WorldWideScience

Sample records for chemical reactors

  1. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  2. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  3. Operating Modes Of Chemical Reactors Of Polymerization

    Directory of Open Access Journals (Sweden)

    Meruyert Berdieva

    2012-05-01

    Full Text Available In the work the issues of stable technological modes of operation of main devices of producing polysterol reactors have been researched as well as modes of stable operation of a chemical reactor have been presented, which enables to create optimum mode parameters of polymerization process, to prevent emergency situations of chemical reactor operation in industrial conditions.

  4. Coacervates as prebiotic chemical reactors

    Science.gov (United States)

    Kolb, Vera M.; Swanson, Mercedes; Menger, Fredric M.

    2012-10-01

    Coacervates are colloidal systems that are comprised of two immiscible aqueous layers, the colloid-rich layer, so-called coacervate, and the colloid-poor layer, so-called equilibrium liquid. Although immiscible, the two phases are both water-rich. Coacervates are important for prebiotic chemistry, but also have various practical applications, notably as transport vehicles of personal care products and pharmaceuticals. Our objectives are to explore the potential of coacervates as prebiotic chemical reactors. Since the reaction medium in coacervates is water, this creates a challenge, since most organic reactants are not water-soluble. To overcome this challenge we are utilizing recent Green Chemistry examples of the organic reactions in water, such as the Passerini reaction. We have investigated this reaction in two coacervate systems, and report here our preliminary results.

  5. Chemical reactor modeling multiphase reactive flows

    CERN Document Server

    Jakobsen, Hugo A

    2014-01-01

    Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics.  The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling, and in a post graduate course in modern reactor m...

  6. Chemical-vapor-deposition reactor

    Science.gov (United States)

    Chern, S.

    1979-01-01

    Reactor utilizes multiple stacked trays compactly arranged in paths of horizontally channeled reactant gas streams. Design allows faster and more efficient deposits of film on substrates, and reduces gas and energy consumption. Lack of dead spots that trap reactive gases reduces reactor purge time.

  7. A Course in Chemical Reactor Design.

    Science.gov (United States)

    Takoudis, Christos G.

    1983-01-01

    Presents course outline, topics covered, and final project (doubling as a take home final exam) for a one-semester, interdisciplinary course on the design and behavior of chemical reactors. Interplay of chemical and physical rate processes is stressed in the course. (JM)

  8. A nanoliter-scale open chemical reactor.

    Science.gov (United States)

    Galas, Jean-Christophe; Haghiri-Gosnet, Anne-Marie; Estévez-Torres, André

    2013-02-01

    An open chemical reactor is a container that exchanges matter with the exterior. Well-mixed open chemical reactors, called continuous stirred tank reactors (CSTR), have been instrumental for investigating the dynamics of out-of-equilibrium chemical processes, such as oscillations, bistability, and chaos. Here, we introduce a microfluidic CSTR, called μCSTR, that reduces reagent consumption by six orders of magnitude. It consists of an annular reactor with four inlets and one outlet fabricated in PDMS using multi-layer soft lithography. A monolithic peristaltic pump feeds fresh reagents into the reactor through the inlets. After each injection the content of the reactor is continuously mixed with a second peristaltic pump. The efficiency of the μCSTR is experimentally characterized using a bromate, sulfite, ferrocyanide pH oscillator. Simulations accounting for the digital injection process are in agreement with experimental results. The low consumption of the μCSTR will be advantageous for investigating out-of-equilibrium dynamics of chemical processes involving biomolecules. These studies have been scarce so far because a miniaturized version of a CSTR was not available.

  9. Cars applications in chemical reactors, combustion and heat transfer

    Science.gov (United States)

    Greenhalgh, D. A.; Porter, F. M.

    1986-08-01

    This paper illustrates the use of the CARS technique in the fields of Chemical Reactor engineering, combustion and Heat Transfer. Examples of recent results from a catalytic chemical reactor, an operating production petrol engine and an oil spray furnace are given. The experimentally determined accuracy of CARS nitrogen thermometry for both mean and single pulse measurements is presented.

  10. Packed Bed Reactor Technology for Chemical-Looping Combustion

    NARCIS (Netherlands)

    Noorman, Sander; Sint Annaland, van Martin; Kuipers, Hans

    2007-01-01

    Chemical-looping combustion (CLC) has emerged as an alternative for conventional power production processes to intrinsically integrate power production and CO2 capture. In this work a new reactor concept for CLC is proposed, based on dynamically operated packed bed reactors. With analytical expressi

  11. Identification of Chemical Reactor Plant’s Mathematical Model

    Directory of Open Access Journals (Sweden)

    Pyakillya Boris

    2015-01-01

    Full Text Available This work presents a solution of the identification problem of chemical reactor plant’s mathematical model. The main goal is to obtain a mathematical description of a chemical reactor plant from experimental data, which based on plant’s time response measurements. This data consists sequence of measurements for water jacket temperature and information about control input signal, which is used to govern plant’s behavior.

  12. Analytical model of plasma-chemical etching in planar reactor

    Science.gov (United States)

    Veselov, D. S.; Bakun, A. D.; Voronov, Yu A.; Kireev, V. Yu; Vasileva, O. V.

    2016-09-01

    The paper discusses an analytical model of plasma-chemical etching in planar diode- type reactor. Analytical expressions of etch rate and etch anisotropy were obtained. It is shown that etch anisotropy increases with increasing the ion current and ion energy. At the same time, etch selectivity of processed material decreases as compared with the mask. Etch rate decreases with the distance from the centre axis of the reactor. To decrease the loading effect, it is necessary to reduce the wafer temperature and pressure in the reactor, as well as increase the gas flow rate through the reactor.

  13. Semiconductor Chemical Reactor Engineering and Photovoltaic Unit Operations.

    Science.gov (United States)

    Russell, T. W. F.

    1985-01-01

    Discusses the nature of semiconductor chemical reactor engineering, illustrating the application of this engineering with research in physical vapor deposition of cadmium sulfide at both the laboratory and unit operations scale and chemical vapor deposition of amorphous silicon at the laboratory scale. (JN)

  14. 77 FR 7613 - Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108

    Science.gov (United States)

    2012-02-13

    ... COMMISSION Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108... Chemical Company (the licensee) to operate the Dow Chemical TRIGA Research Reactor (DTRR) at a maximum... INFORMATION CONTACT: Geoffrey Wertz, Project Manager, Research and Test Reactors Licensing Branch, Division...

  15. Introduction to Chemical Engineering Reactor Analysis: A Web-Based Reactor Design Game

    Science.gov (United States)

    Orbey, Nese; Clay, Molly; Russell, T.W. Fraser

    2014-01-01

    An approach to explain chemical engineering through a Web-based interactive game design was developed and used with college freshman and junior/senior high school students. The goal of this approach was to demonstrate how to model a lab-scale experiment, and use the results to design and operate a chemical reactor. The game incorporates both…

  16. Chemical reactor and method for chemically converting a first material into a second material

    Science.gov (United States)

    Kong, Peter C.

    2008-04-08

    A chemical reactor and method for converting a first material into a second material is disclosed and wherein the chemical reactor is provided with a feed stream of a first material which is to be converted into a second material; and wherein the first material is combusted in the chemical reactor to produce a combustion flame, and a resulting gas; and an electrical arc is provided which is passed through or superimposed upon the combustion flame and the resulting gas to facilitate the production of the second material.

  17. Antifoaming effect of chemical compounds in manure biogas reactors

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Tsapekos, Panagiotis; Boe, Kanokwan;

    2013-01-01

    A precise and efficient antifoaming control strategy in bioprocesses is a challenging task as foaming is a very complex phenomenon. Nevertheless, foam control is necessary, as foam is a major operational problem in biogas reactors. In the present study, the effect of 14 chemical compounds on foam......), siloxanes (polydimethylsiloxane) and ester (tributylphosphate) were found to be the most efficient compounds to suppress foam. The efficiency of antifoamers was dependant on their physicochemical properties and greatly correlated to their chemical characteristics for dissolving foam. The antifoamers were...... more efficient in reducing foam when added directly into the liquid phase rather than added in the headspace of the reactor....

  18. Improving chemical synthesis using flow reactors.

    Science.gov (United States)

    Wiles, Charlotte; Watts, Paul

    2007-11-01

    Owing to the competitive nature of the pharmaceutical industry, researchers involved in lead compound generation are under continued pressure to identify and develop promising programmes of research in order to secure intellectual property. The potential of a compound for therapeutic development depends not only on structural complexity, but also on the identification of synthetic strategies that will enable the compound to be prepared on the desired scale. One approach that is of present interest to the pharmaceutical industry is the use of continuous flow reactors, with the flexible nature of the technology being particularly attractive as it bridges the changes in scale required between the initial identification of a target compound and its subsequent production. Based on these factors, a significant programme of research is presently underway into the development of flow reactors as tools for the synthetic chemist, with the transfer of many classes of reaction successfully reported to date. This article focuses on the application of continuous flow methodology to drug discovery and the subsequent production of pharmaceuticals. PMID:23484600

  19. Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors

    International Nuclear Information System (INIS)

    Steam reforming with oxygen (SRO) is a combination of non-catalytic partial oxidation and steam reforming of methane, industrially used for syngas production. There are several models of the chemical reactors used for this purpose but in the last decade a new direction has developed - plasma devices. The aim of the present paper is to make a comparative analysis between the autothermal reformers, including their improved variants, and the plasma reactors. The study is conceived in terms of advantages and disadvantages coming from the exploitation parameters, methane conversion, selectivity, energy efficiency and investment costs. Although SRO by means of chemical reactors may be the most efficient, plasma reactors represent an incisive approach by their simplicity, compactness and low price. (author)

  20. 78 FR 26811 - Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical TRIGA...

    Science.gov (United States)

    2013-05-08

    ... COMMISSION Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical TRIGA Research Reactor; Supplemental Information and Correction AGENCY: Nuclear Regulatory Commission. ACTION... Chemical TRIGA Research Reactor,'' to inform the public that the NRC is considering issuance of a...

  1. Portfolio Assessment on Chemical Reactor Analysis and Process Design Courses

    Science.gov (United States)

    Alha, Katariina

    2004-01-01

    Assessment determines what students regard as important: if a teacher wants to change students' learning, he/she should change the methods of assessment. This article describes the use of portfolio assessment on five courses dealing with chemical reactor and process design during the years 1999-2001. Although the use of portfolio was a new…

  2. Chemistry research and chemical techniques based on research reactors

    International Nuclear Information System (INIS)

    Chemistry has occupied an important position historically in the sciences associated with nuclear reactors and it continues to play a prominent role in reactor-based research investigations. This Panel of prominent scientists in the field was convened by the International Atomic Energy Agency (IAEA) to assess the present state of such chemistry research for the information of its Member States and others interested in the subject. There are two ways in which chemistry is associated with nuclear reactors: (a) general applications to many scientific fields in which chemical techniques are involved as essential service functions; and (b) specific applications of reactor facilities to the solution of chemical problems themselves. Twenty years of basic research with nuclear reactors have demonstrated a very widespread, and still increasing, demand for radioisotopes and isotopically-labelled molecules in all fields of the physical and biological sciences. Similarly, the determination of the elemental composition of a material through the analytical technique of activation analysis can be applied throughout experimental science. Refs, figs and tabs

  3. Chemical looping combustion in a rotating bed reactor--finding optimal process conditions for prototype reactor.

    Science.gov (United States)

    Håkonsen, Silje Fosse; Blom, Richard

    2011-11-15

    A lab-scale rotating bed reactor for chemical looping combustion has been designed, constructed, and tested using a CuO/Al(2)O(3) oxygen carrier and methane as fuel. Process parameters such as bed rotating frequency, gas flows, and reactor temperature have been varied to find optimal performance of the prototype reactor. Around 90% CH(4) conversion and >90% CO(2) capture efficiency based on converted methane have been obtained. Stable operation has been accomplished over several hours, and also--stable operation can be regained after intentionally running into unstable conditions. Relatively high gas velocities are used to avoid fully reduced oxygen carrier in part of the bed. Potential CO(2) purity obtained is in the range 30 to 65%--mostly due to air slippage from the air sector--which seems to be the major drawback of the prototype reactor design. Considering the prototype nature of the first version of the rotating reactor setup, it is believed that significant improvements can be made to further avoid gas mixing in future modified and up-scaled reactor versions.

  4. Antifoaming effect of chemical compounds in manure biogas reactors.

    Science.gov (United States)

    Kougias, P G; Tsapekos, P; Boe, K; Angelidaki, I

    2013-10-15

    A precise and efficient antifoaming control strategy in bioprocesses is a challenging task as foaming is a very complex phenomenon. Nevertheless, foam control is necessary, as foam is a major operational problem in biogas reactors. In the present study, the effect of 14 chemical compounds on foam reduction was evaluated at concentration of 0.05%, 0.1% and 0.5% v/v(sample), in raw and digested manure. Moreover, two antifoam injection methods were compared for foam reduction efficiency. Natural oils (rapeseed and sunflower oil), fatty acids (oleic, octanoic and derivative of natural fatty acids), siloxanes (polydimethylsiloxane) and ester (tributylphosphate) were found to be the most efficient compounds to suppress foam. The efficiency of antifoamers was dependant on their physicochemical properties and greatly correlated to their chemical characteristics for dissolving foam. The antifoamers were more efficient in reducing foam when added directly into the liquid phase rather than added in the headspace of the reactor.

  5. Systematic Staging in Chemical Reactor Design : Fischer-Tropsch

    OpenAIRE

    Foss, Martin Skjærvø

    2013-01-01

    Today, crude oil is the main resource for production of liquid fuels. As the demandincreases, utilization of alternative resources becomes more and more urgent. Thus,the development of new and continued research on established process technologies isimportant.The scope of this Master?s thesis has been the catalytic hydrogenation of CO for production of linear, long chained hydrocarbons, known as the Fischer-Tropsch process. The core of a chemical plant is the reactor, thus the ultimate goal i...

  6. Swift chemical sputtering and potential development for fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkas, C.; Juslin, N.; Nordlund, K.; Keinonen, J. (Univ. of Helsinki, Dept. of Physics (Finland)); Traeskelin, P. (Univ. of California at Davis, Dept. of Chemical Engineering and Materials Science, CA (United States)); Salonen, E. (Helsinki Univ. of Technology, Lab. of Physics (Finland)); Krasheninnikov, A.V.

    2008-10-15

    One of the objectives of the International Thermonuclear Experimental Reactor (ITER) is to demonstrate prolonged fusion power production in deuterium-tritium plasma. The selection of plasma facing materials (PFMs) is a key issue for this objective, and multiple factors have to be taken into account. These include the lifetime of the materials (shortened by e.g. erosion and thermal fatigue), safety requirements (tritium retention and activation) and engineering aspects. Due to the ITER tokamak plasma design, the thermal load and particle flux are divided between different areas in the reactor. Consequently, the material requirements vary with location and the current choice for first wall material is beryllium and the divertor region is to be composed of carbon-fibre-composites (CFC) (strike point tiles) and tungsten (baffle and dome). When energetic atoms or ions escape from the hot plasma in a fusion reactor and hit a wall material, they can cause the material to erode. The erosion is well understood if the ion energy is high enough that the erosion is caused by physical sputtering, i.e. when the ion collides with a sample atom and directly kicks it out of the sample. Alternatively ions with thermal energies can also cause erosion if a chemical etching reaction can take place. In the particular case of hydrogen escaping from a fusion reactor plasma and hitting a carbon-based wall material, high carbon erosion has been observed for hydrogen ion energies which are so low (10-30 eV) that physical sputtering is impossible. On the other hand, no chemical etching reaction has been able to explain the erosion either. Using classical and quantum mechanical atomistic simulations of the ion-sample collision dynamics, we have shown that the observed erosion can be explained by a chemical sputtering mechanism, where the incoming ion attacks a chemical bond between two carbon atoms, and causes the bond to break. This mechanism requires an ion energy of only about 3 eV, and

  7. Studies on modelling of bubble driven flows in chemical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grevskott, Sverre

    1997-12-31

    Multiphase reactors are widely used in the process industry, especially in the petrochemical industry. They very often are characterized by very good thermal control and high heat transfer coefficients against heating and cooling surfaces. This thesis first reviews recent advances in bubble column modelling, focusing on the fundamental flow equations, drag forces, transversal forces and added mass forces. The mathematical equations for the bubble column reactor are developed, using an Eulerian description for the continuous and dispersed phase in tensor notation. Conservation equations for mass, momentum, energy and chemical species are given, and the k-{epsilon} and Rice-Geary models for turbulence are described. The different algebraic solvers used in the model are described, as are relaxation procedures. Simulation results are presented and compared with experimental values. Attention is focused on the modelling of void fractions and gas velocities in the column. The energy conservation equation has been included in the bubble column model in order to model temperature distributions in a heated reactor. The conservation equation of chemical species has been included to simulate absorption of CO{sub 2}. Simulated axial and radial mass fraction profiles for CO{sub 2} in the gas phase are compared with measured values. Simulations of the dynamic behaviour of the column are also presented. 189 refs., 124 figs., 1 tab.

  8. Chemically-Modified Cellulose Paper as a Microstructured Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Hirotaka Koga

    2015-01-01

    Full Text Available We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  9. 77 FR 42771 - License Renewal for the Dow Chemical TRIGA Research Reactor

    Science.gov (United States)

    2012-07-20

    ... COMMISSION License Renewal for the Dow Chemical TRIGA Research Reactor AGENCY: Nuclear Regulatory Commission... Research Reactor is located on the Michigan Division of the Dow Chemical Company in Midland, MI and is a... INFORMATION CONTACT: Geoffrey A. Wertz, Project Manager, Research and Test Reactor Licensing Branch,...

  10. Chemical vapor deposition reactor. [providing uniform film thickness

    Science.gov (United States)

    Chern, S. S.; Maserjian, J. (Inventor)

    1977-01-01

    An improved chemical vapor deposition reactor is characterized by a vapor deposition chamber configured to substantially eliminate non-uniformities in films deposited on substrates by control of gas flow and removing gas phase reaction materials from the chamber. Uniformity in the thickness of films is produced by having reactive gases injected through multiple jets which are placed at uniformally distributed locations. Gas phase reaction materials are removed through an exhaust chimney which is positioned above the centrally located, heated pad or platform on which substrates are placed. A baffle is situated above the heated platform below the mouth of the chimney to prevent downdraft dispersion and scattering of gas phase reactant materials.

  11. Simplifying Chemical Reactor Design by using Molar Quantities Instead of Fractional Conversion.

    Science.gov (United States)

    Brown, Lee F.; Falconer, John L.

    1987-01-01

    Explains the advantages of using molar quantities in chemical reactor design. Advocates the use of differential versions of reactor mass balances rather than the integrated forms. Provides specific examples and cases to illustrate the principles. (ML)

  12. Efficiency factor of a chemical nuclear reactor with gamma sources

    International Nuclear Information System (INIS)

    A chemonuclear reactor is simulated in order to calculate the efficiency factor of molecular species in chemical reactions induced by gamma radiation, with the purpose to obtain information for its design and consider the electromagnetic energy as a possible solution to the present problem of energy. The research is based on a mathematical model of succesive Compton processes applied to spherical and cylindrical geometry and corroborated through the absorbed dose and the experimental date of the increase factor, for the radioisotopic sources Co-60 and Cs-137 relating the quantity of energy deposited into various cylinders with the G value, the relation radius/height of the reactor is optimized according to the molecular production. This is illustrated with the radiolysis of a solution of CH3OH/H2O which forms H2 and with the obtainment of C2H5Br that represents and industrial process induced radioactively. The results show a greater energy deposition with Cs-137 but a larger production of H2/hr with Co-60, and besides we can find high production values of C2H5Br. The cylinder with more advantages is that whose relation R/H is of 0.5. It can be concluded that the final selection of the reactor should be made after a more intense study of the used isotope and the source activity. The efficiency factor of H2 can be increased selecting the appropriate type and concentration of solute of the irradiated aqueous solutions

  13. Productivity of a nuclear chemical reactor with gamma radioisotopic sources

    International Nuclear Information System (INIS)

    According to an established mathematical model of successive Compton interaction processes the made calculations for major distances are extended checking the acceptability of the spheric geometry model for the experimental data for radioisotopic sources of Co-60 and Cs-137. Parameters such as the increasing factor and the absorbed dose served as comparative base. calculations for the case of a punctual source succession inside a determined volume cylinder are made to obtain the total dose, the deposited energy by each photons energetic group and the total absorbed energy inside the reactor. Varying adequately the height/radius relation for different cylinders, the distinct energy depositions are compared in each one of them once a time standardized toward a standard value of energy emitted by the reactor volume. A relation between the quantity of deposited energy in each point of the reactor and the conversion values of chemical species is established. They are induced by electromagnetic radiation and that are reported as ''G'' in the scientific literature (number of molecules formed or disappeared by each 100 e.v. of energy). Once obtained the molecular performance inside the reactor for each type of geometry, it is optimized the height/radius relation according to the maximum production of molecules by unity of time. It is completed a bibliographical review of ''G'' values reported by different types of aqueous solutions with the purpose to determine the maximum performance of molecular hydrogen as a function of pH of the solution and of the used type of solute among other factors. Calculations for the ethyl bromide production as an example of one of the industrial processes which actually work using the gamma radiation as reactions inductor are realized. (Author)

  14. Evaluating the efficiency of catchments as chemical reactors

    Science.gov (United States)

    Maher, K.; Druhan, J. L.; Steefel, C. I.; Maxwell, R. M.; Bearup, L. A.

    2014-12-01

    Catchments can be viewed as biogeochemical reactors that moderate the transfer of reactive gases and solutes according to the movement of water through the subsurface. A simple measure of the efficiency of a reactor is the Damköhler number (Da), which compares the characteristic fluid travel time to the characteristic time scale for the reaction of interest. However, the mixture of unsaturated and saturated flow conditions combined with complex subsurface heterogeneity results in an ensemble of travel times that is variable in space and time. Because most chemical reactions of interest are kinetically controlled and thus a non-linear function of time, the interaction between the travel time distribution and the reaction progress curve dictates the efficiency of chemical conversion within the catchment. This interaction is ultimately reflected in the relationship between concentration of a solute and discharge in wells and rivers. To evaluate the coupling between transport dynamics and chemical reactions, we conducted a series of reactive transport simulations of heterogeneous domains at multiple scales, ranging from soil profile to hillslope scale, and evaluated rates of chemical transformations and fluxes under both steady-state and transient flow conditions. Travel time distributions are evaluated for each realization. For both heterogeneous and homogenous kinetic reactions considered, mixing further reduces the efficiency of chemical conversion to an extent that is determined by the average Da: at moderate Da, corresponding to pronounced solute gradients, the variability in local reaction rates is most pronounced. At the soil profile scale, characterized by dominantly vertical flow, concentrations scale with mean travel time. For a hillslope geometry, the travel time distribution is more complex and the nature of mixing can shift the trajectory of the reaction progress curve towards different endpoints, obscuring the relationship between concentration, water

  15. Catalytic hydrogenation reactors for the fine chemicals industries. Their design and operation.

    OpenAIRE

    Westerterp, K.R.; Molga, E.J.; Gelder, van, M.

    1997-01-01

    The design and operation of reactors for catalytic, hydrogenation in the fine chemical industries are discussed. The requirements for a good multiproduct catalytic hydrogenation unit as well as the choice of the reactor type are considered. Packed bed bubble column reactors operated without hydrogen recycle are recommended as the best choice to obtain a flexible reactor with good selectivities. The results of an experimental study of the catalytic hydrogenation of 2,4-dinitrotoluene in a mini...

  16. Process and Control Design for a Novel Chemical Heat Exchange Reactor

    OpenAIRE

    Haugwitz, Staffan; Hagander, Per; Norén, Tommy

    2006-01-01

    A new chemical reactor, the Open Plate Reactor (OPR), is being developed by Alfa Laval AB. It has a very flexible configuration with distributed inlet ports, cooling zones and internal sensors. This gives the OPR improved control capabilities compared to standard chemical reactors in addition to better heat transfer capacity. In this paper, we address the relationship between the process design, the number of actuators used and how to use these actuators in feedback contro...

  17. A Thermo-Chemical Reactor for analytical atomic spectrometry

    Science.gov (United States)

    Gilmutdinov, A. Kh.; Nagulin, K. Yu.

    2009-01-01

    A novel atomization/vaporization system for analytical atomic spectrometry is developed. It consists of two electrically and thermally separated parts that can be heated separately. Unlike conventional electrothermal atomizers in which atomization occurs immediately above the vaporization site and at the same instant of time, the proposed system allows analyte atomization via an intermediate stage of fractional condensation as a two stage process: Vaporization → Condensation → Atomization. The condensation step is selective since vaporized matrix constituents are mainly non-condensable gases and leave the system by diffusion while analyte species are trapped on the cold surface of a condenser. This kind of sample distillation keeps all the advantages of traditional electrothermal atomization and allows significant reduction of matrix interferences. Integration into one design a vaporizer, condenser and atomizer gives much more flexibility for in situ sample treatment and thus the system is called a Thermo-Chemical Reactor (TCR). Details of the design, temperature measurements, vaporization-condensation-atomization mechanisms of various elements in variety of matrices are investigated in the TCR with spectral, temporal and spatial resolution. The ability of the TCR to significantly reduce interferences and to conduct sample pyrolysis at much higher temperatures as compared to conventional electrothermal atomizers is demonstrated. The analytical potential of the system is shown when atomic absorption determination of Cd and Pb in citrus leaves and milk powder without the use of any chemical modification.

  18. Rotary Bed Reactor for Chemical-Looping Combustion with Carbon Capture. Part 1: Reactor Design and Model Development

    KAUST Repository

    Zhao, Zhenlong

    2013-01-17

    Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently, almost all of the research has been focused on developing CLC-based interconnected fluidized-bed reactors. In this two-part series, a new rotary reactor concept for gas-fueled CLC is proposed and analyzed. In part 1, the detailed configuration of the rotary reactor is described. In the reactor, a solid wheel rotates between the fuel and air streams at the reactor inlet and exit. Two purging sectors are used to avoid the mixing between the fuel stream and the air stream. The rotary wheel consists of a large number of channels with copper oxide coated on the inner surface of the channels. The support material is boron nitride, which has high specific heat and thermal conductivity. Gas flows through the reactor at elevated pressure, and it is heated to a high temperature by fuel combustion. Typical design parameters for a thermal capacity of 1 MW have been proposed, and a simplified model is developed to predict the performances of the reactor. The potential drawbacks of the rotary reactor are also discussed. © 2012 American Chemical Society.

  19. PERFORMANCE IMPROVEMENT OF A CHEMICAL REACTOR BY NONLINEAR NATURAL OSCILLATIONS

    NARCIS (Netherlands)

    RAY, AK

    1995-01-01

    The dynamic behaviour of two coupled continuous stirred tank reactors in sequence is studied when the first reactor is being operated under limit cycle regimes producing self-sustained natural oscillations. The periodic output from the first reactor is then used as a forced input into the second rea

  20. Study relating to the physico-chemical behaviour of heavy water in nuclear reactors

    International Nuclear Information System (INIS)

    Chemical and isotope pollution, and radiolytic decomposition are the two most important ways in which heavy water becomes degraded in nuclear reactors. Chemical pollution has led to the creation of ion exchange purification loops specially designed for reactors: the report contains a description in detail of the application of this purification method in CEA research reactors, including the analysis required, results obtained, and their interpretation. The intelligence obtained on radiolytic decomposition with the same facilities is also discussed, as well as the recombination apparatus and control equipment utilized. Finally, investigation to date in the CEA on recombination circuits for power reactors is also discussed. (author)

  1. Chemical reactor for converting a first material into a second material

    Science.gov (United States)

    Kong, Peter C

    2012-10-16

    A chemical reactor and method for converting a first material into a second material is disclosed and wherein the chemical reactor is provided with a feed stream of a first material which is to be converted into a second material; and wherein the first material is combusted in the chemical reactor to produce a combustion flame, and a resulting gas; and an electrical arc is provided which is passed through or superimposed upon the combustion flame and the resulting gas to facilitate the production of the second material.

  2. Fuel reactor modelling in chemical-looping combustion of coal: 2. simulation and optimization

    OpenAIRE

    García Labiano, Francisco; Diego Poza, Luis F. de; Gayán Sanz, Pilar; Abad Secades, Alberto; Adánez Elorza, Juan

    2013-01-01

    Chemical-Looping Combustion of coal (CLCC) is a promising process to carry out coal combustion with carbon capture. The process should be optimized in order to maximize the carbon capture and the combustion efficiency in the fuel reactor, which will depend on the reactor design and the operational conditions. In this work, a mathematical model of the fuel reactor is used to make predictions about the performance of the CLCC process and simulate the behaviour of the system ...

  3. Computational Study of Fluid Flow in a Rotational Chemical Vapor Deposition (CVD) Reactor

    Science.gov (United States)

    Wong, Sun; Jaluria, Yogesh

    2015-11-01

    In a typical Chemical Vapor Deposition (CVD) reactor, the flow of the reacting gases is one of the most important considerations that must be precisely controlled in order to obtain desired film quality. In general, the fluids enter the reactor chamber, travel over to the heated substrate area, where chemical reactions lead to deposition, and then exit the chamber. However, the flow inside the reactor chamber is not that simple. It would often develop recirculation at various locations inside the reactor due to reactor geometry, flow conditions, buoyancy effects from temperature differences and rotational effects cause by the rotating substrate. This recirculation causes hot spots and affects the overall performance of the reactor. A recirculation fluid packet experiences a longer residence time inside the reactor and, thus, it heats up to higher temperatures causing unwanted chemical reactions and decomposition. It decreases the grow rate and uniformity on the substrate. A mathematical and computational model has been developed to help identify these unwanted hot spots occurring inside the CVD reactor. The model can help identify the user parameters needed to reduce the recirculation effects and better control the flow. Flow rates, pressures, rotational speeds and temperatures can all affect the severity of the recirculation within the reactor. The model can also help assist future designs as the geometry plays a big role in controlling fluid flow. The model and the results obtained are discussed in detail.

  4. A novel reactor configuration for packed bed chemical-looping combustion of syngas

    NARCIS (Netherlands)

    Hamers, H.P.; Gallucci, F.; Cobden, P.D.; Kimball, E.; Sint Annaland, M. van

    2013-01-01

    This study reports on the application of chemical looping combustion (CLC) in pressurized packed bed reactors using syngas as a fuel. High pressure operation of CLC in packed bed has a different set of challenges in terms of material properties, cycle and reactor design compared to fluidized bed ope

  5. Development of a Reactor Model for Chemical Conversion of Lunar Regolith

    Science.gov (United States)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2009-01-01

    Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.

  6. The past, present and potential for microfluidic reactor technology in chemical synthesis.

    Science.gov (United States)

    Elvira, Katherine S; Casadevall i Solvas, Xavier; Wootton, Robert C R; deMello, Andrew J

    2013-11-01

    The past two decades have seen far-reaching progress in the development of microfluidic systems for use in the chemical and biological sciences. Here we assess the utility of microfluidic reactor technology as a tool in chemical synthesis in both academic research and industrial applications. We highlight the successes and failures of past research in the field and provide a catalogue of chemistries performed in a microfluidic reactor. We then assess the current roadblocks hindering the widespread use of microfluidic reactors from the perspectives of both synthetic chemistry and industrial application. Finally, we set out seven challenges that we hope will inspire future research in this field.

  7. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    Science.gov (United States)

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  8. COMSORS: A light water reactor chemical core catcher

    International Nuclear Information System (INIS)

    The Core-Melt Source Reduction System (COMSORS) is a new approach to terminate lightwater reactor (LWR) core-melt accidents and ensure containment integrity. A special dissolution glass made of lead oxide (PbO) and boron oxide (B2O3) is placed under the reactor vessel. If molten core debris is released onto the glass, the following sequence happens: (1) the glass absorbs decay heat as its temperature increases and the glass softens; (2) the core debris dissolves into the molten glass; (3) molten glass convective currents create a homogeneous high-level waste (HLW) glass; (4) the molten glass spreads into a wider pool, distributing the heat for removal by radiation to the reactor cavity above or transfer to water on top of the molten glass; and (5) the glass solidifies as increased surface cooling area and decreasing radioactive decay heat generation allows heat removal to exceed heat generation

  9. Research on physical and chemical parameters of coolant in Light-Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Isabela C.; Mesquita, Amir Z., E-mail: icr@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEM-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The coolant radiochemical monitoring of light-water reactors, both power reactor as research reactors is one most important tasks of the system safe operation. The last years have increased the interest in the coolant chemical studying to optimize the process, to minimize the corrosion, to ensure the primary system materials integrity, and to reduce the workers exposure radiation. This paper has the objective to present the development project in Nuclear Technology Development Center (CDTN), which aims to simulate the primary water physical-chemical parameters of light-water-reactors (LWR). Among these parameters may be cited: the temperature, the pressure, the pH, the electric conductivity, and the boron concentration. It is also being studied the adverse effects that these parameters can result in the reactor integrity. The project also aims the mounting of a system to control and monitoring of temperature, electric conductivity, and pH of water in the Installation of Test in Accident Conditions (ITCA), located in the Thermal-Hydraulic Laboratory at CDTN. This facility was widely used in the years 80/90 for commissioning of several components that were installed in Angra 2 containment. In the test, the coolant must reproduce the physical and chemical conditions of the primary. It is therefore fundamental knowledge of the main control parameters of the primary cooling water from PWR reactors. Therefore, this work is contributing, with the knowledge and the reproduction with larger faithfulness of the reactors coolant in the experimental circuits. (author)

  10. Research on physical and chemical parameters of coolant in Light-Water Reactors

    International Nuclear Information System (INIS)

    The coolant radiochemical monitoring of light-water reactors, both power reactor as research reactors is one most important tasks of the system safe operation. The last years have increased the interest in the coolant chemical studying to optimize the process, to minimize the corrosion, to ensure the primary system materials integrity, and to reduce the workers exposure radiation. This paper has the objective to present the development project in Nuclear Technology Development Center (CDTN), which aims to simulate the primary water physical-chemical parameters of light-water-reactors (LWR). Among these parameters may be cited: the temperature, the pressure, the pH, the electric conductivity, and the boron concentration. It is also being studied the adverse effects that these parameters can result in the reactor integrity. The project also aims the mounting of a system to control and monitoring of temperature, electric conductivity, and pH of water in the Installation of Test in Accident Conditions (ITCA), located in the Thermal-Hydraulic Laboratory at CDTN. This facility was widely used in the years 80/90 for commissioning of several components that were installed in Angra 2 containment. In the test, the coolant must reproduce the physical and chemical conditions of the primary. It is therefore fundamental knowledge of the main control parameters of the primary cooling water from PWR reactors. Therefore, this work is contributing, with the knowledge and the reproduction with larger faithfulness of the reactors coolant in the experimental circuits. (author)

  11. Ozone decay in chemical reactor for ozone-dynamical disintegration of used tyres

    International Nuclear Information System (INIS)

    The ozone decay kinetics in the chemical reactor intended for used tyres disintegration is investigated experimentally and theoretically. Ozone was synthesized in barrierless ozonizers based on the streamer discharge. The chemical reactor for tyres disintegration in the ozone-air environment represents the cylindrical chamber, which feeds from the ozonizer by ozone-air mixture with the specified rate of volume flow, and with known ozone concentration. The output of the used mixture, which rate of volume flow is also known, is carried out through the ozone destructor. As a result of ozone decay in the volume and on the reactor walls, and output of the used mixture from the reactor, the ozone concentration in the reactor depends from time. In the paper, the analytical expression for dependence of ozone concentration in the reactor from time and from the parameters of a problem such as the volumetric feed rate, ozone concentration on the input in the reactor, volume flow rate of the used mixture, the volume of the reactor and the area of its internal surface is obtained. It is shown that experimental results coincide with good accuracy with analytical ones.

  12. Simulation of Chemical Reactors using the Least-Squares Spectral Element method

    OpenAIRE

    Sporleder, Federico

    2011-01-01

    The least–squares spectral element method is a relatively novel method that can be used to solve any well–posed problem. It has been extensively used in computational fluid dynamics, and in recent years has been applied in the field of chemical engineering. This work focuses on the use of the least–squares spectral element method for the simulation of chemical reactors from a general point of view. The document presents an analysis on the common challenges that chemical reactor models pose an...

  13. Chemical Looping Reactor System Design : Double Loop Circulating Fluidized Bed (DLCFB)

    OpenAIRE

    Bischi, Aldo

    2012-01-01

    Chemical looping combustion (CLC) is continuously gaining more importance among the carbon capture and storage (CCS) technologies. It is an unmixed combustion process which takes place in two steps. An effective way to realize CLC is to use two interconnected fluidized beds and a metallic powder circulating among them, acting as oxygen carrier. The metallic powder oxidizes at high temperature in one of the two reactors, the air reactor (AR). It reacts in a highly exothermic reaction with the ...

  14. Chemical reactor for a PUREX reprocessing plant of 200Kg U/day capacity

    International Nuclear Information System (INIS)

    Dissolution of spent reactor fuels in Purex process is studied. Design of a chemical reactor for PWR elements, 3% enriched uranium dioxide with zircaloy cladding, for a 200Kg/day uranium plant is the main objective. Chop-leach process is employed and 7.5M nitric acid is used. Non-criticality was obtained by safe geometry and checked by spectrum homogeneous calculus and diffusion codes. Fuel cycle is considered and decladding and dissolution are treated more accurately

  15. Fuel reactor modelling in chemical-looping combustion of coal: 1. model formulation

    OpenAIRE

    Abad Secades, Alberto; Gayán Sanz, Pilar; Diego Poza, Luis F. de; García Labiano, Francisco; Adánez Elorza, Juan

    2013-01-01

    A fundamental part of the reliability of the Chemical-Looping Combution system when a 13 solid fuel, such as coal, is fed to the reactor is based on the behaviour of the fuel reactor, which determines the conversion of the solid fuel. The objective of this work is to develop a model describing the fuel reactor in the Chemical–Looping Combustion with coal (CLCC) process. The model is used to simulate the performance of the 1 MWth CLCC rig built in the Technology University of Darmsta...

  16. Modelling of Mass Transfer Phenomena in Chemical and Biochemical Reactor Systems using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Larsson, Hilde Kristina

    , mixing, and other mass transfer phenomena in chemical and biochemical reactor systems. In this project, four selected case studies are investigated in order to explore the capabilities of CFD. The selected cases are a 1 ml stirred microbioreactor, an 8 ml magnetically stirred reactor, a Rushton impeller...... in chemical and biochemical reactors but that the user must be well aware of the shortcomings with the applied models....... the velocity and pressure distributions in a fluid. CFD also enables the modelling of several fluids simultaneously, e.g. gas bubbles in a liquid, as well as the presence of turbulence and dissolved chemicals in a fluid, and many other phenomena. This makes CFD an appreciated tool for studying flow structures...

  17. Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Raymond W.

    2012-07-30

    This project, Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine was established at the Kharkiv Institute of Physics and Technology (KIPT). The associated CRADA was established with Campbell Applied Physics (CAP) located in El Dorado Hills, California. This project extends an earlier project involving both CAP and KIPT conducted under a separate CRADA. The initial project developed the basic Plasma Chemical Reactor (PCR) for generation of ozone gas. This project built upon the technology developed in the first project, greatly enhancing the output of the PCR while also improving reliability and system control.

  18. Design of an isopropanol–acetone–hydrogen chemical heat pump with exothermic reactors in series

    International Nuclear Information System (INIS)

    The isopropanol–acetone–hydrogen chemical heat pump system with a series of exothermic reactors in which the reaction temperatures decrease successively is proposed. This system shows the better energy performances as compared with the traditional system with a single exothermic reactor, especially when the higher upgraded temperature is need. At the same amounts of the heat released, the work input of the compressor and the heater are both reduced notably. The results indicate that the advantages of the IAH-CHP system with exothermic reactors in series are obvious. - Highlights: • We propose the IAH-CHP system with exothermic reactors in series. • The COP and exergy efficiency of the system increase by 7.6% and 10.3% respectively. • The work input of the system is reduced notably at the same quantity of heat released

  19. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column

    OpenAIRE

    Swarup Biswas; Umesh Mishra

    2016-01-01

    The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and ...

  20. Process Modelling of Chemical Reactors: Zero- versus Multi-dimensional Models

    Directory of Open Access Journals (Sweden)

    Bjørn H. Hjertager

    1997-01-01

    Full Text Available Trends in modelling of flow processes in the chemical reactors are presented. Particular emphasis is given to models that use the multi-dimensional multi-fluid techniques. Examples are given for both gas/liquid as well as gas/particle reators.

  1. Real time chemical imaging of a working catalytic membrane reactor during oxidative coupling of methane.

    Science.gov (United States)

    Vamvakeros, A; Jacques, S D M; Middelkoop, V; Di Michiel, M; Egan, C K; Ismagilov, I Z; Vaughan, G B M; Gallucci, F; van Sint Annaland, M; Shearing, P R; Cernik, R J; Beale, A M

    2015-08-18

    We report the results from an operando XRD-CT study of a working catalytic membrane reactor for the oxidative coupling of methane. These results reveal the importance of the evolving solid state chemistry during catalytic reaction, particularly the chemical interaction between the catalyst and the oxygen transport membrane.

  2. A novel reactor configuration for packed bed chemical-looping combustion of syngas

    Energy Technology Data Exchange (ETDEWEB)

    Hamers, H.P.; Gallucci, F.; Van Sint Annaland, M. [Multiphase Reactor Group, Chemical Process Intensification, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Cobden, P.D. [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Kimball, E. [TNO Gas Treatment, P.O. Box 6000, 2600 JA Delft (Netherlands)

    2013-08-15

    This study reports on the application of chemical looping combustion (CLC) in pressurized packed bed reactors using syngas as a fuel. High pressure operation of CLC in packed bed has a different set of challenges in terms of material properties, cycle and reactor design compared to fluidized bed operation. However, high pressure operation allows the use of inherently more efficient power cycles than low pressure fluidized bed solutions. This paper quantifies the challenges in high pressure operation and introduces a novel reactor concept with which those challenges can be addressed. Continuous cyclic operation of a packed bed CLC system is simulated in a 1D numerical reactor model. Importantly, it is demonstrated that the temperature profiles that can occur in a packed bed reactor as a result of the different process steps do not accumulate, and have a negligible effect on the overall performance of the system. Moreover, it has been shown that an even higher energy efficiency can be achieved by feeding the syngas from the opposite direction during the reduction step (i.e. countercurrent operation). Unfortunately, in this configuration mode, more severe temperature fluctuations occur in the reactor exhaust, which is disadvantageous for the operation of a downstream gas turbine. Finally, a novel reactor configuration is introduced in which the desired temperature rise for obtained hot pressured air suitable for a gas turbine is obtained by carrying out the process with two packed bed reactor in series (two-stage CLC). This is shown to be a good alternative to the single bed configuration, and has the added advantage of decreasing the demands on both the oxygen carrier and the reactor materials and design specification.

  3. Chemical and physical analysis of core materials for advanced high temperature reactors with process heat applications

    International Nuclear Information System (INIS)

    Various chemical and physical methods for the analysis of structural materials have been developed in the research programmes for advanced high temperature reactors. These methods are discussed using as examples the structural materials of the reactor core - the fuel elements consisting of coated particles in a graphite matrix and the structural graphite. Emphasis is given to the methods of chemical analysis. The composition of fuel kernels is investigated using chemical analysis methods to determine the heavy metals content (uranium, plutonium, thorium and metallic impurity elements) and the amount of non-metallic constituents. The properties of the pyrocarbon and silicon carbide coatings of fuel elements are investigated using specially developed physiochemical methods. Regarding the irradiation behaviour of coated particles and fuel elements, methods have been developed for examining specimens in hot cells following exposures under reactor operating conditions, to supplement the measurements of in-reactor performance. For the structural graphite, the determination of impurities is important because certain impurities may cause pitting corrosion during irradiation. The localized analysis of very low impurity concentrations is carried out using spectrochemical d.c. arc excitation, local laser and inductively coupled plasma methods. (orig.)

