity as well as the interfacial stability of the nickel-rich layered oxide without inducing structural deformation. The surface-modified nickel-rich layered oxide exhibits an improved performance due to the resulting enhanced rate capability, high initial efficiency, and long cycle life at high voltage (>4.5 V).

  19. High-Throughput Chemical Screening Identifies Compounds that Inhibit Different Stages of the Phytophthora agathidicida and Phytophthora cinnamomi Life Cycles

    Directory of Open Access Journals (Sweden)

    Scott A. Lawrence

    2017-07-01

    Full Text Available Oomycetes in the genus Phytophthora are among the most damaging plant pathogens worldwide. Two important species are Phytophthora cinnamomi, which causes root rot in thousands of native and agricultural plants, and Phytophthora agathidicida, which causes kauri dieback disease in New Zealand. As is the case for other Phytophthora species, management options for these two pathogens are limited. Here, we have screened over 100 compounds for their anti-oomycete activity, as a potential first step toward identifying new control strategies. Our screening identified eight compounds that showed activity against both Phytophthora species. These included five antibiotics, two copper compounds and a quaternary ammonium cation. These compounds were tested for their inhibitory action against three stages of the Phytophthora life cycle: mycelial growth, zoospore germination, and zoospore motility. The inhibitory effects of the compounds were broadly similar between the two Phytophthora species, but their effectiveness varied widely among life cycle stages. Mycelial growth was most successfully inhibited by the antibiotics chlortetracycline and paromomycin, and the quaternary ammonium salt benzethonium chloride. Copper chloride and copper sulfate were most effective at inhibiting zoospore germination and motility, whereas the five antibiotics showed relatively poor zoospore inhibition. Benzethonium chloride was identified as a promising antimicrobial, as it is effective across all three life cycle stages. While further testing is required to determine their efficacy and potential phytotoxicity in planta, we have provided new data on those agents that are, and those that are not, effective against P. agathidicida and P. cinnamomi. Additionally, we present here the first published protocol for producing zoospores from P. agathidicida, which will aid in the further study of this emerging pathogen.

  20. High-Throughput Chemical Screening Identifies Compounds that Inhibit Different Stages of the Phytophthora agathidicida and Phytophthora cinnamomi Life Cycles.

    Science.gov (United States)

    Lawrence, Scott A; Armstrong, Charlotte B; Patrick, Wayne M; Gerth, Monica L

    2017-01-01

    Oomycetes in the genus Phytophthora are among the most damaging plant pathogens worldwide. Two important species are Phytophthora cinnamomi , which causes root rot in thousands of native and agricultural plants, and Phytophthora agathidicida , which causes kauri dieback disease in New Zealand. As is the case for other Phytophthora species, management options for these two pathogens are limited. Here, we have screened over 100 compounds for their anti-oomycete activity, as a potential first step toward identifying new control strategies. Our screening identified eight compounds that showed activity against both Phytophthora species. These included five antibiotics, two copper compounds and a quaternary ammonium cation. These compounds were tested for their inhibitory action against three stages of the Phytophthora life cycle: mycelial growth, zoospore germination, and zoospore motility. The inhibitory effects of the compounds were broadly similar between the two Phytophthora species, but their effectiveness varied widely among life cycle stages. Mycelial growth was most successfully inhibited by the antibiotics chlortetracycline and paromomycin, and the quaternary ammonium salt benzethonium chloride. Copper chloride and copper sulfate were most effective at inhibiting zoospore germination and motility, whereas the five antibiotics showed relatively poor zoospore inhibition. Benzethonium chloride was identified as a promising antimicrobial, as it is effective across all three life cycle stages. While further testing is required to determine their efficacy and potential phytotoxicity in planta , we have provided new data on those agents that are, and those that are not, effective against P. agathidicida and P. cinnamomi . Additionally, we present here the first published protocol for producing zoospores from P. agathidicida , which will aid in the further study of this emerging pathogen.

  1. Dynamic Chemical and Structural Changes of Heterogeneous Catalysts Observed in Real Time: From Catalysis-Induced Fluxionality to Catalytic Cycles

    Science.gov (United States)

    2014-11-26

    Changes of Heterogeneous Catalysts Observed in Real Time: From Catalysis -Induced Fluxionality to Catalytic Cycles” (FA9550-12-1-0204) Robert M. Rioux...report The results from “Dynamic Chemical and Structural Changes of Heterogeneous Catalysts Observed in Real Time: From Catalysis -Induced... fuels via the Fischer-Tropsch process. One reaction that is particularly detrimental to the Fischer-Tropsch process is the methanation of carbon

  2. Life Cycle Inventory (LCI) Data-Treatment Chemicals, Construction Materials, Transportation, On-site Equipment, and other Processes for Use in Spreadsheets for Environmental Footprint Analysis (SEFA): Revised Addition

    Science.gov (United States)

    This report estimates environmental emission factors (EmF) for key chemicals, construction and treatment materials, transportation/on-site equipment, and other processes used at remediation sites. The basis for chemical, construction, and treatment material EmFs is life cycle inv...

  3. Using Dynamic Simulation to Evaluate Attemperator Operation in a Natural Gas Combined Cycle With Duct Burners in the Heat Recovery Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Liese, Eric [National Energy Technology Laboratory,Department of Energy,Systems Engineering and Analysis Division,Morgantown, WV 26507e-mail: eric.liese@netl.doe.gov; Zitney, Stephen E. [National Energy Technology Laboratory,Department of Energy,Systems Engineering and Analysis Division,Morgantown, WV 26507e-mail: stephen.zitney@netl.doe.gov

    2017-09-26

    A generic training simulator of a natural gas combined cycle was modified to match operations at a real plant. The objective was to use the simulator to analyze cycling operations of the plant. Initial operation of the simulator revealed the potential for saturation conditions in the final high pressure superheater as the attemperator tried to control temperature at the superheater outlet during gas turbine loading and unloading. Subsequent plant operational data confirmed simulation results. Multiple simulations were performed during loading and unloading of the gas turbine to determine operational strategies that prevented saturation and increased the approach to saturation temperature. The solutions included changes to the attemperator temperature control setpoints and strategic control of the steam turbine inlet pressure control valve.

  4. Ingestion of Sodium Bicarbonate (NaHCO3) Following a Fatiguing Bout of Exercise Accelerates Postexercise Acid-Base Balance Recovery and Improves Subsequent High-Intensity Cycling Time to Exhaustion.

    Science.gov (United States)

    Gough, Lewis A; Rimmer, Steven; Osler, Callum J; Higgins, Matthew F

    2017-10-01

    This study evaluated the ingestion of sodium bicarbonate (NaHCO 3 ) on postexercise acid-base balance recovery kinetics and subsequent high-intensity cycling time to exhaustion. In a counterbalanced, crossover design, nine healthy and active males (age: 23 ± 2 years, height: 179 ± 5 cm, body mass: 74 ± 9 kg, peak mean minute power (W peak ) 256 ± 45 W, peak oxygen uptake (V̇O 2peak ) 46 ± 8 ml.kg -1 .min -1 ) performed a graded incremental exercise test, two familiarization and two experimental trials. Experimental trials consisted of cycling to volitional exhaustion (T LIM1 ) at 100% W PEAK on two occasions (T LIM1 and T LIM2 ) interspersed by a 90 min passive recovery period. Using a double-blind approach, 30 min into a 90 min recovery period participants ingested either 0.3 g.kg -1 body mass sodium bicarbonate (NaHCO 3 ) or a placebo (PLA) containing 0.1 g.kg -1 body mass sodium chloride (NaCl) mixed with 4 ml.kg -1 tap water and 1 ml.kg -1 orange squash. The mean differences between T LIM2 and T LIM1 was larger for PLA compared with NaHCO 3 (-53 ± 53 vs. -20 ± 48 s; p = .008, d = 0.7, CI =-0.3, 1.6), indicating superior subsequent exercise time to exhaustion following NaHCO 3 . Blood lactate [Bla - ] was similar between treatments post T LIM1 , but greater for NaHCO 3 post T LIM2 and 5 min post T LIM2 . Ingestion of NaHCO 3 induced marked increases (p bicarbonate ion concentration [HCO 3 - ] (+6.8 ± 1.6 mmo.l -1 , d = 3.4, CI = 1.8, 4.7) compared with the PLA treatment, before T LIM2 . It is likely both the acceleration of recovery, and the marked increases of acid-base after T LIM1 contributed to greater T LIM2 performance compared with the PLA condition.

  5. Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery

    International Nuclear Information System (INIS)

    Yang, Fubin; Zhang, Hongguang; Yu, Zhibin; Wang, Enhua; Meng, Fanxiao; Liu, Hongda; Wang, Jingfu

    2017-01-01

    In this study, a dual loop ORC (organic Rankine cycle) system is adopted to recover exhaust energy, waste heat from the coolant system, and intercooler heat rejection of a six-cylinder CNG (compressed natural gas) engine. The thermodynamic, heat transfer, and optimization models for the dual loop ORC system are established. On the basis of the waste heat characteristics of the CNG engine over the whole operating range, a GA (genetic algorithm) is used to solve the Pareto solution for the thermodynamic and heat transfer performances to maximize net power output and minimize heat transfer area. Combined with optimization results, the optimal parameter regions of the dual loop ORC system are determined under various operating conditions. Then, the variation in the heat transfer area with the operating conditions of the CNG engine is analyzed. The results show that the optimal evaporation pressure and superheat degree of the HT (high temperature) cycle are mainly influenced by the operating conditions of the CNG engine. The optimal evaporation pressure and superheat degree of the HT cycle over the whole operating range are within 2.5–2.9 MPa and 0.43–12.35 K, respectively. The optimal condensation temperature of the HT cycle, evaporation and condensation temperatures of the LT (low temperature) cycle, and exhaust temperature at the outlet of evaporator 1 are kept nearly constant under various operating conditions of the CNG engine. The thermal efficiency of the dual loop ORC system is within the range of 8.79%–10.17%. The dual loop ORC system achieves the maximum net power output of 23.62 kW under the engine rated condition. In addition, the operating conditions of the CNG engine and the operating parameters of the dual loop ORC system significantly influence the heat transfer areas for each heat exchanger. - Highlights: • A dual loop ORC system is adopted to recover the waste heat of a CNG engine. • Parametric optimization and heat transfer analysis are

  6. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Science.gov (United States)

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  7. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Science.gov (United States)

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  8. The Nature of Variations in Anomalies of the Chemical Composition of the Solar Corona with the 11-Year Cycle

    Science.gov (United States)

    Pipin, V. V.; Tomozov, V. M.