  4. Treatment of a complex chemical wastewater using a sequencing batch reactor : from lab to full scale

    OpenAIRE

    Brito, A. G.; Mota, J. M.; Mendes, J.; Teunissen, G.; Machado, P

    2000-01-01

    This paper is focused on the application of a biological Sequencing Batch Reactor for the treatment of a complex wastewater discharged by a chemical industry of synthetic glues and resins. The main source of wastewater is the washing and cleaning procedures used in the manufacturing process. The present study comprised the assessment of SBR feasibility as secondary treatment, both at lab and full scale. In the lab scale reactor, at an applied organic load of 0.15 kgCODlkgVSS.day, COD removal ...

  5. Chemical engineering challenges in driving thermochemical hydrogen processes with the tandem mirror reactor

    International Nuclear Information System (INIS)

    The Tandem Mirror Reactor is described and compared with Tokamaks, both from a basic physics viewpoint and from the suitability of the respective reactor for synfuel production. Differences and similarities between the TMR as an electricity producer or a synfuel producer are also cited. The Thermochemical cycle chosen to link with the fusion energy source is the General Atomic Sulfur-Iodine Cycle, which is a purely thermal-driven process with no electrochemical steps. There are real chemical engineering challenges of getting this high quality heat into the large thermochemical plant in an efficient manner. We illustrate with some of our approaches to providing process heat via liquid sodium to drive a 1050 K, highly-endothermic, catalytic and fluidized-bed SO3 Decomposition Reactor. The technical, economic, and safety tradeoffs that arise are discussed

  6. Chemical compatibility issues associated with use of SiC/SiC in advanced reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Silicon carbide/silicon carbide (SiC/SiC) composites are of interest for components that will experience high radiation fields in the High Temperature Gas Cooled Reactor (HTGR), the Very High Temperature Reactor (VHTR), the Sodium Fast Reactor (SFR), or the Fluoride-cooled High-temperature Reactor (FHR). In all of the reactor systems considered, reactions of SiC/SiC composites with the constituents of the coolant determine suitability of materials of construction. The material of interest is nuclear grade SiC/SiC composites, which consist of a SiC matrix [high-purity, chemical vapor deposition (CVD) SiC or liquid phase-sintered SiC that is crystalline beta-phase SiC containing small amounts of alumina-yttria impurity], a pyrolytic carbon interphase, and somewhat impure yet crystalline beta-phase SiC fibers. The interphase and fiber components may or may not be exposed, at least initially, to the reactor coolant. The chemical compatibility of SiC/SiC composites in the three reactor environments is highly dependent on thermodynamic stability with the pure coolant, and on reactions with impurities present in the environment including any ingress of oxygen and moisture. In general, there is a dearth of information on the performance of SiC in these environments. While there is little to no excess Si present in the new SiC/SiC composites, the reaction of Si with O2 cannot be ignored, especially for the FHR, in which environment the product, SiO2, can be readily removed by the fluoride salt. In all systems, reaction of the carbon interphase layer with oxygen is possible especially under abnormal conditions such as loss of coolant (resulting in increased temperature), and air and/ or steam ingress. A global outline of an approach to resolving SiC/SiC chemical compatibility concerns with the environments of the three reactors is presented along with ideas to quickly determine the baseline compatibility performance of SiC/SiC.

  7. Assessment of impacts at the advanced test reactor as a result of chemical releases at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    This report provides an assessment of potential impacts at the Advanced Test Reactor Facility (ATR) resulting from accidental chemical spill at the Idaho Chemical Processing Plant (ICPP). Spills postulated to occur at the Lincoln Blvd turnoff to ICPP were also evaluated. Peak and time weighted average concentrations were calculated for receptors at the ATR facility and the Test Reactor Area guard station at a height above ground level of 1.0 m. Calculated concentrations were then compared to the 15 minute averaged Threshold Limit Value - Short Term Exposure Limit (TLV-STEL) and the 30 minute averaged Immediately Dangerous to Life and Health (IDLH) limit. Several different methodologies were used to estimate source strength and dispersion. Fifteen minute time weighted averaged concentrations of hydrofluoric acid and anhydrous ammonia exceeded TLV-STEL values for the cases considered. The IDLH value for these chemicals was not exceeded. Calculated concentrations of ammonium hydroxide, hexone, nitric acid, propane, gasoline, chlorine and liquid nitrogen were all below the TLV-STEL value

  8. Simulation of Thermal and Chemical Relaxation in a Post-Discharge Air Corona Reactor

    OpenAIRE

    Meziane, M.; Eichwald, O.; Ducasse, O.; Yousfi, M

    2016-01-01

    In a DC point-to-plane corona discharge reactor, the mono filamentary streamers cross the inter electrode gap with a natural repetition frequency of some tens of kHz. The discharge phase (including the primary and the secondary streamers development) lasts only some hundred of nanoseconds while the post-discharge phases occurring between two successive discharge phases last some tens of microseconds. From the point of view of chemical activation, the discharge phases create radical and excite...

  9. Fluidized bed as a solid precursor delivery system in a chemical vapor deposition reactor

    OpenAIRE

    Vahlas, Constantin; Caussat, Brigitte; Senocq, François; Gladfelter, Wayne L.; Sarantopoulos, Christos; Toro, David; Moersch, Tyler

    2005-01-01

    Chemical vapor deposition (CVD) using precursors that are solids at operating temperatures and pressures, presents challenges due to their relatively low vapor pressures. In addition, the sublimation rates of solid state precursors in fixed bed reactors vary with particle and bed morphology. In a recent patent application, the use of fluidized bed (FB) technology has been proposed to provide high, reliable, and reproducible flux of such precursors in CVD processes. In the present contribution...

  10. CFD simulation of a chemical-looping fuel reactor utilizing solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mahalatkar, K.; Kuhlman, J.; Huckaby, E.D.; O' Brien, T. [West Virginia University, Morgantown, WV (United States)

    2011-08-15

    A computational fluid dynamic (CFD) study has been carried out for the fuel reactor for a new type of combustion technology called chemical-looping combustion (CLC). CLC involves combustion of fuels by heterogeneous chemical reactions with an oxygen carrier, usually a granular metal oxide, exchanged between two reactors. There have been extensive experimental studies on CLC, however CFD simulations of this concept are quite limited. In the present paper we have developed a CFD model for the fuel reactor of a chemical-looping combustor described in the literature, which utilized a Fe-based carrier (ilmenite) and coal. An Eulerian multiphase continuum model was used to describe both the gas and solid phases, with detailed sub-models to account for fluid-particle and particle-particle interaction forces. Global reaction models of fuel and carrier chemistry were utilized. The transient results obtained from the simulations were compared with detailed experimental time-varying outlet species concentrations (Leion et al., 2008) and provided a reasonable match with the reported experimental data.

  11. Novel duplex vapor: Electrochemical method for silicon solar cells. [chemical reactor for a silicon sodium reaction system

    Science.gov (United States)

    Nanis, L.; Sanjurjo, A.; Sancier, K.

    1979-01-01

    The scaled up chemical reactor for a SiF4-Na reaction system is examined for increased reaction rate and production rate. The reaction system which now produces 5 kg batches of mixed Si and NaF is evaluated. The reactor design is described along with an analysis of the increased capacity of the Na chip feeder. The reactor procedure is discussed and Si coalescence in the reaction products is diagnosed.

  12. A non-permselective membrane reactor for chemical processes normally requiring strict stoichiometric feed rates of reactants

    NARCIS (Netherlands)

    Sloot, H.J.; Versteeg, G.F.; Swaaij, W.P.M. van

    1990-01-01

    A novel type of membrane reactor with separated feeding of the reactants is presented for chemical processes normally requiring strict stoichiometric feed rates of premixed reactants. The reactants are fed in the reactor to the different sides of a porous membrane which is impregnated with a catalys

  13. Chemical Engineering Division reactor fuels and materials chemistry research: July 1976--September 1977. [LMFBR; GCFR

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    Reactor safety studies were directed primarily toward obtaining high-temperature physical property data for use in reactor safety analyses. Spectroscopic data and an oxygen-potential model were used to calculate thermodynamic properties applicable to the equations of state of (U,Pu)O/sub 2/ and UO/sub 2/. Work was continued on the compilation of standard sets of property data on reactor fuels and materials. The viscosity of molten alumina and the thermal diffusivity of molten UO/sub 2/ were measured as functions of temperature. Modeling and chemical-interaction studies related to post-accident heat removal were conducted. The efforts in sodium technology supported the LMFBR program. Studies were conducted to explore the feasibility of upgrading the quality of commercial-grade sodium and sodium from decommissioned reactors to provide new sources of reactor-grade sodium. Work was started on the development of methods for disposal of contaminated alkali--metal wastes. In work related to tritium, a model was developed to describe the behavior of tritium in an LMFBR, tritium permeation through steam-generator materials was measured, and an in-sodium tritium meter was developed and tested in reactor environments. Work in the area of fuels and materials chemistry was conducted in support of the GCFR program. Portions of the cesium--uranium--oxygen phase diagram were investigated to aid in understanding the reaction of fission-product cesium with urania blanket material, particularly in relation to axial gas flow in vented GCFR fuel pins. Data on the oxidation of vanadium, niobium, and titanium were assessed to determine the suitability of these materials for use in controlling oxidative attack of stainless steel cladding.

  14. Ceramic Heat Exchangers and Chemical Reactors with Micro-Scale Features for In-Situ Resource Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop compact and lightweight ceramic heat exchangers and chemical reactors suitable for high temperature processes. These devices will have...

  15. Design of a rotary reactor for chemical-looping combustion. Part 1: Fundamentals and design methodology

    KAUST Repository

    Zhao, Zhenlong

    2014-04-01

    Chemical-looping combustion (CLC) is a novel and promising option for several applications including carbon capture (CC), fuel reforming, H 2 generation, etc. Previous studies demonstrated the feasibility of performing CLC in a novel rotary design with micro-channel structures. In the reactor, a solid wheel rotates between the fuel and air streams at the reactor inlet, and depleted air and product streams at exit. The rotary wheel consists of a large number of micro-channels with oxygen carriers (OC) coated on the inner surface of the channel walls. In the CC application, the OC oxidizes the fuel while the channel is in the fuel zone to generate undiluted CO2, and is regenerated while the channel is in the air zone. In this two-part series, the effect of the reactor design parameters is evaluated and its performance with different OCs is compared. In Part 1, the design objectives and criteria are specified and the key parameters controlling the reactor performance are identified. The fundamental effects of the OC characteristics, the design parameters, and the operating conditions are studied. The design procedures are presented on the basis of the relative importance of each parameter, enabling a systematic methodology of selecting the design parameters and the operating conditions with different OCs. Part 2 presents the application of the methodology to the designs with the three commonly used OCs, i.e., nickel, copper, and iron, and compares the simulated performances of the designs. © 2013 Elsevier Ltd. All rights reserved.

  16. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor.

    Science.gov (United States)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnO(x)-CVD layers.

  17. Physical and chemical feasibility of fueling molten salt reactors with TRU's trifluorides

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V.; Feinberg, O.; Konakov, S.; Subbotine, S.; Surenkov, A.; Zakirov, R. [Kurchatov Institute, RRC, Moscow (Russian Federation)

    2001-07-01

    The molten salt reactor (MSR) concept is very important for consideration as an element of future nuclear energy systems. These reactor systems are unique in many ways. Particularly, the MSRs appear to have substantial promise not only as advanced TRU free system operating in U-Th cycle, but also as transmuter of TRU. Physical and chemical feasibility of fueling MSR with TRU trifluorides is examined. Solvent compositions with and without U-Th as fissile / fertile addition are considered. The principle reactor and fuel cycle variables available for optimizing the performance of MSR as TRU transmuting system are discussed. These efforts led to the definition in minimal TRU mass flow rate, reduced total losses to waste and maximum possible burn up rate for the molten salt transmuter. The current status of technology and prospects for revisited interest are summarized. Significant chemical problems are remain to be resolved at the end of prior MSRs programs, notably, graphite life durability, tritium control, fate of noble metal fission products. Questions arising from plutonium and minor actinide fueling include: corrosion and container chemistry, new redox buffer for systems without uranium, analytical chemistry instrumentation, adequate constituent solubilities, suitable fuel processing and waste form development. However these problems appear to be soluble. (author)

  18. Nonequilibrium chemical instabilities in continuous flow stirred tank reactors: The effect of stirring

    Science.gov (United States)

    Horsthemke, W.; Hannon, L.

    1984-11-01

    We present a stochastic model for stirred chemical reactors. In the limiting case of practical interest, i.e., fast stirring, we solve for the characteristic function in steady state and derive expressions for the stationary moments through a perturbation expansion. Moments are explicitly calculated for a generic model of bistable behavior. We find that stirring decreases the area of the bistable region essentially by changing the point of transition from the high reaction rate state to the low reaction rate state. This is in remarkable agreement with the experimental findings of Roux, et al. Our results indicate that stirring should not be considered simply as an ``enhanced diffusion'' process and that nucleation plays only a minor role in transitions between multiple steady states in a continuous flow stirred tank reactor (CSTR).

  19. Optimization of chemical reactor feed by simulations based on a kinetic approach.

    Science.gov (United States)

    Guinand, Charles; Dabros, Michal; Roduit, Bertrand; Meyer, Thierry; Stoessel, Francis

    2014-10-01

    Chemical incidents are typically caused by loss of control, resulting in runaway reactions or process deviations in different stages of the production. In the case of fed-batch reactors, the problem generally encountered is the accumulation of heat. This is directly related to the temperature of the process, the reaction kinetics and adiabatic temperature rise, which is the maximum temperature attainable in the event of cooling failure. The main possibility to control the heat accumulation is the use of a well-controlled adapted feed. The feed rate can be adjusted by using reaction and reactor dynamic models coupled to Model Predictive Control. Thereby, it is possible to predict the best feed profile respecting the safety constraints.

  20. Anaerobic baffled reactor coupled with chemical precipitation for treatment and toxicity reduction of industrial wastewater.

    Science.gov (United States)

    Laohaprapanona, Sawanya; Marquesa, Marcia; Hogland, William

    2014-01-01

    This study describes the reduction of soluble chemical oxygen demand (CODs) and the removal of dissolved organic carbon (DOC), formaldehyde (FA) and nitrogen from highly polluted wastewater generated during cleaning procedures in wood floor manufacturing using a laboratory-scale biological anaerobic baffled reactor followed by chemical precipitation using MgCI2 .6H20 + Na2HPO4. By increasing the hydraulic retention time from 2.5 to 3.7 and 5 days, the reduction rates of FA, DOC and CODs of nearly 100%, 90% and 83%, respectively, were achieved. When the Mg:N:P molar ratio in the chemical treatment was changed from 1:1:1 to 1.3:1:1.3 at pH 8, the NH4+ removal rate increased from 80% to 98%. Biologically and chemically treated wastewater had no toxic effects on Vibrio fischeri and Artemia salina whereas chemically treated wastewater inhibited germination of Lactuca sativa owing to a high salt content. Regardless of the high conductivity of the treated wastewater, combined biological and chemical treatment was found to be effective for the removal of the organic load and nitrogen, and to be simple to operate and to maintain. A combined process such as that investigated could be useful for on-site treatment of low volumes of highly polluted wastewater generated by the wood floor and wood furniture industries, for which there is no suitable on-site treatment option available today.

  1. Micro structural evaluation of fuel clad chemical interaction for metallic fuels for fast reactor

    International Nuclear Information System (INIS)

    The neutronic performance of metal fuel based on binary U-Pu alloy or ternary U-Pu-Zr alloys are better than conventional uranium plutonium mixed oxide or high density carbide ceramic fuel. The growing energy demand in India needs faster growth of nuclear power and warrants introduction of fast reactors based on metallic fuels because of higher breeding ratio and lower doubling time. Two design concepts have been proposed: one based on sodium bonded ternary alloy fuel of U-Pu-Zr ( 2-10 wt%) in modified T91 cladding material and the other is U-Pu binary alloy mechanically bonded to modified T91 cladding material with 'Zircaloy', as a liner between the fuel alloy and the clad. The Zircaloy liner act as a barrier in reducing the fuel clad chemical interaction. It also helps in transfer of heat from the fuel to the clad. Fuel clad chemical interaction is a serious issue limiting the life of a fuel pin as a result of formation of low temperature eutectic between the fuel and components of the cladding material. The eutectic reaction temperature between T91 and Uranium were estimated by dilatometry, differential thermal analysis and high temperature microscopy. Diffusion couple experiments were also carried out between U/Zr/T91 and U/T91 by isothermal annealing of the couples between 550 deg C to 750 deg C for times up to 1500 hrs. to find out the extent of chemical interaction. These studies were supported by metallographic examination, micro hardness measurement, XRD, SEM/EDAX and EPMA. The eutectic temperature was found to be higher than the estimated fuel clad interface temperature under the reactor operating condition. The paper highlights the results of these studies and attempts to analyze them in the light of performance. The outcome of these studies has been useful to the fuel designer in optimizing the design features and predicting the in-reactor fuel behavior. (author)

  2. Atmospheric pressure chemical vapor deposition of CdTe—reactor design considerations

    Science.gov (United States)

    Meyers, Peter V.; Kee, Robert J.; Raja, Laxminarayan; Wolden, Colin A.; Aire, Michael

    1999-03-01

    Atmospheric Pressure Chemical Vapor Deposition (APCVD) of polycrystalline thin-film CdTe appears to offer several practical advantages over state-of-the-art manufacturing techniques. APCVD employs the same reaction chemistry utilized to produce 16% efficient CdTe cells (i.e., same reaction chemistry as Close Spaced Sublimation), avoids use of vacuum equipment, allows for physical separation of the source and substrate, and employs forced convection to ensure uniform delivery of source material over large-area substrates. Reactor design considerations and preliminary numerical simulations of mass transport are presented.

  3. Model analysis of influences of the high-temperature reactor on location shifting in chemical industry

    International Nuclear Information System (INIS)

    An analysis is presented of the influences of High-Temperature Reactor on probable location shifting of big chemical plants, in the future. This is done by a spatial location model, that includes an investigation on 116 industrial locations within the first six countries of Common Market. The results of a computerized program show differences in location qualities when furnished either with traditional or with nuclear energy systems. In addition to location factor energy some other important factors, as subventions, taxes, labour, and transport costs are analysed, and their influence on industrial location is quantified. (orig.)

  4. PARTICLE COATING BY CHEMICAL VAPOR DEPOSITION IN A FLUIDI7ED BED REACTOR

    Institute of Scientific and Technical Information of China (English)

    Gregor; Czok; Joachim; Werther

    2005-01-01

    Aluminum coatings were created onto glass beads by chemical vapor deposition in a fluidized bed reactor at different temperatures. Nitrogen was enriched with Triisobutylaluminum (TIBA) vapor and the latter was thermally decomposed inside the fluidized bed to deposit the elemental aluminum. To ensure homogeneous coating on the bed material, the fluidizing conditions necessary to avoid agglomeration were investigated for a broad range of temperatures.The deposition reaction was modeled on the basis of a discrete particle simulation to gain insight into homogeneity and thickness of the coating throughout the bed material. In particular, the take-up of aluminum was traced for selected particles that exhibited a large mass of deposited aluminum.

  5. Biomass characteristics in three sequencing batch reactors treating a wastewater containing synthetic organic chemicals

    DEFF Research Database (Denmark)

    Hu, Z.Q.; Ferraina, R.A.; Ericson, J.F.;

    2005-01-01

    compounds, chosen to represent a wide variety of chemical structures with different N, P and S functional groups. At a two-day hydraulic retention time (HRT), the oxidation-reduction potential (ORP) cycled between -100 (anoxic) and 100mV (aerobic) in the anoxic/aerobic SBR, while it remained in a range...... characteristics in the aerobic SBR and SBBR. While all reactors had very good COD removal (> 90%) and displayed nitrification, substantial nitrogen removal (74%) was only achieved in the anoxic/aerobic SBR. During the entire operational period, benzoate, theophylline and 4-chlorophenol were completely removed...

  6. Design criteria of a chemical reactor based on a chaotic flow

    OpenAIRE

    Tang, X. Z.; Boozer, A. H.

    1998-01-01

    We consider the design criteria of a chemical mixing device based on a chaotic flow, with an emphasis on the steady-state devices. The merit of a reactor, defined as the $Q$-factor, is related to the physical dimension of the device and the molecular diffusivity of the reactants through the local Lyapunov exponents of the flow. The local Lyapunov exponent can be calculated for any given flow field and it can also be measured in experimental situations. Easy-to-compute formulae are provided to...

  7. Incorporation of statistical distribution of particle properties in chemical reactor design and operation: the cooled tubular reactor

    OpenAIRE

    Wijngaarden, R.J.; Westerterp, K.R.

    1992-01-01

    Pellet heat and mass transfer coefficients inside packed beds do not have definite deterministic values, but are stochastic quantities with a certain distribution. Here, a method is presented to incorporate the stochastic distribution of pellet properties in reactor design and operation models. The theory presented is illustrated with a number of examples. It is shown that pellet-scale statistics have an impact on cooled tubular reactor design and operation. Cooled tubular reactor design is d...

  8. A new halogen-free chemical oscillator: the reaction between permanganate ion and ninhydrin in a continuously stirred tank reactor

    Science.gov (United States)

    Treindl, Ľudovít; Nagy, Arpád

    1987-07-01

    The reaction between permanganate ion and ninhydrin in the presence of phosphoric acid in aqueous solution shows sustained oscillations in a continuously stirred tank reactor (CSTR). It exhibits a kinetic bistability between an oscillatory and a stationary state. Our new oscillating system seems to be a second permanganate chemical oscillator, thus broadening the small group of non-halogen-based chemical oscillators.

  9. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system

    Science.gov (United States)

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-01

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.

  10. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system.

    Science.gov (United States)

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-20

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.

  11. Problem Based Learning (PBL: Analysis of Continuous Stirred Tank Chemical Reactors with a Process Control Approach

    Directory of Open Access Journals (Sweden)

    Regalado-Méndez Alejandro

    2010-10-01

    Full Text Available This work is focused on a project that integrates the curriculum such as thermodynamic, chemical reactorengineering, linear algebra, differential equations and computer programming. The purpose is thatstudents implement the most knowledge and tools to analyse the stirred tank chemical reactor as a simpledynamic system. When the students finished this practice they should have learned about analysis ofdynamic system through bifurcation analysis, hysteresis phenomena, find equilibrium points, stabilitytype, and phase portrait. Once the steps were accomplished, we concluded that the purpose wassatisfactorily reached with an increment in creative ability. The student showed a bigger interesting inthis practice, since they worked in group. The most important fact is that the percentage of failure amongstudents was 10%. Finally, using alternative teaching-learning process improves the Mexican systemeducation.

  12. A COMPUTATIONAL STUDY OF PHYSICAL AND CHEMICAL INHIBITION IN A PERFECTLY STIRRED REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nancy J.; Schefer, Robert W.

    1980-05-01

    This paper reports a set of modeling studies that were undertaken to acquire a more detailed knowledge of combustion inhibition mechanisms. Mixtures of H{sub 2}/O{sub 2}/Ar reacting in the idealized perfectly stirred reactor were investigated. Three H{sub 2}/O{sub 2} kinetic mechanisms were considered, differing from one another by the number of HO{sub 2} reactions included. Two physical inhibitors, Ar and N{sub 2}, and one chemical inhibitor, HBr, were investigated. Additional parameters considered were pressure, equivalence ratio, inhibitor concentration and rate coefficient variation. The most effective inhibitor was HBr which acted chemically and caused substantial reduction in radical concentrations in the mixtures considered. The molecules Ar and N{sub 2} acted as physical diluents with N{sub 2}, the more effective of the two due to its larger heat capacity.

  13. Chemical conditions in the repository for low- and intermediate-level reactor waste

    International Nuclear Information System (INIS)

    The chemical conditions in the proposed repositories for low- and intermediate-level reactor waste at Haestholmen (IVO) and Olkiluoto (TVO) have been discussed with respect to materials introduced into the repository, their possible long-term changes and interaction with groundwater flowing into the repository. The main possible groundwater-rock interactions have been discussed, as well as the role of micro-organisms, organic acids and colloids in the estimation of the barrier integrity. Experimental and theoretical studies have been performed on the basis of the natural groundwater compositions expected at the repository sites. Main emphasis is put on the chemical parameters which might influence the integrity of the different barriers in the repository as well as on the parameters which might effect the release and transport of radionuclides from the repository

  14. Chemical looping reactor system design double loop circulating fluidized bed (DLCFB)

    Energy Technology Data Exchange (ETDEWEB)

    Bischi, Aldo

    2012-05-15

    Chemical looping combustion (CLC) is continuously gaining more importance among the carbon capture and storage (CCS) technologies. It is an unmixed combustion process which takes place in two steps. An effective way to realize CLC is to use two interconnected fluidized beds and a metallic powder circulating among them, acting as oxygen carrier. The metallic powder oxidizes at high temperature in one of the two reactors, the air reactor (AR). It reacts in a highly exothermic reaction with the oxygen of the injected fluidising air. Afterwards the particles are sent to the other reactor where the fuel is injected, the fuel reactor (FR). There, they transport heat and oxygen necessary for the reaction with the injected fuel to take place. At high temperatures, the particle's oxygen reacts with the fuel producing Co2 and steam, and the particles are ready to start the loop again. The overall reaction, the sum of the enthalpy changes of the oxygen carrier oxidation and reduction reactions, is the same as for the conventional combustion. Two are the key features, which make CLC promising both for costs and capture efficiency. First, the high inherent irreversibility of the conventional combustion is avoided because the energy is utilized stepwise. Second, the Co2 is intrinsically separated within the process; so there is in principle no need either of extra carbon capture devices or of expensive air separation units to produce oxygen for oxy-combustion. A lot of effort is taking place worldwide on the development of new chemical looping oxygen carrier particles, reactor systems and processes. The current work is focused on the reactor system: a new design is presented, for the construction of an atmospheric 150kWth prototype working with gaseous fuel and possibly with inexpensive oxygen carriers derived from industrial by-products or natural minerals. It consists of two circulating fluidized beds capable to operate in fast fluidization regime; this will increase the

  15. Dilute chemical decontamination process for pressurized and boiling water reactor applications

    International Nuclear Information System (INIS)

    Westinghouse Electric Corporation (WEC) has developed five chemical processes for nuclear decontamination, based on extensive experimental testing using radioactive pressurized water reactor (PWR) and boiling water reactor (BWR) samples. The dilute chemical decontamination process offers the best combination of effectiveness, low corrosion, low waste volume, and fast field implementation time. This is an alternating multistep process. For PWRs, an oxidation treatment is necessary. Projected contact decontamination factors (DFs) are about 50 on plant Inconel surfaces, with comparable results on stainless steel. Actual test DFs have exceeded 500 in the process test loop. For BWRs, an oxidation step is unnecessary, but very beneficial. DFs of 10 to 20 are achieved without an oxidation treatment. Full process DFs exceed 500 when the oxidation treatment is included. Low corrosion rates are observed, without any adverse effects. Only solid waste is produced by the process. WEC has fabricated a trailer-mounted application system for this process, and is offering it as a decontamination service to commercial customers

  16. Simulation of Thermal and Chemical Relaxation in a Post-Discharge Air Corona Reactor

    CERN Document Server

    Meziane, M; Ducasse, O; Yousfi, M

    2016-01-01

    In a DC point-to-plane corona discharge reactor, the mono filamentary streamers cross the inter electrode gap with a natural repetition frequency of some tens of kHz. The discharge phase (including the primary and the secondary streamers development) lasts only some hundred of nanoseconds while the post-discharge phases occurring between two successive discharge phases last some tens of microseconds. From the point of view of chemical activation, the discharge phases create radical and excited species located inside the very thin discharge filaments while during the post-discharge phases these radical and excited species induce a chemical kinetics that diffuse in a part of the reactor volume. From the point of view of hydrodynamics activation, the discharge phases induce thermal shock waves and the storage of vibrational energy which relaxes into thermal form only during the post-discharge phase. Furthermore, the glow corona discharges that persist during the post-discharge phases induce the so called electri...

  17. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system

    OpenAIRE

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-01

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for c...

  18. Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Oktem, Yalcin Askin; Ince, Orhan; Sallis, Paul; Donnelly, Tom; Ince, Bahar Kasapgil

    2008-03-01

    In this study, performance of a lab-scale hybrid up-flow anaerobic sludge blanket (UASB) reactor, treating a chemical synthesis-based pharmaceutical wastewater, was evaluated under different operating conditions. This study consisted of two experimental stages: first, acclimation to the pharmaceutical wastewater and second, determination of maximum loading capacity of the hybrid UASB reactor. Initially, the carbon source in the reactor feed came entirely from glucose, applied at an organic loading rate (OLR) 1 kg COD/m(3) d. The OLR was gradually step increased to 3 kg COD/m(3) d at which point the feed to the hybrid UASB reactor was progressively modified by introducing the pharmaceutical wastewater in blends with glucose, so that the wastewater contributed approximately 10%, 30%, 70%, and ultimately, 100% of the carbon (COD) to be treated. At the acclimation OLR of 3 kg COD/m(3) d the hydraulic retention time (HRT) was 2 days. During this period of feed modification, the COD removal efficiencies of the anaerobic reactor were 99%, 96%, 91% and 85%, and specific methanogenic activities (SMA) were measured as 240, 230, 205 and 231 ml CH(4)/g TVS d, respectively. Following the acclimation period, the hybrid UASB reactor was fed with 100% (w/v) pharmaceutical wastewater up to an OLR of 9 kg COD/m(3) d in order to determine the maximum loading capacity achievable before reactor failure. At this OLR, the COD removal efficiency was 28%, and the SMA was measured as 170 ml CH(4)/g TVS d. The hybrid UASB reactor was found to be far more effective at an OLR of 8 kg COD/m(3) d with a COD removal efficiency of 72%. At this point, SMA value was 200 ml CH(4)/g TVS d. It was concluded that the hybrid UASB reactor could be a suitable alternative for the treatment of chemical synthesis-based pharmaceutical wastewater.

  19. An investigation of sulfate production in clouds using a flow-through chemical reactor model approach

    Science.gov (United States)

    Hong, M. S.; Carmichael, G. R.

    1983-01-01

    A flow-through chemical reactor model is developed to describe the mass transfer and chemical processes that atmospheric gases undergo in clouds. The model includes the simultaneous absorption of SO2, NH3, O3, NO(x), HNO3, CO2 and H2O2, the accompanying dissociation and oxidation reactions in cloud water, considers electrical neutrality, and includes qualitative parameterization of cloud microphysics. The model is used to assess the importance of the oxidation reactions H2O2-S(IV), O3-S(IV), and S(IV)-Mn(2+) catalysis, and the effects of cloud parameters such as drop size, rain intensity, liquid water content, and updraft velocity. Both precipitating and nonprecipitating clouds are studied. Model results predict sulfate production rates varying from 3 percent/hr to 230 percent/hr. The actual rate is highly dependent on the chemical composition of the uptake air and the physical conditions of the cloud. Model results also show that both the H2O2 and the O3 oxidation reactions can be significant.

  20. Chemical looping reactor system design double loop circulating fluidized bed (DLCFB)

    Energy Technology Data Exchange (ETDEWEB)

    Bischi, Aldo

    2012-05-15

    Chemical looping combustion (CLC) is continuously gaining more importance among the carbon capture and storage (CCS) technologies. It is an unmixed combustion process which takes place in two steps. An effective way to realize CLC is to use two interconnected fluidized beds and a metallic powder circulating among them, acting as oxygen carrier. The metallic powder oxidizes at high temperature in one of the two reactors, the air reactor (AR). It reacts in a highly exothermic reaction with the oxygen of the injected fluidising air. Afterwards the particles are sent to the other reactor where the fuel is injected, the fuel reactor (FR). There, they transport heat and oxygen necessary for the reaction with the injected fuel to take place. At high temperatures, the particle's oxygen reacts with the fuel producing Co2 and steam, and the particles are ready to start the loop again. The overall reaction, the sum of the enthalpy changes of the oxygen carrier oxidation and reduction reactions, is the same as for the conventional combustion. Two are the key features, which make CLC promising both for costs and capture efficiency. First, the high inherent irreversibility of the conventional combustion is avoided because the energy is utilized stepwise. Second, the Co2 is intrinsically separated within the process; so there is in principle no need either of extra carbon capture devices or of expensive air separation units to produce oxygen for oxy-combustion. A lot of effort is taking place worldwide on the development of new chemical looping oxygen carrier particles, reactor systems and processes. The current work is focused on the reactor system: a new design is presented, for the construction of an atmospheric 150kWth prototype working with gaseous fuel and possibly with inexpensive oxygen carriers derived from industrial by-products or natural minerals. It consists of two circulating fluidized beds capable to operate in fast fluidization regime; this will increase the

  1. Influence of Chemical Oxygen Demand Concentrations on Anaerobi Ammonium Oxidation by Granular Sludge From EGSB Reactor

    Institute of Scientific and Technical Information of China (English)

    JING KANG; JIAN-LONG WANG

    2006-01-01

    Objective To investigate the effect of chemical oxygen demand (COD) concentrations on the anaerobic ammonium oxidation (ANAMMOX). Methods An Expanded Granular Sludge Bed (EGSB) reactor was used to cultivate the granular sludge and to perform the ANAMMOX reaction in the bench scale experiment. NH4+-N and NO2--N were measured by usingcolorimetric method. NO3--N was analyzed by using the UV spectrophotometric method. COD measurement was based on digestion with potassium dichromate in concentrated sulphuric acid. Results When the COD concentrations in the reactors were 0 mg/L, 200 mg/L, 350 mg/L, and 550 mg/L, respectively, the NH4+-N removal efficiency was 12.5%, 14.2%, 14.3%, and 23.7%; the removal amount of NO2--N was almost the same; the nitrate removal efficiency was 16.8%, 94.5%, 86.6%, and 84.2% and TN removal efficiency was 16.3%, 50.7%, 46.9%, and 50.4%, moreover, the COD removal efficiency concentrations have a significant influence on anaerobic ammonium oxidation by granular sludge.

  2. Experimental study of flow and heat transfer in a rotating chemical vapor deposition reactor

    Science.gov (United States)

    Wong, Sun

    An experimental model was set up to study the rotating vertical impinging chemical vapor deposition reactor. Deposition occurs only when the system has enough thermal energy. Therefore, understanding the fluid characteristic and heat transfer of the system will provide a good basis to understand the full model. Growth rate and the uniformity of the film are the two most important factors in CVD process and it is depended on the flow and thermal characteristic within the system. Optimizing the operating parameters will result in better growth rate and uniformity. Operating parameters such as inflow velocity, inflow diameter and rotational speed are used to create different design simulations. Fluid velocities and various temperatures are recorded to see the effects of the different operating parameters. Velocities are recorded by using flow meter and hot wire anemometer. Temperatures are recorded by using various thermocouples and infrared thermometer. The result should provide a quantitative basis for the prediction, design and optimization of the system and process for design and fabrication of future CVD reactors. Further assessment of the system results will be discuss in detail such as effects of buoyancy and effects of rotation. The experimental study also coupled with a numerical study for further validation of both model. Comparisons between the two models are also presented.

  3. Design criteria of a chemical reactor based on a chaotic flow

    CERN Document Server

    Tang, X Z

    1998-01-01

    We consider the design criteria of a chemical mixing device based on a chaotic flow, with an emphasis on the steady-state devices. The merit of a reactor, defined as the $Q$-factor, is related to the physical dimension of the device and the molecular diffusivity of the reactants through the local Lyapunov exponents of the flow. The local Lyapunov exponent can be calculated for any given flow field and it can also be measured in experimental situations. Easy-to-compute formulae are provided to estimate the $Q$-factor given either the exact spatial dependence of the local Lyapunov exponent or its probability distribution function. The requirements for optimization are made precise in the context of local Lyapunov exponents.

  4. Mathematical modeling of quartz particle melting process in plasma-chemical reactor

    Science.gov (United States)

    Volokitin, Oleg; Vlasov, Viktor; Volokitin, Gennady; Skripnikova, Nelli; Shekhovtsov, Valentin

    2016-01-01

    Among silica-based materials vitreous silica has a special place. The paper presents the melting process of a quartz particle under conditions of low-temperature plasma. A mathematical model is designed for stages of melting in the experimental plasma-chemical reactor. As calculation data show, quartz particles having the radius of 0.21≤ rp ≤0.64 mm completely melt at W = 0.65 l/s particle feed rate depending on the Nusselt number, while 0.14≤ rp ≤0.44 mm particles melt at W = 1.4 l/s. Calculation data showed that 2 mm and 0.4 mm quartz particles completely melted during and 0.1 s respectively. Thus, phase transformations occurred in silicon dioxide play the important part in its heating up to the melting temperature.

  5. Mathematical modeling of quartz particle melting process in plasma-chemical reactor

    International Nuclear Information System (INIS)

    Among silica-based materials vitreous silica has a special place. The paper presents the melting process of a quartz particle under conditions of low-temperature plasma. A mathematical model is designed for stages of melting in the experimental plasma-chemical reactor. As calculation data show, quartz particles having the radius of 0.21≤ rp ≤0.64 mm completely melt at W = 0.65 l/s particle feed rate depending on the Nusselt number, while 0.14≤ rp ≤0.44 mm particles melt at W = 1.4 l/s. Calculation data showed that 2 mm and 0.4 mm quartz particles completely melted during and 0.1 s respectively. Thus, phase transformations occurred in silicon dioxide play the important part in its heating up to the melting temperature

  6. Mechanical properties of chemical vapor deposited coatings for fusion reactor application

    International Nuclear Information System (INIS)

    Chemical vapor deposited coatings of TiB2, TiC and boron on graphite substrates are being developed for application as limiter materials in magnetic confinement fusion reactors. In this application severe thermal shock conditions exist and to do effective thermo-mechanical modelling of the material response it is necessary to acquire elastic moduli, fracture strength and strain to fracture data for the coatings. Four point flexure tests have been conducted from room temperature to 20000C on TiB2 and boron coated graphite with coatings in tension and compression and the mechanical properties extracted from the load-deflection data. In addition, stress relaxation tests from 500 to 11500C were performed on TiB2 and TiC coated graphite beams to assess the low levels of plastic deformation which occur in these coatings. Significant differences have been observed between the effective mechanical properties of the coatings and literature values of the bulk properties

  7. Chemical Effects of CO2 Concentration on Soot Formation in Jet-stirred/Plug-flow Reactor

    Institute of Scientific and Technical Information of China (English)

    张引弟; 娄春; 刘德华; 李勇; 阮龙飞

    2013-01-01

    Soot formation was investigated numerically with CO2 addition in a jet-stirred/plug-flow reactor (JSR/PFR) C2H4/O2/N2 reactor (C/O ratio of 2.2) at atmospheric pressure. An updated Kazakov mechanism empha-sizes the effect of the O2/CO2 atmosphere instead of an O2/N2 one in the premixed flame. The soot formation was taken into account in the JSR/PFR for C2H4/O2/N2. The effects of CO2 addition on soot formation in different C2H4/O2/CO2/N2 atmospheres were studied, with special emphasis on the chemical effect. The simulation shows that the endothermic reaction CO2+H CO+OH is responsible of the reduction of hydrocarbon intermediates in the CO2 added combustion through the supplementary formation of hydroxyl radicals. The competition of CO2 for H radical through the above forward reaction with the single most important chain branching reaction H+O2 O+OH reduces significantly the fuel burning rate. The chemical effects of CO2 cause a significant increase in residence time and mole fractions of CO and OH, significant decreases in some intermediates (H, C2H2), polycyclic aromatic hydrocarbons (PAHs, C6H6 and C16H10, etc.) and soot volume fraction. The CO2 addition will leads to a decrease by only about 5%to 20%of the maximum mole fractions of some C3 to C10 hydrocarbon intermediates. The sensitivity analysis and reaction-path analysis results show that C2H4 reaction path and products are altered due to the CO2 addition.

  8. Combined physico-chemical treatment of secondary settled municipal wastewater in a multifunctional reactor.

    Science.gov (United States)

    Santoro, O; Pastore, T; Santoro, D; Crapulli, F; Raisee, M; Moghaddami, M

    2013-01-01

    In this paper, the physico-chemical treatment of municipal wastewater for the simultaneous removal of pollutant indicators (chemical oxygen demand (COD) and total coliforms) and organic contaminants (total phenols) was investigated and assessed. A secondary settled effluent was subjected to coagulation, disinfection and absorption in a multifunctional reactor by dosing, simultaneously, aluminum polychloride (dose range: 0-150 μL/L), natural zeolites (dose range: 0-150 mg/L), sodium hypochlorite (dose range: 0-7.5 mg/L) and powder activated carbon (dose range: 0-30 mg/L). The treatment process was optimized using computational fluid dynamics (CFD) and response surface methodology. Specifically, a Latin square technique was employed to generate 16 combinations of treating agent types and concentrations which were pilot tested on an 8 m(3)/h multifunctional reactor fed by a secondary effluent with COD and total coliform concentrations ranging from ≈20 to 120 mg/L and from 10(5) to 10(6) CFU/100 mL, respectively. Results were promising, indicating that removal yields up to 71% in COD and 5.4 log in total coliforms were obtained using an optimal combination of aluminum polychloride (dose range ≈ 84-106 μL/L), powder activated carbon ≈ 5 mg/L, natural zeolite (dose range ≈ 34-70 mg/L) and sodium hypochlorite (dose range ≈ 3.4-5.6 mg/L), with all treating agents playing a statistically significant role in determining the overall treatment performance. Remarkably, the combined process was also able to remove ≈ 50% of total phenols, a micropollutant known to be recalcitrant to conventional wastewater treatments. PMID:24185051

  9. Combined physico-chemical treatment of secondary settled municipal wastewater in a multifunctional reactor.

    Science.gov (United States)

    Santoro, O; Pastore, T; Santoro, D; Crapulli, F; Raisee, M; Moghaddami, M

    2013-01-01

    In this paper, the physico-chemical treatment of municipal wastewater for the simultaneous removal of pollutant indicators (chemical oxygen demand (COD) and total coliforms) and organic contaminants (total phenols) was investigated and assessed. A secondary settled effluent was subjected to coagulation, disinfection and absorption in a multifunctional reactor by dosing, simultaneously, aluminum polychloride (dose range: 0-150 μL/L), natural zeolites (dose range: 0-150 mg/L), sodium hypochlorite (dose range: 0-7.5 mg/L) and powder activated carbon (dose range: 0-30 mg/L). The treatment process was optimized using computational fluid dynamics (CFD) and response surface methodology. Specifically, a Latin square technique was employed to generate 16 combinations of treating agent types and concentrations which were pilot tested on an 8 m(3)/h multifunctional reactor fed by a secondary effluent with COD and total coliform concentrations ranging from ≈20 to 120 mg/L and from 10(5) to 10(6) CFU/100 mL, respectively. Results were promising, indicating that removal yields up to 71% in COD and 5.4 log in total coliforms were obtained using an optimal combination of aluminum polychloride (dose range ≈ 84-106 μL/L), powder activated carbon ≈ 5 mg/L, natural zeolite (dose range ≈ 34-70 mg/L) and sodium hypochlorite (dose range ≈ 3.4-5.6 mg/L), with all treating agents playing a statistically significant role in determining the overall treatment performance. Remarkably, the combined process was also able to remove ≈ 50% of total phenols, a micropollutant known to be recalcitrant to conventional wastewater treatments.

  10. Advanced Chemical Reactor Technologies for Biodiesel Production from Vegetable Oils - A Review

    Directory of Open Access Journals (Sweden)

    Luqman Buchori

    2016-10-01

    Full Text Available Biodiesel is an alternative biofuel that can replace diesel oil without requiring modifications to the engine and advantageously produces cleaner emissions. Biodiesel can be produced through transesterification process between oil or fat and alcohol to form esters and glycerol. The transesterification can be carried out with or without a catalyst. The catalyzed production of biodiesel can be performed by using homogeneous, heterogeneous and enzyme. Meanwhile, non-catalytic transesterification with supercritical alcohol provides a new way of producing biodiesel. Microwave and ultrasound assisted transesterification significantly can reduce reaction time as well as improve product yields. Another process, a plasma technology is promising for biodiesel synthesis from vegetable oils due to very short reaction time, no soap formation and no glycerol as a by-product. This paper reviews briefly the technologies on transesterification reaction for biodiesel production using homogeneous, heterogeneous, and enzyme catalysts, as well as advanced methods (supercritical, microwave, ultrasonic, and plasma technology. Advantages and disadvantages of each method were described comprehensively. Copyright © 2016 BCREC GROUP. All rights reserved Received: 17th May 2016; Revised: 20th September 2016; Accepted: 20th September 2016 How to Cite: Buchori, L., Istadi, I., Purwanto, P. (2016. Advanced Chemical Reactor Technologies for Biodiesel Production from Vegetable Oils - A Review. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3: 406-430 (doi:10.9767/bcrec.11.3.490.406-430 Permalink/DOI: http://doi.org/10.9767/bcrec.11.3.490.406-430

  11. Treatment of textile effluent by chemical (Fenton's Reagent) and biological (sequencing batch reactor) oxidation

    International Nuclear Information System (INIS)

    The removal of organic compounds and colour from a synthetic effluent simulating a cotton dyeing wastewater was evaluated by using a combined process of Fenton's Reagent oxidation and biological degradation in a sequencing batch reactor (SBR). The experimental design methodology was first applied to the chemical oxidation process in order to determine the values of temperature, ferrous ion concentration and hydrogen peroxide concentration that maximize dissolved organic carbon (DOC) and colour removals and increase the effluent's biodegradability. Additional studies on the biological oxidation (SBR) of the raw and previously submitted to Fenton's oxidation effluent had been performed during 15 cycles (i.e., up to steady-state conditions), each one with the duration of 11.5 h; Fenton's oxidation was performed either in conditions that maximize the colour removal or the increase in the biodegradability. The obtained results allowed concluding that the combination of the two treatment processes provides much better removals of DOC, BOD5 and colour than the biological or chemical treatment alone. Moreover, the removal of organic matter in the integrated process is particularly effective when Fenton's pre-oxidation is carried out under conditions that promote the maximum increase in wastewater biodegradability.

  12. Gas temperature measurements inside a hot wall chemical vapor synthesis reactor.

    Science.gov (United States)

    Notthoff, Christian; Schilling, Carolin; Winterer, Markus

    2012-11-01

    One key but complex parameter in the chemical vapor synthesis (CVS) of nanoparticles is the time temperature profile of the gas phase, which determines particle characteristics such as size (distribution), morphology, microstructure, crystal, and local structure. Relevant for the CVS process and for the corresponding particle characteristics is, however, not the T(t)-profile generated by an external energy source such as a hot wall or microwave reactor but the temperature of the gas carrying reactants and products (particles). Due to a complex feedback of the thermodynamic and chemical processes in the reaction volume with the external energy source, it is very difficult to predict the real gas phase temperature field from the externally applied T(t)-profile. Therefore, a measurement technique capable to determine the temperature distribution of the gas phase under process conditions is needed. In this contribution, we demonstrate with three proof of principle experiments the use of laser induced fluorescence thermometry to investigate the CVS process under realistic conditions.

  13. Incorporation of statistical distribution of particle properties in chemical reactor design and operation: the cooled tubular reactor

    NARCIS (Netherlands)

    Wijngaarden, R.J.; Westerterp, K.R.

    1992-01-01

    Pellet heat and mass transfer coefficients inside packed beds do not have definite deterministic values, but are stochastic quantities with a certain distribution. Here, a method is presented to incorporate the stochastic distribution of pellet properties in reactor design and operation models. The

  14. Effect of water losses by evaporation and chemical reaction in an industrial slaker reactor

    Directory of Open Access Journals (Sweden)

    Ricardo Andreola

    2007-03-01

    Full Text Available A dynamic model of the slaker reactor was developed and validated for Klabin Paraná Papéis causticizing system, responsable for white liquor generation used by the plant. The model considered water losses by evaporation and chemical reaction. The model showed a good agreement with the industrial plant measures of active alkali, total titratable alkali and temperature, without the need of adjustment of any parameter. The simulated results showed that the water consumption by the slaking reaction and evaporation exerted significant influence on the volumetric flow rate of limed liquor, which imposed a decrease of 4.6% in the amount of water in reactor outlet.Foi desenvolvido e testado um modelo dinâmico do reator de apagamento do sistema de caustificação da Klabin Paraná Papéis, responsável pela geração do licor branco utilizado na planta. O modelo contempla perdas de água por evaporação e por reação química e apresentou boa concordância com dados industriais de álcali ativo, álcali total titulável e temperatura, sem a necessidade de ajuste de nenhum parâmetro. Os resultados obtidos a partir de simulações revelam que o consumo de água pela reação de apagamento, bem como pela evaporação, exercem uma influência significativa sobre a vazão volumétrica na saída do reator, impondo uma diminuição de 4,6% sobre o teor de água na corrente de saída do reator em relação à alimentação.

  15. Application of phase equilibria and chemical thermodynamics to the preparation, farbiration, and performance of advanced fast reactor fuel materials

    International Nuclear Information System (INIS)

    Described are some phase equilibria and chemical thermodynamics of systems relevant to the production and operation of the so-called ''advanced'' fast breeder reactor fuels. The systems discussed include UPu carbides, nitrides, oxycarbides and carbonitrides. Some examples of the application of these phase equilibria to the preparation, fabrication and behaviour of the materials in temperature gradients appropriate to reactor conditions are presented. Finally, aspects of the complex four and five component, U-C-O-N and U-Pu-C-O-N systems are discussed, a detailed knowledge of which is required for an analysis of advanced fuel behaviour

  16. Formation and Transport of Atomic Hydrogen in Hot-Filament Chemical Vapor Deposition Reactors

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant ishydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless numbers forheat and mass transfer reveals that thermal conduction and diffusion are the dominant mechanisms for gas-phaseheat and mass transfer, respectively. A simplified model has been established to simulate gas-phase temperature andH concentration distributions between the filament and the substrate. Examination of the relative importance ofhomogeneous and heterogeneous production of H atoms indicates that filament-surface decomposition of molecularhydrogen is the dominant source of H and gas-phase reaction plays a negligible role. The filament-surface dissociationrates of H2 for various filament temperatures were calculated to match H-atom concentrations observed in the liter-ature or derived from power consumption by filaments. Arrhenius plots of the filament-surface hydrogen dissociationrates suggest that dissociation of H2 at refractory filament surface is a catalytic process, which has a rather lowereffective activation energy than homogeneous thermal dissociation. Atomic hydrogen, acting as an important heattransfer medium to heat the substrate, can freely diffuse from the filament to the substrate without recombination.

  17. A coupled chemical burster: The chlorine dioxide-iodide reaction in two flow reactors

    Science.gov (United States)

    Dolnik, Milos; Epstein, Irving R.

    1993-01-01

    The dynamical behavior of the chlorine dioxide-iodide reaction has been studied in a system consisting of two continuous flow stirred tank reactors (CSTRs). The reactors are coupled by computer monitoring of the electrochemical potential in each reactor, which is then used to control the input into the other reactor. Two forms of coupling are employed: reciprocally triggered, exponentially decreasing stimulation, and alternating mass exchange. The reaction, which exhibits oscillatory and excitable behavior in a single CSTR, displays neuronlike bursting behavior with both forms of coupling. Reciprocal stimulation yields bursting in both reactors, while with alternating mass exchange, bursting is observed in one reactor and complex oscillation in the other. A simple model of the reaction gives good agreement between the experimental observations and numerical simulations.

  18. Treatment of anaerobic digester effluents of nylon wastewater through chemical precipitation and a sequencing batch reactor process.

    Science.gov (United States)

    Huang, Haiming; Song, Qianwu; Wang, Wenjun; Wu, Shaowei; Dai, Jiankun

    2012-06-30

    Chemical precipitation, in combination with a sequencing batch reactor (SBR) process, was employed to remove pollutants from anaerobic digester effluents of nylon wastewater. The effects of the chemicals along with various Mg:N:P ratios on the chemical precipitation (struvite precipitation) were investigated. When brucite and H(3)PO(4) were applied at an Mg:N:P molar ratio of 3:1:1, an ammonia-removal rate of 81% was achieved, which was slightly more than that (80%) obtained with MgSO(4)·7H(2)O and Na(2)HPO(4)·12H(2)O at Mg:N:P molar ratios greater than the stoichiometric ratio. To further reduce the ammonia loads of the successive biotreatment, an overdose of phosphate with brucite and H(3)PO(4) was applied during chemical precipitation. The ammonia-removal rate at the Mg:N:P molar ratio of 3.5:1:1.05 reached 88%, with a residual PO(4)-P concentration of 16 mg/L. The economic analysis showed that the chemical cost of chemical precipitation could be reduced by about 41% when brucite and H(3)PO(4) were used instead of MgSO(4)·7H(2)O and Na(2)HPO(4)·12H(2)O. The subsequent biological process that used a sequencing batch reactor showed high removal rates of contaminants. The quality of the final effluent met the requisite effluent-discharging standards.

  19. Characterization of segregation in a tubular polymerization reactor by a new chemical method

    OpenAIRE

    Meyer, T; Renken, A.

    1990-01-01

    Micromixing in a tubular polymn. reactor is characterized by the mol. wt. of polystyrene obtained in the presence of a chain transfer agent. Monomer and the transfer agent are fed sep. into the reactor. For const. overall inlet concns., the mean mol. wt. produced is strongly dependent on mixing intensity. Expts. were carried out in a pilot plant loop tubular reactor of different configurations and monomer conversions ?80%. The degree of segregation as a function of energy dissipation and the ...

  20. The role of pellet thermal stability in reactor design for heterogeneously catalysed chemical reactions

    OpenAIRE

    Wijngaarden, R.J.; Westerterp, K.R.

    1992-01-01

    For exothermic fluid-phase reactions, a reactor which is cooled at the wall can exhibit multiplicity or parametric sensitivity. Moreover, for heterogeneously catalysed exothermic fluid-phase reactions, each of the catalytically active pellets in the reactor can exhibit multiplicity. Both forms of multiplicity can lead to thermal instability and as such have to be taken into account in reactor design. Here the effect of both instabilities is quantified. To this end, simple first-order kinetics...

  1. Species transport and chemical reaction in a MOCVD reactor and their influence on the GaN growth uniformity

    Science.gov (United States)

    Zhang, Zhi; Fang, Haisheng; Yao, Qingxia; Yan, Han; Gan, Zhiyin

    2016-11-01

    Fluid flow, heat transfer, and species transport with chemical reactions have been investigated for gallium nitride (GaN) growth in a commercial metal-organic chemical vapor deposition (MOCVD) reactor. Both the growth rate and the growth uniformity are investigated zone by zone, as the wafers are divided into three zones/groups according to their distances to the susceptor center. The results show that species transport in the reactor is affected by the inlet conditions, i.e., the premixed or non-premixed inlet, the inlet temperature, the total gas flow rate, and the V/III component ratio, and reveal that the premixed inlet condition is preferred for uniform growth. Especially, a large total flow rate or a low V/III ratio results in both increase of the growth rate and improvement of the growth uniformity.

  2. Anti mutagenesis of chemical modulators against damage induced by reactor thermal neutrons; Antimutagenesis de moduladores quimicos contra el dano inducido por neutrones termicos de reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano A, F.; Guzman R, J.; Garcia B, A.; Paredes G, L.; Delfin L, A. [Instituto Nacional de Investigaciones Nucleares, Departamentos de Materiales Radiactivos, de Biologia, del Reactor y Gerencia de Aplicaciones Nucleares en la Salud, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The mutations are changes in the genetic information whether for spontaneous form or induced by the exposure of the genetic material to certain agents, called mutagens: chemical or physical (diverse types of radiations). As well as exist a great variety of mutagens and pro mutagens (these last are agents which transform themselves in mutagens after the metabolic activation). Also several chemical compounds exist which are called antimutagens because they reduce the mutagens effect. The C vitamin or ascorbic acid (A A) presents antimutagenic and anti carcinogenic properties. On the other hand a sodium/copper salt derived from chlorophyll belonging to the porphyrin group (C L) contains a chelated metal ion in the center of molecule. It is also an antioxidant, antimutagenic and anti carcinogenic compound, it is called chlorophyllin. The objective of this work is to establish if the A A or the C L will reduce the damages induced by thermal and fast reactor neutrons. (Author)

  3. Productivity of a nuclear chemical reactor with gamma radioisotopic sources; Rendimiento de un reactor quimico-nuclear con fuentes radioisotopicas gamma

    Energy Technology Data Exchange (ETDEWEB)

    Anguis T, C

    1975-07-01

    According to an established mathematical model of successive Compton interaction processes the made calculations for major distances are extended checking the acceptability of the spheric geometry model for the experimental data for radioisotopic sources of Co-60 and Cs-137. Parameters such as the increasing factor and the absorbed dose served as comparative base. calculations for the case of a punctual source succession inside a determined volume cylinder are made to obtain the total dose, the deposited energy by each photons energetic group and the total absorbed energy inside the reactor. Varying adequately the height/radius relation for different cylinders, the distinct energy depositions are compared in each one of them once a time standardized toward a standard value of energy emitted by the reactor volume. A relation between the quantity of deposited energy in each point of the reactor and the conversion values of chemical species is established. They are induced by electromagnetic radiation and that are reported as ''G'' in the scientific literature (number of molecules formed or disappeared by each 100 e.v. of energy). Once obtained the molecular performance inside the reactor for each type of geometry, it is optimized the height/radius relation according to the maximum production of molecules by unity of time. It is completed a bibliographical review of ''G'' values reported by different types of aqueous solutions with the purpose to determine the maximum performance of molecular hydrogen as a function of pH of the solution and of the used type of solute among other factors. Calculations for the ethyl bromide production as an example of one of the industrial processes which actually work using the gamma radiation as reactions inductor are realized. (Author)

  4. Construction of an experimental simplified model for determining of flow parameters in chemical reactors, using nuclear techniques

    International Nuclear Information System (INIS)

    The development of a simplified experimental model for investigation of nuclear techniques to determine the solid phase parameters in gas-solid flows is presented. A method for the measurement of the solid phase residence time inside a chemical reactor of the type utilised in the cracking process of catalytic fluids is described. An appropriate radioactive labelling technique of the solid phase and the construction of an eletronic timing circuit were the principal stages in the definition of measurement technique. (Author)

  5. Influence of Chemical Kinetics on Postcolumn Reaction in a Capillary Taylor Reactor with Catechol Analytes and Photoluminescence Following Electron Transfer

    OpenAIRE

    Jung, Moon Chul; Weber, Stephen G.

    2005-01-01

    Postcolumn derivatization reactions can enhance detector sensitivity and selectivity, but their successful combination with capillary liquid chromatography has been limited because of the small peak volumes in capillary chromatography. A capillary Taylor reactor (CTR), developed in our laboratory, provides simple and effective mixing and reaction in a 25-μm-radius postcolumn capillary. Homogenization of reactant streams occurs by radial diffusion, and a chemical reaction follows. Three charac...

  6. Materials chemical compatibility for the fabrication of small inherently safe nuclear reactors

    International Nuclear Information System (INIS)

    Aqueous nuclear fuels offer a unique set of characteristics for homogeneous reactor nuclear applications. Their advantages include high nuclear stability and inherent safety, high power density, high burn-up, simple preparation and reprocessing, easy fuel handling, high neutron economy, and simple control system leading to simple mechanical designs. The major disadvantages are corrosion, limited uranium concentration, and radiation decomposition of water. Likewise, organic coolants offer certain properties that are conducive for small reactor applications. These include reduced corrosion and activation, and low vapour pressures with good heat-transfer capabilities. Their major disadvantages are decomposition, fouling and flammability. A particular organic coolant, HB-40, has been extensively studied in Canada and was used for nineteen years in the 60-MWt organic-cooled WR-1 reactor at the Whiteshell Nuclear Research Establishment (WNRE) of Atomic Energy of Canada Limited (AECL). Proper attention to design and coolant chemistry in the nineteen years of operation in the WR-1 reactor kept the coolant aspects related to decomposition, fouling and flammability to acceptable levels. For small reactor applications, organic coolants are potentially superior to heavy water in terms of overall cost. The purpose of this thesis work was, through a literature review, to select the most suitable aqueous fuel and materials of construction for two proposed small inherently safe reactors, the QH-1 reactor and the homogeneous SLOWPOKE reactor under design at the Royal Military College of Canada.

  7. Catalytic reactor for promoting a chemical reaction on a fluid passing therethrough

    Science.gov (United States)

    Roychoudhury, Subir (Inventor); Pfefferle, William C. (Inventor)

    2001-01-01

    A catalytic reactor with an auxiliary heating structure for raising the temperature of a fluid passing therethrough whereby the catalytic reaction is promoted. The invention is a apparatus employing multiple electrical heating elements electrically isolated from one another by insulators that are an integral part of the flow path. The invention provides step heating of a fluid as the fluid passes through the reactor.

  8. Experiments on rehabilitation of radioactive metallic waste (RMW) of reactor stainless steels of Siberian chemical plant

    Science.gov (United States)

    Kolpakov, G. N.; Zakusilov, V. V.; Demyanenko, N. V.; Mishin, A. S.

    2016-06-01

    Stainless steel pipes, used to cool a reactor plant, have a high cost, and after taking a reactor out of service they must be buried together with other radioactive waste. Therefore, the relevant problem is the rinse of pipes from contamination, followed by returning to operation.

  9. Mechanical, chemical and radiological characterization of the graphite of the UNGG reactors type; Caracterisation mecanique, chimique et radiologique du graphite des reacteurs de la filiere UNGG

    Energy Technology Data Exchange (ETDEWEB)

    Bresard, I.; Bonal, J.P

    2000-07-01

    In the framework of UNGG reactors type dismantling procedures, the characterization of the graphite, used as moderator, has to be realized. This paper presents the mechanical, chemical and radiological characterizations, the properties measured and gives some results in the case of the Bugey 1 reactor. (A.L.B.)

  10. Purification and Chemical Control of Molten Li2BeF 4 for a Fluoride Salt Cooled Reactor

    Science.gov (United States)

    Kelleher, Brian Christopher

    Out of the many proposed generation IV, high-temperature reactors, the molten salt reactor (MSR) is one of the most promising. The first large scale MSR, the molten salt reactor experiment (MSRE), operated from 1965 to 1969 using Li2BeF4, or flibe, as a coolant and solvent for uranium fluoride fuel, at maximum temperatures of 654°C, for over 15000 hours. The MSRE experienced no concept breaking surprises and was considered a success. Newly proposed designs of molten salt reactors use solid fuels, making them less exotic compared to the MSRE. However, any molten salt reactor will require a great deal of research pertaining to the chemical and mechanical mastery of molten salts in order to prepare it for commercialization. To supplement the development of new molten salt reactors, approximately 100 kg of flibe was purified using the standard hydrofluorination process. Roughly half of the purified salt was lithium-7 enriched salt from the secondary loop of the MSRE. Purification rids the salt of impurities and reduces its capacity for corrosion, also known as the redox potential. The redox potential of flibe was measured at various stages of purification for the first time using a dynamic beryllium reference electrode. These redox measurements have been superimposed with metal impurities measurements found by neutron activation analysis. Lastly, reductions of flibe with beryllium metal have been investigated. Over reductions have been performed, which have shown to decrease redox potential while seemingly creating a beryllium-beryllium halide system. Recommendations of the lowest advisable redox potential for corrosion tests are included along with suggestions for future work.

  11. Analysis of enhanced mixing by natural and forced convection with application to chemical reactor design

    OpenAIRE

    González Hidalgo, Clara Tatiana

    2013-01-01

    Se buscaron nuevos diseños que aumentaran el mezclado en reactores catalíticos. Dos modelos fueron propuestos. El primero, usó convección forzada como el impulsor del mezclado y consistía de una pila de discos corotatorios con el catalizador en sus superficies y los cuales se encontraban dentro de una cavidad cilíndrica. Dos modos de operación fueron estudiados para este tipo de reactor, discontinuo y semicontinuo. En el modo semicontinuo se alimentó un flujo al reactor mediante la pared exte...

  12. Micro flow reactor chips with integrated luminescent chemosensors for spatially resolved on-line chemical reaction monitoring.

    Science.gov (United States)

    Gitlin, Leonid; Hoera, Christian; Meier, Robert J; Nagl, Stefan; Belder, Detlev

    2013-10-21

    Real-time chemical reaction monitoring in microfluidic environments is demonstrated using luminescent chemical sensors integrated in PDMS/glass-based microscale reactors. A fabrication procedure is presented that allows for straightforward integration of thin polymer layers with optical sensing functionality in microchannels of glass-PDMS chips of only 150 μm width and of 10 to 35 μm height. Sensor layers consisting of polystyrene and an oxygen-sensitive platinum porphyrin probe with film thicknesses of about 0.5 to 4 μm were generated by combining spin coating and abrasion techniques. Optimal coating procedures were developed and evaluated. The chip-integrated sensor layers were calibrated and investigated with respect to stability, reproducibility and response times. These microchips allowed observation of dissolved oxygen concentration in the range of 0 to over 40 mg L(-1) with a detection limit of 368 μg L(-1). The sensor layers were then used for observation of a model reaction, the oxidation of sulphite to sulphate in a microfluidic chemical reactor and could observe sulphite concentrations of less than 200 μM. Real-time on-line monitoring of this chemical reaction was realized at a fluorescence microscope setup with 405 nm LED excitation and CCD camera detection.

  13. Experiments of char particle segregation effect on the gas conversion behavior in the fuel reactor for chemical looping combustion

    International Nuclear Information System (INIS)

    Highlights: • This work verified the existence of char particle segregation in the fuel reactor during CLC. • The char particle segregation has detrimental effect on the conversion of the char gasification product CO. • Larger/heavier char particles located near the reactor bottom have a higher CO conversion than the smaller/lighter char. • Larger fluidizing gas velocity can reduce the effect of char segregation on CO conversion. • Oxygen carriers of high reactivity can convert CO completely although segregation effect exists. - Abstract: In solid fuel (such as lignite) chemical looping combustion, solid fuels undergo pyrolysis and gasification. The volatiles from pyrolysis and the gasification product (CO/H2) react with oxygen carriers. The gas conversion (to CO2/H2O) in the fuel reactor is a key point. However, char particles of different sizes and conversion ratios cause segregation in the fuel reactor, which influences the contact time between fuel gases and the carrier, thereby changing the gas conversion behavior. In order to gain information on obtaining a high gas conversion in the fuel reactor, this work focused on the effect of the char particle segregation on gas conversion. Different factors – the char particle size, the fluidizing gas velocity, and the oxygen carrier reactivity – were taken into account. Smaller char particles with low density would float on top of the fluidized bed, corresponding to a low gas conversion (mf in the Fe63Al bed) can reduce the segregation effect, resulting in a higher CO conversion. High reactivity carriers can convert CO completely although segregation exists, whereas low reactivity carriers exhibit the segregation effect and thus corresponds to a low CO conversion

  14. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  15. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  16. Experience Gained during the Adaptation of Classical ChE Subjects to the Bologna Plan in Europe: The Case of Chemical Reactors

    Science.gov (United States)

    Ponsa, Sergio; Sanchez, Antoni

    2011-01-01

    At present, due to the overall adaptation to the European Higher Education Area (EHEA), a new concept regarding the teaching methodology was thought to be essential for engineering subjects. In this paper we describe our experience teaching the altered content of the courses on two classical subjects; Chemical Reactors (Chemical Engineering) and…

  17. Reactor operating procedures for startup of continuously-operated chemical plants

    NARCIS (Netherlands)

    Verwijs, J.W.; Kösters, P.H.; Berg, van den H.; Westerterp, K.R.

    1995-01-01

    Rules are presented for the startup of an adiabatic tubular reactor, based on a qualitative analysis of the dynamic behavior of continuously-operated vapor- and liquid-phase processes. The relationships between the process dynamics, operating criteria, and operating constraints are investigated, sin

  18. Microbiological and chemical approaches to degradation of mecoprop in a Moving-Bed Biofilm-Reactor

    DEFF Research Database (Denmark)

    Escola, Monica; Tue Kjærgaard Nielsen, Tue; Hansen, Lars Hestbjerg;

    Micro-pollutants are ubiquitous in wastewater effluents. Therefore, in-situ treatments of highly polluted water or polishing treatments after classical wastewater treatment have been proposed as a solution. Moving Bed Biofilm-Reactors (MBBRs) are a recent-developed biofilm technology for wastewater...

  19. Modeling the high-temperature gas-cooled reactor process heat plant: a nuclear to chemical conversion process

    International Nuclear Information System (INIS)

    The high-temperature heat available from the High-Temperature Gas-Cooled Reactor (HTGR) makes it suitable for many process applications. One of these applications is a large-scale energy production plant where nuclear energy is converted into chemical energy and stored for industrial or utility applications. This concept combines presently available nuclear HTGR technology and energy conversion chemical technology. The design of this complex plant involves questions of interacting plant dynamics and overall plant control. This paper discusses how these questions were answered with the aid of a hybrid computer model that was developed within the time-frame of the conceptual design studies. A brief discussion is given of the generally good operability shown for the plant and of the specific potential problems and their anticipated solution. The paper stresses the advantages of providing this information in the earliest conceptual phases of the design

  20. Effect of water-chemical regimes and exploitation parameters on the fuel can corrosion and light-water reactor fuel elements security

    International Nuclear Information System (INIS)

    A physico-chemical model of nodal and uniform corrosion of zirconium fuel cans in reactors is proposed. The model takes account of the following physical parameters: values of neutron and thermal fluxes, burnup, temperature, as well as of the water chemistry parameters. The model developed is based on a correlation between zirconium oxide solubility in the coolant and measured values of fuel can corrosion in reactors. Based on the reliability theory, a mathematical model is proposed, connecting the rate of the can corrosion with the fuel element failure intensity at NPPs with RBMK and WWER type reactors

  1. Reactor choices for chemical looping combustion (CLC) dependencies on materials characteristics

    NARCIS (Netherlands)

    Kimball, E.; Lambert, A.; Fossdal, A.; Leenman, R.N.; Comte, E.; Bos, W.A.P. van den; Blom, R.

    2013-01-01

    The physio-chemical stability of the oxygen carrier material during chemical looping combustion (CLC) operation is crucial. In the present paper we discuss the challenges connected to operating a metal oxide base material in a cyclic manner between oxidizing and reducing atmospheres. Especially, foc

  2. Chemical and ecotoxicological characterization of ashes obtained from sewage sludge combustion in a fluidised-bed reactor

    International Nuclear Information System (INIS)

    In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran[reg]), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran[reg]) are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub

  3. Numerical modeling of chemical vapor deposition (CVD) in a horizontal reactor

    Science.gov (United States)

    Sheikholeslami, M. Z.; Jasinski, T.; Fretz, K. W.

    1988-01-01

    In the present numerical prediction of the deposition rate of silicon from silane in a CVD process, the conservation equations for mass, momentum, energy, and chemical species are solved on a staggered grid using the SIMPLE algorithm, while the rate of chemical reactions in the gas phase and on the susceptor surface is obtained from an Arrhenius rate equation. Predicted deposition rates as a function of position along the susceptor with and without the gas phase chemical reaction are compared with the available experimental and numerical data; agreement is excellent except at the leading edge of the susceptor, where the deposition rate is overpredicted.

  4. Normal form analysis of multiple bifurcations in incompletely mixed chemical reactors

    Science.gov (United States)

    Puhl, Andreas; Nicolis, Grégoire

    1987-07-01

    Using the theory of normal forms, we investigate the effects of mixing in a continuous flow stirred tank reactor (CSTR) for a reaction model exhibiting oscillatory behavior in the vicinity of a degenerated bifurcation point (here, a Takens-Bogdanov point). In addition we show without specification of a particular reaction system that, as long as reaction rates remain much slower than the inverse mixing time, incomplete mixing introduces a new bifurcation parameter for nonpremixed feeding conditions, whereas premixed feeding conditions merely lead to a renormalization of flow rate.

  5. A mixed flow reactor method to synthesize amorphous calcium carbonate under controlled chemical conditions.

    Science.gov (United States)

    Blue, Christina R; Rimstidt, J Donald; Dove, Patricia M

    2013-01-01

    This study describes a new procedure to synthesize amorphous calcium carbonate (ACC) from well-characterized solutions that maintain a constant supersaturation. The method uses a mixed flow reactor to prepare ACC in significant quantities with consistent compositions. The experimental design utilizes a high-precision solution pump that enables the reactant solution to continuously flow through the reactor under constant mixing and allows the precipitation of ACC to reach steady state. As a proof of concept, we produced ACC with controlled Mg contents by regulating the Mg/Ca ratio of the input solution and the carbonate concentration and pH. Our findings show that the Mg/Ca ratio of the reactant solution is the primary control for the Mg content in ACC, as shown in previous studies, but ACC composition is further regulated by the carbonate concentration and pH of the reactant solution. The method offers promise for quantitative studies of ACC composition and properties and for investigating the role of this phase as a reactive precursor to biogenic minerals.

  6. Automated system for neutron activation analysis determination of short lived isotopes at The DOW Chemical Company's TRIGA research reactor

    Science.gov (United States)

    Zieman, J. J.; Rigot, W. L.; Romick, J. D.; Quinn, T. J.; Kocher, C. W.

    1994-12-01

    An automated neutron activation analysis (NAA) system for the determination of short lived isotopes was constructed at The DOW Chemical Company's TRIGA Research Reactor in 1993. The NAA group of the Analytical Sciences Laboratory uses the reactor for thousands of analyses each year and therefore automation is important to achieve and maintain high throughput and precision (productivity). This project is complementary to automation of the long-lived counting facilities (see Romick et al., these Proceedings). Canberra/Nuclear Data Systems DEC-based software and electronics modules and an I/O mounting board are the basic commercial components. A Fortran program on a VAX computer controls I/O via ethernet to an Acquisition Interface Module (AIM). The AIM controls the γ spectrometer modules and is interfaced to a Remote Parallel Interface (RPI) module which controls the pneumatic transfer apparatus with TTL signals to the I/O mounting board. Near-infrared sensors are used to monitor key points in the transfer system. Spectra are acquired by a single HPGe detector mounted on a sliding rail to allow flexible and more reproducible counting geometries than with manual sample handling. The maximum sample size is 8 ml in a heat-sealed two dram vial. The sample vial is nested into a "rabbit" vial for irradiation which can be automatically removed prior to spectrum collection. The system was designed to be used by the reactor operator at the control console without the aid of an additional experimenter. Applications include the determination of selenium and silver in coal and water, fluorine in tetra-fluoro ethylene (TFE) coated membranes, aluminum and titanium in composite materials and trace fluorine in non-chlorinated cleaning solvents. Variable dead time software allows analysis for 77mSe despite high dead times from 16N encountered in samples.

  7. Study on the chemical compatibility of SiC/SiC composites as core materials for Sodium Fast Reactors

    International Nuclear Information System (INIS)

    Silicon carbide (SiC) fibers combined with a SiC matrix constitute an advanced solution for Fast Neutron Reactors (SFR, GFR…) as core materials for their stability at high temperature and their neutron transparency. However, the compatibility with the reactor's fuel and coolant has to be studied within a wide range of temperatures: moderated in normal operation (close-circuit at 550°C) and elevated (open-middle) in accidental conditions. Concerning the compatibility of SiC/SiC with the fuel and, considering in a first step uranium oxide, the stoichiometry of uranium dioxide remains one of the important parameters to be studied. Experimental results on the chemical compatibility between UO2.15 and SiC were obtained using high temperature mass spectrometry. The reaction for 6 hours at 1773 K produces the release of mainly COg, CO2(g) and SiO(g) and Si(g) and leads to the formation of uranium silicide compounds. The uranium oxide was fully consumed. Thermodynamic calculations were performed to prepare and interpret the experiments. (author). (author)

  8. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    Science.gov (United States)

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions.

  9. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    Science.gov (United States)

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions. PMID:27085154

  10. The Arctic seasonal snow pack as a transfer mechanism and a reactor for lower atmosphere chemical compounds (Invited)

    Science.gov (United States)

    Douglas, T. A.

    2013-12-01

    The Polar Regions are snow covered for two thirds of the year (or longer) and in many locations there are few melt events during the winter. As a consequence, the late winter snow pack presents a spatial and temporal archive of the previous winter's precipitation, snow-atmosphere exchange, and within snow pack physical and chemical processes. However, to use the snow pack as a 'sensor' we have to understand the physical and chemical exchange processes between atmospheric compounds and snow and ice surfaces. Of equal importance is knowledge of the reactions that occur in and on snow and ice particle surfaces. Recent research has provided insights on the pathways individual compounds take from the lower atmosphere to snow and on the physical and chemical processes occurring within the snow pack at a variety of scales. Snow on or near sea ice has markedly higher major ion concentrations than snow on the terrestrial snow pack, most notably for chloride and bromide. This difference in chemical composition can be dramatic even in coastal regions where the land is only hundreds of meters away. As a consequence, we have to treat chemical cycling processes in/on snow on sea ice and snow on land differently. Since these halogens, particularly bromine, play critical roles in the spring time photochemical reactions that oxidize ozone and mercury their presence and fate on the sea ice snow pack is of particular interest. A future Arctic is expected to have a thinner, more dynamic sea ice cover that will arrive later and melt earlier. The areal extent of young ice production will likely increase markedly. This would lead to a different snow depositional and chemical regime on sea ice with potential ramifications for chemical exchange with the lower atmosphere. The roles of clear sky precipitation ('diamond dust') and surface hoar deposition in providing a unique lower atmospheric 'reactor' and potential source of water equivalence have been largely overlooked. This despite the

  11. Evaluation of improved chemical waste disposal and recovery methods for N reactor fuel fabrication operations: 1984 annual report

    International Nuclear Information System (INIS)

    Pacific Northwest Laboratory personnel identified and evaluated alternative methods for recovery, recycle, and disposal of waste acids produced during N Reactor fuel operations. This work was conducted under a program sponsored by UNC Nuclear Industries, Inc.; the program goals were to reduce the volume of liquid waste by rejuvenating and recycling acid solutions and to generate a residual waste low in nitrates, fluorides, and metals. Disposal methods under consideration included nitric acid reclamation, grout encapsulation of final residual waste, nitrogen fertilizer production, biodenitrifaction, chemical or thermal destruction of NO3, and short-term impoundment of liquid NO3/SO4 wastes. Preliminary testing indicated that the most feasible and practicable of these alternatives were (1) nitric acid reclamation followed by grouting of residual waste and (2) nitrogen fertilizer production. This report summarizes the investigations, findings, and recommendations for the 1984 fiscal year

  12. KAERI's technology development program of chemical decontamination for nuclear power reactors

    International Nuclear Information System (INIS)

    The activated corrosion products formed on the internal surface of primary coolant system of nuclear power plants can be removed by chemical decontamination. Dilute chemical decontamination method is widely used in consideration of keeping base metal integrity and producing relatively small amount of resulting radwastes. The application of chemical decontamination to PWRs is limited at present mainly to the channel heads of steam generators, but a growing necessity of entire NSSS decontamination is expected to accelerate the development and demonstration of the technology so that the commercial application of the technology will be realized in early 1990s. In Korea, nine nuclear power plants of PWR type except one will be available by 1989. The first chemical decontamination of the steam generator channel head of this nuclear power plant was done in 1984 by a foreign technology. KAERI's chemical decontamination technology development program funded by the Ministry of Science and Technology was started in 1983 to establish the technical guidelines and criteria and to obtain the technical self reliance. It is described. (Kako, I.)

  13. Out-of-pile fuel-clad chemical compatibility studies for fast reactors

    International Nuclear Information System (INIS)

    Fuel-clad mechanical and chemical interaction lead to clad corrosion, loss of ductility, embitterment and clad breach limiting the life of a fuel pin. The chemical nature and extent of clad attack depend upon the type of fuel, fuel-clad gap, type of bond between fuel and clad. For FBTR at Kalpakkam, fuel is (U0.3Pu0.7)Cl +x (MKI) and (U0.45Pu0.55)Cl +x (MKII) and the clad is AISI SS316 (20% CW). Extensive work on out-of-pile fuel-clad and fuel-clad-coolant chemical compatibility experiments has been carried out in Radiometallurgy Division. The paper highlights the results of the tests carried out and substantiate it on the basis of the available thermodynamic data. (author)

  14. Assessment of iodine behaviour in reactor containment buildings from a chemical perspective

    International Nuclear Information System (INIS)

    Thermodynamic parameters for aqueous and gaseous iodine species at 250C have been obtained from the literature and a data base has been constructed that is consistent with CODATA values. Using the 250C data base, Gibbs energies for the iodine species have been calculated as a function of temperature to 1500C. Results are presented in terms of potential-pH diagrams, species distribution diagrams, and liquid-gas partition-coefficient plots. Iodine chemistry in the fuel, in the primary coolant system, and in the containment building atmosphere is also discussed. This assessment of iodine behaviour clearly shows that there is considerable scope for limiting the concentration of airborne iodine in reactor containment buildings following a loss-of-coolant accident in which fuel failure occurs. (author)

  15. Comparison of biological and chemical phosphorus removals in continuous and sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ketchum, L.H.; Irvine, R.L. Jr.; Breyfogle, R.E.; Manning, J.F. Jr.

    1987-01-01

    A full-scale study of phosphorus removal has been conducted at Culver using continuous-flow operation, SBR operation, and several different chemical treatment schemes. A full-scale demonstration of SBR biological phosphorus removal also has been shown to be effective. Four contributing groups of organisms and their roles in biological SBR phosphorus removal have been described: denitrifying organisms, fermentation product-manufacturing organisms, phosphorus- accumulating organisms, and aerobic autotrophs and heterotrophs. The SBR can provide the proper balance of anoxic, anaerobic, and aerobic conditions to allow these group of organisms to successfully remove phosphorus biologically, without chemical addition. Treatment results using various chemicals for phosphorus removal, both during conventional, continuous-flow operation and after the plant was converted for SBR operation, have also been provided for comparison. Effluent phosphorus concentrations were almost identical for each period, except for the period when phosphorus was removed biologically and without any chemical addition when effluent phosphorus concentrations were the lowest. These removals were made as a result of settling alone; no tertiary rapid stand filter was used or required.

  16. Interdisciplinary Learning for Chemical Engineering Students from Organic Chemistry Synthesis Lab to Reactor Design to Separation

    Science.gov (United States)

    Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph

    2008-01-01

    A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…

  17. Chemical-looping gasification of biomass in a 10k Wth interconnected fluidized bed reactor using Fe2 O3/Al2 O3 oxygen carrier

    Institute of Scientific and Technical Information of China (English)

    HUSEYIN Sozen; WEI Guo-qiang; LI Hai-bin; HE Fang; HUANG Zhen

    2014-01-01

    The aim of this research is to design and operate a 10 kW hot chemical-looping gasification ( CLG) unit using Fe2 O3/Al2 O3 as an oxygen carrier and saw dust as a fuel. The effect of the operation temperature on gas composition in the air reactor and the fuel reactor, and the carbon conversion of biomass to CO2 and CO in the fuel reactor have been experimentally studied. A total 60 h run has been obtained with the same batch of oxygen carrier of iron oxide supported with alumina. The results show that CO and H2 concentrations are increased with increasing temperature in the fuel reactor. It is also found that with increasing fuel reactor temperature, both the amount of residual char in the fuel reactor and CO2 concentration of the exit gas from the air reactor are degreased. Carbon conversion rate and gasification efficiency are increased by increasing temperature and H2 production at 870 ℃reaches the highest rate. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET-surface area tests have been used to characterize fresh and reacted oxygen carrier particles. The results display that the oxygen carrier activity is not declined and the specific surface area of the oxygen carrier particles is not decreased significantly.

  18. Chemical interactions of reactor core materials up to very high temperatures

    International Nuclear Information System (INIS)

    The paper describes which chemical interactions may occur in a LWR fuel rod bundle containing (Ag, In, Cd) absorber rods or (Al2O3/B4C) burnable poison rods with increasing temperature up to the complete melting of the components and the formed reaction products. The kinetics of the most important chemical interactions has been investigated and the results are described. In most cases the reaction products have lower melting points or ranges than the original components. This results in a relocation of liquefied components often far below their melting points. There exist three distinct temperature regimes in which liquid phases can form in the core in differently large quantities. These temperature regimes are described in detail. The phase relations in the important ternary (U, Zr, O) system have been extensively studied. The effect of steel constituents on the phase relations is given in addition. All the considerations are focused on PWR conditions only. (orig.)

  19. Physical and chemical properties and compositions of liquid effluents of a nuclear power reactor

    International Nuclear Information System (INIS)

    Behaviours of the released radioactive materials from a nuclear power plant to the marine environment depend largely on their physical and chemical properties. It is therefore important to grasp the compositions of the liquid effluents. From this point of view, some kinds of drainwater of a BWR plant were sampled. These samples are the laundry drain water at charcoal bed inlet and outlet, and the floor drain water. Suspended solids were separated from these samples physically with the step filtration method and ions chemically with the ion exchange resin. Radioactivity of Co-60, Mn-54 and Cs-137 was measured with γ spectrometer. Suspended solids of the laundry drain samples were also analysed with the instrumental methods (differential thermal analysis, x-ray diffraction analysis and x-ray fluorescence analysis)

  20. Chemical compatibility of SiC composite structures with fusion reactor helium coolant at high temperatures

    International Nuclear Information System (INIS)

    The thermodynamic stability of SiC/SiC composite structures proposed for fusion applications is presented in this paper. Minimization of the free energy for reacting species in the temperature range 773-1273 K is achieved by utilizing the NASA-Lewis Chemical Equilibrium Thermodynamics Code (CET). The chemical stability of the matrix (SiC), as well as several fiber coatings (BN and graphite) are studied. Helium coolant is assumed to contain O2 and water moisture impurities in the range 100-1000 ppm. The work is applied to recent Magnetic and Inertial Confinement Conceptual designs. The present study indicates that the upper useful temperature limit for SiC/SiC composites, from the standpoint of high-temperature corrosion, will be in the neighborhood of 1273 K. Up to this temperature, corrosion of SiC is shown to be negligible. The main mechanism of weight loss will be by evaporation to the plasma side. The presence of a protective SiO2 condensed phase is discussed, and is shown to result in further reduction of high-temperature corrosion. The thermodynamic stability of C and BN is shown to be very poor under typical fusion reaction conditions. Further development of chemically stable interface materials is required. (orig.)

  1. Treatment of textile effluent by chemical (Fenton's Reagent) and biological (sequencing batch reactor) oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Carmen S.D. [LSRE - Laboratory of Separation and Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal); Madeira, Luis M. [LEPAE - Laboratory for Process, Environmental and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal); Boaventura, Rui A.R., E-mail: bventura@fe.up.pt [LSRE - Laboratory of Separation and Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal)

    2009-12-30

    The removal of organic compounds and colour from a synthetic effluent simulating a cotton dyeing wastewater was evaluated by using a combined process of Fenton's Reagent oxidation and biological degradation in a sequencing batch reactor (SBR). The experimental design methodology was first applied to the chemical oxidation process in order to determine the values of temperature, ferrous ion concentration and hydrogen peroxide concentration that maximize dissolved organic carbon (DOC) and colour removals and increase the effluent's biodegradability. Additional studies on the biological oxidation (SBR) of the raw and previously submitted to Fenton's oxidation effluent had been performed during 15 cycles (i.e., up to steady-state conditions), each one with the duration of 11.5 h; Fenton's oxidation was performed either in conditions that maximize the colour removal or the increase in the biodegradability. The obtained results allowed concluding that the combination of the two treatment processes provides much better removals of DOC, BOD{sub 5} and colour than the biological or chemical treatment alone. Moreover, the removal of organic matter in the integrated process is particularly effective when Fenton's pre-oxidation is carried out under conditions that promote the maximum increase in wastewater biodegradability.