    2018-04-01

    Evidence that the distribution of the abundances of admixtures with low first-ionization potentials (FIP 10 eV) in active regions and closed magnetic configurations in the lower corona. Observations with the ULYSSES spacecraft and at the Stanford Solar Observatory have revealed strong correlations between the manifestation of the FIP effect in the solar wind, the strength of the open magnetic flux (without regard to sign), and the ratio of the large-scale toroidal and poloidal magnetic fields at the solar surface. Analyses of observations of the Sun as a star show that the enhancement of the abundances of admixtures with low FIPs in the corona compared to their abundances in the photosphere (the FIP effect) is closely related to the solar-activity cycle and also with variations in the topology of the large-scale magnetic field. A possible mechanism for the relationship between the FIP effect and the spectral type of a star is discussed in the framework of solar-stellar analogies.

  9. Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kunlei [Univ. of Kentucky, Lexington, KY (United States); Chen, Liangyong [Univ. of Kentucky, Lexington, KY (United States); Zhang, Yi [Univ. of Kentucky, Lexington, KY (United States); Richburg, Lisa [Univ. of Kentucky, Lexington, KY (United States); Simpson, James [WorleyParsons Group Inc., Reading, PA (United States); White, Jay [WorleyParsons Group Inc., Reading, PA (United States); Rossi, Gianalfredo [WorleyParsons Group Inc., Reading, PA (United States)

    2013-12-31

    The purpose of this document is to report the final result of techno-economic analysis for the proposed 550MWe integrated pressurized chemical looping combustion combined cycle process. An Aspen Plus based model is delivered in this report along with the results from three sensitivity scenarios including the operating pressure, excess air ratio and oxygen carrier performance. A process flow diagram and detailed stream table for the base case are also provided with the overall plant energy balance, carbon balance, sulfur balance and water balance. The approach to the process and key component simulation are explained. The economic analysis (OPEX and CAPX) on four study cases via DOE NETL Reference Case 12 are presented and explained.

  10. Effects of physical, chemical or biological factors on DNA replication in mammalian cells. Part 2. Recovery of DNA complex, nucleoid and DNA replication after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Synzynys, B.I.; Kiseleva, V.I.; Trofimova, S.F.

    1984-11-01

    Murine LL cell line was employed in studies on the effects of gamma irradiation (6 Gy, 8 Gy/min from Co-60 source) on the kinetics and repair of DNA superstructure and recovery of DNA synthesis. Comparison of the kinetic data for the postradiation repair of the DNA-membrane complex, nucleoid, and recovery of DNA synthesis demonstrated that functional recovery of the former two factors preceded DNA synthesis by at least 2 h. In view of this lag, it appears that additional factors are involved in radiation damage that must be repaired before DNA synthesis commences. 10 references, 3 figures.

  11. An integrated system combining chemical looping hydrogen generation process and solid oxide fuel cell/gas turbine cycle for power production with CO2 capture

    Science.gov (United States)

    Chen, Shiyi; Xue, Zhipeng; Wang, Dong; Xiang, Wenguo

    2012-10-01

    In this paper, the solid oxide fuel cell/gas turbine (SOFC/GT) cycle is integrated with coal gasification and chemical looping hydrogen generation (CLHG) for electric power production with CO2 capture. The CLHG-SOFC/GT plant is configurated and the schematic process is modeled using Aspen Plus® software. Syngas, produced by coal gasification, is converted to hydrogen with CO2 separation through a three-reactors CLHG process. Hydrogen is then fueled to SOFC for power generation. The unreacted hydrogen from SOFC burns in a combustor and drives gas turbine. The heat of the gas turbine exhaust stream is recovered in HRSG for steam bottoming cycle. At a system pressure of 20 bar and a cell temperature of 900 °C, the CLHG-SOFC/GT plant has a net power efficiency of 43.53% with no CO2 emissions. The hybrid power plant performance is attractive because of high energy conversion efficiency and zero-CO2-emission. Key parameters that influence the system performance are also discussed, including system operating pressure, cell temperature, fuel utilization factor, steam reactor temperature, CO2 expander exhaust pressure and inlet gas preheating.

  12. Hydrogeochemical cycling and chemical denudation in the Fort River Watershed, central Massachusetts: An appraisal of mass-balance studies

    Science.gov (United States)

    Yuretich, Richard F.; Batchelder, Gail L.

    1988-01-01

    The Fort River watershed in central Massachusetts receives precipitation with a composition similar to that in Hubbard Brook (New Hampshire), yet the average stream water chemistry is substantially different, showing higher pH and TDS. This is largely a function of bedrock and surficial geology, and chemical differences among small streams within the Fort River watershed are apparently controlled by the composition and thickness of the prevailing surficial cover. The surficial deposits determine groundwater and surface water flow paths, thereby affecting the resultant contact time with mineral matter and the chemistry of the runoff. Despite the rural setting, over 95% of the annual sodium and chloride in the streams comes from road salt; after correcting for this factor, cation denudation rates are about equal to those at Hubbard Brook. However, silica removal is occurring at a rate more than 30% greater in the Fort River. When climatic conditions in Hubbard Brook and Fort River are normalized, weathering rates appear consistently higher in the Fort River, reflecting differences in weathering processes (i.e., cation exchange and silicate breakdown) and hydrogeology. Because of uncertainties in mechanisms of cation removal from watersheds, the silica denudation rate may be a better index of weathering intensity.

  13. Seasonal changes in chemical and mineralogical composition of sewage sludge incineration residues and their potential for metallic elements and valuable components recovery

    Science.gov (United States)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2017-04-01

    Increasing energy needs, the implementation of the circular economy principles and rising environmental awareness caused that waste management is becoming a major social and economic issue. The EU Member States have committed to a significant reduction in the amount of waste produced and landfilled and to use their inherent energy and raw materials potential. One of the most reasonable option to fulfil these commitments is waste incineration. The aim of the waste incineration is to reduce their volume and toxicity by disinfection and detoxification at high temperatures. Thermal process and reduction of volume allows the recovery of minerals and metallic elements from residues as well as the energy production (waste-to-energy strategy) during incineration. As a result of waste incineration a variety of solid residues (bottom ash, fly ash, air pollution control residues) and technological waste (gas waste, wastewater) are produced. The goal of this study is to characterize fly ash and air pollution control (APC) residues formed as a result of municipal sewage sludge incineration in terms of their chemical and mineral composition and their extractive potential. Residues were sampled quarterly to study their seasonal changes in composition. The fly ash was a Si-P-C-Fe-Al dominated material, whereas the APC residues composition was dominated by Na-rich soluble phases. The removal of soluble phase ( 98% of the material) from the APC residues by dissolution in deionised water caused significant mass reduction and concentration of non-soluble elements. The main mineral phases in fly ash were quartz, hematite, Fe-PO4, whitlockite and feldspar, while in APC thenardite, and in lower amount calcite, apatite and quartz were present. The chemical composition of fly ash was practically invariable in different seasons, but significant differences were observed in APC residues. The lowest concentrations of all elements and the highest TOC content were measured in the samples

  14. Disaster Debris Recovery Database - Recovery

    Data.gov (United States)

    U.S. Environmental Protection Agency — The US EPA Disaster Debris Recovery Database (DDRD) promotes the proper recovery, recycling, and disposal of disaster debris for emergency responders at the federal,...

  15. Impact of biological treatments of bio-waste for nutrients, energy and bio-methane recovery in a life cycle perspective.

    Science.gov (United States)

    Di Maria, Francesco; Micale, Caterina; Contini, Stefano; Morettini, Emanuela

    2016-06-01

    Composting of the source-segregated organic fraction of municipal solid waste was compared in a life cycle perspective with conventional anaerobic digestion (AD), aimed at electricity substitution, and with AD aimed at biogas upgrading into bio-methane. Three different uses of the bio-methane were considered: injection in the natural gas grid for civil heating needs; use as fuel for high efficiency co-generation; use as fuel for vehicles. Scenarios with biogas upgrading showed quite similar impact values, generally higher than those of composting and conventional AD, for which there was a lower impact. A decisive contribution to the higher impact of the scenarios with bio-methane production was by the process for biogas upgrading. In any case the substitution of natural gas with bio-methane resulted in higher avoided impacts compared to electricity substitution by conventional AD. The uncertainty analysis confirmed the positive values for eutrophication, acidification and particulate matter. Large uncertainty was determined for global warming and photochemical ozone formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna Post [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  17. Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC Waste Heat Recovery System

    Directory of Open Access Journals (Sweden)

    Gaosheng Li

    2016-04-01

    Full Text Available A novel free piston expander-linear generator (FPE-LG integrated unit was proposed to recover waste heat efficiently from vehicle engine. This integrated unit can be used in a small-scale Organic Rankine Cycle (ORC system and can directly convert the thermodynamic energy of working fluid into electric energy. The conceptual design of the free piston expander (FPE was introduced and discussed. A cam plate and the corresponding valve train were used to control the inlet and outlet valve timing of the FPE. The working principle of the FPE-LG was proven to be feasible using an air test rig. The indicated efficiency of the FPE was obtained from the p–V indicator diagram. The dynamic characteristics of the in-cylinder flow field during the intake and exhaust processes of the FPE were analyzed based on Fluent software and 3D numerical simulation models using a computation fluid dynamics method. Results show that the indicated efficiency of the FPE can reach 66.2% and the maximal electric power output of the FPE-LG can reach 22.7 W when the working frequency is 3 Hz and intake pressure is 0.2 MPa. Two large-scale vortices are formed during the intake process because of the non-uniform distribution of velocity and pressure. The vortex flow will convert pressure energy and kinetic energy into thermodynamic energy for the working fluid, which weakens the power capacity of the working fluid.