  2. Chemical analysis of nickel- and iron-base high-temperature alloys for nuclear reactor

    International Nuclear Information System (INIS)

    The Committee studied problems in analysis of alloys used for High-Temperature Gas Cooled Reactor from September 1970 to February 1976. The alloys selected from the standpoint of analytical chemistry are Inconel 600, Incoloy 800, Inconel X750, Inco 713C and Hastelloy X. Nine standard samples (JAERI-R 1 to JAERI-R 9) of the high-temperature alloys were prepared primarily for X-ray fluorescence method. Eighteen research institutions in Japan participated in cooperative analyses of the standard samples for 19 elements (C, Si, Mn, P, S, Ni, Cr, Fe, Mo, Cu, W, V, Co, Ti, Al, B, Nb, Ta, Zr). Prior to analyses of the standard samples, 8 cooperative samples (A-H) were analyzed to develop and evaluate analytical methods. Described in this report are preparation and their characteristics of the standard samples, results of analyses, and 93 analytical methods. The results of the cooperative experiments on atomic absorption spectrophotometry and X-ray fluorescence method are also described. (auth.)

  3. Chemical and toxicological characterization of slurry reactor biotreatment of explosives-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Stewart, A.J.; Vass, A.A.; Ho, C.H.

    1998-08-01

    Treatment of 2,4,6-trinitrotoluene (TNT)-contaminated soil in the Joliet Army Ammunition Plant (JAAP) soil slurry bioreactor (SSBR) eliminated detectable TNT but left trace levels of residual monoamino and diamino metabolites under some reactor operating conditions. The reduction of solvent-extractable bacterial mutagenicity in the TNT-contaminated soil was substantial and was similar to that achieved by static pile composts at the Umatilla Army Depot Activity (UMDA) field demonstration. Aquatic toxicity to Ceriodaphnia dubia from TNT in the leachates of TNT-contaminated soil was eliminated in the leachates of JAAP SSBR product soil. The toxicity of soil product leachates to Ceriodaphnia dubia was reasonably predicted using the specific toxicities of the components detected, weighted by their leachate concentrations. In samples where TNT metabolites were observed in the soil product and its leachates, this method determined that the contribution to predicted toxicity values was dominated by trace amounts of the diamino-metabolites, which are very toxic to ceriodaphnia dubia. When the SSBR operating conditions reduced the concentrations of TNT metabolites in the product soils and their leachates to undetectable concentrations, the main contributors to predicted aquatic toxicity values appeared to be molasses residues, potassium, and bicarbonate. Potassium and bicarbonate are beneficial or benign to the environment, and molasses residues are substantially degraded in the environment. Exotoxins, pathogenic bacteria, inorganic particles, ammonia, and dissolved metals did not appear to be important to soil product toxicity.

  4. Atmospheric pressure flow reactor: Gas phase chemical kinetics under tropospheric conditions without wall effects

    Science.gov (United States)

    Koontz, Steven L. (Inventor); Davis, Dennis D. (Inventor)

    1991-01-01

    A flow reactor for simulating the interaction in the troposphere is set forth. A first reactant mixed with a carrier gas is delivered from a pump and flows through a duct having louvers therein. The louvers straighten out the flow, reduce turbulence and provide laminar flow discharge from the duct. A second reactant delivered from a source through a pump is input into the flowing stream, the second reactant being diffused through a plurality of small diffusion tubes to avoid disturbing the laminar flow. The commingled first and second reactants in the carrier gas are then directed along an elongated duct where the walls are spaced away from the flow of reactants to avoid wall interference, disturbance or turbulence arising from the walls. A probe connected with a measuring device can be inserted through various sampling ports in the second duct to complete measurements of the first and second reactants and the product of their reaction at selected XYZ locations relative to the flowing system.

  5. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine

    International Nuclear Information System (INIS)

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  6. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine.

    Science.gov (United States)

    Sponza, Delia Teresa; Demirden, Pinar

    2010-04-15

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  7. Influence of chemical kinetics on postcolumn reaction in a capillary Taylor reactor with catechol analytes and photoluminescence following electron transfer.

    Science.gov (United States)

    Jung, Moon Chul; Weber, Stephen G

    2005-02-15

    Postcolumn derivatization reactions can enhance detector sensitivity and selectivity, but their successful combination with capillary liquid chromatography has been limited because of the small peak volumes in capillary chromatography. A capillary Taylor reactor (CTR), developed in our laboratory, provides simple and effective mixing and reaction in a 25-microm-radius postcolumn capillary. Homogenization of reactant streams occurs by radial diffusion, and a chemical reaction follows. Three characteristic times for a given reaction process can be predicted using simple physical and chemical parameters. Two of these times are the homogenization time, which governs how long it takes the molecules in the analyte and reagent streams to mix, and the reaction time, which governs how long the molecules in a homogeneous solution take to react. The third characteristic time is an adjustment to the reaction time called the start time, which represents an estimate of the average time the analyte stream spends without exposure to reagent. In this study, laser-induced fluorescence monitored the extent of the postcolumn reaction (reduction of Os(bpy)3(3+) by analyte to the photoluminescent Os(bpy)3(2+)) in a CTR. The reaction time depends on the reaction rates. Analysis of product versus time data yielded second-order reaction rate constants between the PFET reagent, tris(2,2'-bipyridine)osmium, and standards ((ferrocenylmethyl)trimethylammonium cation and p-hydroquinone) or catechols (dopamine, epinephrine, norepinephrine, 3, 4-dihydroxyphenylacetic acid. The extent of the reactions in a CTR were then predicted from initial reaction conditions and compared to experimental results. Both the theory and experimental results suggested the reactions of catechols were generally kinetically controlled, while those of the standards were controlled by mixing time (1-2 s). Thus, the extent of homogenization can be monitored in a CTR using the relatively fast reaction of the reagent and p

  8. Rotary Bed Reactor for Chemical-Looping Combustion with Carbon Capture. Part 2: Base Case and Sensitivity Analysis

    KAUST Repository

    Zhao, Zhenlong

    2013-01-17

    Part 1 (10.1021/ef3014103) of this series describes a new rotary reactor for gas-fueled chemical-looping combustion (CLC), in which, a solid wheel with microchannels rotates between the reducing and oxidizing streams. The oxygen carrier (OC) coated on the surfaces of the channels periodically adsorbs oxygen from air and releases it to oxidize the fuel. A one-dimensional model is also developed in part 1 (10.1021/ef3014103). This paper presents the simulation results based on the base-case design parameters. The results indicate that both the fuel conversion efficiency and the carbon separation efficiency are close to unity. Because of the relatively low reduction rate of copper oxide, fuel conversion occurs gradually from the inlet to the exit. A total of 99.9% of the fuel is converted within 75% of the channel, leading to 25% redundant length near the exit, to ensure robustness. In the air sector, the OC is rapidly regenerated while consuming a large amount of oxygen from air. Velocity fluctuations are observed during the transition between sectors because of the complete reactions of OCs. The gas temperature increases monotonically from 823 to 1315 K, which is mainly determined by the solid temperature, whose variations with time are limited within 20 K. The overall energy in the solid phase is balanced between the reaction heat release, conduction, and convective cooling. In the sensitivity analysis, important input parameters are identified and varied around their base-case values. The resulting changes in the model-predicted performance revealed that the most important parameters are the reduction kinetics, the operating pressure, and the feed stream temperatures. © 2012 American Chemical Society.

  9. Atmospheric pressure plasma chemical vapor deposition reactor for 100 mm wafers, optimized for minimum contamination at low gas flow rates

    Science.gov (United States)

    Anand, Venu; Nair, Aswathi R.; Shivashankar, S. A.; Mohan Rao, G.

    2015-08-01

    Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and built a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems.

  10. Entropy production in a chemical system involving an autocatalytic reaction in an isothermal, continuous stirred tank reactor

    Science.gov (United States)

    Yoshida, Nobuo

    1990-02-01

    The rate of entropy production due to chemical reaction is calculated for various combinations of parameter values in the cubic autocatalator model in an isothermal, continuous stirred tank reactor (CSTR) proposed by Gray and Scott and by Escher and Ross. Values of the entropy production averaged over periods of limit cycle oscillations are compared with those in coexistent unstable stationary states. It is found that in ranges of the residence time over which there are limit cycles, the entropy production in coexisting stationary states increases as the residence time is shortened, i.e., as the system is removed farther from thermodynamic equilibrium. The average entropy production over a limit cycle is less than that in the corresponding stationary state over wide ranges of parameter values, but not necessarily for the whole oscillatory region. More specifically, the former inequality always prevails in ranges where the entropy production of stationary states is larger, i.e., the residence time is shorter, but in some cases the inequality is reversed in ranges of lower magnitudes of the entropy production.

  11. Modeling Forced Flow Chemical Vapor Infiltration Fabrication of SiC-SiC Composites for Advanced Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Christian P. Deck

    2013-01-01

    Full Text Available Silicon carbide fiber/silicon carbide matrix (SiC-SiC composites exhibit remarkable material properties, including high temperature strength and stability under irradiation. These qualities have made SiC-SiC composites extremely desirable for use in advanced nuclear reactor concepts, where higher operating temperatures and longer lives require performance improvements over conventional metal alloys. However, fabrication efficiency advances need to be achieved. SiC composites are typically produced using chemical vapor infiltration (CVI, where gas phase precursors flow into the fiber preform and react to form a solid SiC matrix. Forced flow CVI utilizes a pressure gradient to more effectively transport reactants into the composite, reducing fabrication time. The fabrication parameters must be well understood to ensure that the resulting composite has a high density and good performance. To help optimize this process, a computer model was developed. This model simulates the transport of the SiC precursors, the deposition of SiC matrix on the fiber surfaces, and the effects of byproducts on the process. Critical process parameters, such as the temperature and reactant concentration, were simulated to identify infiltration conditions which maximize composite density while minimizing the fabrication time.

  12. High Resolution Gamma Ray Tomography and its Application to the Measurement of Phase Fractions in Chemical Reactors

    Science.gov (United States)

    Hampel, Uwe; Bieberle, Andre; Schleicher, Eckhard; Hessel, Günther; Zippe, Cornelius; Friedrich, Hans-Jürgen

    2007-06-01

    We applied gamma ray tomography to the problem of phase fraction measurement in chemical reactors. Therefore, we used a new tomography device that is operated with a Cs-137 source and a high resolution gamma ray detector. One application example is the reconstruction of the fluid distribution and the measurement of radial gas fraction profiles in a laboratory scale stirred vessel. The tomograph was used to obtain radiographic projections of the averaged gamma ray attenuation for different stirrer speeds along the height of the vessel. With tomographic reconstruction techniques we calculated the angularly averaged radial distribution of the attenuation coefficient for as many as 150 single cross-sectional planes and synthesised from this data set the axial and radial fluid distribution pattern. Further, we exemplarily reconstructed the radial gas fraction distributions induced by the stirrer in the area of the stirrer blades. In a second application the gamma ray measurement system was used to visualise gas inclusions in a water cleaning column that is used to remove hazardous heavy metal species from water.

  13. Model reduction and temperature uniformity control for rapid thermal chemical vapor deposition reactors

    Science.gov (United States)

    Theodoropoulou, Artemis-Georgia

    The consideration of Rapid Thermal Processing (RTP) in semiconductor manufacturing has recently been increasing. As a result, control of RTP systems has become of great importance since it is expected to help in addressing uniformity problems that, so far, have been obstructing the acceptance of the method. The spatial distribution appearing in RTP models necessitates the use of model reduction in order to obtain models of a size suitable for use in control algorithms. This dissertation addresses model reduction as well as control issues for RTP systems. A model of a three-zone Rapid Thermal Chemical Vapor Deposition (RTCVD) system is developed to study the effects of spatial wafer temperature patterns on polysilicon deposition uniformity. A sequence of simulated runs is performed, varying the lamp power profiles so that different wafer temperature modes are excited. The dominant spatial wafer thermal modes are extracted via Proper Orthogonal Decomposition and subsequently used as a set of trial functions to represent both the wafer temperature and deposition thickness. A collocation formulation of Galerkin's method is used to discretize the original modeling equations, giving a low-order model which loses little of the original, high-order model's fidelity. We make use of the excellent predictive capabilities of the reduced model to optimize power inputs to the lamp banks to achieve a desired polysilicon deposition thickness at the end of a run with minimal deposition spatial nonuniformity. Since the results illustrate that the optimization procedure benefits from the use of the reduced-order model, we further utilize the reduced order model for real time Model Based Control. The feedback controller is designed using the Internal Model Control (IMC) structure especially modified to handle systems described by ordinary differential and algebraic equations. The IMC controller is obtained using optimal control theory on singular arcs extended for multi input systems

  14. Modelling the chemical behaviour of tellurium species in the reactor pressure vessel and the reactor cooling system under severe accident conditions

    International Nuclear Information System (INIS)

    This state of the art report contains information on the behaviour of tellurium and its compounds in the reactor pressure vessel and the reactor coolant system under light water reactor severe accident conditions. To characterise tellurium behaviour, it is necessary the previous knowledge of the species of tellurium released from the core, and simultaneity of its release with that of other materials which can alter the transport, for instance, control rod and structural materials. Release and transport experiments have been reviewed along with the models implemented in the codes which are used in the international community: TRAPMELT, RAFT, VICTORIA and SOPHIE. From the experiments, it can be concluded that other species different to Te2, such as tin telluride and cesium telluride, may be released from the fuel. That is why they must be considered in the transport phenomena. There is also experimental evidence of the strong interaction of Te2 with Inconel 600 and stainless steel of the pipe walls and structures, however this strong interaction is in competition with the interaction of tellurium with aerosols, which under severe accident conditions may represent an area greater than that of the primary system. It is for the absence of significant tellurium species in the transport models, and also for the interaction of tellurium with aerosols, for which some codes show the greatest deficiencies

  15. Experiments on biomass gasification using chemical looping with nickel-based oxygen carrier in a 25 kWth reactor

    International Nuclear Information System (INIS)

    Biomass gasification using chemical looping (BGCL) is an innovative biomass gasification technology, which utilizes lattice oxygen from oxygen carrier instead of molecular oxygen from air. This work attempted to investigate the BGCL performance with nickel-based oxygen carrier in a 25 kWth reactor. The new prototype is composed of a high velocity fluidized bed as an air reactor, a cyclone, a bubbling fluidized bed as a fuel reactor, and a loop-seal. At first, the major reactions in the process were presented and chemical reaction thermodynamics in the fuel reactor was analyzed. The NiO/Al2O3 oxygen carrier was then applied in the reactor. Different variables, such as gasification temperature, steam-to-biomass (S/B) ratio and NiO content, were analyzed. The carbon conversion efficiency increased smoothly within the temperature range of 650–850 °C, while the syngas yield reached the maximum of 0.33 Nm3kg−1 at 750 °C. Additionally, based on the tradeoff between carbon conversion efficiency and syngas yield, it was concluded that 30 wt.% was the optimal NiO content. Besides, in order to get high quality syngas with low CO2 emission, CaO-decorated NiO/Al2O3 oxygen carrier was investigated. Experimental results showed that the addition of CaO enhanced the biomass gasification process and increased the syngas yield. - Highlights: • A new 25 kWth prototype was made in this study. • NiO was selected as oxygen carrier in the new prototype. • Gasification temperature, steam-to-biomass ratio and NiO content were investigated. • CaO-decorated NiO/Al2O3 was tested to produce high quality syngas

  16. Design of a high temperature chemical vapor deposition reactor in which the effect of the condensation of exhaust gas in the outlet is minimized using computational modeling

    Science.gov (United States)

    Yoon, Ji-Young; Geun Kim, Byeong; Nam, Deok-Hui; Yoo, Chang-Hyoung; Lee, Myung-Hyun; Seo, Won-Seon; Shul, Yong-Gun; Lee, Won-Jae; Jeong, Seong-Min

    2016-02-01

    Tetramethylsilane (TMS) was recently proposed as a safe precursor for SiC single crystal growth through high temperature chemical vapor deposition (HTCVD). Because the C content of TMS is much higher than Si, the exhaust gas from the TMS-based HTCVD contains large amounts of C which is condensed in the outlet. Because the condensed C close to the crystal growth front will influence on the thermodynamic equilibrium in the crystal growth, an optimal reactor design was highly required to exclude the effect of the condensed carbon. In this study, we report on a mass/heat transfer analysis using the finite element method (FEM) in an attempt to design an effective reactor that will minimize the effect of carbon condensation in the outlet. By applying the proposed reactor design to actual growth experiments, single 6H-SiC crystals with diameters of 50 mm were successfully grown from a 6H-SiC seed. This result confirms that the proposed reactor design can be used to effectively grow 6H-SiC crystals using TMS-based HTCVD.

  17. The Role of Expansion and Fragmentation Phenomena on the Generation and Chemical Composition of Dust Particles in a Flash Converting Reactor

    Science.gov (United States)

    Duarte-Ruiz, Cirilo Andrés; Pérez-Tello, Manuel; Parra-Sánchez, Víctor Roberto; Sohn, Hong Yong

    2016-07-01

    A compositional fragmentation model was used to clarify the effect of expansion and fragmentation phenomena on the generation and chemical composition of dust particles in a flash converting reactor. A fragmentation index is introduced to represent the fraction of particles undergoing fragmentation, as opposed to expansion, within the particle population. Under typical operating conditions, the local dust content and the net amount of dust generated compared with the dust content in the feed first decreased and then increased along the reactor length, whereas the amount of particles undergoing fragmentation (fragmentation index) increased steadily. Dust generation was found to be the result of two competing phenomena, i.e., the expansion of dust particles in the feed and the production of dust from fragmentation of large particles. At short distance from the burner tip, the dust mostly consists of particles in the feed undergoing oxidation and expansion, whereas farther down the reactor it mostly consists of fragments of partially reacted particles. Based on the computer simulations under a variety of experimental conditions, a map of dust generation against fragmentation index was developed. For most practical purposes, dust generation may be approximated by the change in the mass fraction of dust in the population. At the reactor exit, the composition of the dust is approximately the same as the entire particle population.

  18. The Role of Expansion and Fragmentation Phenomena on the Generation and Chemical Composition of Dust Particles in a Flash Converting Reactor

    Science.gov (United States)

    Duarte-Ruiz, Cirilo Andrés; Pérez-Tello, Manuel; Parra-Sánchez, Víctor Roberto; Sohn, Hong Yong

    2016-10-01

    A compositional fragmentation model was used to clarify the effect of expansion and fragmentation phenomena on the generation and chemical composition of dust particles in a flash converting reactor. A fragmentation index is introduced to represent the fraction of particles undergoing fragmentation, as opposed to expansion, within the particle population. Under typical operating conditions, the local dust content and the net amount of dust generated compared with the dust content in the feed first decreased and then increased along the reactor length, whereas the amount of particles undergoing fragmentation (fragmentation index) increased steadily. Dust generation was found to be the result of two competing phenomena, i.e., the expansion of dust particles in the feed and the production of dust from fragmentation of large particles. At short distance from the burner tip, the dust mostly consists of particles in the feed undergoing oxidation and expansion, whereas farther down the reactor it mostly consists of fragments of partially reacted particles. Based on the computer simulations under a variety of experimental conditions, a map of dust generation against fragmentation index was developed. For most practical purposes, dust generation may be approximated by the change in the mass fraction of dust in the population. At the reactor exit, the composition of the dust is approximately the same as the entire particle population.

  19. On the Design of a Reactor for High Temperature Heat Storage by Means of Reversible Chemical Reactions

    OpenAIRE

    Schmidt, Patrick

    2011-01-01

    This work aims on the investigation of factors influencing the discharge characteristicsof a heat storage system, which is based on the reversible reaction system of Ca(OH)2and CaO. As storage, a packed bed reactor with embedded plate heat exchanger forindirect heat transfer is considered. The storage system was studied theoretically bymeans of finite element analysis of a corresponding mathematical model. Parametricstudies were carried out to determine the influence of reactor design and ope...

  20. Experimentation and simulation of tin oxide deposition on glass based on the SnCl4 hydrolysis in an in-line atmospheric pressure chemical vapor deposition reactor

    International Nuclear Information System (INIS)

    Tin oxide thin films were deposited on glass substrates in an in-line atmospheric pressure chemical vapor deposition reactor under various conditions, which were numerically simulated using a commercial package. A soda-lime glass sheet was used as a deposition substrate, and SnCl4 and H2O in gas phase were separately supplied as the precursor and the oxidizer, respectively. By assuming that the main chemical reactions followed the Rideal–Eley mechanism, the experimentally determined deposition rates were fitted to obtain the reaction factors needed to describe the deposition process. The role of barrier gas injection for minimizing unwanted surface reaction or particle generation inside of the reactor, and not on the target (glass backplane itself) has been elucidated. Furthermore, the optimal operating conditions for the deposition on glass with the additives such as CH3OH and HF have been investigated. - Highlights: • Tin oxide deposition on glass based on the SnCl4 hydrolysis in an in-line reactor • Simulations using Rideal–Eley mechanism were compared to experimental observations. • Results: activation energy—79.3 kJ/mol and frequency factor—1.93 × 1010 m4/kmol·s • Influences of additives on transmittances, hazes, and electrical resistivities

  1. Design of a multi-model observer-based estimator for Fault Detection and Isolation (FDI strategy: application to a chemical reactor

    Directory of Open Access Journals (Sweden)

    Y. Chetouani

    2008-12-01

    Full Text Available This study presents a FDI strategy for nonlinear dynamic systems. It shows a methodology of tackling the fault detection and isolation issue by combining a technique based on the residuals signal and a technique using the multiple Kalman filters. The usefulness of this combination is the on-line implementation of the set of models, which represents the normal mode and all dynamics of faults, if the statistical decision threshold on the residuals exceeds a fixed value. In other cases, one Extended Kalman Filter (EKF is enough to estimate the process state. After describing the system architecture and the proposed FDI methodology, we present a realistic application in order to show the technique's potential. An algorithm is described and applied to a chemical process like a perfectly stirred chemical reactor functioning in a semi-batch mode. The chemical reaction used is an oxido reduction one, the oxidation of sodium thiosulfate by hydrogen peroxide.

  2. Fast hydrothermal liquefaction for production of chemicals and biofuels from wet biomass - The need to develop a plug-flow reactor.

    Science.gov (United States)

    Tran, Khanh-Quang

    2016-08-01

    Hydrothermal liquefaction (HTL) is a promising technology for converting wet plant biomass directly to liquid fuels and chemicals. However, some aspects of the technology are not fully understood and still disputed. The reactor material constraints and difficulties coupled with the formation of unwanted products are the main challenges limiting the applications of the technology. In addition, heat and mass transfer limitations in the reaction system result in a lower conversion efficiency and selectivity, of which the later would make it difficult and expensive for products separation, purification, and/or modification of the products. This paper discusses the challenges and current status of possible solutions to the challenges, focusing on the need of developing a special plug-flow reactor for scaling up of the HTL process. PMID:27085989

  3. Performance of on-site pilot static granular bed reactor (SGBR) for treating dairy processing wastewater and chemical oxygen demand balance modeling under different operational conditions.

    Science.gov (United States)

    Oh, Jin Hwan; Park, Jaeyoung; Ellis, Timothy G

    2015-02-01

    The performance and operational stability of a pilot-scale static granular bed reactor (SGBR) for the treatment of dairy processing wastewater were investigated under a wide range of organic and hydraulic loading rates and temperature conditions. The SGBR achieved average chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspended solids (TSS)-removal efficiencies higher than 90% even at high loading rates up to 7.3 kg COD/m(3)/day, with an hydraulic retention time (HRT) of 9 h, and at low temperatures of 11 °C. The average methane yield of 0.26 L CH4/g COD(removed) was possibly affected by a high fraction of particulate COD and operation at low temperatures. The COD mass balance indicated that soluble COD was responsible for most of the methane production. The reactor showed the capacity of the methanogens to maintain their activity and withstand organic and hydraulic shock loads.

  4. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  5. Development of a Polysilicon Process Based on Chemical Vapor Deposition of Dichlorosilane in an Advanced Siemen's Reactor

    Science.gov (United States)

    Arevidson, A. N.; Sawyer, D. H.; Muller, D. M.

    1983-01-01

    Dichlorosilane (DCS) was used as the feedstock for an advanced decomposition reactor for silicon production. The advanced reactor had a cool bell jar wall temperature, 300 C, when compared to Siemen's reactors previously used for DCS decomposition. Previous reactors had bell jar wall temperatures of approximately 750 C. The cooler wall temperature allows higher DCS flow rates and concentrations. A silicon deposition rate of 2.28 gm/hr-cm was achieved with power consumption of 59 kWh/kg. Interpretation of data suggests that a 2.8 gm/hr-cm deposition rate is possible. Screening of lower cost materials of construction was done as a separate program segment. Stainless Steel (304 and 316), Hastalloy B, Monel 400 and 1010-Carbon Steel were placed individually in an experimental scale reactor. Silicon was deposited from trichlorosilane feedstock. The resultant silicon was analyzed for electrically active and metallic impurities as well as carbon. No material contributed significant amounts of electrically active or metallic impurities, but all contributed carbon.

  6. Assembly, start and operation of an activated sludge reactor for the industrial effluents treatment: physico chemical and biological parameters

    Directory of Open Access Journals (Sweden)

    Márcia Regina Assalin

    2008-05-01

    Full Text Available Although of the immense available bibliography regarding the activated sludge process, little it is found in relation to the basic procedure to be adopted to implant, to activate and to monitor a reactor of activated sludge in laboratory scales. This article describes the assembly, departure and operation of an activated sludge system, operating in continuous process, at a laboratory scale, to study effluents treatments, using as example, Kraft E1 pulp mill effluent. Factors as biodegradability of the effluent to be treated, stationary state of the reactor, conventional operation parameters as physical chemistry and biological parameters are presented.

  7. Evaluation of Selected Chemical Processes for Production of Low-cost Silicon, Phase 3. [using a fluidized bed reactor

    Science.gov (United States)

    Blocher, J. M., Jr.; Browning, M. F.

    1979-01-01

    The construction and operation of an experimental process system development unit (EPSDU) for the production of granular semiconductor grade silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles is presented. The construction of the process development unit (PDU) is reported. The PDU consists of four critical units of the EPSDU: the fluidized bed reactor, the reactor by product condenser, the zinc vaporizer, and the electrolytic cell. An experimental wetted wall condenser and its operation are described. Procedures are established for safe handling of SiCl4 leaks and spills from the EPSDU and PDU.

  8. CHARACTERISTICS OF A FAST RISE TIME POWER SUPPLY FOR A PULSED PLASMA REACTOR FOR CHEMICAL VAPOR DESTRUCTION

    Science.gov (United States)

    Rotating spark gap devices for switching high-voltage direct current (dc) into a corona plasma reactor can achieve pulse rise times in the range of tens of nanoseconds. The fast rise times lead to vigorous plasma generation without sparking at instantaneous applied voltages highe...

  9. A Three-Dimensional Numerical Study of Gas-Particle Flow and Chemical Reactions in Circulating Fluidised Bed Reactors

    DEFF Research Database (Denmark)

    Hansen, Kim Granly

    shows good agreement. The 3D representation of the reactor geometry gives better predictions of the radial variation in concentration than in a similar 2D simulation, Samuelsberg and Hjertager (1995). A parameter study is performed to investigate improvements in the predicted pressure drop profile. When...

  10. Geometrical effects of the discharge system on the corona discharge and chemically active species generated in wire-cylinder and wire-plate reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yongho; Park, Jinmyung; Hong, Sanghee [Seoul National University, Seoul (Korea, Republic of)

    2004-06-15

    Time-dependent one- and two-dimensional numerical models are developed to analyze the influence of the design and the operating conditions on streamer propagation and active-species generation in wire-cylinder and wire-plate reactors. One-dimensional calculations for the corona model of a wire-cylinder reactor showed that fixed ratios of the wire to the cylinder radii, a/b, and the applied voltage to the cylinder radius, V{sub a}/b, were the key design parameters for controlling the discharge characteristics. In addition, shape of pulse voltage externally applied to the electrodes is newly suggested for generating a near-uniform electric field over the entire discharge region. Two-dimensional calculations for a wire-plate reactor found that the wire-to-wire spacing, c, along the parallel-plate direction should be at least twice the wire-to-plate distance, d, to produce non-equilibrium plasmas effectively for generating a large volume of resultant chemically active species (c/d>=2).

  11. Geometrical effects of the discharge system on the corona discharge and chemically active species generated in wire-cylinder and wire-plate reactors

    International Nuclear Information System (INIS)

    Time-dependent one- and two-dimensional numerical models are developed to analyze the influence of the design and the operating conditions on streamer propagation and active-species generation in wire-cylinder and wire-plate reactors. One-dimensional calculations for the corona model of a wire-cylinder reactor showed that fixed ratios of the wire to the cylinder radii, a/b, and the applied voltage to the cylinder radius, Va/b, were the key design parameters for controlling the discharge characteristics. In addition, shape of pulse voltage externally applied to the electrodes is newly suggested for generating a near-uniform electric field over the entire discharge region. Two-dimensional calculations for a wire-plate reactor found that the wire-to-wire spacing, c, along the parallel-plate direction should be at least twice the wire-to-plate distance, d, to produce non-equilibrium plasmas effectively for generating a large volume of resultant chemically active species (c/d≥2).

  12. Preparation of LWBR [Light Water Breeder Reactor] spent fuel for shipment to ICPP [Idaho Chemical Processing Plant] for long term storage (LWBR Development Program)

    International Nuclear Information System (INIS)

    After successfully operating for 29,047 effective full power hours, the Light Water Breeder Reactor (LWBR) core was defueled prior to total decommissioning of the Shippingport facility. All nuclear fuel and much of the reactor internal hardware was removed from the reactor vessel. Non-fuel components were prepared for shipment to disposal sites, and the fuel assemblies were partially disassembled and shipped to the Expended Core Facility (ECF) in Idaho. At ECF, the fuel modules underwent further disassembly to provide fuel rods for nondestructive testing to establish the core's breeding efficiency and to provide core components for examinations to assess their performance characteristics. This report presents a basic description of the processes and equipment used to prepare and to ship all LWBR nuclear fuel to the Idaho Chemical Processing Plant (ICPP) for long-term storage. Preparation processes included the underwater loading of LWBR fuel into storage liners, the sealing, dewatering and drying of the storage liners, and the final pressurization of the storage liners with inert neon gas. Shipping operations included the underwater installation of the fuel loaded storage liner into the Peach Bottom shipping cask, cask removal from the waterpit, cask preparations for shipping, and cask shipment by tractor trailer to the ICPP facility for long-term storage. The ICPP facility preparations for LWBR fuel storage and the ICPP process for discharge of the fuel into underground silos are presented. 10 refs., 42 figs

  13. Experimental Program for the validation of the design of a 150KWth Chemical looping Combustion reactor system with main focus on the reactor flexibility and operability

    OpenAIRE

    Ghorbaniyan, Masoud

    2011-01-01

    Chemical Looping Combustion is one of the most promising way to limit the CO2 release to the atmosphere among the other technologies for Carbon Capture and Storage (CCS). It constitutes an indirect fuel combustion strategy, in which metal oxide is used as oxygen carrier, to transfer oxygen from the combustion air to the fuel, avoiding direct contact between air and fuel. It is basically an unmixed combustion process (fuel and air are never mixed) whose flue gases are mainly CO2 and steam. Thu...

  14. Sonochemical Reactors.

    Science.gov (United States)

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.

  15. Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations

    Energy Technology Data Exchange (ETDEWEB)

    Ioannidou, O.; Zabaniotou, A. [Chemical Engineering Department, Aristotle University of Thessaloniki, Thessaloniki (Greece); Antonakou, E.V.; Papazisi, K.M.; Lappas, A.A. [Chemical Process Engineering Research Institute (CPERI) (Greece); Athanassiou, C. [Department of Engineering and Management of Energy Resources, University of Western Macedonia (Greece)

    2009-05-15

    The results of thermogravimetric analysis (TGA), non-catalytic and catalytic pyrolysis of corn cobs and corn stalks are reported in this paper. Pyrolysis took place in two different reactor configurations for both feedstocks: (1) fast pyrolysis in a captive sample reactor; and (2) non-catalytic slow pyrolysis and catalytic pyrolysis in a fixed-bed reactor. Experiments were carried out in atmospheric pressure at three temperatures: low temperature (360-380 C), medium temperature (500-600 C) and at high temperature (600-700 C). The results of the experimental study were compared with data reported in the literature. Investigating the potential of corn residues for energy, fuel, materials and chemicals production according to their thermochemical treatment products yields and quality, it can be stated that: (a) corn stalks could be suitable raw material for energy production via gasification at high temperature, due to their medium low heating value (LHV) of pyrolysis gas (13-15 MJ/m{sup 3}); (b) corn cob could be a good solid biofuel, due to the high LHV (24-26 MJ/kg) of the produced char; (c) additionally, corn cobs could be a good material for activated carbon production after being activated or gasified with steam, due to its high fixed carbon content({proportional_to}74 wt%); (d) liquid was the major pyrolysis product from catalytic pyrolysis (about 40-44 wt% on biomass) for both feedstocks; further analysis of the organic phase of the liquid products were hydrocarbons and phenols, which make them interesting for chemicals production. (author)

  16. Lab-on-a-chip reactor imaging with unprecedented chemical resolution by Hadamard-encoded remote detection NMR.

    Science.gov (United States)

    Telkki, Ville-Veikko; Zhivonitko, Vladimir V; Selent, Anne; Scotti, Gianmario; Leppäniemi, Jarmo; Franssila, Sami; Koptyug, Igor V

    2014-10-13

    The development of microfluidic processes requires information-rich detection methods. Here we introduce the concept of remote detection exchange NMR spectroscopy (RD-EXSY), and show that, along with indirect spatial information extracted from time-of-flight data, it provides unique information about the active regions, reaction pathways, and intermediate products in a lab-on-a-chip reactor. Furthermore, we demonstrate that direct spatial resolution can be added to RD-EXSY efficiently by applying the principles of Hadamard spectroscopy.

  17. Partitionable-space enhanced coagulation (PEC) reactor and its working mechanism: a new prospective chemical technology for phosphorus pollution control.

    Science.gov (United States)

    Zhang, Meng; Zheng, Ping; Abbas, Ghulam; Chen, Xiaoguang

    2014-02-01

    Phosphorus pollution control and phosphorus recycling, simultaneously, are focus of attention in the wastewater treatment. In this work, a novel reactor named partitionable-space enhanced coagulation (PEC) was invented for phosphorus control. The working performance and process mechanism of PEC reactor were investigated. The results showed that the PEC technology was highly efficient and cost-effective. The volumetric removal rate (VRR) reached up to 2.86 ± 0.04 kg P/(m(3) d) with a phosphorus removal rate of over 97%. The precipitant consumption was reduced to 2.60-2.76 kg Fe(II)/kg P with low operational cost of $ 0.632-0.673/kg P. The peak phosphorus content in precipitate was up to 30.44% by P2O5, which reveal the benefit of the recycling phosphorus resource. The excellent performance of PEC technology was mainly attributed to the partitionable-space and 'flocculation filter'. The partition limited the trans-regional back-mixing of reagents along the reactor, which promoted the precipitation reaction. The 'flocculation filter' retained the microflocs, enhancing the flocculation process.

  18. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  19. Kinetics and Modeling of Chemical Leaching of Sphalerite Concentrate Using Ferric Iron in a Redox-controlled Reactor

    Institute of Scientific and Technical Information of China (English)

    宋健; 高玲; 林建群; 吴洪斌; 林建强

    2013-01-01

    This work presents a study for chemical leaching of sphalerite concentrate under various constant Fe3+concentrations and redox potential conditions. The effects of Fe3+ concentration and redox potential on chemical leaching of sphalerite were investigated. The shrinking core model was applied to analyze the experimental results. It was found that both the Fe3+ concentration and the redox potential controlled the chemical leaching rate of sphalerite. A new kinetic model was developed, in which the chemical leaching rate of sphalerite was proportional to Fe3+concentration and Fe3+/Fe2+ratio. All the model parameters were evaluated from the experimental data. The model predictions fit well with the experimental observed values.

  20. Chemical constituents in water from wells in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho, 1991--93

    International Nuclear Information System (INIS)

    The US Geological Survey, in response to a request from the US Department of Energy's Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled 14 wells during 1991--93 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho. Water samples were analyzed for manmade contaminants and naturally occurring constituents. One hundred sixty-one samples were collected from 10 ground-water monitoring wells and 4 production wells. Twenty-one quality-assurance samples also were collected and analyzed; 2 were blank samples and 19 were replicate samples. The two blank samples contained concentrations of six inorganic constituents that were slightly greater than the laboratory reporting levels (the smallest measured concentration of a constituent that can be reported using a given analytical method). Concentrations of other constituents in the blank samples were less than their respective reporting levels. The 19 replicate samples and their respective primary samples generated 614 pairs of analytical results for a variety of chemical and radiochemical constituents. Of the 614 data pairs, 588 were statistically equivalent at the 95% confidence level; about 96% of the analytical results were in agreement. Two pairs of turbidity measurements were not evaluated because of insufficient information and one primary sample collected in January 1992 contained tentatively identified organic compounds when the replicate sample did not

  1. Modified DLC coatings prepared in a large-scale reactor by dual microwave/pulsed-DC plasma-activated chemical vapour deposition

    International Nuclear Information System (INIS)

    Diamond-Like Carbon (DLC) films find abundant applications as hard and protective coatings due to their excellent mechanical and tribological performances. The addition of new elements to the amorphous DLC matrix tunes the properties of this material, leading to an extension of its scope of applications. In order to scale up their production to a large plasma reactor, DLC films modified by silicon and oxygen additions have been grown in an industrial plant of 1m3 by means of pulsed-DC plasma-activated chemical vapour deposition (PACVD). The use of an additional microwave (MW) source has intensified the glow discharge, partly by electron cyclotron resonance (ECR), accelerating therefore the deposition process. Hence, acetylene, tetramethylsilane (TMS) and hexamethyldisiloxane (HMDSO) constituted the respective gas precursors for the deposition of a-C:H (DLC), a-C:H:Si and a-C:H:Si:O films by dual MW/pulsed-DC PACVD. This work presents systematic studies of the deposition rate, hardness, adhesion, abrasive wear and water contact angle aimed to optimize the technological parameters of deposition: gas pressure, relative gas flow of the monomers and input power. This study has been completed with measures of the atomic composition of the samples. Deposition rates around 1 μm/h, typical for standard processes held in the large reactor, were increased about by a factor 10 when the ionization source has been operated in ECR mode

  2. Use of high-volume outdoor smog chamber photo-reactors for studying physical and chemical atmospheric aerosol formation and composition

    Science.gov (United States)

    Borrás, E.; Ródenas, M.; Vera, T.; Muñoz, A.

    2015-12-01

    The atmospheric particulate matter has a large impact on climate, biosphere behaviour and human health. Its study is complex because of large number of species are present at low concentrations and the continuous time evolution, being not easily separable from meteorology, and transport processes. Closed systems have been proposed by isolating specific reactions, pollutants or products and controlling the oxidizing environment. High volume simulation chambers, such as EUropean PHOtoREactor (EUPHORE), are an essential tool used to simulate atmospheric photochemical reactions. This communication describes the last results about the reactivity of prominent atmospheric pollutants and the subsequent particulate matter formation. Specific experiments focused on organic aerosols have been developed at the EUPHORE photo-reactor. The use of on-line instrumentation, supported by off-line techniques, has provided well-defined reaction profiles, physical properties, and up to 300 different species are determined in particulate matter. The application fields include the degradation of anthropogenic and biogenic pollutants, and pesticides under several atmospheric conditions, studying their contribution on the formation of secondary organic aerosols (SOA). The studies performed at the EUPHORE have improved the mechanistic studies of atmospheric degradation processes and the knowledge about the chemical and physical properties of atmospheric particulate matter formed during these processes.

  3. Chemical constituents in water from wells in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho, 1991--93

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, B.J.; Knobel, L.L.; Bartholomay, R.C.

    1995-11-01

    The US Geological Survey, in response to a request from the US Department of Energy`s Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled 14 wells during 1991--93 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho. Water samples were analyzed for manmade contaminants and naturally occurring constituents. One hundred sixty-one samples were collected from 10 ground-water monitoring wells and 4 production wells. Twenty-one quality-assurance samples also were collected and analyzed; 2 were blank samples and 19 were replicate samples. The two blank samples contained concentrations of six inorganic constituents that were slightly greater than the laboratory reporting levels (the smallest measured concentration of a constituent that can be reported using a given analytical method). Concentrations of other constituents in the blank samples were less than their respective reporting levels. The 19 replicate samples and their respective primary samples generated 614 pairs of analytical results for a variety of chemical and radiochemical constituents. Of the 614 data pairs, 588 were statistically equivalent at the 95% confidence level; about 96% of the analytical results were in agreement. Two pairs of turbidity measurements were not evaluated because of insufficient information and one primary sample collected in January 1992 contained tentatively identified organic compounds when the replicate sample did not.

  4. Enhanced electricity generation by triclosan and iron anodes in the three-chambered membrane bio-chemical reactor (TC-MBCR).

    Science.gov (United States)

    Song, Jing; Liu, Lifen; Yang, Fenglin; Ren, Nanqi; Crittenden, John

    2013-11-01

    A three-chambered membrane bio-chemical reactor (TC-MBCR) was developed. The stainless steel membrane modules were used as cathodes and iron plates in the middle chamber served as the anode. The TC-MBCR was able to reduce fouling, remove triclosan (TCS) from a synthetic wastewater treatment and enhance electricity generation by ~60% compared with the cell voltage before TCS addition. The TC-MBCR system generated a relatively stable power output (cell voltage ~0.2V) and the corrosion of iron plates contributed to electricity generation together with microbes on iron anode. The permeation flow from anode to cathode chamber was considered important in electricity generation. In addition, the negatively charged cathode membrane and Fe(2+)/Fe(3+) released by iron plates mitigated membrane fouling by approximately 30%, as compared with the control. The removal of COD and total phosphorus was approximately 99% and 90%. The highest triclosan removal rate reached 97.9%.

  5. Utilization of cross-linked laccase aggregates in a perfusion basket reactor for the continuous elimination of endocrine-disrupting chemicals.

    Science.gov (United States)

    Cabana, Hubert; Jones, J Peter; Agathos, Spiros N

    2009-04-15

    A perfusion basket reactor (BR) was developed for the continuous utilization of insolubilized laccase as cross-linked enzyme aggregates (CLEAs). The BR consisted of an unbaffled basket made of a metallic filtration module filled with CLEAs and continuously agitated by a 3-blade marine propeller. The agitation conditions influenced both the apparent laccase activity in the reactor and the stability of the biocatalyst. Optimal laccase activity was obtained at a rotational speed of 12.5 rps and the highest stability was reached at speeds of 1.7 rps or lower. The activity and stability of the biocatalyst were affected drastically upon the appearance of vortices in the reaction medium. This reactor was used for the continuous elimination of the endocrine disrupting chemicals (EDCs) nonylphenol (NP), bisphenol A (BPA), and triclosan (TCS). Optimization of EDC elimination by laccase CLEAs as a function of temperature and pH was achieved by response surface methodology using a central composite factorial design. The optimal conditions of pH and temperature were, respectively, 4.8 and 40.3 degrees C for the elimination of p353NP (a branched isomer of NP), 4.7 and 48.0 degrees C for BPA, and 4.9 and 41.2 degrees C for TCS. Finally, the BR was used for the continuous elimination of these EDCs from a 5 mg L(-1) aqueous solution using 1 mg of CLEAs at pH 5 and room temperature. Our results showed that at least 85% of these EDCs could be eliminated with a hydraulic retention time of 325 min. The performances of the BR were quite stable over a 7-day period of continuous treatment. Furthermore, this system could eliminate the same EDCs from a 100 mg L(-1) solution. Finally, a mathematical model combining the Michaelis-Menten kinetics of the laccase CLEAs and the continuous stirred tank reactor behavior of the BR was developed to predict the elimination of these xenobiotics. PMID:19061241

  6. Kinetics of para-nitrophenol and chemical oxygen demand removal from synthetic wastewater in an anaerobic migrating blanket reactor.

    Science.gov (United States)

    Kuşçu, Ozlem Selçuk; Sponza, Delia Teresa

    2009-01-30

    A laboratory scale anaerobic migrating blanket reactor (AMBR) was operated at different HRTs (1-10.38 days) in order to determine the para-nitrophenol (p-NP) and COD removal kinetic constants. The reactor was fed with 40 mg L(-1)p-NP and 3000 mg L(-1) glucose-COD. Modified Stover-Kincannon and Grau second-order kinetic models were applied to the experimental data. The predicted p-NP and COD concentrations were calculated using the kinetic constants. It was found that these data were in better agreement with the observed ones in the modified Stover-Kincannon compared to Grau second-order model. The kinetic constants calculated according to Stover-Kincannon model are as follows: the saturation value constant (K(B)) and maximum utilization rate constants (R(max)) were found as 31.55 g CODL(-1)day(-1), 29.49 g CODL(-1)day(-1) for COD removal and 0.428 g p-NPL(-1)day(-1), 0.407 g p-NPL(-1)day(-1) for p-NP removal, respectively (R(2)=1). The values of (a) and (b) were found to be 0.096 day and 1.071 (dimensionless) with high correlation coefficients of R(2)=0.85 for COD removal. Kinetic constants for specific gas production rate were evaluated using modified Stover-Kincannon, Van der Meer and Heerrtjes and Chen and Hasminoto models. It was shown that Stover-Kincannon model is more appropriate for calculating the effluent COD, p-NP concentrations in AMBR compared to the other models. The maximum specific biogas production rate, G(max), and proportionality constant, G(B), were found to be 1666.7 mL L(-1) day(-1) and 2.83 (dimensionless), respectively in modified Stover-Kincannon gas model. The bacteria had low Haldane inhibition constants (K(ID)=14 and 23 mg L(-1)) for p-NP concentrations higher than 40 mg L(-1) while the half velocity constant (K(s)) increased from 10 to 60 and 118 mg L(-1) with increasing p-NP concentrations from 40 to 85 and 125 mg L(-1).

  7. Qualitative Aspects of the Solutions of a Mathematical Model for the Dynamic Analysis of the Reversible Chemical Reaction SO2(g)+1/2O2(g)<=>SO3(g) in a Catalytic Reactor

    CERN Document Server

    Wilfredo, Angulo

    2014-01-01

    We present some qualitative aspects concerning the solution to the mathematical model describing the dynamical behavior of the reversible chemical reaction SO2(g)+1/2O2(g)SO3(g) carried out in a catalytic reactor used in the process of sulfuric acid production.

  8. Introduction to chemical reaction engineering

    International Nuclear Information System (INIS)

    This deals with chemical reaction engineering with thirteen chapters. The contents of this book are introduction on reaction engineering, chemical kinetics, thermodynamics and chemical reaction, abnormal reactor, non-isothermal reactor, nonideal reactor, catalysis in nonuniform system, diffusion and reaction in porosity catalyst, design catalyst heterogeneous reactor in solid bed, a high molecule polymerization, bio reaction engineering, reaction engineering in material process, control multi-variable reactor process using digital computer.

  9. Chemically enhanced biological NOx removal from flue gases : nitric oxide and ferric EDTA reduction in BioDeNox reactors

    OpenAIRE

    Maas,, F.

    2005-01-01

    The emission of nitrogen oxides (NOx) to the atmosphere is a major environmental problem. To abate NOx emissions from industrial flue gases, to date, mainly chemical processes like selective catalytic reduction (SCR) are applied. All these processes require high temperatures (>300 °C) and expensive catalysts. Therefore, biological NOx removal techniques using denitrification may represent promising alternatives for the conventional SCR techniques. However, water based biofiltration require...

  10. Gravimetrical and chemical characterization of SiO{sub x} structures deposited on fine powders by short plasma exposure in a plasma down stream reactor

    Energy Technology Data Exchange (ETDEWEB)

    Spillmann, Adrian; Sonnenfeld, Axel [Institute of Process Engineering, ETH Zurich, Zurich 8092 (Switzerland); Rohr, Philipp Rudolf von [Institute of Process Engineering, ETH Zurich, Zurich 8092 (Switzerland)], E-mail: vonrohr@ipe.mavt.ethz.ch

    2008-12-30

    The surface of lactose particles was modified by a plasma-enhanced chemical vapor deposition process to improve the flow behavior of the powder. For this, the particulates were treated in a plasma down stream reactor which provides a short (50 ms) and homogeneous exposure to the capacitively coupled RF discharge. The organosilicon monomer hexamethyldisiloxane (HMDSO) was used as a precursor for the formation of SiO{sub x} which is deposited on the substrate particle surface. For varying process gas mixtures (O{sub 2}/Ar/HMDSO) and RF power applied, the amount of the deposited material was determined gravimetrically after dissolution of the lactose substrate particles and the chemical composition of the accumulated deposition material was investigated by means of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The concentration of the deposited SiO{sub x} relating to the substrate material was found to be in the range of 0.1 wt.%. Based on the ATR-FTIR analysis, the inorganic, i.e. oxidic SiO{sub x} fraction of the obtained deposits was shown to be controllable by varying the process parameters, whilst a relatively large amount of organic structures must be considered.

  11. Improving the simultaneous removal of chemical oxygen demand and terephthalic acid in a cross-flow aerobic sludge reactor by using response surface methodology.

    Science.gov (United States)

    Hu, Dong-Xue; Tian, Yu; Chen, Zhao-Bo; Ge, Hui; Cui, Yu-Bo; Ran, Chun-Qiu

    2015-01-01

    Central composite design and response surface methodology (RSM) were implemented to optimize the operational parameters for a cross-flow aerobic sludge reactor (CFASR) in remedying mixed printing and dyeing wastewater (MPDW). The individual and interactive effects of three variables, hydraulic retention time (HRT), pH and sludge loading rate (SLR), on chemical oxygen demand (COD) and terephthalic acid (TA) removal rates were evaluated. For HRT of 15.3-19.8 hours, pH of 7.2-8.1 and SLR of 0.4-0.6 kg chemical oxygen demand (COD) per kg mixed liquor suspended solids per day, COD and TA removal rates of the CFASR exceeded 85% and 90%, respectively. The check experiment revealed that the effluent from the optimized CFASR was stable below the limitation of 100 mg COD/L and the TA concentration decreased by 6.0% compared to the usual CFASR. The results verified that the RSM was useful for optimizing the operation parameters of the CFASR in remedying MPDW.

  12. Decentralized two-stage sewage treatment by chemical-biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor.

    Science.gov (United States)

    Zamalloa, Carlos; Boon, Nico; Verstraete, Willy

    2013-02-01

    In this lab-scale study, domestic wastewater is subjected to a chemical biological adsorption (A-stage), followed by treatment in an innovative roof installed parallel plate microalgae biofilm reactor for nutrient immobilization (I-stage). The A-stage process was operated at a hydraulic retention time (HRT) of 1h and a solid retention time of 1day (FeSO(4) as flocculant). The I-stage, which consequently received the effluent of the A-stage process, was operated at an HRT of 1day and exposed to natural light. The overall system removed on average 74% of the total chemical oxygen demand, 82% of the total suspended solids, 67% of the total nitrogen and 96% of the total phosphorous in the wastewater. The design involves a relatively low capital and operating cost which is in the order of 0.5€/m(3) wastewater treated. These aspects suggest that the A/I process can be used as a decentralized domestic wastewater treatment system.

  13. Chemical and physical context for life in terrestrial hydrothermal systems: chemical reactors for the early development of life and hydrothermal ecosystems.

    Science.gov (United States)

    Henley, R W

    1996-01-01

    The diversity of terrestrial hot spring systems, resulting from the large scale coupled transfer of heat and mass in the Earth's crust, maximizes opportunities for evolving ecosystems by the continuous supply of nutrients (P, N, C, S) together with the metals (e.g. K, Mg, Mo, Zn) essential to biogenesis. Cyclic, evaporative micro-environments are common, and potentially catalytic mineral surfaces are also continually created through rock alteration and mineral deposition in and around hot springs. These dynamical systems constitute highly interactive, open, chemical environments capable of establishing complex biochemical microreactors. Volcanic collapse settings on oceanic islands, provide a highly dynamic scenario for the initiation of life and development of diverse ecosystems at the earliest stages of development of the Earth's crust. PMID:9243010

  14. A review of the UK fast reactor programme. March 1977

    International Nuclear Information System (INIS)

    This paper reports on the Fast Reactor Programme of United Kingdom. These are the main lines: Dounreay Fast Reactor; Prototype Fast Reactor; Commercial Fast Reactor; engineering development; materials development; chemical engineering/sodium technology; fast reactor fuel; fuel cycle; safety; reactor performance study

  15. Degradation of organic pollutants and characteristics of activated sludge in an anaerobic/anoxic/oxic reactor treating chemical industrial wastewater

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-09-01

    Full Text Available A laboratory-scale anaerobic/anoxic/oxic system operated at the hydraulic retention times (HRT of 20, 40, and 60 h with mixed liquor suspended solids (MLSS concentrations of 3 g/L and 6 g/L was considered for treating chemical industrial wastewater rich in complex organic compounds and total dissolved solids. Extending the HRT and increasing the MLSS concentration resulted in higher removal efficiency for chemical oxygen demand at 72%. Organic compounds in wastewater could be classified into easily-removed and refractory compounds during treatment. The easily-removed compounds consisted primarily of ethers, alcohols, and aldehydes, whereas the refractory compounds included mainly oxygen-containing heterocyclic and benzene-containing compounds. Results from energy-dispersive X-ray spectroscopy showed that several metal ions accumulated in activated sludge, particularly Fe(III. Fe accumulated mainly on the surface of sludge floc pellets and resulted in the compactness of activated sludge, which caused the values of mixed liquor volatile suspended solids /MLSS and sludge volume index to decrease.

  16. CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)—Experiments in a continuously operating fluidized-bed reactor system

    KAUST Repository

    Rydén, Magnus

    2011-03-01

    Particles of the perovskite material CaMn0.875Ti0.125O3 has been examined as oxygen carrier for chemical-looping with oxygen uncoupling, and for chemical-looping combustion of natural gas, by 70h of experiments in a circulating fluidized-bed reactor system. For the oxygen uncoupling experiments, it was found that the particles released O2 in gas phase at temperatures above 720°C when the fuel reactor was fluidized with CO2. The effect increased with increased temperature, and with the O2 partial pressure in the air reactor. At 950°C, the O2 concentration in the outlet from the fuel reactor was in the order of 4.0vol%, if the particles were oxidized in air. For the chemical-looping combustion experiments the combustion efficiency with standard process parameters was in the order of 95% at 950°C, using 1000kg oxygen carrier per MW natural gas, of which about 30% was located in the fuel reactor. Reducing the fuel flow so that 1900kg oxygen carrier per MW natural gas was used improved the combustion efficiency to roughly 99.8%. The particles retained their physical properties, reactivity with CH4 and ability to release gas-phase O2 reasonably well throughout the testing period and there were no problems with the fluidization or formation of solid carbon in the reactor. X-ray diffraction showed that the particles underwent changes in their phase composition though. © 2010 Elsevier Ltd.

  17. Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane.

    Science.gov (United States)

    Corbella, Beatriz M; de Diego, Luis F; García-Labiano, Francisco; Adánez, Juan; Palaciost, José M

    2005-08-01

    Recent investigations have shown that in the combustion of carbonaceous compounds CO2 and NOx emissions to the atmosphere can be substantially reduced by using a two stage chemical-looping process. In this process, the reduction stage is undertaken in a first reactor in which the framework oxygen of a reducible inorganic oxide is used, instead of the usual atmospheric oxygen, for the combustion of a carbonaceous compound, for instance, methane. The outlet gas from this reactor is mostly composed of CO2 and steam as reaction products and further separation of these two components can be carried out easily by simple condensation of steam. Then, the oxygen carrier found in a reduced state is transported to a second reactor in which carrier regeneration with air takes place at relatively low temperatures, consequently preventing the formation of thermal NOx. Afterward, the regenerated carrier is carried to the first reactor to reinitiate a new cycle and so on for a number of repetitive cycles, while the carrier is able to withstand the severe chemical and thermal stresses involved in every cycle. In this paper, the performance of titania-supported nickel oxides has been investigated in a fixed-bed reactor as oxygen carriers for chemical-looping combustion of methane. Samples with different nickel oxide contents were prepared by successive incipient wet impregnations, and their performance as oxygen carriers was investigated at 900 degrees C and atmospheric pressure in five-cycle fixed-bed reactor tests using pure methane and pure air for the respective reduction and regeneration stages. The evolution of the outlet gas composition in each stage was followed by gas chromatography, and the involved chemical, structural, and textural changes of the carrier in the reactor bed were studied by using different characterization techniques. From the study, it is deduced that the reactivity of these nickel-based oxygen carriers is in the two involved stages and almost independent

  18. Pilot scale study of a chemical treatment process for decontamination of aqueous radioactive waste of pakistan research reactor-1

    International Nuclear Information System (INIS)

    Chemical treatment process for the low level liquid radioactive waste generated at PINSTECH was previously optimized on lab-scale making use of coprecipitation of hydrous oxides of iron in basic medium. Ferrous sulfate was used as coagulant. Batch wise application of this procedure on pilot scale has been tested on a 1200 L batch volume of typical PINSTECH liquid waste. Different parameters and unit operations have been evaluated. The required data for the construction of a small size treatment plant envisioned can be used for demonstration/teaching purpose as well as for the decontamination of the waste effluents of the Institute. The lab-scale process parameters were verified valid on pilot scale. It was observed that reagent doses can further be economized with out any deterioration of the Decontamination Factors (DF) achieved or of any other aspect of the process. This simple, cost- effective, DF-efficient and time-smart batch wise process could be coupled with an assortment of other treatment operations thus affording universal application. Observations recorded during this study are presented. (author)

  19. The synergic impact of the boiling and water radiolysis on the pressurized water reactor fuel cladding's chemical environment

    Energy Technology Data Exchange (ETDEWEB)

    Dobrevski, I.; Zaharieva, N. [Bulgarian Academy of Sciences, Inst. for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2010-07-01

    with higher resistance properties by the changed physical-chemical environment. Such kind of fuel cladding materials, as alternatives to Zircaloy-4 U.S. fuel cladding material which has a limited corrosion resistance under oxidizing conditions, are the French fuel cladding material M5 and the Russian fuel cladding material E 110 (Zr1Nb) and also the U.S. fuel cladding material ZIRLO. The fuel cladding material E 110 has been used for a long time to manufacture fuel assembly claddings of Russian Light Water Reactors - WWER-440 and WWER-1000. This cladding material shows enough high corrosion resistance by the implementation of {sup 235}U higher enriched (up to 4,3%) fuel in NPP Kozloduy, Bulgaria. The routine reactor coolant bulk chemistry monitoring data normally do not indicate the presence of oxidants in primary coolant. Specially the observed permanent presence of {sup 122}Sb (half life period - 2,7 days) during the entire operation period in the WWER-1000 Units in NPP Kozloduy, Bulgaria is an indirect indicator of the presence of SNB and water radiolysis processes. (author)

  20. N Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The last of Hanfordqaodmasdkwaspemas7ajkqlsmdqpakldnzsdflss nine plutonium production reactors to be built was the N Reactor.This reactor was called a dual purpose...

  1. Atmospheric pressure plasma chemical vapor deposition reactor for 100 mm wafers, optimized for minimum contamination at low gas flow rates

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Venu, E-mail: venuanand@cense.iisc.ernet.in, E-mail: venuanand83@gmail.com; Shivashankar, S. A. [Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science (IISc), Bangalore 560012 (India); Nair, Aswathi R.; Mohan Rao, G. [Department of Instrumentation and Applied Physics (IAP), Indian Institute of Science (IISc), Bangalore 560012 (India)

    2015-08-31

    Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and built a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems.

  2. Atmospheric pressure plasma chemical vapor deposition reactor for 100 mm wafers, optimized for minimum contamination at low gas flow rates

    International Nuclear Information System (INIS)

    Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and built a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems

  3. Prediction of TiO2 thin film growth on the glass beads in a rotating plasma chemical vapor deposition reactor.

    Science.gov (United States)

    Kim, Dong-Joo; Kim, Kyo-Seon

    2010-05-01

    We calculated the concentration profiles of important chemical species for TiO2 thin film growth on the glass beads in the TTIP + O2 plasmas and compared the predicted growth rates of thin films with the experimental measurements. The film thickness profile depends on the concentration profile of TiO(OC3H7)3 precursors in the gas phase because TiO(OC3H7)3 is the main precursor of the thin film. The TTIP concentration decreases with time, while the TiO(OC3H7)3 concentration increases, and they reach the steady state about 2 approximately 3 sec. The growth rate of TiO2 film predicted in this study was 9.2 nm/min and is in good agreements with the experimental result of 10.5 nm/min under the same process conditions. This study suggests that a uniform TiO2 thin film on particles can be obtained by using a rotating cylindrical PCVD reactor. PMID:20358924

  4. Physical-chemical and operational performance of an anaerobic baffled reactor (ABR treating swine wastewater - 10.4025/actascitechnol.v32i4.7203

    Directory of Open Access Journals (Sweden)

    Erlon Lopes Pereira

    2010-12-01

    Full Text Available Since hog raising concentrates a huge amount of swine manure in small areas, it is considered by the environmental government organizations to be one of the most potentially pollutant activities. Therefore the main objective of this research was to evaluate by operational criteria and removal efficiency, the performance of a Anaerobic Baffled Reactor (ABR, working as a biological pre-treatment of swine culture effluents. The physical-chemical analyses carried out were: total COD, BOD5, total solids (TS, fix (TFS and volatiles (TVS, temperature, pH, total Kjeldahl nitrogen, phosphorus, total acidity and alkalinity. The ABR unit worked with an average efficiency of 65.2 and 76.2%, respectively, concerning total COD and BOD5, with a hydraulic retention time (HRT about 15 hours. The results for volumetric organic loading rate (VOLR, organic loading rate (OLR and hydraulic loading rate (HLR were: 4.46 kg BOD m-3 day-1; 1.81 kg BOD5 kg TVS-1 day-1 and 1.57 m3 m-3 day-1, respectively. The average efficiency of the whole treatment system for total COD and BOD5 removal were 66.5 and 77.8%, showing an adequate performance in removing the organic matter from swine wastewater.

  5. Study relating to the physico-chemical behaviour of heavy water in nuclear reactors; Etudes relatives au comportement physico-chimique de l'eau lourde dans les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Chenouard, J.; Dirian, G.; Roth, E.; Vignet, P.; Platzer, R. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1959-07-01

    Chemical and isotope pollution, and radiolytic decomposition are the two most important ways in which heavy water becomes degraded in nuclear reactors. Chemical pollution has led to the creation of ion exchange purification loops specially designed for reactors: the report contains a description in detail of the application of this purification method in CEA research reactors, including the analysis required, results obtained, and their interpretation. The intelligence obtained on radiolytic decomposition with the same facilities is also discussed, as well as the recombination apparatus and control equipment utilized. Finally, investigation to date in the CEA on recombination circuits for power reactors is also discussed. (author) [French] Parmi les degradations subies par l'eau lourde dans les reacteurs nucleaires, les deux plus importantes sont la pollution chimique et isotopique et la decomposition radiolytique. La pollution chimique a conduit a mettre au point pour le cas particulier des reacteurs, des circuits d'epuration par echange d'ions. On decrit ici en detail la mise en oeuvre de cette methode dans les reacteurs de recherche du CEA; les controles qu'elle necessite, les resultats obtenus et leur interpretation. En ce qui concerne la dissociation radiolytique de l'eau, les renseignements obtenus sur ces memes reacteurs sont communiques, ainsi que les details des dispositifs de recombinaison et des moyens de controle. Enfin, on fait le point des etudes poursuivies au CEA sur ces memes problemes de recombinaison dans le cas des reacteurs de puissance. (auteur)

  6. Design of a rotary reactor for chemical-looping combustion. Part 2: Comparison of copper-, nickel-, and iron-based oxygen carriers

    KAUST Repository

    Zhao, Zhenlong

    2014-04-01

    Chemical-looping combustion (CLC) is a novel and promising option for several applications including carbon capture (CC), fuel reforming, H 2 generation, etc. Previous studies demonstrated the feasibility of performing CLC in a novel rotary design with micro-channel structures. Part 1 of this series studied the fundamentals of the reactor design and proposed a comprehensive design procedure, enabling a systematic methodology of designing and evaluating the rotary CLC reactor with different OCs and operating conditions. This paper presents the application of the methodology to the designs with three commonly used OCs, i.e., copper, nickel, and iron. The physical properties and the reactivities of the three OCs are compared at operating conditions suitable for the rotary CLC. Nickel has the highest reduction rate, but relatively slow oxidation reactivity while the iron reduction rate is most sensitive to the fuel concentration. The design parameters and the operating conditions for the three OCs are selected, following the strategies proposed in Part 1, and the performances are evaluated using a one-dimensional plug-flow model developed previously. The simulations show that for all OCs, complete fuel conversion and high carbon separation efficiency can be achieved at periodic stationary state with reasonable operational stabilities. The nickel-based design includes the smallest dimensions because of its fast reduction rate. The operation of nickel case is mainly limited to the slow oxidation rate, and hence a relatively large share of air sector is used. The iron-based design has the largest size, due to its slow reduction reactivity near the exit or in the fuel purge sector where the fuel concentration is low. The gas flow temperature increases monotonically for all the cases, and is mainly determined by the solid temperature. In the periodic state, the local temperature variation is within 40 K and the thermal distortion is limited. The design of the rotary CLC is

  7. Comparison of secondary organic aerosol formed with an aerosol flow reactor and environmental reaction chambers: effect of oxidant concentration, exposure time and seed particles on chemical composition and yield

    Directory of Open Access Journals (Sweden)

    A. T. Lambe

    2014-12-01

    Full Text Available We performed a systematic intercomparison study of the chemistry and yields of SOA generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0×108 to 2.2×1010 molec cm−3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2×106 to 2×107 molec cm−3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. A linear correlation analysis of the mass spectra (m=0.91–0.92, r2=0.93–0.94 and carbon oxidation state (m=1.1, r2=0.58 of SOA produced in the flow reactor and environmental chambers for OH exposures of approximately 1011 molec cm−3 s suggests that the composition of SOA produced in the flow reactor and chambers is the same within experimental accuracy as measured with an aerosol mass spectrometer. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors, rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed

  8. OECD Halden reactor project

    International Nuclear Information System (INIS)

    This report summarizes the activities of the OECD Halden Reactor Project for the year 1976. The main items reported on are: a) the process supervision and control which have focused on core monitoring and control, and operator-process communication; b) the fuel performance and safety behavior which have provided data and analytical descriptions of the thermal, mechanical and chemical behavior of fuel under various operating conditions; c) the reactor operations and d) the administration and finance

  9. Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames

    KAUST Repository

    Cai, Liming

    2014-03-01

    The combustion characteristics of promising alternative fuels have been studied extensively in the recent years. Nevertheless, the pyrolysis and oxidation kinetics for many oxygenated fuels are not well characterized compared to those of hydrocarbons. In the present investigation, the first chemical kinetic study of a long-chain linear symmetric ether, di-n-butyl ether (DBE), is presented and a detailed reaction model is developed. DBE has been identified recently as a candidate biofuel produced from lignocellulosic biomass. The model includes both high temperature and low temperature reaction pathways with reaction rates generated using appropriate rate rules. In addition, experimental studies on fundamental combustion characteristics, such as ignition delay times and laminar flame speeds have been performed. A laminar flow reactor was used to determine the ignition delay times of lean and stoichiometric DBE/air mixtures. The laminar flame speeds of DBE/air mixtures were measured in the stagnation flame configuration for a wide rage of equivalence ratios at atmospheric pressure and an unburned reactant temperature of 373. K. All experimental data were modeled using the present kinetic model. The agreement between measured and computed results is satisfactory, and the model was used to elucidate the oxidation pathways of DBE. The dissociation of keto-hydroperoxides, leading to radical chain branching was found to dominate the ignition of DBE in the low temperature regime. The results of the present numerical and experimental study of the oxidation of di-n-butyl ether provide a good basis for further investigation of long chain linear and branched ethers. © 2013 The Combustion Institute.

  10. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  11. Multiwafer growth of CdTe on GaAs by metalorganic chemical vapor deposition in a vertical, high-speed, rotating disk reactor

    Science.gov (United States)

    Tompa, G. S.; Nelson, C. R.; Saracino, M. A.; Colter, P. C.; Anderson, P. L.

    1989-07-01

    Growth by the MOCVD (at temperatures between 308 and 402 C) of CdTe (111) layers on GaAs (100) and GaAs (111) substrates in a commercial vertical high-speed rotating disk reactor was investigated, using dimethylcadmium (DMCd) and diisopropyltelluride as the growth precursors. For growth temperatures greater than 368 C, DMCd molar growth efficiencies greater than 50 percent were obtained. Results of SEM, IR spectroscopy, and FIR reflectivity examinations indicate that the CdTe films obtained in the vertical reactor were more uniform and of higher quality than the best films produced in a horizontal reactor using similar growth procedures.

  12. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  13. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  14. Role of H2O2 in the fluctuating patterns of COD (chemical oxygen demand) during the treatment of palm oil mill effluent (POME) using pilot scale triple frequency ultrasound cavitation reactor.

    Science.gov (United States)

    Manickam, Sivakumar; Abidin, Norhaida binti Zainal; Parthasarathy, Shridharan; Alzorqi, Ibrahim; Ng, Ern Huay; Tiong, Timm Joyce; Gomes, Rachel L; Ali, Asgar

    2014-07-01

    Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME.

  15. Optimization of a Chemical Reaction Train

    Directory of Open Access Journals (Sweden)

    Bahar Sansar

    2010-01-01

    Full Text Available This project consists of the optimization of a chemical reactor train. The reactor considered here is the continuous stirred tank reactor (CSTR, one of the reactor models used in engineering. Given the design equation for the CSTR and the cost function for a reactor, the following values are determined; the optimum number of reactors in the reaction train, the volume of each reactor and the total cost.

  16. Optimization of a Chemical Reaction Train

    OpenAIRE

    Bahar Sansar

    2010-01-01

    This project consists of the optimization of a chemical reactor train. The reactor considered here is the continuous stirred tank reactor (CSTR), one of the reactor models used in engineering. Given the design equation for the CSTR and the cost function for a reactor, the following values are determined; the optimum number of reactors in the reaction train, the volume of each reactor and the total cost.

  17. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shen Dongsheng [Department of Environmental engineering, Zhejiang University, 268 Kaixuan Road, HangZhou 310029 (China)]. E-mail: shends@zju.edu.cn; He Ruo [Department of Environmental engineering, Zhejiang University, 268 Kaixuan Road, HangZhou 310029 (China); Liu Xinwen [Department of Environmental engineering, Zhejiang University, 268 Kaixuan Road, HangZhou 310029 (China); Department of Chemical engineering, Ningbo University of Technology, 20 Cuibai Road, NingBo 315016 (China); Long Yan [Department of Environmental engineering, Zhejiang University, 268 Kaixuan Road, HangZhou 310029 (China)

    2006-08-25

    Upflow anaerobic sludge blanket (UASB) reactor that was seeded with anaerobic sludge acclimated to chlorophenols was used to investigate the feasibility of anaerobic biotreatment of synthetic wastewater containing pentachlorophenol (PCP) with additional sucrose as carbon source. Two sets of UASB reactors were operated at one time. But the seeded sludge for the two reactors was different and Reactor I was seeded with the sludge that was acclimated to PCP completely for half a year, and Reactor II was seeded with the mixed sludge that was acclimated for half a year to PCP, 4-CP, 3-CP or 2-CP, respectively. The degradation of PCP and the operation fee treating the wastewater are affected by the concentration of MEDS (microorganism easily degradable substrate). So the confirmation of the suitable ratio of [COD] and [PCP] was the key factor of treating the wastewater containing PCP economically and efficiently. During the experiment, the synthetic wastewater with 180.0 mg L{sup -1} PCP and 1250-10000 mg L{sup -1} COD could be treated steadily in the experimental Reactor I. The removal efficiency of PCP was more than 99.5% and the removal efficiency of COD was up to 90%. [PCP] (concentration of PCP) in effluent was less than 0.5 mg L{sup -1}. [PCP] in influent could affect proper [COD] (concentration of COD) range in influent that was required for maintenance of steady running of the experimental reactor with a hydraulic retention time (HRT) from 20 to 22 h. [PCP] in influent would directly affect the necessary [COD] in influent when the UASB reactor ran normally and treated the wastewater containing PCP. When [PCP] was 100.4, 151.6 and 180.8 mg L{sup -1} in influent, respectively, [COD] in influent had to be controlled about 1250-7500, 2500-5000 and 5000 mg L{sup -1} to maintain the UASB reactor steady running normally and contemporarily ensure that [COD] and [PCP] in effluent were less than 300 and 0.5 mg L{sup -1}, respectively. With the increase of [PCP] in influent

  18. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Shen, Dong-Sheng; He, Ruo; Liu, Xin-Wen; Long, Yan

    2006-08-25

    Upflow anaerobic sludge blanket (UASB) reactor that was seeded with anaerobic sludge acclimated to chlorophenols was used to investigate the feasibility of anaerobic biotreatment of synthetic wastewater containing pentachlorophenol (PCP) with additional sucrose as carbon source. Two sets of UASB reactors were operated at one time. But the seeded sludge for the two reactors was different and Reactor I was seeded with the sludge that was acclimated to PCP completely for half a year, and Reactor II was seeded with the mixed sludge that was acclimated for half a year to PCP, 4-CP, 3-CP or 2-CP, respectively. The degradation of PCP and the operation fee treating the wastewater are affected by the concentration of MEDS (microorganism easily degradable substrate). So the confirmation of the suitable ratio of [COD] and [PCP] was the key factor of treating the wastewater containing PCP economically and efficiently. During the experiment, the synthetic wastewater with 180.0 mg L(-1) PCP and 1250-10000 mg L(-1) COD could be treated steadily in the experimental Reactor I. The removal efficiency of PCP was more than 99.5% and the removal efficiency of COD was up to 90%. [PCP] (concentration of PCP) in effluent was less than 0.5 mg L(-1). [PCP] in influent could affect proper [COD] (concentration of COD) range in influent that was required for maintenance of steady running of the experimental reactor with a hydraulic retention time (HRT) from 20 to 22 h. [PCP] in influent would directly affect the necessary [COD] in influent when the UASB reactor ran normally and treated the wastewater containing PCP. When [PCP] was 100.4, 151.6 and 180.8 mg L(-1) in influent, respectively, [COD] in influent had to be controlled about 1250-7500, 2500-5000 and 5000 mg L(-1) to maintain the UASB reactor steady running normally and contemporarily ensure that [COD] and [PCP] in effluent were less than 300 and 0.5 mg L(-1), respectively. With the increase of [PCP] in influent, the range of variation

  19. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  20. Digital modeling of radioactive and chemical waste transport in the aquifer underlying the Snake River Plain at the National Reactor Testing Station, Idaho

    Science.gov (United States)

    Robertson, J.B.

    1974-01-01

    Industrial and low-level radioactive liquid wastes at the National Reactor Testing Station (NRTS) in Idaho have been disposed to the Snake River Plain aquifer since 1952. Monitoring studies have indicated that tritium and chloride have dispersed over a 15-square mile (39-square kilometer) area of the aquifer in low but detectable concentrations and have only migrated as far as 5 miles (8 kilometers) downgradient from discharge points. The movement of cationic waste solutes, particularly 90Sr and 137Cs, has been significantly retarded due to sorption phenomena, principally ion exchange. 137Cs has shown no detectable migration in the aquifer and 90Sr has migrated only about 1.5 miles (2 kilometers) from the Idaho Chemical Processing Plant (ICPP) discharge well, and is detectable over an area of only 1.5 square miles ( 4 square kilometers) of the aquifer. Digital modeling techniques have been applied successfully to the analysis of the complex waste-transport system by utilizing numerical solution of the coupled equations of groundwater motion and mass transport. The model includes the effects of convective transport, flow divergence, two-dimensional hydraulic dispersion, radioactive decay, and reversible linear sorption. The hydraulic phase of the model uses the iterative, alternating direction, implicit finite-difference scheme to solve the groundwater flow equations, while the waste-transport phase uses a modified method of characteristics to solve the solute transport equations simulated by the model. The modeling results indicate that hydraulic dispersion (especially transverse) is a much more significant influence than previously suggested by earlier studies. The model has been used to estimate future waste migration patterns for varied assumed hydrological and waste conditions up through the year 2000. The hydraulic effects of recharge from the Big Lost River have an important (but not predominant) influence on the simulated future migration patterns. For the

  1. Research reactors

    International Nuclear Information System (INIS)

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  2. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  3. NEUTRONIC REACTOR FUEL ELEMENT

    Science.gov (United States)

    Picklesimer, M.L.; Thurber, W.C.

    1961-01-01

    A chemically nonreactive fuel composition for incorporation in aluminum- clad, plate type fuel elements for neutronic reactors is described. The composition comprises a mixture of aluminum and uranium carbide particles, the uranium carbide particles containing at least 80 wt.% UC/sub 2/.

  4. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    International Nuclear Information System (INIS)

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (ηcoup) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance

  5. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    Science.gov (United States)

    Nad, Shreya; Gu, Yajun; Asmussen, Jes

    2015-07-01

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100-260 Torr pressure range and 1.5-2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (ηcoup) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  6. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions.

    Science.gov (United States)

    Nad, Shreya; Gu, Yajun; Asmussen, Jes

    2015-07-01

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100-260 Torr pressure range and 1.5-2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η(coup)) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  7. Termination of light-water reactor core-melt accidents with a chemical core catcher: the core-melt source reduction system (COMSORS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Parker, G.W.; Rudolph, J.C.; Osborne-Lee, I.W. [Oak Ridge National Lab., TN (United States); Kenton, M.A. [Dames and Moore, Westmont, IL (United States)

    1996-09-01

    The Core-Melt Source Reduction System (COMSORS) is a new approach to terminate light-water reactor core melt accidents and ensure containment integrity. A special dissolution glass is placed under the reactor vessel. If core debris is released onto the glass, the glass melts and the debris dissolves into the molten glass, thus creating a homogeneous molten glass. The molten glass, with dissolved core debris, spreads into a wide pool, distributing the heat for removal by radiation to the reactor cavity above or by transfer to water on top of the molten glass. Expected equilibrium glass temperatures are approximately 600 degrees C. The creation of a low-temperature, homogeneous molten glass with known geometry permits cooling of the glass without threatening containment integrity. This report describes the technology, initial experiments to measure key glass properties, and modeling of COMSORS operations.

  8. Effect of reactor pressure on optical and electrical properties of InN films grown by high-pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Alevli, Mustafa; Gungor, Nese [Department of Physics, Marmara University, 34722 Istanbul (Turkey); Alkis, Sabri; Ozgit-Akgun, Cagla [National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara (Turkey); Donmez, Inci; Biyikli, Necmi [National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Okyay, Ali Kemal [National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800 (Turkey); Gamage, Sampath; Senevirathna, Indika; Dietz, Nikolaus [Department of Physics and Astronomy, and Center for Nano-Optics (CeNO), Georgia State University, Atlanta, GA 30303 (United States)

    2015-03-30

    The influences of reactor pressure on the stoichiometry, free carrier concentration, IR and Hall determined mobility, effective optical band edge, and optical phonon modes of HPCVD grown InN films have been analysed and are reported. The In 3d, and N 1s XPS spectra results revealed In-N and N-In bonding states as well as small concentrations of In-O and N-O bonds, respectively in all samples. InN layers grown at 1 bar were found to contain metallic indium, suggesting that the incorporation of nitrogen into the InN crystal structure was not efficient. The free carrier concentrations, as determined by Hall measurements, were found to decrease with increasing reactor pressure from 1.61 x 10{sup 21} to 8.87 x 10{sup 19} cm{sup -3} and the room-temperature Hall mobility increased with reactor pressure from 21.01 to 155.18 cm{sup 2}/Vs at 1 and 15 bar reactor pressures, respectively. IR reflectance spectra of all three (1, 8, and 15 bar) InN samples were modelled assuming two distinct layers of InN, having different free carrier concentration, IR mobility, and effective dielectric function values, related to a nucleation/interfacial region at the InN/sapphire, followed by a bulk InN layer. The effective optical band gap has been found to decrease from 1.19 to 0.95 eV with increasing reactor pressure. Improvement of the local structural quality with increasing reactor pressure has been further confirmed by Raman spectroscopy measurements. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. The research reactor TRIGA Mainz

    International Nuclear Information System (INIS)

    Paper dwells upon the design and the operation of one of the German test reactors, namely, the TRIGA Mainz one (TRIGA: Training Research Isotope Production General Atomic). The TRIGA reactor is a pool test reactor the core of which contains a graphite reflector and is placed into 2 m diameter and 6.25 m height aluminum vessel. There are 75 fuel elements in the reactor core, and any of them contains about 36 g of 235U. The TRIGA reactors under the stable operation enjoy wide application to ensure tests and irradiation, namely: neutron activation analysis, radioisotope production, application of a neutron beam to ensure the physical, the chemical and the medical research efforts. Paper presents the reactor basic experimental program lines

  10. Monolithic reactor: higher yield, less energy

    OpenAIRE

    Mols, B.

    2004-01-01

    The production of margarine, the desulphurisation of crude oil, and the manufacture of synthetic diesel fuel, these are only three of the many industrial processes in which a three-phase reactor is used. Traditionally, this type of reactor is rather ill-defined. Success with a lab scale set-up is no guarantee that a large commercial reactor will work. Scalability is less than perfect, one might say. Researchers at the Reactor & Catalysis Engineering epartment of the Chemical Technology facult...

  11. Pretreatment of corn stover by low moisture anhydrous ammonia (LMMA) in a pilot-scale reactor and bioconversion to fuel ethanol and industrial chemicals

    Science.gov (United States)

    Corn stover (CS) adjusted to 50%, 66% and 70% moisture was pretreated by the low moisture anhydrous ammonia (LMAA) process in a pilot-scale ammoniation reactor. After ammoniation, the 70% moisture CS was treated at 90 degree C and 100 degree C whereas the others were treated at 90 degree C only. The...

  12. Reactor building

    International Nuclear Information System (INIS)

    The whole reactor building is accommodated in a shaft and is sealed level with the earth's surface by a building ceiling, which provides protection against penetration due to external effects. The building ceiling is supported on walls of the reactor building, which line the shaft and transfer the vertical components of forces to the foundations. The thickness of the walls is designed to withstand horizontal pressure waves in the floor. The building ceiling has an opening above the reactor, which must be closed by cover plates. Operating equipment for the reactor can be situated above the building ceiling. (orig./HP)

  13. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    A review of the United Kingdom Fast Reactor Programme is introduced. Operational experience with the Prototype Fast Reactor (PFR) is briefly summarized. The design concept of the Commercial Demonstration Fast Reactor (CDFR) is given in some detail. The emphasis is on materials development, chemical engineering/sodium technology, fuel reprocessing and fuel cycle, engineering component development and reactor safety

  14. Fusion reactor materials

    International Nuclear Information System (INIS)

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  15. Chemical and spectrochemical production analysis of ThO2 and 233UO2-ThO2 pellets for the light water breeder reactor core for Shippingport (LWBR development program)

    International Nuclear Information System (INIS)

    The Bettis Atomic Power Laboratory has utilized wet chemical, emission spectrochemical, and mass spectrometric analytical techniques for the production analysis of the ThO2 and 233UO2-ThO2 (1 to 6 wt percent 233UO2) pellets for the Light Water Breeder Reactor (LWBR) core for Shippingport. Proof of the fuel breeding concept necessitates measurement of precise and accurate chemical characterization of all fuel pellets before core life. Chemistry's efforts toward this goal are presented in three main sections: (1) general discussions relating the chemical requirements for ThO2 and 233UO2-ThO2 core materials to the analytical capabilities, (2) technical discussions of the chemical and instrumental technology applied for the analysis of aluminum, boron, calcium, carbon, chloride plus bromide, chromium, cobalt, copper, dysprosium, europium, fluoride, gadolinium, iron, magnesium, manganese, mercury, molybdenum, nickel, nitrogen, samarium, silicon, titanium, vanadium, thorium, and uranium (total, trace, and uranium VI), and (3) a formal presentation of the analytical procedures as applied to the LWBR Development Program. (U.S.)

  16. 化学法测定转鼓反应器气液相界面积%Measuration of gas-liquid interfacial area in rotating drum reactor by chemical method

    Institute of Scientific and Technical Information of China (English)

    宋一凡; 聂勇; 卢美贞; 计建炳

    2012-01-01

    The gas-liquid interfacial area in a rotating drum reactor was measured by chemical method. The effects of high-gravity factor of drum surface, gas flux and liquid flux on the interfacial area in the rotating drum reactor were investigated. The results show that the interfacial area increases with the increase of high-gravity factor and liquid flux initially, and then tends to be smooth. The gas-liquid interfacial area in the rotating drum reactor exists the maximum value with the increase of the gas flux. The maximum gas-liquid interfacial area is 0.058 m when the high-gravity factor of the drum surface is 77 , the liquid flux is 5 m3/( m2·h) and the gas flux is 398 m3/( m2·h) respectively. The corresponding specific interfacial area is 137 mVm3, which is 6, 8 times larger than that of the bubbling reactor. The results provide basis for the optimization design of the rotating drum reactor and the selection of suitable operating parameters.%采用化学法对转鼓反应器内气液相界面积进行测定,考察了转鼓表面超重力因子、气体通量、液体通量对转鼓反应器内气液相界面积的影响.结果表明:反应器气液相界面积分别随超重力因子和液体通量的增大,先增大后趋于平缓;随着气体通量的增加,转鼓反应器内气液相界面积先增大然后减小;在液体通量为5 m3/(m2·h)、转鼓表面超重力因子为77、气体通量为398m3/(m2·h)时,可获得最大的气液相界面积为0.058 m2,比相界面积为137 m2/m3,约为鼓泡反应器比相界面积的6.8倍.研究结果为转鼓反应器的优化设计和操作条件的选择提供了依据.

  17. Compact Reactor

    International Nuclear Information System (INIS)

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date

  18. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Vivek V Ranade

    2014-03-01

    Catalytic reactions are ubiquitous in chemical and allied industries. A homogeneous or heterogeneous catalyst which provides an alternative route of reaction with lower activation energy and better control on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  19. 机组临时停机停堆期间的化学监督与控制%The Chemical Monitoring and Control during Temporary Turbine Trip or Reactor Scram of Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    刘衡

    2012-01-01

    目前的化学与放射化学程序和措施,都是针对正常功率运行和按部就班有计划的大修状态而设置,如遇到机组跳堆、跳机或冷停堆等紧急情况,则没有相应的应急预案或相关程序进行提前或有目的地干预。基于这种情况,电厂化学人员经过多年的实践和不断经验反馈,总结并编写了专门针对紧急停机停堆的化学监督与控制应急预案。通过停堆过程和停堆后的不同状态,启机过程的化学与放射化学监测,监督燃料包壳状态,控制一回路的剂量水平,以防止设备腐蚀。%During normal operation, a malfunction of equipment or improper operation sometimes results in a turbine trip or reactor scram or even cold shutdown. Because present chemical control strateay and programs aimed at the situation of normal operation and planed refueling outage, no integrate emergency program of radiochemical and chemical control had been developed to focus on this urgent and unexpected situation. After many years of practice and experience feedback, chemists have created an emergency collaborative program of mdiochemical and chemical control which aims at these unexpected situations such as unplanned unit down power, turbine trip, or reactor scram. The program defines different radiochemical and chemical control measures and steps during different status to monitor primary loop dose rate variation, fuel assembly integrity and water chemical excursion to prevent components from corrosion.