  18. Modification of chemical and physical factors in steamflood to increase heavy oil recovery. Annual report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Y.C.

    1992-04-01

    This report covers work performed in the area related to the physicochemical factors for the improvement of the oil recovery efficiency in steamfloods. In this context, three general areas are studied: (1) The understanding of vapor-liquid flow in porous media, whether the flow is internal (boiling), external (steam injection) or countercurrent (as in vertical heat pipes). (2) The effect of reservoir heterogeneity, particularly as it regards fractured systems and long and narrow reservoirs (which are typical of oil reservoirs). (3) The flow properties of additives for the improvement of recovery efficiency, in particular the properties of foams.

  19. Chemical recovery of acidified Bohemian lakes between 1984 and 2012. The role of acid deposition and bark beetle induced forest disturbance

    Czech Academy of Sciences Publication Activity Database

    Oulehle, Filip; Chuman, Tomáš; Majer, V.; Hruška, Jakub

    2013-01-01

    Roč. 116, 1-3 (2013), s. 83-101 ISSN 0168-2563 Institutional support: RVO:67179843 Keywords : acidification * nitrogen saturation * aluminium * recovery * Bark beetle * land cover Subject RIV: EH - Ecology, Behaviour Impact factor: 3.730, year: 2013

  20. Repeated cycles of chemical and physical disinfection and their influence on Mycobacterium avium subsp. paratuberculosis viability measured by propidium monoazide F57 quantitative real time PCR.

    Science.gov (United States)

    Kralik, Petr; Babak, Vladimir; Dziedzinska, Radka

    2014-09-01

    Mycobacterium avium subsp. paratuberculosis (MAP) has a high degree of resistance to chemical and physical procedures frequently used for the elimination of other bacteria. Recently, a method for the determination of viability by exposure of MAP to propidium monoazide (PMA) and subsequent real time quantitative PCR (qPCR) was established and found to be comparable with culture. The aim of this study was to apply the PMA qPCR method to determine the impact of increasing concentration or time and repeated cycles of the application of selected disinfectants on MAP viability. Different MAP isolates responded to the same type of stress in different ways. The laboratory strain CAPM 6381 had the highest tolerance, while the 8819 low-passage field isolate was the most sensitive. Ultraviolet exposure caused only a partial reduction in MAP viability; all MAP isolates were relatively resistant to chlorine. Only the application of peracetic acid led to the total elimination of MAP. Repeated application of the treatments resulted in more significant decreases in MAP viability compared to single increases in the concentration or time of exposure to the disinfectant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Implementing an energetic life cycle analysis to prove the benefits of lignocellulosic feedstocks with protein separation for the chemical industry from the existing bioethanol industry.

    Science.gov (United States)

    Brehmer, Ben; Sanders, Johan

    2009-02-15

    The biofuel ethanol is currently being produced in large quantities from corn in the US and from wheat in the EU and further capacity expansion is expected. Relying on the so-called 1st generation technology, only the starch contained in the edible portion of the crops (ears/grains) is subjected to fermentation. Following life cycle calculations reveals minute levels of fossil fuel replacement placing doubt on its renewability and an imbalance on the domestic animal feed markets are immerging due to the by-product distiller grains. Additional utilization of the lignocellulosic and protein components of the by-product through new developments has the potential to alleviate both setbacks. A cradle-to-factory gate analysis was performed on a variety of bioethanol production layouts incorporating the newest technological developments to determine the maximum fossil fuel reduction potential. Expanding to include lignocellulose pretreatment for ethanol production with protein separation for amine-based chemical production can increase the fossil fuel mitigation potential by seven- to ninefold for US-corn and five- to eightfold for EU-wheat bioethanol facilities.

  2. Generalized Recovery

    DEFF Research Database (Denmark)

    Skov Jensen, Christian; Lando, David; Heje Pedersen, Lasse

    of Ross (2015). Our characterization is simple and intuitive, linking recovery to the relation between the number of time periods on the number of states. When recovery is feasible, our model is easy to implement, allowing a closed-form linearized solution. We implement our model empirically, testing...... the predictive power of the recovered expected return, crash risk, and other recovered statistics....

  3. Backup & Recovery

    CERN Document Server

    Preston, W

    2009-01-01

    Packed with practical, freely available backup and recovery solutions for Unix, Linux, Windows, and Mac OS X systems -- as well as various databases -- this new guide is a complete overhaul of Unix Backup & Recovery by the same author, now revised and expanded with over 75% new material.

  4. Sorption and recovery of platinum from simulated spent catalyst solution and refinery wastewater using chemically modified biomass as a novel sorbent.

    Science.gov (United States)

    Garole, Dipak J; Choudhary, Bharat C; Paul, Debajyoti; Borse, Amulrao U

    2018-04-01

    In this study, Lagerstroemia speciosa biomass modified by polyethylenimine (PEI-LS) was developed as a potential biosorbent for sorption and recovery of platinum(II) from platinum bearing waste solutions. Batch experiments were conducted to study the effect of various parameters on the sorption and recovery of platinum(II) using PEI-LS. The equilibrium time for platinum(II) sorption process was found to be 6 h. Both the sorption kinetics and sorption isotherm data fits pseudo second-order kinetic model and Langmuir isotherm, respectively. The maximum sorption capacity of platinum(II) onto PEI-LS at pH 2 for the studied temperature range (25-45 °C) is in the range of 122-154 mg/g. Evaluation of thermodynamic parameters suggests that the platinum(II) sorption is spontaneous and endothermic in nature. The regeneration of PEI-LS can be achieved using acidic thiourea as an eluent for recovery of platinum from the biosorbent. Fourier transform infrared (FT-IR) analysis suggests many functional groups were involved in platinum(II) sorption onto PEI-LS. Both the scanning electron microscope/energy dispersive spectroscopy (SEM/EDS) and X-ray photoelectron spectroscopy (XPS) analysis suggest a successful modification of raw biomass with PEI. The XPS analysis further concludes that platinum(II) sorption is governed by ion-exchange and co-ordination reaction. Finally, the PEI-LS was shown to recover ≥ 90% of platinum from two simulated solutions: the acid-leached spent catalyst solution and refinery wastewater. The biosorbent developed in this study is a low-cost and eco-friendly media that can be effectively used for platinum recovery from industrial wastewater.

  5. Fuel cycle problems in fusion reactors

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1976-01-01

    Fuel cycle problems of fusion reactors evolve around the breeding, recovery, containment, and recycling of tritium. These processes are described, and their implications and alternatives are discussed. Technically, fuel cycle problems are solvable; economically, their feasibility is not yet known

  6. The 2012-2016 eruptive cycle at Copahue volcano (Argentina) versus the peripheral gas manifestations: hints from the chemical and isotopic features of fumarolic fluids

    Science.gov (United States)

    Tassi, F.; Agusto, M.; Lamberti, C.; Caselli, A. T.; Pecoraino, G.; Caponi, C.; Szentiványi, J.; Venturi, S.; Vaselli, O.

    2017-10-01

    This study presents the chemical and isotopic compositions of hydrothermal gases from fumaroles discharging around Copahue volcano (Argentina). Gas samples, including those from two fumaroles at the active summit crater, were collected during 13 surveys carried out by different research teams from 1976 to February 2016. The time-series of H2, CO and light hydrocarbons showed episodic increases related to the main events of the last eruptive cycle that started on 19 July 2012. Concentration peaks were likely caused by enhanced input of hot magmatic fluids affecting the hydrothermal reservoir. These data contrast with the temporal variations shown by Rc/ Ra and δ13C-CO2 values in 2012-2014, which indicated an increasing input from a crustal fluid source. In 2015-2016, however, these isotopic parameters showed opposite trends; their composition became closer to that of the two summit fumaroles, which possibly corresponds to that of the deep magmatic-related end-member. The delayed and reduced compositional changes in the peripheral hydrothermal fluid discharge in response to the 2012-2016 eruptive events suggest that geochemical surveys of these emissions are unlikely to provide premonitory signals of volcanic unrest if the volcanic activity remains centered in the main crater. Instead, an instrument which is able to provide measurements of volcanic gases in the air (e.g. MultiGAS) may be used to detect changes at the summit crater. Otherwise, monitoring of seismic activity and ground deformation, as well as the periodic measurement of the chemistry of the water in the Rio Agrio, which is fed by thermal discharge from the summit crater, seem to represent the most reliable means of monitoring at Copahue. However, the relative compositional stability of the hydrothermal reservoir is a great advantage in terms of geothermal resource exploitation and could encourage new investments in the Copahue geothermal project which was abandoned in the 1990s.

  7. Synthesis, characterization, cytotoxicity, cell cycle analysis of 3-(4-methoxyphenyl)-1-(pyridin-2-ylmethyl)thiourea and quantum chemical analyses

    Science.gov (United States)

    Mushtaque, Md.; Avecilla, Fernando; Khan, Md. Shahzad; Hafeez, Zubair Bin; Rezvi, M. Moshahid A.; Srivastava, Anurag

    2017-08-01

    Thiourea derivative,3-(4-methoxyphenyl)-1-(pyridin-2-ylmethyl)thiourea, was synthesized. The structure of the synthesized compound (3) was elucidated by IR, UV-visible, 1H NMR, mass Spectrometry, and X-ray single crystal structure. The computational quantum chemical studies like, IR, UV, NBO analysis were performed by DFT with Becke-3-Lee-Yang- Parr (B3LYP) exchange-correlation functional in combination with 6-311++G(d,p) basis sets. It was observed experimentally and theoretically that compound (3) exhibited syn-anti-conformation around sulphur atom. The DNA-binding constant Kb was found 3.3 × 106 Lmol-1. The docking energy of compound (3) with 1BNA was found -6.2 kcal/mol. MTT-assay against HepG2 (IC50 = 140.39) and Siha (IC50 = 119.87 μM) cell lines revealed that compound (3) wasnon-toxic up to140.39 μM against HepG2 and 119.87 μM against Siha cells respectively. It was also found that compound (3) is non-toxic against normal human cell line HEK-293(IC50 = 148.67 μM). Cell cycle analyses displayed that treated HepG2 cells at 40 μM and 80 μM showed 65% and 70% arrest in G0/G1with respect to untreated controls (60%) and Siha cells at the same concentration displayed 59% and 65% arrest with respect to G0/G1 as compared to untreated control (45%).