  20. Methodology of Supervision by Analysis of Thermal Flux for Thermal Conduction of a Batch Chemical Reactor Equipped with a Monofluid Heating/Cooling System

    Directory of Open Access Journals (Sweden)

    Ghania Henini

    2012-01-01

    Full Text Available We present the thermal behavior of a batch reactor to jacket equipped with a monofluid heating/cooling system. Heating and cooling are provided respectively by an electrical resistance and two plate heat exchangers. The control of the temperature of the reaction is based on the supervision system. This strategy of management of the thermal devices is based on the usage of the thermal flux as manipulated variable. The modulation of the monofluid temperature by acting on the heating power or on the opening degrees of an air-to-open valve that delivers the monofluid to heat exchanger. The study shows that the application of this method for the conduct of the pilot reactor gives good results in simulation and that taking into account the dynamics of the various apparatuses greatly improves ride quality of conduct. In addition thermal control of an exothermic reaction (mononitration shows that the consideration of heat generated in the model representation improve the results by elimination any overshooting of the set-point temperature.

  1. Chemical and radiochemical constituents in water from wells in the vicinity of the naval reactors facility, Idaho National Engineering and Environmental Laboratory, Idaho, 1997-98

    Science.gov (United States)

    Bartholomay, Roy C.; Knobel, LeRoy L.; Tucker, Betty J.; Twining, Brian V.

    2000-01-01

    The U.S. Geological Survey, in response to a request from the U.S. Department of Energy?s Phtsburgh Naval Reactors Ofilce, Idaho Branch Office, sampled water from 13 wells during 1997?98 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho. Water samples were analyzed for naturally occurring constituents and man-made contaminants. A totalof91 samples were collected from the 13 monitoring wells. The routine samples contained detectable concentrations of total cations and dissolved anions, and nitrite plus nitrate as nitrogen. Most of the samples also had detectable concentrations of gross alpha- and gross beta-particle radioactivity and tritium. Fourteen qualityassurance samples also were collected and analyze~ seven were field-blank samples, and seven were replicate samples. Most of the field blank samples contained less than detectable concentrations of target constituents; however, some blank samples did contain detectable concentrations of calcium, magnesium, barium, copper, manganese, nickel, zinc, nitrite plus nitrate, total organic halogens, tritium, and selected volatile organic compounds.

  2. NEUTRONIC REACTOR

    Science.gov (United States)

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  3. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  4. Request for interim approval to operate Trench 94 of the 218-E-12B Burial Ground as a chemical waste landfill for disposal of polychlorinated biphenyl waste in submarine reactor compartments. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, G.D.

    1994-06-01

    This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of this waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy`s (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS.

  5. Request for interim approval to operate Trench 94 of the 218-E-12B Burial Ground as a chemical waste landfill for disposal of polychlorinated biphenyl waste in submarine reactor compartments

    International Nuclear Information System (INIS)

    This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of this waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy's (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS

  6. NUCLEAR REACTOR

    Science.gov (United States)

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  7. Nuclear reactor

    International Nuclear Information System (INIS)

    In order to reduce neutron embrittlement of the pressue vessel of an LWR, blanked off elements are fitted at the edge of the reactor core, with the same dimensions as the fuel elements. They are parallel to each other, and to the edge of the reactor taking the place of fuel rods, and are plates of neutron-absorbing material (stainless steel, boron steel, borated Al). (HP)

  8. Laccases immobilized on mesoporous silica particles and their application in a continuous stirred reactor for the elimination of endocrine disrupting chemicals

    OpenAIRE

    Nair, Rakesh; Demarche, Philippe; Junghanns, Charles; Agathos, Spiros N.; Environmental Microbiology and Biotechnology in the frame of the Knowledge-Based Bio and Green Economy (EMB2012)

    2012-01-01

    Immobilization of enzymes increases stability of enzymes and their re-use in multiple cycles. Mesoporous silicates (MPs) is an established support for enzyme immobilization with respect to the requirements for enzyme carriers such as high surface area, chemical and thermal stability, uniform pore distribution, high adsorption capacity, ordered porous network, mechanical strength and toxicological safety. Organic micropollutants present in wastewater at very low concentrations such as the plas...

  9. Semi-empirical chemical model for indirect advanced oxidation of Acid Orange 7 using an unmodified carbon fabric cathode for H2O2 production in an electrochemical reactor.

    Science.gov (United States)

    Ramírez, B; Rondán, V; Ortiz-Hernández, L; Silva-Martínez, S; Alvarez-Gallegos, A

    2016-04-15

    A commercial Unidirectional Carbon Fabric piece was used to design an electrode for the cathodic O2 reduction reaction in a divided (by a Nafion(®) 117 membrane) parallel plate reactor. The anode was a commercial stainless steel mesh. Under this approach it is feasible to produce H2O2 at low energy (2.08 kWh kg(-1) H2O2) in low ionic acidic medium. In the catholyte side the H2O2 can be activated with Fe(2+) to develop the Fenton reagent. It was found that Acid Orange 7 (AO7) indirect oxidation (in the concentration range of 0.12-0.24 mM) by Fenton chemistry follows a first order kinetic equation. The energy required for 0.24 mM AO7 degradation is 1.04 kWhm(-3). From each experimental AO7 oxidation the main parameters (a, mM and k, min(-1)) of the first order kinetic equation are obtained. These parameters can be correlated with AO7 concentration in the concentration range studied. Based on this method a semi-empirical chemical model was developed to predict the AO7 abatement, by means of Fenton chemistry. Good AO7 oxidation predictions can be made in the concentration range studied. A detailed discussion of the energy required for oxidizing AO7 and the accuracy of the chemical model to predict its oxidation is included in this paper. PMID:26874037

  10. Semi-empirical chemical model for indirect advanced oxidation of Acid Orange 7 using an unmodified carbon fabric cathode for H2O2 production in an electrochemical reactor.

    Science.gov (United States)

    Ramírez, B; Rondán, V; Ortiz-Hernández, L; Silva-Martínez, S; Alvarez-Gallegos, A

    2016-04-15

    A commercial Unidirectional Carbon Fabric piece was used to design an electrode for the cathodic O2 reduction reaction in a divided (by a Nafion(®) 117 membrane) parallel plate reactor. The anode was a commercial stainless steel mesh. Under this approach it is feasible to produce H2O2 at low energy (2.08 kWh kg(-1) H2O2) in low ionic acidic medium. In the catholyte side the H2O2 can be activated with Fe(2+) to develop the Fenton reagent. It was found that Acid Orange 7 (AO7) indirect oxidation (in the concentration range of 0.12-0.24 mM) by Fenton chemistry follows a first order kinetic equation. The energy required for 0.24 mM AO7 degradation is 1.04 kWhm(-3). From each experimental AO7 oxidation the main parameters (a, mM and k, min(-1)) of the first order kinetic equation are obtained. These parameters can be correlated with AO7 concentration in the concentration range studied. Based on this method a semi-empirical chemical model was developed to predict the AO7 abatement, by means of Fenton chemistry. Good AO7 oxidation predictions can be made in the concentration range studied. A detailed discussion of the energy required for oxidizing AO7 and the accuracy of the chemical model to predict its oxidation is included in this paper.

  11. Advanced Catalytic Hydrogenation Retrofit Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reinaldo M. Machado

    2002-08-15

    Industrial hydrogenation is often performed using a slurry catalyst in large stirred-tank reactors. These systems are inherently problematic in a number of areas, including industrial hygiene, process safety, environmental contamination, waste production, process operability and productivity. This program proposed the development of a practical replacement for the slurry catalysts using a novel fixed-bed monolith catalyst reactor, which could be retrofitted onto an existing stirred-tank reactor and would mitigate many of the minitations and problems associated with slurry catalysts. The full retrofit monolith system, consisting of a recirculation pump, gas/liquid ejector and monolith catalyst, is described as a monolith loop reactor or MLR. The MLR technology can reduce waste and increase raw material efficiency, which reduces the overall energy required to produce specialty and fine chemicals.

  12. Iodine release characteristic in reactor accidents

    International Nuclear Information System (INIS)

    The author describes the chemical behavior for the iodine release from the fuel element in nuclear reactor accidents, partition coefficient in the water and air and the release characteristic in time. The research of the iodine release was suggested

  13. Numerical Simulation of Fixed-Bed Catalytic Reforming Reactors: Hydrodynamics / Chemical Kinetics Coupling Simulation numérique des réacteurs de reformage catalytique en lit fixe : couplage hydrodynamique-cinétique chimique

    Directory of Open Access Journals (Sweden)

    Ferschneider G.

    2006-11-01

    Full Text Available Fixed bed reactors with a single fluid phase are widely used in the refining or petrochemical industries for reaction processes catalysed by a solid phase. The design criteria for industrial reactors are relatively well known. However, they rely on a one-dimensional writing and on the separate resolution of the equation of conservation of mass and energy, and of momentum. Thus, with complex geometries, the influence of hydrodynamics on the effectiveness of the catalyst bed cannot be taken into account. The calculation method proposed is based on the multi-dimensional writing and the simultaneous resolution of the local conservation equations. The example discussed concerns fixed-bed catalytic reactors. These reactors are distinguished by their annular geometry and the radial circulation of the feedstock. The flow is assumed to be axisymmetric. The reaction process is reflected by a simplified kinetic mechanism involving ten chemical species. Calculation of the hydrodynamic (mean velocities, pressure, thermal and mass fields (concentration of each species serves to identify the influence of internal components in two industrial reactor geometries. The map of the quantity of coke formed and deposited on the catalyst, calculated by the model, reveals potential areas of poor operation. Les réacteurs à lit fixe avec une seule phase fluide sont largement utilisés dans l'industrie du raffinage et de la pétrochimie, pour mettre en oeuvre un processus réactionnel catalysé par une phase solide. Les règles de conception des réacteurs industriels sont relativement bien connues. Cependant, elles reposent sur l'écriture monodimensionnelle et la résolution séparée, d'une part, des équations de conservation de la masse et de l'énergie et d'autre part, de la quantité de mouvement. Ainsi dans le cas de géométries complexes, l'influence de l'hydrodynamique sur l'efficacité du lit catalytique ne peut être prise en compte. La méthode de calcul

  14. Thermochemical data for reactor materials

    International Nuclear Information System (INIS)

    This report describes a computer database of thermochemical properties of nuclear reactor materials to be used for source term calculations in reactor accident codes. In the first part, the structure and the content of the computer file is described. In the second part a set of thermochemical data is presented pertaining to chemical reactions occurring during severe nuclear reactor accidents and involving fuel (uranium dioxide), fission products and structural materials. These data are complementary to those collected in the databook recently published by Cordfunke and Potter after a study supported by the Commission of the European Communities. The present data were collected from review articles and databanks and follow a discussion on the uncertainties and errors involved in the calculation of complex chemical equilibria in the extrapolated temperature range

  15. Expeditious method to determine uranium in the process control samples of chemical plant separating (233)U from thoria irradiated in power reactors.

    Science.gov (United States)

    Kedari, C S; Kharwandikar, B K; Banerjee, K

    2016-11-01

    Analysis of U in the samples containing a significant proportion of (232)U and high concentration of Th is of great concern. Transmutation of Th in the nuclear power reactor produces a notable quantity of (232)U (half life 68.9 years) along with fissile isotope (233)U. The decay series of (232)U is initiated with (228)Th (half life 1.9 year) and it is followed by several short lived α emitting progenies, (224)Ra, (220)Rn, (216)Po, (212)Bi and (212)Po. Even at the smallest contamination of (228)Th in the sample, a very high pulse rate of α emission is obtained, which is to be counted for the radiometric determination of [U]. A commercially available anionic type of extractant Alamine®336 is used to obtain the selective extraction of U from other alpha active elements and fission products present in the sample. Experimental conditions of liquid-liquid extraction (LLE) are optimized for obtaining maximum decontamination and recovery of U in the organic phase. The effect of some interfering ionic impurities in the sample on the process of separation is investigated. Depending on the level of the concentration of U in the samples, spectrophotometry or radiometry methods are adopted for its determination after separation by LLE. Under optimized experimental conditions, i.e. 5.5M HCl in the aqueous phase and 0.27M Alamin®336 in the organic phase, the recovery of U is about 100%, the decontamination factor with respect to Th is >2000 and the extraction of fission products like (90)Sr, (144)Ce and (134,137)Cs is negligible. The detection limit for [U] using α radiometry is 10mg/L, even in presence of >100g/L of Th in the sample. Accuracy and precision for the determination of U is also assessed. Reproducibility of results is within 5%. This method shows very good agreement with the results obtained by mass spectrometry.

  16. Expeditious method to determine uranium in the process control samples of chemical plant separating (233)U from thoria irradiated in power reactors.

    Science.gov (United States)

    Kedari, C S; Kharwandikar, B K; Banerjee, K

    2016-11-01

    Analysis of U in the samples containing a significant proportion of (232)U and high concentration of Th is of great concern. Transmutation of Th in the nuclear power reactor produces a notable quantity of (232)U (half life 68.9 years) along with fissile isotope (233)U. The decay series of (232)U is initiated with (228)Th (half life 1.9 year) and it is followed by several short lived α emitting progenies, (224)Ra, (220)Rn, (216)Po, (212)Bi and (212)Po. Even at the smallest contamination of (228)Th in the sample, a very high pulse rate of α emission is obtained, which is to be counted for the radiometric determination of [U]. A commercially available anionic type of extractant Alamine®336 is used to obtain the selective extraction of U from other alpha active elements and fission products present in the sample. Experimental conditions of liquid-liquid extraction (LLE) are optimized for obtaining maximum decontamination and recovery of U in the organic phase. The effect of some interfering ionic impurities in the sample on the process of separation is investigated. Depending on the level of the concentration of U in the samples, spectrophotometry or radiometry methods are adopted for its determination after separation by LLE. Under optimized experimental conditions, i.e. 5.5M HCl in the aqueous phase and 0.27M Alamin®336 in the organic phase, the recovery of U is about 100%, the decontamination factor with respect to Th is >2000 and the extraction of fission products like (90)Sr, (144)Ce and (134,137)Cs is negligible. The detection limit for [U] using α radiometry is 10mg/L, even in presence of >100g/L of Th in the sample. Accuracy and precision for the determination of U is also assessed. Reproducibility of results is within 5%. This method shows very good agreement with the results obtained by mass spectrometry. PMID:27591623

  17. Chemical Visualization of Boolean Functions: A Simple Chemical Computer

    Science.gov (United States)

    Blittersdorf, R.; Müller, J.; Schneider, F. W.

    1995-08-01

    We present a chemical realization of the Boolean functions AND, OR, NAND, and NOR with a neutralization reaction carried out in three coupled continuous flow stirred tank reactors (CSTR). Two of these CSTR's are used as input reactors, the third reactor marks the output. The chemical reaction is the neutralization of hydrochloric acid (HCl) with sodium hydroxide (NaOH) in the presence of phenolphtalein as an indicator, which is red in alkaline solutions and colorless in acidic solutions representing the two binary states 1 and 0, respectively. The time required for a "chemical computation" is determined by the flow rate of reactant solutions into the reactors since the neutralization reaction itself is very fast. While the acid flow to all reactors is equal and constant, the flow rate of NaOH solution controls the states of the input reactors. The connectivities between the input and output reactors determine the flow rate of NaOH solution into the output reactor, according to the chosen Boolean function. Thus the state of the output reactor depends on the states of the input reactors.

  18. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  19. Reactor container

    International Nuclear Information System (INIS)

    A reactor container has a suppression chamber partitioned by concrete side walls, a reactor pedestal and a diaphragm floor. A plurality of partitioning walls are disposed in circumferential direction each at an interval inside the suppression chamber, so that independent chambers in a state being divided into plurality are formed inside the suppression chamber. The partition walls are formed from the bottom portion of the suppression chamber up to the diaphragm floor to isolate pool water in a divided state. Operation platforms are formed above the suppression chamber and connected to an access port. Upon conducting maintenance, inspection or repairing, a pump is disposed in the independent chamber to transfer pool water therein to one or a plurality of other independent chambers to make it vacant. (I.N.)

  20. NEUTRONIC REACTORS

    Science.gov (United States)

    Anderson, J.B.

    1960-01-01

    A reactor is described which comprises a tank, a plurality of coaxial steel sleeves in the tank, a mass of water in the tank, and wire grids in abutting relationship within a plurality of elongated parallel channels within the steel sleeves, the wire being provided with a plurality of bends in the same plane forming adjacent parallel sections between bends, and the sections of adjacent grids being normally disposed relative to each other.

  1. High-temperature and breeder reactors - economic nuclear reactors of the future

    International Nuclear Information System (INIS)

    The thesis begins with a review of the theory of nuclear fission and sections on the basic technology of nuclear reactors and the development of the first generation of gas-cooled reactors applied to electricity generation. It then deals in some detail with currently available and suggested types of high temperature reactor and with some related subsidiary issues such as the coupling of different reactor systems and various schemes for combining nuclear reactors with chemical processes (hydrogenation, hydrogen production, etc.), going on to discuss breeder reactors and their application. Further sections deal with questions of cost, comparison of nuclear with coal- and oil-fired stations, system analysis of reactor systems and the effect of nuclear generation on electricity supply. (C.J.O.G.)

  2. A VUV Photoionization Study of the Combustion-Relevant Reaction of the Phenyl Radical (C6H5) with Propylene (C3H6) in a High Temperature Chemical Reactor

    Energy Technology Data Exchange (ETDEWEB)

    University of Hawaii at Manoa; Sandia National Laboratories; Zhang, Fangtong; Kaiser, Ralf I.; Golan, Amir; Ahmed, Musahid; Hansen, Nils

    2012-02-22

    We studied the reaction of phenyl radicals (C6H5) with propylene (C3H6) exploiting a high temperature chemical reactor under combustion-like conditions (300 Torr, 1,200-1,500 K). The reaction products were probed in a supersonic beam by utilizing tunable vacuum ultraviolet (VUV) radiation from the Advanced Light Source and recording the photoionization efficiency (PIE) curves at mass-to-charge ratios of m/z = 118 (C9H10+) and m/z = 104 (C8H8+). Our results suggest that the methyl and atomic hydrogen losses are the two major reaction pathways with branching ratios of 86 10 percent and 14 10 percent. The isomer distributions were probed by fitting the recorded PIE curves with a linear combination of the PIE curves of the individual C9H10 and C8H8 isomers. Styrene (C6H5C2H3) was found to be the exclusive product contributing to m/z = 104 (C8H8+), whereas 3-phenylpropene, cis-1-phenylpropene, and 2-phenylpropene with branching ratios of 96 4 percent, 3 3 percent, and 1 1 percent could account for signal at m/z = 118 (C9H10+). Although searched for carefully, no evidence of the bicyclic indane molecule could be provided. The reaction mechanisms and branching ratios are explained in terms of electronic structure calculations nicely agreeing with a recent crossed molecular beam study on this system.

  3. Decommissioning of research reactors

    International Nuclear Information System (INIS)

    Research reactors of WWR-S type were built in countries under Soviet influence in '60, last century and consequently reached their service life. Decommissioning implies removal of all radioactive components, processing, conditioning and final disposal in full safety of all sources on site of radiological pollution. The WWR-S reactor at Bucuresti-Magurele was put into function in 1957 and operated until 1997 when it was stopped and put into conservation in view of decommissioning. Presented are three decommissioning variants: 1. Reactor shut-down for a long period (30-50 years) what would entail a substantial decrease of contamination with lower costs in dismantling, mechanical, chemical and physical processing followed by final disposal of the radioactive wastes. The drawback of this solution is the life prolongation of a non-productive nuclear unit requiring funds for personnel, control, maintenance, etc; 2. Decommissioning in a single stage what implies large funds for a immediate investment; 3. Extending the operation on a series of stages rather phased in time to allow a more convenient flow of funds and also to gather technical solutions, better than the present ones. This latter option seems to be optimal for the case of the WWR-S Research at Bucharest-Magurele Reactor. Equipment and technologies should be developed in order to ensure the technical background of the first operations of decommissioning: equipment for scarification, dismantling, dismemberment in a highly radioactive environment; cutting-to-pieces and disassembling technologies; decontamination modern technologies. Concomitantly, nuclear safety and quality assurance regulations and programmes, specific to decommissioning projects should be implemented, as well as a modern, coherent and reliable system of data acquisition, recording and storing. Also the impact of decommissioning must be thoroughly evaluated. The national team of specialists will be assisted by IAEA experts to ensure the

  4. Modeling for Anaerobic Fixed-Bed Biofilm Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B. Y. M.; Pfeffer, J. T.

    1989-06-01

    The specific objectives of this research were: 1. to develop an equilibrium model for chemical aspects of anaerobic reactors; 2. to modify the equilibrium model for non-equilibrium conditions; 3. to incorporate the existing biofilm models into the models above to study the biological and chemical behavior of the fixed-film anaerobic reactors; 4. to experimentally verify the validity of these models; 5. to investigate the biomass-holding ability of difference packing materials for establishing reactor design criteria.

  5. Nuclear research reactors

    International Nuclear Information System (INIS)

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.)

  6. Nuclear reactor

    International Nuclear Information System (INIS)

    A nuclear reactor is described in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assemblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters in the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters in the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance

  7. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  8. Chemical Waste and Allied Products.

    Science.gov (United States)

    Hung, Yung-Tse; Aziz, Hamidi Abdul; Ramli, Siti Fatihah; Yeh, Ruth Yu-Li; Liu, Lian-Huey; Huhnke, Christopher Robert

    2016-10-01

    This review of literature published in 2015 focuses on waste related to chemical and allied products. The topics cover the waste management, physicochemical treatment, aerobic granular, aerobic waste treatment, anaerobic granular, anaerobic waste treatment, chemical waste, chemical wastewater, fertilizer waste, fertilizer wastewater, pesticide wastewater, pharmaceutical wastewater, ozonation. cosmetics waste, groundwater remediation, nutrient removal, nitrification denitrification, membrane biological reactor, and pesticide waste. PMID:27620094

  9. Decommissioning a nuclear reactor. [Water Boiler Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, G.M.

    1991-01-01

    The process of decommissioning a facility such as a nuclear reactor or reprocessing plant presents many waste management options and concerns. Waste minimization is a primary consideration, along with protecting a personnel and the environment. Waste management is complicated in that both radioactive and chemical hazardous wastes must be dealt with. This paper presents the general decommissioning approach of a recent project at Los Alamos. Included are the following technical objectives: site characterization work that provided a thorough physical, chemical, and radiological assessment of the contamination at the site; demonstration of the safe and cost-effective dismantlement of a highly contaminated and activated nuclear-fuelded reactor; and techniques used in minimizing radioactive and hazardous waste. 12 figs.

  10. Reactor container

    International Nuclear Information System (INIS)

    Purpose: To prevent shocks exerted on a vent head due to pool-swell caused within a pressure suppression chamber (disposed in a torus configuration around the dry well) upon loss of coolant accident in BWR type reactors. Constitution: The following relationship is established between the volume V (m3) of a dry well and the ruptured opening area A (m2) at the boundary expected upon loss of coolant accident: V >= 30340 (m) x A Then, the volume of the dry well is made larger than the ruptured open area, that is, the steam flow rate of leaking coolants upon loss of coolant accident to decrease the pressure rise in the dry well at the initial state where loss of coolant accident is resulted. Accordingly, the pressure of non-compressive gases jetted out from the lower end of the downcomer to the pool water is decreased to suppress the pool-swell. (Ikeda, J.)

  11. New insights into the chemical structure of Y2Ti2O7-δ nanoparticles in oxide dispersion-strengthened steels designed for sodium fast reactors by electron energy-loss spectroscopy

    Science.gov (United States)

    Badjeck, V.; Walls, M. G.; Chaffron, L.; Malaplate, J.; March, K.

    2015-01-01

    In this paper we study by high resolution scanning transmission electron microscopy coupled with electron energy-loss spectroscopy (STEM-EELS) an oxide dispersion-strengthened (ODS) steel with the nominal composition Fe-14Cr-1W-0.3TiH2-0.3Y2O3 (wt.%) designed to withstand the extreme conditions met in Gen. IV nuclear reactors. After denoising via principal component analysis (PCA) the data are analyzed using independent component analysis (ICA) which is useful in the investigation of the physical properties and chemical structure of the material by separating the individual spectral responses. The Y-Ti-O nanoparticles are found to be homogeneously distributed in the ferritic matrix, sized from 1 to 20 nm and match a non-stoichiometric pyrochlore-Y2Ti2O7-δ structure for sizes greater than 5 nm. We show that they adopt a (Y-Ti-O)-Cr core-shell structure and that Cr also segregates at the matrix grain boundaries, which may slightly modify the corrosion properties of the steel. Using Ti-L2,3 and O-K fine structure (ELNES) the Ti oxidation state is shown to vary from the center of the nanoparticles to their periphery, from Ti4+ in distorted Oh symmetry to a valency often lower than 3+. The sensitivity of the Ti "white lines" ELNES to local symmetry distortions is also shown to be useful when investigating the strain induced in the nanoparticles by the surrounding matrix. The Cr-shell and the variation of the Ti valence state highlight a complex nanoparticle-matrix interface.

  12. New insights into the chemical structure of Y{sub 2}Ti{sub 2}O{sub 7−δ} nanoparticles in oxide dispersion-strengthened steels designed for sodium fast reactors by electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Badjeck, V.; Walls, M.G. [Laboratoire de physique des solides, Bât. 510, université Paris-Sud, 91405 Orsay Cedex (France); Chaffron, L.; Malaplate, J. [DEN/DMN/SRMA, CEA Saclay, 91191 Gif Sur Yvette Cedex (France); March, K. [Laboratoire de physique des solides, Bât. 510, université Paris-Sud, 91405 Orsay Cedex (France)

    2015-01-15

    In this paper we study by high resolution scanning transmission electron microscopy coupled with electron energy-loss spectroscopy (STEM-EELS) an oxide dispersion-strengthened (ODS) steel with the nominal composition Fe–14Cr–1W–0.3TiH{sub 2}–0.3Y{sub 2}O{sub 3} (wt.%) designed to withstand the extreme conditions met in Gen. IV nuclear reactors. After denoising via principal component analysis (PCA) the data are analyzed using independent component analysis (ICA) which is useful in the investigation of the physical properties and chemical structure of the material by separating the individual spectral responses. The Y–Ti–O nanoparticles are found to be homogeneously distributed in the ferritic matrix, sized from 1 to 20 nm and match a non-stoichiometric pyrochlore-Y{sub 2}Ti{sub 2}O{sub 7−δ} structure for sizes greater than 5 nm. We show that they adopt a (Y–Ti–O)–Cr core–shell structure and that Cr also segregates at the matrix grain boundaries, which may slightly modify the corrosion properties of the steel. Using Ti-L{sub 2,3} and O-K fine structure (ELNES) the Ti oxidation state is shown to vary from the center of the nanoparticles to their periphery, from Ti{sup 4+} in distorted O{sub h} symmetry to a valency often lower than 3+. The sensitivity of the Ti “white lines” ELNES to local symmetry distortions is also shown to be useful when investigating the strain induced in the nanoparticles by the surrounding matrix. The Cr-shell and the variation of the Ti valence state highlight a complex nanoparticle–matrix interface.

  13. 一般化学习网络及其对化学反应器的建模应用%Universal learning network and its application in modeling chemical reactor

    Institute of Scientific and Technical Information of China (English)

    李大字; 刘霞

    2008-01-01

    Universal Learning Network for modeling chemical reactor is discussed in this paper. Universal learning network consists of a number of interconnected nodes and each pair of nodes can be connected by multiple branches with arbitrary time delays. With all these structural characteristics,it provides a generalized framework to model and control highly complicated nonlinear system. Both the universal learning network and the conventional recurrent network have been used to identify the CSTR system. The simulation results verify the capability and effectiveness of universal learning network in process identification. The architecture of multi-branch with time-delay and the learning algorithm independent of the initial parameter values make it more accuracy than the recurrent network Elman in identification,and furthermore,the network structure is more simple and compact.%本文研究了一般化学习网络(Universal Learning Network)在多变量连续釜式反应器(CSTR)系统的建模应用.一般化学习网络具有节点之间有多重分支、任意2个节点互连且节点之间可具有任意的时间延迟的特点,因此能够应用在高度非线性复杂系统的辨识中.分别用一般化学习网络和常规的递归神经网络对多变量连续釜式反应器(CSTR)进行系统辨识比较,仿真结果验证了一般化学习网络结构比递归神经网络Elman的辨识精度更高,且网络结构更简洁紧凑的特点.

  14. New insights into the chemical structure of Y2Ti2O7−δ nanoparticles in oxide dispersion-strengthened steels designed for sodium fast reactors by electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    In this paper we study by high resolution scanning transmission electron microscopy coupled with electron energy-loss spectroscopy (STEM-EELS) an oxide dispersion-strengthened (ODS) steel with the nominal composition Fe–14Cr–1W–0.3TiH2–0.3Y2O3 (wt.%) designed to withstand the extreme conditions met in Gen. IV nuclear reactors. After denoising via principal component analysis (PCA) the data are analyzed using independent component analysis (ICA) which is useful in the investigation of the physical properties and chemical structure of the material by separating the individual spectral responses. The Y–Ti–O nanoparticles are found to be homogeneously distributed in the ferritic matrix, sized from 1 to 20 nm and match a non-stoichiometric pyrochlore-Y2Ti2O7−δ structure for sizes greater than 5 nm. We show that they adopt a (Y–Ti–O)–Cr core–shell structure and that Cr also segregates at the matrix grain boundaries, which may slightly modify the corrosion properties of the steel. Using Ti-L2,3 and O-K fine structure (ELNES) the Ti oxidation state is shown to vary from the center of the nanoparticles to their periphery, from Ti4+ in distorted Oh symmetry to a valency often lower than 3+. The sensitivity of the Ti “white lines” ELNES to local symmetry distortions is also shown to be useful when investigating the strain induced in the nanoparticles by the surrounding matrix. The Cr-shell and the variation of the Ti valence state highlight a complex nanoparticle–matrix interface

  15. Thermonuclear Reflect AB-Reactor

    CERN Document Server

    Bolonkin, Alexander

    2008-01-01

    The author offers a new kind of thermonuclear reflect reactor. The remarkable feature of this new reactor is a three net AB reflector, which confines the high temperature plasma. The plasma loses part of its energy when it contacts with the net but this loss can be compensated by an additional permanent plasma heating. When the plasma is rarefied (has a small density), the heat flow to the AB reflector is not large and the temperature in the triple reflector net is lower than 2000 - 3000 K. This offered AB-reactor has significantly less power then the currently contemplated power reactors with magnetic or inertial confinement (hundreds-thousands of kW, not millions of kW). But it is enough for many vehicles and ships and particularly valuable for tunnelers, subs and space apparatus, where air to burn chemical fuel is at a premium or simply not available. The author has made a number of innovations in this reactor, researched its theory, developed methods of computation, made a sample computation of typical pr...

  16. Flow Reactors

    Science.gov (United States)

    The twelve principles of Green Chemistry presented by Anastas and Warner provide the philosophical basis and identify potential areas to increase the level of greenness in designing or implementing chemical reactions in the pharmaceutical industry. With these efforts in mind, the...

  17. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    International Nuclear Information System (INIS)

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units

  18. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  19. The optimal design of chemical reactors

    CERN Document Server

    Aris, Rutherford

    1961-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

  20. Improved chemical vapor-deposition reactor

    Science.gov (United States)

    Chern, S. S.; Maserjian, J.

    1975-01-01

    Formation of large particles on substrate is eliminated by actively exhausting reacted gases. Effluent gas backflow is prevented by pumping in curtain of nitrogen above fresh reactive gases from several directions.

  1. Apparatus for chemical synthesis

    Science.gov (United States)

    Kong, Peter C.; Herring, J. Stephen; Grandy, Jon D.

    2011-05-10

    A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

  2. Flow Simulation and Optimization of Plasma Reactors for Coal Gasification

    Institute of Scientific and Technical Information of China (English)

    冀春俊; 张英姿; 马腾才

    2003-01-01

    This paper reports a 3-d numerical simulation system to analyze the complicatedflow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phaseflow and plasma effect. On the basis of analytic results, the distribution of the density, tempera-ture and components' concentration are obtained and a different plasma reactor configuration isproposed to optimize the flow parameters. The numerical simulation results show an improvedconversion ratio of the coal gasification. Different kinds of chemical reaction models are used tosimulate the complex flow inside the reactor. It can be concluded that the numerical simulationsystem can be very useful for the design and optimization of the plasma reactor.

  3. Tritium Behaviour in the Fusion Reactor Materials

    OpenAIRE

    Pajuste, Elīna

    2012-01-01

    ABSTRACT Doctoral thesis is devoted to the development of future energy source nuclear fusion. The objective of this research is to evaluate fusion reactor material suitability regarding their behaviour and tritium retention in the fusion reactor relevant conditions. Methods and technique developed in the UL Institute of Chemical Physics Laboratory of Radiation Chemistry of Solid State has been used in this study. Synergetic facilitating effect of accelerated electrons and high magnetic fi...

  4. Investigation of Design Parameters in Ultrasound Reactors

    OpenAIRE

    Jordens, Jeroen; Degrève, Jan; Braeken, Leen; Van Gerven, Tom

    2012-01-01

    The cavitational activity of a tubular sonoreactor was simulated and related to the chemical reaction rate in order to study the effect of different design parameters. The conversion was improved with a factor 10 by optimization of the reactor diameter. Further improvement of the conversion with 20% was achieved by shifting the transducers apart. When the reactor diameter is in the millimeter scale, stainless steel and borosilicate glass walls very well resemble sound-hard walls. The impact o...

  5. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  6. Optimizing Reactors Selection and Sequencing:Minimum Cost versus Minimum Volume

    Institute of Scientific and Technical Information of China (English)

    Rachid Chebbi

    2014-01-01

    The present investigation targets minimum cost of reactors in series for the case of one single chemical reaction, considering plug flow and stirred tank reactor(s) in the sequence of flow reactors. Using Guthrie’s cost correlations three typical cases were considered based on the profile of the reaction rate reciprocal versus conversion. Significant differences were found compared to the classical approach targeting minimum total reactor volume.

  7. Research Nuclear Reactors

    International Nuclear Information System (INIS)

    Published in English and in French, this large report first proposes an overview of the use and history of research nuclear reactors. It discusses their definition, and presents the various types of research reactors which can be either related to nuclear power (critical mock-ups, material test reactors, safety test reactors, training reactors, prototypes), or to research (basic research, industry, health), or to specific particle physics phenomena (neutron diffraction, isotope production, neutron activation, neutron radiography, semiconductor doping). It reports the history of the French research reactors by distinguishing the first atomic pile (ZOE), and the activities and achievements during the fifties, the sixties and the seventies. It also addresses the development of instrumentation for research reactors (neutron, thermal, mechanical and fission gas release measurements). The other parts of the report concern the validation of neutronics calculations for different reactors (the EOLE water critical mock-up, the MASURCA air critical mock-up dedicated to fast neutron reactor study, the MINERVE water critical mock-up, the CALIBAN pulsed research reactor), the testing of materials under irradiation (OSIRIS reactor, laboratories associated with research reactors, the Jules Horowitz reactor and its experimental programs and related devices, irradiation of materials with ion beams), the investigation of accident situations (on the CABRI, Phebus, Silene and Jules Horowitz reactors). The last part proposes a worldwide overview of research reactors

  8. Reactor Physics Training

    International Nuclear Information System (INIS)

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  9. Cocurrent downflow circulating fluidized bed (downer) reactors - a state of the art review

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.-X.; Yu, Z.-Q.; Jin, Y.; Grace, J.R.; Issangya, A. [University of Western Ontario, London, ON (Canada). Department of Chemical and Biochemical Engineering

    1995-10-01

    A new type of chemical reactor known as the cocurrent downflow fluidized bed reactor (or reversed riser reactor or downer reactor), that overcomes some of the disadvantages of the riser reactor, is described. Since both the gas and solids flow directions are downwards in the cocurrent downflow fluidized bed reactor, particle residence times are uniform, and there is no backmixing. The literature on downer studies is reviewed. Laboratory results on axial voidage profiles, pressure profiles, radial flow, mixing and residence time distribution, heat transfer, and particle velocities are summarized. Suggestions are made both for possible industrial applications of downer reactors and for suitable research directions. 56 refs., 18 figs., 1 tab.

  10. Safeguarding research reactors

    International Nuclear Information System (INIS)

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  11. Thermodynamic characterization of salt components for Molten Salt Reactor fuel

    OpenAIRE

    Capelli, E.

    2016-01-01

    The Molten Salt Reactor (MSR) is a promising future nuclear fission reactor technology with excellent performance in terms of safety and reliability, sustainability, proliferation resistance and economics. For the design and safety assessment of this concept, it is extremely important to have a thorough knowledge of the physico-chemical properties of molten fluorides salts, which are one of the best options for the reactor fuel. This dissertation presents the thermodynamic description of the ...

  12. Modelling and control design for SHARON/Anammox reactor sequence

    OpenAIRE

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work presents a complete model of the SHARON/Anammox reactor sequence. The dynamics of the reactor were explored pointing out the different scales of the rates in the system: slow microbial metabolism against fast chemical reaction and mass transfer. Likewise, the analysis of the dynamics contributed to establish qualitatively the requirements for control of the reactors, both for regulation...

  13. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  14. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  15. Industrial applications of multi-functional, multi-phase reactors

    NARCIS (Netherlands)

    Harmsen, G.J.; Chewter, L.A.

    1999-01-01

    To reveal trends in the design and operation of multi-functional, multi-phase reactors, this paper describes, in historical sequence, three industrial applications of multi-functional, multi-phase reactors developed and operated by Shell Chemicals during the last five decades. For each case, we desc

  16. Ship propulsion reactors technology

    International Nuclear Information System (INIS)

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  17. Undergraduate reactor control experiment

    International Nuclear Information System (INIS)

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise

  18. Reactor System Design

    International Nuclear Information System (INIS)

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  19. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    Directory of Open Access Journals (Sweden)

    Karcher Patrick

    2005-08-01

    Full Text Available Abstract This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent or form flocs/aggregates (also called granules without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR, packed bed reactor (PBR, fluidized bed reactor (FBR, airlift reactor (ALR, upflow anaerobic sludge blanket (UASB reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes.

  20. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hiroto

    1995-02-07

    A reactor container of the present invention has a structure that the reactor container is entirely at the same temperature as that at the inlet of the reactor and, a hot pool is incorporated therein, and the reactor container has is entirely at the same temperature and has substantially uniform temperature follow-up property transiently. Namely, if the temperature at the inlet of the reactor core changes, the temperature of the entire reactor container changes following this change, but no great temperature gradient is caused in the axial direction and no great heat stresses due to axial temperature distribution is caused. Occurrence of thermal stresses caused by the axial temperature distribution can be suppressed to improve the reliability of the reactor container. In addition, since the laying of the reactor inlet pipelines over the inside of the reactor is eliminated, the reactor container is made compact and the heat shielding structures above the reactor and a protection structure of container walls are simplified. Further, secondary coolants are filled to the outside of the reactor container to simplify the shieldings. The combined effects described above can improve economical property and reliability. (N.H.).

  1. Fossil nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Maurette, M.

    1976-01-01

    The discussion of fossil nuclear reactors (the Oklo phenomenon) covers the earth science background, neutron-induced isotopes and reactor operating conditions, radiation-damage studies, and reactor modeling. In conclusion possible future studies are suggested and the significance of the data obtained in past studies is summarized. (JSR)

  2. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    fulfill its mission that is to contribute in improving the quality of life of the Brazilian people. The nuclear fuel cycle is a series of steps involved in the production and use of fuel for nuclear reactors. The Laboratories of Chemistry and Environmental Diagnosis Center, CQMA, support the demand of Nuclear Fuel Cycle Program providing chemical characterization of uranium compounds and other related materials. In this period the Research Reactor Center (CRPq) concentrated efforts on improving equipment and systems to enable the IEA-R1 research reactor to operate at higher power, increasing the capacity of radioisotopes production, samples irradiation, tests and experiments. (author)

  3. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    contribute in improving the quality of life of the Brazilian people. The nuclear fuel cycle is a series of steps involved in the production and use of fuel for nuclear reactors. The Laboratories of Chemistry and Environmental Diagnosis Center, CQMA, support the demand of Nuclear Fuel Cycle Program providing chemical characterization of uranium compounds and other related materials. In this period the Research Reactor Center (CRPq) concentrated efforts on improving equipment and systems to enable the IEA-R1 research reactor to operate at higher power, increasing the capacity of radioisotopes production, samples irradiation, tests and experiments. (author)

  4. Nuclear reactor repairing device

    International Nuclear Information System (INIS)

    Purpose: To enable free repairing of an arbitrary position in an LMFBR reactor. Constitution: A laser light emitted from a laser oscillator installed out of a nuclear reactor is guided into a portion to be repaired in the reactor by using a reflecting mirror, thereby welding or cutting it. The guidance of the laser out of the reactor into the reactor is performed by an extension tube depending into a through hole of a rotary plug, and the guidance of the laser light into a portion to be repaired is performed by the transmitting and condensing action of the reflecting mirror. (Kamimura, M.)

  5. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  6. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  7. Partial oxidation of methane in the pulsed compression reactor: experiments and simulation

    NARCIS (Netherlands)

    Roestenberg, Timo; Glushenkov, Maxim; Kronberg, Alexander; Verbeek, Anton A.; Meer, van der Theo H.

    2010-01-01

    The Pulsed Compression Reactor promises to be a compact, economical and energy efficient alternative to conventional chemical reactors. In this article, the production of synthesis gas using the Pulsed Compression Reactor is investigated. This is done experimentally as well as with simulations. The

  8. Solar chemical heat pipe

    International Nuclear Information System (INIS)

    The performance of a solar chemical heat pipe was studied using CO2 reforming of methane as a vehicle for storage and transport of solar energy. The endothermic reforming reaction was carried out in an Inconel reactor, packed with a Rh catalyst. The reactor was suspended in an insulated box receiver which was placed in the focal plane of the Schaeffer Solar Furnace of the Weizman Institute of Science. The exothermic methanation reaction was run in a 6-stage adiabatic reactor filled with the same Rh catalyst. Conversions of over 80% were achieved for both reactions. In the closed loop mode the products from the reformer and from the metanator were compressed into separate storage tanks. The two reactions were run either separately or 'on-line'. The complete process was repeated for over 60 cycles. The overall performance of the closed loop was quite satisfactory and scale-up work is in progress in the Solar Tower. (authors). 35 refs., 2 figs

  9. Organic chemistry and radiochemistry: study of chemical interactions between iodine and paint of French nuclear reactor in a severe accident situation; Chimie organique et radiochimie. Etude des interactions chimiques iode-peinture dans un reacteur nucleaire (de type R.E.P.) en situation d'accident grave

    Energy Technology Data Exchange (ETDEWEB)

    Aujollet, Y. [Direction Generale de la Surete Nucleaire et de la Radioprotection, 75 - Paris (France)

    2005-01-01

    In Phebus (French in pile facility; PWR scale 1/5000) experiments, performed by the Institut de Radioprotection et de Surete Nucleaire, few quantities of organic iodides were registered after interaction between iodine and reactor containment paint. This study concerns all mechanisms of chemical reactions between iodine and the polymer of the paint in order to estimate the organic iodides released from the paint. At first, all the paint components had been identified. Several models of chemical sites of the polymer were synthesized and tested with iodine in different conditions of temperature and radiation. These experiments showed interactions between iodine and secondary or tertiary amines by charge transfer. In few cases, the complex of tertiary amines creates oxidation reactions. (author)

  10. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  11. Reactor Vessel Surveillance Program for Advanced Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyeong-Hoon; Kim, Tae-Wan; Lee, Gyu-Mahn; Kim, Jong-Wook; Park, Keun-Bae; Kim, Keung-Koo

    2008-10-15

    This report provides the design requirements of an integral type reactor vessel surveillance program for an integral type reactor in accordance with the requirements of Korean MEST (Ministry of Education, Science and Technology Development) Notice 2008-18. This report covers the requirements for the design of surveillance capsule assemblies including their test specimens, test block materials, handling tools, and monitors of the surveillance capsule neutron fluence and temperature. In addition, this report provides design requirements for the program for irradiation surveillance of reactor vessel materials, a layout of specimens and monitors in the surveillance capsule, procedures of installation and retrieval of the surveillance capsule assemblies, and the layout of the surveillance capsule assemblies in the reactor.

  12. Fluoride reactor for the destruction of actinides from spent nuclear fuel

    International Nuclear Information System (INIS)

    Reactor based on liquid salts (Molten Salt Reactor - MSR) is one of 6 prospective reactors, designed in the Generation IV initiative. Fluoride in the reactor fuel is dissolved in a mixture of fluoride salts. This technology was developed in the fifties and sixties of the twentieth century. New technologies associated with this research include the Brayton cycle, which eliminates several shortcomings related to the historical construction of fluoride reactor, mainly focusing on security. When compared with other reactors, the largest differences are in the MSR that uses less fissionable material and to maintain a controlled nuclear reaction in its radius has only a homogeneous liquid mixture of all the chemical components. (author)

  13. Water chemistry management in cooling system of research reactor in JAERI

    International Nuclear Information System (INIS)

    The department of research reactor presently operates three research reactors (JRR-2, JRR-3M and JRR-4). For controlling and management of water and gas in each research reactor are performed by the staffs of the research reactor technology development division. Water chemistry management of each research reactor is one of the important subject. The main objects are to prevent the corrosion of water cooling system and fuel elements, to suppress the plant radiation build-up and to minimize the radioactive waste. In this report describe a outline of each research reactor facilities, radiochemical analytical methods and chemical analytical methods for water chemistry management. (author)

  14. Applications of plasma core reactors to terrestrial energy systems

    Science.gov (United States)

    Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-

  15. A review of the United Kingdom fast reactor program - March 1983

    International Nuclear Information System (INIS)

    A review of the United Kingdom Fast Reactor Programme was given in March 1983. Operational experience with the Prototype Fast Reactor (PFR) is briefly summarized. The design concept of the Commercial Demonstration Fast Reactor (CDFR), including design codes, engineering components, materials and fuels development, chemical engineering/sodium technology, safety and reactor performance, is reviewed. The problems of PFR and CDFR fuel reprocessing are also discussed

  16. Minimizing the Entropy Production of the Methanol Producing Reaction in a Methanol Reactor

    OpenAIRE

    Kjelstrup, Signe; Bedeaux, Dick; Johannessen, Eivind; Rosjorde, Audun; Nummedal, Lars

    2000-01-01

    The entropy production of the reaction that produces methanol in a methanol reactor, has been minimized. The results show that the entropy production of the reaction can be reduced by more than 70%. The optimal path through the reactor is characterized by a driving force for the chemical reaction that is close to constant. The entropy production due to heat transfer across the reactor walls in this state is large, however. Variations of the reactor design show that it is possible to accomplis...

  17. Assessing Pretreatment Reactor Scaling Through Empirical Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik; Nagle, Nicholas J.; Schell, Daniel J.; Tucker, Melvin P.; McMillan, James D.; Wolfrum, Edward J.

    2016-12-01

    Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, this is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was

  18. Quantitative analysis of diamond deposition reactor efficiency

    International Nuclear Information System (INIS)

    Graphical abstract: Surface H atom densities in a diamond deposition plasma reactor and the highest predicted value (black line). A 350 μm diamond crystal grown at 70 μm/h. Highlights: ► Electron temperature measurement at high pressure in diamond deposition reactor. ► H-atom density measurements at high pressure and high power in diamond deposition reactor. ► Surface H-atom density measurements at high pressure and high power in diamond deposition reactor. ► Microwave cavity based reactor efficiency compared to others reactors. - Abstract: Optical emission spectroscopy has been used to characterize diamond deposition microwave chemical vapour deposition (MWCVD) plasmas operating at high power density. Electron temperature has been deduced from H atom emission lines while H-atom mole fraction variations have been estimated using actinometry technique, for a wide range of working conditions: pressure 25–400 hPa and MW power 600–4000 W. An increase of the pressure from 14 hPa to 400 hPa with a simultaneous increase in power causes an electron temperature decrease from 17,000 K to 10,000 K and a H atom mole fraction increase from 0.1 to up to 0.6. This last value however must be considered as an upper estimate due to some assumptions made as well as experimental uncertainties.

  19. Design options for a bunsen reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles

    2013-10-01

    This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project. Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.

  20. Materials for Chemical-Looping with Oxygen Uncoupling

    OpenAIRE

    Tobias Mattisson

    2013-01-01

    Chemical-looping with oxygen uncoupling (CLOU) is a novel combustion technology with inherent separation of carbon dioxide. The process is a three-step process which utilizes a circulating oxygen carrier to transfer oxygen from the combustion air to the fuel. The process utilizes two interconnected fluidized bed reactors, an air reactor and a fuel reactor. In the fuel reactor, the metal oxide decomposes with the release of gas phase oxygen (step 1), which reacts directly with the fuel through...

  1. Polarized neutron reflectometry at Dhruva reactor

    Indian Academy of Sciences (India)

    Surendra Singh; Saibal Basu

    2004-08-01

    Polarized neutron reflectometry (PNR) is an ideal non-destructive tool for chemical and magnetic characterization of thin films and multilayers. We have installed a position sensitive detector-based polarized neutron reflectometer at Dhruva reactor, Trombay. In this paper we will discuss the results obtained from this instrument for two multilayer samples. The first sample is a (Ni–Mo alloy)/Ti multilayer sample. We have determined the chemical structure of this multilayer by unpolarized neutron reflectometry (NR). The other sample is a Fe/Ge multilayer sample for which we obtained the chemical structure by NR and magnetic moment per Fe atom by PNR.

  2. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  3. Multipurpose research reactors

    International Nuclear Information System (INIS)

    The international symposium on the utilization of multipurpose research reactors and related international co-operation was organized by the IAEA to provide for information exchange on current uses of research reactors and international co-operative projects. The symposium was attended by about 140 participants from 36 countries and two international organizations. There were 49 oral presentations of papers and 24 poster presentations. The presentations were divided into 7 sessions devoted to the following topics: neutron beam research and applications of neutron scattering (6 papers and 1 poster), reactor engineering (6 papers and 5 posters), irradiation testing of fuel and material for fission and fusion reactors (6 papers and 10 posters), research reactor utilization programmes (13 papers and 4 posters), neutron capture therapy (4 papers), neutron activation analysis (3 papers and 4 posters), application of small reactors in research and training (11 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  4. Membrane reactors for continuous coenzyme regeneration

    Science.gov (United States)

    Wandrey, C.; Wichmann, R.

    1982-12-01

    The importance of continuous coenzyme regeneration is discussed with respect to chemical reaction engineering. The benefit of coenzymes covalently bound to water soluble polymers is especially stressed. The performance of membrane reactors for coenzyme regeneration is discussed in comparison with other reactor concepts. The coenzyme dependent production of L-amino acids from the corresponding alpha-keto acids is used to illustrate how precise turnover numbers as a function of enzyme/coenzyme ratio, initial substrate concentration, and conversion are obtained. Thus, it becomes possible to develop a concept for optimal operating points with respect to enzyme, coenzyme, and substrate costs per unit weight of product.

  5. Reactor BR2

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2000-07-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported.

  6. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  7. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research and development activities in the Division of Reactor Engineering in fiscal 1981 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  8. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Mitsuru

    1997-04-04

    An LMFBR type reactor comprises a plurality of reactor cores in a reactor container. Namely, a plurality of pot containing vessels are disposed in the reactor vessel and a plurality of reactor cores are formed in a state where an integrated-type fuel assembly is each inserted to a pot, and a coolant pipeline is connected to each of the pot containing-vessel to cool the reactor core respectively. When fuels are exchanged, the integrated-type fuel assembly is taken out together with the pot from the reactor vessel in a state where the integrated-type fuel assembly is immersed in the coolants in the pot as it is. Accordingly, coolants are supplied to each of the pot containing-vessel connected with the coolant pipeline and circulate while cooling the integrated-type fuel assembly for every pot. Then, when the fuels are exchanged, the integrated type fuel assembly is taken out to the outside of the reactor together with the pot by taking up the pot from the pot-containing vessel. Then, neutron economy is improved to thereby improve reactor power and the breeding ratio. (N.H.)

  9. Sulphur K-edge XANES and acid volatile sulphide analyses of changes in chemical speciation of S and Fe during sequential extraction of trace metals in anoxic sludge from biogas reactors

    OpenAIRE

    Shakeri Yekta, Sepehr; Gustavsson, Jenny; Svensson, Bo H.; Skyllberg, Ulf

    2012-01-01

    The effect of sequential extraction of trace metals on sulphur (S) speciation in anoxic sludge samples from two lab-scale biogas reactors augmented with Fe was investigated. Analyses of sulphur K-edge X-ray absorption near edge structure (S XANES) spectroscopy and acid volatile sulphide (AVS) were conducted on the residues from each step of the sequential extraction. The S speciation in sludge samples after AVS analysis was also determined by S XANES. Sulphur was mainly present as FeS (~60% o...

  10. Fundamentals of chemical reaction engineering

    CERN Document Server

    Davis, Mark E

    2012-01-01

    Appropriate for a one-semester undergraduate or first-year graduate course, this text introduces the quantitative treatment of chemical reaction engineering. It covers both homogeneous and heterogeneous reacting systems and examines chemical reaction engineering as well as chemical reactor engineering. The authors take a chemical approach, helping students develop an intuitive feeling for concepts, rather than an engineering approach, which tends to overlook the inner workings of systems and objects.Each chapter contains numerous worked-out problems and real-world vignettes involving commercia

  11. Chemical Production using Fission Fragments

    International Nuclear Information System (INIS)

    Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author)

  12. Oklo natural reactors: geological and geochemical conditions

    International Nuclear Information System (INIS)

    Published as well as unpublished material on the Oklo natural reactors in Gabon was evaluated with regard to the long-term aspects of nuclear waste disposal. Even though the vast data base available at present can provide only a site specific description of the phenomenon, already this material gives relevant information on plutonium retention, metamictization, fission product release, hydrogeochemical stability and migration of fission products. Generalized conclusions applicable to other nuclear waste repository would require the quantitative reconstruction of t s coupled thermo-hydrologic-chemical processes. This could be achieved by studying the deviations in the 2H/1H and 18O/16O ratios of minerals at Oklo. A further generalization of the findings from Oklo could be realized by examining the newly-discovered reactor zone 10, which was active under very different thermal conditions than the other reactors. 205 refs

  13. One piece reactor removal

    International Nuclear Information System (INIS)

    Japan Research Reactor No.3 (JRR-3) was the first reactor consisting of 'Japanese-made' components alone except for fuel and heavy water. After reaching its initial critical state in September 1962, JRR-3 had been in operation for 21 years until March 1983. It was decided that the reactor be removed en-bloc in view of the work schedule, cost and management of the reactor following the removal. In the special method developed jointly by the Japanese Atomic Energy Research Institute and Shimizu Construction Co., Ltd., the reactor main unit was cut off from the building by continuous core boring, with its major components bound in the block with biological shield material (heavy concrete), and then conveyed and stored in a large waste store building constructed near the reactor building. Major work processes described in this report include the cutting off, lifting, horizontal conveyance and lowering of the reactor main unit. The removal of the JRR-3 reactor main unit was successfully carried out safely and quickly by the en-block removal method with radiation exposure dose of the workers being kept at a minimum. Thus the high performance of the en-bloc removal method was demonstrated and, in addition, valuable knowhow and other data were obtained from the work. (Nogami, K.)

  14. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  15. Light water reactor program

    Energy Technology Data Exchange (ETDEWEB)

    Franks, S.M.

    1994-12-31

    The US Department of Energy`s Light Water Reactor Program is outlined. The scope of the program consists of: design certification of evolutionary plants; design, development, and design certification of simplified passive plants; first-of-a-kind engineering to achieve commercial standardization; plant lifetime improvement; and advanced reactor severe accident program. These program activities of the Office of Nuclear Energy are discussed.

  16. Chemical Emergencies

    Science.gov (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  17. Research reactor DHRUVA

    International Nuclear Information System (INIS)

    DHRUVA, a 100 MWt research reactor located at the Bhabha Atomic Research Centre, Bombay, attained first criticality during August, 1985. The reactor is fuelled with natural uranium and is cooled, moderated and reflected by heavy water. Maximum thermal neutron flux obtained in the reactor is 1.8 X 1014 n/cm2/sec. Some of the salient design features of the reactor are discussed in this paper. Some important features of the reactor coolant system, regulation and protection systems and experimental facilities are presented. A short account of the engineered safety features is provided. Some of the problems that were faced during commissioning and the initial phase of power operation are also dealt upon

  18. TRIGA research reactors

    International Nuclear Information System (INIS)

    TRIGA (Training, Research, Isotope production, General-Atomic) has become the most used research reactor in the world with 65 units operating in 24 countries. The original patent for TRIGA reactors was registered in 1958. The success of this reactor is due to its inherent level of safety that results from a prompt negative temperature coefficient. Most of the neutron moderation occurs in the nuclear fuel (UZrH) because of the presence of hydrogen atoms, so in case of an increase of fuel temperature, the neutron spectrum becomes harder and neutrons are less likely to fission uranium nuclei and as a consequence the power released decreases. This inherent level of safety has made this reactor fit for training tool in university laboratories. Some recent versions of TRIGA reactors have been designed for medicine and industrial isotope production, for neutron therapy of cancers and for providing a neutron source. (A.C.)

  19. Mirror reactor surface study

    International Nuclear Information System (INIS)

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included

  20. Iris reactor conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Carelli, M.D.; Conway, L.E.; Petrovic, B.; Paramonov, D.V. [Westinghouse Electric Comp., Pittsburgh, PA (United States); Galvin, M.; Todreas, N.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Lombardi, C.V.; Maldari, F.; Ricotti, M.E. [Politecnico di Milano, Milan (Italy); Cinotti, L. [Ansaldo SpA, Genoa (Italy)

    2001-07-01

    IRIS (International Reactor Innovative and Secure) is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., proliferation resistance, enhanced safety, improved economics and fuel cycle sustainability. It relies on the proven technology of light water reactors and features innovative engineering, but it does not require new technology development. This paper discusses the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and five-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. (author)

  1. Status of French reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A. [Commissariat a l`Energie Atomique, Saclay (France)

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  2. Compact torsatron reactors

    International Nuclear Information System (INIS)

    Low-aspect-ratio torsatron configurations could lead to compact stellarator reactors with R0 = 8--11m, roughly one-half to one-third the size of more conventional stellarator reactor designs. Minimum-size torsatron reactors are found using various assumptions. Their size is relatively insensitive to the choice of the conductor parameters and depends mostly on geometrical constraints. The smallest size is obtained by eliminating the tritium breeding blanket under the helical winding on the inboard side and by reducing the radial depth of the superconducting coil. Engineering design issues and reactor performance are examined for three examples to illustrate the feasibility of this approach for compact reactors and for a medium-size (R0 ≅ 4 m,/bar a/ /approx lt/ 1 m) copper-coil ignition experiment. 26 refs., 11 figs., 7 tabs

  3. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  4. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities in the Division of Reactor Engineering in fiscal 1977 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committee on Reactor Physics. (Author)

  5. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    Research and development activities in the Department of Reactor Engineering in fiscal 1983 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  6. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities conducted in Reactor Engineering Division in fiscal 1975 are summarized in this report. Works in the division are closely related to the development of multi-purpose High-temperature Gas Cooled Reactor, the development of Liquid Metal Fast Breeder Reactor by Power Reactor and Nuclear Fuel Development Corporation, and engineering research of thermonuclear fusion reactor. Many achievements are described concerning nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of the Committee on Reactor Physics. (auth.)

  7. Accessibility and Radioactivity Calculations for Nuclear Reactor Shutdown System

    International Nuclear Information System (INIS)

    An important consideration in the design of power reactors is providing access to the reactor cooling system for the purposes of maintenance, repair and refuelling. The major sources of radiation which tend to prohibit such access are: induced activity of the reactor coolant, activated impurities in the reactor coolant and radiation originating in the reactor core both during reactor operation and after shut down. Impurities in the reactor coolant may be present in high enough concentrations so that their activation restricts accessibility for maintenance after shutdown. When water being used as a coolant, the activity of the water itself is very short- lived but their corrosive nature, resultant high impurity and induced activity of structural material are the major source of activity in the system after reactor shutdown. In this case, it may be necessary to chemically remove some of the impurity by a purification process to prevent a build up of long-lived induced activity in the system from restricting access to the plant, and to keep the radiation dose at the working places within the permissible limits. A mathematical modelling is developed. A system of coupled first-order linear differential equations describing adequately the activity behaviour has to be derived and solved. It treats the determination of equilibrium concentrations of impurities on system surface , and the effect of release of fission products from the reactor core

  8. Clad-coolant chemical interaction

    International Nuclear Information System (INIS)

    This paper provides an overview of the kinetics for zircaloy clad oxidation behaviour in steam and air during reactor accident conditions. The generation of chemical heat from metal/water reaction is considered. Low-temperature oxidation of zircaloy due to water-side corrosion is further described. (authors)

  9. Reactor performance calculations for water reactors

    International Nuclear Information System (INIS)

    The principles of nuclear, thermal and hydraulic performance calculations for water cooled reactors are discussed. The principles are illustrated by describing their implementation in the UKAEA PATRIARCH scheme of computer codes. This material was originally delivered as a course of lectures at the Technical University of Helsinki in Summer of 1969.

  10. Safety of research reactors

    International Nuclear Information System (INIS)

    The number of research reactors that have been constructed worldwide for civilian applications is about 651. Of the reactors constructed, 284 are currently in operation, 258 are shut down and 109 have been decommissioned. More than half of all operating research reactors worldwide are over thirty years old. During this long period of time national priorities have changed. Facility ageing, if not properly managed, has a natural degrading effect. Many research reactors face concerns with the obsolescence of equipment, lack of experimental programmes, lack of funding for operation and maintenance and loss of expertise through ageing and retirement of the staff. Other reactors of the same vintage maintain effective ageing management programmes, conduct active research programmes, develop and retain high calibre personnel and make important contributions to society. Many countries that operate research reactors neither operate nor plan to operate power reactors. In most of these countries there is a tendency not to create a formal regulatory body. A safety committee, not always independent of the operating organization, may be responsible for regulatory oversight. Even in countries with nuclear power plants, a regulatory regime differing from the one used for the power plants may exist. Concern is therefore focused on one tail of a continuous spectrum of operational performance. The IAEA has been sending missions to review the safety of research reactors in Member States since 1972. Some of the reviews have been conducted pursuant to the IAEA' functions and responsibilities regarding research reactors that are operated within the framework of Project and Supply Agreements between Member States and the IAEA. Other reviews have been conducted upon request. All these reviews are conducted following procedures for Integrated Safety Assessment of Research Reactors (INSARR) missions. The prime objective of these missions has been to conduct a comprehensive operational safety

  11. Liquid metal tribology in fast breeder reactors

    International Nuclear Information System (INIS)

    Liquid Metal Cooled Fast Breeder Reactors (LMFBR) require mechanisms operating in various sodium liquid and sodium vapor environments for extended periods of time up to temperatures of 900 K under different chemical properties of the fluid. The design of tribological systems in those reactors cannot be based on data and past experience of so-called conventional tribology. Although basic tribological phenomena and their scientific interpretation apply in this field, operating conditions specific to nuclear reactors and prevailing especially in the nuclear part of such facilities pose special problems. Therefore, in the framework of the R and D-program accompanying the construction phase of SNR 300 experiments were carried out to provide data and knowledge necessary for the lay-out of friction systems between mating surfaces of contacting components. Initially, screening tests isolated material pairs with good slipping properties and maximum wear resistance. Those materials were subjected to comprehensive parameter investigations. A multitude of laboratory scale tests have been performed under largely reactor specific conditions. Unusual superimpositions of parameters were analyzed and separated to find their individual influence on the friction process. The results of these experiments were made available to the reactor industry as well as to factories producing special tribo-materials. (orig.)

  12. Investigation of materials for fusion power reactors

    Science.gov (United States)

    Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.

    2014-06-01

    The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.

  13. Behavior of water reactor fuel rod

    International Nuclear Information System (INIS)

    This paper reviewed the fuels used widely in forms of (1) Zircaloy-sheathed UO2 fuel in light water-commercial power reactor, (2) Zircaloy-sheathed PuO2-UO2 fuel in plutonium-thermal reactor and advanced reactor (ATR), (3) aluminide and silicide fuel in Material Testing Reactors. From fundamental view points, physical/chemical properties and irradiation behaviors of both fuels and zircaloy claddings are briefly reviewed in chapters 1 and 2. Change of the fuel rod physical parameters with progress of burn-up are summed up in chapter 3. Some fuel troubles and failures encountered in past usage of worldwide LWR fuels are introduced with counterplans taken. In the last session of this chapter, recent results of R and D works have been carried out by fuel vendors are reviewed. Especially, in-core behaviors of PCI-remedy fuels developed to use for high burn-up extension and for load-follow operation are highlighted. Reactor accidents occurred through past forty years are surveyed and reviewed. Fuel behaviors during the reactivity initiated accident (RIA), the power-coolant mismatch (PCM), and the loss-of-coolant accident (LOCA) are taken into this review by using disclosed literatures. Safety criteria being used in Japanese licensing authorities are introduced relating to the fuel design limit. (author)

  14. Chemical operational experience with the water/steam-circuit at KNK II; Presentation at the meeting on Experience exchange on operational experience of fast breeder reactors, Karlsruhe/Bensberg/Kalkar, June 18. - 22. 1990

    International Nuclear Information System (INIS)

    The availability of sodium cooled reactors depends essentially from the safety and reliability of the sodium heated steam generator. The transition from experimental plants with 12-20 MW electrical power to larger plants with 600 MW (BN-600) or 1200 MW (Superphenix) required the change from modular components to larger and compact steam generators with up to 800 MW. Defects of these large components cause extreme losses in availability of the plant and have to be avoided. In view of this request, a comprehensive test program has been performed at KNK II in addition to the normal control of the water/steam-circuit to compile all operational data on the water and steam side of the sodium heated steam generator. This paper describes the plant and the water/steam-circuit with its mode of operation. The experience with the surveillance and different methods of the conditioning are discussed in detail in this presentation

  15. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1992 (April 1, 1992-March 31, 1993). The major Department's programs promoted in the year are the assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  16. Reactor engineering department annual report

    International Nuclear Information System (INIS)

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1989 (April 1, 1989 - March 31, 1990). One of major Department's programs is the assessment of the high conversion light water reactor and the design activities of advanced reactor system. Development of a high energy proton linear accelerator for the nuclear engineering including is also TRU incineration promoted. Other major tasks of the Department are various basic researches on nuclear data and group constants, theoretical methods and code development, on reactor physics experiments and analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  17. Chemical elimination of alumina in suspension in nuclear reactors heavy water; Elimination de l'alumine en suspension dans l'eau lourde des reacteurs nucleaires par voie chimique

    Energy Technology Data Exchange (ETDEWEB)

    Ledoux, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-02-01

    Corrosion of aluminium in contact with moderating water in nuclear reactor leads to the formation of an alumina hydrosol which can have an adverse effect on the operation of the reactor. Several physical methods have been used in an attempt to counteract this effect. The method proposed here consists in the elimination of the aluminium by dissolution and subsequent fixation in the ionic form on mixed-bed ion-exchange resin. In order to do this, the parameters and the values of these parameters most favorable to the dissolution process have been determined. If the moderator is heavy water, the deuterated acid can be prepared by converting a solution in heavy water to a salt of the acid using a deuterated cationic resin. (author) [French] La corrosion de l'aluminium au contact de l'eau moderatrice des reacteurs nucleaires, donne lieu a la formation d'un hydrosol d'alumine nuisible au bon fonctionnement des reacteurs. Plusieurs methodes physiques ont ete mises en oeuvre pour pallier ces inconvenients. On propose ici d'eliminer l'alumine par solubilisation pour la fixer ensuite sous forme ionique par des resines echangeuses d'ions, en lit melange. A cette fin on determine les parametres et leurs grandeurs favorables a cette solubilisation. Si le moderateur est de l'eau lourde la preparation d'acide deutere peut etre effectuee par passage d'une solution en eau lourde a un sel de l'acide sur resine cationique deuteree.

  18. Ozone disintegration kinetics in the reactor for tyres decomposition

    International Nuclear Information System (INIS)

    The results of theoretical and experimental research of ozone disintegration kinetics in the chemical reactor which is developed for decomposition of tyres in the ozone-air environment are presented. Analytical expression for dependence of ozone concentration in the reactor from time and from parameters of the task, such as volume speed of ozone-air mixture feed on a reactor input, concentration of ozone on the input to the reactor, volume speed of output of the used mixture, reactor size, and square of its internal surface is obtained. It is shown that at the same speed of ozone-air mixture pro rolling through the reactor, with growth of ozone concentration on the input, value of stationary concentration in the reactor grows, remaining always less than concentration on the input. It is also shown that at the same ozone concentration on the input, with growth of speed of ozone-air mixture pro rolling through the reactor, value of stationary ozone concentration in the reactor also grows, remaining always less than ozone concentration on the input. The ozone disintegration kinetics in the reactor in a wide range of speed of ozone-air mixture pro rolling through the reactor (0.15, 0.30, 0.45, 0.60 m3/hour) and various ozone concentration on the input (5, 10, 15, 20 g/m3) is experimentally studied. It is shown that experimental results with good accuracy coincide with the theoretical. Direct experiment showed the essential influence of the internal surface of the reactor on the ozone disintegration kinetics.

  19. Slurry reactor design studies

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. (Bechtel Group, Inc., San Francisco, CA (USA)); Akgerman, A. (Texas A and M Univ., College Station, TX (USA)); Smith, J.M. (California Univ., Davis, CA (USA))

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  20. Test reactor technology

    International Nuclear Information System (INIS)

    The Reactor Development Program created a need for engineering testing of fuels and materials. The Engineering Test Reactors were developed around the world in response to this demand. The design of the test reactors proved to be different from that of power reactors, carrying the fuel elements closer to the threshold of failure, requiring more responsive instrumentation, more rapid control element action, and inherent self-limiting behavior under accident conditions. The design of the experimental facilities to exploit these reactors evolved a new, specialized, branch of engineering, requiring a very high-lvel scientific and engineering team, established a meticulous concern with reliability, the provision for recovery from their own failures, and detailed attention to possible interactions with the test reactors. This paper presents this technology commencing with the Materials Testing Reactor (MTR) through the Fast Flux Test Facility, some of the unique experimental facilities developed to exploit them, but discusses only cursorily the experiments performed, since sample preparation and sample analyses were, and to some extent still are, either classified or proprietary. The Nuclear Engineering literature is filled with this information

  1. The TRIGA reactor as chemistry apparatus

    International Nuclear Information System (INIS)

    At the Irvine campus of the University of California, the Mark I, 250 kilowatt TRIGA reactor is used as a regular teaching and research tool by the Department of Chemistry which operates the reactor. Students are introduced to radiochemistry and activation analysis in undergraduate laboratory courses and the relation of nuclear to chemical phenomena is emphasized even in Freshman chemistry. Special peripheral items have been developed for use in graduate and undergraduate research, including a fast pneumatic transfer system for studying short-lived isotopes and arrangements for irradiations at low temperatures. These and other unique features of a purely chemically oriented operation will be discussed and some remarks appended with regard to the merits of a low budget operation. (author)

  2. Progress report 1981-1982. Reactor Chemistry Department

    International Nuclear Information System (INIS)

    Review of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission of Argentina during 1981-1982. This Department provides services and assistance in all matters related to water chemistry and nuclear reactors chemistry, in all their phases: design, construction, commissioning and decommissioning. During this period, the following tasks were performed: study of the metallic oxide-water interphases; determination of the goethite and magnetite surficial charges; synthesis of the monodispersed nickel ferrites; study of the iron oxides dissolution mechanism in presence of different complexing agents; chemical decontamination of structural metals; thermodynamics of the water-nitrogen system; physico-chemical studies of aqueous solutions at high temperatures; hydrothermal decomposition of ionic exchange resines and study of the equilibria of the anionic exchange for the chemistry of pressurized reactor's primary loops. The appendix includes information on the Reactor Chemistry Department staff, its publications, services, seminars, courses and conferences performed during 1981-1982. (R.J.S.)

  3. Proposal of Space Reactor for Nuclear Electric Propulsion System

    Science.gov (United States)

    Nagata, Hidetaka; Nishiyama, Takaaki; Nakashima, Hideki

    Currently, the solar battery, the chemical cell, and the RI battery are used for the energy source in space. However, it is difficult for them to satisfy requirements for deep space explorations. Therefore, other electric power sources which can stably produce high electric energy output, regardless of distance from the sun, are necessary to execute such missions. Then, we here propose small nuclear reactors as power sources for deep space exploration, and consider a conceptual design of a small nuclear reactor for Nuclear Electric Propulsion System. It is found from nuclear analyses that the Gas-Cooled reactor could not meet the design requirement imposed on the core mass. On the other hand, a light water reactor is found to be a promising alternative to the Gas-Cooled reactor.

  4. Development, utilization, and future prospects of materials test reactors

    International Nuclear Information System (INIS)

    Reactor radiation affects the chemical and physical properties of materials. These changes can be very drastic in certain cases. Special test reactors have therefore been built since the 1950's and specific skills were developed to expose materials specimens to the precise irradiation conditions required. Materials testing reactors are those research reactor facilities which are designed and operated predominantly for studies into radiation damage. About a dozen plants in European communities (EC) Member States and in the US can be identified in this category, with 5 to 100 MW fission power and neutron fluxes between 5 x 1013 and 1015 cm-2s-1. The paper elaborates common aspects of development, utilization, and future prospects of US and EC materials testing reactors, and indicates the most significant differences

  5. Energy production from distillery wastewater using single and double-phase upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muyodi, F.J.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    A Single-phase (SP) and Double-phase (DP) Upflow Anaerobic Sludge Blanket (UASB) reactors treating distillery wastewater were operated in parallel. The DP UASB reactor showed better performance than the SP UASB reactor in terms of maximum methane production rate, methane content and Chemical Oxygen Demand (COD) removal efficiency. (au) 20 refs.

  6. Adaptive Controller Design for Continuous Stirred Tank Reactor

    OpenAIRE

    Prabhu, K; V. Murali Bhaskaran

    2014-01-01

    Continues Stirred Tank Reactor (CSTR) is an important issue in chemical process and a wide range of research in the area of chemical engineering. Temperature Control of CSTR has been an issue in the chemical control engineering since it has highly non-linear complex equations. This study presents problem of temperature control of CSTR with the adaptive Controller. The Simulation is done in MATLAB and result shows that adaptive controller is an efficient controller for temperature control of C...

  7. 滴流床反应器中液体扩散的分形表征%FRACTAL CHARACTERIZATION OF LIQUID DISPERSION IN TRICKLE BED REACTOR

    Institute of Scientific and Technical Information of China (English)

    朱慧铭; 刘秀凤; 李冬; 张宝泉

    2004-01-01

    @@ INTRODUCTION Dispersion is very important to the design of trickle bed reactor for both chemical and biochemical processes. The degree of dispersion often influences reactor performance and scale-up.

  8. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  9. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  10. Licensed operating reactors

    International Nuclear Information System (INIS)

    The Operating Units Status Report --- Licensed Operating Reactors provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff on NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non- power reactors in the US

  11. nuclear reactor design calculations

    International Nuclear Information System (INIS)

    In this work , the sensitivity of different reactor calculation methods, and the effect of different assumptions and/or approximation are evaluated . A new concept named error map is developed to determine the relative importance of different factors affecting the accuracy of calculations. To achieve this goal a generalized, multigroup, multi dimension code UAR-DEPLETION is developed to calculate the spatial distribution of neutron flux, effective multiplication factor and the spatial composition of a reactor core for a period of time and for specified reactor operating conditions. The code also investigates the fuel management strategies and policies for the entire fuel cycle to meet the constraints of material and operating limitations

  12. Course on reactor physics

    International Nuclear Information System (INIS)

    In Germany only few students graduate in nuclear technology, therefore the NPP operating companies are forced to develop their own education and training concepts. AREVA NP has started together with the Technical University of Dresden a one-week course ''reactor physics'' that includes the know-how of the nuclear power plant construction company. The Technical University of Dresden has the training reactor AKR-2 that is retrofitted by modern digital instrumentation and control technology that allows the practical training of reactor control.

  13. PWR type reactor

    International Nuclear Information System (INIS)

    From a PWR with a primary circuit, consisting of a reactor pressure vessel, a steam generator and a reactor coolant pump, hot coolant is removed by means of an auxiliary system containing h.p. pumps for feeding water into the primary circuit and being connected with a pipe, originating at the upper part, which has got at least one isolating value. This is done by opening an outlet in a part of the auxiliary system that has got a lower pressure than the reactor vessel. Preferably a water jet pump is used for mixing with the water of the auxiliary system. (orig.)

  14. Microfluidic electrochemical reactors

    Science.gov (United States)

    Nuzzo, Ralph G.; Mitrovski, Svetlana M.

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  15. Teaching Laminar-flow reactors: From experimentation to CFD simulation

    OpenAIRE

    Madeira, LM; Mendes, A.; Magalhaes, FD

    2006-01-01

    An integrated chemical engineering lab experiment is described in this paper. It makes use of a laminar-flow tubular reactor (LFTR) through consecutive lab sessions. In a first session (not described here), the pseudo first-order kinetic constant for the reaction between crystal violet and sodium hydroxide is determined at different temperatures in a batch reactor. Then a tracer experiment is used to characterize the flow, pattern in the LFTR, and finally the steady-state conversion of crysta...

  16. Automation of a fixed-bed continuous–flow reactor

    OpenAIRE

    Alcántara, R.; Canoira, L.; R. Conde; Fernández-Sánchez, J. M.; Navarro, A.

    1994-01-01

    This paper describes the design and operation of a laboratory plant with a fixed-bed continuous-flow reactor, fully automated and controlled from a personal computer. The automated variables include two gas flows, one liquid flow, six temperatures, two pressures, one circulation of a cooling liquid, and 10 electrovalves. An adaptive-predictive control system was used. The chemical process chosen to run the automated reactor was the conversion of methanol to gasoline over a ZSM-5 catalyst. Thi...

  17. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next

  18. Experimental loop in the Nuclear Training Reactor Budapest

    Energy Technology Data Exchange (ETDEWEB)

    Csom, Gy.; Kocsis, E.; Zsolnay, E.M.; Szondi, E.J.; Szuecs, I. (Budapesti Mueszaki Egyetem (Hungary). Egyetemi Reaktor)

    1982-01-01

    The in-pile loop built into the Nuclear Training Reactor of the Technical University Budapest constructed jointly with the specialists of the Moscow Energetic Institute is used for thermoradiolitic investigations of irradiated solutions under conditions of 20-300 deg C temperature and max. 150 bar pressure. Therefore, the results of such experiments can provide valuable information on the kinetics and mechanisms of chemical processes occurring in the primary and secondary circuits of WWER-type power reactors. In order to obtain results applicable also to power plant conditions, the dose rate had to be increased. Therefore, some modifications of the reactor power were necessary. Preliminary test results are summarized.

  19. Optimization of methanol yield from a Lurgi reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.; Jiang, Q.; Song, Z. [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing (China); Posarac, D. [Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver (Canada)

    2011-05-15

    Methanol is an important chemical with the potential to become an alternative fuel. An optimization study was performed for a Lurgi methanol synthesis reactor using the commercial process simulator Aspen Plus. The optimization routine is coupled with a steady-state model of the methanol synthesis reactor. Syngas inlet temperature, steam drum pressure, and cooling water volumetric flow rate were optimized so that methanol production in the reactor outlet was maximized. The methanol yield increased by 7.04 %. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Modelling and control design for SHARON/Anammox reactor sequence

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    metabolism against fast chemical reaction and mass transfer. Likewise, the analysis of the dynamics contributed to establish qualitatively the requirements for control of the reactors, both for regulation and for optimal operation. Work in progress on quantitatively analysing different control structure......With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work presents a complete model of the SHARON/Anammox reactor sequence. The dynamics of the reactor were explored pointing out the different scales of the rates in the system: slow microbial...

  1. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given

  2. NEUTRONIC REACTOR FUEL COMPOSITION

    Science.gov (United States)

    Thurber, W.C.

    1961-01-10

    Uranium-aluminum alloys in which boron is homogeneously dispersed by adding it as a nickel boride are described. These compositions have particular utility as fuels for neutronic reactors, boron being present as a burnable poison.

  3. Pulsed fusion reactors

    International Nuclear Information System (INIS)

    This summer school specialized in examining specific fusion center systems. Papers on scientific feasibility are first presented: confinement of high-beta plasma, liners, plasma focus, compression and heating and the use of high power electron beams for thermonuclear reactors. As for technological feasibility, lectures were on the theta-pinch toroidal reactors, toroidal diffuse pinch, electrical engineering problems in pulsed magnetically confined reactors, neutral gas layer for heat removal, the conceptual design of a series of laser fusion power plants with ''Saturn'', implosion experiments and the problem of the targets, the high brightness lasers for plasma generation, and topping and bottoming cycles. Some problems common to pulsed reactors were examined: energy storage and transfer, thermomechanical and erosion effects in the first wall and blanket, the problems of tritium production, radiation damage and neutron activation in blankets, and the magnetic and inertial confinement

  4. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2002-04-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system.

  5. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2001-04-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given.

  6. Reactor Neutrino Spectra

    CERN Document Server

    Hayes, A C

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these and their associated uncertainties are crucial for neutrino oscillation studies. The spectra used to-date have been determined by either conversion of measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that makeup the spectra using modern databases as input. The uncertainties in the subdominant corrections to beta-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  7. Experience with Kamini reactor

    International Nuclear Information System (INIS)

    Kamini is a 233U fuelled, 30 kW(th) research reactor. It is one of the best neutron source facility with a core average flux of 1012 n/cm2/s in IGCAR used for neutron radiography of active and nonradioactive objects, activation analysis and radiation physics research. The core consists of nine plate type fuel elements with a total fuel inventory of 590 g of 233U. Two safety control plates made of cadmium are used for start up and shutdown of the reactor. Three beam tubes, two-thimble irradiation site outside reflector and one irradiation site nearer to the core constitute the testing facilities of Kamini. Kamini attained first criticality on 29th October 96 and nominal power of 30 kW in September 1997. This paper covers the design features of the reactor, irradiation facilities and their utilities and operating experience of the reactor. (author)

  8. Reactor pressure boundary materials

    International Nuclear Information System (INIS)

    With a long-term operation of nuclear power plants, the component materials are degraded under severe reactor conditions such as neutron irradiation, high temperature, high pressure and corrosive environment. It is necessary to establish the reliable and practical technologies for improving and developing the component materials and for evaluating the mechanical properties. Especially, it is very important to investigate the technologies for reactor pressure boundary materials such as reactor vessel and pipings in accordance with their critical roles. Therefore, this study was focused on developing and advancing the microstructural/micro-mechanical evaluation technologies, and on evaluating the neutron irradiation characteristics and radiation effects analysis technology of the reactor pressure boundary materials, and also on establishing a basis of nuclear material property database

  9. New reactor type proposed

    CERN Multimedia

    2003-01-01

    "Russian scientists at the Research Institute of Nuclear Power Engineering in Moscow are hoping to develop a new reactor that will use lead and bismuth as fuel instead of uranium and plutonium" (1/2 page).

  10. Special lecture on nuclear reactor

    International Nuclear Information System (INIS)

    This book gives a special lecture on nuclear reactor, which is divided into two parts. The first part has explanation on nuclear design of nuclear reactor and analysis of core with theories of integral transports, diffusion Nodal, transports Nodal and Monte Carlo skill parallel computer and nuclear calculation and speciality of transmutation reactor. The second part deals with speciality of nuclear reactor and control with nonlinear stabilization of nuclear reactor, nonlinear control of nuclear reactor, neural network and control of nuclear reactor, control theory of observer and analysis method of Adomian.

  11. Fiscal 1998 R and D project on global environmental industrial technology. R and D result report on environment- friendly production technology (advanced chemical synthesis reactor); 1998 nendo chikyu kankyo sangyo gijutsu kenkyu kaihatsu jigyo. Kankyo chowagata seisan gijutsu (kokino kagaku gosei bio reactor) kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For high-efficiency production of substances by bioreactor, study was made on a bio-control mechanism as its elementary technology. On the study of breeding technology by expression control, the structure design of a control region and development of new expression vectors had been finished, and study was made on breeding of high-efficiency recombinant production cells by using candidate expression vectors. On the study of breeding technology by multi-stage enzyme reaction control, the enzyme gene of a system synthesizing cysteine from glycerol was searched, and hydroxypyruvaldehyde hydrogenase gene was isolated as substance production model. Cysteine production Escherichia coli combined with serineacetyl transferase gene was also prepared. In addition, study started on cloning of hydroxyacetone oxidase gene. On development of reactor system technology, for conversion of serine to cysteine, study was made on optimization of a reaction condition by theory of enzyme reaction rate. (NEDO)

  12. Jet-Stirred Reactors

    OpenAIRE

    Herbinet, Olivier; Guillaume, Dayma

    2013-01-01

    The jet-stirred reactor is a type of ideal continuously stirred-tank reactor which is well suited for gas phase kinetic studies. It is mainly used to study the oxidation and the pyrolysis of hydrocarbon and oxygenated fuels. These studies consist in recording the evolution of the conversion of the reactants and of the mole fractions of reaction products as a function of different parameters such as reaction temperature, residence time, pressure and composition of the inlet gas. Gas chromatogr...

  13. Generation IV reactors: economics

    International Nuclear Information System (INIS)

    The operating nuclear reactors were built over a short period: no more than 10 years and today their average age rounds 18 years. EDF (French electricity company) plans to renew its reactor park over a far longer period : 30 years from 2020 to 2050. According to EDF this objective implies 3 constraints: 1) a service life of 50 to 60 years for a significant part of the present operating reactors, 2) to be ready to built a generation 3+ unit in 2020 which infers the third constraint: 3) to launch the construction of an EPR (European pressurized reactor) prototype as soon as possible in order to have it operating in 2010. In this scheme, generation 4 reactor will benefit the feedback experience of generation 3 and will take over in 2030. Economic analysis is an important tool that has been used by the generation 4 international forum to select the likely future reactor systems. This analysis is based on 4 independent criteria: the basic construction cost, the construction time, the operation and maintenance costs and the fuel cycle cost. This analysis leads to the evaluation of the global cost of electricity generation and of the total investment required for each of the reactor system. The former defines the economic competitiveness in a de-regulated energy market while the latter is linked to the financial risk taken by the investor. It appears, within the limits of the assumptions and models used, that generation 4 reactors will be characterized by a better competitiveness and an equivalent financial risk when compared with the previous generation. (A.C.)

  14. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  15. Department of Reactor Technology

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included.......The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included....