  8. Ruthenium recovery from acetic acid industrial effluent using chemically stable and high-performance polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sok [Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 02841 (Korea, Republic of); Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonbuk 54896 (Korea, Republic of); Choi, Yoon-E, E-mail: yechoi@korea.ac.kr [Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 02841 (Korea, Republic of); Yun, Yeoung-Sang, E-mail: ysyun@jbnu.ac.kr [Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonbuk 54896 (Korea, Republic of); Department of Bioprocess Engineering, Chonbuk National University, Jeonbuk 54896 (Korea, Republic of)

    2016-08-05

    Highlights: • The PEI-PSBF was fabricated and used for Ru recovery from industrial effluent. • PEI-PSBF was not swollen nor dissolved in the effluent. • PEI-PSBF showed superior sorption capacity to commercial resins. • Thin fiber type PEI-PSBF could be successfully applied in flow-through column. - Abstract: Recovery of precious metal ions from waste effluents is of high concern. In general, ruthenium (Ru) is used in the Cativa process as promoter for carbonylation catalyst and discharged into acetic acid effluent. In the present work, we have designed and developed polyethylenimine-coated polysulfone-bacterial biomass composite fiber (PEI-PSBF) to recover Ru from industrial effluent. The sorbent was manufactured by electrostatic attachment of polyethylenimine (PEI) to the surface of polysulfone-biomass composite fiber (PSBF), which was prepared through spinning of the mixture of polysulfone and Escherichia coli biomass in N,N-dimethylformamide (DMF) into water. Developed PEI-PSBF was highly stable in the acetic acid effluent. The maximum sorption capacity of the developed sorbent PEI-PSBF, coated with PEI (with M.W. of 75,000), was 121.28 ± 13.15 mg/g, which was much higher than those of ion exchange resins, TP214, Amberjet 4200, and M500. The PEI-PSBF could be successfully applied in the flow-through column system, showing 120 beds of breakthrough volume.

  9. Menstrual Cycle

    Science.gov (United States)

    ... To receive General email updates Enter email Submit Menstrual Cycle The menstrual cycle is the hormonal process ... Preventing problems with your menstrual cycle View more Menstrual Cycle resources Related information Endometriosis Infertility Polycystic ovary ...

  10. Computational non-chemically equilibrium model on the current zero simulation in a model N2 circuit breaker under the free recovery condition

    International Nuclear Information System (INIS)

    Sun, Hao; Wu, Yi; Rong, Mingzhe; Tanaka, Yasunori; Uesugi, Yoshihiko; Tomita, Kentaro; Ishijima, Tatsuo

    2016-01-01

    A non-chemically equilibrium (non-CE) model was established to investigate the N 2 arc plasma in the decaying phase during the arc interruption, and was validated by comparison with the experimental results based on laser Thomson scattering. Unlike the conventional model assuming the local thermodynamic equilibrium (LTE), in this non-CE model, the magneto-hydro-dynamics (MHD) method was coupled with the reaction kinetics to obtain the time-dependent species compositions and properties. The current calculation took into account five species in hot gas and 22 chemical reactions in total. The time-dependent species compositions of hot N 2 were derived from the mass conservation equation for each species, considering the effect of the convection, diffusion and the chemical reaction. The influence of the non-CE compositions on the arc decaying behavior was realized by updating the thermodynamic and transport properties at each iterative step. The results indicate that the non-CE model can result in the departure of the arc decaying behavior from the LTE model, because it alters the time evolution of the species composition and consequently changes the thermodynamic and transport properties. At the edge of the arc, the time evolutions of the species are dominant by both the diffusion and the chemical reactions while at the center of the arc they are mainly influenced by the chemical reactions. Generally, the non-CE effect can lead to the delay of all the particles’ variations, particularly the electron decay, so that the arc interruption performance will be reduced compared with that in the LTE model. (paper)

  11. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals

    Science.gov (United States)

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include n...

  12. Recovery Spirituality

    Directory of Open Access Journals (Sweden)

    Ernest Kurtz

    2015-01-01

    Full Text Available There is growing interest in Alcoholics Anonymous (A.A. and other secular, spiritual, and religious frameworks of long-term addiction recovery. The present paper explores the varieties of spiritual experience within A.A., with particular reference to the growth of a wing of recovery spirituality promoted within A.A. It is suggested that the essence of secular spirituality is reflected in the experience of beyond (horizontal and vertical transcendence and between (connection and mutuality and in six facets of spirituality (Release, Gratitude, Humility, Tolerance, Forgiveness, and a Sense of Being-at-home shared across religious, spiritual, and secular pathways of addiction recovery. The growing varieties of A.A. spirituality (spanning the “Christianizers” and “Seculizers” reflect A.A.’s adaptation to the larger diversification of religious experience and the growing secularization of spirituality across the cultural contexts within which A.A. is nested.

  13. Generalized Recovery

    DEFF Research Database (Denmark)

    Skov Jensen, Christian; Lando, David; Heje Pedersen, Lasse

    We characterize when physical probabilities, marginal utilities, and the discount rate can be recovered from observed state prices for several future time periods. Our characterization makes no assumptions of the probability distribution, thus generalizing the time-homogeneous stationary model...... of Ross (2015). Our characterization is simple and intuitive, linking recovery to the relation between the number of time periods and the number of states. When recovery is feasible, our model is easy to implement, allowing a closed-form linearized solution. We implement our model empirically, testing...

  14. Generalized Recovery

    DEFF Research Database (Denmark)

    Jensen, Christian Skov; Lando, David; Pedersen, Lasse Heje

    We characterize when physical probabilities, marginal utilities, and the discount rate can be recovered from observed state prices for several future time periods. Our characterization makes no assumptions of the probability distribution, thus generalizing the time-homogeneous stationary model...... of Ross (2015). Our characterization is simple and intuitive, linking recovery to the relation between the number of time periods on the number of states. When recovery is feasible, our model is easy to implement, allowing a closed-form linearized solution. We implement our model empirically, testing...

  15. Generalized Recovery

    DEFF Research Database (Denmark)

    Jensen, Christian Skov; Lando, David; Pedersen, Lasse Heje

    We characterize when physical probabilities, marginal utilities, and the discount rate can be recovered from observed state prices for several future time periods. We make no assumptions of the probability distribution, thus generalizing the time-homogeneous stationary model of Ross (2015......). Recovery is feasible when the number of maturities with observable prices is higher than the number of states of the economy (or the number of parameters characterizing the pricing kernel). When recovery is feasible, our model is easy to implement, allowing a closed-form linearized solution. We implement...... our model empirically, testing the predictive power of the recovered expected return and other recovered statistics....

  16. Evaluation of chloride-ion-specific electrodes as in situ chemical sensors for monitoring total chloride concentration in aqueous solutions generated during the recovery of plutonium from molten salts used in plutonium electrorefining operations

    International Nuclear Information System (INIS)

    Smith, W.H.

    1992-10-01

    Two commercially available chloride-ion-specific electrodes (CLISEs), a solid-state type and a membrane type, were evaluated as potential in situ chemical sensors for determining total chloride ion concentration in mixed sodium chloride/potassium chloride/hydrochloric acid solutions generated during the recovery of plutonium from molten salts used in plutonium electrorefining operations. Because the response of the solid-state CLISE was closer than was the response of the membrane-type CLISE to the theoretical response predicted by the Nernst equation, the solid-state CLISE was selected for further evaluation. A detailed investigation of the characteristics of the chloride system and the corresponding CLISE response to concentration changes suggested four methods by which the CLISE could be used either as a direct, in situ sensor or as an indirect sensor through which an analysis could be performed on-line with a sample extracted from the process solution

  17. Safety aspects in rare earths recovery

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2014-01-01

    Recovery of rare earths involves mining of beach sands, mineral separation to obtain monazite and its chemical processing to obtain rare earth composites. The composites are then subjected to further chemical treatment to obtain individual rare earths. Although the separated out rare earths are not radioactive, the process for recovery of rare earths involve both radiological as well as conventional hazards. This paper highlights the safety aspects in the mining, mineral separation and chemical processing of monazite to obtain rare earths

  18. Preference of multi-walled carbon nanotube (MWCNT) to single-walled carbon nanotube (SWCNT) and activated carbon for preparing silica nanohybrid pickering emulsion for chemical enhanced oil recovery (C-EOR)

    Energy Technology Data Exchange (ETDEWEB)

    AfzaliTabar, M. [Department of Chemistry, Islamic Azad University Branch of Tehran North, Tehran (Iran, Islamic Republic of); Alaei, M., E-mail: alaiem@ripi.ir [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran (Iran, Islamic Republic of); Ranjineh Khojasteh, R.; Motiee, F. [Department of Chemistry, Islamic Azad University Branch of Tehran North, Tehran (Iran, Islamic Republic of); Rashidi, A.M. [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran (Iran, Islamic Republic of)

    2017-01-15

    The aim of this research was to determine the best nano hybrid that can be used as a Pickering emulsion Chemical Enhanced Oil Recovery (C-EOR). Therefore, we have prepared different carbon structures nano hybrids with SiO{sub 2} nano particles with different weight percent using sol-gel method. The as-prepared nano materials were characterized with X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM) and Thermal Gravimetric Analysis (TGA). Pickering emulsions of these nanohybrids were prepared at pH=7 in ambient temperature and with distilled water. Stability of the mentioned Pickering emulsions was controlled for one month. Emulsion phase morphology was investigated using optical microscopic imaging. Evaluation results demonstrated that the best sample is the 70% MWCNT/SiO{sub 2} nanohybrid. Stability of the selected nanohybrid (70% MWCNT/SiO{sub 2} nanohybrid) was investigated by alteration of salinity, pH and temperature. Results showed that the mentioned Pickering emulsion has very good stability at 0.1%, 1% salinity, moderate and high temperature (25 °C and 90 °C) and neutral and alkaline pH (7, 10) that is suitable for the oil reservoirs conditions. The effect of the related nano fluid on the wettability of carbonate rock was investigated by measuring the contact angle and interfacial tension. Results show that the nanofluid could significantly change the wettability of the carbonate rock from oil wet to water wet and can decrease the interfacial tension. Therefore, the 70% MWCNT/SiO{sub 2} nanohybrid Pickering emulsion can be used for Chemical Enhanced Oil Recovery (C-EOR).

  19. Soleus stretch reflex during cycling

    DEFF Research Database (Denmark)

    Grey, Michael James; Pierce, C. W.; Milner, T. E.

    2001-01-01

    the crank cycle, producing ankle dorsiflexion perturbations of similar trajectory. The stretch reflex was greatest during the power phase of the crank cycle and was decreased to the level of background EMG during recovery. Matched perturbations were induced under static conditions at the same crank angle...... active cycling as has been shown with the H-reflex. This lack of depression may reflect a decreased susceptibility of the stretch reflex to inhibition, possibly originating from presynaptic mechanisms....

  20. Recovery of flue gas energy in heat integrated IGCC power plants using the contact economizer system

    CSIR Research Space (South Africa)

    Madzivhandila, V

    2010-10-01

    Full Text Available Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress October 5-8, 2010, Taipei � �� Recovery of flue gas energy in heat integrated IGCC power plants using the contact economizer system Vhutshilo Madzivhandilaa, Thokozani... temperature and the thermal efficiency of the plant. The 13th Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress October 5-8, 2010, Taipei � �� 1. Introduction The IGCC (Integrated Gasification Combined Cycle) is one...

  1. ICPP custom dissolver explosion recovery

    International Nuclear Information System (INIS)

    Demmer, R.; Hawk, R.

    1992-01-01

    This report discusses the recovery from the February 9, 1991 small scale explosion in a custom processing dissolver at the Idaho Chemical Processing Plant. Custom processing is a small scale dissolution facility which processes nuclear material in an economical fashion. The material dissolved in this facility was uranium metal, uranium oxides, and uranium/fissium alloy in nitric acid. The paper explained the release of fission material, and the decontamination and recovery of the fuel material. The safety and protection procedures were also discussed. Also described was the chemical analysis which was used to speculate the most probable cause of the explosion. (MB)

  2. Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications

    KAUST Repository

    Alias, Mohd Sharizal

    2015-12-22

    The high optical gain and absorption of organic–inorganic hybrid perovskites have attracted attention for photonic device applications. However, owing to the sensitivity of organic moieties to solvents and temperature, device processing is challenging, particularly for patterning. Here, we report the direct patterning of perovskites using chemically gas-assisted focused-ion beam (GAFIB) etching with XeF2 and I2 precursors. We demonstrate etching enhancement in addition to controllability and marginal surface damage compared to focused-ion beam (FIB) etching without precursors. Utilizing the GAFIB etching, we fabricated a uniform and periodic submicron perovskite subwavelength grating (SWG) absorber with broadband absorption and nanoscale precision. Our results demonstrate the use of FIB as a submicron patterning tool and a means of providing surface treatment (after FIB patterning to minimize optical loss) for perovskite photonic nanostructures. The SWG absorber can be patterned on perovskite solar cells to enhance the device efficiency through increasing light trapping and absorption.

  3. Sulfate radicals enable a non-enzymatic Krebs cycle precursor.

    Science.gov (United States)

    Keller, Markus A; Kampjut, Domen; Harrison, Stuart A; Ralser, Markus

    2017-03-13

    The evolutionary origins of the tricarboxylic acid cycle (TCA), or Krebs cycle, are so far unclear. Despite a few years ago, the existence of a simple non-enzymatic Krebs-cycle catalyst has been dismissed 'as an appeal to magic', citrate and other intermediates have meanwhile been discovered on a carbonaceous meteorite and do interconvert non-enzymatically. To identify the non-enzymatic Krebs cycle catalyst, we used combinatorial, quantitative high-throughput metabolomics to systematically screen iron and sulfate reaction milieus that orient on Archean sediment constituents. TCA cycle intermediates are found stable in water and in the presence of most iron and sulfate species, including simple iron-sulfate minerals. However, we report that TCA intermediates undergo 24 interconversion reactions in the presence of sulfate radicals that form from peroxydisulfate. The non-enzymatic reactions critically cover a topology as present in the Krebs cycle, the glyoxylate shunt and the succinic semialdehyde pathways. Assembled in a chemical network, the reactions achieve more than ninety percent carbon recovery. Our results show that a non-enzymatic precursor for the Krebs cycle is biologically sensible, efficient, and forms spontaneously in the presence of sulfate radicals.

  4. Preliminary Modelling Results for an Otto Cycle/Stirling Cycle Hybrid-engine-based Power Generation System

    OpenAIRE

    Cullen, Barry; McGovern, Jim; Feidt, Michel; Petrescu, Stoian

    2009-01-01

    This paper presents preliminary data and results for a system mathematical model for a proposed Otto Cycle / Stirling Cycle hybrid-engine-based power generation system. The system is a combined cycle system with the Stirling cycle machine operating as a bottoming cycle on the Otto cycle exhaust. The application considered is that of a stationary power generation scenario wherein the Stirling cycle engine operates as a waste heat recovery device on the exhaust stream of the Otto cycle engine. ...

  5. Global patterns of drought recovery

    Science.gov (United States)

    Schwalm, Christopher R.; Anderegg, William R. L.; Michalak, Anna M.; Fisher, Joshua B.; Biondi, Franco; Koch, George; Litvak, Marcy; Ogle, Kiona; Shaw, John D.; Wolf, Adam; Huntzinger, Deborah N.; Schaefer, Kevin; Cook, Robert; Wei, Yaxing; Fang, Yuanyuan; Hayes, Daniel; Huang, Maoyi; Jain, Atul; Tian, Hanqin

    2017-08-01

    Drought, a recurring phenomenon with major impacts on both human and natural systems, is the most widespread climatic extreme that negatively affects the land carbon sink. Although twentieth-century trends in drought regimes are ambiguous, across many regions more frequent and severe droughts are expected in the twenty-first century. Recovery time—how long an ecosystem requires to revert to its pre-drought functional state—is a critical metric of drought impact. Yet the factors influencing drought recovery and its spatiotemporal patterns at the global scale are largely unknown. Here we analyse three independent datasets of gross primary productivity and show that, across diverse ecosystems, drought recovery times are strongly associated with climate and carbon cycle dynamics, with biodiversity and CO2 fertilization as secondary factors. Our analysis also provides two key insights into the spatiotemporal patterns of drought recovery time: first, that recovery is longest in the tropics and high northern latitudes (both vulnerable areas of Earth’s climate system) and second, that drought impacts (assessed using the area of ecosystems actively recovering and time to recovery) have increased over the twentieth century. If droughts become more frequent, as expected, the time between droughts may become shorter than drought recovery time, leading to permanently damaged ecosystems and widespread degradation of the land carbon sink.

  6. The Role of Attrition and Solids Recovery in a Chemical Looping Combustion Process; Effet de l'attrition et de la recuperation des particules dans le procede de combustion en boucle chimique

    Energy Technology Data Exchange (ETDEWEB)

    Kramp, M.; Thon, A.; Hartge, E.U.; Heinrich, S.; Werther, J. [Institute of Solids Process Engineering and Particle Technology, Hamburg University of Technology, 21071 Hamburg (Germany)

    2011-03-15

    In the present work, the steady-state behavior of a Chemical Looping Combustion process of interconnected fluidized bed reactors is simulated. The simulations have been carried out in two different scales, 50 kWth and 100 MWth. Attrition model derived from small scale laboratory experiments has been employed for the prediction of the process behavior in terms of attrition and Oxygen Carrier loss. Information on Oxygen Carrier characteristics and reaction kinetics were taken from literature. Realistic circulation mass flows of Oxygen Carrier particles are obtained and Oxygen Carrier losses are quantified. The large scale process looses significantly more Oxygen Carrier than the small scale process based on the same amount of thermal energy produced. Incomplete conversion in the air reactor could be identified as a critical point. Another issue is the fuel gas bypassing the Oxygen Carrier particles through bubbles in the large scale process which leads to lowered fuel conversions. The simulations indicate that a similar performance of a pilot scale and a large scale process is not guaranteed due to the scale-up effect on fluid dynamics. Furthermore, the simulations allow an assessment of the influence of the quality of the solids recovery system on the Oxygen Carrier loss. The distribution of the losses between possible origins is investigated and different changes in the solids recovery system are discussed regarding their potential to decrease the Oxygen Carrier loss. For example, the addition of a second-stage cyclone after the air reactor of the large scale process reduces the Oxygen Carrier loss significantly. (authors)

  7. Comparison of the Environment, Health, And Safety Characteristics of Advanced Thorium- Uranium and Uranium-Plutonium Fuel Cycles

    Science.gov (United States)

    Ault, Timothy M.

    The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low

  8. Plant hydrocarbon recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Dzadzic, P.M.; Price, M.C.; Shih, C.J.; Weil, T.A.

    1982-01-26

    A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within the range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.

  9. Influence of chemical and materials in the rate of erosion corrosion. Modelling the cycle chemistry and materials characterization measurements on CN Cofrentes; Influencia de la quimica y materiales en la tasa de erosion corrosion. Modelizacion de la quimica del ciclo y medidas de caracterizacion de materiales en C. N. Cofrentes

    Energy Technology Data Exchange (ETDEWEB)

    Paule Ramos, A.; Sanchez-Zapata, J. D.

    2012-07-01

    The chemical cycle and the type of material are some of the factors that have great influence on the phenomenon of erosion-corrosion. The paper present the modeling of chemistry through the software cycle strategies COMSY and materials characterization measures undertaken in order to more effectively control this phenomenon in CN Cofrentes.

  10. Fuels and chemicals from equine-waste-derived tail gas reactive pyrolysis oil: technoeconomic analysis, environmental and exergetic life cycle assessment

    Science.gov (United States)

    Horse manure, whose improper disposal imposes considerable environmental costs, constitutes an apt feedstock for conversion to renewable fuels and chemicals when tail gas reactive pyrolysis (TGRP) is employed. TGRP is a modification of fast pyrolysis that recycles its non-condensable gases and produ...

  11. Towards a Cycle without Loss. Cobalt in the Aircraft Industry,

    Science.gov (United States)

    COBALT , *AIRCRAFT INDUSTRY, *STRATEGIC MATERIALS, *MANUFACTURING, CYCLES, SUPERALLOYS , HIGH STRENGTH ALLOYS, STEEL, TOOL STEEL, ALLOYS, QUANTITATIVE ANALYSIS, MATERIALS RECOVERY, RATES, ALLOYS, RECYCLED MATERIALS, LOSSES, SYMPOSIA

  12. Fault detection-case: modelling of temperature control of smelt in a chemical recovery; Deteccao de defeitos via redes neurais: aplicacao no sistema de resfriamento das bicas de fundidos de uma caldeira de recuperacao

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, Sergio H.S. [Universidade Estadual de Maringa, PR (Brazil); Klabin Papeis Monte Alegre, Telemaco Borba, PR (Brazil); Neitzel, Ivo [Faculdade de Telemaco Borba, PR (Brazil); Universidade Estadual de Maringa, PR (Brazil); Vieira, Osvaldo [Universidade Estadual de Maringa, PR (Brazil); Klabin Papeis Monte Alegre, Telemaco Borba, PR (Brazil)

    2008-07-01

    This paper proposes a method for the detection of defects in the control systems components which was applied in the smelt spouts cooling system of a chemical recovery boiler. The almost static behavior of the system was modeled with neural networks. The comparison between the inferred variable by the model and the measurement in the process generated a residual vector. A second neural network, the classification type, was built to analyze the residue. The training process of this neural network was carried out with two types of data base, one of them where there was no defect (classified as non faulty data) and the other where there were defects in one of the process control system sensors. The generation of faulty data was carried out through defects simulation by neural model. Both neural networks were programmed on Excel software to make the continuous monitoring of the productive process possible. The process data feeding in the system was done though the Plant Information (PI) software. The rate of false alarm of process monitoring for two and half months was of 3%. Errors ranging from 2 to 15% were simulated at the manipulated variable of the control system to test the performance of the method. Within the range of 10% simulated errors the detection of defects rate was of 97% for the set of non trained standards. (author)

  13. Can algal biotechnology bring effective solution for closing the phosphorus cycle? Use of algae for nutrient removal – review of past trends and future perspectives in the context of nutrient recovery

    Czech Academy of Sciences Publication Activity Database

    Sukačová, Kateřina; Červený, Jan

    2017-01-01

    Roč. 7, č. 1 (2017), s. 63-72 ISSN 1805-0174 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : wastewater treatment * algae * nutrients removal * phosphorus recovery Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7)

  14. DNA damage checkpoint recovery and cancer development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiyong [First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003 (China); Zhang, Xiaoshan [Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 (United States); Teng, Lisong, E-mail: lsteng@zju.edu.cn [First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003 (China); Legerski, Randy J., E-mail: rlegersk@mdanderson.org [Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 (United States)

    2015-06-10

    Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observed to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients' poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression. - Highlights: • DNA damage checkpoint works as a barrier to cancer initiation. • DDR machinary response to genotoxic and oncogenic stress in similar way. • Checkpoint recovery pathways provide active signaling in cell cycle control. • Checkpoint

  15. Priority screening of toxic chemicals and industry sectors in the U.S. toxics release inventory: a comparison of the life cycle impact-based and risk-based assessment tools developed by U.S. EPA.

    Science.gov (United States)

    Lim, Seong-Rin; Lam, Carl W; Schoenung, Julie M

    2011-09-01

    Life Cycle Impact Assessment (LCIA) and Risk Assessment (RA) employ different approaches to evaluate toxic impact potential for their own general applications. LCIA is often used to evaluate toxicity potentials for corporate environmental management and RA is often used to evaluate a risk score for environmental policy in government. This study evaluates the cancer, non-cancer, and ecotoxicity potentials and risk scores of chemicals and industry sectors in the United States on the basis of the LCIA- and RA-based tools developed by U.S. EPA, and compares the priority screening of toxic chemicals and industry sectors identified with each method to examine whether the LCIA- and RA-based results lead to the same prioritization schemes. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) is applied as an LCIA-based screening approach with a focus on air and water emissions, and the Risk-Screening Environmental Indicator (RSEI) is applied in equivalent fashion as an RA-based screening approach. The U.S. Toxic Release Inventory is used as the dataset for this analysis, because of its general applicability to a comprehensive list of chemical substances and industry sectors. Overall, the TRACI and RSEI results do not agree with each other in part due to the unavailability of characterization factors and toxic scores for select substances, but primarily because of their different evaluation approaches. Therefore, TRACI and RSEI should be used together both to support a more comprehensive and robust approach to screening of chemicals for environmental management and policy and to highlight substances that are found to be of concern from both perspectives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. LCA of Chemicals and Chemical Products

    DEFF Research Database (Denmark)

    Fantke, Peter; Ernstoff, Alexi

    2017-01-01

    including risk assessment , green and sustainable chemistry , and chemical alternatives assessment. A large number of LCA studies focus on contrasting different feedstocks or chemical synthesis processes, thereby often conducting a cradle to (factory) gate assessment. While typically a large share......This chapter focuses on the application of Life Cycle Assessment (LCA) to evaluate the environmental performance of chemicals as well as of products and processes where chemicals play a key role. The life cycle stages of chemical products, such as pharmaceuticals drugs or plant protection products......, are discussed and differentiated into extraction of abiotic and biotic raw materials, chemical synthesis and processing, material processing, product manufacturing, professional or consumer product use, and finally end-of-life . LCA is discussed in relation to other chemicals management frameworks and concepts...

  17. Waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Zigan, James A.

    2017-12-19

    A waste heat recovery system includes a Rankine cycle (RC) circuit having a pump, a boiler, an energy converter, and a condenser fluidly coupled via conduits in that order, to provide additional work. The additional work is fed to an input of a gearbox assembly including a capacity for oil by mechanically coupling to the energy converter to a gear assembly. An interface is positioned between the RC circuit and the gearbox assembly to partially restrict movement of oil present in the gear assembly into the RC circuit and partially restrict movement of working fluid present in the RC circuit into the gear assembly. An oil return line is fluidly connected to at least one of the conduits fluidly coupling the RC components to one another and is operable to return to the gear assembly oil that has moved across the interface from the gear assembly to the RC circuit.

  18. Combustion for Enhanced Recovery of Light Oil at Medium Pressures

    NARCIS (Netherlands)

    Khoshnevis Gargar, N.

    2014-01-01

    Using conventional production methods, recovery percentages from oil reservoirs range from 5% for difficult oil to 50% for light oil in highly permeable homogeneous reservoirs. To increase the oil recovery factor, enhanced oil recovery (EOR) methods are used. We distinguish EOR that uses chemical

  19. Ecological Recovery Potential of Freshwater Organisms

    DEFF Research Database (Denmark)

    Gergs, André; Classen, Silke; Strauss, Tido

    2016-01-01

    serve as a decision criterion in the environmental risk assessment of chemical stressors remains to be evaluated. For a generic consideration of recovery in the risk assessment of chemicals, we reviewed case studies of natural and artificial aquatic systems and evaluate five aspects that might cause...

  20. Waste heat recovery technologies for offshore platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Benato, Alberto; Scolari, E.

    2014-01-01

    This article aims at finding the most suitable waste heat recovery technology for existing and future offshore facilities. The technologies considered in this work are the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle. A multi-objective optimization approach is employed...... and of the primary heat exchanger, organic Rankine cycle turbogenerators appear thus to be the preferred solution to abate CO2 emissions and pollutants on oil and gas facilities. As a practical consequence, this paper provides guidelines for the design of high-efficiency, cost-competitive and low-weight power...... Rankine cycle technology presents larger performances compared to steam Rankine cycle units, whereas the implementation of air bottoming cycle modules is not attractive from an economic and environmental perspective compared to the other two technologies. Despite the relatively high cost of the expander...

  1. Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer

    International Nuclear Information System (INIS)

    Volk, Brent L; Lagoudas, Dimitris C; Maitland, Duncan J

    2011-01-01

    In this work, tensile tests and one-dimensional constitutive modeling were performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigated the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles were performed during each test. The material was observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5–4.2 MPa was observed for the constrained displacement recovery experiments. After the experiments were performed, the Chen and Lagoudas model was used to simulate and predict the experimental results. The material properties used in the constitutive model—namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction—were calibrated from a single 10% extension free recovery experiment. The model was then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data

  2. What do terrestrial biogeochemistry and chemical transport models tell us about the impact of nitrogen deposition on carbon and nitrogen cycling?

    Science.gov (United States)

    Holland, E. A.; Holland, E. A.

    2001-12-01

    Evaluation of the impact of increasing nitrogen deposition on terrestrial carbon uptake requires coupling of chemical transport models and terrestrial biogeochemistry models. Simulations with a series of models and coupling schemes combined with the measurements of nitrogen deposition produce a range of results which can be used to help guide further measurements and the establishment of a appropriate networks. To help narrow uncertainties of our understanding of regional N budgets, we produced maps of N deposition fluxes from site-network observations for the US and Western Europe. These two regions of the world which have undergone profound modification of bio-atmospheric N exchanges. The maps consist of statistically interpolated fields of aqueous nitrate and ammonium, nitric acid and nitrite, and particulate nitrate and ammonium, and the interpolated spatially continuous fields allow estimation of regionally integrated budget terms. Dry deposition fluxes were the most problematic because of low station density and uncertainties associated with exchange mechanisms at the land surface. We determined dry N deposition fluxes by multiplying interpolated surface air concentrations for each chemical species by model-calculated, spatially explicit deposition velocities. Deposition of the oxidized N species, by-products of fossil fuel combustion, dominate the US N deposition budget with 2.5 Tg of NOx-N out of a total of 3.7-4.5 Tg of N deposited annually onto the conterminous US. Deposition of the reduced species, which are by-products of farming and animal husbandry, are slightly more than 50% of dominate the Western European N deposition budget with a total of 4.3-6.3 Tg of N deposited each year out of a total of 8.4-10.8 Tg N. Western Europe receives five times more N in precipitation than the conterminous US. For both regions, estimated N emissions exceed measured deposition in the US with an imbalance of 5.3-7.81. In Europe, estimated emissions better balanced

  3. Chemical Engineering Division Fuel Cycle Programs. Quarterly progress report, April-June 1978. [Advanced solvent extraction; accidents; pyrochemical; radwaste in metal matrix; waste migration

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M. J.; Ader, M.; Barletta, R. E.

    1979-12-01

    Fuel cycle studies reported include development of centrifugal contactors for Purex processes. Tricaprylmethyl-ammonium nitrate and di-n-amyl-n-amylphosphonate are being evaluated as Thorex extractants. Dispersion of uranium and plutonium by fires, and mechanisms for subdividing and dispersing liquids and solids were reviewed. In the pyrochemical and dry processing program, a facility for testing containment materials is under construction; a flowsheet for carbide fuel processing has been designed and studies of carbide reactions in bismuth are underway; salt transport processes are being studied; process-size refractory metal vessels are being fabricated; the feasibility of AIROX reprocessing is being determined; the solubility of UO/sub 2/, UO/sub 2/ + fission products, and PuO/sub 2/ in molten alkali metal nitrates, has been investigated; a flowsheet was developed for reprocessing actinide oxides in molten salts; preparation of Th-U carbide from the oxide is being studied; new flowsheets based on the Dow Aluminum Pyrometallurgical process for reprocessing of spent uranium metal fuel have been prepared; the chloride volitility processing of thorium-based fuels is being studied; the reprocessing of (Th,U)O/sub 2/ solid solution in KCl-LiCl-ThCl/sub 4/-Th is being studied; and a flowsheet for processing spent nuclear fuel in molten tin has been constructed. Leach rates of simulated encapsulated waste forms in a metal matrix were studied. Nine criteria for handling waste cladding hulls were established. Strontium and tin migration in glauconite columns was measured. Radioactive Sr in a stream of water moved through oolitic limestone as rapidly as water, but in a stream of water equilibrated with the limestone, Sr moved through the limestone one-tenth as fast. Migration of trace quantities of Cs and I through kaolinite was studied. 88 figures, 53 tables.

  4. Benthic algal communities : recovery from experimental acidification

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.A.; Findlay, D.L.; Kasian, S.E.M. [Fisheries and Oceans Canada, Winnipeg, MB (Canada). Freshwater Inst.; Baulch, H.M. [Fisheries and Oceans Canada, Winnipeg, MB (Canada); Trent Univ., Peterborough, ON (Canada); Armstrong, L.M. [Ducks Unlimited Canada, Stonewall, MB (Canada). Inst. for Wetland and Waterfowl Research; McNicol, D.K. [Canadian Wildlife Service, Ottawa, ON (Canada); Vinebrooke, R.D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences

    2009-11-15

    This study evaluated the hypothesis that chemical recovery promotes the rapid recovery of benthic algal communities in formerly acidified lakes. The study was conducted at an experimental lake in Ontario over a 10 year period of pH recovery that followed a 10 year period of experimental acidification from a pH of 6.7 to 4.5. A reference lake in the region was also studied to account for regional changes during the study period. Changes in the epilithon on rock surfaces included lower cyanobacterial biomass following the acidification as well as increases in diatoms and greens. Acidification-induced increases in respiration prevented epilithic metabolic recovery. Prior declines in photosynthesis were reversed. Blooms of metaphytic filamentous green algae with a higher pH occurred during the recovery period. The recovery of many aggregate functional and taxonomic properties lagged behind reductions in acidity. Incomplete chemical recovery and the absence of functionally important biota were attributed to incomplete algal recovery at the lake. 59 refs., 2 tabs., 8 figs.

  5. CHEMICAL ENGINEERING DIVISION SUMMARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Lawroski, S.; Vogel, R. C.; Levenson, Milton; Munnecke, V. H.

    1963-07-01

    Work reported includes: Chemical-Metallurgical Processing; Fuel Cycle Applications of Volatility and Fluidization Techniques; Calorimetry; Reactor Safety; Energy Conversion; and Determination of Nuclear Constants.

  6. REY-Th-U Solute Dynamics in the Critical Zone: Combined Influence of Chemical Weathering, Atmospheric Deposit Leaching, and Vegetation Cycling (Mule Hole Watershed, South India)

    Science.gov (United States)

    Braun, Jean-Jacques; Riotte, Jean; Battacharya, Shrema; Violette, Aurélie; Prunier, Jonathan; Bouvier, Vincent; Candaudap, Frédéric; Maréchal, Jean-Christophe; Ruiz, Laurent; Panda, Smruthi Rekha; Subramanian, S.

    2017-12-01

    The source and proportion of REY, Th, and U exported by groundwater and by the ephemeral stream along with the elemental proportions passing through vegetation have been assessed in the subhumid tropical forested CZO of Mule Hole, Southern India. The study relies on a pluriannual hydrogeochemical monitoring combined with a hydrological model. The significant difference between the soil input (SI) and output (SO) solute fluxes (mmol/km2/yr) of LREE (SI-SO = 13,250-1,500), HREE (1,930-235), Th (64-12), and U (63-25) indicates a strong uptake by roots carried by canopy and forest floor processes. The contribution of atmospheric dust leaching can reach about 60% of LREE and 80% of HREE. At the watershed scale, the U solute flux exported by groundwater (180 mmol/km2/yr) mainly originates from the breakdown of primary U-bearing accessory minerals and dominates by a factor of 25 the stream flux. The precipitation of authigenic U-bearing phases and adsorption onto Fe-oxides and oxyhydroxides play a significant role for limiting the U mobility. In the groundwater, the plagioclase chemical weathering is efficiently traced by the positive Eu-anomaly. The very low (REY) to nil (Th) contents are explained by the precipitation of authigenic phases. In the stream flow, dominated by the overland flow (87% of the yearly stream flow), the solute exports (in mmol/km2/yr) of REY (1,080 for LREE and 160 for HREE) and of Th (14) dominate those by groundwater. Their mobility is enhanced by chelation with organic ligands produced by forest floor and canopy processes.

  7. Efficient cycles for carbon capture CLC power plants based on thermally balanced redox reactors

    KAUST Repository

    Iloeje, Chukwunwike

    2015-10-01

    © 2015 Elsevier Ltd. The rotary reactor differs from most alternative chemical looping combustion (CLC) reactor designs because it maintains near-thermal equilibrium between the two stages of the redox process by thermally coupling channels undergoing oxidation and reduction. An earlier study showed that this thermal coupling between the oxidation and reduction reactors increases the efficiency by up to 2% points when implemented in a regenerative Brayton cycle. The present study extends this analysis to alternative CLC cycles with the objective of identifying optimal configurations and design tradeoffs. Results show that the increased efficiency from reactor thermal coupling applies only to cycles that are capable of exploiting the increased availability in the reduction reactor exhaust. Thus, in addition to the regenerative cycle, the combined CLC cycle and the combined-regenerative CLC cycle are suitable for integration with the rotary reactor. Parametric studies are used to compare the sensitivity of the different cycle efficiencies to parameters like pressure ratio, turbine inlet temperature, carrier-gas fraction and purge steam generation. One of the key conclusions from this analysis is that while the optimal efficiency for regenerative CLC cycle was the highest of the three (56% at 3. bars, 1200. °C), the combined-regenerative cycle offers a trade-off that combines a reasonably high efficiency (about 54% at 12. bars, 1200. °C) with much lower gas volumetric flow rate and consequently, smaller reactor size. Unlike the other two cycles, the optimal compressor pressure ratio for the regenerative cycle is weakly dependent on the design turbine inlet temperature. For the regenerative and combined regenerative cycles, steam production in the regenerator below 2× fuel flow rate improves exhaust recovery and consequently, the overall system efficiency. Also, given that the fuel side regenerator flow is unbalanced, it is more efficient to generate steam from the

  8. Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-09-01

    For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

  9. The integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1990-01-01

    The liquid-metal reactor (LMR) has the potential to extend the uranium resource by a factor of 50 to 100 over current commercial light water reactors (LWRs). In the integral fast reactor (IFR) development program, the entire reactor system - reactor, fuel cycle, and waste process - is being developed and optimized at the same time as a single integral entity. A key feature of the IFR concept is the metallic fuel. The lead irradiation tests on the new U-Pu-Zr metallic fuel in the Experimental Breeder Reactor II have surpassed 185000 MWd/t burnup, and its high burnup capability has now been fully demonstrated. The metallic fuel also allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. Direct production of a metal product avoids expensive and cumbersome chemical conversion steps that would result from use of the conventional Purex solvent extraction process. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management

  10. Can algal biotechnology bring effective solution for closing the phosphorus cycle? Use of algae for nutrient removal: Review of past trends and future perspectives in the context of nutrient recovery

    Directory of Open Access Journals (Sweden)

    Kateřina Sukačová

    2017-06-01

    Full Text Available Eutrophication of water by nutrient pollution is a global environmental issue. Biological methods for removing nutrients are environmentally friendly and sustainable. Therefore, this article summarizes main trends in the use of algae for removing nutrients from wastewater using both suspended and attached algal-based systems. A wide variety of algal species and experimental approaches has been tested to date. Researchers report that algae are able to effectively remove a variety of pollutants and nutrients. This review also discusses the potential of algal-based technology for nutrient, especially phosphorus, recovery. Despite the fact that effective nutrient removal has been demonstrated, there are still many challenges to be overcome in the development of succesfull technologies.

  11. Lignin recovery. A resource to value

    International Nuclear Information System (INIS)

    Zimbardi, P.; Cardinale, G.; Demichele, M.; Nanna, F.; Viggiano, D.; Bonini, C.; D'Alessio, L.; D'Auria, M.; Teghil, R.; Tofani, D.

    1999-01-01

    In the present paper, the effects of the steam explosion (ES) pretreatment conditions on recovery and chemical structure of wheat straw lignin are reported. The experimental data of lignin recovery by caustic extraction, followed by acid precipitation, have been interpolated to obtain the dependence on the time and temperature of SE. The lignin has been characterised by using several methods. Preliminary results on the synthesis of copolymers lignin-styrene are also reported [it

  12. An Experimental Protocol to Model Recovery of Anaerobic Work Capacity

    Directory of Open Access Journals (Sweden)

    Vijay Sarthy M. Sreedhara

    2018-02-01

    Full Text Available Models of fatigue are based on physiological parameters such as Critical Power (CP and Anaerobic Work Capacity (AWC. CP is a theoretical threshold value that a human can generate for an indefinite amount of time and AWC represents a finite expendable amount of anaerobic energy at intensities above CP. There is an increasing interest in developing mathematical models of energy expenditure and recovery for athletic training and human performance. The objective of this research is to propose and validate a model for recovery of AWC during a post exertion recovery interval of cycling. A cycling ergometer study is proposed which involves a VO2max ramp test to determine gas exchange threshold, a 3-min all-out intensity test to determine CP and AWC, and exertion-recovery interval tests to understand recovery of AWC. The results will be used to build a human in the loop control system to optimize cycling performance.

  13. Truncation of the krebs cycle during hypoglycemic coma.

    Science.gov (United States)

    Sutherland, Garnette R; Tyson, Randy L; Auer, Roland N

    2008-07-01

    There is a misconception that hypoglycemic nerve cell death occurs easily, and can happen in the absence of coma. In fact, coma is the prerequisite for neuronal death, which occurs via metabolic excitatory amino acid release. The focus on nerve cell death does not explain how most brain neurons and all glia survive. Brain metabolism was interrogated in rats during and following recovery from 40 min of profound hypoglycemia using ex vivo (1)H MR spectroscopy to determine alterations accounting for survival of brain tissue. As previously shown, a time-dependent increase in aspartate was equaled by a reciprocal decrease in glutamate/glutamine. We here show that the kinetics of aspartate formation during the first 30 min (0.36 +/- 0.03 micromol g(-1) min(-1)) are altered such that glutamate, via aspartate aminotransferase, becomes the primary source of carbon when glucose-derived pyruvate is unavailable. Oxaloacetate is produced directly from alpha-ketoglutarate, so that reactions involving the six-carbon intermediates of the tricarboxylic acid cycle are bypassed. These fundamental observations in basic metabolic pathways in effect redraw the tricarboxylic acid cycle from a tricarboxylic to a dicarboxylic acid cycle during hypoglycemia. The basic neurochemical alterations according to the chemical equilibrium of mass action augments flux through a truncated Krebs cycle that continues to turn during hypoglycemic coma. This explains the partial preservation of energy charge and brain cell survival during periods of glucose deficiency.

  14. Emission factors and chemical characterisation of fine particulate emissions from modern and old residential biomass heating systems determined for typical load cycles; Emissionsfaktoren und chemische Charakterisierung von Feinstaubemissionen moderner und alter Biomasse-Kleinfeuerungen ueber typische Tageslastverlaeufe

    Energy Technology Data Exchange (ETDEWEB)

    Kelz, Joachim [BIOENERGY 2020+ GmbH, Graz (Austria); Brunner, Thomas; Obernberger, Ingwald [BIOENERGY 2020+ GmbH, Graz (Austria); Technische Universitaet Graz, Institut fuer Prozess- und Partikeltechnik, Graz (Austria); BIOS BIOENERGIESYSTEME GmbH, Graz (Austria)

    2012-12-15

    It is already well known that there are significant differences regarding the emissions, especially particulate matter (PM) emissions, of old and modern as well as automatically and not automatically controlled biomass based residential heating systems. This concerns their magnitude as well as their chemical composition. In order to investigate emission factors for particulate emissions and the chemical compositions of the PM emissions over typical whole day operation cycles, a project on the determination and characterisation of PM emissions from the most relevant small-scale biomass combustion systems was performed at the BIOENERGY 2020+ GmbH, Graz, Austria, in cooperation with the Institute for Process and Particle Engineering, Graz University of Technology. The project was based on test stand measurements, during which relevant operation parameters (gaseous emissions, boiler load, flue gas temperature, combustion chamber temperature etc.) as well as PM emissions have been measured and PM samples have been taken and forwarded to chemical analyses. Firstly, typical whole day operation cycles for residential biomass combustion systems were specified for the test runs. Thereby automatically fed and automatically controlled boilers, manually fed and automatically controlled boilers as well as manually fed stoves were distinguished. The results show a clear correlation between the gaseous emissions (CO and OGC) and the PM{sub 1} emissions. It is indicated that modern biomass combustion systems emit significantly less gaseous and PM emissions than older technologies (up to a factor of 100). Moreover, automatically fed systems emit much less gaseous and PM emissions than manually fed batch-combustion systems. PM emissions from modern and automatically controlled systems mainly consist of alkaline metal salts, while organic aerosols and soot dominate the composition of aerosols from old and not automatically controlled systems. As an important result comprehensive data

  15. Disposition Choices Based on Energy Footprints instead of Recovery Quota

    NARCIS (Netherlands)

    Krikke, H.R.; Zuidwijk, R.

    2008-01-01

    This paper addresses the impact of disposition choices on the energy use of closed-loop supply chains. In a life cycle perspective, energy used in the forward chain which is locked up in the product is recaptured in recovery. High quality recovery replaces virgin production and thereby saves energy.

  16. Water Recovery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Water Recovery Project (WRP) is advancing environmental control and life support systems water recovery technologies to support human exploration beyond low...

  17. EPA Recovery Mapper

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EPA Recovery Mapper is an Internet interactive mapping application that allows users to discover information about every American Recovery and Reinvestment Act...

  18. Spatially Dispersed Employee Recovery

    DEFF Research Database (Denmark)

    Hvass, Kristian Anders; Torfadóttir, Embla

    2014-01-01

    personnel achieve service recovery. Employee recovery within service research often focuses on front-line employees that work in a fixed location, however a contribution to the field is made by investigating the recovery of spatially dispersed personnel, such as operational personnel in the transport sector...

  19. Recovery from mental illness

    DEFF Research Database (Denmark)

    Petersen, Kirsten Schultz; Friis, Vivi Soegaard; Haxholm, Birthe Lodahl

    2015-01-01

    Mental health services strive to implement a recovery-oriented approach to rehabilitation. Little is known about service users' perception of the recovery approach. The aim is to explore the service user's perspectives on facilitators and barriers associated with recovery. Twelve residents living...

  20. Acidification and recovery at mountain lakes in Central Alps assessed by the MAGIC model

    Directory of Open Access Journals (Sweden)

    Michela ROGORA

    2004-02-01

    Full Text Available The dynamic model MAGIC was calibrated and applied to 84 lakes in Central Alps to predict the response of water chemistry to different scenarios of atmospheric deposition of S and N compounds. Selected lakes were representative of a wide range of chemical characteristics and of sensitivity to acidification. The most sensitive lakes have already shown in the latest years signs of recovery in terms of pH and ANC. The model well captured the main trends in lake chemical data. According to the model forecast, recovery at sensitive lakes will continue in the next decades under the hypothesis of a further decrease of acidic input from the atmosphere. Results clearly demonstrated the benefits of achieving the emission reductions in both S and N compounds agreed under the Gothenburg Protocol. Nevertheless, besides the achieved reduction of SO4 2- deposition from the peak levels of the 80s, also N deposition should be reduced in the near future to protect alpine lakes from further acidification. The condition of lake catchments with regard to N saturation will probably be the dominant factor driving recovery extent. Beside atmospheric deposition, other factors proved to be important in determining long-term changes in surface water chemistry. Climate warming in particular affects weathering processes in lake catchments and dynamics of the N cycle. Including other factors specific to the alpine area, such as dust deposition and climate change, may improve the fit of experimental data by the model and the reliability of model forecast.

  1. Part-load performance of a high temperature Kalina cycle

    DEFF Research Database (Denmark)

    Modi, Anish; Andreasen, Jesper Graa; Kærn, Martin Ryhl

    2015-01-01

    The Kalina cycle has recently seen increased interest as an alternative to the conventional steam Rankine cycle. The cycle has been studied for use with both low and high temperature applications such as geothermal power plants, ocean thermal energy conversion, waste heat recovery, gas turbine...

  2. Happy Cycling

    DEFF Research Database (Denmark)

    Geert Jensen, Birgitte; Nielsen, Tom

    2013-01-01

    og Interaktions Design, Aarhus Universitet under opgave teamet: ”Happy Cycling City – Aarhus”. Udfordringen i studieopgaven var at vise nye attraktive løsningsmuligheder i forhold til cyklens og cyklismens integration i byrum samt at påpege relationen mellem design og overordnede diskussioner af...

  3. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexi...

  4. CYCLE CONTROL

    African Journals Online (AJOL)

    changed to gestodene. Although large- scale comparative trials are needed to confirm this finding, evidence suggests that cycle control with gestodene is better than for monophasic preparations containing desogestrel, norgestimate or levonorgestrel,10 as well as for levonorg- estrel-or norethisterone-containing triphasics.

  5. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    2008-01-01

    Roč. 63, č. 1 (2008), s. 308-327 ISSN 0899-8256 Institutional research plan: CEZ:AV0Z70850503 Keywords : global games * coordination * crises * cycles and fluctuations Subject RIV: AH - Economics Impact factor: 1.333, year: 2008