  16. Process and kinetics of the fundamental radiation-electrochemical reactions in the primary coolant loop of nuclear reactors

    International Nuclear Information System (INIS)

    In spite of the rather broad title of this report, its major part is devoted to the corrosion problems at the RA reactor, i.e. causes and consequences of the reactor shutdown in 1979 and 1982. Some problems of reactor chemistry are pointed out because they are significant for future reactor operation. The final conclusion of this report is that corrosion processes in the primary coolant circuit of the nuclear reactor are specific and that radiation effects cannot be excluded when processes and reaction kinetics are investigated. Knowledge about the kinetics of all the chemical reactions occurring in the primary coolant loop are of crucial significance for safe and economical reactor operation

  17. Moon base reactor system

    Science.gov (United States)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  18. BWR type nuclear reactor

    International Nuclear Information System (INIS)

    Purpose: To simplify the structure of an emergency core cooling system while suppressing the flow out of coolants upon rapture accidents in a coolant recycling device of BWR type reactors. Constitution: Recirculation pumps are located at a position higher than the reactor core in a pressure vessel, and the lower plenum is bisected vertically by a partition plate. Further, a gas-liquid separator is surrounded with a wall and the water level at the outer side of the wall is made higher than the water level in the inside of the wall. In this structure, coolants are introduced from the upper chamber in the lower plenum into the reactor core, and the steams generated in the reactor core are separated in the gas-liquid separator, whereby the separated liquid is introduced as coolants by way of the inner chamber into the lower chamber of the lower plenum and further sent by way of the outer chamber into the reactor core. Consequently, idle rotation of the recycling pumps due to the flow-in of saturated water is prevented and loss of coolants in the reactor core can also be prevented upon raptures in the pipeway and the driving section of the pump connected to the pressure vessel and in the bottom of the pressure vessel. (Horiuchi, T.)

  19. OECD Halden reactor project

    International Nuclear Information System (INIS)

    This is the nineteenth annual Report on the OECD Halden Reactor Project, describing activities at the Project during 1978, the last year of the 1976-1978 Halden Agreement. Work continued in two main fields: test fuel irradiation and fuel research, and computer-based process supervision and control. Project research on water reactor fuel focusses on various aspects of fuel behavior under normal, and off-normal transient conditions. In 1978, participating organisations continued to submit test fuel for irradiation in the Halden boiling heavy-water reactor, in instrumented test assemblies designed and manufactured by the Project. Work included analysis of the impact of fuel design and reactor operating conditions on fuel cladding behavior. Fuel performance modelling included characterization of thermal and mechanical behavior at high burn-up, of fuel failure modes, and improvement of data qualification procedures to reduce and quantify error bands on in-reactor measurements. Instrument development yielded new or improved designs for measuring rod temperature, internal pressure, axial neutron flux shape determination, and for detecting cladding defects. Work on computer-based methods of reactor supervision and control included continued development of a system for predictive core surveillance, and of special mathematical methods for core power distribution control

  20. Advances in process intensification through multifunctional reactor engineering.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Marcia A.; Miller, James Edward; O' Hern, Timothy John; Gill, Walter; Evans, Lindsey R.

    2011-02-01

    A multifunctional reactor is a chemical engineering device that exploits enhanced heat and mass transfer to promote production of a desired chemical, combining more than one unit operation in a single system. The main component of the reactor system under study here is a vertical column containing packing material through which liquid(s) and gas flow cocurrently downward. Under certain conditions, a range of hydrodynamic regimes can be achieved within the column that can either enhance or inhibit a desired chemical reaction. To study such reactors in a controlled laboratory environment, two experimental facilities were constructed at Sandia National Laboratories. One experiment, referred to as the Two-Phase Experiment, operates with two phases (air and water). The second experiment, referred to as the Three-Phase Experiment, operates with three phases (immiscible organic liquid and aqueous liquid, and nitrogen). This report describes the motivation, design, construction, operational hazards, and operation of the both of these experiments. Data and conclusions are included.

  1. Pebble Bed Reactor Plant screening evaluation. Volume 1. Overall plant and reactor system

    International Nuclear Information System (INIS)

    This report consists of three volumes which describe the design concepts and screening evaluation for a 3000 MW/sub t/ Pebble Bed Reactor Multiplex Plant (PBR-MX). The Multiplex plant produces both electricity and transportable chemical energy via the thermochemical pipeline (TCP). The evaluation was limited to a direct cycle plant which has the steam generators and steam reformers in the primary circuit. Volume 1 reports the overall plant and reactor system. Core scoping studies were performed which evaluated the effects of annular and cyclindrical core configurations, radial blanket zones, burnup, and ball heavy metal loadings. The reactor system, including the PCRV, was investigated for both the annular and cylindrical core configurations

  2. Reactor physics and economic aspects of the CANDU reactor system

    International Nuclear Information System (INIS)

    A history of the development of the CANDU system is given along with a fairly detailed description of the 600 MW(e) CANDU reactor. Reactor physics calculation methods are described, as well as comparisons between calculated reactor physics parameters and those measured in research and power reactors. An examination of the economics of CANDU in the Ontario Hydro system and a comparison between fossil fuelled and light water reactors is presented. Some physics, economics and resources aspects are given for both low enriched uranium and thorium-fuelled CANDU reactors. Finally the RβD program in Advanced Fuel Cycles is briefly described

  3. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    Energy Technology Data Exchange (ETDEWEB)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  4. Fast breeder reactor research

    International Nuclear Information System (INIS)

    Full text: The meeting was attended by 15 participants from seven countries and two international organizations. The Eighth Annual Meeting of the International Working Group on Fast Reactors (IWGFR) was attended by representatives from France, Fed. Rep. Germany, Italy, Japan, United Kingdom, Union of Soviet Socialist Republics and the United States of America - countries that have made significant progress in developing the technology and physics of sodium cooled fast reactors and have extensive national programmes in this field - as well as by representatives of the Commission of the European Communities and the IAEA. The design of fast-reactor power plants is a more difficult task than developing facilities with thermal reactors. Different reactor kinetics and dynamics, a hard neutron spectrum, larger integral doses of fuel and structural material irradiation, higher core temperatures, the use of an essentially novel coolant, and, as a result of all these factors, the additional reliability and safety requirements that are imposed on the planning and operation of sodium cooled fast reactors - all these factors pose problems that can be solved comprehensively only by countries with a high level of scientific and technical development. The exchange of experience between these countries and their combined efforts in solving the fundamental problems that arise in planning, constructing and operating fast reactors are promoting technical progress and reducing the relative expenditure required for various studies on developing and introducing commercial fast reactors. For this reason, the meeting concentrated on reviewing and discussing national fast reactor programmes. The situation with regard to planning, constructing and operating fast experimental and demonstration reactors in the countries concerned, the experience accumulated in operating them, the difficulties arising during operation and ways of over-coming them, the search for optimal designs for the power

  5. Sensitivity and Uncertainty Study for Thermal Molten Salt Reactors

    Science.gov (United States)

    Bidaud, Adrien; Ivanona, Tatiana; Mastrangelo, Victor; Kodeli, Ivo

    2006-04-01

    The Thermal Molten Salt Reactor (TMSR) using the thorium cycle can achieve the GEN IV objectives of economy, safety, non-proliferation and durability. Its low production of higher actinides, coupled with its breeding capabilities - even with a thermal spectrum - are very valuable characteristics for an innovative reactor. Furthermore, the thorium cycle is more flexible than the uranium cycle since only a small fissile inventory (reactor. The potential of these reactors is currently being extensively studied at the CNRS and EdF /1,2/. A simplified chemical reprocessing is envisaged compared to that used for the former Molten Salt Breeder Reactor (MSBR). The MSBR concept was developed at Oak Ridge National Laboratory (ORNL) in the 1970's based on the Molten Salt Reactor Experiment (MSRE). The main goals of our current studies are to achieve a reactor concept that enables breeding, improved safety and having chemical reprocessing needs reduced and simplified as much as reasonably possible. The neutronic properties of the new TMSR concept are presented in this paper. As the temperature coefficient is close to zero, we will see that the moderation ratio cannot be chosen to simultaneously achieve a high breeding ratio, long graphite lifetime and low uranium inventory. It is clear that any safety margin taken due to uncertainty in the nuclear data will significantly reduce the capability of this concept, thus a sensitivity analysis is vital to propose measurements which would allow to reduce at present high uncertainties in the design parameters of this reactor. Two methodologies, one based on OECD/NEA deterministic codes and one on IPPE (Obninsk) stochastic code, are compared for keff sensitivity analysis. The uncertainty analysis of keff using covariance matrices available in evaluated files has been performed. Furthermore, a comparison of temperature coefficient sensitivity profiles is presented for the most important reactions. These results are used to review the

  6. BR2 Reactor: Introduction

    International Nuclear Information System (INIS)

    The irradiations in the BR2 reactor are in collaboration with or at the request of third parties such as the European Commission, the IAEA, research centres and utilities, reactor vendors or fuel manufacturers. The reactor also contributes significantly to the production of radioisotopes for medical and industrial applications, to neutron silicon doping for the semiconductor industry and to scientific irradiations for universities. Along the ongoing programmes on fuel and materials development, several new irradiation devices are in use or in design. Amongst others a loop providing enhanced cooling for novel materials testing reactor fuel, a device for high temperature gas cooled fuel as well as a rig for the irradiation of metallurgical samples in a Pb-Bi environment. A full scale 3-D heterogeneous model of BR2 is available. The model describes the real hyperbolic arrangement of the reactor and includes the detailed 3-D space dependent distribution of the isotopic fuel depletion in the fuel elements. The model is validated on the reactivity measurements of several tens of BR2 operation cycles. The accurate calculations of the axial and radial distributions of the poisoning of the beryllium matrix by 3He, 6Li and 3T are verified on the measured reactivity losses used to predict the reactivity behavior for the coming decades. The model calculates the main functionals in reactor physics like: conventional thermal and equivalent fission neutron fluxes, number of displacements per atom, fission rate, thermal power characteristics as heat flux and linear power density, neutron/gamma heating, determination of the fission energy deposited in fuel plates/rods, neutron multiplication factor and fuel burn-up. For each reactor irradiation project, a detailed geometry model of the experimental device and of its neighborhood is developed. Neutron fluxes are predicted within approximately 10 percent in comparison with the dosimetry measurements. Fission rate, heat flux and

  7. Scaleable, High Efficiency Microchannel Sabatier Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Microchannel Sabatier Reactor System (MSRS) consisting of cross connected arrays of isothermal or graded temperature reactors is proposed. The reactor array...

  8. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takeshi; Iida, Masaaki; Moriki, Yasuyuki

    1994-10-18

    A reactor core is divided into a plurality of coolants flowrate regions, and electromagnetic pumps exclusively used for each of the flowrate regions are disposed to distribute coolants flowrates in the reactor core. Further, the flowrate of each of the electromagnetic pumps is automatically controlled depending on signals from a temperature detector disposed at the exit of the reactor core, so that the flowrate of the region can be controlled optimally depending on the burning of reactor core fuels. Then, the electromagnetic pumps disposed for every divided region are controlled respectively, so that the coolants flowrate distribution suitable to each of the regions can be attained. Margin for fuel design is decreased, fuels are used effectively, as well as an operation efficiency can be improved. Moreover, since the electromagnetic pump has less flow resistance compared with a mechanical type pump, and flow resistance of the reactor core flowrate control mechanism is eliminated, greater circulating flowrate can be ensured after occurrence of accident in a natural convection using a buoyancy of coolants utilizable for after-heat removal as a driving force. (N.H.).

  9. Reactor coolant cleanup facility

    International Nuclear Information System (INIS)

    A depressurization device is disposed in pipelines upstream of recycling pumps of a reactor coolant cleanup facility to reduce a pressure between the pressurization device and the recycling pump at the downstream, thereby enabling high pressure coolant injection from other systems by way of the recycling pumps. Upon emergency, the recycling pumps of the coolant cleanup facility can be used in common to an emergency reactor core cooling facility and a reactor shutdown facility. Since existent pumps of the emergency reactor core cooling facility and the reactor shutdown facility which are usually in a stand-by state can be removed, operation confirmation test and maintenance for equipments in both of facilities can be saved, so that maintenance and reliability of the plant are improved and burdens on operators can also be mitigated. Moreover, low pressure design can be adopted for a non-regenerative heat exchanger and recycling coolant pumps, which enables to improve the reliability and economical property due to reduction of possibility of leakage. (N.H.)

  10. EBT reactor analysis

    International Nuclear Information System (INIS)

    This report summarizes the results of a recent ELMO Bumpy Torus (EBT) reactor study that includes ring and core plasma properties with consistent treatment of coupled ring-core stability criteria and power balance requirements. The principal finding is that constraints imposed by these coupling and other physics and technology considerations permit a broad operating window for reactor design optimization. Within this operating window, physics and engineering systems analysis and cost sensitivity studies indicate that reactors with approx. 6 to 10%, P approx. 1200 to 1700 MW(e), wall loading approx. 1.0 to 2.5 MW/m2, and recirculating power fraction (including ring-sustaining power and all other reactors auxiliaries) approx. 10 to 15% are possible. A number of concept improvements are also proposed that are found to offer the potential for further improvement of the reactor size and parameters. These include, but are not limited to, the use of: (1) supplementary coils or noncircular mirror coils to improve magnetic geometry and reduce size, (2) energetic ion rings to improve ring power requirements, (3) positive potential to enhance confinement and reduce size, and (4) profile control to improve stability and overall fusion power density

  11. Generalities about nuclear reactors

    International Nuclear Information System (INIS)

    From Zoe, the first nuclear reactor, till the current EPR, the French nuclear industry has always advanced by profiting from the feedback from dozens of years of experience and operations, in particular by drawing lessons from the most significant events in its history, such as the Fukushima accident. The new generations of reactors must improve safety and economic performance so that the industry maintain its legitimacy and its share in the production of electricity. This article draws the history of nuclear power in France, gives a brief description of the pressurized water reactor design, lists the technical features of the different versions of PWR that operate in France and compares them with other types of reactors. The feedback experience concerning safety, learnt from the major nuclear accidents Three Miles Island (1979), Chernobyl (1986) and Fukushima (2011) is also detailed. Today there are 26 third generation reactors being built in the world: 4 EPR (1 in Finland, 1 in France and 2 in China); 2 VVER-1200 in Russia, 8 AP-1000 (4 in China and 4 in the Usa), 8 APR-1400 (4 in Korea and 4 in UAE), and 4 ABWR (2 in Japan and 2 in Taiwan)

  12. Reactor Structural Materials: Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R

    2000-07-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported.

  13. Mitigation performance indicator for boiling water reactors

    International Nuclear Information System (INIS)

    All U.S. boiling water reactors (BWRs) inject hydrogen for mitigation of intergranular stress corrosion cracking (IGSCC), and most currently use or plan to use noble metals technology. The EPRI Boiling Water Reactor Vessels and Internals Project (BWRVIP) developed a Mitigation Performance Indicator (MPI) in 2006 to accurately depict to management the status of mitigation equipment and as a standardized way to show the overall health of reactor vessel internals from a chemistry perspective. It is a 'Needed' requirement in the EPRI BWR Water Chemistry Guidelines that plants have an MPI, and use of the BWRVIP MPI is a 'Good Practice'. The MPI is aligned with inspection relief criteria for reactor piping and internal components for U.S. BWRs. This paper discusses the history of the MPI, from its first use for plants operating with moderate hydrogen water chemistry (HWC-M) or Noble Metal Chemical Application (NMCA) + HWC to its more recent use for plants operating with On-Line NobleChem™ (OLNC) + HWC. Key mitigation parameters are discussed along with the technical bases for the indicators associated with the parameters. (author)

  14. Vinasses treatment in anaerobic fludized bed reactor.

    Directory of Open Access Journals (Sweden)

    Francisco J. C. Terán

    2009-03-01

    Full Text Available The agricultural use of vinasse produced by the sugar industry has gone through many changes over the years. Coupled with concern over the increased agronomic efficiency and optimizing the management of the use of such waste, you can highlight the major global ecological awareness, developed after 90s. This study aims at the construction and operation of a reactor anaerobic cracker (RALF on pilot scale to verify the burden of chemical demand of oxygen (DQO of vinasse, under mesophilic. The stillage used for feeding the reactor was from a sugar cane processing plant, located in the city of Regente Feijó, São Paulo State. The inoculum was anaerobic sludge from a reactor and upward flow anaerobic sludge blanket (UASB treating wastewater from a factory of soda. The concentrations of vinasse to be treated ranged 17,239 mg DQO L-1 up to 28,174 mg DQO L-1. The effluent pH was maintained between 6.4 and 8.6 during the research. The productivity of biogas in the reactor has not achieved the expected rates, reaching only 46 mL day-1. Maximum efficiency attained during operation was 51.1 %, corresponding to a 14-day operation time, vinasses organic loading of 19.5 kg DQO m-3 dia-1 and to an hydraulic detention time of one day.

  15. Mimic of OSU research reactor

    International Nuclear Information System (INIS)

    The Ohio State University research reactor (OSURR) is undergoing improvements in its research and educational capabilities. A computer-based digital data acquisition system, including a reactor system mimic, will be installed as part of these improvements. The system will monitor the reactor system parameters available to the reactor operator either in digital parameters available to the reactor operator either in digital or analog form. The system includes two computers. All the signals are sent to computer 1, which processes the data and sends the data through a serial port to computer 2 with a video graphics array VGA monitor, which is utilized to display the mimic system of the reactor

  16. Methanation assembly using multiple reactors

    Science.gov (United States)

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  17. MINT research reactor safety program

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad Idris bin Taib [Division of Special Project, Malaysian Institute for Nuclear Technology Research (MINT), Bangi (Malaysia)

    2000-11-01

    Malaysian Institute for Nuclear Technology Research (MINT) Research Reactor Safety Program has been done along with Reactor Power Upgrading Project, Reactor Safety Upgrading Project and Development of Expert System for On-Line Nuclear Process Control Project. From 1993 up to date, Neutronic and Thermal-hydraulics analysis, Probabilistic Safety Assessment as well as installation of New 2 MW Secondary Cooling System were done. Installations of New Reactor Building Ventilation System, Reactor Monitoring System, Updating of Safety Analysis Report and Upgrading Primary Cooling System are in progress. For future activities, Reactor Modeling will be included to add present activities. (author)

  18. Residence times and mixing of a novel continuous oscillatory flow meso reactor

    OpenAIRE

    Reis, N.; A.A. Vicente; Teixeira, J. A.; Mackley, M.R.

    2004-01-01

    A novel meso reactor based on oscillatory flow technology (Harvey et al., 2001) has been recently presented in Harvey et al. (2003) as a new technology for reaction engineering and particle suspension applications. Due to the demonstrated enhanced performances for fluid micro mixing and suspension of catalyst beads and to the small volume of the reactor, this novel miniature reactor is suitable for applications at specialist chemical manufacture and high throughput screening. F...

  19. Fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    The chemistry of the nuclear fuel is very complex. Its chemical composition changes with time due to the formation of fission products and depends on the temperature level history within the fuel pellet and the clad during operation. Firstly, in thermal reactors, zircaloy oxidation from reaction with UO2 fuel under high-temperature conditions will be addressed. Then other fuel-cladding interaction phenomena occurring in fast reactors will be described. Large thermal gradients existing between the centre and the periphery of the pellet induce the radial redistribution of the fuel constituents. The fuel pellet can react with the clad by different corrosion processes which can involve actinide and/or fission product transport via gas, liquid or/and solid phases. All these phenomena are briefly described in the case of different kinds of fuels (oxide, carbide, nitride, metallic) to be used in fast reactors. The way these phenomena are taken into account in fuel performance codes is presented. (authors)

  20. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier.

    Science.gov (United States)

    Dong, Zhiyong; Lu, Mang; Huang, Wenhui; Xu, Xiaochun

    2011-11-30

    In this study, a novel suspended ceramic carrier was prepared, which has high strength, optimum density (close to water), and high porosity. Two different carriers, unmodified and sepiolite-modified suspended ceramic carriers were used to feed two moving bed biofilm reactors (MBBRs) with a filling fraction of 50% to treat oilfield produced water. The hydraulic retention time (HRT) was varied from 36 to 10h. The results, during a monitoring period of 190 days, showed that removal efficiency of chemical oxygen demand was the highest in reactor 3 filled with the sepiolite-modified carriers, followed by reactor 2 filled with the unmodified carriers, with the lowest in reactor 1 (activated sludge reactor), at an HRT of 10h. Similar trends were found in the removal efficiencies of ammonia nitrogen and polycyclic aromatic hydrocarbons. Reactor 3 was more shock resistant than reactors 2 and 1. The results indicate that the suspended ceramic carrier is an excellent MBBR carrier.

  1. Thermionic Reactor Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  2. International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    An international design team comprised of members from Canada, Europe, Japan, the Soviet Union, and the United States of America, are designing an experimental fusion test reactor. The engineering and testing objectives of this International Thermonuclear Experimental Reactor (ITER) are to validate the design and to demonstrate controlled ignition, extended burn of a deuterium and tritium plasma, and achieve steady state using technology expected to be available by 1990. The concept maximizes flexibility while allowing for a variety of plasma configurations and operating scenarios. During physics phase operation, the machine produces a 22 MA plasma current. In the technology phase, the machine can be reconfigured with a thicker shield and a breeding blanket to operate with an 18 MA plasma current at a major radius of 5.5 meters. Canada's involvement in the areas of safety, facility design, reactor configuration and maintenance builds on our internationally recognized design and operational expertise in developing tritium processes and CANDU related technologies

  3. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly Licensed Operating Reactors Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  4. Licensed operating reactors

    International Nuclear Information System (INIS)

    THE OPERATING UNITS STATUS REPORT - LICENSED OPERATING REACTORS provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff of NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non-power reactors in the US

  5. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  6. Reactor safety equipments

    International Nuclear Information System (INIS)

    Purpose: To positively recover radioactive substances discharged in a dry well at the time of failure of a reactor. Constitution: In addition to the emergency gas treating system fitted to a reactor building, a purification system connected through a pipeline to the dry well is arranged in the reactor building. This purification system is connected through pipes fitted to the dry well to forced circulation device, heat exchanger, and purification device. The atmosphere of high pressure steam gases in the dry well is derived to the heat exchanger for cooling, and then radioactive substances which are contained in the gases are removed by filter sets charged with the HEPA filters and the HECA filters. At last, there gases are returned to dry well by circulation pump, repeat this process. (Kamimura, M.)

  7. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  8. Welding and reactor safety

    International Nuclear Information System (INIS)

    The high safety requirements which must be demanded of the quality of the welded joints in reactor technique have so far not been fulfilled in all cases. The errors occuring have caused considerable loss of availability and high material costs. They were not, however, so serious that one need have feared any immediate danger to the personnel or to the environment. The safety devices of reactor plants were only called upon in a few cases and to these they responded perfectly. The intensive efforts to complete and improve the specifications are to contribute to that in future, the reactor plants can be counted even more so as one of the safest technical plants ever. (orig./LH)

  9. Backfitting swimming pool reactors

    International Nuclear Information System (INIS)

    Calculations based on measurements in a critical assembly, and experiments to disclose fuel element surface temperatures in case of accidents like stopping of primary coolant flow during full power operation, have shown that the power of the swimming pool type research reactor FRG-2 (15 MW, operating since 1967) might be raised to 21 MW within the present rules of science and technology, without major alterations of the pool buildings and the cooling systems. A backfitting program is carried through to adjust the reactor control systems of FRG-2 and FRG-1 (5 MW, housed in the same reactor hall) to the present safety rules and recommendations, to ensure FRG-2 operation at 21 MW for the next decade. (author)

  10. Reactor operation experience

    International Nuclear Information System (INIS)

    Since the TRIGA Users Conference in Helsinki 1970 the TRIGA reactor Vienna was in operation without any larger undesired shutdown. The integrated thermal power production by August 15 1972 accumulated to 110 MWd. The TRIGA reactor is manly used for training of students, for scientific courses and research work. Cooperation with industry increased in the last two years either in form of research or in performing training courses. Close cooperation is also maintained with the IAEA, samples are irradiated and courses on various fields are arranged. Maintenance work was performed on the heat exchanger and to replace the shim rod magnet. With the view on the future power upgrading nine fuel elements type 110 have been ordered recently. Experiments, performed currently on the reactor are presented in details

  11. The MNSR reactor

    International Nuclear Information System (INIS)

    This tank-in-pool reactor is based on the same design concept as the Canadian Slowpoke. The core is a right circular cylinder, 24 cm diameter by 25 cm long, containing 411 fuel pin positions. The pins are HEU-Aluminium alloy, 0.5 cm in diameter. Critical mass is about 900 g. The reactor has a single cadmium control rod. The back-up shutdown system is the insertion of a cadmium capsule in a core position. Excess reactivity is limited to 3.5mk. In both the MNSR and Slowpoke, the insertion of the maximum excess reactivity results in a power transient limited by the coolant/moderator temperature to safe values, independent of any operator action. This reactor is used primarily in training and neutron activation analysis. Up to 64 elements have been analyzed in a great variety of different disciplines. (author)

  12. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  13. Safety systems of heavy water reactors and small power reactors

    International Nuclear Information System (INIS)

    After introductional descriptions of heavy water reactors and natural circulation boiling water reactors the safety philosophy and safety systems like ECCS, residual heat removal, protection systems etc., are described. (RW)

  14. Utilizing the UMass-Lowell research reactor to enhance knowledge transfer in reactor operations

    International Nuclear Information System (INIS)

    Full text: A renaissance of nuclear science and technology has begun. To meet the expected needs of the nuclear power industry and various governmental organizations (e.g. DOE and NRC), there will be an increased need to train (non-nuclear) scientists and engineers with some specialized training in the safe and effective application of various nuclear technologies. To this end UML is developing a new online Nuclear Power Fundamentals program focusing on the operation and safety of nuclear power systems. The primary target audience is Civil, Mechanical, Electrical, and Chemical engineering students or working professionals. Engineers who take this program will be able to contribute to the nuclear workforce. The goal of the online Nuclear Power Fundamentals program is to provide a strong educational base in the fundamentals of nuclear technology and reactor safety including reactor operations. Fundamental concepts needed to understand the key aspects of nuclear technology, with a focus on the basic design and safe operation of nuclear power systems will be taught. Topics will include basic nuclear and radiation physics, nuclear reactor physics, shielding, nuclear heat transport, and nuclear power systems and safety. The unique aspect of the proposed curriculum will be the 'hands-on' live remote reactor laboratory experiences and general emphasis on experiential learning that will be integrated throughout the online program. The 'hands-on' distance nuclear engineering training will offer a meaningful nuclear reactor laboratory component within the online curriculum. This laboratory capability is available via the nuclear101.com website and the UMass-Lowell Research Reactor (UMLRR) Online application. The UMLRR Online application will be used to provide a number of live demonstrations and laboratory experiences using the full capabilities of the UMLRR facility. These learning experiences will involve both core physics and balance-of-plant considerations. Typical

  15. AREVA's nuclear reactors portfolio

    International Nuclear Information System (INIS)

    A reasonable assumption for the estimated new build market for the next 25 years is over 340 GWe net. The number of prospect countries is growing almost each day. To address this new build market, AREVA is developing a comprehensive portfolio of reactors intended to meet a wide range of power requirements and of technology choices. The EPR reactor is the flagship of the fleet. Intended for large power requirements, the four first EPRs are being built in Finland, France and China. Other countries and customers are in view, citing just two examples: the Usa where the U.S. EPR has been selected as the technology of choice by several U.S utilities; and the United Kingdom where the Generic Design Acceptance process of the EPR design submitted by AREVA and EDF is well under way, and where there is a strong will to have a plant on line in 2017. For medium power ranges, the AREVA portfolio includes a boiling water reactor and a pressurized water reactor which both offer all of the advantages of an advanced plant design, with excellent safety performance and competitive power generation cost: -) KERENA (1250+ MWe), developed in collaboration with several European utilities, and in particular with Eon; -) ATMEA 1 (1100+ MWe), a 3-loop evolutionary PWR which is being developed by AREVA and Mitsubishi. AREVA is also preparing the future and is deeply involved into Gen IV concepts. It has developed the ANTARES modular HTR reactor (pre-conceptual design completed) and is building upon its vast Sodium Fast Reactor experience to take part into the development of the next prototype. (author)

  16. Gas reactor international cooperative program interim report: German Pebble Bed Reactor design and technology review

    International Nuclear Information System (INIS)

    This report describes and evaluates several gas-cooled reactor plant concepts under development within the Federal Republic of Germany (FRG). The concepts, based upon the use of a proven Pebble Bed Reactor (PBR) fuel element design, include nuclear heat generation for chemical processes and electrical power generation. Processes under consideration for the nuclear process heat plant (PNP) include hydrogasification of coal, steam gasification of coal, combined process, and long-distance chemical heat transportation. The electric plant emphasized in the report is the steam turbine cycle (HTR-K), although the gas turbine cycle (HHT) is also discussed. The study is a detailed description and evaluation of the nuclear portion of the various plants. The general conclusions are that the PBR technology is sound and that the HTR-K and PNP plant concepts appear to be achievable through appropriate continuing development programs, most of which are either under way or planned

  17. Reactor Materials Research

    International Nuclear Information System (INIS)

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel

  18. Nuclear reactor simulator

    International Nuclear Information System (INIS)

    The Nuclear Reactor Simulator was projected to help the basic training in the formation of the Nuclear Power Plants operators. It gives the trainee the opportunity to see the nuclear reactor dynamics. It's specially indicated to be used as the support tool to NPPT (Nuclear Power Preparatory Training) from NUS Corporation. The software was developed to Intel platform (80 x 86, Pentium and compatible ones) working under the Windows operational system from Microsoft. The program language used in development was Object Pascal and the compiler used was Delphi from Borland. During the development, computer algorithms were used, based in numeric methods, to the resolution of the differential equations involved in the process. (author)

  19. Diagnostics for hybrid reactors

    International Nuclear Information System (INIS)

    The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

  20. Small mirror fusion reactors

    International Nuclear Information System (INIS)

    Basic requirements for the pilot plants are that they produce a net product and that they have a potential for commercial upgrade. We have investigated a small standard mirror fusion-fission hybrid, a two-component tandem mirror hybrid, and two versions of a field-reversed mirror fusion reactor--one a steady state, single cell reactor with a neutral beam-sustained plasma, the other a moving ring field-reversed mirror where the plasma passes through a reaction chamber with no energy addition

  1. Reactor neutron dosimetry

    International Nuclear Information System (INIS)

    An analysis of requirements and possibilities for experimental neutron spectrum determination during the reactor pressure vessel surveil lance programme is given. Fast neutron spectrum and neutron dose rate were measured in the Fast neutron irradiation facility of our TRIGA reactor. It was shown that the facility can be used for calibration of neutron dosimeters and for irradiation of samples sensitive to neutron radiation. The investigation of the unfolding algorithm ITER was continued. Based on this investigations are two specialized unfolding program packages ITERAD and ITERGS written this year. They are able to unfold data from activation detectors and NaI(T1) gamma spectrometer respectively

  2. Perspectives on reactor safety

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course

  3. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  4. Nuclear reactor constructions

    International Nuclear Information System (INIS)

    A nuclear reactor construction comprising a reactor core submerged in a pool of liquid metal coolant in a primary vessel which is suspended from the roof structure of a containment vault. Control rods supported from the roof structure are insertable in the core which is carried on a support structure from the wall of the primary vessel. To prevent excessive relaxation of the support structure whereby the control rods would be displaced relative to the core, the support structure incorporates a normally inactive secondary structure designed to become effective in bracing the primary structure against further relaxation beyond a predetermined limit. (author)

  5. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  6. Reactor gamma spectrometry: status

    International Nuclear Information System (INIS)

    Current work is described for Compton Recoil Gamma-Ray Spectrometry including developments in experimental technique as well as recent reactor spectrometry measurements. The current status of the method is described concerning gamma spectromoetry probe design and response characteristics. Emphasis is given to gamma spectrometry work in US LWR and BR programs. Gamma spectrometry in BR environments are outlined by focussing on start-up plans for the Fast Test Reactor (FTR). Gamma spectrometry results are presented for a LWR pressure vessel mockup in the Poolside Critical Assembly (PCA) at Oak Ridge National Laboratory

  7. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  8. Organic Synthesis in a Spinning Tube-in-Tube (STT¢) Reactor

    Science.gov (United States)

    Continuous-flow reactors have been designed to minimize and potentially overcome the limitations of heat and mass transfer that are encountered in chemical reactors and further experienced upon scale up of a reaction. With process intensification, optimization of the reaction i...

  9. Development of a generic engineering model for packed bed reactors using computational fluid dynamics

    NARCIS (Netherlands)

    Tuinstra, B.F.

    2008-01-01

    Packed bed reactors are used in many chemical processes. With the advent of modern computers, flow simulation (Computational Fluid Dynamics, CFD) can be an aid in the design of process equipment. For particulate systems like packed bed reactors, simulation of the flow around the particles is very co

  10. Inherently safe technologies-chemical and nuclear

    International Nuclear Information System (INIS)

    Probabilistic risk assessments show an inverse relationship between the likelihood and the consequences of nuclear and chemical plant accidents, but the Bhopal accident has change public complacency about the safety of chemical plants to such an extent that public confidence is now at the same low level as with nuclear plants. The nuclear industry's response was to strengthen its institutions and improve its technologies, but the public may not be convinced. One solution is to develop reactors which do not depend upon the active intervention of humans of electromechanical devices to deal with emergencies, but which have physical properties that limit the possible temperature and power of a reactor. The Process Inherent Ultimately Safe and the modular High-Temperature Gas-Cooled reactors are two possibilities. the chemical industry needs to develop its own inherently safe design precepts that incorporate smallness, safe processes, and hardening against sabotage. 5 references

  11. Chemical Looping Combustion of Rice Husk

    Directory of Open Access Journals (Sweden)

    Rashmeet Singh Monga

    2015-05-01

    Full Text Available A thermodynamic investigation of direct chemical looping combustion (CLC of rice husk is presented in this paper. Both steam and CO2 are used for gasification within the temperature range of 500–1200˚C and different amounts of oxygen carriers. Chemical equilibrium model was considered for the CLC fuel reactor. The trends in product compositions of the fuel reactor, were determined. Rice husk gasification using 3 moles H2O and 0 moles CO2 per mole carbon (in rice husk at 1 bar pressure and 900˚C was found to be the best operating point for hundred percent carbon conversion in the fuel reactor. Such detailed thermodynamic studies can be useful to design chemical looping combustion processes using different fuels.

  12. Small space reactor power systems for unmanned solar system exploration missions

    International Nuclear Information System (INIS)

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model

  13. Risk prevention during reactor shutdown

    International Nuclear Information System (INIS)

    During reactor shutdown potential risks are issued of a number of maintenance operations. In this text we analyse these operations and give the modifications of technical specifications to ameliorate the reactor safety. 4 figs

  14. Power calibrations for TRIGA reactors

    International Nuclear Information System (INIS)

    The purpose of this paper is to establish a framework for the calorimetric power calibration of TRIGA reactors so that reliable results can be obtained with a precision better than ± 5%. Careful application of the same procedures has produced power calibration results that have been reproducible to ± 1.5%. The procedures are equally applicable to the Mark I, Mark II and Mark III reactors as well as to reactors having much larger reactor tanks and to TRIGA reactors capable of forced cooling up to 3 MW in some cases and 15 MW in another case. In the case of forced cooled TRIGA reactors, the calorimetric power calibration is applicable in the natural convection mode for these reactors using exactly the same procedures as are discussed below for the smaller TRIGA reactors (< 2 MW)

  15. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    Research and development activities in the Department of Reactor Engineering in fiscal 1982 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Since fiscal 1982, Systematic research and development work on safeguards technology has been added to the activities of the Department. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  16. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    The Operating Reactors Licensing Actions Summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors

  17. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  18. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  19. Eugene Wigner, The First Nuclear Reactor Engineer

    Science.gov (United States)

    Weinberg, Alvin M.

    2002-04-01

    All physicists recognize Eugene Wigner as a theoretical physicist of the very first rank. Yet Wigner's only advanced degree was in Chemical Engineering. His physics was largely self-taught. During WWII, Wigner brilliantly returned to his original occupation as an engineer. He led the small team of theoretical physicists and engineers who designed, in remarkable detail, the original graphite-moderated, water-cooled Hanford reactor, which produced the Pu239 of the Trinity and Nagasaki bombs. With his unparalleled understanding of chain reactors (matched only by Fermi) and his skill and liking for engineering, Wigner can properly be called the Founder of Nuclear Engineering. The evidence for this is demonstrated by a summary of his 37 Patents on various chain reacting systems.

  20. Models of iodine behavior in reactor containments

    International Nuclear Information System (INIS)

    Models are developed for many phenomena of interest concerning iodine behavior in reactor containments during severe accidents. Processes include speciation in both gas and liquid phases, reactions with surfaces, airborne aerosols, and other materials, and gas-liquid interface behavior. Although some models are largely empirical formulations, every effort has been made to construct mechanistic and rigorous descriptions of relevant chemical processes. All are based on actual experimental data generated at the Oak Ridge National Laboratory (ORNL) or elsewhere, and, hence, considerable data evaluation and parameter estimation are contained in this study. No application or encoding is attempted, but each model is stated in terms of rate processes, with the intention of allowing mechanistic simulation. Taken together, this collection of models represents a best estimate iodine behavior and transport in reactor accidents

  1. Models of iodine behavior in reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F.; Beahm, E.C.; Kress, T.S.

    1992-10-01

    Models are developed for many phenomena of interest concerning iodine behavior in reactor containments during severe accidents. Processes include speciation in both gas and liquid phases, reactions with surfaces, airborne aerosols, and other materials, and gas-liquid interface behavior. Although some models are largely empirical formulations, every effort has been made to construct mechanistic and rigorous descriptions of relevant chemical processes. All are based on actual experimental data generated at the Oak Ridge National Laboratory (ORNL) or elsewhere, and, hence, considerable data evaluation and parameter estimation are contained in this study. No application or encoding is attempted, but each model is stated in terms of rate processes, with the intention of allowing mechanistic simulation. Taken together, this collection of models represents a best estimate iodine behavior and transport in reactor accidents.

  2. Experimental validation of packed bed chemical-looping combustion

    NARCIS (Netherlands)

    Noorman, S.; Sint Annaland, van M.; Kuipers, J.A.M.

    2010-01-01

    Chemical-looping combustion has emerged as a promising alternative technology, intrinsically integrating CO2 capture in power production. A novel reactor concept based on dynamically operated packed beds has been proposed [Noorman, S., van Sint Annaland, M., Kuipers, J.A.M., 2007. Packed bed reactor

  3. Method of producing gaseous products using a downflow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C

    2014-09-16

    Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

  4. Design of Continuous Reactor Systems for API Production

    DEFF Research Database (Denmark)

    Pedersen, Michael Jønch

    lifecycle of the API and GMP can make a potential reactor setup non-feasible. If the pharmaceutical industry is to adapt to recent trends towards end-to-end and on-demand pharmaceutical production, access to standard reactor units for commonly-used chemical transformations and methods for timely decision...... in continuous reactor setups. Grignard chemistry encompasses a very powerful reaction type frequently applied in the pharmaceutical industry, for the formation of new carbon-carbon bonds. Three Grignard addition reactions have been studied, all having very different behaviors related to aspects of reaction......-scale production equipment enabled complete replacement of the existing batch production of this intermediate. The crowning achievement in this work was the realization of continuous laboratory reactor setups capable of manufacturing the entire GMP portion of the synthesis of melitracen HCl at H. Lundbeck A...

  5. Reactor operation safety information document

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  6. Reactor safety in Eastern Europe

    International Nuclear Information System (INIS)

    The papers presented to the GRS colloquium refer to the cooperative activities for reactor accident analysis and modification of the GRS computer codes for their application to reactors of the Russian design types of WWER or RBMK. Another topic is the safety of RBMK reactors in particular, and the current status of investigations and studies addressing the containment of unit 4 of the Chernobyl reactor station. All papers are indexed separately in report GRS--117. (HP)

  7. PROCESS INTENSIFICATION: OXIDATION OF BENZYL ALCOHOL USING A CONTINUOUS ISOTHERMAL REACTOR UNDER MICROWAVE IRRADIATION

    Science.gov (United States)

    In the past two decades, several investigations have been carried out using microwave radiation for performing chemical transformations. These transformations have been largely performed in conventional batch reactors with limited mixing and heat transfer capabilities. The reacti...

  8. Molten salt reactors. Synthesis of studies realized between 1973 and 1983. Chemistry file

    International Nuclear Information System (INIS)

    The chemistry of molten salt reactors was first acquired by foreign literature and developed by experimental studies. Salt preparation, analysis, chemical and electrochemical properties, interaction with metals or graphites and use of molten lead for direct cooling are examined

  9. Fast reactor programme

    International Nuclear Information System (INIS)

    This progress report summarizes the fast reactor research carried out by ECN during the period covering the year 1980. This research is mainly concerned with the cores of sodium-cooled breeders, in particular the SNR-300, and its related safety aspects. It comprises six items: A programme to determine relevant nuclear data of fission- and corrosion-products; A fuel performance programme comprising in-pile cladding failure experiments and a study of the consequences of loss-of-cooling and overpower; Basic research on fuel; Investigation of the changes in the mechanical properties of austenitic stainless steel DIN 1.4948 due to fast neutron doses, this material has been used in the manufacture of the reactor vessel and its internal components; Study of aerosols which could be formed at the time of a fast reactor accident and their progressive behaviour on leaking through cracks in the concrete containment; Studies on heat transfer in a sodium-cooled fast reactor core. As fast breeders operate at high power densities, an accurate knowledge of the heat transfer phenomena under single-phase and two-phase conditions is sought. (Auth.)

  10. Thermal Reactor Safety

    International Nuclear Information System (INIS)

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods

  11. Stabilized Spheromak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T

    2007-04-03

    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  12. Reactors. Nuclear propulsion ships

    International Nuclear Information System (INIS)

    This article has for object the development of nuclear-powered ships and the conception of the nuclear-powered ship. The technology of the naval propulsion P.W.R. type reactor is described in the article B.N.3 141 'Nuclear Boilers ships'. (N.C.)

  13. Pressure tube type reactor

    International Nuclear Information System (INIS)

    Heretofore, a pressure tube type reactor has a problem in that the evaluation for the reactor core performance is complicate and no sufficient consideration is made for the economical property, to increase the size of a calandria tank and make the cost expensive. Then, in the present invention, the inner diameter of a pressure tube is set to greater than 50% of the lattice gap in a square lattice like arrangement, and the difference between the inner and the outer diameters of the calandria tube is set smaller than 20% of the lattice gap. Further, the inner diameter of the pressure tube is set to greater than 40% and the difference between the inner and the outer diameters of the calandria tube is set smaller than 30% of the lattice gap in a triangle lattice arrangement. Then, heavy water-to-fuel volume ratio can be determined appropriately and the value for the coolant void coefficient is made more negative side, to improve the self controllability inherent to the reactor. In particular, when 72 to 90 fuel rods are arranged per one pressure tube, the power density per one fuel rod is can be increased by about twice. Accordingly, the number of the pressure tubes can be reduced about to one-half, thereby enabling to remarkably decrease the diameter of the reactor core and to reduce the size of the calandria, which is economical. (N.H.)

  14. Fusion reactor materials

    International Nuclear Information System (INIS)

    At the Belgian Nuclear Research Centre SCK-CEN, activities related to fusion focus on environmental tolerance of opto-electronic components. The objective of this program is to contribute to the knowledge on the behaviour, during and after neutron irradiation, of fusion-reactor materials and components. The main scientific activities for 1997 are summarized

  15. Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  16. Nuclear reactor building

    Science.gov (United States)

    Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.

  17. Studies on reactor physics

    International Nuclear Information System (INIS)

    Most of the peaceful applications of atomic energy are inherently dependent on advances in the science and technology of nuclear reactors, and aspects of this development are part of a major programme of the International Atomic Energy Agency. The most useful role that the Agency can play is as a co-ordinating body or central forum where the trends can be reviewed and the results assessed. Some of the basic studies are carried out by members of the Agency's own scientific staff. The Agency also convenes groups of experts from different countries to examine a particular problem in detail and make any necessary recommendations. Some of the important subjects are discussed at international scientific meetings held by the Agency. One of the subjects covered by such studies is the physics of nuclear reactors and a specific topic recently discussed was Codes for Reactor Computations, on which a seminar was held in Vienna in April this year. Another The members of the Panel described the development of heavy water reactors, the equipment and methods of research currently used, and plans for further development in their respective countries meeting of Panel of Experts on Heavy Water Lattices was held in Vienna in August 1959

  18. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude

  19. Cermet fuel reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs.

  20. Cermet fuel reactors

    International Nuclear Information System (INIS)

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs