WorldWideScience

Sample records for chemical reactions and processes

  1. MRI of chemical reactions and processes.

    Science.gov (United States)

    Britton, Melanie M

    2017-08-01

    As magnetic resonance imaging (MRI) can spatially resolve a wealth of molecular information available from nuclear magnetic resonance (NMR), it is able to non-invasively visualise the composition, properties and reactions of a broad range of spatially-heterogeneous molecular systems. Hence, MRI is increasingly finding applications in the study of chemical reactions and processes in a diverse range of environments and technologies. This article will explain the basic principles of MRI and how it can be used to visualise chemical composition and molecular properties, providing an overview of the variety of information available. Examples are drawn from the disciplines of chemistry, chemical engineering, environmental science, physics, electrochemistry and materials science. The review introduces a range of techniques used to produce image contrast, along with the chemical and molecular insight accessible through them. Methods for mapping the distribution of chemical species, using chemical shift imaging or spatially-resolved spectroscopy, are reviewed, as well as methods for visualising physical state, temperature, current density, flow velocities and molecular diffusion. Strategies for imaging materials with low signal intensity, such as those containing gases or low sensitivity nuclei, using compressed sensing, para-hydrogen or polarisation transfer, are discussed. Systems are presented which encapsulate the diversity of chemical and physical parameters observable by MRI, including one- and two-phase flow in porous media, chemical pattern formation, phase transformations and hydrodynamic (fingering) instabilities. Lastly, the emerging area of electrochemical MRI is discussed, with studies presented on the visualisation of electrochemical deposition and dissolution processes during corrosion and the operation of batteries, supercapacitors and fuel cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  2. Stereodynamics: From elementary processes to macroscopic chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Che, Dock-Chil [Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lin, King-Chuen [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Palazzetti, Federico [Scuola Normale Superiore, Pisa (Italy); Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Roma (Italy); Instituto de Fisica, Universidade Federal da Bahia, Salvador (Brazil)

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  3. Electronic dissipation processes during chemical reactions on surfaces

    CERN Document Server

    Stella, Kevin

    2012-01-01

    Hauptbeschreibung Every day in our life is larded with a huge number of chemical reactions on surfaces. Some reactions occur immediately, for others an activation energy has to be supplied. Thus it happens that though a reaction should thermodynamically run off, it is kinetically hindered. Meaning the partners react only to the thermodynamically more stable product state within a mentionable time if the activation energy of the reaction is supplied. With the help of catalysts the activation energy of a reaction can be lowered. Such catalytic processes on surfaces are widely used in industry. A

  4. Introduction to chemical reaction engineering

    International Nuclear Information System (INIS)

    Kim, Yeong Geol

    1990-10-01

    This deals with chemical reaction engineering with thirteen chapters. The contents of this book are introduction on reaction engineering, chemical kinetics, thermodynamics and chemical reaction, abnormal reactor, non-isothermal reactor, nonideal reactor, catalysis in nonuniform system, diffusion and reaction in porosity catalyst, design catalyst heterogeneous reactor in solid bed, a high molecule polymerization, bio reaction engineering, reaction engineering in material process, control multi-variable reactor process using digital computer.

  5. Isotope effects in gas-phase chemical reactions and photodissociation processes: Overview

    International Nuclear Information System (INIS)

    Kaye, J.A.

    1992-01-01

    The origins of isotope effects in equilibrium and non-equilibrium chemical processes are reviewed. In non-equilibrium processes, attention is given to isotope effects in simple bimolecular reactions, symmetry-related reactions, and photodissociation processes. Recent examples of isotope effects in these areas are reviewed. Some indication of other scientific areas for which measurements and/or calculations of isotope effects are used is also given. Examples presented focus on neutral molecule chemistry and in many cases complement examples considered in greater detail in the other chapters of this volume

  6. Microfluidic chemical reaction circuits

    Science.gov (United States)

    Lee, Chung-cheng [Irvine, CA; Sui, Guodong [Los Angeles, CA; Elizarov, Arkadij [Valley Village, CA; Kolb, Hartmuth C [Playa del Rey, CA; Huang, Jiang [San Jose, CA; Heath, James R [South Pasadena, CA; Phelps, Michael E [Los Angeles, CA; Quake, Stephen R [Stanford, CA; Tseng, Hsian-rong [Los Angeles, CA; Wyatt, Paul [Tipperary, IE; Daridon, Antoine [Mont-Sur-Rolle, CH

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  7. Chemical kinetics of gas reactions

    CERN Document Server

    Kondrat'Ev, V N

    2013-01-01

    Chemical Kinetics of Gas Reactions explores the advances in gas kinetics and thermal, photochemical, electrical discharge, and radiation chemical reactions. This book is composed of 10 chapters, and begins with the presentation of general kinetic rules for simple and complex chemical reactions. The next chapters deal with the experimental methods for evaluating chemical reaction mechanisms and some theories of elementary chemical processes. These topics are followed by discussions on certain class of chemical reactions, including unimolecular, bimolecular, and termolecular reactions. The rema

  8. Modeling chemical reactions for drug design.

    Science.gov (United States)

    Gasteiger, Johann

    2007-01-01

    Chemical reactions are involved at many stages of the drug design process. This starts with the analysis of biochemical pathways that are controlled by enzymes that might be downregulated in certain diseases. In the lead discovery and lead optimization process compounds have to be synthesized in order to test them for their biological activity. And finally, the metabolism of a drug has to be established. A better understanding of chemical reactions could strongly help in making the drug design process more efficient. We have developed methods for quantifying the concepts an organic chemist is using in rationalizing reaction mechanisms. These methods allow a comprehensive modeling of chemical reactivity and thus are applicable to a wide variety of chemical reactions, from gas phase reactions to biochemical pathways. They are empirical in nature and therefore allow the rapid processing of large sets of structures and reactions. We will show here how methods have been developed for the prediction of acidity values and of the regioselectivity in organic reactions, for designing the synthesis of organic molecules and of combinatorial libraries, and for furthering our understanding of enzyme-catalyzed reactions and of the metabolism of drugs.

  9. Coarse grain model for coupled thermo-mechano-chemical processes and its application to pressure-induced endothermic chemical reactions

    International Nuclear Information System (INIS)

    Antillon, Edwin; Banlusan, Kiettipong; Strachan, Alejandro

    2014-01-01

    We extend a thermally accurate model for coarse grain dynamics (Strachan and Holian 2005 Phys. Rev. Lett. 94 014301) to enable the description of stress-induced chemical reactions in the degrees of freedom internal to the mesoparticles. Similar to the breathing sphere model, we introduce an additional variable that describes the internal state of the particles and whose dynamics is governed both by an internal potential energy function and by interparticle forces. The equations of motion of these new variables are derived from a Hamiltonian and the model exhibits two desired features: total energy conservation and Galilean invariance. We use a simple model material with pairwise interactions between particles and study pressure-induced chemical reactions induced by hydrostatic and uniaxial compression. These examples demonstrate the ability of the model to capture non-trivial processes including the interplay between mechanical, thermal and chemical processes of interest in many applications. (paper)

  10. Process for carrying out a chemical reaction with ionic liquid and carbon dioxide under pressure

    NARCIS (Netherlands)

    Kroon, M.C.; Shariati, A.; Florusse, L.J.; Peters, C.J.; Van Spronsen, J.; Witkamp, G.J.; Sheldon, R.A.; Gutkowski, K.I.

    2006-01-01

    The invention is directed to a process for carrying out a chemical reaction in an ionic liquid as solvent and CO2 as cosolvent, in which process reactants are reacted in a homogeneous phase at selected pressure and temperature to generate a reaction product at least containing an end-product of the

  11. Flow-Injection Responses of Diffusion Processes and Chemical Reactions

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2000-01-01

    tool of automated analytical chemistry. The need for an even lower consumption of chemicals and for computer analysis has motivated a study of the FIA peak itself, that is, a theoretical model was developed, that provides detailed knowledge of the FIA profile. It was shown that the flow in a FIA...... manifold may be characterised by a diffusion coefficient that depends on flow rate, denoted as the kinematic diffusion coefficient. The description was applied to systems involving species of chromium, both in the case of simple diffusion and in the case of chemical reactions. It is suggested that it may...... be used in the resolution of FIA profiles to obtain information about the content of interference’s, in the study of chemical reaction kinetics and to measure absolute concentrations within the FIA-detector cell....

  12. Investigations on an environment friendly chemical reaction process (eco-chemistry). 2; Kankyo ni yasashii kagaku hanno process (eko chemistry) ni kansuru chosa. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In order to structure a chemical reaction process that does not discharge a large amount of waste by-products or harmful chemical substances, or so-called environment friendly process, investigations and discussions were given based on the results derived in the previous fiscal year. A proposal was made to reduce environmental load on development of oxidized and dehydrogenated catalysts that can produce selectively ethylene, propylene and isobutylene in an oxidation process. In liquid phase oxidation, redox-based oxidation and solid catalyzation of automatic oxidation reaction were enumerated. In acid base catalyst reaction, development of ultra strong solid acid was described to structure no pollution discharging process. In the fine chemical and pharmaceutical fields, the optical active substance method and the position-selective aromatics displacement reaction were evaluated to reduce environmental load. A questionnaire survey performed on major chemical corporations inside and outside the country revealed the following processes as the ones that can cause hidden environmental problems: processes discharging large amount of wastes, processes treating dangerous materials, and processes consuming large amount of energy. Development of catalysts is important that can realize high yield, high selectivity and reactions under mild conditions as a future environment harmonizing chemical process. 117 refs., 23 figs., 22 tabs.

  13. Chemical transport reactions

    CERN Document Server

    Schäfer, Harald

    2013-01-01

    Chemical Transport Reactions focuses on the processes and reactions involved in the transport of solid or liquid substances to form vapor phase reaction products. The publication first offers information on experimental and theoretical principles and the transport of solid substances and its special applications. Discussions focus on calculation of the transport effect of heterogeneous equilibria for a gas motion between equilibrium spaces; transport effect and the thermodynamic quantities of the transport reaction; separation and purification of substances by means of material transport; and

  14. Insights into the mechanisms on chemical reactions: reaction paths for chemical reactions

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Rosen, E.; Eades, R.A.

    1987-01-01

    We report reaction paths for two prototypical chemical reactions: Li + HF, an electron transfer reaction, and OH + H 2 , an abstraction reaction. In the first reaction we consider the connection between the energetic terms in the reaction path Hamiltonian and the electronic changes which occur upon reaction. In the second reaction we consider the treatment of vibrational effects in chemical reactions in the reaction path formalism. 30 refs., 9 figs

  15. Chemical changes in groundwater and their reaction rates

    International Nuclear Information System (INIS)

    Talma, A.S.

    1981-01-01

    The evolution of the major ion concentrations of groundwater (Na, K, Ca, Mg, HCO 3 , SO 4 , Cl and NO 3 ) can be described as the consequence of a number of competing chemical reactions. With the aid of the naturally occuring radioactive and stable isotopes some of these reactions can be separated, identified and followed in space and time. In some field studies, especialy of artesian water, the rates of reactions can be estimated. A number of processes observed in South African sandstones aquifers are discussed and the variable reaction rates demonstrated. Reactions that can be identified include carbonate solution, chemical weathering, salt leaching, cation exchange and redox processes

  16. Reactive chemicals and process hazards

    International Nuclear Information System (INIS)

    Surianarayanan, M.

    2016-01-01

    Exothermic chemical reactions are often accompanied by significant heat release, and therefore, need a thorough investigation before they are taken to a plant scale. Sudden thermal energy releases from exothermic decompositions and runaway reactions have contributed to serious fire and explosions in several chemical process plants. Similarly, thermal runaway had also occurred in storage and transportation of reactive chemicals. The secondary events of thermal runaway reactions can be rupture of process vessel, toxic spills and release of explosive vapor clouds or combination of these also. The explosion hazards are governed by the system thermodynamics and kinetics of the thermal process. Theoretical prediction of limiting temperature is difficult due to process complexities. Further, the kinetic data obtained through classical techniques, at conditions far away from runaway situation, is often not valid for assessing the runaway behavior of exothermic processes. The main focus of this lecture is to discuss the causes and several contributing factors for thermal runaway and instability and present analyses of the methodologies of the new instrumental techniques for assessing the thermal hazards of reactive chemicals during processing, storage and transportation. (author)

  17. Laser studies of chemical reaction and collision processes

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, G. [Columbia Univ., New York, NY (United States)

    1993-12-01

    This work has concentrated on several interrelated projects in the area of laser photochemistry and photophysics which impinge on a variety of questions in combustion chemistry and general chemical kinetics. Infrared diode laser probes of the quenching of molecules with {open_quotes}chemically significant{close_quotes} amounts of energy in which the energy transferred to the quencher has, for the first time, been separated into its vibrational, rotational, and translational components. Probes of quantum state distributions and velocity profiles for atomic fragments produced in photodissociation reactions have been explored for iodine chloride.

  18. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    International Nuclear Information System (INIS)

    Roh, Heui-Seol

    2015-01-01

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  19. Ultrasound in chemical processes

    International Nuclear Information System (INIS)

    Baig, S.; Farooq, R.; Malik, A.H.

    2009-01-01

    The use of ultrasound to promote chemical reactions or sono chemistry is a field of chemistry which involves the process of acoustic cavitations i.e. the collapse of microscopic bubbles in liquid. There are two essential components for the application of sono chemistry, a liquid medium and a source of high-energy vibrations. The liquid medium is necessary because sono chemistry is driven by acoustic cavitations that can only occur in liquids. The source of the vibrational energy is the transducer. The chemical effects of ultrasound include the enhancement of reaction rates at ambient temperatures and striking advancements in stoichiometric and catalytic reactions In some cases, ultrasonic irradiation can increase reactivities by nearly million fold. The ultrasound has large number of applications not only in emending old chemical processes but also in developing new synthetic strategies. Ultrasound enhances all chemical and physical processes e.g., crystallization, vitamin synthesis, preparation of catalysts, dissolution of chemicals, organometallic reactions, electrochemical processes, etc. High-power ultrasonics is a new powerful technology that is not only safe and environmentally friendly in its application but is also efficient and economical. It can be applied to existing processes to eliminate the need for chemicals and/or heat application in a variety of industrial processes. (author)

  20. Aerosol simulation including chemical and nuclear reactions

    International Nuclear Information System (INIS)

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs

  1. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  2. A transformation theory of stochastic evolution in Red Moon methodology to time evolution of chemical reaction process in the full atomistic system.

    Science.gov (United States)

    Suzuki, Yuichi; Nagaoka, Masataka

    2017-05-28

    Atomistic information of a whole chemical reaction system, e.g., instantaneous microscopic molecular structures and orientations, offers important and deeper insight into clearly understanding unknown chemical phenomena. In accordance with the progress of a number of simultaneous chemical reactions, the Red Moon method (a hybrid Monte Carlo/molecular dynamics reaction method) is capable of simulating atomistically the chemical reaction process from an initial state to the final one of complex chemical reaction systems. In the present study, we have proposed a transformation theory to interpret the chemical reaction process of the Red Moon methodology as the time evolution process in harmony with the chemical kinetics. For the demonstration of the theory, we have chosen the gas reaction system in which the reversible second-order reaction H 2 + I 2  ⇌ 2HI occurs. First, the chemical reaction process was simulated from the initial configurational arrangement containing a number of H 2 and I 2 molecules, each at 300 K, 500 K, and 700 K. To reproduce the chemical equilibrium for the system, the collision frequencies for the reactions were taken into consideration in the theoretical treatment. As a result, the calculated equilibrium concentrations [H 2 ] eq and equilibrium constants K eq at all the temperatures were in good agreement with their corresponding experimental values. Further, we applied the theoretical treatment for the time transformation to the system and have shown that the calculated half-life τ's of [H 2 ] reproduce very well the analytical ones at all the temperatures. It is, therefore, concluded that the application of the present theoretical treatment with the Red Moon method makes it possible to analyze reasonably the time evolution of complex chemical reaction systems to chemical equilibrium at the atomistic level.

  3. Runaway chemical reaction exposes community to highly toxic chemicals

    International Nuclear Information System (INIS)

    Kaszniak, Mark; Vorderbrueggen, John

    2008-01-01

    The U.S. Chemical Safety and Hazard Investigation Board (CSB) conducted a comprehensive investigation of a runaway chemical reaction at MFG Chemical (MFG) in Dalton, Georgia on April 12, 2004 that resulted in the uncontrolled release of a large quantity of highly toxic and flammable allyl alcohol and allyl chloride into the community. Five people were hospitalized and 154 people required decontamination and treatment for exposure to the chemicals. This included police officers attempting to evacuate the community and ambulance personnel who responded to 911 calls from residents exposed to the chemicals. This paper presents the findings of the CSB report (U.S. Chemical Safety and Hazard Investigation Board (CSB), Investigation Report: Toxic Chemical Vapor Cloud Release, Report No. 2004-09-I-GA, Washington DC, April 2006) including a discussion on tolling practices; scale-up of batch reaction processes; Process Safety Management (PSM) and Risk Management Plan (RMP) implementation; emergency planning by the company, county and the city; and emergency response and mitigation actions taken during the incident. The reactive chemical testing and atmospheric dispersion modeling conducted by CSB after the incident and recommendations adopted by the Board are also discussed

  4. Using Drawing Technology to Assess Students' Visualizations of Chemical Reaction Processes

    Science.gov (United States)

    Chang, Hsin-Yi; Quintana, Chris; Krajcik, Joseph

    2014-01-01

    In this study, we investigated how students used a drawing tool to visualize their ideas of chemical reaction processes. We interviewed 30 students using thinking-aloud and retrospective methods and provided them with a drawing tool. We identified four types of connections the students made as they used the tool: drawing on existing knowledge,…

  5. Molecular codes in biological and chemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Dennis Görlich

    Full Text Available Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio- chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries, biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades, an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.

  6. CHEMICAL REACTIONS ON ADSORBING SURFACE: KINETIC LEVEL OF DESCRIPTION

    Directory of Open Access Journals (Sweden)

    P.P.Kostrobii

    2003-01-01

    Full Text Available Based on the effective Hubbard model we suggest a statistical description of reaction-diffusion processes for bimolecular chemical reactions of gas particles adsorbed on the metallic surface. The system of transport equations for description of particles diffusion as well as reactions is obtained. We carry out the analysis of the contributions of all physical processes to the formation of diffusion coefficients and chemical reactions constants.

  7. Experimental and numerical reaction analysis on sodium-water chemical reaction field

    International Nuclear Information System (INIS)

    Deguchi, Yoshihiro; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2015-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using an elementary reaction analysis. A quasi one-dimensional flame model is applied to a sodium-water counter-flow reaction field. The analysis contains 25 elementary reactions, which consist of 17 H_2-O_2 and 8 Na-H_2O reactions. Temperature and species concentrations in the counter-flow reaction field were measured using laser diagnostics such as LIF and CARS. The main reaction in the experimental conditions is Na+H_2O → NaOH+H and OH is produced by H_2O+H → H_2+OH. It is demonstrated that the reaction model in this study well explains the structure of the sodium-water counter-flow diffusion flame. (author)

  8. Relativistic thermodynamics of irreversible processes I. Heat conduction, diffusion, viscous flow and chemical reactions; formal part

    NARCIS (Netherlands)

    Kluitenberg, G.A.; Groot, S.R. de; Mazur, P.

    1953-01-01

    The relativistic thermodynamics of irreversible processes is developed for an isotropic mixture in which heat conduction, diffusion, viscous flow, chemical reactions and their cross-phenomena may occur. The four-vectors, representing the relative flows of matter, are defined in such a way that, in

  9. Microfabricated sleeve devices for chemical reactions

    Science.gov (United States)

    Northrup, M. Allen

    2003-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  10. Plasma-chemical processes and systems

    International Nuclear Information System (INIS)

    Castro B, J.

    1987-01-01

    The direct applications of plasma technology on chemistry and metallurgy are presented. The physical fundaments of chemically active non-equilibrium plasma, the reaction kinetics, and the physical chemical transformations occuring in the electrical discharges, which are applied in the industry, are analysed. Some plasma chemical systems and processes related to the energy of hydrogen, with the chemical technology and with the metallurgy are described. Emphasis is given to the optimization of the energy effectiveness of these processes to obtain reducers and artificial energetic carriers. (M.C.K.) [pt

  11. Flows and chemical reactions in homogeneous mixtures

    CERN Document Server

    Prud'homme, Roger

    2013-01-01

    Flows with chemical reactions can occur in various fields such as combustion, process engineering, aeronautics, the atmospheric environment and aquatics. The examples of application chosen in this book mainly concern homogeneous reactive mixtures that can occur in propellers within the fields of process engineering and combustion: - propagation of sound and monodimensional flows in nozzles, which may include disequilibria of the internal modes of the energy of molecules; - ideal chemical reactors, stabilization of their steady operation points in the homogeneous case of a perfect mixture and c

  12. Global Controllability of Chemical Reactions

    OpenAIRE

    Drexler, Dániel András; Tóth, János

    2015-01-01

    Controllability of chemical reactions is an important problem in chemical engineering science. In control theory, analysis of the controllability of linear systems is well-founded, however the dynamics of chemical reactions is usually nonlinear. Global controllability properties of chemical reactions are analyzed here based on the Lie-algebra of the vector fields associated to elementary reactions. A chemical reaction is controllable almost everywhere if all the reaction rate coefficients can...

  13. Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results

    Science.gov (United States)

    Plumlee, Geoffrey S.; Ridley, W. Ian

    1992-01-01

    Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.

  14. The Electronic Flux in Chemical Reactions. Insights on the Mechanism of the Maillard Reaction

    Science.gov (United States)

    Flores, Patricio; Gutiérrez-Oliva, Soledad; Herrera, Bárbara; Silva, Eduardo; Toro-Labbé, Alejandro

    2007-11-01

    The electronic transfer that occurs during a chemical process is analysed in term of a new concept, the electronic flux, that allows characterizing the regions along the reaction coordinate where electron transfer is actually taking place. The electron flux is quantified through the variation of the electronic chemical potential with respect to the reaction coordinate and is used, together with the reaction force, to shed light on reaction mechanism of the Schiff base formation in the Maillard reaction. By partitioning the reaction coordinate in regions in which different process might be taking place, electronic reordering associated to polarization and transfer has been identified and found to be localized at specific transition state regions where most bond forming and breaking occur.

  15. Chemical kinetics and reaction mechanism

    International Nuclear Information System (INIS)

    Jung, Ou Sik; Park, Youn Yeol

    1996-12-01

    This book is about chemical kinetics and reaction mechanism. It consists of eleven chapters, which deal with reaction and reaction speed on reaction mechanism, simple reaction by rate expression, reversible reaction and simultaneous reaction, successive reaction, complicated reaction mechanism, assumption for reaction mechanism, transition state theory, successive reaction and oscillating reaction, reaction by solution, research method high except kinetics on reaction mechanism, high reaction of kinetics like pulsed radiolysis.

  16. Silicon-based sleeve devices for chemical reactions

    Science.gov (United States)

    Northrup, M. Allen; Mariella, Jr., Raymond P.; Carrano, Anthony V.; Balch, Joseph W.

    1996-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  17. Infrared laser-induced chemical reactions

    International Nuclear Information System (INIS)

    Katayama, Mikio

    1978-01-01

    The experimental means which clearly distinguishes between infrared ray-induced reactions and thermal reactions has been furnished for the first time when an intense monochromatic light source has been obtained by the development of infrared laser. Consequently, infrared laser-induced chemical reactions have started to develop as one field of chemical reaction researches. Researches of laser-induced chemical reactions have become new means for the researches of chemical reactions since they were highlighted as a new promising technique for isotope separation. Specifically, since the success has been reported in 235 U separation using laser in 1974, comparison of this method with conventional separation techniques from the economic point of view has been conducted, and it was estimated by some people that the laser isotope separation is cheaper. This report briefly describes on the excitation of oscillation and reaction rate, and introduces the chemical reactions induced by CW laser and TEA CO 2 laser. Dependence of reaction yield on laser power, measurement of the absorbed quantity of infrared ray and excitation mechanism are explained. Next, isomerizing reactions are reported, and finally, isotope separation is explained. It was found that infrared laser-induced chemical reactions have the selectivity for isotopes. Since it is evident that there are many examples different from thermal and photo-chemical reactions, future collection of the data is expected. (Wakatsuki, Y.)

  18. Computational prediction of chemical reactions: current status and outlook.

    Science.gov (United States)

    Engkvist, Ola; Norrby, Per-Ola; Selmi, Nidhal; Lam, Yu-Hong; Peng, Zhengwei; Sherer, Edward C; Amberg, Willi; Erhard, Thomas; Smyth, Lynette A

    2018-06-01

    Over the past few decades, various computational methods have become increasingly important for discovering and developing novel drugs. Computational prediction of chemical reactions is a key part of an efficient drug discovery process. In this review, we discuss important parts of this field, with a focus on utilizing reaction data to build predictive models, the existing programs for synthesis prediction, and usage of quantum mechanics and molecular mechanics (QM/MM) to explore chemical reactions. We also outline potential future developments with an emphasis on pre-competitive collaboration opportunities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Chemical kinetics and oil shale process design

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  20. Nonequilibrium thermodynamics and a fluctuation theorem for individual reaction steps in a chemical reaction network

    International Nuclear Information System (INIS)

    Pal, Krishnendu; Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2015-01-01

    We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction. (paper)

  1. Chemical potential and reaction electronic flux in symmetry controlled reactions.

    Science.gov (United States)

    Vogt-Geisse, Stefan; Toro-Labbé, Alejandro

    2016-07-15

    In symmetry controlled reactions, orbital degeneracies among orbitals of different symmetries can occur along a reaction coordinate. In such case Koopmans' theorem and the finite difference approximation provide a chemical potential profile with nondifferentiable points. This results in an ill-defined reaction electronic flux (REF) profile, since it is defined as the derivative of the chemical potential with respect to the reaction coordinate. To overcome this deficiency, we propose a new way for the calculation of the chemical potential based on a many orbital approach, suitable for reactions in which symmetry is preserved. This new approach gives rise to a new descriptor: symmetry adapted chemical potential (SA-CP), which is the chemical potential corresponding to a given irreducible representation of a symmetry group. A corresponding symmetry adapted reaction electronic flux (SA-REF) is also obtained. Using this approach smooth chemical potential profiles and well defined REFs are achieved. An application of SA-CP and SA-REF is presented by studying the Cs enol-keto tautomerization of thioformic acid. Two SA-REFs are obtained, JA'(ξ) and JA'' (ξ). It is found that the tautomerization proceeds via an in-plane delocalized 3-center 4-electron O-H-S hypervalent bond which is predicted to exist only in the transition state (TS) region. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Coupling between solute transport and chemical reactions models

    International Nuclear Information System (INIS)

    Samper, J.; Ajora, C.

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs

  3. Investigation of Evaluation method of chemical runaway reaction

    International Nuclear Information System (INIS)

    Sato, Yoshihiko; Sasaya, Shinji; Kurakata, Koichiro; Nojiri, Ichiro

    2002-02-01

    Safety study 'Study of evaluation of abnormal occurrence for chemical substances in the nuclear fuel facilities' will be carried out from 2001 to 2005. In this study, the prediction of thermal hazards of chemical substances will be investigated and prepared. The hazard prediction method of chemical substances will be constructed from these results. Therefore, the hazard prediction methods applied in the chemical engineering in which the chemical substances with the hazard of fire and explosion were often treated were investigated. CHETAH (The ASTM Computer Program for Chemical Thermodynamic and Energy Release Evaluation) developed by ASTM (American Society for Testing and Materials) and TSS (Thermal Safety Software) developed by CISP (ChemInform St. Petersburg) were introduced and the fire and explosion hazards of chemical substances and reactions in the reprocessing process were evaluated. From these evaluated results, CHETAH could almost estimate the heat of reaction at 10% accuracy. It was supposed that CHETAH was useful as a screening for the hazards of fire and explosion of the new chemical substances and so on. TSS could calculate the reaction rate and the reaction behavior from the data measured by the various calorimeters rapidly. It was supposed that TSS was useful as an evaluation method for the hazards of fire and explosion of the new chemical reactions and so on. (author)

  4. Reaction Decoder Tool (RDT): extracting features from chemical reactions.

    Science.gov (United States)

    Rahman, Syed Asad; Torrance, Gilliean; Baldacci, Lorenzo; Martínez Cuesta, Sergio; Fenninger, Franz; Gopal, Nimish; Choudhary, Saket; May, John W; Holliday, Gemma L; Steinbeck, Christoph; Thornton, Janet M

    2016-07-01

    Extracting chemical features like Atom-Atom Mapping (AAM), Bond Changes (BCs) and Reaction Centres from biochemical reactions helps us understand the chemical composition of enzymatic reactions. Reaction Decoder is a robust command line tool, which performs this task with high accuracy. It supports standard chemical input/output exchange formats i.e. RXN/SMILES, computes AAM, highlights BCs and creates images of the mapped reaction. This aids in the analysis of metabolic pathways and the ability to perform comparative studies of chemical reactions based on these features. This software is implemented in Java, supported on Windows, Linux and Mac OSX, and freely available at https://github.com/asad/ReactionDecoder : asad@ebi.ac.uk or s9asad@gmail.com. © The Author 2016. Published by Oxford University Press.

  5. The behaviour of radionuclides in gas adsorption chromatographic processes with superimposed chemical reactions (chlorides)

    International Nuclear Information System (INIS)

    Eichler, B.

    1996-01-01

    Thermochemical relationships are derived describing the gas adsorption chromatographic transport of carrier-free radionuclides. Especially, complex adsorption processes such as dissociative, associative and substitutive adsorption are dealt with. The comparison of experimental with calculated data allows the determination of the type of adsorption reaction, which is the basis of the respective gas chromatographic process. The behaviour of carrier-free radionuclides of elements Pu, Ce, Ru, Co and Cr in thermochromatographic experiments with chlorinating carrier gases can be described as dissociative adsorption of chlorides in higher oxidation states. The gas adsorption chromatographic transport of Zr with oxygen and chlorine containing carrier gas is shown to be a substitutive adsorption process. The consequences of superimposed chemical reactions on the interpretation of results and the conception of gas adsorption chromatographic experiments with carrier-free radionuclides in isothermal columns and in temperature gradient tubes is discussed. (orig.)

  6. Theoretical studies of chemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, G.C. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

  7. BGK-type models in strong reaction and kinetic chemical equilibrium regimes

    International Nuclear Information System (INIS)

    Monaco, R; Bianchi, M Pandolfi; Soares, A J

    2005-01-01

    A BGK-type procedure is applied to multi-component gases undergoing chemical reactions of bimolecular type. The relaxation process towards local Maxwellians, depending on mass and numerical densities of each species as well as common velocity and temperature, is investigated in two different cases with respect to chemical regimes. These cases are related to the strong reaction regime characterized by slow reactions, and to the kinetic chemical equilibrium regime where fast reactions take place. The consistency properties of both models are stated in detail. The trend to equilibrium is numerically tested and comparisons for the two regimes are performed within the hydrogen-air and carbon-oxygen reaction mechanism. In the spatial homogeneous case, it is also shown that the thermodynamical equilibrium of the models recovers satisfactorily the asymptotic equilibrium solutions to the reactive Euler equations

  8. Mass transfer with chemical reaction in multiphase systems

    International Nuclear Information System (INIS)

    Alper, E.

    1983-01-01

    These volumes deal with the phenomenon of 'mass transfer with chemical reaction' which is of industrial, biological and physiological importance. In process engineering, it is encountered both in separation processes and in reaction engineering and both aspects are covered here in four sections: introduction; gas-liquid system; liquid-liquid system; and gas-liquid-solid system

  9. On the Complexity of Reconstructing Chemical Reaction Networks

    DEFF Research Database (Denmark)

    Fagerberg, Rolf; Flamm, Christoph; Merkle, Daniel

    2013-01-01

    The analysis of the structure of chemical reaction networks is crucial for a better understanding of chemical processes. Such networks are well described as hypergraphs. However, due to the available methods, analyses regarding network properties are typically made on standard graphs derived from...... the full hypergraph description, e.g. on the so-called species and reaction graphs. However, a reconstruction of the underlying hypergraph from these graphs is not necessarily unique. In this paper, we address the problem of reconstructing a hypergraph from its species and reaction graph and show NP...

  10. Mining chemical reactions using neighborhood behavior and condensed graphs of reactions approaches.

    Science.gov (United States)

    de Luca, Aurélie; Horvath, Dragos; Marcou, Gilles; Solov'ev, Vitaly; Varnek, Alexandre

    2012-09-24

    This work addresses the problem of similarity search and classification of chemical reactions using Neighborhood Behavior (NB) and Condensed Graphs of Reaction (CGR) approaches. The CGR formalism represents chemical reactions as a classical molecular graph with dynamic bonds, enabling descriptor calculations on this graph. Different types of the ISIDA fragment descriptors generated for CGRs in combination with two metrics--Tanimoto and Euclidean--were considered as chemical spaces, to serve for reaction dissimilarity scoring. The NB method has been used to select an optimal combination of descriptors which distinguish different types of chemical reactions in a database containing 8544 reactions of 9 classes. Relevance of NB analysis has been validated in generic (multiclass) similarity search and in clustering with Self-Organizing Maps (SOM). NB-compliant sets of descriptors were shown to display enhanced mapping propensities, allowing the construction of better Self-Organizing Maps and similarity searches (NB and classical similarity search criteria--AUC ROC--correlate at a level of 0.7). The analysis of the SOM clusters proved chemically meaningful CGR substructures representing specific reaction signatures.

  11. Chemical burn or reaction

    Science.gov (United States)

    Chemicals that touch skin can lead to a reaction on the skin, throughout the body, or both. ... leave the person alone and watch carefully for reactions affecting the entire body. Note: If a chemical gets into the eyes, the eyes should be ...

  12. Temperature dependence on sodium-water chemical reaction

    International Nuclear Information System (INIS)

    Tamura, Kenta; Deguchi, Yoshihiro; Suzuki, Koichi; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2012-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using laser diagnostics. A quasi one-dimensional flame model is also applied to a sodium-water counter-flow reaction field. Temperature, H 2 , H 2 O, OH, Na and Particulate matter were measured using laser induced fluorescence and CARS in the counter-flow reaction field. The temperature of the reaction field was also modified to reduce the condensation of Na in the reaction zone. (author)

  13. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Science.gov (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2018-04-17

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  14. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Science.gov (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2017-05-23

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  15. Transport Properties of a Kinetic Model for Chemical Reactions without Barriers

    International Nuclear Information System (INIS)

    Alves, Giselle M.; Kremer, Gilberto M.; Soares, Ana Jacinta

    2011-01-01

    A kinetic model of the Boltzmann equation for chemical reactions without energy barrier is considered here with the aim of evaluating the reaction rate and characterizing the transport coefficient of shear viscosity for the reactive system. The Chapman-Enskog solution of the Boltzmann equation is used to compute the chemical reaction effects, in a flow regime for which the reaction process is close to the final equilibrium state. Some numerical results are provided illustrating that the considered chemical reaction without energy barrier can induce an appreciable influence on the reaction rate and on the transport coefficient of shear viscosity.

  16. Chemical reactions directed Peptide self-assembly.

    Science.gov (United States)

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  17. Synthesis of Cu-coated Graphite Powders Using a Chemical Reaction Process

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun-Ho; Park, Hyun-Kuk; Oh, Ik-Hyun [Korea Institute of Industrial Technology (KITECH), Gwangju (Korea, Republic of); Lim, Jae-Won [Chonbuk National University, Jeonju (Korea, Republic of)

    2017-05-15

    In this paper, Cu-coated graphite powders for a low thermal expansion coefficient and a high thermal conductivity are fabricated using a chemical reaction process. The Cu particles adhere to the irregular graphite powders and they homogeneously disperse in the graphite matrix. Cu-coated graphite powders are coarser at approximately 3-4 μm than the initial graphite powders; furthermore, their XRD patterns exhibit a low intensity in the oxide peak with low Zn powder content. For the passivation powders, the transposition solvent content has low values, and the XRD pattern of the oxide peaks is almost non-existent, but the high transposition solvent content does not exhibit a difference to the non-passivation treated powders.

  18. Current status of uranium enrichment by way of chemical exchange reactions

    International Nuclear Information System (INIS)

    El Basyouny, A.; Bechthold, H.C.; Knoechel, A.; Vollmer, H.J.

    1985-04-01

    For this report, conference proceedings, patents and other types of literature have been collected to present an account of the current status of uranium enrichment by way of chemical exchange reactions. The report further presents a new concept along with the relevant process strategy developed by the authors. The principal process of the new concept is a chemical exchange process with crown ethers, complexed or free, playing an important part in the reactions. The authors also describe their experiments carried out for establishing suitable chemical systems. (orig./PW) [de

  19. Surface chemical reactions induced by molecules electronically-excited in the gas

    DEFF Research Database (Denmark)

    Petrunin, Victor V.

    2011-01-01

    and alignment are taking place, guiding all the molecules towards the intersections with the ground state PES, where transitions to the ground state PES will occur with minimum energy dissipation. The accumulated kinetic energy may be used to overcome the chemical reaction barrier. While recombination chemical...... be readily produced. Products of chemical adsorption and/or chemical reactions induced within adsorbates are aggregated on the surface and observed by light scattering. We will demonstrate how pressure and spectral dependencies of the chemical outcomes, polarization of the light and interference of two laser...... beams inducing the reaction can be used to distinguish the new process we try to investigate from chemical reactions induced by photoexcitation within adsorbed molecules and/or gas phase photolysis....

  20. Reformulation and solution of the master equation for multiple-well chemical reactions.

    Science.gov (United States)

    Georgievskii, Yuri; Miller, James A; Burke, Michael P; Klippenstein, Stephen J

    2013-11-21

    We consider an alternative formulation of the master equation for complex-forming chemical reactions with multiple wells and bimolecular products. Within this formulation the dynamical phase space consists of only the microscopic populations of the various isomers making up the reactive complex, while the bimolecular reactants and products are treated equally as sources and sinks. This reformulation yields compact expressions for the phenomenological rate coefficients describing all chemical processes, i.e., internal isomerization reactions, bimolecular-to-bimolecular reactions, isomer-to-bimolecular reactions, and bimolecular-to-isomer reactions. The applicability of the detailed balance condition is discussed and confirmed. We also consider the situation where some of the chemical eigenvalues approach the energy relaxation time scale and show how to modify the phenomenological rate coefficients so that they retain their validity.

  1. Modeling of multiphase flow with solidification and chemical reaction in materials processing

    Science.gov (United States)

    Wei, Jiuan

    Understanding of multiphase flow and related heat transfer and chemical reactions are the keys to increase the productivity and efficiency in industrial processes. The objective of this thesis is to utilize the computational approaches to investigate the multiphase flow and its application in the materials processes, especially in the following two areas: directional solidification, and pyrolysis and synthesis. In this thesis, numerical simulations will be performed for crystal growth of several III-V and II-VI compounds. The effects of Prandtl and Grashof numbers on the axial temperature profile, the solidification interface shape, and melt flow are investigated. For the material with high Prandtl and Grashof numbers, temperature field and growth interface will be significantly influenced by melt flow, resulting in the complicated temperature distribution and curved interface shape, so it will encounter tremendous difficulty using a traditional Bridgman growth system. A new design is proposed to reduce the melt convection. The geometric configuration of top cold and bottom hot in the melt will dramatically reduce the melt convection. The new design has been employed to simulate the melt flow and heat transfer in crystal growth with large Prandtl and Grashof numbers and the design parameters have been adjusted. Over 90% of commercial solar cells are made from silicon and directional solidification system is the one of the most important method to produce multi-crystalline silicon ingots due to its tolerance to feedstock impurities and lower manufacturing cost. A numerical model is developed to simulate the silicon ingot directional solidification process. Temperature distribution and solidification interface location are presented. Heat transfer and solidification analysis are performed to determine the energy efficiency of the silicon production furnace. Possible improvements are identified. The silicon growth process is controlled by adjusting heating power and

  2. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    Science.gov (United States)

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  3. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    Directory of Open Access Journals (Sweden)

    Diogo A R S Latino

    Full Text Available The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF, the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure

  4. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    International Nuclear Information System (INIS)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M.; Watson, David B.

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M. partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M. species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions

  5. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  6. Chemical memory reactions induced bursting dynamics in gene expression.

    Science.gov (United States)

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems.

  7. A kinetic model for chemical reactions without barriers: transport coefficients and eigenmodes

    International Nuclear Information System (INIS)

    Alves, Giselle M; Kremer, Gilberto M; Marques, Wilson Jr; Soares, Ana Jacinta

    2011-01-01

    The kinetic model of the Boltzmann equation proposed in the work of Kremer and Soares 2009 for a binary mixture undergoing chemical reactions of symmetric type which occur without activation energy is revisited here, with the aim of investigating in detail the transport properties of the reactive mixture and the influence of the reaction process on the transport coefficients. Accordingly, the non-equilibrium solutions of the Boltzmann equations are determined through an expansion in Sonine polynomials up to the first order, using the Chapman–Enskog method, in a chemical regime for which the reaction process is close to its final equilibrium state. The non-equilibrium deviations are explicitly calculated for what concerns the thermal–diffusion ratio and coefficients of shear viscosity, diffusion and thermal conductivity. The theoretical and formal analysis developed in the present paper is complemented with some numerical simulations performed for different concentrations of reactants and products of the reaction as well as for both exothermic and endothermic chemical processes. The results reveal that chemical reactions without energy barrier can induce an appreciable influence on the transport properties of the mixture. Oppositely to the case of reactions with activation energy, the coefficients of shear viscosity and thermal conductivity become larger than those of an inert mixture when the reactions are exothermic. An application of the non-barrier model and its detailed transport picture are included in this paper, in order to investigate the dynamics of the local perturbations on the constituent number densities, and velocity and temperature of the whole mixture, induced by spontaneous internal fluctuations. It is shown that for the longitudinal disturbances there exist two hydrodynamic sound modes, one purely diffusive hydrodynamic mode and one kinetic mode

  8. A kinetic model for chemical reactions without barriers: transport coefficients and eigenmodes

    Science.gov (United States)

    Alves, Giselle M.; Kremer, Gilberto M.; Marques, Wilson, Jr.; Jacinta Soares, Ana

    2011-03-01

    The kinetic model of the Boltzmann equation proposed in the work of Kremer and Soares 2009 for a binary mixture undergoing chemical reactions of symmetric type which occur without activation energy is revisited here, with the aim of investigating in detail the transport properties of the reactive mixture and the influence of the reaction process on the transport coefficients. Accordingly, the non-equilibrium solutions of the Boltzmann equations are determined through an expansion in Sonine polynomials up to the first order, using the Chapman-Enskog method, in a chemical regime for which the reaction process is close to its final equilibrium state. The non-equilibrium deviations are explicitly calculated for what concerns the thermal-diffusion ratio and coefficients of shear viscosity, diffusion and thermal conductivity. The theoretical and formal analysis developed in the present paper is complemented with some numerical simulations performed for different concentrations of reactants and products of the reaction as well as for both exothermic and endothermic chemical processes. The results reveal that chemical reactions without energy barrier can induce an appreciable influence on the transport properties of the mixture. Oppositely to the case of reactions with activation energy, the coefficients of shear viscosity and thermal conductivity become larger than those of an inert mixture when the reactions are exothermic. An application of the non-barrier model and its detailed transport picture are included in this paper, in order to investigate the dynamics of the local perturbations on the constituent number densities, and velocity and temperature of the whole mixture, induced by spontaneous internal fluctuations. It is shown that for the longitudinal disturbances there exist two hydrodynamic sound modes, one purely diffusive hydrodynamic mode and one kinetic mode.

  9. Flows and chemical reactions in heterogeneous mixtures

    CERN Document Server

    Prud'homme, Roger

    2014-01-01

    This book - a sequel of previous publications 'Flows and Chemical Reactions' and 'Chemical Reactions in Flows and Homogeneous Mixtures' - is devoted to flows with chemical reactions in heterogeneous environments.  Heterogeneous media in this volume include interfaces and lines. They may be the site of radiation. Each type of flow is the subject of a chapter in this volume. We consider first, in Chapter 1, the question of the generation of environments biphasic individuals: dusty gas, mist, bubble flow.  Chapter 2 is devoted to the study at the mesoscopic scale: particle-fluid exchange of mom

  10. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts

    Science.gov (United States)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.

    1993-01-01

    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  11. Empirical Force Fields for Mechanistic Studies of Chemical Reactions in Proteins.

    Science.gov (United States)

    Das, A K; Meuwly, M

    2016-01-01

    Following chemical reactions in atomistic detail is one of the most challenging aspects of current computational approaches to chemistry. In this chapter the application of adiabatic reactive MD (ARMD) and its multistate version (MS-ARMD) are discussed. Both methods allow to study bond-breaking and bond-forming processes in chemical and biological processes. Particular emphasis is put on practical aspects for applying the methods to investigate the dynamics of chemical reactions. The chapter closes with an outlook of possible generalizations of the methods discussed. © 2016 Elsevier Inc. All rights reserved.

  12. Direct single-molecule dynamic detection of chemical reactions.

    Science.gov (United States)

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N; Zhang, Deqing; Guo, Xuefeng

    2018-02-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry.

  13. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study.

    Science.gov (United States)

    Brandt-Pollmann, U; Lebiedz, D; Diehl, M; Sager, S; Schlöder, J

    2005-09-01

    Theoretical and experimental studies related to manipulation of pattern formation in self-organizing reaction-diffusion processes by appropriate control stimuli become increasingly important both in chemical engineering and cellular biochemistry. In a model study, we demonstrate here exemplarily the application of an efficient nonlinear model predictive control (NMPC) algorithm to real-time optimal feedback control of pattern formation in a bacterial chemotaxis system modeled by nonlinear partial differential equations. The corresponding drift-diffusion model type is representative for many (bio)chemical systems involving nonlinear reaction dynamics and nonlinear diffusion. We show how the computed optimal feedback control strategy exploits the system inherent physical property of wave propagation to achieve desired control aims. We discuss various applications of our approach to optimal control of spatiotemporal dynamics.

  14. Explorations into Chemical Reactions and Biochemical Pathways.

    Science.gov (United States)

    Gasteiger, Johann

    2016-12-01

    A brief overview of the work in the research group of the present author on extracting knowledge from chemical reaction data is presented. Methods have been developed to calculate physicochemical effects at the reaction site. It is shown that these physicochemical effects can quite favourably be used to derive equations for the calculation of data on gas phase reactions and on reactions in solution such as aqueous acidity of alcohols or carboxylic acids or the hydrolysis of amides. Furthermore, it is shown that these physicochemical effects are quite effective for assigning reactions into reaction classes that correspond to chemical knowledge. Biochemical reactions constitute a particularly interesting and challenging task for increasing our understanding of living species. The BioPath.Database is a rich source of information on biochemical reactions and has been used for a variety of applications of chemical, biological, or medicinal interests. Thus, it was shown that biochemical reactions can be assigned by the physicochemical effects into classes that correspond to the classification of enzymes by the EC numbers. Furthermore, 3D models of reaction intermediates can be used for searching for novel enzyme inhibitors. It was shown in a combined application of chemoinformatics and bioinformatics that essential pathways of diseases can be uncovered. Furthermore, a study showed that bacterial flavor-forming pathways can be discovered. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. On energetics of hydrocarbon chemical reactions by ionizing irradiation

    International Nuclear Information System (INIS)

    Zaykin, Yu.A.; Zaykina, R.F.; Mirkin, G.

    2002-01-01

    Complete text of publication follows. The present global energy crisis requires the industry to look for technologies that are more effective and, particularly, less energy consuming. The hydrocarbon processing technology based on the electron radiation-induced thermal chemical conversion has a great potential. Comparing the presently predominant thermocatalytic processing, it is much more energy efficient, because chemical conversions go at a minimal processing temperature and pressure. To compare energy consumption by electron irradiation with thermal and thermocatalytic technologies of hydrocarbon processing one must see major differences between them. While traditional thermocatalytic processes are equilibrium and their energetics can be evaluated based on principles of classic thermodynamics, HEET processing is non-equilibrium and this evaluation approach is not valid for it. However, a theoretical description of radiation-chemical conversion using reaction rate constants determined in thermally equilibrium systems is approximately adequate to radiation processes by substituting equilibrium concentrations of reacting particles as their non-equilibrium concentrations under irradiation. In particular, description of radical reactions initiated by radiation requires substitution of thermally equilibrium radical concentration by much higher concentration defined by the dynamic equilibrium of radical radiation generation and their recombination. The paper presents the comparative analysis of energy consumption in different stages of hydrocarbon processing using classic thermal cracking by heating versus radiation induced cracking. It is shown that in the most energy-consuming stage of processing - the chain reaction initiation necessary for concentration of active radicals, irradiation processing has the great advantage compared to thermal cracking by heating and allows cutting down the total energy consumption by approximately 40%

  16. Quantum indistinguishability in chemical reactions.

    Science.gov (United States)

    Fisher, Matthew P A; Radzihovsky, Leo

    2018-05-15

    Quantum indistinguishability plays a crucial role in many low-energy physical phenomena, from quantum fluids to molecular spectroscopy. It is, however, typically ignored in most high-temperature processes, particularly for ionic coordinates, implicitly assumed to be distinguishable, incoherent, and thus well approximated classically. We explore enzymatic chemical reactions involving small symmetric molecules and argue that in many situations a full quantum treatment of collective nuclear degrees of freedom is essential. Supported by several physical arguments, we conjecture a "quantum dynamical selection" (QDS) rule for small symmetric molecules that precludes chemical processes that involve direct transitions from orbitally nonsymmetric molecular states. As we propose and discuss, the implications of the QDS rule include ( i ) a differential chemical reactivity of para- and orthohydrogen, ( ii ) a mechanism for inducing intermolecular quantum entanglement of nuclear spins, ( iii ) a mass-independent isotope fractionation mechanism, ( iv ) an explanation of the enhanced chemical activity of "reactive oxygen species", ( v ) illuminating the importance of ortho-water molecules in modulating the quantum dynamics of liquid water, and ( vi ) providing the critical quantum-to-biochemical linkage in the nuclear spin model of the (putative) quantum brain, among others.

  17. Chemical reactions in solvents and melts

    CERN Document Server

    Charlot, G

    1969-01-01

    Chemical Reactions in Solvents and Melts discusses the use of organic and inorganic compounds as well as of melts as solvents. This book examines the applications in organic and inorganic chemistry as well as in electrochemistry. Organized into two parts encompassing 15 chapters, this book begins with an overview of the general properties and the different types of reactions, including acid-base reactions, complex formation reactions, and oxidation-reduction reactions. This text then describes the properties of inert and active solvents. Other chapters consider the proton transfer reactions in

  18. The Dynamics of Chemical Reactions: Atomistic Visualizations of Organic Reactions, and Homage to van 't Hoff.

    Science.gov (United States)

    Yang, Zhongyue; Houk, K N

    2018-03-15

    Jacobus Henricus van 't Hoff was the first Nobel Laureate in Chemistry. He pioneered in the study of chemical dynamics, which referred at that time to chemical kinetics and thermodynamics. The term has evolved in modern times to refer to the exploration of chemical transformations in a time-resolved fashion. Chemical dynamics has been driven by the development of molecular dynamics trajectory simulations, which provide atomic visualization of chemical processes and illuminate how dynamic effects influence chemical reactivity and selectivity. In homage to the legend of van 't Hoff, we review the development of the chemical dynamics of organic reactions, our area of research. We then discuss our trajectory simulations of pericyclic reactions, and our development of dynamic criteria for concerted and stepwise reaction mechanisms. We also describe a method that we call environment-perturbed transition state sampling, which enables trajectory simulations in condensed-media using quantum mechanics and molecular mechanics (QM/MM). We apply the method to reactions in solvent and in enzyme. Jacobus Henricus van 't Hoff (1852, Rotterdam-1911, Berlin) received the Nobel Prize for Chemistry in 1901 "in recognition of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and osmotic pressure in solutions". van 't Hoff was born the Netherlands, and earned his doctorate in Utrecht in 1874. In 1896 he moved to Berlin, where he was offered a position with more research and less teaching. van 't Hoff is considered one of the founders of physical chemistry. A key step in establishing this new field was the start of Zeitschrift für Physikalische Chemie in 1887. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chemical reactions confined within carbon nanotubes.

    Science.gov (United States)

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  20. On the mechanism of effective chemical reactions with turbulent mixing of reactants and finite rate of molecular reactions

    Energy Technology Data Exchange (ETDEWEB)

    Vorotilin, V. P., E-mail: VPVorotilin@yandex.ru [Russian Academy of Sciences, Institute of Applied Mechanics (Russian Federation)

    2017-01-15

    A generalization of the theory of chemical transformation processes under turbulent mixing of reactants and arbitrary values of the rate of molecular reactions is presented that was previously developed for the variant of an instantaneous reaction [13]. The use of the features of instantaneous reactions when considering the general case, namely, the introduction of the concept of effective reaction for the reactant volumes and writing a closing conservation equation for these volumes, became possible due to the partition of the whole amount of reactants into “active” and “passive” classes; the reactants of the first class are not mixed and react by the mechanism of instantaneous reactions, while the reactants of the second class approach each other only through molecular diffusion, and therefore their contribution to the reaction process can be neglected. The physical mechanism of reaction for the limit regime of an ideal mixing reactor (IMR) is revealed and described. Although formally the reaction rate in this regime depends on the concentration of passive fractions of the reactants, according to the theory presented, the true (hidden) mechanism of the reaction is associated only with the reaction of the active fractions of the reactants with vanishingly small concentration in the volume of the reactor. It is shown that the rate constant of fast chemical reactions can be evaluated when the mixing intensity of reactants is much less than that needed to reach the mixing conditions in an IMR.

  1. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled.

    Science.gov (United States)

    Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich

    2016-07-27

    An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.

  2. ReactionMap: an efficient atom-mapping algorithm for chemical reactions.

    Science.gov (United States)

    Fooshee, David; Andronico, Alessio; Baldi, Pierre

    2013-11-25

    Large databases of chemical reactions provide new data-mining opportunities and challenges. Key challenges result from the imperfect quality of the data and the fact that many of these reactions are not properly balanced or atom-mapped. Here, we describe ReactionMap, an efficient atom-mapping algorithm. Our approach uses a combination of maximum common chemical subgraph search and minimization of an assignment cost function derived empirically from training data. We use a set of over 259,000 balanced atom-mapped reactions from the SPRESI commercial database to train the system, and we validate it on random sets of 1000 and 17,996 reactions sampled from this pool. These large test sets represent a broad range of chemical reaction types, and ReactionMap correctly maps about 99% of the atoms and about 96% of the reactions, with a mean time per mapping of 2 s. Most correctly mapped reactions are mapped with high confidence. Mapping accuracy compares favorably with ChemAxon's AutoMapper, versions 5 and 6.1, and the DREAM Web tool. These approaches correctly map 60.7%, 86.5%, and 90.3% of the reactions, respectively, on the same data set. A ReactionMap server is available on the ChemDB Web portal at http://cdb.ics.uci.edu .

  3. Thermally activated reaction–diffusion-controlled chemical bulk reactions of gases and solids

    Directory of Open Access Journals (Sweden)

    S. Möller

    2015-01-01

    Full Text Available The chemical kinetics of the reaction of thin films with reactive gases is investigated. The removal of thin films using thermally activated solid–gas to gas reactions is a method to in-situ control deposition inventory in vacuum and plasma vessels. Significant scatter of experimental deposit removal rates at apparently similar conditions was observed in the past, highlighting the need for understanding the underlying processes. A model based on the presence of reactive gas in the films bulk and chemical kinetics is presented. The model describes the diffusion of reactive gas into the film and its chemical interaction with film constituents in the bulk using a stationary reaction–diffusion equation. This yields the reactive gas concentration and reaction rates. Diffusion and reaction rate limitations are depicted in parameter studies. Comparison with literature data on tokamak co-deposit removal results in good agreement of removal rates as a function of pressure, film thickness and temperature.

  4. Sintering with a chemical reaction as applied to uranium monocarbide

    International Nuclear Information System (INIS)

    Accary, A.; Caillat, R.

    1960-01-01

    The present paper provides a survey of different investigations whose aim was the preparation and fabrication of uranium monocarbide for nuclear use. If a chemical reaction takes place in the sample during the sintering operation, it may be expected that the atom rearrangements involved in this reaction should favour the sintering process and thereby lower the temperature needed to yield a body of a given density. With this hypothesis in mind, the following methods have been studied: - Sintering of U-C mixtures; - Sintering of UO 2 -C mixtures; - Hot pressing of U-C mixtures; - Extrusion of U-C mixtures. To generalize our result, it could be said that a chemical reaction does not lead to high densification, if one depends on a simple contact between discrete particles. On the contrary, a chemical reaction can help sintering if, as our hot pressing experiments shows, the densification can be achieved prior to the reaction. (author) [fr

  5. Invariant boxes and stability of some systems from biomathematics and chemical reactions

    International Nuclear Information System (INIS)

    Pavel, N.H.

    1984-08-01

    A general theorem on the flow-invariance of a time-dependent rectangular box with respect to a differential system is first recalled [''Analysis of some non-linear problems'' in Banach Spaces and Applications, Univ. of Iasi (Romania) (1982)]. Then a theorem applicable to the study of some differential systems from biomathematics and chemical reactions is given and proved. The theorem can be applied to enzymatic reactions, the chemical mechanism in the Belousov reaction, and the kinetic system for the chemical scheme of Hanusse of two processes with three intermediate species [in Pavel, N.H., Differential Equations, Flow-invariance and Applications, Pitman Publishing, Ltd., London (to appear)]. Next, the matrices A for which the corresponding linear system x'=Ax is component-wise positive asymptotically stable are characterized. In the Appendix a partial answer to an open problem regarding the preservation of both continuity and dissipativity in the extension of functions to a Banach space is given

  6. Amazing variational approach to chemical reactions

    OpenAIRE

    Fernández, Francisco M.

    2009-01-01

    In this letter we analyse an amazing variational approach to chemical reactions. Our results clearly show that the variational expressions are unsuitable for the analysis of empirical data obtained from chemical reactions.

  7. Chemical equilibrium and reaction modeling of arsenic and selenium in soils

    Science.gov (United States)

    The chemical processes and soil factors that affect the concentrations of As and Se in soil solution were discussed. Both elements occur in two redox states differing in toxicity and reactivity. Methylation and volatilization reactions occur in soils and can act as detoxification pathways. Precip...

  8. Reaction Hamiltonian and state-to-state description of chemical reactions

    International Nuclear Information System (INIS)

    Ruf, B.A.; Kresin, V.Z.; Lester, W.A. Jr.

    1985-08-01

    A chemical reaction is treated as a quantum transition from reactants to products. A specific reaction Hamiltonian (in second quantization formalism) is introduced. The approach leads to Franck-Condon-like factor, and adiabatic method in the framework of the nuclear motion problems. The influence of reagent vibrational state on the product energy distribution has been studied following the reaction Hamiltonian method. Two different cases (fixed available energy and fixed translational energy) are distinguished. Results for several biomolecular reactions are presented. 40 refs., 5 figs

  9. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Science.gov (United States)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  10. Chemical reaction of hexagonal boron nitride and graphite nanoclusters in mechanical milling systems

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Y.; Grush, M.; Callcott, T.A. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1997-04-01

    Synthesis of boron-carbon-nitride (BCN) hybrid alloys has been attempted extensively by many researchers because the BCN alloys are considered an extremely hard material called {open_quotes}super diamond,{close_quotes} and the industrial application for wear-resistant materials is promising. A mechanical alloying (MA) method of hexagonal boron nitride (h-BN) with graphite has recently been studied to explore the industrial synthesis of the BCN alloys. To develop the MA method for the BCN alloy synthesis, it is necessary to confirm the chemical reaction processes in the mechanical milling systems and to identify the reaction products. Therefore, the authors have attempted to confirm the chemical reaction process of the h-BN and graphite in mechanical milling systems using x-ray absorption near edge structure (XANES) methods.

  11. Chemical reaction of hexagonal boron nitride and graphite nanoclusters in mechanical milling systems

    International Nuclear Information System (INIS)

    Muramatsu, Y.; Grush, M.; Callcott, T.A.

    1997-01-01

    Synthesis of boron-carbon-nitride (BCN) hybrid alloys has been attempted extensively by many researchers because the BCN alloys are considered an extremely hard material called open-quotes super diamond,close quotes and the industrial application for wear-resistant materials is promising. A mechanical alloying (MA) method of hexagonal boron nitride (h-BN) with graphite has recently been studied to explore the industrial synthesis of the BCN alloys. To develop the MA method for the BCN alloy synthesis, it is necessary to confirm the chemical reaction processes in the mechanical milling systems and to identify the reaction products. Therefore, the authors have attempted to confirm the chemical reaction process of the h-BN and graphite in mechanical milling systems using x-ray absorption near edge structure (XANES) methods

  12. Modelling of chemical reactions in metallurgical processes

    OpenAIRE

    Kinaci, M. Efe; Lichtenegger, Thomas; Schneiderbauer, Simon

    2017-01-01

    Iron-ore reduction has attracted much interest in the last three decades since it can be considered as a core process in steel industry. The iron-ore is reduced to iron with the use of blast furnace and fluidized bed technologies. To investigate the harsh conditions inside fluidized bed reactors, computational tools can be utilized. One such tool is the CFD-DEM method, in which the gas phase reactions and governing equations are calculated in the Eulerian (CFD) side, whereas the particle reac...

  13. Development of Functional Inorganic Materials by Soft Chemical Process Using Ion-Exchange Reactions

    Science.gov (United States)

    Feng, Qi

    Our study on soft chemical process using the metal oxide and metal hydroxide nanosheets obtained by exfoliation their layered compounds were reviewed. Ni(OH)2⁄MnO2 sandwich layered nanostructure can be prepared by layer by-layer stacking of exfoliated manganese oxide nanosheets and nickel hydroxide layers. Manganese oxide nanotubes can be obtained by curling the manganese oxide nanosheets using the cationic surfactants as the template. The layered titanate oriented thin film can be prepared by restacking the titanate nanosheets on a polycrystalline substrate, and transformed to the oriented BaTiO3 and TiO2 thin films by the topotactic structural transformation reactions, respectively. The titanate nanosheets can be transformed anatase-type TiO2 nanocrystals under hydrothermal conditions. The TiO2 nanocrystals are formed by a topotactic structural transformation reaction. The TiO2 nanocrystals prepared by this method expose specific crystal plane on their surfaces, and show high photocatalytic activity and high dye adsorption capacity for high performance dye-sensitized solar cell. A series of layered basic metal salt (LBMS) compounds were prepared by hydrothermal reactions of transition metal hydroxides and organic acids. We succeeded in the exfoliation of these LBMS compounds in alcohol solvents, and obtained the transition metal hydroxide nanosheets for the first time.

  14. KEMOD: A mixed chemical kinetic and equilibrium model of aqueous and solid phase geochemical reactions

    International Nuclear Information System (INIS)

    Yeh, G.T.; Iskra, G.A.

    1995-01-01

    This report presents the development of a mixed chemical Kinetic and Equilibrium MODel in which every chemical species can be treated either as a equilibrium-controlled or as a kinetically controlled reaction. The reaction processes include aqueous complexation, adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction, and acid/base reactions. Further development and modification of KEMOD can be made in: (1) inclusion of species switching solution algorithms, (2) incorporation of the effect of temperature and pressure on equilibrium and rate constants, and (3) extension to high ionic strength

  15. Modular Chemical Process Intensification: A Review.

    Science.gov (United States)

    Kim, Yong-Ha; Park, Lydia K; Yiacoumi, Sotira; Tsouris, Costas

    2017-06-07

    Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. These dramatic improvements lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. This article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.

  16. Femtosecond laser control of chemical reactions

    CSIR Research Space (South Africa)

    Du Plessis, A

    2010-08-31

    Full Text Available Femtosecond laser control of chemical reactions is made possible through the use of pulse-shaping techniques coupled to a learning algorithm feedback loop – teaching the laser pulse to control the chemical reaction. This can result in controllable...

  17. Diabatic models with transferrable parameters for generalized chemical reactions

    International Nuclear Information System (INIS)

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2017-01-01

    Diabatic models applied to adiabatic electron-transfer theory yield many equations involving just a few parameters that connect ground-state geometries and vibration frequencies to excited-state transition energies and vibration frequencies to the rate constants for electron-transfer reactions, utilizing properties of the conical-intersection seam linking the ground and excited states through the Pseudo Jahn-Teller effect. We review how such simplicity in basic understanding can also be obtained for general chemical reactions. The key feature that must be recognized is that electron-transfer (or hole transfer) processes typically involve one electron (hole) moving between two orbitals, whereas general reactions typically involve two electrons or even four electrons for processes in aromatic molecules. Each additional moving electron leads to new high-energy but interrelated conical-intersection seams that distort the shape of the critical lowest-energy seam. Recognizing this feature shows how conical-intersection descriptors can be transferred between systems, and how general chemical reactions can be compared using the same set of simple parameters. Mathematical relationships are presented depicting how different conical-intersection seams relate to each other, showing that complex problems can be reduced into an effective interaction between the ground-state and a critical excited state to provide the first semi-quantitative implementation of Shaik’s “twin state” concept. Applications are made (i) demonstrating why the chemistry of the first-row elements is qualitatively so different to that of the second and later rows, (ii) deducing the bond-length alternation in hypothetical cyclohexatriene from the observed UV spectroscopy of benzene, (iii) demonstrating that commonly used procedures for modelling surface hopping based on inclusion of only the first-derivative correction to the Born-Oppenheimer approximation are valid in no region of the chemical

  18. Quantum dynamics of fast chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Light, J.C. [Univ. of Chicago, IL (United States)

    1993-12-01

    The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.

  19. Scattering theory and chemical reactions

    International Nuclear Information System (INIS)

    Kuppermann, A.

    1988-01-01

    In this course, scattering theory and chemical reactions are presented including scattering of one particle by a potential, n-particle systems, colinear triatomic molecules and the study of reactive scattering for 3-dimensional triatomic systems. (A.C.A.S.) [pt

  20. Modelling Chemical Reasoning to Predict and Invent Reactions.

    Science.gov (United States)

    Segler, Marwin H S; Waller, Mark P

    2017-05-02

    The ability to reason beyond established knowledge allows organic chemists to solve synthetic problems and invent novel transformations. Herein, we propose a model that mimics chemical reasoning, and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outperforms a rule-based expert system in the reaction prediction task for 180 000 randomly selected binary reactions. The data-driven model generalises even beyond known reaction types, and is thus capable of effectively (re-)discovering novel transformations (even including transition metal-catalysed reactions). Our model enables computers to infer hypotheses about reactivity and reactions by only considering the intrinsic local structure of the graph and because each single reaction prediction is typically achieved in a sub-second time frame, the model can be used as a high-throughput generator of reaction hypotheses for reaction discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. On some limitations of reaction-diffusion chemical computers in relation to Voronoi diagram and its inversion

    International Nuclear Information System (INIS)

    Adamatzky, Andrew; Lacy Costello, Benjamin de

    2003-01-01

    A reaction-diffusion chemical computer in this context is a planar uniform chemical reactor, where data and results of a computation are represented by concentration profiles of reactants and the computation itself is implemented via the spreading and interaction of diffusive and phase waves. This class of chemical computers are efficient at solving problems with a 'natural' parallelism where data sets are decomposable onto a large number of geographically neighboring domains which are then processed in parallel. Typical problems of this type include image processing, geometrical transformations and optimisation. When chemical based devices are used to solve such problems questions regarding their reproducible, efficiency and the accuracy of their computations arise. In addition to these questions what are the limitations of reaction-diffusion chemical processors--what type of problems cannot currently and are unlikely ever to be solved? To answer the questions we study how a Voronoi diagram is constructed and how it is inverted in a planar chemical processor. We demonstrate that a Voronoi diagram is computed only partially in the chemical processor. We also prove that given a specific Voronoi diagram it is impossible to reconstruct the planar set (from which diagram was computed) in the reaction-diffusion chemical processor. In the Letter we open the first ever line of enquiry into the computational inability of reaction-diffusion chemical computers

  2. The main chemical safety problems in main process of nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Song Fengli; Zhao Shangui; Liu Xinhua; Zhang Chunlong; Lu Dan; Liu Yuntao; Yang Xiaowei; Wang Shijun

    2014-01-01

    There are many chemical reactions in the aqueous process of nuclear fuel reprocessing. The reaction conditions and the products are different so that the chemical safety problems are different. In the paper the chemical reactions in the aqueous process of nuclear fuel reprocessing are described and the main chemical safety problems are analyzed. The reference is offered to the design and accident analysis of the nuclear fuel reprocessing plant. (authors)

  3. Depressurization accident analysis of MPBR by PBRSIM with chemical reaction model

    International Nuclear Information System (INIS)

    No, Hee Cheon; Kadak, A. C.

    2002-01-01

    The simple model for natural circulation is implemented into PBR S IM to provide air inlet velocity from the containment air space. For the friction and form loss only the pebble region is considered conservatively modeling laminar flow through a packed bed. For the chemical reaction model of PBR S IM the oxidation rate is determined as the minimum value of three mechanisms estimated at each time step: oxygen mass flow rate entering the bottom of the reflector, oxidation rate by kinetics, and oxygen mass flow rate arriving at the graphite surface by diffusion. Oxygen mass flux arriving at the graphite surface by diffusion is estimated based on energy-mass analogy. Two types of exothermic chemical reaction are considered: (C + zO 2 → xCO + yCO 2 ) and (2CO + O 2 2CO 2 ). The heterogeneous and homogeneous chemical reaction rates by kinetics are determined by INEEL and Bruno correlations, respectively. The instantaneous depressurization accident of MPBR is simulated using PBR S IM with chemical model. The air inlet velocity is initially rapidly dropped within 10 hr and reaches a saturation value of about 1.5cm/s. The oxidation rate by the diffusion process becomes lower than that by the chemical kinetics above 600K. The maximum pebble bed temperatures without and with chemical reaction reach the peak values of 1560 and 1617 .deg. C at 80 hr and 92 hr, respectively. As the averaged temperatures in the bottom reflector and the pebble bed regions increase with time, (C+1/2O2 ->CO) reaction becomes dominant over (C+O 2 →CO 2 ) reaction. Also, the CO generated by (C+1/2O 2 →CO) reaction will be consumed by (2CO+O 2 →2CO 2 ) reaction and the energy homogeneously generated by this CO depletion reaction becomes dominant over the heterogeneous reaction

  4. Monitoring chemical reactions by low-field benchtop NMR at 45 MHz: pros and cons.

    Science.gov (United States)

    Silva Elipe, Maria Victoria; Milburn, Robert R

    2016-06-01

    Monitoring chemical reactions is the key to controlling chemical processes where NMR can provide support. High-field NMR gives detailed structural information on chemical compounds and reactions; however, it is expensive and complex to operate. Conversely, low-field NMR instruments are simple and relatively inexpensive alternatives. While low-field NMR does not provide the detailed information as the high-field instruments as a result of their smaller chemical shift dispersion and the complex secondary coupling, it remains of practical value as a process analytical technology (PAT) tool and is complimentary to other established methods, such as ReactIR and Raman spectroscopy. We have tested a picoSpin-45 (currently under ThermoFisher Scientific) benchtop NMR instrument to monitor three types of reactions by 1D (1) H NMR: a Fischer esterification, a Suzuki cross-coupling, and the formation of an oxime. The Fischer esterification is a relatively simple reaction run at high concentration and served as proof of concept. The Suzuki coupling is an example of a more complex, commonly used reaction involving overlapping signals. Finally, the oxime formation involved a reaction in two phases that cannot be monitored by other PAT tools. Here, we discuss the pros and cons of monitoring these reactions at a low-field of 45 MHz by 1D (1) H NMR. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Plasmon-driven sequential chemical reactions in an aqueous environment.

    Science.gov (United States)

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-06-24

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H(+) in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.

  6. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    Science.gov (United States)

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  7. Non-stationary filtration mode during chemical reactions with the gas phase

    Science.gov (United States)

    Zavialov, Ivan; Konyukhov, Andrey; Negodyaev, Sergey

    2015-04-01

    An experimental and numerical study of filtration accompanied by chemical reactions between displacing fluid and solid skeleton is considered. Glass balls (400-500 μm in diameter) were placed in 1 cm gap between two glass sheets and were used as model porous medium. The baking soda was added to the glass balls. The 70% solution of acetic acid was used as the displacer. The modeling porous medium was saturated with a mineral oil, and then 70% solution of colored acetic acid was pumped through the medium. The glass balls and a mineral oil have a similar refractive index, so the model porous medium was optically transparent. During the filtration, the gas phase was generated by the chemical reactions between the baking soda and acetic acid, and time-dependent displacement of the chemical reaction front was observed. The front of the chemical reaction was associated with the most intensive gas separation. The front moved, stopped, and then moved again to the area where it had been already. We called this process a secondary oxidation wave. To describe this effect, we added to the balance equations a term associated with the formation and disappearance of phases due to chemical reactions. The equations were supplemented by Darcy's law for multiphase filtration. Nonstationarity front propagation of the chemical reaction in the numerical experiment was observed at Damköhler numbers greater than 100. The mathematical modelling was agreed well with the experimental results.

  8. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  9. Stochastic thermodynamics and entropy production of chemical reaction systems

    Science.gov (United States)

    Tomé, Tânia; de Oliveira, Mário J.

    2018-06-01

    We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end, we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical reaction systems based on a master equation defined on the space of microscopic chemical states and on appropriate definitions of entropy and entropy production. The system is in contact with a heat reservoir and is placed out of equilibrium by the contact with particle reservoirs. In our approach, the fluxes of various types, such as the heat and particle fluxes, play a fundamental role in characterizing the nonequilibrium chemical state. We show that the rate of entropy production in the stationary nonequilibrium state is a bilinear form in the affinities and the fluxes of reaction, which are expressed in terms of rate constants and transition rates, respectively. We also show how the description in terms of microscopic states can be reduced to a description in terms of the numbers of particles of each species, from which follows the chemical master equation. As an example, we calculate the rate of entropy production of the first and second Schlögl reaction models.

  10. Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction

    Science.gov (United States)

    Tellinghuisen, Joel

    2006-01-01

    Under conditions of constant temperature T and pressure P, chemical equilibrium occurs in a closed system (fixed mass) when the Gibbs free energy G of the reaction mixture is minimized. However, when chemical reactions occur under other conditions, other thermodynamic functions are minimized or maximized. For processes at constant T and volume V,…

  11. Design of an embedded inverse-feedforward biomolecular tracking controller for enzymatic reaction processes.

    Science.gov (United States)

    Foo, Mathias; Kim, Jongrae; Sawlekar, Rucha; Bates, Declan G

    2017-04-06

    Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a 'subtractor' that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a biomolecular controller that allows tracking of required changes in the outputs of enzymatic reaction processes can be designed and implemented within the framework of chemical reaction network theory. The controller architecture employs an inversion-based feedforward controller that compensates for the limitations of the one-sided subtractor that generates the error signals for a feedback controller. The proposed approach requires significantly fewer chemical reactions to implement than alternative designs, and should have wide applicability throughout the fields of synthetic biology and biological engineering.

  12. Nonlinear magnetoacoustic wave propagation with chemical reactions

    Science.gov (United States)

    Margulies, Timothy Scott

    2002-11-01

    The magnetoacoustic problem with an application to sound wave propagation through electrically conducting fluids such as the ocean in the Earth's magnetic field, liquid metals, or plasmas has been addressed taking into account several simultaneous chemical reactions. Using continuum balance equations for the total mass, linear momentum, energy; as well as Maxwell's electrodynamic equations, a nonlinear beam equation has been developed to generalize the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a fluid with linear viscosity but nonlinear and diffraction effects. Thermodynamic parameters are used and not tailored to only an adiabatic fluid case. The chemical kinetic equations build on a relaxing media approach presented, for example, by K. Naugolnukh and L. Ostrovsky [Nonlinear Wave Processes in Acoustics (Cambridge Univ. Press, Cambridge, 1998)] for a linearized single reaction and thermodynamic pressure equation of state. Approximations for large and small relaxation times and for magnetohydrodynamic parameters [Korsunskii, Sov. Phys. Acoust. 36 (1990)] are examined. Additionally, Cattaneo's equation for heat conduction and its generalization for a memory process rather than a Fourier's law are taken into account. It was introduced for the heat flux depends on the temperature gradient at an earlier time to generate heat pulses of finite speed.

  13. Students' Ideas about How and Why Chemical Reactions Happen: Mapping the Conceptual Landscape

    Science.gov (United States)

    Yan, Fan; Talanquer, Vicente

    2015-01-01

    Research in science education has revealed that many students struggle to understand chemical reactions. Improving teaching and learning about chemical processes demands that we develop a clearer understanding of student reasoning in this area and of how this reasoning evolves with training in the domain. Thus, we have carried out a qualitative…

  14. Chemical reactions induced by fast neutron irradiation

    International Nuclear Information System (INIS)

    Katsumura, Y.

    1989-01-01

    Here, several studies on fast neutron irradiation effects carried out at the reactor 'YAYOI' are presented. Some indicate a significant difference in the effect from those by γ-ray irradiation but others do not, and the difference changes from subject to subject which we observed. In general, chemical reactions induced by fast neutron irradiation expand in space and time, and there are many aspects. In the time region just after the deposition of neutron energy in the system, intermediates are formed densely and locally reflecting high LET of fast neutrons and, with time, successive reactions proceed parallel to dissipation of localized energy and to diffusion of the intermediates. Finally the reactions are completed in longer time region. If we pick up the effects which reserve the locality of the initial processes, a significant different effect between in fast neutron radiolysis and in γ-ray radiolysis would be derived. If we observe the products generated after dissipation and diffusion in longer time region, a clear difference would not be observed. Therefore, in order to understand the fast neutron irradiation effects, it is necessary to know the fundamental processes of the reactions induced by radiations. (author)

  15. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition

    Directory of Open Access Journals (Sweden)

    Nahid Tamanna

    2015-01-01

    Full Text Available Maillard reaction produces flavour and aroma during cooking process; and it is used almost everywhere from the baking industry to our day to day life to make food tasty. It is often called nonenzymatic browning reaction since it takes place in the absence of enzyme. When foods are being processed or cooked at high temperature, chemical reaction between amino acids and reducing sugars leads to the formation of Maillard reaction products (MRPs. Depending on the way the food is being processed, both beneficial and toxic MRPs can be produced. Therefore, there is a need to understand the different types of MRPs and their positive or negative health effects. In this review we have summarized how food processing effects MRP formation in some of the very common foods.

  16. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition

    Science.gov (United States)

    Tamanna, Nahid; Mahmood, Niaz

    2015-01-01

    Maillard reaction produces flavour and aroma during cooking process; and it is used almost everywhere from the baking industry to our day to day life to make food tasty. It is often called nonenzymatic browning reaction since it takes place in the absence of enzyme. When foods are being processed or cooked at high temperature, chemical reaction between amino acids and reducing sugars leads to the formation of Maillard reaction products (MRPs). Depending on the way the food is being processed, both beneficial and toxic MRPs can be produced. Therefore, there is a need to understand the different types of MRPs and their positive or negative health effects. In this review we have summarized how food processing effects MRP formation in some of the very common foods. PMID:26904661

  17. Surface chemical reactions probed with scanning force microscopy

    NARCIS (Netherlands)

    Werts, M.P L; van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    In this letter we report the study of surface chemical reactions with scanning force microscopy (SFM) with chemical specificity. Using chemically modified SFM probes, we can determine the local surface reaction conversion during a chemical surface modification. The adhesion forces between a

  18. Enhancing chemical reactions

    Science.gov (United States)

    Morrey, John R.

    1978-01-01

    Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

  19. Chemical reaction due to stronger Ramachandran interaction

    Indian Academy of Sciences (India)

    actions between two polarized atoms are responsible for initiating a chemical reaction, either before or after ... Chemical reaction; Ramachandran interaction; anisotropic and asymmetric polarization; ionization ..... man sequence exactly, including the generalized mech- ..... We now move on and rearrange Eq. (8) to arrive at.

  20. Reduction of chemical reaction models

    Science.gov (United States)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  1. Mapping students' ideas about chemical reactions at different educational levels

    Science.gov (United States)

    Yan, Fan

    Understanding chemical reactions is crucial in learning chemistry at all educational levels. Nevertheless, research in science education has revealed that many students struggle to understand chemical processes. Improving teaching and learning about chemical reactions demands that we develop a clearer understanding of student reasoning in this area and of how this reasoning evolves with training in the discipline. Thus, we have carried out a qualitative study using semi-structured interviews as the main data collection tool to explore students reasoning about reaction mechanism and causality. The participants of this study included students at different levels of training in chemistry: general chemistry students (n=22), organic chemistry students (n=16), first year graduate students (n=13) and Ph.D. candidates (n=14). We identified major conceptual modes along critical dimensions of analysis, and illustrated common ways of reasoning using typical cases. Main findings indicate that although significant progress is observed in student reasoning in some areas, major conceptual difficulties seem to persist even at the more advanced educational levels. In addition, our findings suggest that students struggle to integrate important concepts when thinking about mechanism and causality in chemical reactions. The results of our study are relevant to chemistry educators interested in learning progressions, assessment, and conceptual development.

  2. Improving plasma resistance and lowering roughness in an ArF photoresist by adding a chemical reaction inhibitor

    International Nuclear Information System (INIS)

    Jinnai, Butsurin; Uesugi, Takuji; Koyama, Koji; Samukawa, Seiji; Kato, Keisuke; Yasuda, Atsushi; Maeda, Shinichi; Momose, Hikaru

    2010-01-01

    Major challenges associated with 193 nm lithography using an ArF photoresist are low plasma resistance and roughness formation in the ArF photoresist during plasma processes. We have previously found decisive factors affecting the plasma resistance and roughness formation in an ArF photoresist: plasma resistance is determined by UV/VUV radiation, and roughness formation is dominated by chemical reactions. In this study, based on our findings on the interaction between plasma radiation species and ArF photoresist polymers, we proposed an ArF photoresist with a chemical reaction inhibitor, which can trap reactive species from the plasma, and characterized the performances of the resultant ArF photoresist through neutral beam experiments. Hindered amine light stabilizers, i.e. 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy (HO-TEMPO), were used as the chemical reaction inhibitor. Etching rates of the ArF photoresist films were not dependent on the HO-TEMPO content in the irradiations without chemical reactions or under UV/VUV radiation. However, in the irradiation with chemical reactions, the etching rates of the ArF photoresist films decreased as the HO-TEMPO content increased. In addition, the surface roughness decreased with the increase in the additive amount of chemical reaction inhibitor. According to FTIR analysis, a chemical reaction inhibitor can inhibit the chemical reactions in ArF photoresist films through plasma radicals. These results indicate that a chemical reaction inhibitor is effective against chemical reactions, resulting in improved plasma resistance and less roughness in an ArF photoresist. These results also support our suggested mechanism of plasma resistance and roughness formation in an ArF photoresist.

  3. Optimizing Chemical Reactions with Deep Reinforcement Learning.

    Science.gov (United States)

    Zhou, Zhenpeng; Li, Xiaocheng; Zare, Richard N

    2017-12-27

    Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability.

  4. Kinetics of heterogeneous chemical reactions: a theoretical model for the accumulation of pesticides in soil.

    Science.gov (United States)

    Lin, S H; Sahai, R; Eyring, H

    1971-04-01

    A theoretical model for the accumulation of pesticides in soil has been proposed and discussed from the viewpoint of heterogeneous reaction kinetics with a basic aim to understand the complex nature of soil processes relating to the environmental pollution. In the bulk of soil, the pesticide disappears by diffusion and a chemical reaction; the rate processes considered on the surface of soil are diffusion, chemical reaction, vaporization, and regular pesticide application. The differential equations involved have been solved analytically by the Laplace-transform method.

  5. Chemical Demonstrations with Consumer Chemicals: The Black and White Reaction

    Science.gov (United States)

    Wright, Stephen W.

    2002-01-01

    A color-change reaction is described in which two colorless solutions are combined to afford a black mixture. Two more colorless solutions are combined to afford a white mixture. The black and white mixtures are then combined to afford a clear, colorless solution. The reaction uses chemicals that are readily available on the retail market: vitamin C, tincture of iodine, vinegar, ammonia, bleach, Epsom salt, and laundry starch.

  6. Development of Green and Sustainable Chemical Reactions

    DEFF Research Database (Denmark)

    Taarning, Esben

    Abstract This thesis entitled Development of Green and Sustainable Chemical Reactions is divided into six chapters involving topics and projects related to green and sustainable chemistry. The chapters can be read independently, however a few concepts and some background information is introduced...... as well as the possibility for establishing a renewable chemical industry is discussed. The development of a procedure for using unsaturated aldehydes as olefin synthons in the Diels- Alder reaction is described in chapter three. This procedure affords good yields of the desired Diels- Alder adducts...... in chapter one and two which can be helpful to know when reading the subsequent chapters. The first chapter is an introduction into the fundamentals of green and sustainable chemistry. The second chapter gives an overview of some of the most promising methods to produce value added chemicals from biomass...

  7. Physio-chemical reactions in recycle aggregate concrete.

    Science.gov (United States)

    Tam, Vivian W Y; Gao, X F; Tam, C M; Ng, K M

    2009-04-30

    Concrete waste constitutes the major proportion of construction waste at about 50% of the total waste generated. An effective way to reduce concrete waste is to reuse it as recycled aggregate (RA) for the production of recycled aggregate concrete (RAC). This paper studies the physio-chemical reactions of cement paste around aggregate for normal aggregate concrete (NAC) and RAC mixed with normal mixing approach (NMA) and two-stage mixing approach (TSMA) by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Four kinds of physio-chemical reactions have been recorded from the concrete samples, including the dehydration of C(3)S(2)H(3), iron-substituted ettringite, dehydroxylation of CH and development of C(6)S(3)H at about 90 degrees C, 135 degrees C, 441 degrees C and 570 degrees C, respectively. From the DSC results, it is confirmed that the concrete samples with RA substitution have generated less amount of strength enhancement chemical products when compared to those without RA substitution. However, the results from the TSMA are found improving the RAC quality. The pre-mix procedure of the TSMA can effectively develop some strength enhancing chemical products including, C(3)S(2)H(3), ettringite, CH and C(6)S(3)H, which shows that RAC made from the TSMA can improve the hydration processes.

  8. Physio-chemical reactions in recycle aggregate concrete

    International Nuclear Information System (INIS)

    Tam, Vivian W.Y.; Gao, X.F.; Tam, C.M.; Ng, K.M.

    2009-01-01

    Concrete waste constitutes the major proportion of construction waste at about 50% of the total waste generated. An effective way to reduce concrete waste is to reuse it as recycled aggregate (RA) for the production of recycled aggregate concrete (RAC). This paper studies the physio-chemical reactions of cement paste around aggregate for normal aggregate concrete (NAC) and RAC mixed with normal mixing approach (NMA) and two-stage mixing approach (TSMA) by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Four kinds of physio-chemical reactions have been recorded from the concrete samples, including the dehydration of C 3 S 2 H 3 , iron-substituted ettringite, dehydroxylation of CH and development of C 6 S 3 H at about 90 deg. C, 135 deg. C, 441 deg. C and 570 deg. C, respectively. From the DSC results, it is confirmed that the concrete samples with RA substitution have generated less amount of strength enhancement chemical products when compared to those without RA substitution. However, the results from the TSMA are found improving the RAC quality. The pre-mix procedure of the TSMA can effectively develop some strength enhancing chemical products including, C 3 S 2 H 3 , ettringite, CH and C 6 S 3 H, which shows that RAC made from the TSMA can improve the hydration processes

  9. Evaluation of Chemical Kinetic for Mathematics Model Reduction of Cadmium Reaction Rate, Constant and Reaction Orde in to Electrochemical Process

    International Nuclear Information System (INIS)

    Prayitno

    2007-01-01

    The experiment was reduction of cadmium rate with electrochemical influenced by time process, concentration, current strength and type of electrode plate. The aim of the experiment was to know the influence, mathematic model reduction of cadmium the reaction rate, reaction rate constant and reaction orde influenced by time process, concentration, current strength and type of electrode plate. Result of research indicate the time processing if using plate of copper electrode is during 30 minutes and using plate of aluminium electrode is during 20 minutes. Condition of strong current that used in process of electrochemical is only 0.8 ampere and concentration effective is 5.23 mg/l. The most effective type Al of electrode plate for reduction from waste and the efficiency of reduction is 98 %. (author)

  10. Automated Discovery of New Chemical Reactions and Accurate Calculation of Their Rates

    Science.gov (United States)

    2015-06-02

    chemistry calculations are run. The product matrices P are obtained and converted to block structure by simple linear algebra operations...in the system, i.e. 0 , =∑ ji ija Usually in elementary reactions |aij|ɛ since the change by two implies a significant chemical process, for...instance, formation or rupture of a double bond in a single elementary step. After applying the reaction matrix A, the product matrix P can then be

  11. Laser-enhanced chemical reactions and the liquid state. II. Possible applications to nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    DePoorter, G.L.; Rofer-DePoorter, C.K.

    1976-01-01

    Laser photochemistry is surveyed as a possible improvement upon the Purex process for reprocessing spent nuclear fuel. Most of the components of spent nuclear fuel are photochemically active, and lasers can be used to selectively excite individual chemical species. The great variety of chemical species present and the degree of separation that must be achieved present difficulties in reprocessing. Lasers may be able to improve the necessary separations by photochemical reaction or effects on rates and equilibria of reactions

  12. Chemical tailoring of teicoplanin with site-selective reactions.

    Science.gov (United States)

    Pathak, Tejas P; Miller, Scott J

    2013-06-05

    Semisynthesis of natural product derivatives combines the power of fermentation with orthogonal chemical reactions. Yet, chemical modification of complex structures represents an unmet challenge, as poor selectivity often undermines efficiency. The complex antibiotic teicoplanin eradicates bacterial infections. However, as resistance emerges, the demand for improved analogues grows. We have discovered chemical reactions that achieve site-selective alteration of teicoplanin. Utilizing peptide-based additives that alter reaction selectivities, certain bromo-teicoplanins are accessible. These new compounds are also scaffolds for selective cross-coupling reactions, enabling further molecular diversification. These studies enable two-step access to glycopeptide analogues not available through either biosynthesis or rapid total chemical synthesis alone. The new compounds exhibit a spectrum of activities, revealing that selective chemical alteration of teicoplanin may lead to analogues with attenuated or enhanced antibacterial properties, in particular against vancomycin- and teicoplanin-resistant strains.

  13. Out-of-equilibrium catalysis of chemical reactions by electronic tunnel currents.

    Science.gov (United States)

    Dzhioev, Alan A; Kosov, Daniel S; von Oppen, Felix

    2013-04-07

    We present an escape rate theory for current-induced chemical reactions. We use Keldysh nonequilibrium Green's functions to derive a Langevin equation for the reaction coordinate. Due to the out of equilibrium electronic degrees of freedom, the friction, noise, and effective temperature in the Langevin equation depend locally on the reaction coordinate. As an example, we consider the dissociation of diatomic molecules induced by the electronic current from a scanning tunnelling microscope tip. In the resonant tunnelling regime, the molecular dissociation involves two processes which are intricately interconnected: a modification of the potential energy barrier and heating of the molecule. The decrease of the molecular barrier (i.e., the current induced catalytic reduction of the barrier) accompanied by the appearance of the effective, reaction-coordinate-dependent temperature is an alternative mechanism for current-induced chemical reactions, which is distinctly different from the usual paradigm of pumping vibrational degrees of freedom.

  14. Mass transfer with complex reversible chemical reactions. II: Parallel reversible chemical reactions

    NARCIS (Netherlands)

    Versteeg, Geert; van Beckum, F.P.H.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1990-01-01

    An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and

  15. Mass transfer with complex reversible chemical reactions. II: parallel reversible chemical reactions

    NARCIS (Netherlands)

    Versteeg, G.F.; Kuipers, J.A.M.; Beckum, van F.P.H.; van Swaaij, W.P.M.

    1990-01-01

    An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and

  16. Strain-induced structural changes and chemical reactions. 1: Thermomechanical and kinetic models

    International Nuclear Information System (INIS)

    Levitas, V.I.; Nesterenko, V.F.; Meyers, M.A.

    1998-01-01

    Strain-induced chemical reactions were observed recently (Nesterenko et al) in experiments in the shear band in both Ti-Si and Nb-Si mixtures. Reactions can start in the solid state or after melting of at least one component. One of the aims is to find theoretically whether there are possible macroscopic mechanisms of mechanical intensification of the above and other chemical reactions due to plastic shear in the solid state. Continuum thermodynamical theory of structural changes with an athermal kinetics, which includes martensitic phase transformations, plastic strain-induced chemical reactions and polymorphic transformations, is developed at finite strains. The theory includes kinematics, criterion of structural change and extremum principle for determination of all unknown variable parameters for the case with neglected elastic strains. Thermodynamically consistent kinetic theory of thermally activated structural changes is suggested. The concept of the effective temperature is introduced which takes into account that temperature can vary significantly (on 1,000 K) during the chemical reactions under consideration. The theory will be applied in Part 2 of the paper for the description of chemical reactions in the shear band

  17. Supercritical Fluids Processing of Biomass to Chemicals and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Norman K. [Iowa State Univ., Ames, IA (United States)

    2011-09-28

    The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect to the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”

  18. Kinetics of chemical reactions initiated by hot atoms

    International Nuclear Information System (INIS)

    Firsova, L.P.

    1977-01-01

    Modern ideas about kinetics of chemical reactions of hot atoms are generalized. The main points of the phenomenological theories (''kinetic theory'' of Wolfgang-Estrup hot reactions and the theory of ''reactions integral probability'' of Porter) are given. Physico-chemical models of elastic and non-elastic collisions are considered which are used in solving Boltzmann integro-differential equations and stochastic equations in the Porter theory. The principal formulas are given describing probabilities or yields of chemical reactions, initiated with hot atoms, depending on the distribution functions of hot particles with respect to energy. Briefly described are the techniques and the results of applying the phenomenological theories for interpretation of the experimental data obtained during nuclear reactions with hot atoms, photochemical investigations, etc. 96 references are given

  19. Non-equilibrium reaction rates in chemical kinetic equations

    Science.gov (United States)

    Gorbachev, Yuriy

    2018-05-01

    Within the recently proposed asymptotic method for solving the Boltzmann equation for chemically reacting gas mixture, the chemical kinetic equations has been derived. Corresponding one-temperature non-equilibrium reaction rates are expressed in terms of specific heat capacities of the species participate in the chemical reactions, bracket integrals connected with the internal energy transfer in inelastic non-reactive collisions and energy transfer coefficients. Reactions of dissociation/recombination of homonuclear and heteronuclear diatomic molecules are considered. It is shown that all reaction rates are the complex functions of the species densities, similarly to the unimolecular reaction rates. For determining the rate coefficients it is recommended to tabulate corresponding bracket integrals, additionally to the equilibrium rate constants. Correlation of the obtained results with the irreversible thermodynamics is established.

  20. Modelling Students' Visualisation of Chemical Reaction

    Science.gov (United States)

    Cheng, Maurice M. W.; Gilbert, John K.

    2017-01-01

    This paper proposes a model-based notion of "submicro representations of chemical reactions". Based on three structural models of matter (the simple particle model, the atomic model and the free electron model of metals), we suggest there are two major models of reaction in school chemistry curricula: (a) reactions that are simple…

  1. Mesoscale simulations of shockwave energy dissipation via chemical reactions.

    Science.gov (United States)

    Antillon, Edwin; Strachan, Alejandro

    2015-02-28

    We use a particle-based mesoscale model that incorporates chemical reactions at a coarse-grained level to study the response of materials that undergo volume-reducing chemical reactions under shockwave-loading conditions. We find that such chemical reactions can attenuate the shockwave and characterize how the parameters of the chemical model affect this behavior. The simulations show that the magnitude of the volume collapse and velocity at which the chemistry propagates are critical to weaken the shock, whereas the energetics in the reactions play only a minor role. Shock loading results in transient states where the material is away from local equilibrium and, interestingly, chemical reactions can nucleate under such non-equilibrium states. Thus, the timescales for equilibration between the various degrees of freedom in the material affect the shock-induced chemistry and its ability to attenuate the propagating shock.

  2. The Role of Electronic Excitations on Chemical Reaction Dynamics at Metal, Semiconductor and Nanoparticle Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tully, John C. [Yale Univ., New Haven, CT (United States)

    2017-06-10

    Chemical reactions are often facilitated and steered when carried out on solid surfaces, essential for applications such as heterogeneous catalysis, solar energy conversion, corrosion, materials processing, and many others. A critical factor that can determine the rates and pathways of chemical reactions at surfaces is the efficiency and specificity of energy transfer; how fast does energy move around and where does it go? For reactions on insulator surfaces energy transfer generally moves in and out of vibrations of the adsorbed molecule and the underlying substrate. By contrast, on metal surfaces, metallic nanoparticles and semiconductors, another pathway for energy flow opens up, excitation and de-excitation of electrons. This so-called “nonadiabatic” mechanism often dominates the transfer of energy and can directly impact the course of a chemical reaction. Conventional computational methods such as molecular dynamics simulation do not account for this nonadiabatic behavior. The current DOE-BES funded project has focused on developing the underlying theoretical foundation and the computational methodology for the prediction of nonadiabatic chemical reaction dynamics at surfaces. The research has successfully opened up new methodology and new applications for molecular simulation. In particular, over the last three years, the “Electronic Friction” theory, pioneered by the PI, has now been developed into a stable and accurate computational method that is sufficiently practical to allow first principles “on-the-fly” simulation of chemical reaction dynamics at metal surfaces.

  3. Acoustic wave propagation in fluids with coupled chemical reactions

    International Nuclear Information System (INIS)

    Margulies, T.S.; Schwarz, W.H.

    1984-08-01

    This investigation presents a hydroacoustic theory which accounts for sound absorption and dispersion in a multicomponent mixture of reacting fluids (assuming a set of first-order acoustic equations without diffusion) such that several coupled reactions can occur simultaneously. General results are obtained in the form of a biquadratic characteristic equation (called the Kirchhoff-Langevin equation) for the complex propagation variable chi = - (α + iω/c) in which α is the attenuation coefficient, c is the phase speed of the progressive wave and ω is the angular frequency. Computer simulations of sound absorption spectra have been made for three different chemical systems, each comprised of two-step chemical reactions using physico-chemical data available in the literature. The chemical systems studied include: (1) water-dioxane, (2) aqueous solutions of glycine and (3) cobalt polyphosphate mixtures. Explicit comparisons are made between the exact biquadratic characteristic solution and the approximate equation (sometimes referred to as a Debye equation) previously applied to interpret the experimental data for the chemical reaction contribution to the absorption versus frequency. The relative chemical reaction and classical viscothermal contributions to the sound absorption are also presented. Several discrepancies that can arise when estimating thermodynamic data (chemical reaction heats or volume changes) for multistep chemical reaction systems when making dilute solution or constant density assumptions are discussed

  4. Neutral theory of chemical reaction networks

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Holme, Petter; Minnhagen, Petter; Bernhardsson, Sebastian; Kim, Beom Jun

    2012-01-01

    To what extent do the characteristic features of a chemical reaction network reflect its purpose and function? In general, one argues that correlations between specific features and specific functions are key to understanding a complex structure. However, specific features may sometimes be neutral and uncorrelated with any system-specific purpose, function or causal chain. Such neutral features are caused by chance and randomness. Here we compare two classes of chemical networks: one that has been subjected to biological evolution (the chemical reaction network of metabolism in living cells) and one that has not (the atmospheric planetary chemical reaction networks). Their degree distributions are shown to share the very same neutral system-independent features. The shape of the broad distributions is to a large extent controlled by a single parameter, the network size. From this perspective, there is little difference between atmospheric and metabolic networks; they are just different sizes of the same random assembling network. In other words, the shape of the degree distribution is a neutral characteristic feature and has no functional or evolutionary implications in itself; it is not a matter of life and death. (paper)

  5. Integrated Process Design, Control and Analysis of Intensified Chemical Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil

    chemical processes; for example, intensified processes such as reactive distillation. Most importantly, it identifies and eliminates potentially promising design alternatives that may have controllability problems later. To date, a number of methodologies have been proposed and applied on various problems......, that the same principles that apply to a binary non-reactive compound system are valid also for a binary-element or a multi-element system. Therefore, it is advantageous to employ the element based method for multicomponent reaction-separation systems. It is shown that the same design-control principles...

  6. Kinetic studies of elementary chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Durant, J.L. Jr. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  7. The chemical evolution of a travertine-depositing stream: Geochemical processes and mass transfer reactions

    Science.gov (United States)

    Lorah, Michelle M.; Herman, Janet S.

    1988-01-01

    This field study focuses on quantitatively defining the chemical changes occurring in Falling Spring Creek, a travertine-depositing stream located in Alleghany County, Virginia. The processes of CO2outgassing and calcite precipitation or dissolution control the chemical evolution of the stream. The observed chemical composition of the water was used with the computerized geochemical model WATEQF to calculate aqueous speciation, saturation indices, and CO2 partial pressure values. Mass balance calculations were performed to obtain mass transfers of CO2 and calcite. Reaction times, estimated from stream discharge, were used with the mass transfer results to calculate rates of CO2, outgassing and calcite precipitation between consecutive sampling points. The stream, which is fed by a carbonate spring, is supersaturated with respect to CO2 along the entire 5.2-km flow path. Outgassing of CO2 drives the solution to high degrees of supersaturation with respect to calcite. Metabolic uptake of CO2 by photosynthetic plants is insignificant, because the high supply rate of dissolved carbon dioxide and the extreme agitation of the stream at waterfalls and rapids causes a much greater amount of inorganic CO2 outgassing to occur. Calcite precipitation is kinetically inhibited until near the crest of a 20-m vertical waterfall. Calcite precipitation rates then reach a maximum at the waterfall where greater water turbulence allows the most rapid escape of CO2. Physical evidence for calcite precipitation exists in the travertine deposits which are first observed immediately above the waterfall and extend for at least 1.0 km below the falls. Net calcite precipitation occurs at all times of the year but is greatest during low-flow conditions in the summer and early fall.

  8. Thermal theory of autowave processes in low-temperature solid-phase radiochemical reactions

    International Nuclear Information System (INIS)

    Barelko, V.V.; Barkalov, I.M.; Vaganov, D.A.; Zanin, A.M.; Kiryukhin, D.P.

    1982-01-01

    A new phenomenon in radiation cryochemistry concerning the class of autowave processes was previously discovered. It was observed in halogenation and hydrohalogenation of hydrocarbons and consisted of spontaneous, laminar propagation of a chemical transformation wave based on a frozen mixture of reagents previously irradiated with 60 Co γ-rays. The effect of the positive inverse correlation between the chemical conversion and brittle fracture of a solid sample of reagents is the phenomenological basis of the phenomenon; formation of fractures triggers a reactive process which takes place on their active surface (or in the layer adjacent to it), and the chemical reaction, in turn, stimulates the subsequent development of the process of decomposition. As a result, a single brittle fracture and chemical conversion wave which moves along the solid sample arises. Different mechanisms of generation of fracture surfaces under the effect of the reaction are possible. A difference in the densities of the initial reagents and the products of the reaction could be one of the causes of brittle fracture, and the thermal stresses induced by the exothermicity of the chemical processes could be another cause. The present work concerns the analysis of the features of the wave process which occurs based on the second, thermal mechanism. The analysis was conducted within the framework of a phenomenological approach which does not require specific definition of the nature of the chemical activation of the system during its brittle fracture

  9. NATO Advanced Study Institute on Advances in Chemical Reaction Dynamics

    CERN Document Server

    Capellos, Christos

    1986-01-01

    This book contains the formal lectures and contributed papers presented at the NATO Advanced Study Institute on. the Advances in Chemical Reaction Dynamics. The meeting convened at the city of Iraklion, Crete, Greece on 25 August 1985 and continued to 7 September 1985. The material presented describes the fundamental and recent advances in experimental and theoretical aspects of, reaction dynamics. A large section is devoted to electronically excited states, ionic species, and free radicals, relevant to chemical sys­ tems. In addition recent advances in gas phase polymerization, formation of clusters, and energy release processes in energetic materials were presented. Selected papers deal with topics such as the dynamics of electric field effects in low polar solutions, high electric field perturbations and relaxation of dipole equilibria, correlation in picosecond/laser pulse scattering, and applications to fast reaction dynamics. Picosecond transient Raman spectroscopy which has been used for the elucidati...

  10. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  11. Heterogeneously Catalysed Chemical Reactions in Carbon Dioxide Medium

    DEFF Research Database (Denmark)

    Musko, Nikolai E.

    In this PhD-study the different areas of chemical engineering, heterogeneous catalysis, supercritical fluids, and phase equilibrium thermodynamics have been brought together for selected reactions. To exploit the beneficial properties of supercritical fluids in heterogeneous catalysis, experimental...... studies of catalytic chemical reactions in dense and supercritical carbon dioxide have been complemented by the theoretical calculations of phase equilibria using advanced thermodynamic models. In the recent years, the use of compressed carbon dioxide as innovative, non-toxic and non-flammable, cheap......, and widely available reaction medium for many practical and industrial applications has drastically increased. Particularly attractive are heterogeneously catalysed chemical reactions. The beneficial use of CO2 is attributed to its unique properties at dense and supercritical states (at temperatures...

  12. On microscopic simulations of systems with model chemical reactions

    International Nuclear Information System (INIS)

    Gorecki, J.; Gorecka, J.N.

    1998-01-01

    Large scale computer simulations of model chemical systems play the role of idealized experiments in which theories may be tested. In this paper we present two applications of microscopic simulations based on the reactive hard sphere model. We investigate the influence of internal fluctuations on an oscillating chemical system and observe how they modify the phase portrait of it. Another application, we consider, is concerned with the propagation of a chemical wave front associated with a thermally activated reaction. It is shown that the nonequilibrium effects increase the front velocity if compared with the velocity of the front generated by a nonactivated process characterized by the same rate constant. (author)

  13. Waste dissolution with chemical reaction, diffusion and advection

    International Nuclear Information System (INIS)

    Chambre, P.L.; Kang, C.H.; Lee, W.W.L.; Pigford, T.H.

    1987-06-01

    This paper extends the mass-transfer analysis to include the effect of advective transport in predicting the steady-state dissolution rate, with a chemical-reaction-rate boundary condition at the surface of a waste form of arbitrary shape. This new theory provides an analytic means of predicting the ground-water velocities at which dissolution rate in a geologic environment will be governed entirely to the chemical reaction rate. As an illustration, we consider the steady-state potential flow of ground water in porous rock surrounding a spherical waste solid. 3 refs., 2 figs

  14. Chemical reactions induced and probed by positive muons

    International Nuclear Information System (INIS)

    Ito, Yasuo

    1990-01-01

    The application of μ + science, collectively called μSR, but encompassing a variety of methods including muon spin rotation, muon spin relaxation, muon spin repolarization, muon spin resonance and level-crossing resonance, to chemistry is introduced emphasizing the special aspects of processes which are 'induced and probed' by the μ + itself. After giving a general introduction to the nature and methods of muon science and a short history of muon chemistry, selected topics are given. One concerns the usefulness of muonium as hydrogen-like probes of chemical reactions taking polymerization of vinyl monomers and reaction with thiosulphate as examples. Probing solitons in polyacetylene induced and probed by μ + is also an important example which shows the unique nature of muonium. Another important topic is 'lost polarization'. Although this term is particular to muonium. Another important topic is 'lost polarization'. Although this term is particular to muon chemistry, the chemistry underlining the phenomenon of lost polarization has an importance to both radiation and hot atom chemistries. (orig.)

  15. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  16. Mass transfer with complex reversible chemical reactions—II. parallel reversible chemical reactions

    OpenAIRE

    Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van

    1990-01-01

    An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and concentration profiles for a wide range of processes and conditions, for both film and penetration model. With the aid of this mass transfer model it is demonstrated that the absorption rates in syst...

  17. Review on chemical processes around the facilities in deep underground and study on numerical approach to evaluate them

    International Nuclear Information System (INIS)

    Sawada, Masataka

    2003-01-01

    The facilities for radioactive waste repositories are constructed in deep underground. Various chemical reactions including microbial activities may affect the long-term performance of the barrier system. An advancement of the evaluation method for the long-term behavior of barrier materials is desired. One of the efficient approaches is numerical simulation based on modeling of chemical processes. In the first part of this report, chemical processes and microbial reactions that can affect the performance of facilities in deep underground are reviewed. For example, dissolution and precipitation of minerals composing bentonite and rock are caused by highly alkaline water from cementitious materials. Numerical approaches to the chemical processes are also studied. Most chemical processes are reactions between groundwater (or solutes in it) and minerals composing barrier materials. So they can be simulated by coupled reaction rate transport analyses. Some analysis codes are developed and applied to problems in radioactive waste disposal. Microbial reaction rate can be modeled using the growth equation of microorganisms. In order to evaluate the performance of the barrier system after altered by chemical processes, not only the change in composition but also properties of altered materials is required to be obtained as output of numerical simulation. If the relationships between reaction rate and material properties are obtained, time history and spatial distribution of material properties can also be obtained by the coupled reaction rate transport analysis. At present, modeling study on the relationships between them is not sufficient, and obtaining such relationships using both theoretical and experimental approaches are also an important research target. (author)

  18. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    International Nuclear Information System (INIS)

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-01-01

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N 2 flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure

  19. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    Energy Technology Data Exchange (ETDEWEB)

    Kustova, Elena V., E-mail: e.kustova@spbu.ru [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr. 28, Saint Petersburg (Russian Federation); Kremer, Gilberto M., E-mail: kremer@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba (Brazil)

    2014-12-05

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N{sub 2} flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure.

  20. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions.

    Science.gov (United States)

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin

    2016-04-27

    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea') decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea' under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea' was determined. MW irradiation energy was partially transformed to reduce the Ea', and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology.

  1. Adsorption and catalysis: The effect of confinement on chemical reactions

    International Nuclear Information System (INIS)

    Santiso, Erik E.; George, Aaron M.; Turner, C. Heath; Kostov, Milen K.; Gubbins, Keith E.; Buongiorno-Nardelli, Marco; Sliwinska-Bartkowiak, MaIgorzata

    2005-01-01

    Confinement within porous materials can affect chemical reactions through a host of different effects, including changes in the thermodynamic state of the system due to interactions with the pore walls, selective adsorption, geometrical constraints that affect the reaction mechanism, electronic perturbation due to the substrate, etc. In this work, we present an overview of some of our recent research on some of these effects, on chemical equilibrium, kinetic rates and reaction mechanisms. We also discuss our current and future directions for research in this area

  2. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    Science.gov (United States)

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  3. Investigation of Spark Ignition and Autoignition in Methane and Air Using Computational Fluid Dynamics and Chemical Reaction Kinetics. A numerical Study of Ignition Processes in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nordrik, R.

    1993-12-01

    The processes in the combustion chamber of internal combustion engines have received increased attention in recent years because their efficiencies are important both economically and environmentally. This doctoral thesis studies the ignition phenomena by means of numerical simulation methods. The fundamental physical relations include flow field conservation equations, thermodynamics, chemical reaction kinetics, transport properties and spark modelling. Special attention is given to the inclusion of chemical kinetics in the flow field equations. Using his No Transport of Radicals Concept method, the author reduces the computational efforts by neglecting the transport of selected intermediate species. The method is validated by comparison with flame propagation data. A computational method is described and used to simulate spark ignition in laminar premixed methane-air mixtures and the autoignition process of a methane bubble surrounded by hot air. The spark ignition simulation agrees well with experimental results from the literature. The autoignition simulation identifies the importance of diffusive and chemical processes acting together. The ignition delay times exceed the experimental values found in the literature for premixed ignition delay, presumably because of the mixing process and lack of information on low temperature reactions in the skeletal kinetic mechanism. Transient turbulent methane jet autoignition is simulated by means of the KIVA-II code. Turbulent combustion is modelled by the Eddy Dissipation Concept. 90 refs., 81 figs., 3 tabs.

  4. Chemical reaction on solid surface observed through isotope tracer technique

    International Nuclear Information System (INIS)

    Tanaka, Ken-ichi

    1983-01-01

    In order to know the role of atoms and ions on solid surfaces as the partners participating in elementary processes, the literatures related to the isomerization and hydrogen exchanging reaction of olefines, the hydrogenation of olefines, the metathesis reaction and homologation of olefines based on solid catalysts were reviewed. Various olefines, of which the hydrogen atoms were substituted with deuterium at desired positions, were reacted using various solid catalysts such as ZnO, K 2 CO 3 on C, MoS 2 (single crystal and powder) and molybdenum oxide (with various carriers), and the infra-red spectra of adsorbed olefines on catalysts, the isotope composition of reaction products and the production rate of the reaction products were measured. From the results, the bonding mode of reactant with the atoms and ions on solid surfaces, and the mechanism of the elementary process were considered. The author emphasized that the mechanism of the chemical reaction on solid surfaces and the role of active points or catalysts can be made clear to the considerable extent by combining isotopes suitably. (Yoshitake, I.)

  5. One- and two-dimensional chemical exchange nuclear magnetic resonance studies of the creatine kinase catalyzed reaction

    International Nuclear Information System (INIS)

    Gober, J.R.

    1988-01-01

    The equilibrium chemical exchange dynamics of the creatine kinase enzyme system were studied by one- and two-dimensional 31 P NMR techniques. Pseudo-first-order reaction rate constants were measured by the saturation transfer method under an array of experimental conditions of pH and temperature. Quantitative one-dimensional spectra were collected under the same conditions in order to calculate the forward and reverse reaction rates, the K eq , the hydrogen ion stoichiometry, and the standard thermodynamic functions. The pure absorption mode in four quadrant two-dimensional chemical exchange experiment was employed so that the complete kinetic matrix showing all of the chemical exchange process could be realized

  6. Deposition and characteristics of PbS thin films by an in-situ solution chemical reaction process

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Junna; Ji, Huiming; Wang, Jian; Zheng, Xuerong; Lai, Junyun; Liu, Weiyan; Li, Tongfei [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Ma, Yuanliang; Li, Haiqin; Zhao, Suqin [College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining 810007 (China); Jin, Zhengguo, E-mail: zhgjin@tju.edu.cn [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2015-09-01

    Preferential oriented and uniform PbS thin films were deposited by a room temperature in-situ solution chemical reaction process, in which the lead nitrate as precursor in a form of thin solid films from lead precursor solution was used to react with ammonium sulfide ethanol solution. Influence of 1-butanol addition in the lead precursor solution, Pb:S molar ratios in the separate cationic and anionic solutions, deposition cycle numbers and annealing treatment in Ar atmosphere on structure, morphology, chemical composition and optical absorption properties of the deposited PbS films were investigated based on X-ray diffraction, field emission scanning electron microscopy, energy dispersive spectrometer, atomic force microscopy, selected area electron diffraction, UV–vis, near infrared ray and fourier transform infrared spectroscopy measurements. The results showed that the deposited PbS thin films had a cubic structure and highly preferred orientation along with the plane (100). The deposition rate of single-layer was stable, about 30 nm in thickness per deposition cycle. - Highlights: • Time-efficiency synthetic method for the preparation of lead sulfide (PbS) films • Effect of 1-butanol addition into cationic precursor solution is discussed. • Growth rate of the PbS films is stable at about 30 nm per cycle.

  7. Chemical reaction between single hydrogen atom and graphene

    International Nuclear Information System (INIS)

    Ito, Atsushi; Nakamura, Hiroaki; Takayama, Arimichi

    2007-04-01

    We study chemical reaction between a single hydrogen atom and a graphene, which is the elemental reaction between hydrogen and graphitic carbon materials. In the present work, classical molecular dynamics simulation is used with modified Brenner's empirical bond order potential. The three reactions, that is, absorption reaction, reflection reaction and penetration reaction, are observed in our simulation. Reaction rates depend on the incident energy of the hydrogen atom and the graphene temperature. The dependence can be explained by the following mechanisms: (1) The hydrogen atom receives repulsive force by π-electrons in addition to nuclear repulsion. (2) Absorbing the hydrogen atom, the graphene transforms its structure to the 'overhand' configuration such as sp 3 state. (3) The hexagonal hole of the graphene is expanded during the penetration of the hydrogen atom. (author)

  8. Chemical reactions in reverse micelle systems

    Science.gov (United States)

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  9. An autonomous organic reaction search engine for chemical reactivity

    Science.gov (United States)

    Dragone, Vincenza; Sans, Victor; Henson, Alon B.; Granda, Jaroslaw M.; Cronin, Leroy

    2017-06-01

    The exploration of chemical space for new reactivity, reactions and molecules is limited by the need for separate work-up-separation steps searching for molecules rather than reactivity. Herein we present a system that can autonomously evaluate chemical reactivity within a network of 64 possible reaction combinations and aims for new reactivity, rather than a predefined set of targets. The robotic system combines chemical handling, in-line spectroscopy and real-time feedback and analysis with an algorithm that is able to distinguish and select the most reactive pathways, generating a reaction selection index (RSI) without need for separate work-up or purification steps. This allows the automatic navigation of a chemical network, leading to previously unreported molecules while needing only to do a fraction of the total possible reactions without any prior knowledge of the chemistry. We show the RSI correlates with reactivity and is able to search chemical space using the most reactive pathways.

  10. Collisions of polyatomic ions with surfaces: incident energy partitioning and chemical reactions

    International Nuclear Information System (INIS)

    Zabka, J.; Roithova, J.; Dolejsek, Z.; Herman, Z.

    2002-01-01

    Collision of polyatomic ions with surfaces were investigated in ion-surface scattering experiments to obtain more information on energy partitioning in ion-surface collision and on chemical reactions at surfaces. Mass spectra, translation energy and angular distributions of product ions were measured in dependence on the incident energy and the incident angle of polyatomic projectiles. From these data distributions of energy fractions resulting in internal excitation of the projectile, translation energy of the product ions, and energy absorbed by the surface were determined. The surface investigated were a standard stainless steel surface, covered by hydrocarbons, carbon surfaces at room and elevated temperatures, and several surfaces covered by a self-assembled monolayers (C 12 -hydrocarbon SAM, C 11 -perfluorohydrocarbon SAM, and C 11 hydrocarbon with terminal -COOH group SAM). The main processes observed at collision energies of 10 - 50 eV were: neutralization of the ions at surfaces, inelastic scattering and dissociations of the projectile ions, quasi elastic scattering of the projectile ions, and chemical reactions with the surface material (usually hydrogen-atom transfer reactions). The ion survival factor was estimated to be a few percent for even-electron ions (like protonated ethanol ion, C 2 H 5 O + , CD 5 + ) and about 10 - 10 2 times lower for radical ions (like ethanol and benzene molecular ions, CD 4 + ). In the polyatomic ion -surface energy transfer experiments, the ethanol molecular ion was used as a well-characterized projectile ion. The results with most of the surfaces studied showed in the collision energy range of 13 - 32 eV that most collisions were strongly inelastic with about 6 - 8 % of the incident projectile energy transformed into internal excitation of the projectile (independent of the incident angle) and led partially to its further dissociation in a unimolecular way after the interaction with the surface. The incident energy

  11. Versatile Dual Photoresponsive System for Precise Control of Chemical Reactions.

    Science.gov (United States)

    Xu, Can; Bing, Wei; Wang, Faming; Ren, Jinsong; Qu, Xiaogang

    2017-08-22

    A versatile method for photoregulation of chemical reactions was developed through a combination of near-infrared (NIR) and ultraviolet (UV) light sensitive materials. This regulatory effect was achieved through photoresponsive modulation of reaction temperature and pH values, two prominent factors influencing reaction kinetics. Photothermal nanomaterial graphene oxide (GO) and photobase reagent malachite green carbinol base (MGCB) were selected for temperature and pH regulation, respectively. Using nanocatalyst- and enzyme-mediated chemical reactions as model systems, we demonstrated the feasibility and high efficiency of this method. In addition, a photoresponsive, multifunctional "Band-aid"-like hydrogel platform was presented for programmable wound healing. Overall, this simple, efficient, and reversible system was found to be effective for controlling a wide variety of chemical reactions. Our work may provide a method for remote and sustainable control over chemical reactions for industrial and biomedical applications.

  12. A cellular automata approach to chemical reactions : 1 reaction controlled systems

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.

    2013-01-01

    A direct link between the chemical reaction controlled (shrinking core) model and cellular automata, to study the dissolution of particles, is derived in this paper. Previous research on first and second order reactions is based on the concentration of the reactant. The present paper describes the

  13. Chemical Reactions of Molecules Promoted and Simultaneously Imaged by the Electron Beam in Transmission Electron Microscopy.

    Science.gov (United States)

    Skowron, Stephen T; Chamberlain, Thomas W; Biskupek, Johannes; Kaiser, Ute; Besley, Elena; Khlobystov, Andrei N

    2017-08-15

    The main objective of this Account is to assess the challenges of transmission electron microscopy (TEM) of molecules, based on over 15 years of our work in this field, and to outline the opportunities in studying chemical reactions under the electron beam (e-beam). During TEM imaging of an individual molecule adsorbed on an atomically thin substrate, such as graphene or a carbon nanotube, the e-beam transfers kinetic energy to atoms of the molecule, displacing them from equilibrium positions. Impact of the e-beam triggers bond dissociation and various chemical reactions which can be imaged concurrently with their activation by the e-beam and can be presented as stop-frame movies. This experimental approach, which we term ChemTEM, harnesses energy transferred from the e-beam to the molecule via direct interactions with the atomic nuclei, enabling accurate predictions of bond dissociation events and control of the type and rate of chemical reactions. Elemental composition and structure of the reactant molecules as well as the operating conditions of TEM (particularly the energy of the e-beam) determine the product formed in ChemTEM processes, while the e-beam dose rate controls the reaction rate. Because the e-beam of TEM acts simultaneously as a source of energy for the reaction and as an imaging tool monitoring the same reaction, ChemTEM reveals atomic-level chemical information, such as pathways of reactions imaged for individual molecules, step-by-step and in real time; structures of illusive reaction intermediates; and direct comparison of catalytic activity of different transition metals filmed with atomic resolution. Chemical transformations in ChemTEM often lead to previously unforeseen products, demonstrating the potential of this method to become not only an analytical tool for studying reactions, but also a powerful instrument for discovery of materials that can be synthesized on preparative scale.

  14. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gray, S.K. [Argonne National Laboratory, IL (United States)

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  15. Femtosecond laser control of chemical reaction of carbon monoxide and hydrogen

    CSIR Research Space (South Africa)

    Du Plessis, A

    2010-09-01

    Full Text Available Femtosecond laser control of chemical reactions is made possible through the use of pulse-shaping techniques coupled to a learning algorithm feedback loop – teaching the laser pulse to control the chemical reaction. This can result in controllable...

  16. Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions.

    Science.gov (United States)

    Zhang, Yang; Piccard, Sarah; Zhou, Wen

    2015-11-01

    The "Anaerobic Digestion Model No. 1" (ADM1) was modified in the study by improving the bio-chemical framework and integrating a more detailed physico-chemical framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the discrepancies in the original bio-chemical framework between the carbon and nitrogen contents in the degraders and substrates. More inorganic components and solids precipitation processes were included in the physico-chemical framework of ADM1. The modified ADM1 was validated with the experimental data and used to investigate the effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion process might exist an optimal initial concentration of inorganic nitrogen for methane gas production in the presence of calcium ions, magnesium ions and inorganic phosphorus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A network dynamics approach to chemical reaction networks

    Science.gov (United States)

    van der Schaft, A. J.; Rao, S.; Jayawardhana, B.

    2016-04-01

    A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.

  18. Surface Reaction Kinetics of Ga(1-x)In(x)P Growth During Pulsed Chemical Beam Epitaxy

    National Research Council Canada - National Science Library

    Dietz, N; Beeler, S. C; Schmidt, J. W; Tran, H. T

    2000-01-01

    ... into the surface reaction kinetics during an organometallic deposition process. These insights will allow us to move the control point closer to the point where the growth occurs, which in a chemical been epitaxy process is a surface reaction layer (SRL...

  19. Simulation of square wave voltammetry of three electrode reactions coupled by two reversible chemical reactions

    OpenAIRE

    Lovrić, Milivoj

    2017-01-01

    Three fast and reversible electrode reactions that are connected by two reversible chemical reactions that are permanently in the equilibrium are analysed theoretically for square wave voltammetry. The dependence of peak potentials on the dimensionless equilibrium constants of chemical reactions is calculated. The influence of the basic thermodynamic parameters on the square wave voltammetric responses is analysed.

  20. Kinetic calorimetry in the study of the mechanism of low-temperature chemical reactions

    Science.gov (United States)

    Barkalov, I. M.; Kiryukhin, D. P.

    Chemical reactions are always followed by a change in the reacting system enthalpy, hence, calorimetry as a method of enthalpy and heat capacity measuring is a universal and, sometimes, even the only possible way of studying chemical reaction kinetics. Throughout its long history, the calorimeter, having preserved the positions of the main method of thermodynamic studies, has conquered a new field of application: that of kinetic study of chemical reactions. The advantages and disadvantages of the kinetic calorimeter are now obvious. First, the advantages are: (1) the possibility of measuring the rate of a chemical reaction without any special requirements being imposed on the reaction medium (solid, viscous, multicomponent systems); (2) the high efficiency: a large volume of kinetic information in one experiment and a non-destructive character of changes; (3) the possibility of measuring directly in the field of ionizing radiation (γ-radiation, accelerated electrons) and light; and (4) recording of the chemical conversion directly at the time of its occurrence. The disadvantages of this method are: (1) the high inertia of standard calorimeter systems (τC⋍102-103S), which restricts the possibilities of studying fast processes; and (2) the complexity of the correct organization of the calorimeter experiment when the parameters of the process are changed (overheating in the sample, conversion of the process to explosive and auto wave regimens). One of the oldest and most universal methods of studying the mechanism of chemical reactions, calorimetry, is now passing through a period of turbulent development due to the advances in electronics and computerization. The wide variety of types of calorimeter set-ups and the large assortment of measurement schemes in the currently described methods complicate the experimental selection of the necessary instrument rather than facilitate it. The basic principles of the method, the types of calorimeters, and the measuring

  1. Modular verification of chemical reaction network encodings via serializability analysis

    Science.gov (United States)

    Lakin, Matthew R.; Stefanovic, Darko; Phillips, Andrew

    2015-01-01

    Chemical reaction networks are a powerful means of specifying the intended behaviour of synthetic biochemical systems. A high-level formal specification, expressed as a chemical reaction network, may be compiled into a lower-level encoding, which can be directly implemented in wet chemistry and may itself be expressed as a chemical reaction network. Here we present conditions under which a lower-level encoding correctly emulates the sequential dynamics of a high-level chemical reaction network. We require that encodings are transactional, such that their execution is divided by a “commit reaction” that irreversibly separates the reactant-consuming phase of the encoding from the product-generating phase. We also impose restrictions on the sharing of species between reaction encodings, based on a notion of “extra tolerance”, which defines species that may be shared between encodings without enabling unwanted reactions. Our notion of correctness is serializability of interleaved reaction encodings, and if all reaction encodings satisfy our correctness properties then we can infer that the global dynamics of the system are correct. This allows us to infer correctness of any system constructed using verified encodings. As an example, we show how this approach may be used to verify two- and four-domain DNA strand displacement encodings of chemical reaction networks, and we generalize our result to the limit where the populations of helper species are unlimited. PMID:27325906

  2. Chemical Ligation Reactions of Oligonucleotides for Biological and Medicinal Applications.

    Science.gov (United States)

    Abe, Hiroshi; Kimura, Yasuaki

    2018-01-01

    Chemical ligation of oligonucleotides (ONs) is the key reaction for various ON-based technologies. We have tried to solve the problems of RNA interference (RNAi) technology by applying ON chemical ligation to RNAi. We designed a new RNAi system, called intracellular buildup RNAi (IBR-RNAi), where the RNA fragments are built up into active small-interference RNA (siRNA) in cells through a chemical ligation reaction. Using the phosphorothioate and iodoacetyl groups as reactive functional groups for the ligation, we achieved RNAi effects without inducing immune responses. Additionally, we developed a new chemical ligation for IBR-RNAi, which affords a more native-like structure in the ligated product. The new ligation method should be useful not only for IBR-RNAi but also for the chemical synthesis of biofunctional ONs.

  3. Non-equilibrium effects in high temperature chemical reactions

    Science.gov (United States)

    Johnson, Richard E.

    1987-01-01

    Reaction rate data were collected for chemical reactions occurring at high temperatures during reentry of space vehicles. The principle of detailed balancing is used in modeling kinetics of chemical reactions at high temperatures. Although this principle does not hold for certain transient or incubation times in the initial phase of the reaction, it does seem to be valid for the rates of internal energy transitions that occur within molecules and atoms. That is, for every rate of transition within the internal energy states of atoms or molecules, there is an inverse rate that is related through an equilibrium expression involving the energy difference of the transition.

  4. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms

    Science.gov (United States)

    Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.

    2016-06-01

    Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.

  5. Rock fracture processes in chemically reactive environments

    Science.gov (United States)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the

  6. Entropy Generation in a Chemical Reaction

    Science.gov (United States)

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A…

  7. Single-Molecule Sensing with Nanopore Confinement: from Chemical Reactions to Biological Interactions.

    Science.gov (United States)

    Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao

    2018-03-25

    The nanopore can generate an electrochemical confinement for single-molecule sensing which help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this concept, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Laser-induced chemical vapor deposition reactions

    International Nuclear Information System (INIS)

    Teslenko, V.V.

    1990-01-01

    The results of investigation of chemical reactions of deposition of different substances from the gas phase when using the energy of pulse quasicontinuous and continuous radiation of lasers in the wave length interval from 0.193 to 10.6 μm are generalized. Main attetion is paid to deposition of inorganic substances including nonmetals (C, Si, Ge and others), metals (Cu, Au, Zn, Cd, Al, Cr, Mo, W, Ni) and some simple compounds. Experimental data on the effect of laser radiation parameters and reagent nature (hydrides, halogenides, carbonyls, alkyl organometallic compounds and others) on the deposition rate and deposit composition are described in detail. Specific features of laser-chemical reactions of deposition and prospects of their application are considered

  9. The Theory of Thermodynamics for Chemical Reactions in Dispersed Heterogeneous Systems

    Science.gov (United States)

    Yongqiang; Baojiao; Jianfeng

    1997-07-01

    In this paper, the expressions of Gibbs energy change, enthalpy change, entropy change, and equilibrium constant for chemical reactions in dispersed heterogeneous systems are derived using classical thermodynamics theory. The thermodynamical relations for the same reaction system between the dispersed and the block state are also derived. The effects of degree of dispersion on thermodynamical properties, reaction directions, and chemical equilibria are discussed. The results show that the present equation of thermodynamics for chemical reactions is only a special case of the above-mentioned formulas and that the effect of the dispersity of a heterogeneous system on the chemical reaction obeys the Le Chatelier principle of movement of equilibria.

  10. Holistic Metrics for Assessment of the Greenness of Chemical Reactions in the Context of Chemical Education

    Science.gov (United States)

    Ribeiro, M. Gabriela T. C.; Machado, Adelio A. S. C.

    2013-01-01

    Two new semiquantitative green chemistry metrics, the green circle and the green matrix, have been developed for quick assessment of the greenness of a chemical reaction or process, even without performing the experiment from a protocol if enough detail is provided in it. The evaluation is based on the 12 principles of green chemistry. The…

  11. Supersonic molecular beam experiments on surface chemical reactions.

    Science.gov (United States)

    Okada, Michio

    2014-10-01

    The interaction of a molecule and a surface is important in various fields, and in particular in complex systems like biomaterials and their related chemistry. However, the detailed understanding of the elementary steps in the surface chemistry, for example, stereodynamics, is still insufficient even for simple model systems. In this Personal Account, I review our recent studies of chemical reactions on single-crystalline Cu and Si surfaces induced by hyperthermal oxygen molecular beams and by oriented molecular beams, respectively. Studies of oxide formation on Cu induced by hyperthermal molecular beams demonstrate a significant role of the translational energy of the incident molecules. The use of hyperthermal molecular beams enables us to open up new chemical reaction paths specific for the hyperthermal energy region, and to develop new methods for the fabrication of thin films. On the other hand, oriented molecular beams also demonstrate the possibility of understanding surface chemical reactions in detail by varying the orientation of the incident molecules. The steric effects found on Si surfaces hint at new ways of material fabrication on Si surfaces. Controlling the initial conditions of incoming molecules is a powerful tool for finely monitoring the elementary step of the surface chemical reactions and creating new materials on surfaces. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Self-cleaning and surface chemical reactions during hafnium dioxide atomic layer deposition on indium arsenide.

    Science.gov (United States)

    Timm, Rainer; Head, Ashley R; Yngman, Sofie; Knutsson, Johan V; Hjort, Martin; McKibbin, Sarah R; Troian, Andrea; Persson, Olof; Urpelainen, Samuli; Knudsen, Jan; Schnadt, Joachim; Mikkelsen, Anders

    2018-04-12

    Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.

  13. Lagrangian descriptors of driven chemical reaction manifolds.

    Science.gov (United States)

    Craven, Galen T; Junginger, Andrej; Hernandez, Rigoberto

    2017-08-01

    The persistence of a transition state structure in systems driven by time-dependent environments allows the application of modern reaction rate theories to solution-phase and nonequilibrium chemical reactions. However, identifying this structure is problematic in driven systems and has been limited by theories built on series expansion about a saddle point. Recently, it has been shown that to obtain formally exact rates for reactions in thermal environments, a transition state trajectory must be constructed. Here, using optimized Lagrangian descriptors [G. T. Craven and R. Hernandez, Phys. Rev. Lett. 115, 148301 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.148301], we obtain this so-called distinguished trajectory and the associated moving reaction manifolds on model energy surfaces subject to various driving and dissipative conditions. In particular, we demonstrate that this is exact for harmonic barriers in one dimension and this verification gives impetus to the application of Lagrangian descriptor-based methods in diverse classes of chemical reactions. The development of these objects is paramount in the theory of reaction dynamics as the transition state structure and its underlying network of manifolds directly dictate reactivity and selectivity.

  14. In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research.

    Science.gov (United States)

    Wu, Jianbo; Shan, Hao; Chen, Wenlong; Gu, Xin; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2016-11-01

    Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Revealing chemical processes and kinetics of drug action within single living cells via plasmonic Raman probes.

    Science.gov (United States)

    Li, Shan-Shan; Guan, Qi-Yuan; Meng, Gang; Chang, Xiao-Feng; Wei, Ji-Wu; Wang, Peng; Kang, Bin; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-05-23

    Better understanding the drug action within cells may extend our knowledge on drug action mechanisms and promote new drugs discovery. Herein, we studied the processes of drug induced chemical changes on proteins and nucleic acids in human breast adenocarcinoma (MCF-7) cells via time-resolved plasmonic-enhanced Raman spectroscopy (PERS) in combination with principal component analysis (PCA). Using three popular chemotherapy drugs (fluorouracil, cisplatin and camptothecin) as models, chemical changes during drug action process were clearly discriminated. Reaction kinetics related to protein denaturation, conformational modification, DNA damage and their associated biomolecular events were calculated. Through rate constants and reaction delay times, the different action modes of these drugs could be distinguished. These results may provide vital insights into understanding the chemical reactions associated with drug-cell interactions.

  16. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru

    2010-01-01

    as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position...... on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally......DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...

  17. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    Science.gov (United States)

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  18. Calculation of the energetics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, T.H. Jr.; Harding, L.B.; Shepard, R.L.; Harrison, R.J.

    1988-01-01

    To calculate the energetics of chemical reactions we must solve the electronic Schroedinger equation for the molecular conformations of importance for the reactive encounter. Substantial changes occur in the electronic structure of a molecular system as the reaction progresses from reactants through the transition state to products. To describe these changes, our approach includes the following three elements: the use of multiconfiguration self-consistent field wave functions to provide a consistent zero-order description of the electronic structure of the reactants, transition state, and products; the use of configuration interaction techniques to describe electron correlation effects needed to provide quantitative predictions of the reaction energetics; and the use of large, optimized basis sets to provide the flexibility needed to describe the variations in the electronic distributions. With this approach we are able to study reactions involving as many as 5--6 atoms with errors of just a few kcal/mol in the predicted reaction energetics. Predictions to chemical accuracy, i.e., to 1 kcal/mol or less, are not yet feasible, although continuing improvements in both the theoretical methodology and computer technology suggest that this will soon be possible, at least for reactions involving small polyatomic species. 4 figs.

  19. Mass transfer rate through liquid membranes: interfacial chemical reactions and diffusion as simultaneous permeability controlling factors

    International Nuclear Information System (INIS)

    Danesi, P.R.; Horwitz, E.P.; Vandegrift, G.F.; Chiarizia, R.

    1981-01-01

    Equations describing the permeability of a liquid membrane to metal cations have been derived taking into account aqueous diffusion, membrane diffusion, and interfacial chemical reactions as simultaneous permeability controlling factors. Diffusion and chemical reactions have been coupled by a simple model analogous to the one previously described by us to represent liquid-liquid extraction kinetics. The derived equations, which make use of experimentally determined interfacial reaction mechanisms, qualitatively fit unexplained literature data regarding Cu 2+ transfer through liquid membranes. Their use to predict and optimize membrane permeability in practical separation processes by setting the appropriate concentration of the membrane carrier [LIX 64 (General Mills), a commercial β-hydroxy-oxime] and the pH of the aqueous copper feed solution is briefly discussed. 4 figures

  20. Modelling of structural effects on chemical reactions in turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Gammelsaeter, H.R.

    1997-12-31

    Turbulence-chemistry interactions are analysed using algebraic moment closure for the chemical reaction term. The coupling between turbulence and chemical length and time scales generate a complex interaction process. This interaction process is called structural effects in this work. The structural effects are shown to take place on all scales between the largest scale of turbulence and the scales of the molecular motions. The set of equations describing turbulent correlations involved in turbulent reacting flows are derived. Interactions are shown schematically using interaction charts. Algebraic equations for the turbulent correlations in the reaction rate are given using the interaction charts to include the most significant couplings. In the frame of fundamental combustion physics, the structural effects appearing on the small scales of turbulence are proposed modelled using a discrete spectrum of turbulent scales. The well-known problem of averaging the Arrhenius law, the specific reaction rate, is proposed solved using a presumed single variable probability density function and a sub scale model for the reaction volume. Although some uncertainties are expected, the principles are addressed. Fast chemistry modelling is shown to be consistent in the frame of algebraic moment closure when the turbulence-chemistry interaction is accounted for in the turbulent diffusion. The modelling proposed in this thesis is compared with experimental data for an laboratory methane flame and advanced probability density function modelling. The results show promising features. Finally it is shown a comparison with full scale measurements for an industrial burner. All features of the burner are captured with the model. 41 refs., 33 figs.

  1. Two-scale large deviations for chemical reaction kinetics through second quantization path integral

    International Nuclear Information System (INIS)

    Li, Tiejun; Lin, Feng

    2016-01-01

    Motivated by the study of rare events for a typical genetic switching model in systems biology, in this paper we aim to establish the general two-scale large deviations for chemical reaction systems. We build a formal approach to explicitly obtain the large deviation rate functionals for the considered two-scale processes based upon the second quantization path integral technique. We get three important types of large deviation results when the underlying two timescales are in three different regimes. This is realized by singular perturbation analysis to the rate functionals obtained by the path integral. We find that the three regimes possess the same deterministic mean-field limit but completely different chemical Langevin approximations. The obtained results are natural extensions of the classical large volume limit for chemical reactions. We also discuss its implication on the single-molecule Michaelis–Menten kinetics. Our framework and results can be applied to understand general multi-scale systems including diffusion processes. (paper)

  2. Impact of supersonic and subsonic aircraft on ozone: Including heterogeneous chemical reaction mechanisms

    International Nuclear Information System (INIS)

    Kinnison, D.E.; Wuebbles, D.J.

    1992-01-01

    Preliminary calculations suggest that heterogeneous reactions are important in calculating the impact on ozone from emissions of trace gases from aircraft fleets. In this study, three heterogeneous chemical processes that occur on background sulfuric acid aerosols are included and their effects on O 3 , NO x , Cl x , HCl, N 2 O 5 , ClONO 2 are calculated

  3. Molecular dynamics simulation of a chemical reaction

    International Nuclear Information System (INIS)

    Gorecki, J.; Gryko, J.

    1988-06-01

    Molecular dynamics is used to study the chemical reaction A+A→B+B. It is shown that the reaction rate constant follows the Arrhenius law both for Lennard-Jones and hard sphere interaction potentials between substrate particles. A. For the denser systems the reaction rate is proportional to the value of the radial distribution function at the contact point of two hard spheres. 10 refs, 4 figs

  4. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.

    Science.gov (United States)

    Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing

    2017-04-01

    The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.

  5. Chemical modifications and reactions in DNA nanostructures

    DEFF Research Database (Denmark)

    Gothelf, Kurt Vesterager

    2017-01-01

    such as hydrocarbons or steroids have been introduced to change the surface properties of DNA origami structures, either to protect the DNA nanostructure or to dock it into membranes and other hydrophobic surfaces. DNA nanostructures have also been used to control covalent chemical reactions. This article provides......DNA nanotechnology has the power to form self-assembled and well-defined nanostructures, such as DNA origami, where the relative positions of each atom are known with subnanometer precision. Our ability to synthesize oligonucleotides with chemical modifications in almost any desired position...... provides rich opportunity to incorporate molecules, biomolecules, and a variety of nanomaterials in specific positions on DNA nanostructures. Several standard modifications for oligonucleotides are available commercially, such as dyes, biotin, and chemical handles, and such modified oligonucleotides can...

  6. Chemical reaction networks as a model to describe UVC- and radiolytically-induced reactions of simple compounds.

    Science.gov (United States)

    Dondi, Daniele; Merli, Daniele; Albini, Angelo; Zeffiro, Alberto; Serpone, Nick

    2012-05-01

    When a chemical system is submitted to high energy sources (UV, ionizing radiation, plasma sparks, etc.), as is expected to be the case of prebiotic chemistry studies, a plethora of reactive intermediates could form. If oxygen is present in excess, carbon dioxide and water are the major products. More interesting is the case of reducing conditions where synthetic pathways are also possible. This article examines the theoretical modeling of such systems with random-generated chemical networks. Four types of random-generated chemical networks were considered that originated from a combination of two connection topologies (viz., Poisson and scale-free) with reversible and irreversible chemical reactions. The results were analyzed taking into account the number of the most abundant products required for reaching 50% of the total number of moles of compounds at equilibrium, as this may be related to an actual problem of complex mixture analysis. The model accounts for multi-component reaction systems with no a priori knowledge of reacting species and the intermediates involved if system components are sufficiently interconnected. The approach taken is relevant to an earlier study on reactions that may have occurred in prebiotic systems where only a few compounds were detected. A validation of the model was attained on the basis of results of UVC and radiolytic reactions of prebiotic mixtures of low molecular weight compounds likely present on the primeval Earth.

  7. Chemical reaction dynamics using the Advanced Light Source

    International Nuclear Information System (INIS)

    Yang, X.; Blank, D.A.; Heimann, P.A.; Lee, Y.T.; Suits, A.G.; Lin, J.; Wodtke, A.M.

    1995-01-01

    The recently commissioned Advanced Light Source (ALS) at Berkeley provides a high brightness, tunable VUV light source for chemical dynamics studies. A dedicated chemical dynamics beamline has been built at the ALS for studies of fundamental chemical processes. High flux (10(sup 16) photon/s with 2% bandwidth) VUV synchrotron radiation from 5 to 30 eV can be obtained from the beamline, whose source is the U8/10 undulator. Three endstations will be in operation for studies ranging from crossed beam reaction dynamics and photodissociation to high resolution photoionization dynamics and spectroscopy. A rotatable source crossed molecular beam apparatus (endstation one) has been established for unimolecular and bimolecular reactive scattering studies. Photodissociation of methylamine and ozone were carried out using VUV synchrotron radiation as the ionization detection technique at this endstation. Results show the advantages of the new endstation using VUV ionization as the detection scheme over similar machines using electron bombardment as the ionization source

  8. Chemical reaction dynamics using the Advanced Light Source

    International Nuclear Information System (INIS)

    Yang, X.; Blank, D.A.; Heimann, P.A.; Lee, Y.T.; Suits, A.G.; Lin, J.; Wodtke, A.M.

    1995-09-01

    The recently commissioned Advanced Light Source (ALS) at Berkeley provides a high brightness, tunable VUV light source for chemical dynamics studies. A dedicated chemical dynamics beamline has been built at the ALS for studies of fundamental chemical processes. High flux (10 16 photon/s with 2% bandwidth) VUV synchrotron radiation from 5 to 30 eV can be obtained from the beamline, whose source is the U8/10 undulator. Three endstations will be in operation for studies ranging from crossed beam reaction dynamics and photodissociation to high resolution photoionization dynamics and spectroscopy. A rotatable source crossed molecular beam apparatus (endstation one) has been established for unimolecular and bimolecular reactive scattering studies. Photodissociation of methylamine and ozone were carried out using VUV synchrotron radiation as the ionization detection technique at this endstation. Results show the advantages of the new endstation using VUV ionization as the detection scheme over similar machines using electron bombardment as the ionization source

  9. College Chemistry Students' Use of Memorized Algorithms in Chemical Reactions

    Science.gov (United States)

    Nyachwaya, James M.; Warfa, Abdi-Rizak M; Roehrig, Gillian H.; Schneider, Jamie L.

    2014-01-01

    This study sought to uncover memorized algorithms and procedures that students relied on in responding to questions based on the particulate nature of matter (PNM). We describe various memorized algorithms or processes used by students. In the study, students were asked to balance three equations of chemical reaction and then draw particulate…

  10. Modeling Electric Double-Layers Including Chemical Reaction Effects

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2014-01-01

    A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...... for symmetric and asymmetric multi-species electrolytes and is not limited to a range of surface potentials. Numerical simulations are presented, for the case of a CaCO3 electrolyte solution in contact with a surface with rate-controlled protonation/deprotonation reactions. The surface charge and potential...... are determined by the surface reactions, and therefore they depends on the bulk solution composition and concentration...

  11. Process Technology for Immobilized Lipasecatalyzed Reactions

    DEFF Research Database (Denmark)

    Xu, Yuan

    Biocatalysis has attracted significant attention recently, mainly due to its high selectivity and potential benefits for sustainability. Applications can be found in biorefineries, turning biomass into energy and chemicals, and also for products in the food and pharmaceutical industries. However......, most applications remain in the production of high-value fine chemicals, primarily because of the expense of introducing new technology. In particular lipasecatalyzed synthesis has already achieved efficient operations for high-value products and more interesting now is to establish opportunities...... for low-value products. In order to guide the industrial implementation of immobilized-lipase catalyzed reactions, especially for highvolume low-value products, a methodological framework for dealing with the technical and scientific challenges and establishing an efficient process via targeted scale...

  12. Sintering with a chemical reaction as applied to uranium monocarbide; Frittage-reaction dans le cas du monocarbure d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Accary, A; Caillat, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The present paper provides a survey of different investigations whose aim was the preparation and fabrication of uranium monocarbide for nuclear use. If a chemical reaction takes place in the sample during the sintering operation, it may be expected that the atom rearrangements involved in this reaction should favour the sintering process and thereby lower the temperature needed to yield a body of a given density. With this hypothesis in mind, the following methods have been studied: - Sintering of U-C mixtures; - Sintering of UO{sub 2}-C mixtures; - Hot pressing of U-C mixtures; - Extrusion of U-C mixtures. To generalize our result, it could be said that a chemical reaction does not lead to high densification, if one depends on a simple contact between discrete particles. On the contrary, a chemical reaction can help sintering if, as our hot pressing experiments shows, the densification can be achieved prior to the reaction. (author) [French] Le present article resume les etudes faites pour le compte du Commissariat a l'Energie Atomique dans le but de preparer du monocarbure d'uranium pour usage nucleaire. Si, en meme temps que l'on fritte une poudre, celle-ci est le siege d'une reaction chimique, on peut s'attendre a ce que le rearrangement atomique d'une reaction chimique favorise le frittage et, ainsi abaisse la temperature de travail necessaire pour obtenir une densite donnee. Nous avons etudie les methodes suivantes: - frittage des melanges U-C; - frittage des melanges UO{sub 2}-C; - frittage sous charge des melanges U-C; - filage des melanges U-C. Nos resultats montrent qu'une reaction chimique en cours de frittage ne conduit pas a un produit de haute densite si on opere sur un melange de poudres. Par contre, elle permet d'atteindre de hautes densites si la densification peut etre obtenue avant la reaction chimique. (auteur)

  13. The study of thermodynamic properties and transport properties of multicomponent systems with chemical reactions

    Directory of Open Access Journals (Sweden)

    Samujlov E.

    2013-04-01

    Full Text Available In case of system with chemical reaction the most important properties are heat conductivity and heat capacity. In this work we have considered the equation for estimate the component of these properties caused by chemical reaction and ionization processes. We have evaluated the contribution of this part in heat conductivity and heat capacity too. At the high temperatures contribution in heat conductivity from ionization begins to play an important role. We have created a model, which describe partial and full ionization of gases and gas mixtures. In addition, in this work we present the comparison of our result with experimental data and data from numerical simulation. We was used the data about transport properties of middle composition of Russian coals and the data of thermophysical properties of natural gas for comparison.

  14. Integrating chemical engineering fundamentals in the capstone process design project

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik

    2010-01-01

    Reaction Engineering. In order to incorporate reactor design into process design in a meaningful way, the teachers of the respective courses need to collaborate (Standard 9 – Enhancement of Faculty CDIO skills). The students also see that different components of the chemical engineering curriculum relate......All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30...... of the CDIO standards – especially standard 3 – Integrated Curriculum - means that the course projects must draw on competences provided in other subjects which the students are taking in parallel with Process Design – specifically Process Control and Reaction Engineering. In each semester of the B...

  15. Challenge for real-time and real-space resolved spectroscopy of surface chemical reactions. Aiming at trace of irreversible and inhomogeneous reactions

    International Nuclear Information System (INIS)

    Amemiya, Kenta

    2015-01-01

    A novel experimental technique, time-resolved wavelength-dispersive soft X-ray imaging spectroscopy, is proposed in order to achieve real-time and real-space resolved spectroscopy for the observation of irreversible and inhomogeneous surface chemical reactions. By combining the wavelength-dispersed soft X rays, in which the X-ray wavelength (photon energy) changes as a function of position on the sample, with the photoelectron emission microscope, the soft X-ray absorption spectra are separately obtained at different positions on the sample without scanning the X-ray monochromator. Therefore, the real-time resolved measurement of site-selective soft X-ray absorption spectroscopy is realized in one event without repeating the chemical reaction. It is expected that the spatial distribution of different chemical species is traced during the surface chemical reaction, which is essential to understand the reaction mechanism. (author)

  16. Purification of free hydrogen or hydrogen combined in a gaseous mixture by chemical reactions with uranium

    International Nuclear Information System (INIS)

    Caron-Charles, M.; Gilot, B.

    1989-01-01

    Within the framework of the European fusion program, the authors are dealing with the tritium technology aspect. Hydrogen, free or under a combined form within a H 2 , N 2 , NH 3 , O 2 , gaseous mixture, can be purified by chemical reactions with uranium metal. The resulting reactions consist in absorbing the impurities without holding back H 2 . Working conditions have been defined according to two main goals: the formation of stable solid products, especially under hydrogenated atmosphere and the optimization of the material quantities to be used. Thermodynamical considerations have shown that the 950-1300 K temperature range should be suitable for this chemical process. Experiments performed with massive uranium set in a closed reactor at 973 K, have produced hydrogen according to the predicted reactions rates. But they have also pointed out the importance of interferences that might occur in the uranium-gas system, on the gases conversion rates. The comparison between the chemical kinetic ratings of the reactions of pure gases and the chemical kinetic ratings of the reactions of the same gases in mixture, has been set up. It proves that simultaneous reactions can modify the working conditions of the solid products formation, and particularly modify their structure. In this case, chemical kinetic ratings are increased up to their maximal value; that means surface phenomena are favoured as with uranium powder gases reactions. (orig.)

  17. Non-allergic cutaneous reactions in airborne chemical sensitivity--a population based study

    DEFF Research Database (Denmark)

    Berg, Nikolaj Drimer; Linneberg, Allan; Thyssen, Jacob Pontoppidan

    2011-01-01

    the relationship between cutaneous reactions from patch testing and self-reported severity of chemical sensitivity to common airborne chemicals. A total of 3460 individuals participating in a general health examination, Health 2006, were patch tested with allergens from the European standard series and screened...... for chemical sensitivity with a standardised questionnaire dividing the participants into four severity groups of chemical sensitivity. Both allergic and non-allergic cutaneous reactions--defined as irritative, follicular, or doubtful allergic reactions--were analysed in relationship with severity of chemical...... most severe groups of self-reported sensitivity to airborne chemicals. When adjusting for confounding, associations were weakened, and only non-allergic cutaneous reactions were significantly associated with individuals most severely affected by inhalation of airborne chemicals (odds ratio = 2.5, p = 0...

  18. Why Do Lithium-Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect.

    Science.gov (United States)

    Yao, Xiahui; Dong, Qi; Cheng, Qingmei; Wang, Dunwei

    2016-09-12

    As an electrochemical energy-storage technology with the highest theoretical capacity, lithium-oxygen batteries face critical challenges in terms of poor stabilities and low charge/discharge round-trip efficiencies. It is generally recognized that these issues are connected to the parasitic chemical reactions at the anode, electrolyte, and cathode. While the detailed mechanisms of these reactions have been studied separately, the possible synergistic effects between these reactions remain poorly understood. To fill in the knowledge gap, this Minireview examines literature reports on the parasitic chemical reactions and finds the reactive oxygen species a key chemical mediator that participates in or facilitates nearly all parasitic chemical reactions. Given the ubiquitous presence of oxygen in all test cells, this finding is important. It offers new insights into how to stabilize various components of lithium-oxygen batteries for high-performance operations and how to eventually materialize the full potentials of this promising technology. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Chemical kinetics: on the heterogeneous catalysis processes leading to an exchange between two phases. Example: isotopic exchange reactions; Cinetique chimique: sur les processus de catalyse 'heterogene' conduisant a un echange entre deux phases. Exemple: reactions d'echange isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Dirian, G; Grandcollot, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    For an exchange reaction between a gaseous and a liquid phase proceeding by 'heterogeneous' catalysis in the liquid phase, diffusion in the liquid and the chemical reaction are two simultaneous and indivisible processes. We have nevertheless been able to establish criteria making it possible to distinguish between a really homogeneous kinetic process and a pseudo-homogeneous one. (author) [French] Pour une reaction d'echange entre une phase gazeuse et une phase liquide procedant par catalyse 'heterogene' en phase liquide, la diffusion dans le liquide et la reaction chimique sont deux etapes simultanees et indissociables. Nous avons pu neanmoins etablir des criteres permettant de distinguer entre une cinetique homogene vraie et une cinetique pseudo-homogene. (auteur)

  20. Chemical boundary layers in CVD II. Reversible reactions

    NARCIS (Netherlands)

    Croon, de M.H.J.M.; Giling, L.J.

    1990-01-01

    In addition to irreversible reactions, which were treated in part I, reversible reactions in the gas phase have beenstudied using the concept of the chemical boundary layer. The analysis is given for the situations in which either the forwardor the back reaction is dominant. Two conceptual models

  1. Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions.

    Science.gov (United States)

    Guo, Zhenkun; Molesky, Brian P; Cheshire, Thomas P; Moran, Andrew M

    2017-11-02

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in condensed phase systems. 2DRR spectroscopy is motivated by knowledge of non-equilibrium effects that cannot be detected with traditional resonance Raman spectroscopy. For example, 2DRR spectra may reveal correlated distributions of reactant and product geometries in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this chapter, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide. We show that signatures of "vibronic coherence transfer" in the photodissociation process can be targeted with particular 2DRR pulse sequences. Key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopy techniques are also addressed. Overall, recent experimental developments and applications of the 2DRR method suggest that it will be a valuable tool for elucidating ultrafast chemical reaction mechanisms.

  2. Chemical Looping Combustion Reactions and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) the exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore

  3. Communication: Control of chemical reactions using electric field gradients

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Shivaraj D.; Tsori, Yoav, E-mail: tsori@bgu.ac.il [Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  4. Communication: Control of chemical reactions using electric field gradients.

    Science.gov (United States)

    Deshmukh, Shivaraj D; Tsori, Yoav

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  5. Study of kinetics and mechanism of diazo compound reactions using nuclear chemical polarization

    International Nuclear Information System (INIS)

    Gragerov, I.P.; Levit, A.F.; Kiprianova, L.A.; Buchachenko, A.L.; Sterleva, T.G.

    1975-01-01

    It has been established that at the rate-determining steps of the radical reactions in which aniline interacts with isoamyl nitrite and substituted diazo salts interact with sodium methylate, tertiary fatty amines, or phosphinic acid, no transfer of a single electron occurs. The processes of single electron transfer do not seem to play a decisive role in the kinetics of most transformations of diazo compounds. Chemical nuclear polarization is shown to be suitable for kinetic studies of fast radical processes

  6. Droplet heat transfer and chemical reactions during direct containment heating

    International Nuclear Information System (INIS)

    Baker, L. Jr.

    1986-01-01

    A simplified model of heat transfer and chemical reaction has been adapted to evaluate the expected behavior of droplets containing unreacted Zircaloy and stainless steel moving through the containment atmosphere during postulated accidents involving direct containment heating. The model includes internal and external diffusive resistances to reaction. The results indicate that reactions will be incomplete for many conditions characteristic of direct containment heating sequences

  7. Design of an embedded inverse-feedforward biomolecular tracking controller for enzymatic reaction processes

    OpenAIRE

    Foo, Mathias; Kim, Jongrae; Sawlekar, Rucha; Bates, Declan G.

    2017-01-01

    Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a ‘subtractor’ that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a b...

  8. Effect of chemical reaction on unsteady MHD free convective two ...

    African Journals Online (AJOL)

    The effect of flow parameters on the coefficient of skin friction, Nusselt number and Sherwood number are also tabulated and discussed appropriately. It was observed that the increase in chemical reaction coefficient/parameter suppresses both velocity and concentration profiles. Keywords: Chemical Reaction, MHD, ...

  9. Chemical modeling of irreversible reactions in nuclear waste-water-rock systems

    International Nuclear Information System (INIS)

    Wolery, T.J.

    1981-02-01

    Chemical models of aqueous geochemical systems are usually built on the concept of thermodynamic equilibrium. Though many elementary reactions in a geochemical system may be close to equilibrium, others may not be. Chemical models of aqueous fluids should take into account that many aqueous redox reactions are among the latter. The behavior of redox reactions may critically affect migration of certain radionuclides, especially the actinides. In addition, the progress of reaction in geochemical systems requires thermodynamic driving forces associated with elementary reactions not at equilibrium, which are termed irreversible reactions. Both static chemical models of fluids and dynamic models of reacting systems have been applied to a wide spectrum of problems in water-rock interactions. Potential applications in nuclear waste disposal range from problems in geochemical aspects of site evaluation to those of waste-water-rock interactions. However, much further work in the laboratory and the field will be required to develop and verify such applications of chemical modeling

  10. Enrichment: CRISLA [chemical reaction by isotope selective activation] aims to reduce costs

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1989-01-01

    Every year, more than $3 billion is spent on enriching uranium. CRISLA (Chemical Reaction by Isotope Selective Activation) uses a laser-catalyzed chemical reaction which, its proponents claim, could substantially reduce these costs. In CRISLA, an infrared CO laser illuminates the intracavity reaction cell (IC) at a frequency tuned to excite primarily UF 6 . When UF 6 and co-reactant RX are passed through the IC, the tuned laser photons preferentially enhance the reaction of UF 6 with RX ten-thousand-fold over the thermal reaction rate. Thus the laser serves as an activator and the chemical energy for separation is largely chemical. (author)

  11. Safer operating conditions and optimal scaling-up process for cyclohexanone peroxide reaction

    International Nuclear Information System (INIS)

    Zang, Na; Qian, Xin-Ming; Liu, Zhen-Yi; Shu, Chi-Min

    2015-01-01

    Highlights: • Thermal hazard of cyclohexanone peroxide reaction was measured by experimental techniques. • Levenberg–Marquardt algorithm was adopted to evaluate kinetic parameters. • Safer operating conditions at laboratory scale were acquired by BDs and TDs. • The verified safer operating conditions were used to obtain the optimal scale-up parameters applied in industrial plants. - Abstract: The cyclohexanone peroxide reaction process, one of the eighteen hazardous chemical processes identified in China, is performed in indirectly cooled semibatch reactors. The peroxide reaction is added to a mixture of hydrogen peroxide and nitric acid, which form heterogeneous liquid–liquid systems. A simple and general procedure for building boundary and temperature diagrams of peroxide process is given here to account for the overall kinetic expressions. Such a procedure has been validated by comparison with experimental data. Thermally safer operating parameters were obtained at laboratory scale, and the scaled-up procedure was performed to give the minimum dosing time in an industrial plant, which is in favor of maximizing industrial reactor productivity. The results are of great significance for governing the peroxide reaction process apart from the thermal runaway region. It also greatly aids in determining optimization on operating parameters in industrial plants.

  12. Non-allergic cutaneous reactions in airborne chemical sensitivity--a population based study.

    Science.gov (United States)

    Berg, Nikolaj Drimer; Linneberg, Allan; Thyssen, Jacob Pontoppidan; Dirksen, Asger; Elberling, Jesper

    2011-06-01

    Multiple chemical sensitivity (MCS) is characterised by adverse effects due to exposure to low levels of chemical substances. The aetiology is unknown, but chemical related respiratory symptoms have been found associated with positive patch test. The purpose of this study was to investigate the relationship between cutaneous reactions from patch testing and self-reported severity of chemical sensitivity to common airborne chemicals. A total of 3460 individuals participating in a general health examination, Health 2006, were patch tested with allergens from the European standard series and screened for chemical sensitivity with a standardised questionnaire dividing the participants into four severity groups of chemical sensitivity. Both allergic and non-allergic cutaneous reactions--defined as irritative, follicular, or doubtful allergic reactions--were analysed in relationship with severity of chemical sensitivity. Associations were controlled for the possible confounding effects of sex, age, asthma, eczema, atopic dermatitis, psychological and social factors, and smoking habits. In unadjusted analyses we found associations between allergic and non-allergic cutaneous reactions on patch testing and the two most severe groups of self-reported sensitivity to airborne chemicals. When adjusting for confounding, associations were weakened, and only non-allergic cutaneous reactions were significantly associated with individuals most severely affected by inhalation of airborne chemicals (odds ratio = 2.5, p = 0.006). Our results suggest that individuals with self-reported chemical sensitivity show increased non-allergic cutaneous reactions based on day 2 readings of patch tests. Copyright © 2011 Elsevier GmbH. All rights reserved.

  13. Chemical-Reaction-Controlled Phase Separated Drops: Formation, Size Selection, and Coarsening

    Science.gov (United States)

    Wurtz, Jean David; Lee, Chiu Fan

    2018-02-01

    Phase separation under nonequilibrium conditions is exploited by biological cells to organize their cytoplasm but remains poorly understood as a physical phenomenon. Here, we study a ternary fluid model in which phase-separating molecules can be converted into soluble molecules, and vice versa, via chemical reactions. We elucidate using analytical and simulation methods how drop size, formation, and coarsening can be controlled by the chemical reaction rates, and categorize the qualitative behavior of the system into distinct regimes. Ostwald ripening arrest occurs above critical reaction rates, demonstrating that this transition belongs entirely to the nonequilibrium regime. Our model is a minimal representation of the cell cytoplasm.

  14. Chemical Reaction Engineering: Current Status and Future Directions.

    Science.gov (United States)

    Dudukovic, M. P.

    1987-01-01

    Describes Chemical Reaction Engineering (CRE) as the discipline that quantifies the interplay of transport phenomena and kinetics in relating reactor performance to operating conditions and input variables. Addresses the current status of CRE in both academic and industrial settings and outlines future trends. (TW)

  15. Reaction diffusion and solid state chemical kinetics handbook

    CERN Document Server

    Dybkov, V I

    2010-01-01

    This monograph deals with a physico-chemical approach to the problem of the solid-state growth of chemical compound layers and reaction-diffusion in binary heterogeneous systems formed by two solids; as well as a solid with a liquid or a gas. It is explained why the number of compound layers growing at the interface between the original phases is usually much lower than the number of chemical compounds in the phase diagram of a given binary system. For example, of the eight intermetallic compounds which exist in the aluminium-zirconium binary system, only ZrAl3 was found to grow as a separate

  16. Quantum chemical approach to estimating the thermodynamics of metabolic reactions.

    Science.gov (United States)

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-11-12

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.

  17. Raman Spectral Determination of Chemical Reaction Rate Characteristics

    Science.gov (United States)

    Balakhnina, I. A.; Brandt, N. N.; Mankova, A. A.; Chikishev, A. Yu.; Shpachenko, I. G.

    2017-09-01

    The feasibility of using Raman spectroscopy to determine chemical reaction rates and activation energies has been demonstrated for the saponification of ethyl acetate. The temperature dependence of the reaction rate was found in the range from 15 to 45°C.

  18. Systematic trends in photonic reagent induced reactions in a homologous chemical family.

    Science.gov (United States)

    Tibbetts, Katharine Moore; Xing, Xi; Rabitz, Herschel

    2013-08-29

    The growing use of ultrafast laser pulses to induce chemical reactions prompts consideration of these pulses as "photonic reagents" in analogy to chemical reagents. This work explores the prospect that photonic reagents may affect systematic trends in dissociative ionization reactions of a homologous family of halomethanes, much as systematic outcomes are often observed for reactions between homologous families of chemical reagents and chemical substrates. The experiments in this work with photonic reagents of varying pulse energy and linear spectral chirp reveal systematic correlations between observable ion yields and the following set of natural variables describing the substrate molecules: the ionization energy of the parent molecule, the appearance energy of each fragment ion, and the relative strength of carbon-halogen bonds in molecules containing two different halogens. The results suggest that reactions induced by photonic reagents exhibit systematic behavior analogous to that observed in reactions driven by chemical reagents, which provides a basis to consider empirical "rules" for predicting the outcomes of photonic reagent induced reactions.

  19. Understanding Chemical Reaction Kinetics and Equilibrium with Interlocking Building Blocks

    Science.gov (United States)

    Cloonan, Carrie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    Chemical reaction kinetics and equilibrium are essential core concepts of chemistry but are challenging topics for many students, both at the high school and undergraduate university level. Visualization at the molecular level is valuable to aid understanding of reaction kinetics and equilibrium. This activity provides a discovery-based method to…

  20. In Situ Monitoring of Chemical Reactions at a Solid-Water Interface by Femtosecond Acoustics.

    Science.gov (United States)

    Shen, Chih-Chiang; Weng, Meng-Yu; Sheu, Jinn-Kong; Yao, Yi-Ting; Sun, Chi-Kuang

    2017-11-02

    Chemical reactions at a solid-liquid interface are of fundamental importance. Interfacial chemical reactions occur not only at the very interface but also in the subsurface area, while existing monitoring techniques either provide limited spatial resolution or are applicable only for the outmost atomic layer. Here, with the aid of the time-domain analysis with femtosecond acoustics, we demonstrate a subatomic-level-resolution technique to longitudinally monitor chemical reactions at solid-water interfaces, capable of in situ monitoring even the subsurface area under atmospheric conditions. Our work was proven by monitoring the already-known anode oxidation process occurring during photoelectrochemical water splitting. Furthermore, whenever the oxide layer thickness equals an integer  number of the effective atomic layer thickness, the measured acoustic echo will show higher signal-to-noise ratios with reduced speckle noise, indicating the quantum-like behavior of this coherent-phonon-based technique.

  1. Investigations of chemical reactions between U-Zr alloy and FBR cladding materials

    International Nuclear Information System (INIS)

    Ishii, Tetsuya; Ukai, Shigeharu

    2005-07-01

    U-Pu-Zr alloys are candidate materials for commercial FBR fuel. However, informations about chemical reactions with cladding materials developed by JNC for commercial FBR have not been well obtained. In this work, the reaction zones formed in four diffusion couples U-10wt.%Zr/PNC-FMS, U-10wt.%Zr/9Cr-ODS, U-10wt.%Zr/12Cr-ODS, and U-10wt.%Zr/Fe at about 1013K have been examined and following results were obtained. 1) At about 1013K, in the U-10wt.%Zr/Fe couple, the liquid phase zones were obtained. In the other couples U-10wt.%Zr/PNC-FMS, U-10wt.%Zr/9Cr-ODS and U-10wt.%Zr/12Cr-ODS, no liquid phase zones were obtained. The obtained chemical reaction zones in the later 3 couples were similar to the reported ones obtained in U-Zr/Fe couples without liquid phase formation. In comparison with the reaction zones obtained in the U-10wt.%Zr/Fe couple, the reaction zones inside cladding materials obtained in the PNC-FMS, 9Cr-ODS, and 12Cr-ODS couples were thin. 2) From the investigations of relationship between the obtained depths of the chemical reaction zones inside cladding materials and composition of the cladding materials, it was considered that the depth of chemical reaction zone would depend on the Cr content of the cladding materials and the depth would decrease with increasing Cr content, resulting in prevention of liquid phase formation. 3) From the investigations of the mechanisms of chemical reactions between U-Pu-Zr/cladding materials, it was considered that the same effect of Cr obtained in the U-Zr/cladding materials would be expected in U-Pu-Zr/cladding materials. Those seemed to indicate that the threshold temperatures of liquid phase formation for U-Pu-Zr/PNC-FMS, U-Pu-Zr/9Cr-ODS, and U-Pu-Zr/12Cr-ODS might be higher than that for U-Pu-Zr/Fe. (author)

  2. Leading survey and research report for fiscal 1999. Survey and research on chemical reaction simulator technology; 1999 nendo kagaku hanno simulator gijutsu no chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Although various chemical reactions are made use of at scenes of chemical industry for the acquisition of desired chemicals, the control of reaction process governing factors, such as temperature, pressure, catalysts, solutions, etc., is found to be carried out only on the empirical basis. At the present time, rational or optimum reaction designs are not to be prepared in a short period of time in the presence of the widespread shortage of knowledge about chemical reactions and of the shortage of understanding of chemical reactions at the micro level. Leading survey and research are conducted for the development of a 'chemical reaction simulator' technology to enable the acquisition of optimum reaction designing guidelines in a short period of time. Using the simulator, a chemical of his choice is inputted by a researcher engaged in the study of an real chemical reaction and then various techniques of computer science are mobilized for the preparation of a huge number of feasible reaction routes, and high-precision simulations are conducted for the feasible reaction routes. The results achieved this fiscal year are reported. The purpose of this research and its ripple effect on new product industry creation are stated. Then the positioning, mission, and concept of such a chemical reaction simulator are described. Finally, the result of research and survey of knowledge databases and the result of research and survey of computational chemistry are stated. (NEDO)

  3. Leading survey and research report for fiscal 1999. Survey and research on chemical reaction simulator technology; 1999 nendo kagaku hanno simulator gijutsu no chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Although various chemical reactions are made use of at scenes of chemical industry for the acquisition of desired chemicals, the control of reaction process governing factors, such as temperature, pressure, catalysts, solutions, etc., is found to be carried out only on the empirical basis. At the present time, rational or optimum reaction designs are not to be prepared in a short period of time in the presence of the widespread shortage of knowledge about chemical reactions and of the shortage of understanding of chemical reactions at the micro level. Leading survey and research are conducted for the development of a 'chemical reaction simulator' technology to enable the acquisition of optimum reaction designing guidelines in a short period of time. Using the simulator, a chemical of his choice is inputted by a researcher engaged in the study of an real chemical reaction and then various techniques of computer science are mobilized for the preparation of a huge number of feasible reaction routes, and high-precision simulations are conducted for the feasible reaction routes. The results achieved this fiscal year are reported. The purpose of this research and its ripple effect on new product industry creation are stated. Then the positioning, mission, and concept of such a chemical reaction simulator are described. Finally, the result of research and survey of knowledge databases and the result of research and survey of computational chemistry are stated. (NEDO)

  4. Formal modeling of a system of chemical reactions under uncertainty.

    Science.gov (United States)

    Ghosh, Krishnendu; Schlipf, John

    2014-10-01

    We describe a novel formalism representing a system of chemical reactions, with imprecise rates of reactions and concentrations of chemicals, and describe a model reduction method, pruning, based on the chemical properties. We present two algorithms, midpoint approximation and interval approximation, for construction of efficient model abstractions with uncertainty in data. We evaluate computational feasibility by posing queries in computation tree logic (CTL) on a prototype of extracellular-signal-regulated kinase (ERK) pathway.

  5. Thermo effect of chemical reaction in irreversible electrochemical systems

    International Nuclear Information System (INIS)

    Tran Vinh Quy; Nguyen Tang

    1989-01-01

    From first law of thermodynamics the expressions of statistical calculation of 'Fundamental' and 'Thermo-chemical' thermal effects are obtained. Besides, method of calculation of thermal effect of chemical reactions in non-equilibrium electro-chemical systems is accurately discussed. (author). 7 refs

  6. Temperature dependence on plasma-induced damage and chemical reactions in GaN etching processes using chlorine plasma

    Science.gov (United States)

    Liu, Zecheng; Ishikawa, Kenji; Imamura, Masato; Tsutsumi, Takayoshi; Kondo, Hiroki; Oda, Osamu; Sekine, Makoto; Hori, Masaru

    2018-06-01

    Plasma-induced damage (PID) on GaN was optimally reduced by high-temperature chlorine plasma etching. Energetic ion bombardments primarily induced PID involving stoichiometry, surface roughness, and photoluminescence (PL) degradation. Chemical reactions under ultraviolet (UV) irradiation and chlorine radical exposure at temperatures higher than 400 °C can be controlled by taking into account the synergism of simultaneous photon and radical irradiations to effectively reduce PID.

  7. Reaction path analysis of sodium-water reaction phenomena in support of chemical reaction model development

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Ohshima, Hiroyuki; Hashimoto, Kenro

    2011-01-01

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule to the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. The results are used as the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by JAEA toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR). (author)

  8. Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, S. P.; Langhoff, S. R. (Technical Monitor)

    1995-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives useful results for a number of chemically important systems. The talk will focus on a number of applications to reactions leading to NOx and soot formation in hydrocarbon combustion.

  9. Influence of surface coverage on the chemical desorption process

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, M.; Dulieu, F., E-mail: francois.dulieu@obspm.fr [LERMA, Université de Cergy Pontoise et Observatoire de Paris, UMR 8112 du CNRS. 5, mail Gay Lussac, 95031 Cergy Pontoise (France)

    2014-07-07

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.

  10. Chemical interesterification of soybean oil and fully hydrogenated soybean oil: Influence of the reaction time

    International Nuclear Information System (INIS)

    Ribeiro, Ana Paula Badan; Masuchi, Monise Helen; Grimaldi, Renato; Goncalves, Lireny Aparecida Guaraldo

    2009-01-01

    Chemical interesterification is an important alternative to produce zero trans fats. In practice, however, excessive reaction times are used to ensure complete randomization. This work evaluated the influence of the reaction time on the interesterification of soybean oil/fully hydrogenated soybean oil blend, carried out in the following conditions: 100 deg C, 500 rpm stirring speed, 0.4% (w/w) sodium methoxide catalyst. The triacylglycerol composition, solid fat content and melting point analysis showed that the reaction was very fast, reaching the equilibrium within 5 min. This result suggests the interesterification can be performed in substantially lower times, with reduction in process costs. (author)

  11. A Data-Driven Sparse-Learning Approach to Model Reduction in Chemical Reaction Networks

    OpenAIRE

    Harirchi, Farshad; Khalil, Omar A.; Liu, Sijia; Elvati, Paolo; Violi, Angela; Hero, Alfred O.

    2017-01-01

    In this paper, we propose an optimization-based sparse learning approach to identify the set of most influential reactions in a chemical reaction network. This reduced set of reactions is then employed to construct a reduced chemical reaction mechanism, which is relevant to chemical interaction network modeling. The problem of identifying influential reactions is first formulated as a mixed-integer quadratic program, and then a relaxation method is leveraged to reduce the computational comple...

  12. Conservation-dissipation structure of chemical reaction systems.

    Science.gov (United States)

    Yong, Wen-An

    2012-12-01

    In this Brief Report, we show that balanced chemical reaction systems governed by the law of mass action have an elegant conservation-dissipation structure. From this structure a number of important conclusions can be easily deduced. In particular, with the help of this structure we can rigorously justify the classical partial equilibrium approximation in chemical kinetics.

  13. Femtosecond laser induced and controlled chemical reaction of carbon monoxide and hydrogen

    CSIR Research Space (South Africa)

    Du Plessis, A

    2011-07-01

    Full Text Available Results from experiments aimed at bimolecular chemical reaction control of CO and H2 at room temperature and pressure, without any catalyst, using shaped femtosecond laser pulses are presented. A stable reaction product (CO2) was measured after...

  14. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy.

    Science.gov (United States)

    Lin, Han; Chen, Yu; Shi, Jianlin

    2018-03-21

    Tumour chemotherapy employs highly cytotoxic chemodrugs, which kill both cancer and normal cells by cellular apoptosis or necrosis non-selectively. Catalysing/triggering the specific chemical reactions only inside tumour tissues can generate abundant and special chemicals and products locally to initiate a series of unique biological and pathologic effects, which may enable tumour-specific theranostic effects to combat cancer without bringing about significant side effects on normal tissues. Nevertheless, chemical reaction-initiated selective tumour therapy strongly depends on the advances in chemistry, materials science, nanotechnology and biomedicine. This emerging cross-disciplinary research area is substantially different from conventional cancer-theranostic modalities in clinics. In response to the fast developments in cancer theranostics based on intratumoural catalytic chemical reactions, this tutorial review summarizes the very-recent research progress in the design and synthesis of representative nanoplatforms with intriguing nanostructures, compositions, physiochemical properties and biological behaviours for versatile catalytic chemical reaction-enabled cancer treatments, mainly by either endogenous tumour microenvironment (TME) triggering or exogenous physical irradiation. These unique intratumoural chemical reactions can be used in tumour-starving therapy, chemodynamic therapy, gas therapy, alleviation of tumour hypoxia, TME-responsive diagnostic imaging and stimuli-responsive drug release, and even externally triggered versatile therapeutics. In particular, the challenges and future developments of such a novel type of cancer-theranostic modality are discussed in detail to understand the future developments and prospects in this research area as far as possible. It is highly expected that this kind of unique tumour-specific therapeutics by triggering specific in situ catalytic chemical reactions inside tumours would provide a novel but efficient

  15. [Recent results in research on oscillatory chemical reactions].

    Science.gov (United States)

    Poros, Eszter; Kurin-Csörgei, Krisztina

    2014-01-01

    The mechanisms of the complicated periodical phenomenas in the nature (e.g. hearth beat, sleep cycle, circadian rhythms, etc) could be understood with using the laws of nonlinear chemical systems. In this article the newest result in the research of the subfield of nonlinear chemical dynamics aimed at constructing oscillatory chemical reactions, which are novel either in composition or in configuration, are presented. In the introductory part the concept of chemical periodicity is defined, then the forms as it can appear in time and space and the methods of their study are discussed. Detailed description of the experimental work that has resulted in two significant discoveries is provided. A method was developed to design pH-oscillators which are capable of operating under close conditions. The batch pH-oscillators are more convenient to use in some proposed applications than the equivalent CSTR variant. A redox oscillator that is new in composition was found. The permanganate oxidation of some amino acids was shown to take place according to oscillatory kinetics in a narrow range of the experimental parameters. The KMnO4 - glycine - Na2HPO4 system represents the first example in the family of manganese based oscillators where amino acids is involved. In the conclusion formal analogies between the simple chemical and some more complicated biological oscillatory phenomena are mentioned and the possibility of modeling periodic processes with the use of information gained from the studies of chemical oscillations is pointed out.

  16. Specifics of adsorption and chemical processes on the surface of gamma-irradiated vanadium dioxide

    International Nuclear Information System (INIS)

    Kaurkovskaya, V.N.; Dzyubenko, L.S.; Doroshenko, V.N.; Chujko, A.A.; Shakhov, A.P.

    2006-01-01

    Effect of γ-irradiation on electrophysical properties and processes of thermal desorption of water from the surface of vanadium oxides V 2 O 3 -VO 2-δ -VO 2+δ -V 2 O 5 was investigated by derivatography and electric conductivity. Content of adsorbed water at the surface and phase composition of the surface was demonstrated to change under the action of low radiation doses. Surface electric conductivity of the irradiated samples VO 2-δ in the process of chemical reactions of adsorbed following irradiation benzoic acid and ethanol was established to be much above than in irradiated-free ones. It is presumed that metal-semiconductor phase transition at the surface of VO 2-δ during chemical reaction is intensified by irradiation [ru

  17. Open complex-balanced mass action chemical reaction networks

    NARCIS (Netherlands)

    Rao, Shodhan; van der Schaft, Arjan; Jayawardhana, Bayu

    We consider open chemical reaction networks, i.e. ones with inflows and outflows. We assume that all the inflows to the network are constant and all outflows obey the mass action kinetics rate law. We define a complex-balanced open reaction network as one that admits a complex-balanced steady state.

  18. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration.

    Science.gov (United States)

    Jun, Young-Shin; Zhang, Lijie; Min, Yujia; Li, Qingyun

    2017-07-18

    Geologic CO 2 sequestration (GCS) is a promising strategy to mitigate anthropogenic CO 2 emission to the atmosphere. Suitable geologic storage sites should have a porous reservoir rock zone where injected CO 2 can displace brine and be stored in pores, and an impermeable zone on top of reservoir rocks to hinder upward movement of buoyant CO 2 . The injection wells (steel casings encased in concrete) pass through these geologic zones and lead CO 2 to the desired zones. In subsurface environments, CO 2 is reactive as both a supercritical (sc) phase and aqueous (aq) species. Its nanoscale chemical reactions with geomedia and wellbores are closely related to the safety and efficiency of CO 2 storage. For example, the injection pressure is determined by the wettability and permeability of geomedia, which can be sensitive to nanoscale mineral-fluid interactions; the sealing safety of the injection sites is affected by the opening and closing of fractures in caprocks and the alteration of wellbore integrity caused by nanoscale chemical reactions; and the time scale for CO 2 mineralization is also largely dependent on the chemical reactivities of the reservoir rocks. Therefore, nanoscale chemical processes can influence the hydrogeological and mechanical properties of geomedia, such as their wettability, permeability, mechanical strength, and fracturing. This Account reviews our group's work on nanoscale chemical reactions and their qualitative impacts on seal integrity and storage capacity at GCS sites from four points of view. First, studies on dissolution of feldspar, an important reservoir rock constituent, and subsequent secondary mineral precipitation are discussed, focusing on the effects of feldspar crystallography, cations, and sulfate anions. Second, interfacial reactions between caprock and brine are introduced using model clay minerals, with focuses on the effects of water chemistries (salinity and organic ligands) and water content on mineral dissolution and

  19. Vibrationally Excited Carbon Monoxide Produced via a Chemical Reaction Between Carbon Vapor and Oxygen

    Science.gov (United States)

    Jans, Elijah R.; Eckert, Zakari; Frederickson, Kraig; Rich, Bill; Adamovich, Igor V.

    2017-06-01

    Measurements of the vibrational distribution function of carbon monoxide produced via a reaction between carbon vapor and molecular oxygen has shown a total population inversion on vibrational levels 4-7. Carbon vapor, produced using an arc discharge to sublimate graphite, is mixed with an argon oxygen flow. The excited carbon monoxide is vibrationally populated up to level v=14, at low temperatures, T=400-450 K, in a collision-dominated environment, 15-20 Torr, with total population inversions between v=4-7. The average vibrational energy per CO molecule formed by the reaction is 0.6-1.2 eV/molecule, which corresponds to 10-20% of the reaction enthalpy. Kinetic modeling of the flow reactor, including state specific vibrational processes, was performed to infer the vibrational distribution of the products of the reaction. The results show viability of developing of a new chemical CO laser from the reaction of carbon vapor and oxygen.

  20. Students' Visualisation of Chemical Reactions--Insights into the Particle Model and the Atomic Model

    Science.gov (United States)

    Cheng, Maurice M. W.

    2018-01-01

    This paper reports on an interview study of 18 Grade 10-12 students' model-based reasoning of a chemical reaction: the reaction of magnesium and oxygen at the submicro level. It has been proposed that chemical reactions can be conceptualised using two models: (i) the "particle model," in which a reaction is regarded as the simple…

  1. Quantifying Chemical and Electrochemical Reactions in Liquids by in situ Electron Microscopy

    DEFF Research Database (Denmark)

    Canepa, Silvia

    and developing a robust imaging analysis method for quantitatively understand chemical and electrochemical process during in situ liquid electron microscopy. By using two custom-made liquid cells (an electrochemical scanning electron microscopy (EC-SEM) platform and Liquid Flow S/TEM holder) beam...... of electrochemical deposition of copper (Cu) by electrochemical liquid scanning electron microscopy (EC-SEM) was done in order to direct observe the formation of dendritic structures. Finally the shape evolution from solid to hollow structures through galvanic replacement reactions were observed for different silver...

  2. A chemical reaction in the movie The Ten Commandments

    Directory of Open Access Journals (Sweden)

    López Pérez, José Pedro;

    2012-04-01

    Full Text Available The study of natural sciences in the second year of Secondary Education must be complemented with a visit to the laboratory, where experiments should be permormed. The curriculum emphasizes the initial basis of Chemistry and the study of reactions. In this paper we describe a laboratory experience, useful for understanding the concept of chemical change. Also, we present the hypothesis that a chemical reaction was used in the classic movie The Ten Commandments.

  3. Iteration scheme for implicit calculations of kinetic and equilibrium chemical reactions in fluid dynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.; Chang, C.H.

    1995-01-01

    An iteration scheme for the implicit treatment of equilibrium chemical reactions in partial equilibrium flow has previously been described. Here we generalize this scheme to kinetic reactions as well as equilibrium reactions. This extends the applicability of the scheme to problems with kinetic reactions that are fast in regions of the flow field but slow in others. The resulting scheme thereby provides a single unified framework for the implicit treatment of an arbitrary number of coupled equilibrium and kinetic reactions in chemically reacting fluid flow. 10 refs., 2 figs

  4. Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation

    KAUST Repository

    Mélykúti, Bence; Burrage, Kevin; Zygalakis, Konstantinos C.

    2010-01-01

    The Chemical Langevin Equation (CLE), which is a stochastic differential equation driven by a multidimensional Wiener process, acts as a bridge between the discrete stochastic simulation algorithm and the deterministic reaction rate equation when

  5. Rule-Based Event Processing and Reaction Rules

    Science.gov (United States)

    Paschke, Adrian; Kozlenkov, Alexander

    Reaction rules and event processing technologies play a key role in making business and IT / Internet infrastructures more agile and active. While event processing is concerned with detecting events from large event clouds or streams in almost real-time, reaction rules are concerned with the invocation of actions in response to events and actionable situations. They state the conditions under which actions must be taken. In the last decades various reaction rule and event processing approaches have been developed, which for the most part have been advanced separately. In this paper we survey reaction rule approaches and rule-based event processing systems and languages.

  6. A network dynamics approach to chemical reaction networks

    NARCIS (Netherlands)

    van der Schaft, Abraham; Rao, S.; Jayawardhana, B.

    2016-01-01

    A treatment of chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a

  7. Yield of 73Se for various reactions and its chemical processing

    International Nuclear Information System (INIS)

    Nozaki, T.; Itoh, Y.; Ogawa, K.

    1979-01-01

    Excitation curves for the formation of 73 Se by the following reactions were measured up to proton energy of 50 MeV and 3 He- and α-particle energies of 40 MeV, together with those for byproduct formation reactions: (1) 75 As(p, 3n) 73 Se, (2) Ge + 3 He → 73 Se, and (3) Ge + α → 73 Se. The proton reaction has proved to be much superior to the other reactions both in yield and product purity. Volatilization of 73 Se from a solution of condensed polyphosphoric acid was found to give an excellent method of 73 Se separation from various arsenic targets without carrier. Also, solvent extraction of red selenium 73 Se with a minute amount of carrier was shown to be a useful separation method. (author)

  8. Matrix isolation as a tool for studying interstellar chemical reactions

    Science.gov (United States)

    Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.

  9. FY 2000 study report on the study on technological development of the chemical processes of the next generation; 2000 nendo jisedai kagaku process gijutsu kaihatsu ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The technological development of the innovative chemical reaction processes is studied, in order to accomplish further energy saving, and reduction of resource consumption and environmental loads. Described herein are the FY 2000 study results. The program for systematization of the next-generation chemical processes systematically pigeonholes the undergoing projects and subjects to be studied, based on the principles of simplification, and sets the study fields of organic bulk chemicals, organic fine chemicals, highpolymer materials and inorganic materials. The program for investigation on next-generation chemical processes reviews creation and technological use of tailor-made biocatalysts, polymer materials which utilize wood resources, tailor-made reaction process engineering for handling fine particles in high-temperature reaction fields, production and processing of materials for high-performance polymer batteries, and extreme energy saving process for polyolefins, and proposes the revisions. The newly proposed study themes include novel C1 catalytic processes toward minimal wastes, and high utilization of biotechnology for novel processes to create materials. (NEDO)

  10. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces.

    Science.gov (United States)

    Gerber, R Benny; Varner, Mychel E; Hammerich, Audrey D; Riikonen, Sampsa; Murdachaew, Garold; Shemesh, Dorit; Finlayson-Pitts, Barbara J

    2015-02-17

    CONSPECTUS: Reactions on water and ice surfaces and in other aqueous media are ubiquitous in the atmosphere, but the microscopic mechanisms of most of these processes are as yet unknown. This Account examines recent progress in atomistic simulations of such reactions and the insights provided into mechanisms and interpretation of experiments. Illustrative examples are discussed. The main computational approaches employed are classical trajectory simulations using interaction potentials derived from quantum chemical methods. This comprises both ab initio molecular dynamics (AIMD) and semiempirical molecular dynamics (SEMD), the latter referring to semiempirical quantum chemical methods. Presented examples are as follows: (i) Reaction of the (NO(+))(NO3(-)) ion pair with a water cluster to produce the atmospherically important HONO and HNO3. The simulations show that a cluster with four water molecules describes the reaction. This provides a hydrogen-bonding network supporting the transition state. The reaction is triggered by thermal structural fluctuations, and ultrafast changes in atomic partial charges play a key role. This is an example where a reaction in a small cluster can provide a model for a corresponding bulk process. The results support the proposed mechanism for production of HONO by hydrolysis of NO2 (N2O4). (ii) The reactions of gaseous HCl with N2O4 and N2O5 on liquid water surfaces. Ionization of HCl at the water/air interface is followed by nucleophilic attack of Cl(-) on N2O4 or N2O5. Both reactions proceed by an SN2 mechanism. The products are ClNO and ClNO2, precursors of atmospheric atomic chlorine. Because this mechanism cannot result from a cluster too small for HCl ionization, an extended water film model was simulated. The results explain ClNO formation experiments. Predicted ClNO2 formation is less efficient. (iii) Ionization of acids at ice surfaces. No ionization is found on ideal crystalline surfaces, but the process is efficient on

  11. From simple to complex and backwards. Chemical reactions under very high pressure

    International Nuclear Information System (INIS)

    Bini, Roberto; Ceppatelli, Matteo; Citroni, Margherita; Schettino, Vincenzo

    2012-01-01

    Highlights: ► High pressure reactivity of several molecular systems. ► Reaction kinetics and dynamics in high density conditions. ► Key role of optical pumping and electronic excitation. ► Perspectives for the synthesis of hydrogen. - Abstract: High pressure chemical reactions of molecular systems are discussed considering the various factors that can affect the reactivity. These include steric hindrance and geometrical constraints in the confined environment of crystals at high pressure, changes of the free energy landscape with pressure, photoactivation by two-photon absorption, local and collective effects. A classification of the chemical reactions at high pressure is attempted on the basis of the prevailing factors.

  12. Radon: Chemical and physical processes associated with its distribution

    International Nuclear Information System (INIS)

    Castleman, A.W. Jr.

    1992-01-01

    Assessing the mechanisms which govern the distribution, fate, and pathways of entry into biological systems, as well as the ultimate hazards associated with the radon progeny and their secondary reaction products, depends on knowledge of their chemistry. Our studies are directed toward developing fundamental information which will provide a basis for modeling studies that are requisite in obtaining a complete picture of growth, attachment to aerosols, and transport to the bioreceptor and ultimate incorporation within. Our program is divided into three major areas of research. These include measurement of the determination of their mobilities, study of the role of radon progeny ions in affecting reactions, including study of the influence of the degree of solvation (clustering), and examination of the important secondary reaction products, with particular attention to processes leading to chemical conversion of either the core ions or the ligands as a function of the degree of clustering

  13. FY1998 report on the surveys and studies on developing next generation chemical process technologies; 1998 nendo jisedai kagaku process gijutsu kaihatsu ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For further resource and energy conservation and environmental load reduction, development is necessary on innovative chemical reaction technologies. This paper describes surveys on next generation chemical processes. As non-halogen processes subject to development of new catalysts, new processes were investigated and searching experiments and discussions were given on isocyanate, propylene oxide, and phenol. Technological progress in the C1 chemistry was investigated. Problems in hydrocarbon compound oxidation, hydroxylation, and decomposition by utilizing microorganisms were put into order as application of environmentally friendly technologies. Marine biotechnical possibilities were surveyed. The surveys were given on new processes utilizing the phase transfer catalyst forming a third phase, manufacture of biodegradable plastics, and a novel reaction system combined with self-separation process using molecular assembly. Possibilities were searched on designing a truly simple production system of highly energy saving type. Such fundamental common technologies as structure analysis, property control and reaction engineering were investigated for methods to manufacture functional micro-powder chemical materials. Development was discussed on a system for technology assessment over whole product life cycle to structure a technology assessment basis. (NEDO)

  14. Chemical reactions inside the plasma chamber of the SEAFP reactor plant models

    International Nuclear Information System (INIS)

    Gay, J.M.; Ebert, E.; Mazille, F.

    1995-01-01

    Loss of coolant or loss of vacuum accidents may lead to chemical reactions between the protecting materials of the plasma facing components and air or water. A production of energy, reaction products and hydrogen may be induced. The paper defines the operating conditions and chemical reactions and presents the main results from the underlying studies. (orig.)

  15. Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins

    Science.gov (United States)

    Teodorowicz, Malgorzata; van Neerven, Joost

    2017-01-01

    The majority of foods that are consumed in our developed society have been processed. Processing promotes a non-enzymatic reaction between proteins and sugars, the Maillard reaction (MR). Maillard reaction products (MRPs) contribute to the taste, smell and color of many food products, and thus influence consumers’ choices. However, in recent years, MRPs have been linked to the increasing prevalence of diet- and inflammation-related non-communicable diseases including food allergy. Although during the last years a better understanding of immunogenicity of MRPs has been achieved, still only little is known about the structural/chemical characteristics predisposing MRPs to interact with antigen presenting cells (APCs). This report provides a comprehensive review of recent studies on the influence of the Maillard reaction on the immunogenicity and allergenicity of food proteins. PMID:28777346

  16. Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins.

    Science.gov (United States)

    Teodorowicz, Malgorzata; van Neerven, Joost; Savelkoul, Huub

    2017-08-04

    The majority of foods that are consumed in our developed society have been processed. Processing promotes a non-enzymatic reaction between proteins and sugars, the Maillard reaction (MR). Maillard reaction products (MRPs) contribute to the taste, smell and color of many food products, and thus influence consumers' choices. However, in recent years, MRPs have been linked to the increasing prevalence of diet- and inflammation-related non-communicable diseases including food allergy. Although during the last years a better understanding of immunogenicity of MRPs has been achieved, still only little is known about the structural/chemical characteristics predisposing MRPs to interact with antigen presenting cells (APCs). This report provides a comprehensive review of recent studies on the influence of the Maillard reaction on the immunogenicity and allergenicity of food proteins.

  17. Application of laser diagnostics to sodium-water chemical reaction field

    International Nuclear Information System (INIS)

    Deguchi, Yoshihiro; Tamura, Kenta; Muranaka, Ryota; Kusano, Koji; Kikuchi, Shin; Kurihara, Akikazu

    2013-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes in a steam generator. Therefore the study on sodium-water chemical reactions is of paramount importance for safety reasons. This study aims to clarify the sodium-water reaction mechanisms using laser diagnostics. The sodium-water counter-flow reactions were measured using laser diagnostics such as laser induced fluorescence, CARS, Raman scattering and photo-fragmentation. The measurement results show that the sodium-water reaction proceeds mainly by the reaction Na + H 2 O → NaOH + H and the main product is NaOH in this reaction. Its forward and backward reaction rates tend to balance with each other and the whole reaction rate reduces as temperature increases. (author)

  18. Challenges in simulation of chemical processes in combustion furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Kilpinen, P. [Aabo Akademi, Turku (Finland)

    1996-12-31

    The presentation gives an introduction to some of the present issues and problems in treating the complex chemical processes in combustion. The focus is in the coupling of the hydrocarbon combustion process with nitrogen oxide formation and destruction chemistry in practical furnaces or flames. Detailed kinetic modelling based on schemes of elementary reactions are shown to be a useful novel tool for identifying and studying the key reaction paths for nitrogen oxide formation and destruction in various systems. The great importance of the interaction between turbulent mixing and combustion chemistry is demonstrated by the sensitivity of both methane oxidation chemistry and fuel nitrogen conversion chemistry to the reactor and mixing pattern chosen for the kinetic calculations. The fluidized bed combustion (FBC) nitrogen chemistry involves several important heterogeneous reactions. Particularly the char in the bed plays an essential role. Recent research has advanced rapidly and the presentation proposes an overall picture of the fuel nitrogen reaction routes in circulating FBC conditions. (author)

  19. Challenges in simulation of chemical processes in combustion furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M; Kilpinen, P [Aabo Akademi, Turku (Finland)

    1997-12-31

    The presentation gives an introduction to some of the present issues and problems in treating the complex chemical processes in combustion. The focus is in the coupling of the hydrocarbon combustion process with nitrogen oxide formation and destruction chemistry in practical furnaces or flames. Detailed kinetic modelling based on schemes of elementary reactions are shown to be a useful novel tool for identifying and studying the key reaction paths for nitrogen oxide formation and destruction in various systems. The great importance of the interaction between turbulent mixing and combustion chemistry is demonstrated by the sensitivity of both methane oxidation chemistry and fuel nitrogen conversion chemistry to the reactor and mixing pattern chosen for the kinetic calculations. The fluidized bed combustion (FBC) nitrogen chemistry involves several important heterogeneous reactions. Particularly the char in the bed plays an essential role. Recent research has advanced rapidly and the presentation proposes an overall picture of the fuel nitrogen reaction routes in circulating FBC conditions. (author)

  20. On Medium Chemical Reaction in Diffusion-Based Molecular Communication: a Two-Way Relaying Example

    OpenAIRE

    Farahnak-Ghazani, Maryam; Aminian, Gholamali; Mirmohseni, Mahtab; Gohari, Amin; Nasiri-Kenari, Masoumeh

    2016-01-01

    Chemical reactions are a prominent feature of molecular communication (MC) systems, with no direct parallels in wireless communications. While chemical reactions may be used inside the transmitter nodes, receiver nodes or the communication medium, we focus on its utility in the medium in this paper. Such chemical reactions can be used to perform computation over the medium as molecules diffuse and react with each other (physical-layer computation). We propose the use of chemical reactions for...

  1. NATO Advanced Research Workshop on The Theory of Chemical Reaction Dynamics

    CERN Document Server

    1986-01-01

    The calculation of cross sections and rate constants for chemical reactions in the gas phase has long been a major problem in theoretical chemistry. The need for reliable and applicable theories in this field is evident when one considers the significant recent advances that have been made in developing experimental techniques, such as lasers and molecular beams, to probe the microscopic details of chemical reactions. For example, it is now becoming possible to measure cross sections for chemical reactions state selected in the vibrational­ rotational states of both reactants and products. Furthermore, in areas such as atmospheric, combustion and interstellar chemistry, there is an urgent need for reliable reaction rate constant data over a range of temperatures, and this information is often difficult to obtain in experiments. The classical trajectory method can be applied routinely to simple reactions, but this approach neglects important quantum mechanical effects such as tunnelling and resonances. For al...

  2. CATALYSIS OF CHEMICAL PROCESSES: PARTICULAR ...

    African Journals Online (AJOL)

    IICBA01

    secondary/high schools and universities, the inhibition of the chemical reactions is frequently ... As a result, the lesson catalysis is frequently included in chemistry education curricula at ... Misinterpretations in teaching and perception of catalysis ... profile is shown as a dependence of energy on reaction progress, without ...

  3. The quantum dynamics of electronically nonadiabatic chemical reactions

    Science.gov (United States)

    Truhlar, Donald G.

    1993-01-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  4. Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement

    Science.gov (United States)

    Srinivas, Niranjan

    Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry. In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive. Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for

  5. Chemical Reactions at Surfaces. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Freud, Hans-Joachim [Max-Planck-Gesellschaft, Berlin (Germany). Fritz-Haber-Inst.

    2003-02-21

    The Gordon Research Conference (GRC) on Chemical Reactions at Surfaces was held at Holiday Inn, Ventura, California, 2/16-21/03. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  6. Incidents of chemical reactions in cell equipment

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, N.M.; Barlow, C.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  7. Cellular automaton model of coupled mass transport and chemical reactions

    International Nuclear Information System (INIS)

    Karapiperis, T.

    1994-01-01

    Mass transport, coupled with chemical reactions, is modelled as a cellular automaton in which solute molecules perform a random walk on a lattice and react according to a local probabilistic rule. Assuming molecular chaos and a smooth density function, we obtain the standard reaction-transport equations in the continuum limit. The model is applied to the reactions a + b ↔c and a + b →c, where we observe interesting macroscopic effects resulting from microscopic fluctuations and spatial correlations between molecules. We also simulate autocatalytic reaction schemes displaying spontaneous formation of spatial concentration patterns. Finally, we propose and discuss the limitations of a simple model for mineral-solute interaction. (author) 5 figs., 20 refs

  8. Chemical markup, XML, and the world wide web. 6. CMLReact, an XML vocabulary for chemical reactions.

    Science.gov (United States)

    Holliday, Gemma L; Murray-Rust, Peter; Rzepa, Henry S

    2006-01-01

    A set of components (CMLReact) for managing chemical and biochemical reactions has been added to CML. These can be combined to support most of the strategies for the formal representation of reactions. The elements, attributes, and types are formally defined as XMLSchema components, and their semantics are developed. New syntax and semantics in CML are reported and illustrated with 10 examples.

  9. Motivational Factors Contributing to Turkish High School Students' Achievement in Gases and Chemical Reactions

    Science.gov (United States)

    Kadioglu, Cansel; Uzuntiryaki, Esen

    2008-01-01

    This study aimed to investigate the contribution of motivational factors to 10th grade students' achievement in gases and chemical reactions in chemistry. Three hundred fifty nine 10th grade students participated in the study. The Gases and Chemical Reactions Achievement Test and the Motivated Strategies for Learning Questionnaire were…

  10. Reactions driving conformational movements (molecular motors) in gels: conformational and structural chemical kinetics.

    Science.gov (United States)

    Otero, Toribio F

    2017-01-18

    In this perspective the empirical kinetics of conducting polymers exchanging anions and solvent during electrochemical reactions to get dense reactive gels is reviewed. The reaction drives conformational movements of the chains (molecular motors), exchange of ions and solvent with the electrolyte and structural (relaxation, swelling, shrinking and compaction) gel changes. Reaction-driven structural changes are identified and quantified from electrochemical responses. The empirical reaction activation energy (E a ), the reaction coefficient (k) and the reaction orders (α and β) change as a function of the conformational energy variation during the reaction. This conformational energy becomes an empirical magnitude. E a , k, α and β include and provide quantitative conformational and structural information. The chemical kinetics becomes structural chemical kinetics (SCK) for reactions driving conformational movements of the reactants. The electrochemically stimulated conformational relaxation model describes empirical results and some results from the literature for biochemical reactions. In parallel the development of an emerging technological world of soft, wet, multifunctional and biomimetic tools and anthropomorphic robots driven by reactions of the constitutive material, as in biological organs, can be now envisaged being theoretically supported by the kinetic model.

  11. Localized temperature and chemical reaction control in nanoscale space by nanowire array.

    Science.gov (United States)

    Jin, C Yan; Li, Zhiyong; Williams, R Stanley; Lee, K-Cheol; Park, Inkyu

    2011-11-09

    We introduce a novel method for chemical reaction control with nanoscale spatial resolution based on localized heating by using a well-aligned nanowire array. Numerical and experimental analysis shows that each individual nanowire could be selectively and rapidly Joule heated for local and ultrafast temperature modulation in nanoscale space (e.g., maximum temperature gradient 2.2 K/nm at the nanowire edge; heating/cooling time chemical reactions such as polymer decomposition/cross-linking and direct and localized hydrothermal synthesis of metal oxide nanowires were demonstrated.

  12. FY 2000 report on the results of the development of the next generation chemical process technology/development of the non-halogen chemical process technology; 2000 nendo jisedai kagaku process gijutsu kaihatsu non halogen kagaku process gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of conserving energy and reducing environmental loads, the R and D were conducted of a new chemical process (non-halogen chemical process) using new catalytic reaction, etc., and the FY 2000 results were summed up. As to the development of a new method to synthesize isocyanate, the development was proceeded with of a method to synthesize diisocyanate by the dicarbamate reaction and pyrolysis of the carbamate, and the effect of catalyst on the yield of carbamate reaction was grasped. Concerning the development of a new synthetic method of epoxides, the development was proceeded with of the catalyst for synthesizing propylene oxides from propylene and hydrogen/oxygen, and conditions were obtained for preparation of a catalyst of the basic catalytic system and with reproducibility. Moreover, the development was proceeded with of a new catalyst used in doing epoxidation of 1-butene using the organic system hydroperoxide. Concerning the development of a new method to synthesize phenol, a promising system was found out by finding out the basic catalytic system of oxidation acetoxyl reaction and proceeding with the search for co-catalyst, carrier, etc. (NEDO)

  13. Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Shafarman, William N. [Univ. of Delaware, Newark, DE (United States)

    2015-10-12

    This project “Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells”, completed by the Institute of Energy Conversion (IEC) at the University of Delaware in collaboration with the Department of Chemical Engineering at the University of Florida, developed the fundamental understanding and technology to increase module efficiency and improve the manufacturability of Cu(InGa)(SeS)2 films using the precursor reaction approach currently being developed by a number of companies. Key results included: (1) development of a three-step H2Se/Ar/H2S reaction process to control Ga distribution through the film and minimizes back contact MoSe2 formation; (2) Ag-alloying to improve precursor homogeneity by avoiding In phase agglomeration, faster reaction and improved adhesion to allow wider reaction process window; (3) addition of Sb, Bi, and Te interlayers at the Mo/precursor junction to produce more uniform precursor morphology and improve adhesion with reduced void formation in reacted films; (4) a precursor structure containing Se and a reaction process to reduce processing time to 5 minutes and eliminate H2Se usage, thereby increasing throughput and reducing costs. All these results were supported by detailed characterization of the film growth, reaction pathways, thermodynamic assessment and device behavior.

  14. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  15. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233

  16. The role of van der Waals interactions in chemical reactions

    International Nuclear Information System (INIS)

    Takayanagi, Toshiyuki

    1998-01-01

    We are studying the role of van der Waals interactions in the chemical reactions from the theoretical view point, especially, a case related to the tunnel effect. The fist case that the cumulative reaction probability depends on the tunnel effect was increased by the van der waals force. This case was proved by theoretical calculation of the reaction rate constant of the reaction: Mu + F2 → MuF + F. The second case was that a van der Waals well was so deep that pseudo bound state was observed in the reaction: F + H 2 → HF + H. A van der Waals complex such as AB(v=j=0)...C was excited to the resonance state of AB(vij)...C and A...BC(v,j) by laser, than the resonance state proceeded to AB + C (predissociation) or A + BC(pre-reaction). We succeeded for the first time to calculate theoretically the pre-reaction by the real three dimentional potential curve. The pre-reaction can be observed only the case that the tunnel probability is larger than the non-adiabatic transition probability. The chemical reactions in solid were explained, too. (S.Y.)

  17. A method for carrying out radiolysis and chemical reactions by means of the radiations resulting from a thermonuclear reaction

    International Nuclear Information System (INIS)

    Gomberg, H.J.

    1974-01-01

    The invention relates to the use of the radiations resulting from thermonuclear reactions. It deals with a method comprising a combination of thermo-chemical and radiolytic reactions for treating a molecule having a high absorption rate, by the radiations of a thermonuclear reaction. This is applicable to the dissociation of water into oxygen and hydrogen [fr

  18. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules.

    Science.gov (United States)

    Ateshian, Gerard A; Nims, Robert J; Maas, Steve; Weiss, Jeffrey A

    2014-10-01

    Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio ( www.febio.org ). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the

  19. Application showcases for a small scale membrane contactor for fine chemical processes

    NARCIS (Netherlands)

    Roelands, C.P.M.; Ngene, I.S.

    2011-01-01

    The transition from batch to continuous processing in fine-chemicals industries offers many advantages; among these are a high volumetric productivity, improved control over reaction conditions resulting in a higher yield and selectivity, a small footprint and a safer process due to a smaller

  20. Aggregation-induced chemical reactions: acid dissociation in growing water clusters.

    Science.gov (United States)

    Forbert, Harald; Masia, Marco; Kaczmarek-Kedziera, Anna; Nair, Nisanth N; Marx, Dominik

    2011-03-23

    Understanding chemical reactivity at ultracold conditions, thus enabling molecular syntheses via interstellar and atmospheric processes, is a key issue in cryochemistry. In particular, acid dissociation and proton transfer reactions are ubiquitous in aqueous microsolvation environments. Here, the full dissociation of a HCl molecule upon stepwise solvation by a small number of water molecules at low temperatures, as relevant to helium nanodroplet isolation (HENDI) spectroscopy, is analyzed in mechanistic detail. It is found that upon successive aggregation of HCl with H(2)O molecules, a series of cyclic heteromolecular structures, up to and including HCl(H(2)O)(3), are initially obtained before a precursor state for dissociation, HCl(H(2)O)(3)···H(2)O, is observed upon addition of a fourth water molecule. The latter partially aggregated structure can be viewed as an "activated species", which readily leads to dissociation of HCl and to the formation of a solvent-shared ion pair, H(3)O(+)(H(2)O)(3)Cl(-). Overall, the process is mostly downhill in potential energy, and, in addition, small remaining barriers are overcome by using kinetic energy released as a result of forming hydrogen bonds due to aggregation. The associated barrier is not ruled by thermal equilibrium but is generated by athermal non-equilibrium dynamics. These "aggregation-induced chemical reactions" are expected to be of broad relevance to chemistry at ultralow temperature much beyond HENDI spectroscopy.

  1. A Non-Isothermal Chemical Lattice Boltzmann Model Incorporating Thermal Reaction Kinetics and Enthalpy Changes

    Directory of Open Access Journals (Sweden)

    Stuart Bartlett

    2017-08-01

    Full Text Available The lattice Boltzmann method is an efficient computational fluid dynamics technique that can accurately model a broad range of complex systems. As well as single-phase fluids, it can simulate thermohydrodynamic systems and passive scalar advection. In recent years, it also gained attention as a means of simulating chemical phenomena, as interest in self-organization processes increased. This paper will present a widely-used and versatile lattice Boltzmann model that can simultaneously incorporate fluid dynamics, heat transfer, buoyancy-driven convection, passive scalar advection, chemical reactions and enthalpy changes. All of these effects interact in a physically accurate framework that is simple to code and readily parallelizable. As well as a complete description of the model equations, several example systems will be presented in order to demonstrate the accuracy and versatility of the method. New simulations, which analyzed the effect of a reversible reaction on the transport properties of a convecting fluid, will also be described in detail. This extra chemical degree of freedom was utilized by the system to augment its net heat flux. The numerical method outlined in this paper can be readily deployed for a vast range of complex flow problems, spanning a variety of scientific disciplines.

  2. Characterization of ESIPT reactions with instant spectra of fluorescence and complexation processes

    International Nuclear Information System (INIS)

    Tomin, Vladimir I.; Ushakou, Dzmitryi V.

    2016-01-01

    Proton transfer processes and especially excited-state intramolecular proton transfer (ESIPT) are of interest not only in physical studies but in a wide range of biological and chemical researches, since they play an important role in different fundamental reactions. Moreover, occurrence of ESIPT very often causes two-bands emission spectra corresponding to the normal and photoproduct (tautomer) forms of molecular structure. It allows carrying out unique measurement of microcharacteristics in chemical and biological researches by using substances with ESIPT as molecular probes, because its dual emission is very sensitive to parameters of microenvironment. Dual fluorescence signal is very convenient for two wavelength ratiometric measurements as they are more sensitive to variations of sample characteristics. Recently new approach for revealing type of excited state reaction which is based on analysis of dynamic changes of relative intensities in instant spectra of fluorescence ESIPT solutes was suggested and tested for neat solutions. Now we generalize this method on solutions in which ESIPT solute may participate also in creating fluorescent complexes. We demonstrate that relative intensities of instant spectra of fluorescence registered with high time resolution allow to get valuable information referring to type of excited state reaction in which dye may undergo complexation reactions with ions in solvent. In addition we show how it is possible in such case to determine characteristics of complexation as, for example, stability constant and efficiency of complexation.

  3. Development of tight-binding, chemical-reaction-dynamics simulator for combinatorial computational chemistry

    International Nuclear Information System (INIS)

    Kubo, Momoji; Ando, Minako; Sakahara, Satoshi; Jung, Changho; Seki, Kotaro; Kusagaya, Tomonori; Endou, Akira; Takami, Seiichi; Imamura, Akira; Miyamoto, Akira

    2004-01-01

    Recently, we have proposed a new concept called 'combinatorial computational chemistry' to realize a theoretical, high-throughput screening of catalysts and materials. We have already applied our combinatorial, computational-chemistry approach, mainly based on static first-principles calculations, to various catalysts and materials systems and its applicability to the catalysts and materials design was strongly confirmed. In order to realize more effective and efficient combinatorial, computational-chemistry screening, a high-speed, chemical-reaction-dynamics simulator based on quantum-chemical, molecular-dynamics method is essential. However, to the best of our knowledge, there is no chemical-reaction-dynamics simulator, which has an enough high-speed ability to perform a high-throughput screening. In the present study, we have succeeded in the development of a chemical-reaction-dynamics simulator based on our original, tight-binding, quantum-chemical, molecular-dynamics method, which is more than 5000 times faster than the regular first-principles, molecular-dynamics method. Moreover, its applicability and effectiveness to the atomistic clarification of the methanol-synthesis dynamics at reaction temperature were demonstrated

  4. Multistep processes in nuclear reactions

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1988-01-01

    The theories of nuclear reactions are reviewed with particular attention to the recent work on multistep processes. The evidence for compound nucleus and direct interaction reactions is described together with the results of comparisons between theories and experimental data. These theories have now proved inadequate, and there is evidence for multistep processes that take place after the initial direct stage but long before the attainment of the statistical equilibrium characteristic of compound nucleus processes. The theories of these reactions are described and it is shown how they can account for the experimental data and thus give a comprehensive understanding of nuclear reactions. (author)

  5. Classification of chemical substances, reactions, and interactions: The effect of expertise

    Science.gov (United States)

    Stains, Marilyne Nicole Olivia

    2007-12-01

    This project explored the strategies that undergraduate and graduate chemistry students engaged in when solving classification tasks involving microscopic (particulate) representations of chemical substances and microscopic and symbolic representations of different chemical reactions. We were specifically interested in characterizing the basic features to which students pay attention while classifying, identifying the patterns of reasoning that they follow, and comparing the performance of students with different levels of preparation in the discipline. In general, our results suggest that advanced levels of expertise in chemical classification do not necessarily evolve in a linear and continuous way with academic training. Novice students had a tendency to reduce the cognitive demand of the task and rely on common-sense reasoning; they had difficulties differentiating concepts (conceptual undifferentiation) and based their classification decisions on only one variable (reduction). These ways of thinking lead them to consider extraneous features, pay more attention to explicit or surface features than implicit features and to overlook important and relevant features. However, unfamiliar levels of representations (microscopic level) seemed to trigger deeper and more meaningful thinking processes. On the other hand, expert students classified entities using a specific set of rules that they applied throughout the classification tasks. They considered a larger variety of implicit features and the unfamiliarity with the microscopic level of representation did not affect their reasoning processes. Consequently, novices created numerous small groups, few of them being chemically meaningful, while experts created few but large chemically meaningful groups. Novices also had difficulties correctly classifying entities in chemically meaningful groups. Finally, expert chemists in our study used classification schemes that are not necessarily traditionally taught in classroom

  6. Supramolecular Assembly of Comb-like Macromolecules Induced by Chemical Reactions that Modulate the Macromolecular Interactions In Situ.

    Science.gov (United States)

    Xia, Hongwei; Fu, Hailin; Zhang, Yanfeng; Shih, Kuo-Chih; Ren, Yuan; Anuganti, Murali; Nieh, Mu-Ping; Cheng, Jianjun; Lin, Yao

    2017-08-16

    Supramolecular polymerization or assembly of proteins or large macromolecular units by a homogeneous nucleation mechanism can be quite slow and require specific solution conditions. In nature, protein assembly is often regulated by molecules that modulate the electrostatic interactions of the protein subunits for various association strengths. The key to this regulation is the coupling of the assembly process with a reversible or irreversible chemical reaction that occurs within the constituent subunits. However, realizing this complex process by the rational design of synthetic molecules or macromolecules remains a challenge. Herein, we use a synthetic polypeptide-grafted comb macromolecule to demonstrate how the in situ modulation of interactions between the charged macromolecules affects their resulting supramolecular structures. The kinetics of structural formation was studied and can be described by a generalized model of nucleated polymerization containing secondary pathways. Basic thermodynamic analysis indicated the delicate role of the electrostatic interactions between the charged subunits in the reaction-induced assembly process. This approach may be applicable for assembling a variety of ionic soft matters that are amenable to chemical reactions in situ.

  7. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I W; Yoon, K S; Cho, B W [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  8. Learning to predict chemical reactions.

    Science.gov (United States)

    Kayala, Matthew A; Azencott, Chloé-Agathe; Chen, Jonathan H; Baldi, Pierre

    2011-09-26

    Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles, respectively, are not high throughput, are not generalizable or scalable, and lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry data set consisting of 1630 full multistep reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top-ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of nonproductive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system

  9. Learning to Predict Chemical Reactions

    Science.gov (United States)

    Kayala, Matthew A.; Azencott, Chloé-Agathe; Chen, Jonathan H.

    2011-01-01

    Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles respectively are not high-throughput, are not generalizable or scalable, or lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry dataset consisting of 1630 full multi-step reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval, problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of non-productive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system

  10. Achievement report for fiscal 1998. Development of next-generation chemical process technologies; 1998 nendo jisedai kagaku process gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Researches are conducted on the development of a technology of catalytic cracking of naphtha, technology relative to selective oxidation reaction of saturated hydrocarbons, process technology utilizing solid-phase reaction field, and a process technology utilizing novel reaction mechanism. Also, a survey is conducted on chemical processes of the next generation. Concerning the catalytic cracking of naphtha, reaction systems are roughly divided into two groups by whether or not they proceed in the presence of oxygen. As for rare earth oxide catalyst systems and zeolitic catalyst systems, their performance is confirmed and their reaction mechanisms are estimated. Concerning the selective oxidation reaction of hydrocarbons, studies are made to enhance the performance of catalytic systems that have been selected in researches conducted in the past. Concerning the process of solid phase reaction field utilization, the project is summarized and a concept is constructed of 'solid phase catalyst.' Concerning novel reaction mechanism utilizing process technologies, development is discussed of a novel process using membrane reactor, a highly functional hydrogen permeable membrane, a low-temperature dehydrogenation catalyst, etc., and a dehydrogenation membrane reactor is experimentally built. (NEDO)

  11. Comparing chemical reaction networks

    DEFF Research Database (Denmark)

    Cardelli, Luca; Tribastone, Mirco; Tschaikowski, Max

    2017-01-01

    We study chemical reaction networks (CRNs) as a kernel model of concurrency provided with semantics based on ordinary differential equations. We investigate the problem of comparing two CRNs, i.e., to decide whether the solutions of a source and of a target CRN can be matched for an appropriate...... choice of initial conditions. Using a categorical framework, we extend and unify model-comparison approaches based on dynamical (semantic) and structural (syntactic) properties of CRNs. Then, we provide an algorithm to compare CRNs, running linearly in time with respect to the cardinality of all possible...... comparisons. Finally, using a prototype implementation, CAGE, we apply our results to biological models from the literature....

  12. Method and apparatus for controlling gas evolution from chemical reactions

    Science.gov (United States)

    Skorpik, James R.; Dodson, Michael G.

    1999-01-01

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846.

  13. Quantum chemical and thermodynamic calculations of fulvic and humic copper complexes in reactions of malachite and azurite formation

    International Nuclear Information System (INIS)

    Fomin, Vitaliy N.; Gogol, Daniil B.; Rozhkovoy, Ivan E.; Ponomarev, Dmitriy L.

    2017-01-01

    This article provides a thermodynamic evaluation of the reactions of humic and fulvic acids in the process of malachite and azurite mineralogenesis. Semi-empirical methods AM/1, MNDO, PM3, PM5, PM6 and PM7 were used to compute the heat of formation, enthalpy and entropy for thermodynamic calculations of the reactions performed on the basis of Hess's law. It is shown that methods PM6 and PM7 in the MOPAC software package provide good compliance with experimental and calculated heats of formation for copper complexes and alkaline earth metal complexes with organic acids. It is found that the malachite and azurite formation processes involving humus complexing substances are thermodynamically possible. - Highlights: • Copper and alkali-earth metal complexes with humic and fulvic acids are considered. • Quantum chemical calculation of thermodynamics for the structures was performed. • Semi-empirical methods PM6 and PM7 provide best correlation for the properties. • Parameters of basic copper carbonate formation reactions were obtained by Hess's law. • Processes of malachite and azurite formation from humus complexes are possible.

  14. General method and thermodynamic tables for computation of equilibrium composition and temperature of chemical reactions

    Science.gov (United States)

    Huff, Vearl N; Gordon, Sanford; Morrell, Virginia E

    1951-01-01

    A rapidly convergent successive approximation process is described that simultaneously determines both composition and temperature resulting from a chemical reaction. This method is suitable for use with any set of reactants over the complete range of mixture ratios as long as the products of reaction are ideal gases. An approximate treatment of limited amounts of liquids and solids is also included. This method is particularly suited to problems having a large number of products of reaction and to problems that require determination of such properties as specific heat or velocity of sound of a dissociating mixture. The method presented is applicable to a wide variety of problems that include (1) combustion at constant pressure or volume; and (2) isentropic expansion to an assigned pressure, temperature, or Mach number. Tables of thermodynamic functions needed with this method are included for 42 substances for convenience in numerical computations.

  15. Use of carbon dioxide as a reaction medium in the thermo-chemical process for the enhanced generation of syngas and tuning adsorption ability of biochar

    International Nuclear Information System (INIS)

    Cho, Dong-Wan; Kwon, Eilhann E.; Song, Hocheol

    2016-01-01

    Highlights: • Utilizing CO_2 as a reaction medium in thermo-chemical conversion of aquatic biomass. • Enhanced generation of syngas in the presence of CO_2. • Considerable reduction of pyrolytic oil in CO_2-assisted pyrolysis. • Generation of biochar with high surface area and more porous structure by CO_2. - Abstract: This study mechanistically investigated the influences of CO_2 on syngas (H_2 and CO) production during thermo-chemical conversion of red seaweed, and further explored the possible utility of the produced biochar as a medium for adsorption of inorganic/organic contaminants in aqueous phase. In order to elucidate the key roles of CO_2 in the thermo-chemical process, the composition analysis of syngas and the qualitative analysis of pyrolytic oil were conducted and compared with those in pyrolysis in N_2 condition. Pyrolysis of red seaweed in the presence of CO_2 led to the enhanced generation of syngas at the entire experimental temperatures. For example, the ratio of CO to H_2 in the presence of CO_2 at 620 °C was enhanced by ∼400%, as compared to the case in N_2. This enhanced generation of syngas resulted in significant pyrolytic oil reduction by ∼70% at 620 °C via the unknown reactions between VOCs and CO_2. In addition, biochar generated in the CO_2 environment exhibited comparatively higher surface area (61 m"2 g"−"1) and more porous structure. The morphological modification induced by CO_2 provided the favorable condition for removal of methylene blue from the aqueous phase. Thus, this study experimentally demonstrated that exploiting CO_2 as a reaction medium would provide an attractive option for the enhanced generation of syngas and the tuned adsorption capability of biochar.

  16. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.

    Science.gov (United States)

    Djikaev, Yuri S; Ruckenstein, Eli

    2018-05-03

    We study some thermodynamic aspects of the activation of aqueous organic aerosols into cloud droplets considering the aerosols to consist of liquid solution of water and hydrophilic and hydrophobic organic compounds, taking into account the presence of reactive species in the air. The hydrophobic (surfactant) organic molecules on the surface of such an aerosol can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet either via nucleation or via Köhler activation. The most probable pathway of such processing involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic organic molecules located on the aerosol surface (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol and its evolution into a cloud droplet. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. The results of numerical calculations suggest that the formation of cloud droplets on such (aqueous hydrophilic/hydrophobic organic) aerosols is most likely to occur as a Köhler activation-like process rather than via nucleation. The model allows one to determine the threshold parameters of the system necessary for the Köhler activation of such aerosols, which are predicted to be very sensitive to the equilibrium constant of the chain of three heterogeneous reactions involved in the chemical aging of aerosols.

  17. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs

    National Research Council Canada - National Science Library

    Siegrist, Robert L; Crimi, Michelle; Munakata-Marr, Junko; Illangasekare, Tissa; Dugan, Pamela; Heiderscheidt, Jeff; Jackson, Shannon; Petri, Ben; Sahl, Jason; Seitz, Sarah

    2006-01-01

    In situ chemical oxidation involves the introduction of chemical oxidants into the subsurface to destroy organic contaminants in soil and ground water, with the goal being to reduce the mass, mobility...

  18. Chemical reactions in the presence of surface modulation and stirring

    OpenAIRE

    Kamhawi, Khalid; Náraigh, Lennon Ó

    2009-01-01

    We study the dynamics of simple reactions where the chemical species are confined on a general, time-modulated surface, and subjected to externally-imposed stirring. The study of these inhomogeneous effects requires a model based on a reaction-advection-diffusion equation, which we derive. We use homogenization methods to show that up to second order in a small scaling parameter, the modulation effects on the concentration field are asymptotically equivalent for systems with or without stirri...

  19. Non-allergic cutaneous reactions in airborne chemical sensitivity--a population based study

    DEFF Research Database (Denmark)

    Berg, Nikolaj Drimer; Linneberg, Allan; Thyssen, Jacob Pontoppidan

    2011-01-01

    the relationship between cutaneous reactions from patch testing and self-reported severity of chemical sensitivity to common airborne chemicals. A total of 3460 individuals participating in a general health examination, Health 2006, were patch tested with allergens from the European standard series and screened...... most severe groups of self-reported sensitivity to airborne chemicals. When adjusting for confounding, associations were weakened, and only non-allergic cutaneous reactions were significantly associated with individuals most severely affected by inhalation of airborne chemicals (odds ratio = 2.5, p = 0...

  20. Conditions for extinction events in chemical reaction networks with discrete state spaces.

    Science.gov (United States)

    Johnston, Matthew D; Anderson, David F; Craciun, Gheorghe; Brijder, Robert

    2018-05-01

    We study chemical reaction networks with discrete state spaces and present sufficient conditions on the structure of the network that guarantee the system exhibits an extinction event. The conditions we derive involve creating a modified chemical reaction network called a domination-expanded reaction network and then checking properties of this network. Unlike previous results, our analysis allows algorithmic implementation via systems of equalities and inequalities and suggests sequences of reactions which may lead to extinction events. We apply the results to several networks including an EnvZ-OmpR signaling pathway in Escherichia coli.

  1. Coupled sulfur isotopic and chemical mass transfer modeling: Approach and application to dynamic hydrothermal processes

    International Nuclear Information System (INIS)

    Janecky, D.R.

    1988-01-01

    A computational modeling code (EQPSreverse arrowS) has been developed to examine sulfur isotopic distribution pathways coupled with calculations of chemical mass transfer pathways. A post processor approach to EQ6 calculations was chosen so that a variety of isotopic pathways could be examined for each reaction pathway. Two types of major bounding conditions were implemented: (1) equilibrium isotopic exchange between sulfate and sulfide species or exchange only accompanying chemical reduction and oxidation events, and (2) existence or lack of isotopic exchange between solution species and precipitated minerals, parallel to the open and closed chemical system formulations of chemical mass transfer modeling codes. All of the chemical data necessary to explicitly calculate isotopic distribution pathways is generated by most mass transfer modeling codes and can be input to the EQPS code. Routines are built in to directly handle EQ6 tabular files. Chemical reaction models of seafloor hydrothermal vent processes and accompanying sulfur isotopic distribution pathways illustrate the capabilities of coupling EQPSreverse arrowS with EQ6 calculations, including the extent of differences that can exist due to the isotopic bounding condition assumptions described above. 11 refs., 2 figs

  2. A New Road to Reaction, Part 3. Teaching the Heat Effect of Reaction.

    Science.gov (United States)

    de Vos, Wobbe; Verdonk, Adri H.

    1986-01-01

    Addresses the need to present beginning chemistry students with a variety of experiences dealing with chemical reactions to develop the individual student's concept of these processes. Presents information and experiments dealing with the heat effect of chemical reactions. Includes a discussion on exothermic and endothermic processes in laboratory…

  3. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes

    Directory of Open Access Journals (Sweden)

    Tunde V. Ojumu

    2012-10-01

    Full Text Available Future production of chemicals (e.g., fine and specialty chemicals in industry is faced with the challenge of limited material and energy resources. However, process intensification might play a significant role in alleviating this problem. A vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Therefore this review discusses the progress and potential applications that have occurred in the field of zeolite membrane reactors during the last few years. The aim of this article is to update researchers in the field of process intensification and also provoke their thoughts on further research efforts to explore and exploit the potential applications of zeolite membrane reactors in industry. Further evaluation of this technology for industrial acceptability is essential in this regard. Therefore, studies such as techno-economical feasibility, optimization and scale-up are of the utmost importance.

  4. Proton conduction based on intracrystalline chemical reaction

    International Nuclear Information System (INIS)

    Schuck, G.; Lechner, R.E.; Langer, K.

    2002-01-01

    Proton conductivity in M 3 H(SeO 4 ) 2 crystals (M=K, Rb, Cs) is shown to be due to a dynamic disorder in the form of an intracrystalline chemical equilibrium reaction: alternation between the association of the monomers [HSeO 4 ] 1- and [SeO 4 ] 2- resulting in the dimer [H(SeO 4 ) 2 ] 3- (H-bond formation) and the dissociation of the latter into the two monomers (H-bond breaking). By a combination of quasielastic neutron scattering and FTIR spectroscopy, reaction rates were obtained, as well as rates of proton exchange between selenate ions, leading to diffusion. The results demonstrate that this reaction plays a central role in the mechanism of proton transport in these solid-state protonic conductors. (orig.)

  5. Chemical and physical reactions under thermal plasmas conditions

    International Nuclear Information System (INIS)

    Fauchais, P.; Vardelle, A.; Vardelle, M.; Coudert, J.F.

    1987-01-01

    Basic understanding of the involved phenomena lags far behind industrial development that requires now a better knowledge of the phenomena to achieve a better control of the process allowing to improve the quality of the products. Thus the authors try to precise what is their actual knowledge in the fields of: plasma generators design; plasma flow models with the following key points: laminar or turbulent flow, heat transfer to walls, 2D or 3D models, non equilibrium effects, mixing problems when chemical reactions are to be taken into account with very fast kinetics, electrode regions, data for transport properties and kinetic rates; nucleation problems; plasma flow characteristics measurements: temperature or temperatures and population of excited states (automatized emission spectroscopy, LIF, CARS) as well as flow velocity (LDA with small particles, Doppler effects...); plasma and particles momentum and heat transfer either with models taking into account particles size and injection velocity distributions, heat propagation, vaporization, Kundsen effect, turbulences ... or with measurements: particles velocity and flux distributions (Laser Anemometry) as well as surface temperature distributions (two colour pyrometry in flight statistical or not)

  6. Chemical Exchange Saturation Transfer in Chemical Reactions: A Mechanistic Tool for NMR Detection and Characterization of Transient Intermediates.

    Science.gov (United States)

    Lokesh, N; Seegerer, Andreas; Hioe, Johnny; Gschwind, Ruth M

    2018-02-07

    The low sensitivity of NMR and transient key intermediates below detection limit are the central problems studying reaction mechanisms by NMR. Sensitivity can be enhanced by hyperpolarization techniques such as dynamic nuclear polarization or the incorporation/interaction of special hyperpolarized molecules. However, all of these techniques require special equipment, are restricted to selective reactions, or undesirably influence the reaction pathways. Here, we apply the chemical exchange saturation transfer (CEST) technique for the first time to NMR detect and characterize previously unobserved transient reaction intermediates in organocatalysis. The higher sensitivity of CEST and chemical equilibria present in the reaction pathway are exploited to access population and kinetics information on low populated intermediates. The potential of the method is demonstrated on the proline-catalyzed enamine formation for unprecedented in situ detection of a DPU stabilized zwitterionic iminium species, the elusive key intermediate between enamine and oxazolidinones. The quantitative analysis of CEST data at 250 K revealed the population ratio of [Z-iminium]/[exo-oxazolidinone] 0.02, relative free energy +8.1 kJ/mol (calculated +7.3 kJ/mol), and free energy barrier of +45.9 kJ/mol (ΔG ⧧ calc. (268 K) = +42.2 kJ/mol) for Z-iminium → exo-oxazolidinone. The findings underpin the iminium ion participation in enamine formation pathway corroborating our earlier theoretical prediction and help in better understanding. The reliability of CEST is validated using 1D EXSY-build-up techniques at low temperature (213 K). The CEST method thus serves as a new tool for mechanistic investigations in organocatalysis to access key information, such as chemical shifts, populations, and reaction kinetics of intermediates below the standard NMR detection limit.

  7. The Heck reaction in the production of fine chemicals

    NARCIS (Netherlands)

    Vries, Johannes G. de

    2001-01-01

    An overview is given of the use of the Heck reaction for the production of fine chemicals. Five commercial products have been identified that are produced on a scale in excess of 1 ton/year. The herbicide Prosulfuron™ is produced via a Matsuda reaction of 2-sulfonatobenzenediazonium on

  8. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    Science.gov (United States)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  9. Phenomenological description of selected elementary chemical reaction mechanisms: An information-theoretic study

    International Nuclear Information System (INIS)

    Esquivel, R.O.; Flores-Gallegos, N.; Iuga, C.; Carrera, E.M.; Angulo, J.C.; Antolin, J.

    2010-01-01

    The information-theoretic description of the course of two elementary chemical reactions allows a phenomenological description of the chemical course of the hydrogenic abstraction and the S N 2 identity reactions by use of Shannon entropic measures in position and momentum spaces. The analyses reveal their synchronous/asynchronous mechanistic behavior.

  10. Proton solvation and proton transfer in chemical and electrochemical processes

    International Nuclear Information System (INIS)

    Lengyel, S.; Conway, B.E.

    1983-01-01

    This chapter examines the proton solvation and characterization of the H 3 O + ion, proton transfer in chemical ionization processes in solution, continuous proton transfer in conductance processes, and proton transfer in electrode processes. Topics considered include the condition of the proton in solution, the molecular structure of the H 3 O + ion, thermodynamics of proton solvation, overall hydration energy of the proton, hydration of H 3 O + , deuteron solvation, partial molal entropy and volume and the entropy of proton hydration, proton solvation in alcoholic solutions, analogies to electrons in semiconductors, continuous proton transfer in conductance, definition and phenomenology of the unusual mobility of the proton in solution, solvent structure changes in relation to anomalous proton mobility, the kinetics of the proton-transfer event, theories of abnormal proton conductance, and the general theory of the contribution of transfer reactions to overall transport processes

  11. Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS.

    Science.gov (United States)

    Lin, Shishi; Dikler, Sergei; Blincoe, William D; Ferguson, Ronald D; Sheridan, Robert P; Peng, Zhengwei; Conway, Donald V; Zawatzky, Kerstin; Wang, Heather; Cernak, Tim; Davies, Ian W; DiRocco, Daniel A; Sheng, Huaming; Welch, Christopher J; Dreher, Spencer D

    2018-05-24

    Understanding the practical limitations of chemical reactions is critically important for efficiently planning the synthesis of compounds in pharmaceutical, agrochemical and specialty chemical research and development. However, literature reports of the scope of new reactions are often cursory and biased toward successful results, severely limiting the ability to predict reaction outcomes for untested substrates. We herein illustrate strategies for carrying out large scale surveys of chemical reactivity using a material-sparing nanomole-scale automated synthesis platform with greatly expanded synthetic scope combined with ultra-high throughput (uHT) matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Copyright © 2018, American Association for the Advancement of Science.

  12. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S P; Waitz, I A [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R C; Brown, R C; Anderson, M R [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W N [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1998-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  13. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S.P.; Waitz, I.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R.C.; Brown, R.C.; Anderson, M.R. [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W.N. [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1997-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  14. Method of operating a thermal engine powered by a chemical reaction

    Science.gov (United States)

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  15. Super-resolution and super-localization microscopy: A novel tool for imaging chemical and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Bin [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    Optical microscopy imaging of single molecules and single particles is an essential method for studying fundamental biological and chemical processes at the molecular and nanometer scale. The best spatial resolution (~ λ/2) achievable in traditional optical microscopy is governed by the diffraction of light. However, single molecule-based super-localization and super-resolution microscopy imaging techniques have emerged in the past decade. Individual molecules can be localized with nanometer scale accuracy and precision for studying of biological and chemical processes.This work uncovered the heterogeneous properties of the pore structures. In this dissertation, the coupling of molecular transport and catalytic reaction at the single molecule and single particle level in multilayer mesoporous nanocatalysts was elucidated. Most previous studies dealt with these two important phenomena separately. A fluorogenic oxidation reaction of non-fluorescent amplex red to highly fluorescent resorufin was tested. The diffusion behavior of single resorufin molecules in aligned nanopores was studied using total internal reflection fluorescence microscopy (TIRFM).

  16. Mass transfer with complex reversible chemical reactions—II. parallel reversible chemical reactions

    NARCIS (Netherlands)

    Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van

    1990-01-01

    An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and

  17. Chemical reactions during sintering of Fe-Cr-Mn-Si-Ni-Mo-C-steels with special reference to processing in semi-closed containers

    Directory of Open Access Journals (Sweden)

    Cias A.

    2015-01-01

    Full Text Available Sintering of Cr, Mn and Si bearing steels has recently attracted both experimental and theoretical attention and processing in semiclosed containers has been reproposed. This paper brings together relevant thermodynamic data and considers the kinetics of some relevant chemical reactions. These involve iron and carbon, water vapour, carbon monoxide and dioxide, hydrogen and nitrogen of the sintering atmospheres and the alloying elements Cr, Mn, Mo and Si. The paper concludes by presenting mechanical properties data for three steels sintered in local microatmosphere with nitrogen, hydrogen, nitrogen-5% hydrogen and air as the furnace gas.

  18. Cellular automaton model of mass transport with chemical reactions

    International Nuclear Information System (INIS)

    Karapiperis, T.; Blankleider, B.

    1993-10-01

    The transport and chemical reactions of solutes are modelled as a cellular automaton in which molecules of different species perform a random walk on a regular lattice and react according to a local probabilistic rule. The model describes advection and diffusion in a simple way, and as no restriction is placed on the number of particles at a lattice site, it is also able to describe a wide variety of chemical reactions. Assuming molecular chaos and a smooth density function, we obtain the standard reaction-transport equations in the continuum limit. Simulations on one-and two-dimensional lattices show that the discrete model can be used to approximate the solutions of the continuum equations. We discuss discrepancies which arise from correlations between molecules and how these discrepancies disappear as the continuum limit is approached. Of particular interest are simulations displaying long-time behaviour which depends on long-wavelength statistical fluctuations not accounted for by the standard equations. The model is applied to the reactions a + b ↔ c and a + b → c with homogeneous and inhomogeneous initial conditions as well as to systems subject to autocatalytic reactions and displaying spontaneous formation of spatial concentration patterns. (author) 9 figs., 34 refs

  19. Effects of chemical reaction on moving isothermal vertical plate with variable mass diffusion

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2003-01-01

    Full Text Available An exact solution to the problem of flow past an impulsively started infinite vertical isothermal plate with variable mass diffusion is presented here, taking into account of the homogeneous chemical reaction of first-order. The dimensionless governing equations are solved by using the Laplace - transform technique. The velocity and skin-friction are studied for different parameters like chemical reaction parameter, Schmidt number and buoyancy ratio parameter. It is observed that the veloc­ity increases with decreasing chemical reaction parameter and increases with increasing buoyancy ratio parameter.

  20. Achievement report for fiscal 1998. Development of next-generation chemical process technologies; 1998 nendo jisedai kagaku process gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Researches are conducted on the development of a technology of catalytic cracking of naphtha, technology relative to selective oxidation reaction of saturated hydrocarbons, process technology utilizing solid-phase reaction field, and a process technology utilizing novel reaction mechanism. Also, a survey is conducted on chemical processes of the next generation. Concerning the catalytic cracking of naphtha, reaction systems are roughly divided into two groups by whether or not they proceed in the presence of oxygen. As for rare earth oxide catalyst systems and zeolitic catalyst systems, their performance is confirmed and their reaction mechanisms are estimated. Concerning the selective oxidation reaction of hydrocarbons, studies are made to enhance the performance of catalytic systems that have been selected in researches conducted in the past. Concerning the process of solid phase reaction field utilization, the project is summarized and a concept is constructed of 'solid phase catalyst.' Concerning novel reaction mechanism utilizing process technologies, development is discussed of a novel process using membrane reactor, a highly functional hydrogen permeable membrane, a low-temperature dehydrogenation catalyst, etc., and a dehydrogenation membrane reactor is experimentally built. (NEDO)

  1. Optimization of a Chemical Reaction Train

    Directory of Open Access Journals (Sweden)

    Bahar Sansar

    2010-01-01

    Full Text Available This project consists of the optimization of a chemical reactor train. The reactor considered here is the continuous stirred tank reactor (CSTR, one of the reactor models used in engineering. Given the design equation for the CSTR and the cost function for a reactor, the following values are determined; the optimum number of reactors in the reaction train, the volume of each reactor and the total cost.

  2. REACTION OF THE FEMALE BODY TO STRESS IN A CHEMICAL PROTECTIVE CLOTHING

    Directory of Open Access Journals (Sweden)

    Jiří SLABOTINSKÝ

    2016-12-01

    Full Text Available This article deals with the reaction of the female body to the use of an insulation chemical protective clothing combined with working – thermal and mental stress to which the female is exposed. The article provides a concise overview of protective chemical clothings and factors affecting their comfort; it describes the regularities corresponding to the physiological reaction, important for the body’s reaction to the use of a chemical protective clothing. Further, the article contains a description of the measurement and evaluation of physiological parameters of non-acclimated women during testing of these clothings and, finally, comparison with the results for males under the same stress which is unfavourable for women.

  3. The removal of dinitrochlorobenzene from industrial residuals by liquid-liquid extraction with chemical reaction

    Directory of Open Access Journals (Sweden)

    G. C. M. Ferreira

    2007-09-01

    Full Text Available Nitrochlorobenzenes (NCBs are very important in the chemical industry since they have been used as raw material for the manufacture of crop protection products, as active ingredients in the pharmaceutical industry, as pigments and as antioxidants as well as for other uses. In industrial processes, NCBs are produced by monochlorobenzene (MCB nitration reactions and one of the main residuals formed is dinitrochlorobenzene (DNCB, which is mainly composed of the isomer 2,4DNCB. This subproduct, although of commercial interest when in its pure state, is generally incinerated due to the high costs of recovery treatment and purification. The objective of this study is to present an alternative to the treatment of industrial residuals containing DNCB. The technique consists of converting DNCB into sodium dinitrophenolate, which is very soluble in water and is also easy to reuse. For this purpose, liquid-liquid extraction with chemical reaction (alkaline hydrolysis with a rotating disc contactor (RDC is used. Experimental data on MCB nitration reactions as well as alkaline hydrolysis using a rotating disc contactor are presented.

  4. Chemical reaction due to stronger Ramachandran interaction

    Indian Academy of Sciences (India)

    The origin of a chemical reaction between two reactant atoms is associated with the activation energy, on the assumption that, high-energy collisions between these atoms, are the ones that overcome the activation energy. Here, we show that a stronger attractive van der Waals (vdW) and electron-ion Coulomb interactions ...

  5. Laser thermal effect on silicon nitride ceramic based on thermo-chemical reaction with temperature-dependent thermo-physical parameters

    International Nuclear Information System (INIS)

    Pan, A.F.; Wang, W.J.; Mei, X.S.; Wang, K.D.; Zhao, W.Q.; Li, T.Q.

    2016-01-01

    Highlights: • A two-dimensional thermo-chemical reaction model is creatively built. • Thermal conductivity and heat capacity of β-Si_3N_4 are computed accurately. • The appropriate thermo-chemical reaction rate is fitted and reaction element length is set to assure the constringency. • The deepest ablated position was not the center of the ablated area due to plasma absorption. • The simulation results demonstrate the thermo-chemical process cant be simplified to be physical phase transition. - Abstract: In this study, a two-dimensional thermo-chemical reaction model with temperature-dependent thermo-physical parameters on Si_3N_4 with 10 ns laser was developed to investigate the ablated size, volume and surface morphology after single pulse. For model parameters, thermal conductivity and heat capacity of β-Si_3N_4 were obtained from first-principles calculations. Thermal-chemical reaction rate was fitted by collision theory, and then, reaction element length was deduced using the relationship between reaction rate and temperature distribution. Furthermore, plasma absorption related to energy loss was approximated as a function of electron concentration in Si_3N_4. It turned out that theoretical ablated volume and radius increased and then remained constant with increasing laser energy, and the maximum ablated depth was not in the center of the ablated zone. Moreover, the surface maximum temperature of Si_3N_4 was verified to be above 3000 K within pulse duration, and it was much higher than its thermal decomposition temperature of 1800 K, which indicated that Si_3N_4 was not ablated directly above the thermal decomposition temperature. Meanwhile, the single pulse ablation of Si_3N_4 was performed at different powers using a TEM_0_0 10 ns pulse Nd:YAG laser to validate the model. The model showed a satisfactory consistence between the experimental data and numerical predictions, presenting a new modeling technology that may significantly increase the

  6. On the network thermodynamics of mass action chemical reaction networks

    NARCIS (Netherlands)

    Schaft, A.J. van der; Rao, S.; Jayawardhana, B.

    In this paper we elaborate on the mathematical formulation of mass action chemical reaction networks as recently given in van der Schaft, Rao, Jayawardhana (2012). We show how the reference chemical potentials define a specific thermodynamical equilibrium, and we discuss the port-Hamiltonian

  7. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes

    Directory of Open Access Journals (Sweden)

    Carmen Moreno-Marrodan

    2017-04-01

    Full Text Available The catalytic partial hydrogenation of substituted alkynes to alkenes is a process of high importance in the manufacture of several market chemicals. The present paper shortly reviews the heterogeneous catalytic systems engineered for this reaction under continuous flow and in the liquid phase. The main contributions appeared in the literature from 1997 up to August 2016 are discussed in terms of reactor design. A comparison with batch and industrial processes is provided whenever possible.

  8. Imaging Molecular Motion: Femtosecond X-Ray Scattering of an Electrocyclic Chemical Reaction

    Science.gov (United States)

    Minitti, M. P.; Budarz, J. M.; Kirrander, A.; Robinson, J. S.; Ratner, D.; Lane, T. J.; Zhu, D.; Glownia, J. M.; Kozina, M.; Lemke, H. T.; Sikorski, M.; Feng, Y.; Nelson, S.; Saita, K.; Stankus, B.; Northey, T.; Hastings, J. B.; Weber, P. M.

    2015-06-01

    Structural rearrangements within single molecules occur on ultrafast time scales. Many aspects of molecular dynamics, such as the energy flow through excited states, have been studied using spectroscopic techniques, yet the goal to watch molecules evolve their geometrical structure in real time remains challenging. By mapping nuclear motions using femtosecond x-ray pulses, we have created real-space representations of the evolving dynamics during a well-known chemical reaction and show a series of time-sorted structural snapshots produced by ultrafast time-resolved hard x-ray scattering. A computational analysis optimally matches the series of scattering patterns produced by the x rays to a multitude of potential reaction paths. In so doing, we have made a critical step toward the goal of viewing chemical reactions on femtosecond time scales, opening a new direction in studies of ultrafast chemical reactions in the gas phase.

  9. Porous polycarbene-bearing membrane actuator for ultrasensitive weak-acid detection and real-time chemical reaction monitoring.

    Science.gov (United States)

    Sun, Jian-Ke; Zhang, Weiyi; Guterman, Ryan; Lin, Hui-Juan; Yuan, Jiayin

    2018-04-30

    Soft actuators with integration of ultrasensitivity and capability of simultaneous interaction with multiple stimuli through an entire event ask for a high level of structure complexity, adaptability, and/or multi-responsiveness, which is a great challenge. Here, we develop a porous polycarbene-bearing membrane actuator built up from ionic complexation between a poly(ionic liquid) and trimesic acid (TA). The actuator features two concurrent structure gradients, i.e., an electrostatic complexation (EC) degree and a density distribution of a carbene-NH 3 adduct (CNA) along the membrane cross-section. The membrane actuator performs the highest sensitivity among the state-of-the-art soft proton actuators toward acetic acid at 10 -6  mol L -1 (M) level in aqueous media. Through competing actuation of the two gradients, it is capable of monitoring an entire process of proton-involved chemical reactions that comprise multiple stimuli and operational steps. The present achievement constitutes a significant step toward real-life application of soft actuators in chemical sensing and reaction technology.

  10. Accurate and approximate thermal rate constants for polyatomic chemical reactions

    International Nuclear Information System (INIS)

    Nyman, Gunnar

    2007-01-01

    In favourable cases it is possible to calculate thermal rate constants for polyatomic reactions to high accuracy from first principles. Here, we discuss the use of flux correlation functions combined with the multi-configurational time-dependent Hartree (MCTDH) approach to efficiently calculate cumulative reaction probabilities and thermal rate constants for polyatomic chemical reactions. Three isotopic variants of the H 2 + CH 3 → CH 4 + H reaction are used to illustrate the theory. There is good agreement with experimental results although the experimental rates generally are larger than the calculated ones, which are believed to be at least as accurate as the experimental rates. Approximations allowing evaluation of the thermal rate constant above 400 K are treated. It is also noted that for the treated reactions, transition state theory (TST) gives accurate rate constants above 500 K. TST theory also gives accurate results for kinetic isotope effects in cases where the mass of the transfered atom is unchanged. Due to neglect of tunnelling, TST however fails below 400 K if the mass of the transferred atom changes between the isotopic reactions

  11. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  12. Numerical construction of the p(fold) (committor) reaction coordinate for a Markov process.

    Science.gov (United States)

    Krivov, Sergei V

    2011-10-06

    To simplify the description of a complex multidimensional dynamical process, one often projects it onto a single reaction coordinate. In protein folding studies, the folding probability p(fold) is an optimal reaction coordinate which preserves many important properties of the dynamics. The construction of the coordinate is difficult. Here, an efficient numerical approach to construct the p(fold) reaction coordinate for a Markov process (satisfying the detailed balance) is described. The coordinate is obtained by optimizing parameters of a chosen functional form to make a generalized cut-based free energy profile the highest. The approach is illustrated by constructing the p(fold) reaction coordinate for the equilibrium folding simulation of FIP35 protein reported by Shaw et al. (Science 2010, 330, 341-346). © 2011 American Chemical Society

  13. Finite element modeling of contaminant transport in soils including the effect of chemical reactions.

    Science.gov (United States)

    Javadi, A A; Al-Najjar, M M

    2007-05-17

    The movement of chemicals through soils to the groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. Recent studies have shown that the current models and methods are not able to adequately describe the leaching of nutrients through soils, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. Furthermore, the effect of chemical reactions on the fate and transport of contaminants is not included in many of the existing numerical models for contaminant transport. In this paper a numerical model is presented for simulation of the flow of water and air and contaminant transport through unsaturated soils with the main focus being on the effects of chemical reactions. The governing equations of miscible contaminant transport including advection, dispersion-diffusion and adsorption effects together with the effect of chemical reactions are presented. The mathematical framework and the numerical implementation of the model are described in detail. The model is validated by application to a number of test cases from the literature and is then applied to the simulation of a physical model test involving transport of contaminants in a block of soil with particular reference to the effects of chemical reactions. Comparison of the results of the numerical model with the experimental results shows that the model is capable of predicting the effects of chemical reactions with very high accuracy. The importance of consideration of the effects of chemical reactions is highlighted.

  14. In situ investigation of wet chemical processes for chalcopyrite solar cells by L-edge XAS under ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Greil, Stefanie M. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Lauermann, Iver, E-mail: Iver.lauermann@helmholtz-berlin.d [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Ennaoui, Ahmed; Kropp, Timo; Lange, Kathrin M.; Weber, Matthieu [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Aziz, Emad F., E-mail: Emad.Aziz@helmholtz-berlin.d [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany)

    2010-02-15

    Two instrumental setups for in situ soft X-ray absorption spectroscopy in liquid systems are demonstrated in this work. One for investigating chemical reactions in solutions and a new one for the solid component of a liquid / (as in both / absorber) solid interface. We used these setups for investigating two production processes for chalcopyrite solar cells under ambient conditions, probing the L-edge of Zn and Cu. The first one is a flow cell with a silicon nitride membrane to study the chemical bath deposition process for Cd-free buffer layers. Examining the electronic structure of involved Zn complexes allows to determine the exact reaction mechanism taking place during this process. The second setup is a rotating disk for investigating the bath/absorber interface upon the etching process of superficial binary copper compounds of the absorber as a function of time. The time resolution of the chemical reaction demonstrated in this study ranges from the second to minute time scale.

  15. In situ investigation of wet chemical processes for chalcopyrite solar cells by L-edge XAS under ambient conditions

    International Nuclear Information System (INIS)

    Greil, Stefanie M.; Lauermann, Iver; Ennaoui, Ahmed; Kropp, Timo; Lange, Kathrin M.; Weber, Matthieu; Aziz, Emad F.

    2010-01-01

    Two instrumental setups for in situ soft X-ray absorption spectroscopy in liquid systems are demonstrated in this work. One for investigating chemical reactions in solutions and a new one for the solid component of a liquid / (as in both / absorber) solid interface. We used these setups for investigating two production processes for chalcopyrite solar cells under ambient conditions, probing the L-edge of Zn and Cu. The first one is a flow cell with a silicon nitride membrane to study the chemical bath deposition process for Cd-free buffer layers. Examining the electronic structure of involved Zn complexes allows to determine the exact reaction mechanism taking place during this process. The second setup is a rotating disk for investigating the bath/absorber interface upon the etching process of superficial binary copper compounds of the absorber as a function of time. The time resolution of the chemical reaction demonstrated in this study ranges from the second to minute time scale.

  16. In situ investigation of wet chemical processes for chalcopyrite solar cells by L-edge XAS under ambient conditions

    Science.gov (United States)

    Greil, Stefanie M.; Lauermann, Iver; Ennaoui, Ahmed; Kropp, Timo; Lange, Kathrin M.; Weber, Matthieu; Aziz, Emad F.

    2010-02-01

    Two instrumental setups for in situ soft X-ray absorption spectroscopy in liquid systems are demonstrated in this work. One for investigating chemical reactions in solutions and a new one for the solid component of a liquid / (as in both / absorber) solid interface. We used these setups for investigating two production processes for chalcopyrite solar cells under ambient conditions, probing the L-edge of Zn and Cu. The first one is a flow cell with a silicon nitride membrane to study the chemical bath deposition process for Cd-free buffer layers. Examining the electronic structure of involved Zn complexes allows to determine the exact reaction mechanism taking place during this process. The second setup is a rotating disk for investigating the bath/absorber interface upon the etching process of superficial binary copper compounds of the absorber as a function of time. The time resolution of the chemical reaction demonstrated in this study ranges from the second to minute time scale.

  17. Coupling between solute transport and chemical reactions models. Acoplamiento de modelos de transporte de solutos y de modelos de reacciones quimicas

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Ajora, C. (Instituto de Ciencias de la Tierra, CSIC, Barcerlona (Spain))

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs.

  18. Microfluidics for chemical processing

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.

    2006-01-01

    Microfluidic systems, and more specifically, microfluidic chips, have a number of features that make them particularly useful for the study of chemical reactions on-line. The present paper will discuss two examples, the study of fluidic behaviour at high pressures and the excitation and detection of

  19. Role of graphene on the surface chemical reactions of BiPO4-rGO with low OH-related defects.

    Science.gov (United States)

    Gao, Erping; Wang, Wenzhong

    2013-11-21

    Graphene has been widely introduced into photocatalysis to enhance photocatalytic performance due to its unique physical and chemical properties. However, the effect of graphene on the surface chemical reactions of photocatalysis has not been clearly researched, which is important for photocatalysis because photocatalytic reactions ultimately occur on the catalyst surface. Herein, a two-step solution-phase reaction has been designed to synthesize quasi-core-shell structured BiPO4-rGO cuboids and the role of graphene on the surface chemical reactions was investigated in detail. It was found that the introduced graphene modified the process and the mechanism of the surface chemical reactions. The change mainly originates from the interaction between graphene and the adsorbed O2 molecule. Due to the electron transfer from graphene to adsorbed O2, graphene could tune the interfacial charge transport and efficiently activate molecular oxygen to form O2˙(-) anions as the major oxidation species instead of ˙OH. In addition, the two-step synthesis approach could efficiently suppress the formation of OH-related defects in the lattice. As a result, the BiPO4-rGO composite exhibited superior photocatalytic activity to BiPO4 and P25, about 4.3 times that of BiPO4 and 6.9 times that of P25.

  20. Morphology evolution and nanostructure of chemical looping transition metal oxide materials upon redox processes

    International Nuclear Information System (INIS)

    Qin, Lang; Cheng, Zhuo; Guo, Mengqing; Fan, Jonathan A.; Fan, Liang-Shih

    2017-01-01

    Transition metal are heavily used in chemical looping technologies because of their high oxygen carrying capacity and high thermal reactivity. These oxygen activities result in the oxide formation and oxygen vacancy formation that affect the nanoscale crystal phase and morphology within these materials and their subsequent bulk chemical behavior. In this study, two selected earlier transition metals manganese and cobalt as well as two selected later transition metals copper and nickel that are important to chemical looping reactions are investigated when they undergo cyclic redox reactions. We found Co microparticles exhibited increased CoO impurity presence when oxidized to Co_3O_4 upon cyclic oxidation; CuO redox cycles prefer to be limited to a reduced form of Cu_2O and an oxidized form of CuO; Mn microparticles were oxidized to a mixed phases of MnO and Mn_3O_4, which causes delamination during oxidation. For Ni microparticles, a dense surface were observed during the redox reaction. The atomistic thermodynamics methods and density functional theory (DFT) calculations are carried out to elucidate the effect of oxygen dissociation and migration on the morphological evolution of nanostructures during the redox processes. Our results indicate that the earlier transition metals (Mn and Co) tend to have stronger interaction with O_2 than the later transition metals (Ni and Cu). Also, our modified Brønsted−Evans−Polanyi (BEP) relationship for reaction energies and total reaction barriers reveals that reactions of earlier transition metals are more exergonic and have lower oxygen dissociation barriers than those of later transition metals. In addition, it was found that for these transition metal oxides the oxygen vacancy formation energies increase with the depth. The oxide in the higher oxidation state of transition metal has lower vacancy formation energy, which can facilitate forming the defective nanostructures. The fundamental understanding of these metal

  1. Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions

    OpenAIRE

    Adrian Jinich; Dmitrij Rappoport; Ian Dunn; Benjamin Sanchez-Lengeling; Roberto Olivares-Amaya; Elad Noor; Arren Bar Even; Alán Aspuru-Guzik

    2014-01-01

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfe...

  2. Vicher: A Virtual Reality Based Educational Module for Chemical Reaction Engineering.

    Science.gov (United States)

    Bell, John T.; Fogler, H. Scott

    1996-01-01

    A virtual reality application for undergraduate chemical kinetics and reactor design education, Vicher (Virtual Chemical Reaction Model) was originally designed to simulate a portion of a modern chemical plant. Vicher now consists of two programs: Vicher I that models catalyst deactivation and Vicher II that models nonisothermal effects in…

  3. Analysis of gas absorption to a thin liquid film in the presence of a zero-order chemical reaction

    Science.gov (United States)

    Rajagopalan, S.; Rahman, M. M.

    1995-01-01

    The paper presents a detailed theoretical analysis of the process of gas absorption to a thin liquid film adjacent to a horizontal rotating disk. The film is formed by the impingement of a controlled liquid jet at the center of the disk and subsequent radial spreading of liquid along the disk. The chemical reaction between the gas and the liquid film can be expressed as a zero-order homogeneous reaction. The process was modeled by establishing equations for the conservation of mass, momentum, and species concentration and solving them analytically. A scaling analysis was used to determine dominant transport processes. Appropriate boundary conditions were used to solve these equations to develop expressions for the local concentration of gas across the thickness of the film and distributions of film height, bulk concentration, and Sherwood number along the radius of the disk. The partial differential equation for species concentration was solved using the separation of variables technique along with the Duhamel's theorem and the final analytical solution was expressed using confluent hypergeometric functions. Tables for eigenvalues and eigenfunctions are presented for a number of reaction rate constants. A parametric study was performed using Reynolds number, Ekman number, and dimensionless reaction rate as parameters. At all radial locations, Sherwood number increased with Reynolds number (flow rate) as well as Ekman number (rate of rotation). The enhancement of mass transfer due to chemical reaction was found to be small when compared to the case of no reaction (pure absorption), but the enhancement factor was very significant when compared to pure absorption in a stagnant liquid film. The zero-order reaction processes considered in the present investigation included the absorption of oxygen in aqueous alkaline solutions of sodiumdithionite and rhodium complex catalyzed carbonylation of methanol. Present analytical results were compared to previous theoretical

  4. Modeling microbiological and chemical processes in municipal solid waste bioreactor, Part II: Application of numerical model BIOKEMOD-3P.

    Science.gov (United States)

    Gawande, Nitin A; Reinhart, Debra R; Yeh, Gour-Tsyh

    2010-02-01

    Biodegradation process modeling of municipal solid waste (MSW) bioreactor landfills requires the knowledge of various process reactions and corresponding kinetic parameters. Mechanistic models available to date are able to simulate biodegradation processes with the help of pre-defined species and reactions. Some of these models consider the effect of critical parameters such as moisture content, pH, and temperature. Biomass concentration is a vital parameter for any biomass growth model and often not compared with field and laboratory results. A more complex biodegradation model includes a large number of chemical and microbiological species. Increasing the number of species and user defined process reactions in the simulation requires a robust numerical tool. A generalized microbiological and chemical model, BIOKEMOD-3P, was developed to simulate biodegradation processes in three-phases (Gawande et al. 2009). This paper presents the application of this model to simulate laboratory-scale MSW bioreactors under anaerobic conditions. BIOKEMOD-3P was able to closely simulate the experimental data. The results from this study may help in application of this model to full-scale landfill operation.

  5. Real time monitoring of accelerated chemical reactions by ultrasonication-assisted spray ionization mass spectrometry.

    Science.gov (United States)

    Lin, Shu-Hsuan; Lo, Ta-Ju; Kuo, Fang-Yin; Chen, Yu-Chie

    2014-01-01

    Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Mass transfer with complex reversible chemical reactions—I. Single reversible chemical reaction

    NARCIS (Netherlands)

    Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van

    1989-01-01

    An improved numerical technique was used in order to develop an absorption model with which it is possible to calculate rapidly absorption rates for the phenomenon of mass transfer accompanied by a complex reversible chemical reaction. This model can be applied for the calculation of the mass

  7. Chemical reactions in organic monomolecular layers. Condensation of hydrazine on carbonyl functions

    International Nuclear Information System (INIS)

    Rosilio, Charles; Ruaudel-Teixier, Annie.

    1976-01-01

    Evidence is given for chemical reactions of hydrazine (NH 2 -NH 2 ) with different carbonyl functional groups of organic molecules in the solid state, in monomolecular layer structures. The condensation of hydrazine with these molecules leads to conjugated systems by bridging the N-N links, to cyclizations, and also to polycondensations. The reactions investigated were followed up by infrared spectrophotometry, by transmission and metallic reflection. These chemical reactions revealed in the solid phase constitute a polycondensation procedure which is valuable in obtaining organized polymers in monomolecular layers [fr

  8. Fat versus Thin Threading Approach on GPUs: Application to Stochastic Simulation of Chemical Reactions

    KAUST Repository

    Klingbeil, Guido; Erban, Radek; Giles, Mike; Maini, Philip K.

    2012-01-01

    We explore two different threading approaches on a graphics processing unit (GPU) exploiting two different characteristics of the current GPU architecture. The fat thread approach tries to minimize data access time by relying on shared memory and registers potentially sacrificing parallelism. The thin thread approach maximizes parallelism and tries to hide access latencies. We apply these two approaches to the parallel stochastic simulation of chemical reaction systems using the stochastic simulation algorithm (SSA) by Gillespie [14]. In these cases, the proposed thin thread approach shows comparable performance while eliminating the limitation of the reaction system's size. © 2006 IEEE.

  9. Fat versus Thin Threading Approach on GPUs: Application to Stochastic Simulation of Chemical Reactions

    KAUST Repository

    Klingbeil, Guido

    2012-02-01

    We explore two different threading approaches on a graphics processing unit (GPU) exploiting two different characteristics of the current GPU architecture. The fat thread approach tries to minimize data access time by relying on shared memory and registers potentially sacrificing parallelism. The thin thread approach maximizes parallelism and tries to hide access latencies. We apply these two approaches to the parallel stochastic simulation of chemical reaction systems using the stochastic simulation algorithm (SSA) by Gillespie [14]. In these cases, the proposed thin thread approach shows comparable performance while eliminating the limitation of the reaction system\\'s size. © 2006 IEEE.

  10. Crystalline state photoreactions direct observation of reaction processes and metastable intermediates

    CERN Document Server

    Ohashi, Yuji

    2014-01-01

    Offering some 300 references, this book focuses on chemical reactions in the crystalline state. The reactions span many fields in inorganic and organic chemistry, making this a useful resource for inorganic, organic and physical chemists and graduate students.

  11. The international symposium on 'chemical engineering of gas-liquid-solid catalyst reactions'

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, H

    1978-06-01

    A report on the International Symposium on ''Chemical Engineering of Gas-Liquid-Solid Catalyst Reactions'', sponsored by the University of Liege (3/2-3/78), covers papers on the hydrodynamics, modeling and simulation, operating behavior, and chemical kinetics of trickle-bed reactors; scale-up of a trickle-bed reactor for hydrotreating Kuwait vacuum distillate; experimental results obtained in trickle-bed reactors for hydroprocessing atmospheric residua, hydrogenation of methylstyrene, hydrogenation of butanone, and hydrodemetallization of petroleum residua; advantages and disadvantages of various three-phase reactor types (e.g., for the liquid-phase hydrogenation of carbon monoxide to benzene, SNG, or methanol) and hydrodynamics, mass and heat transfer, and modeling of bubble columns with suspended catalysts (slurry reactors), and their applications (e.g., in SNG and fermentation processes).

  12. Unsteady Bioconvection Squeezing Flow in a Horizontal Channel with Chemical Reaction and Magnetic Field Effects

    Directory of Open Access Journals (Sweden)

    Qingkai Zhao

    2017-01-01

    Full Text Available The time-dependent mixed bioconvection flow of an electrically conducting fluid between two infinite parallel plates in the presence of a magnetic field and a first-order chemical reaction is investigated. The fully coupled nonlinear systems describing the total mass, momentum, thermal energy, mass diffusion, and microorganisms equations are reduced to a set of ordinary differential equations via a set of new similarity transformations. The detailed analysis illustrating the influences of various physical parameters such as the magnetic, squeezing, and chemical reaction parameters and the Schmidt and Prandtl numbers on the distributions of temperature and microorganisms as well as the skin friction and the Nusselt number is presented. The conclusion is drawn that the flow field, temperature, and chemical reaction profiles are significantly influenced by magnetic parameter, heat generation/absorption parameter, and chemical parameter. Some examples of potential applications of such bioconvection could be found in pharmaceutical industry, microfluidic devices, microbial enhanced oil recovery, modeling oil, and gas-bearing sedimentary basins.

  13. Chemical Synthesis of Proanthocyanidins in Vitro and Their Reactions in Aging Wines

    Directory of Open Access Journals (Sweden)

    Qiu-Hong Pan

    2008-12-01

    Full Text Available Proanthocyanidins are present in many fruits and plant products like grapes and wine, and contribute to their taste and health benefits. In the past decades of years, substantial progresses has been achieved in the identification of composition and structure of proanthocyanidins, but the debate concerning the existence of an enzymatic or nonenzymatic mechanism for proanthocyanidin condensation still goes on. Substantial attention has been paid to elucidating the potential mechanism of formation by means of biomimetic and chemical synthesis in vitro. The present paper aims at summarizing the research status on chemical synthesis of proanthocyanidins, including non-enzymatic synthesis of proanthocyanidin precursors, chemical synthesis of proanthocyanidins with direct condensation of flavanols and stereoselective synthesis of proanthocyanidins. Proanthocyanidin-involved reactions in aging wines are also reviewed such as direct and indirect reactions among proanthocyanidins, flavanols and anthocyanins. Topics for future research in this field are also put forward in this paper.

  14. Reaction of mutualistic and granivorous ants to ulex elaiosome chemicals.

    Science.gov (United States)

    Gammans, Nicola; Bullock, James M; Gibbons, Hannah; Schönrogge, Karsten

    2006-09-01

    It has been proposed that chemicals on plant elaiosomes aid seed detection by seed-dispersing ants. We hypothesized that the chemical interaction between ants and elaiosomes is more intimate than a generic attraction, and that elaiosome chemicals will attract mutualistic but not granivorous ant species. We investigated this by using two gorse species, Ulex minor and U. europaeus, and two associated ant species from European heathlands, the mutualist Myrmica ruginodis and the granivore Tetramorium caespitum. Behavioral studies were conducted with laboratory nests and foraging arenas. Both ants will take Ulex seeds, but while M. ruginodis showed increased antennation toward ether extracts of elaiosome surface chemicals compared with controls, T. caespitum showed no response. Elaiosome extracts were separated into seven lipid fractions. M. ruginodis showed increased antennation only toward the diglyceride fractions of both Ulex species, whereas T. caespitum showed no consistent reaction. This indicates that M. ruginodis can detect the elaiosome by responding to its surface chemicals, but T. caespitum is unresponsive to these chemicals. Responses to surface chemicals could increase the rate of seed detection in the field, and so these results suggest that Ulex elaiosomes produce chemicals that facilitate attraction of mutualistic rather than granivorous ant species. This could reduce seed predation and increase Ulex fitness.

  15. Chemical Reactor Automation as a way to Optimize a Laboratory Scale Polymerization Process

    Science.gov (United States)

    Cruz-Campa, Jose L.; Saenz de Buruaga, Isabel; Lopez, Raymundo

    2004-10-01

    The automation of the registration and control of variables involved in a chemical reactor improves the reaction process by making it faster, optimized and without the influence of human error. The objective of this work is to register and control the involved variables (temperatures, reactive fluxes, weights, etc) in an emulsion polymerization reaction. The programs and control algorithms were developed in the language G in LabVIEW®. The designed software is able to send and receive RS232 codified data from the devices (pumps, temperature sensors, mixer, balances, and so on) to and from a personal Computer. The transduction from digital information to movement or measurement actions of the devices is done by electronic components included in the devices. Once the programs were done and proved, chemical reactions of emulsion polymerization were made to validate the system. Moreover, some advanced heat-estimation algorithms were implemented in order to know the heat caused by the reaction and the estimation and control of chemical variables in-line. All the information gotten from the reaction is stored in the PC. The information is then available and ready to use in any commercial data processor software. This work is now being used in a Research Center in order to make emulsion polymerizations under efficient and controlled conditions with reproducible results. The experiences obtained from this project may be used in the implementation of chemical estimation algorithms at pilot plant or industrial scale.

  16. The constitutive distributed parameter model of multicomponent chemical processes in gas, fluid and solid phase

    International Nuclear Information System (INIS)

    Niemiec, W.

    1985-01-01

    In the literature of distributed parameter modelling of real processes is not considered the class of multicomponent chemical processes in gas, fluid and solid phase. The aim of paper is constitutive distributed parameter physicochemical model, constructed on kinetics and phenomenal analysis of multicomponent chemical processes in gas, fluid and solid phase. The mass, energy and momentum aspects of these multicomponent chemical reactions and adequate phenomena are utilized in balance operations, by conditions of: constitutive invariance for continuous media with space and time memories, reciprocity principle for isotropic and anisotropic nonhomogeneous media with space and time memories, application of definitions of following derivative and equation of continuity, to the construction of systems of partial differential constitutive state equations, in the following derivative forms for gas, fluid and solid phase. Couched in this way all physicochemical conditions of multicomponent chemical processes in gas, fluid and solid phase are new form of constitutive distributed parameter model for automatics and its systems of equations are new form of systems of partial differential constitutive state equations in sense of phenomenal distributed parameter control

  17. Perspective: Chemical reactions in ionic liquids monitored through the gas (vacuum)/liquid interface.

    Science.gov (United States)

    Maier, F; Niedermaier, I; Steinrück, H-P

    2017-05-07

    This perspective analyzes the potential of X-ray photoelectron spectroscopy under ultrahigh vacuum (UHV) conditions to follow chemical reactions in ionic liquids in situ. Traditionally, only reactions occurring on solid surfaces were investigated by X-ray photoelectron spectroscopy (XPS) in situ. This was due to the high vapor pressures of common liquids or solvents, which are not compatible with the required UHV conditions. It was only recently realized that the situation is very different when studying reactions in Ionic Liquids (ILs), which have an inherently low vapor pressure, and first studies have been performed within the last years. Compared to classical spectroscopy techniques used to monitor chemical reactions, the advantage of XPS is that through the analysis of their core levels all relevant elements can be quantified and their chemical state can be analyzed under well-defined (ultraclean) conditions. In this perspective, we cover six very different reactions which occur in the IL, with the IL, or at an IL/support interface, demonstrating the outstanding potential of in situ XPS to gain insights into liquid phase reactions in the near-surface region.

  18. An adaptive algorithm for simulation of stochastic reaction-diffusion processes

    International Nuclear Information System (INIS)

    Ferm, Lars; Hellander, Andreas; Loetstedt, Per

    2010-01-01

    We propose an adaptive hybrid method suitable for stochastic simulation of diffusion dominated reaction-diffusion processes. For such systems, simulation of the diffusion requires the predominant part of the computing time. In order to reduce the computational work, the diffusion in parts of the domain is treated macroscopically, in other parts with the tau-leap method and in the remaining parts with Gillespie's stochastic simulation algorithm (SSA) as implemented in the next subvolume method (NSM). The chemical reactions are handled by SSA everywhere in the computational domain. A trajectory of the process is advanced in time by an operator splitting technique and the timesteps are chosen adaptively. The spatial adaptation is based on estimates of the errors in the tau-leap method and the macroscopic diffusion. The accuracy and efficiency of the method are demonstrated in examples from molecular biology where the domain is discretized by unstructured meshes.

  19. Processing of CuInSe{sub 2}-based solar cells: Characterization of deposition processes in terms of chemical reaction analyses. Phase 2 Annual Report, 6 May 1996--5 May 1997

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.

    1999-10-20

    This report describes research performed by the University of Florida during Phase 2 of this subcontract. First, to study CIGS, researchers adapted a contactless, nondestructive technique previously developed for measuring photogenerated excess carrier lifetimes in SOI wafers. This dual-beam optical modulation (DBOM) technique was used to investigate the differences between three alternative methods of depositing CdS (conventional chemical-bath deposition [CBD], metal-organic chemical vapor deposition [MOCVD], and sputtering). Second, a critical assessment of the Cu-In-Se thermochemical and phase diagram data using standard CALPHAD procedures is being performed. The outcome of this research will produce useful information on equilibrium vapor compositions (required annealing ambients, Sex fluxes from effusion cells), phase diagrams (conditions for melt-assisted growth), chemical potentials (driving forces for diffusion and chemical reactions), and consistent solution models (extents of solid solutions and extending phase diagrams). Third, an integrated facility to fabricate CIS PV devices was established that includes migration-enhanced epitaxy (MEE) for deposition of CIS, a rapid thermal processing furnace for absorber film formation, sputtering of ZnO, CBD or MOCVD of CdS, metallization, and pattern definition.

  20. EXPLORING THE DESIGN AND USE OF MOLECULAR ANIMATIONS THAT CONFLICT FOR UNDERSTANDING CHEMICAL REACTIONS

    Directory of Open Access Journals (Sweden)

    Resa M. Kelly

    Full Text Available Understanding chemical reactions conceptually involves recognizing characteristics of observable phenomena and envisioning how atoms, ions and molecules move and interact to cause the macroscopic changes. Our research focuses on the development of effective strategies for designing and presenting visualizations (videos and animations to assist students with making connections between macroscopic and molecular level behaviors of chemical reactions. Specifically, we study how students, who view videos of a redox reaction that exhibits obvious signs of macroscopic chemical change, can determine which molecular animation of a set of contrasting animations is best supported by its fit with experimental evidence. Herein we describe how we develop our videos and animations, and how students are learning from this animation task. Students who select inaccurate animation models are often enticed by a model that is easier to explain and fits with their understanding of reaction equations. We note that even though students indicate a preference for one animation over another, they often revise their drawn representations to fit with features from multiple animations. With the assistance of eye tracking research, we are gaining a better understanding of what students view and how they make sense of it.

  1. Results of the 2010 Survey on Teaching Chemical Reaction Engineering

    Science.gov (United States)

    Silverstein, David L.; Vigeant, Margot A. S.

    2012-01-01

    A survey of faculty teaching the chemical reaction engineering course or sequence during the 2009-2010 academic year at chemical engineering programs in the United States and Canada reveals change in terms of content, timing, and approaches to teaching. The report consists of two parts: first, a statistical and demographic characterization of the…

  2. Conversion of KCl into KBH4 by Mechano-Chemical Reaction and its Catalytic Decomposition

    Science.gov (United States)

    Bilen, Murat; Gürü, Metin; Çakanyildirim, Çetin

    2017-07-01

    Production of KBH4, in the presence of KCl, B2O3 and MgH2 by means of a mechanical reaction and a dehydrogenation kinetic, constitute the main parts of this study. Operating time and reactant ratio are considered as two parameters for the mechanical reaction to obtain the maximum yield. The production process was carried out in a ball milling reactor, and the product residue was purified with ethylene diamine (EDA) and subsequently characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and x-ray Diffraction (XRD) analyses. Optimum time for mechano-chemical treatment and reactant ratio (MgH2/KCl) were obtained as 1000 min and 1.0, respectively. Synthesized and commercial KBH4 were compared by hydrolysis tests in the presence of Co1-xNix/Al2O3 heterogeneous catalyst. Hydrogen generation rates, activation energy and order of the KBH4 decomposition reaction were obtained as 1578 {mL}_{{{{H}}2 }} \\min^{ - 1} {g}_{{catalyst}}^{ - 1}, 39.2 kJ mol-1 and zero order, respectively.

  3. Photochemical Reactions of Particulate Organic Matter: Deciphering the Role of Direct and Indirect Processes

    Science.gov (United States)

    Carrasquillo, A. J.; Gelfond, C. E.; Kocar, B. D.

    2016-12-01

    Photochemical reactions of natural organic matter (NOM) represent potentially important pathways for biologically recalcitrant material to be chemically altered in aquatic systems. Irradiation can alter the physical state of organic matter by facilitating the cycling between the particulate (POM) and dissolved (DOM) pools, however, a molecular level understanding of this chemically dynamic system is currently lacking. Photochemical reactions of a target molecule proceed by the direct absorption of a photon, or through reaction with a second photolytically generated species (i.e. the hydroxyl radical, singlet oxygen, excited triplet state NOM, hydrogen peroxide, etc.). Here, we isolate the major direct and indirect photochemical reactions of a lignocellulose-rich POM material (Phragmites australis) to determine their relative importance in changing the the chemical structure of the parent POM, and in the production of DOM. We measured POM molecular structure using a combination of NMR and FTIR for bulk analyses and scanning transmission x-ray microscopy (STXM) for spatially resolved chemistry, while the chemical composition of photo-produced DOM was measured using ultra-high resolution mass spectrometry. Results are discussed in the context of the differences in chemical composition of both NOM pools resulting from the isolated photochemical pathways. All treatments result in an increase in DOM with reaction time, indicating that the larger POM matrix is likely fragmenting into smaller more soluble species. Spectroscopic measurements, on the other hand, point to functionalization reactions which increase the abundance of alcohol, acid, and carbonyl moieties in both carbon pools. This unique dataset provides new insight into how photochemical reactions alter the chemical composition of NOM while highlighting the relative importance of indirect pathways.

  4. Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Dennis G.; Looney, Brian B.; Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.

    2013-07-10

    This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

  5. Modelling of chalcopyrite oxidation reactions in the Outokumpu flash smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    A mathematical model for simulating oxidation reactions of chalcopyrite particles together with momentum, heat and mass transfer between particle and gas phase in a flash smelting furnace reaction shaft is presented. In simulation, the equations governing the gas flow are solved numerically with a commercial fluid flow package, Phoenics. The particle phase is introduced into the gas flow by a Particle Source In Cell (PSIC) - technique, where a number of discrete particles is tracked in a gas flow and the relevant source terms for momentum, mass, and heat transfer are added to the gas phase equations. The gas phase equations used are elliptic in nature and the fluid turbulence is described by the (k-{epsilon}) -model. Thermal gas phase radiation is simulated with a six-flux radiation model. The chemical reactions of concentrate particles are assumed to happen at two sharp interfaces, and a shrinking core model is applied to describe the mass transfer of chemical species through the reaction product layer. In a molten state, the oxygen consumption is controlled by a film penetration concept. The reacting concentrate particles are a mixture of chalcopyrite and silica. Also a certain amount of pure inert silica is fed to the process as flux. In the simulations the calculation domain includes the concentrate burner and a cylindrical reaction shaft of an industrial scale flash smelting furnace. Some examples about the simulations carried out by the combustion model are presented. (author)

  6. Modelling of chalcopyrite oxidation reactions in the Outokumpu flash smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Ahokainen, T; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland)

    1997-12-31

    A mathematical model for simulating oxidation reactions of chalcopyrite particles together with momentum, heat and mass transfer between particle and gas phase in a flash smelting furnace reaction shaft is presented. In simulation, the equations governing the gas flow are solved numerically with a commercial fluid flow package, Phoenics. The particle phase is introduced into the gas flow by a Particle Source In Cell (PSIC) - technique, where a number of discrete particles is tracked in a gas flow and the relevant source terms for momentum, mass, and heat transfer are added to the gas phase equations. The gas phase equations used are elliptic in nature and the fluid turbulence is described by the (k-{epsilon}) -model. Thermal gas phase radiation is simulated with a six-flux radiation model. The chemical reactions of concentrate particles are assumed to happen at two sharp interfaces, and a shrinking core model is applied to describe the mass transfer of chemical species through the reaction product layer. In a molten state, the oxygen consumption is controlled by a film penetration concept. The reacting concentrate particles are a mixture of chalcopyrite and silica. Also a certain amount of pure inert silica is fed to the process as flux. In the simulations the calculation domain includes the concentrate burner and a cylindrical reaction shaft of an industrial scale flash smelting furnace. Some examples about the simulations carried out by the combustion model are presented. (author)

  7. untangling chemical kinetics through tangible and visual

    African Journals Online (AJOL)

    Temechegn

    elementary chemical reactions as part of the learning process. Despite employing ... relation between reaction rates of reactants and their products involves the use .... Experiment Journal of Chemical Education, 77, 1013– 1014. 19. Niaz, M. A ...

  8. Chemical Vapor Deposition of Photocatalyst Nanoparticles on PVDF Membranes for Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Giovanni De Filpo

    2018-06-01

    Full Text Available The chemical binding of photocatalytic materials, such as TiO2 and ZnO nanoparticles, onto porous polymer membranes requires a series of chemical reactions and long purification processes, which often result in small amounts of trapped nanoparticles with reduced photocatalytic activity. In this work, a chemical vapor deposition technique was investigated in order to allow the nucleation and growth of ZnO and TiO2 nanoparticles onto polyvinylidene difluoride (PVDF porous membranes for application in advanced oxidation processes. The thickness of obtained surface coatings by sputtered nanoparticles was found to depend on process conditions. The photocatalytic efficiency of sputtered membranes was tested against both a model drug and a model organic pollutant in a small continuous flow reactor.

  9. High resolution time-of-flight spectrometer for crossed molecular beam study of elementary chemical reactions

    International Nuclear Information System (INIS)

    Qiu Minghui; Che Li; Ren Zefeng; Dai Dongxu; Wang Xiuyan; Yang Xueming

    2005-01-01

    In this article, we describe an apparatus in our laboratory for investigating elementary chemical reactions using the high resolution time-of-flight Rydberg tagging method. In this apparatus, we have adopted a rotating source design so that collision energy can be changed for crossed beam studies of chemical reactions. Preliminary results on the HI photodissociation and the F atom reaction with H 2 are reported here. These results suggest that the experimental apparatus is potentially a powerful tool for investigating state-to-state dynamics of elementary chemical reactions

  10. Effect of reaction solvent on hydroxyapatite synthesis in sol-gel process

    Science.gov (United States)

    Nazeer, Muhammad Anwaar; Yilgor, Emel; Yagci, Mustafa Baris; Unal, Ugur; Yilgor, Iskender

    2017-12-01

    Synthesis of hydroxyapatite (HA) through sol-gel process in different solvent systems is reported. Calcium nitrate tetrahydrate (CNTH) and diammonium hydrogen phosphate (DAHP) were used as calcium and phosphorus precursors, respectively. Three different synthesis reactions were carried out by changing the solvent media, while keeping all other process parameters constant. A measure of 0.5 M aqueous DAHP solution was used in all reactions while CNTH was dissolved in distilled water, tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) at a concentration of 0.5 M. Ammonia solution (28-30%) was used to maintain the pH of the reaction mixtures in the 10-12 range. All reactions were carried out at 40 ± 2°C for 4 h. Upon completion of the reactions, products were filtered, washed and calcined at 500°C for 2 h. It was clearly demonstrated through various techniques that the dielectric constant and polarity of the solvent mixture strongly influence the chemical structure and morphological properties of calcium phosphate synthesized. Water-based reaction medium, with highest dielectric constant, mainly produced β-calcium pyrophosphate (β-CPF) with a minor amount of HA. DMF/water system yielded HA as the major phase with a very minor amount of β-CPF. THF/water solvent system with the lowest dielectric constant resulted in the formation of pure HA.

  11. Chemical methods and techniques to monitor early Maillard reaction in milk products; A review.

    Science.gov (United States)

    Aalaei, Kataneh; Rayner, Marilyn; Sjöholm, Ingegerd

    2018-01-23

    Maillard reaction is an extensively studied, yet unresolved chemical reaction that occurs as a result of application of the heat and during the storage of foods. The formation of advanced glycation end products (AGEs) has been the focus of several investigations recently. These molecules which are formed at the advanced stage of the Maillard reaction, are suspected to be involved in autoimmune diseases in humans. Therefore, understanding to which extent this reaction occurs in foods, is of vital significance. Because of their composition, milk products are ideal media for this reaction, especially when application of heat and prolonged storage are considered. Thus, in this work several chemical approaches to monitor this reaction in an early stage are reviewed. This is mostly done regarding available lysine blockage which takes place in the very beginning of the reaction. The most popular methods and their applications to various products are reviewed. The methods including their modifications are described in detail and their findings are discussed. The present paper provides an insight into the history of the most frequently-used methods and provides an overview on the indicators of the Maillard reaction in the early stage with its focus on milk products and especially milk powders.

  12. Apparent tunneling in chemical reactions

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Hansen, Flemming Yssing; Billing, G. D.

    2000-01-01

    A necessary condition for tunneling in a chemical reaction is that the probability of crossing a barrier is non-zero, when the energy of the reactants is below the potential energy of the barrier. Due to the non-classical nature (i.e, momentum uncertainty) of vibrational states this is, however......, not a sufficient condition in order to establish genuine tunneling as a result of quantum dynamics. This proposition is illustrated for a two-dimensional model potential describing dissociative sticking of N-2 on Ru(s). It is suggested that the remarkable heavy atom tunneling, found in this system, is related...

  13. Molecular beam studies of reaction dynamics

    International Nuclear Information System (INIS)

    Lee, Yuan T.

    1991-03-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation

  14. Molecular beam studies of reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  15. Technology Roadmap: Energy and GHG reductions in the chemical industry via catalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The chemical industry is a large energy user; but chemical products and technologies also are used in a wide array of energy saving and/or renewable energy applications so the industry has also an energy saving role. The chemical and petrochemical sector is by far the largest industrial energy user, accounting for roughly 10% of total worldwide final energy demand and 7% of global GHG emissions. The International Council of Chemical Associations (ICCA) has partnered with the IEA and DECHEMA (Society for Chemical Engineering and Biotechnology) to describe the path toward further improvements in energy efficiency and GHG reductions in the chemical sector. The roadmap looks at measures needed from the chemical industry, policymakers, investors and academia to press on with catalysis technology and unleash its potential around the globe. The report uncovers findings and best practice opportunities that illustrate how continuous improvements and breakthrough technology options can cut energy use and bring down greenhouse gas (GHG) emission rates. Around 90% of chemical processes involve the use of catalysts – such as added substances that increase the rate of reaction without being consumed by it – and related processes to enhance production efficiency and reduce energy use, thereby curtailing GHG emission levels. This work shows an energy savings potential approaching 13 exajoules (EJ) by 2050 – equivalent to the current annual primary energy use of Germany.

  16. Process spectroscopy in microemulsions—setup and multi-spectral approach for reaction monitoring of a homogeneous hydroformylation process

    Science.gov (United States)

    Meyer, K.; Ruiken, J.-P.; Illner, M.; Paul, A.; Müller, D.; Esche, E.; Wozny, G.; Maiwald, M.

    2017-03-01

    Reaction monitoring in disperse systems, such as emulsions, is of significant technical importance in various disciplines like biotechnological engineering, chemical industry, food science, and a growing number other technical fields. These systems pose several challenges when it comes to process analytics, such as heterogeneity of mixtures, changes in optical behavior, and low optical activity. Concerning this, online nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for process monitoring in complex reaction mixtures due to its unique direct comparison abilities, while at the same time being non-invasive and independent of optical properties of the sample. In this study the applicability of online-spectroscopic methods on the homogeneously catalyzed hydroformylation system of 1-dodecene to tridecanal is investigated, which is operated in a mini-plant scale at Technische Universität Berlin. The design of a laboratory setup for process-like calibration experiments is presented, including a 500 MHz online NMR spectrometer, a benchtop NMR device with 43 MHz proton frequency as well as two Raman probes and a flow cell assembly for an ultraviolet and visible light (UV/VIS) spectrometer. Results of high-resolution online NMR spectroscopy are shown and technical as well as process-specific problems observed during the measurements are discussed.

  17. Radiation-induced chemical reactions of carbon monoxide and hydrogen mixture

    International Nuclear Information System (INIS)

    Sugimoto, S.; Nishii, M.; Sugiura, T.

    1984-01-01

    The radiation chemical reaction of CO-H 2 mixture has been studied in the pressure range from 10 4 to 1.3 x 10 5 Pa using 7 l. reaction vessel made of stainless steel. Various hydrocarbons and oxygen containing compounds such as methane, formaldehyde, acetaldehyde, and methanol have been obtained as radiolytic products. The amounts and the G values of these products depended upon the irradiation conditions such as composition of reactant, total pressure, reaction temperature, and dose. It was found that the irradiation at low dose produced small amounts of trioxane and tetraoxane, which have not yet been reported in literature. The yields of these cyclic ethers increased at high pressure and at low temperature. An experiment was also made on CO-H 2 mixture containing ammonia as a cation scavenger to investigate the precursor of these products. (author)

  18. Computing multi-species chemical equilibrium with an algorithm based on the reaction extents

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2013-01-01

    -negative constrains. The residual function, representing the distance to the equilibrium, is defined from the chemical potential (or Gibbs energy) of the chemical system. Local minimums are potentially avoided by the prioritization of the aqueous reactions with respect to the heterogeneous reactions. The formation......A mathematical model for the solution of a set of chemical equilibrium equations in a multi-species and multiphase chemical system is described. The computer-aid solution of model is achieved by means of a Newton-Raphson method enhanced with a line-search scheme, which deals with the non...... and release of gas bubbles is taken into account in the model, limiting the concentration of volatile aqueous species to a maximum value, given by the gas solubility constant.The reaction extents are used as state variables for the numerical method. As a result, the accepted solution satisfies the charge...

  19. Solar fuels and chemicals system design study (ammonia/nitric acid production process). Volume 2. Conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-06-01

    As part of the Solar Central Receiver Fuels and Chemicals Program, Foster Wheeler Solar Development Corporation (FWSDC), under contract to Sandia National Laboratories-Livermore (SNLL), developed a conceptual design of a facility to produce ammonia and nitric acid using solar energy as the principal external source of process heat. In the selected process, ammonia is produced in an endothermic reaction within a steam methane (natural gas) reformer. The heat of reaction is provided by molten carbonate salt heated by both a solar central receiver and an exothermic ammonia-fired heater. After absorption by water, the product of the latter reaction is nitric acid.

  20. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles

    Directory of Open Access Journals (Sweden)

    Demongeot Jacques

    2004-06-01

    Full Text Available Abstract Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo.

  1. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles

    Science.gov (United States)

    Glade, Nicolas; Demongeot, Jacques; Tabony, James

    2004-01-01

    Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo. PMID:15176973

  2. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.

    Science.gov (United States)

    Adamovich, Igor V; Li, Ting; Lempert, Walter R

    2015-08-13

    This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate

  3. Analysis of exergy loss of gasoline surrogate combustion process based on detailed chemical kinetics

    International Nuclear Information System (INIS)

    Sun, Hongjie; Yan, Feng; Yu, Hao; Su, W.H.

    2015-01-01

    Highlights: • We explored the exergy loss sources of gasoline engine like combustion process. • The model combined non-equilibrium thermodynamics with detailed chemical kinetics. • We explored effects of initial conditions on exergy loss of combustion process. • Exergy loss decreases 15% of fuel chemical exergy by design of initial conditions. • Correspondingly, the second law efficiency increases from 38.9% to 68.9%. - Abstract: Chemical reaction is the most important source of combustion irreversibility in premixed conditions, but details of the exergy loss mechanisms have not been explored yet. In this study numerical analysis based on non-equilibrium thermodynamics combined with detailed chemical kinetics is conducted to explore the exergy loss mechanism of gasoline engine like combustion process which is simplified as constant volume combustion. The fuel is represented by the common accepted gasoline surrogates which consist of four components: iso-octane (57%), n-heptane (16%), toluene (23%), and 2-pentene (4%). We find that overall exergy loss is mainly composed of three peaks along combustion generated from chemical reactions in three stages, the conversion from large fuel molecules into small molecules (as Stage 1), the H 2 O 2 loop-related reactions (as Stage 2), and the violent oxidation reactions of CO, H, and O (as Stage 3). The effects of individual combustion boundaries, including temperature, pressure, equivalence ratio, oxygen concentration, on combustion exergy loss have been widely investigated. The combined effects of combustion boundaries on the total loss of gasoline surrogates are also investigated. We find that in a gasoline engine with a compression ratio of 10, the total loss can be reduced from 31.3% to 24.3% using lean combustion. The total loss can be further reduced to 22.4% by introducing exhaust gas recirculation and boosting the inlet charge. If the compression ratio is increased to 17, the total loss can be decreased to

  4. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  5. Phenomenon of quantum low temperature limit of chemical reaction rates

    International Nuclear Information System (INIS)

    Gol'danskij, V.I.

    1975-01-01

    The influence of quantum-mechanical effects on one of the fundamental laws of chemical kinetics - the Arrhenius law - is considered. Criteria characterising the limits of the low-temperature region where the extent of quantum-mechanical tunnelling transitions exceeds exponentially the transitions over the barrier are quoted. Studies of the low-temperature tunnelling of electrons and hydrogen atoms are briefly mentioned and the history of research on low-temperature radiation-induced solid-phase polymerisation, the development of which led to the discovery of the phenomenon of the low-temperature quantum-mechanical limit for the rates of chemical reactions in relation to the formaldehyde polymerisation reaction, is briefly considered. The results of experiments using low-inertia calorimeters, whereby it is possible to determine directly the average time (tau 0 ) required to add one new link to the polymer chain of formaldehyde during its polymerisation by radiation and during postpolymerisation and to establish that below 80K the increase of tau 0 slows down and that at T approximately equal to 10-4K the time tau 0 reaches a plateau (tau 0 approximately equals 0.01s), are described. Possible explanations of the observed low-temperature limit for the rate of a chemical reaction are critically examined and a semiquantitative explanation is given for this phenomenon, which may be particularly common in combined electronic-confirmational transitions in complex biological molecules and may play a definite role in chemical and biological evolution (cold prehistory of life)

  6. Phenomenon of quantum low temperature limit of chemical reaction rates

    Energy Technology Data Exchange (ETDEWEB)

    Gol' danskii, V I [AN SSSR, Moscow. Inst. Khimicheskoj Fiziki

    1975-12-01

    The influence of quantum-mechanical effects on one of the fundamental laws of chemical kinetics - the Arrhenius Law - is considered. Criteria characterising the limits of the low-temperature region where the extent of quantum-mechanical tunnelling transitions exceeds exponentially the transitions over the barrier are quoted. Studies of the low-temperature tunnelling of electrons and hydrogen atoms are briefly mentioned and the history of research on low-temperature radiation-induced solid-phase polymerization, the development of which led to the discovery of the phenomenon of the low-temperature quantum-mechanical limit for the rates of chemical reactions in relation to the formaldehyde polymerization reaction, is briefly considered. The results of experiments using low-inertia calorimeters, whereby it is possible to determine directly the average time (tau/sub 0/) required to add one new link to the polymer chain of formaldehyde during its polymerization by radiation and during postpolymerization and to establish that below 80K the increase of tau/sub 0/ slows down and that at T approximately equal to 10-4K the time tau/sub 0/ reaches a plateau (tau/sub 0/ approximately equals 0.01s), are described. Possible explanations of the observed low-temperature limit for the rate of a chemical reaction are critically examined and a semiquantitative explanation is given for this phenomenon, which may be particularly common in combined electronic-confirmational transitions in complex biological molecules and may play a definite role in chemical and biological evolution (cold prehistory of life).

  7. An in-situ chemical reaction deposition of nanosized wurtzite CdS thin films

    International Nuclear Information System (INIS)

    Chu Juan; Jin Zhengguo; Cai Shu; Yang Jingxia; Hong Zhanglian

    2012-01-01

    Nanocrystalline CdS thin films were deposited on glass substrates by an ammonia-free in-situ chemical reaction synthesis technique using cadmium cationic precursor solid films as reaction source and sodium sulfide based solutions as anionic reaction medium. Effects of ethanolamine addition to the cadmium cationic precursor solid films, deposition cycle numbers and annealing treatments in Ar atmosphere on structure, morphology, chemical composition and optical properties of the resultant films were investigated by X-ray diffraction, field emission scanning electron microscope, energy dispersive X-ray analysis and UV–Vis spectra measurements. The results show that CdS thin films deposited by the in-situ chemical reaction synthesis have wurtzite structure with (002) plane preferential orientation and crystallite size is in the range of 16 nm–19 nm. The growth of film thickness is almost constant with deposition cycle numbers and about 96 nm per cycle.

  8. Interfacial reaction between SiC and aluminium due to extrusion and heat treatment process

    International Nuclear Information System (INIS)

    Junaidah Jai; Fauzi Ismail; Samsiah Sulaiman; Patthi Hussain, Azmi Idris; Yoichi Murakoshi

    1999-01-01

    Chemical interaction between aluminium (Al) and silicon carbide (SiC) produces aluminium carbide (Al 4 C 3 ) which presents potential problems in the production and application of Al/SiC Metal Matrix Composit (MMC). The Al 4 C 3 formed can reduce material properties such as strength in the MMC. This research work investigates the interface reaction in Al 7075/SiC MMC made through hot extrusion process. Mixed Al 7075/SiC MMC powders were pressed at 300 degree C and extruded at 500 degree C, with a reduction ratio of 20:1. The extruded MMC was then heat-treated in air at various temperatures from 560 degree C, 600 degree C, 640 degree C, 700 degree C to 800 degree C in order to observe the interface reaction of the MMC materials. The heat-treated MMCs were then analyzed under the optical microscope, X-ray Diffraction (XRD) Spectroscope and Scanning Electron Microscope (SEM) with Energy Dispersive X-ray (EDAZ) attachment to observe the interface reaction within the MMCs. This investigation confirms there was interface reaction between SiC and aluminium

  9. Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals.

    Science.gov (United States)

    Den, Walter; Sharma, Virender K; Lee, Mengshan; Nadadur, Govind; Varma, Rajender S

    2018-01-01

    Anthropogenic climate change, principally induced by the large volume of carbon dioxide emission from the global economy driven by fossil fuels, has been observed and scientifically proven as a major threat to civilization. Meanwhile, fossil fuel depletion has been identified as a future challenge. Lignocellulosic biomass in the form of organic residues appears to be the most promising option as renewable feedstock for the generation of energy and platform chemicals. As of today, relatively little bioenergy comes from lignocellulosic biomass as compared to feedstock such as starch and sugarcane, primarily due to high cost of production involving pretreatment steps required to fragment biomass components via disruption of the natural recalcitrant structure of these rigid polymers; low efficiency of enzymatic hydrolysis of refractory feedstock presents a major challenge. The valorization of lignin and cellulose into energy products or chemical products is contingent on the effectiveness of selective depolymerization of the pretreatment regime which typically involve harsh pyrolytic and solvothermal processes assisted by corrosive acids or alkaline reagents. These unselective methods decompose lignin into many products that may not be energetically or chemically valuable, or even biologically inhibitory. Exploring milder, selective and greener processes, therefore, has become a critical subject of study for the valorization of these materials in the last decade. Efficient alternative activation processes such as microwave- and ultrasound irradiation are being explored as replacements for pyrolysis and hydrothermolysis, while milder options such as advanced oxidative and catalytic processes should be considered as choices to harsher acid and alkaline processes. Herein, we critically abridge the research on chemical oxidative techniques for the pretreatment of lignocellulosics with the explicit aim to rationalize the objectives of the biomass pretreatment step and the

  10. Development of a novel fingerprint for chemical reactions and its application to large-scale reaction classification and similarity.

    Science.gov (United States)

    Schneider, Nadine; Lowe, Daniel M; Sayle, Roger A; Landrum, Gregory A

    2015-01-26

    Fingerprint methods applied to molecules have proven to be useful for similarity determination and as inputs to machine-learning models. Here, we present the development of a new fingerprint for chemical reactions and validate its usefulness in building machine-learning models and in similarity assessment. Our final fingerprint is constructed as the difference of the atom-pair fingerprints of products and reactants and includes agents via calculated physicochemical properties. We validated the fingerprints on a large data set of reactions text-mined from granted United States patents from the last 40 years that have been classified using a substructure-based expert system. We applied machine learning to build a 50-class predictive model for reaction-type classification that correctly predicts 97% of the reactions in an external test set. Impressive accuracies were also observed when applying the classifier to reactions from an in-house electronic laboratory notebook. The performance of the novel fingerprint for assessing reaction similarity was evaluated by a cluster analysis that recovered 48 out of 50 of the reaction classes with a median F-score of 0.63 for the clusters. The data sets used for training and primary validation as well as all python scripts required to reproduce the analysis are provided in the Supporting Information.

  11. Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation

    KAUST Repository

    Mélykúti, Bence

    2010-01-01

    The Chemical Langevin Equation (CLE), which is a stochastic differential equation driven by a multidimensional Wiener process, acts as a bridge between the discrete stochastic simulation algorithm and the deterministic reaction rate equation when simulating (bio)chemical kinetics. The CLE model is valid in the regime where molecular populations are abundant enough to assume their concentrations change continuously, but stochastic fluctuations still play a major role. The contribution of this work is that we observe and explore that the CLE is not a single equation, but a parametric family of equations, all of which give the same finite-dimensional distribution of the variables. On the theoretical side, we prove that as many Wiener processes are sufficient to formulate the CLE as there are independent variables in the equation, which is just the rank of the stoichiometric matrix. On the practical side, we show that in the case where there are m1 pairs of reversible reactions and m2 irreversible reactions there is another, simple formulation of the CLE with only m1 + m2 Wiener processes, whereas the standard approach uses 2 m1 + m2. We demonstrate that there are considerable computational savings when using this latter formulation. Such transformations of the CLE do not cause a loss of accuracy and are therefore distinct from model reduction techniques. We illustrate our findings by considering alternative formulations of the CLE for a human ether a-go-go related gene ion channel model and the Goldbeter-Koshland switch. © 2010 American Institute of Physics.

  12. A kinetic-theory approach for computing chemical-reaction rates in upper-atmosphere hypersonic flows.

    Science.gov (United States)

    Gallis, Michael A; Bond, Ryan B; Torczynski, John R

    2009-09-28

    Recently proposed molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction-rate information) are investigated for chemical reactions occurring in upper-atmosphere hypersonic flows. The new models are in good agreement with the measured Arrhenius rates for near-equilibrium conditions and with both measured rates and other theoretical models for far-from-equilibrium conditions. Additionally, the new models are applied to representative combustion and ionization reactions and are in good agreement with available measurements and theoretical models. Thus, molecular-level chemistry modeling provides an accurate method for predicting equilibrium and nonequilibrium chemical-reaction rates in gases.

  13. Chemical aspects of radiation damage processes: radiolysis

    International Nuclear Information System (INIS)

    Asmus, K.D.

    1975-01-01

    The formation of primary species and radiation chemical yields are discussed. In a section on chemical scavenging of primary species the author considers scavenging kinetics and competition reactions and gives a brief outline of some experimental methods. The radiation chemistry of aqueous solutions is discussed as an example for polar solvents. Cyclohexane is used as an example for non-polar solvents. The importance of excited states and energy transfer is considered. Reactions in the solid state are discussed and results on linear energy transfer and average ion pair formation for various kinds of radiation are surveyed. (B.R.H.)

  14. Development of a quantum chemical molecular dynamics tribochemical simulator and its application to tribochemical reaction dynamics of lubricant additives

    International Nuclear Information System (INIS)

    Onodera, T; Tsuboi, H; Hatakeyama, N; Endou, A; Miyamoto, A; Miura, R; Takaba, H; Suzuki, A; Kubo, M

    2010-01-01

    Tribology at the atomistic and molecular levels has been theoretically studied by a classical molecular dynamics (MD) method. However, this method inherently cannot simulate the tribochemical reaction dynamics because it does not consider the electrons in nature. Although the first-principles based MD method has recently been used for understanding the chemical reaction dynamics of several molecules in the tribology field, the method cannot simulate the tribochemical reaction dynamics of a large complex system including solid surfaces and interfaces due to its huge computation costs. On the other hand, we have developed a quantum chemical MD tribochemical simulator on the basis of a hybrid tight-binding quantum chemical/classical MD method. In the simulator, the central part of the chemical reaction dynamics is calculated by the tight-binding quantum chemical MD method, and the remaining part is calculated by the classical MD method. Therefore, the developed tribochemical simulator realizes the study on tribochemical reaction dynamics of a large complex system, which cannot be treated by using the conventional classical MD or the first-principles MD methods. In this paper, we review our developed quantum chemical MD tribochemical simulator and its application to the tribochemical reaction dynamics of a few lubricant additives

  15. Fiscal 1999 survey report. Survey and research concerning development of next-generation chemical process technologies; 1999 nendo jisedai kagaku process gijutsu kaihatsu ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    To further enhance resource/energy conservation and environmental impact reduction, it is necessary to develop innovative chemical reaction process technologies. It is for this reason that 'development of next-generation chemical reaction process technologies' is being carried out under the New Sunshine Program. The survey and research, for the fulfilment of the above goal, aim to select important technologies and put in a easy-to-study order the problems contained in associated technologies for picking out tasks for future studies for the purpose of suggesting some subjects to be taken up for future development. In addition, studies are made about how a comprehensive technology assessment system should be. In this fiscal year, propositions are compiled for research and development projects on five subjects. Studies of subjects other than these five will also continue to eventually build concrete propositions on them. The said five subjects involve 1) the development and application of nonaqueous biotechnologies, 2) biotechnology-aided polymeric material creation processes, 3) construction of high-efficiency energy conservation processes using innovative grain handling technologies in the high-temperature reaction field, 4) manufacture of high-performance polymeric materials for batteries and development of battery fabrication processes, and 5) the development of an energy conservation process maximally utilizing environmentally-friendly polyolefin. (NEDO)

  16. Fiscal 1999 survey report. Survey and research concerning development of next-generation chemical process technologies; 1999 nendo jisedai kagaku process gijutsu kaihatsu ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    To further enhance resource/energy conservation and environmental impact reduction, it is necessary to develop innovative chemical reaction process technologies. It is for this reason that 'development of next-generation chemical reaction process technologies' is being carried out under the New Sunshine Program. The survey and research, for the fulfilment of the above goal, aim to select important technologies and put in a easy-to-study order the problems contained in associated technologies for picking out tasks for future studies for the purpose of suggesting some subjects to be taken up for future development. In addition, studies are made about how a comprehensive technology assessment system should be. In this fiscal year, propositions are compiled for research and development projects on five subjects. Studies of subjects other than these five will also continue to eventually build concrete propositions on them. The said five subjects involve 1) the development and application of nonaqueous biotechnologies, 2) biotechnology-aided polymeric material creation processes, 3) construction of high-efficiency energy conservation processes using innovative grain handling technologies in the high-temperature reaction field, 4) manufacture of high-performance polymeric materials for batteries and development of battery fabrication processes, and 5) the development of an energy conservation process maximally utilizing environmentally-friendly polyolefin. (NEDO)

  17. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid–solid reactions

    International Nuclear Information System (INIS)

    Siriwardane, Ranjani; Riley, Jarrett; Tian, Hanjing; Richards, George

    2016-01-01

    Highlights: • BaFe 2 O 4 and CaFe 2 O 4 are excellent for chemical looping coal gasification. • BaFe 2 O 4 and CaFe 2 O 4 have minimal reactivity with synthesis gas. • Steam enhances the gasification process with these oxygen carriers. • Reaction rates of steam gasification of coal with CaFe 2 O 4 was better than with gaseous oxygen. • Coal gasification appears to be via solid–solid interaction with the oxygen carrier. - Abstract: Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe 2 O 4 ) and calcium ferrite (CaFe 2 O 4 ). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe 2 O 4 and CaFe 2 O 4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H 2 ) and carbon monoxide (CO), but carbon dioxide (CO 2 ) remained low because these oxygen carriers have minimal reactivity with H 2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H 2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.

  18. Spectroscopy and dynamics of chemical reactions in van der Waals complexes

    International Nuclear Information System (INIS)

    Soorkia, Satchin

    2008-09-01

    Transition metal elements have d valence electrons and are characterized by a great variety of electronic configurations responsible for their specific reactivity. The elements of the second row in particular have 4d and 5s atomic orbitals of similar size and energy which can be both involved in chemical processes. We have been interested in the reactivity of a transition metal element, zirconium, combined with a simple organic functionalized molecule in a van der Waals complex formed in a supersonic molecular beam in the model reaction Zr + CH 3 F. In this context, one of the chemicals reactions that we are interested in leads to the formation of ZrF. The electronic spectroscopy of ZrF in the spectral domain 400 - 470 nm is extremely rich and surprising for a diatomic molecule. With this study, we have been able to identify the ground state of ZrF (X 2 Δ) by simulating the observed rotational structures and obtain essential information on the electronic structure. These experimental results are in agreement with ab initio calculations. The excited states of the complex Zr...F-CH 3 have been studied with a depopulation method. The spectral domain 615 - 700 nm is particularly interesting because it reveals a group of diffuse bands red-shifted and broadened with respect to the transition a 3 F → z 3 F in the metal. This transition is forbidden from the ground state a 3 F 2 of zirconium but allowed from the a 3 F 4 state. Complexation of the metal atom with a CH 3 F molecule allows coupling of these two states to occur which ensures the optical transition from the ground state of the complex. (author)

  19. Nobel Prize 1992: Rudolph A. Marcus: theory of electron transfer reactions in chemical systems

    International Nuclear Information System (INIS)

    Ulate Segura, Diego Guillermo

    2011-01-01

    A review of the theory developed by Rudolph A. Marcus is presented, who for his rating to the theory of electron transfer in chemical systems was awarded the Nobel Prize in Chemistry in 1992. Marcus theory has constituted not only a good extension of the use of a spectroscopic principle, but also has provided an energy balance and the application of energy conservation for electron transfer reactions. A better understanding of the reaction coordinate is exposed in terms energetic and establishing the principles that govern the transfer of electrons, protons and some labile small molecular groups as studied at present. Also, the postulates and equations described have established predictive models of reaction time, very useful for industrial environments, biological, metabolic, and others that involve redox processes. Marcus theory itself has also constituted a large contribution to the theory of complex transition [es

  20. A Study of Interactions between Mixing and Chemical Reaction Using the Rate-Controlled Constrained-Equilibrium Method

    Science.gov (United States)

    Hadi, Fatemeh; Janbozorgi, Mohammad; Sheikhi, M. Reza H.; Metghalchi, Hameed

    2016-10-01

    The rate-controlled constrained-equilibrium (RCCE) method is employed to study the interactions between mixing and chemical reaction. Considering that mixing can influence the RCCE state, the key objective is to assess the accuracy and numerical performance of the method in simulations involving both reaction and mixing. The RCCE formulation includes rate equations for constraint potentials, density and temperature, which allows taking account of mixing alongside chemical reaction without splitting. The RCCE is a dimension reduction method for chemical kinetics based on thermodynamics laws. It describes the time evolution of reacting systems using a series of constrained-equilibrium states determined by RCCE constraints. The full chemical composition at each state is obtained by maximizing the entropy subject to the instantaneous values of the constraints. The RCCE is applied to a spatially homogeneous constant pressure partially stirred reactor (PaSR) involving methane combustion in oxygen. Simulations are carried out over a wide range of initial temperatures and equivalence ratios. The chemical kinetics, comprised of 29 species and 133 reaction steps, is represented by 12 RCCE constraints. The RCCE predictions are compared with those obtained by direct integration of the same kinetics, termed detailed kinetics model (DKM). The RCCE shows accurate prediction of combustion in PaSR with different mixing intensities. The method also demonstrates reduced numerical stiffness and overall computational cost compared to DKM.

  1. Impacts of Environmental Nanoparticles on Chemical, Biological and Hydrological Processes in Terrestrial Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2012-01-01

    This chapter provides insights on nanoparticle (NP) influence or control on the extent and timescales of single or coupled physical, chemical, biological and hydrological reactions and processes that occur in terrestrial ecosystems. Examples taken from the literature that show how terrestrial NPs may determine the fate of the aqueous and sorbed (adsorbed or precipitated) chemical species of nutrients and contaminants, are also included in this chapter. Specifically, in the first section, chapter objectives, term definitions and discussions on size-dependent properties, the origin and occurrence of NP in terrestrial ecosystems and NP toxicity, are included. In the second section, the topic of the binary interactions of NPs of different sizes, shapes, concentrations and ages with the soil solution chemical species is covered, focusing on NP formation, stability, aggregation, ability to serve as sorbents, or surface-mediated precipitation catalysts, or electron donors and acceptors. In the third section, aspects of the interactions in the ternary systems composed of environmental NP, nutrient/contaminant chemical species, and the soil/sediment matrix are discussed, focusing on the inhibitory and catalytic effects of environmental NP on nutrient/contaminant advective mobility and mass transfer, adsorption and desorption, dissolution and precipitation and redox reactions that occur in terrestrial ecosystems. These three review sections are followed by a short summary of future research needs and directions, the acknowledgements, the list of the references, and the figures.

  2. Process Intensification. Continuous Two-Phase Catalytic Reactions in a Table-Top Centrifugal Contact Separator

    NARCIS (Netherlands)

    Kraai, Gerard N.; Schuur, Boelo; van Zwol, Floris; Haak, Robert M.; Minnaard, Adriaan J.; Feringa, Ben L.; Heeres, Hero J.; de Vries, Johannes G.; Prunier, ML

    2009-01-01

    Production of fine chemicals is mostly performed in batch reactors. Use of continuous processes has many advantages which may reduce the cost of production. We have developed the use of centrifugal contact separators (CCSs) for continuous two-phase catalytic reactions. This equipment has previously

  3. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  4. Chemical reaction vector embeddings: towards predicting drug metabolism in the human gut microbiome.

    Science.gov (United States)

    Mallory, Emily K; Acharya, Ambika; Rensi, Stefano E; Turnbaugh, Peter J; Bright, Roselie A; Altman, Russ B

    2018-01-01

    Bacteria in the human gut have the ability to activate, inactivate, and reactivate drugs with both intended and unintended effects. For example, the drug digoxin is reduced to the inactive metabolite dihydrodigoxin by the gut Actinobacterium E. lenta, and patients colonized with high levels of drug metabolizing strains may have limited response to the drug. Understanding the complete space of drugs that are metabolized by the human gut microbiome is critical for predicting bacteria-drug relationships and their effects on individual patient response. Discovery and validation of drug metabolism via bacterial enzymes has yielded >50 drugs after nearly a century of experimental research. However, there are limited computational tools for screening drugs for potential metabolism by the gut microbiome. We developed a pipeline for comparing and characterizing chemical transformations using continuous vector representations of molecular structure learned using unsupervised representation learning. We applied this pipeline to chemical reaction data from MetaCyc to characterize the utility of vector representations for chemical reaction transformations. After clustering molecular and reaction vectors, we performed enrichment analyses and queries to characterize the space. We detected enriched enzyme names, Gene Ontology terms, and Enzyme Consortium (EC) classes within reaction clusters. In addition, we queried reactions against drug-metabolite transformations known to be metabolized by the human gut microbiome. The top results for these known drug transformations contained similar substructure modifications to the original drug pair. This work enables high throughput screening of drugs and their resulting metabolites against chemical reactions common to gut bacteria.

  5. Thin layer chromatography coupled with surface-enhanced Raman scattering as a facile method for on-site quantitative monitoring of chemical reactions.

    Science.gov (United States)

    Zhang, Zong-Mian; Liu, Jing-Fu; Liu, Rui; Sun, Jie-Fang; Wei, Guo-Hua

    2014-08-05

    By coupling surface-enhanced Raman spectroscopy (SERS) with thin layer chromatography (TLC), a facile and powerful method was developed for on-site monitoring the process of chemical reactions. Samples were preseparated on a TLC plate following a common TLC procedure, and then determined by SERS after fabricating a large-area, uniform SERS substrate on the TLC plate by spraying gold nanoparticles (AuNPs). Reproducible and strong SERS signals were obtained with substrates prepared by spraying 42-nm AuNPs at a density of 5.54 × 10(10) N/cm(2) on the TLC plate. The capacity of this TLC-SERS method was evaluated by monitoring a typical Suzuki coupling reaction of phenylboronic acid and 2-bromopyridine as a model. Results showed that this proposed method is able to identify reaction product that is invisible to the naked eye, and distinguish the reactant 2-bromopyridine and product 2-phenylpyridine, which showed almost the same retention factors (R(f)). Under the optimized conditions, the peak area of the characteristic Raman band (755 cm(-1)) of the product 2-phenylpyridine showed a good linear correlation with concentration in the range of 2-200 mg/L (R(2) = 0.9741), the estimated detection limit (1 mg/L 2-phenylpyridine) is much lower than the concentration of the chemicals in the common organic synthesis reaction system, and the product yield determined by the proposed TLC-SERS method agreed very well with that by UPLC-MS/MS. In addition, a new byproduct in the reaction system was found and identified through continuous Raman detection from the point of sample to the solvent front. This facile TLC-SERS method is quick, easy to handle, low-cost, sensitive, and can be exploited in on-site monitoring the processes of chemical reactions, as well as environmental and biological processes.

  6. Magnetic isotope effect and theory of atomic orbital hybridization to predict a mechanism of chemical exchange reactions.

    Science.gov (United States)

    Epov, Vladimir N

    2011-08-07

    A novel approach is suggested to investigate the mechanisms of chemical complexation reactions based on the results of Fujii with co-workers; they have experimentally observed that several metals and metalloids demonstrate mass-independent isotope fractionation during the reactions with the DC18C6 crown ether using solvent-solvent extraction. In this manuscript, the isotope fractionation caused by the magnetic isotope effect is used to understand the mechanisms of chemical exchange reactions. Due to the rule that reactions are allowed for certain electron spin states, and forbidden for others, magnetic isotopes show chemical anomalies during these reactions. Mass-independent fractionation is suggested to take place due to the hyperfine interaction of the nuclear spin with the electron spin of the intermediate product. Moreover, the sign of the mass-independent fractionation is found to be dependent on the element and its species, which is also explained by the magnetic isotope effect. For example, highly negative mass-independent isotope fractionation of magnetic isotopes was observed for reactions of DC18C6 with SnCl(2) species and with several Ru(III) chloro-species, and highly positive for reactions of this ether with TeCl(6)(2-), and with several Cd(II) and Pd(II) species. The atomic radius of an element is also a critical parameter for the reaction with crown ether, particularly the element ions with [Kr]4d(n)5s(m) electron shell fits the best with the DC18C6 crown ring. It is demonstrated that the magnetic isotope effect in combination with the theory of orbital hybridization can help to understand the mechanism of complexation reactions. The suggested approach is also applied to explain previously published mass-independent fractionation of Hg isotopes in other types of chemical exchange reactions. This journal is © the Owner Societies 2011

  7. Effect of Chemical Reactions on the Hydrologic Properties of Fractured and Rubbelized Glass Media

    International Nuclear Information System (INIS)

    Saripalli, Prasad; Meyer, P D.; Parker, Kent E.; Lindberg, Michael J.

    2005-01-01

    Understanding the effect of chemical reactions on the hydrologic properties of geological media, such as porosity, permeability and dispersivity, is critical to many natural and engineered sub-surface systems. Influence of glass corrosion (precipitation and dissolution) reactions on fractured and rubbelized (crushed) forms HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted using fractured and rubbelized forms, before and after subjecting them to corrosion using Vapor Hydration Testing (VHT) at 200 C temperature and 200 psig pressure, causing the precipitation of alteration products. Data were analyzed using analytical expressions and CXTFIT, a transport parameter optimization code, for the estimation of the hydrologic characteristics before and after VHT. It was found that glass reactions significantly influence the hydrologic properties of ILAW glass media. Hydrologic properties of rubbelized glass decreased due to precipitation reactions, whereas those of fractured glass media increased due to reaction which led to unconfined expansion of fracture aperture. The results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured and rubbelized stony media in general and glass media in particular

  8. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.

    Science.gov (United States)

    Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu

    2008-01-01

    A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.

  9. Chemical reactions involved in the initiation of hot corrosion of IN-738

    Science.gov (United States)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1984-01-01

    Sodium-sulfate-induced hot corrosion of preoxidized IN-738 was studied at 975 C with special emphasis placed on the processes occurring during the long induction period. Thermogravimetric tests were run for predetermined periods of time, and then one set of specimens was washed with water. Chemical analysis of the wash solutions yielded information about water soluble metal salts and residual sulfate. A second set of samples was cross sectioned dry and polished in a nonaqueous medium. Element distributions within the oxide scale were obtained from electron microprobe X-ray micrographs. Evolution of SO was monitored throughout the thermogravimetric tests. Kinetic rate studies were performed for several pertinent processes; appropriate rate constants were obtained from the following chemical reactions; Cr203 + 2 Na2S04(1) + 3/2 02 yields 2 Na2Cr04(1) + 2 S03(g)n TiO2 + Na2S04(1) yields Na20(T102)n + 503(g)n T102 + Na2Cro4(1) yields Na2(T102)n + Cr03(g).

  10. Fractal sets generated by chemical reactions discrete chaotic dynamics

    International Nuclear Information System (INIS)

    Gontar, V.; Grechko, O.

    2007-01-01

    Fractal sets composed by the parameters values of difference equations derived from chemical reactions discrete chaotic dynamics (DCD) and corresponding to the sequences of symmetrical patterns were obtained in this work. Examples of fractal sets with the corresponding symmetrical patterns have been presented

  11. Theoretical and experimental study on solid chemical reaction between BaCO3 and TiO2 in microwave field

    International Nuclear Information System (INIS)

    Liu Hanxing; Guo, Liling; Zou Long; Cao Minhe; Zhou Jian; Ouyang Shixi

    2004-01-01

    Solid-state chemical reaction mechanism for the reaction between BaCO 3 and TiO 2 in microwave field was investigated based on X-ray power diffraction (XRD) data and theory of diffusion. The compositions of the resultant after reaction under different conditions were studied by employing XRD. The quantitative analyses based on XRD data showed the reaction in microwave field was quite different from that in the conventional method. A model was proposed to explain the change of the ratio between the reactant BaCO 3 , TiO 2 and the resultant BaTiO 3 for the chemical reaction. The formation kinetic of BaTiO 3 from the BaCO 3 and TiO 2 was calculated by employing this theoretical model. The reaction rate between BaCO 3 and TiO 2 in microwave field was much higher than that in conventional method. The activation energy of the atomic diffusions in this solid chemical reaction is only 58 kJ/mol, which was only about 1/4 of 232 kJ/mol in the conventional value. The result suggests that the microwave field enhance atomic diffusion during the reaction

  12. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    Science.gov (United States)

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  13. Depth treatment of coal-chemical engineering wastewater by a cost-effective sequential heterogeneous Fenton and biodegradation process.

    Science.gov (United States)

    Fang, Yili; Yin, Weizhao; Jiang, Yanbin; Ge, Hengjun; Li, Ping; Wu, Jinhua

    2018-05-01

    In this study, a sequential Fe 0 /H 2 O 2 reaction and biological process was employed as a low-cost depth treatment method to remove recalcitrant compounds from coal-chemical engineering wastewater after regular biological treatment. First of all, a chemical oxygen demand (COD) and color removal efficiency of 66 and 63% was achieved at initial pH of 6.8, 25 mmol L -1 of H 2 O 2 , and 2 g L -1 of Fe 0 in the Fe 0 /H 2 O 2 reaction. According to the gas chromatography-mass spectrometer (GC-MS) and gas chromatography-flame ionization detector (GC-FID) analysis, the recalcitrant compounds were effectively decomposed into short-chain organic acids such as acetic, propionic, and butyric acids. Although these acids were resistant to the Fe 0 /H 2 O 2 reaction, they were effectively eliminated in the sequential air lift reactor (ALR) at a hydraulic retention time (HRT) of 2 h, resulting in a further decrease of COD and color from 120 to 51 mg L -1 and from 70 to 38 times, respectively. A low operational cost of 0.35 $ m -3 was achieved because pH adjustment and iron-containing sludge disposal could be avoided since a total COD and color removal efficiency of 85 and 79% could be achieved at an original pH of 6.8 by the above sequential process with a ferric ion concentration below 0.8 mg L -1 after the Fe 0 /H 2 O 2 reaction. It indicated that the above sequential process is a promising and cost-effective method for the depth treatment of coal-chemical engineering wastewaters to satisfy discharge requirements.

  14. Direct processes in heavy ion reactions

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Zagrebaev, V.I.

    1983-01-01

    Direct processes in heavy ion reactions are investigated. Relative theoretical contributions in the inclusive spectrum of α particles on processes of stripping breakup and inelastic breakup are estimated using the 22 Ne+ 181 Ta reaction as an example. The consideration is performed taking into account Coulomb and nuclear distortions in the inlet and outlet ion channels. It is shown that the hard edge of α spectrum and its maximum are well described by peripheral direct processes. The hard spectrum edge is conditioned by the pure process of ''incomplete fussion'' bringing about the production af a compound nucleus. The main part of inclusive spectrum is conditioned by reactions of inelastic and elastic breakup not connected with the production of a compound nucleus

  15. ReactionPredictor: prediction of complex chemical reactions at the mechanistic level using machine learning.

    Science.gov (United States)

    Kayala, Matthew A; Baldi, Pierre

    2012-10-22

    Proposing reasonable mechanisms and predicting the course of chemical reactions is important to the practice of organic chemistry. Approaches to reaction prediction have historically used obfuscating representations and manually encoded patterns or rules. Here we present ReactionPredictor, a machine learning approach to reaction prediction that models elementary, mechanistic reactions as interactions between approximate molecular orbitals (MOs). A training data set of productive reactions known to occur at reasonable rates and yields and verified by inclusion in the literature or textbooks is derived from an existing rule-based system and expanded upon with manual curation from graduate level textbooks. Using this training data set of complex polar, hypervalent, radical, and pericyclic reactions, a two-stage machine learning prediction framework is trained and validated. In the first stage, filtering models trained at the level of individual MOs are used to reduce the space of possible reactions to consider. In the second stage, ranking models over the filtered space of possible reactions are used to order the reactions such that the productive reactions are the top ranked. The resulting model, ReactionPredictor, perfectly ranks polar reactions 78.1% of the time and recovers all productive reactions 95.7% of the time when allowing for small numbers of errors. Pericyclic and radical reactions are perfectly ranked 85.8% and 77.0% of the time, respectively, rising to >93% recovery for both reaction types with a small number of allowed errors. Decisions about which of the polar, pericyclic, or radical reaction type ranking models to use can be made with >99% accuracy. Finally, for multistep reaction pathways, we implement the first mechanistic pathway predictor using constrained tree-search to discover a set of reasonable mechanistic steps from given reactants to given products. Webserver implementations of both the single step and pathway versions of Reaction

  16. Understanding and Improvement of an Experiment Measuring Chemical Reaction Rates by Monitoring Volume Change of a Gas: On the Reaction between HCl(aq) and Mg(s)

    International Nuclear Information System (INIS)

    Bang, Jeong Ah; Yoon, Hee Sook; Jeong, Dae Hong; Choi, Won Ho

    2006-01-01

    In this study we analyzed and improved an experiment measuring chemical reaction rates introduced in the high school science textbooks through an understanding of the phenomena observed in carrying out the experiment. For this purpose, the contents of textbooks related to the experiment were analyzed, and the problems observed in carrying out the experiment were addressed through experimental analysis. When the experiment was carried out by the method of aquatic transposition presented in textbooks, the observed volume change of H 2 gas was delayed and chemical reaction rate was increased in the early stage of reaction period. To resolve these problems, an improved method for measuring the reaction rates was suggested. In the improved experiment the reaction rate was measured to be constant on time, which was interpreted in terms of the concentration of H + and the surface area of magnesium

  17. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2003-04-01

    The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

  18. Process and kinetics of the fundamental radiation-electrochemical reactions in the primary coolant loop of nuclear reactors

    International Nuclear Information System (INIS)

    Kozomara-Maic, S.

    1987-06-01

    In spite of the rather broad title of this report, its major part is devoted to the corrosion problems at the RA reactor, i.e. causes and consequences of the reactor shutdown in 1979 and 1982. Some problems of reactor chemistry are pointed out because they are significant for future reactor operation. The final conclusion of this report is that corrosion processes in the primary coolant circuit of the nuclear reactor are specific and that radiation effects cannot be excluded when processes and reaction kinetics are investigated. Knowledge about the kinetics of all the chemical reactions occurring in the primary coolant loop are of crucial significance for safe and economical reactor operation [sr

  19. Theoretical study of chemical reaction effects on vertical oscillating plate with variable temperature

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2006-01-01

    Full Text Available An exact solution to the flow of a viscous incompressible unsteady flow past an infinite vertical oscillating plate with variable temperature and mass diffusion is presented here, taking into account of the homogeneous chemical reaction of first-order. Both the plate temperature and the concentration level near the plate are raised linearly with respect to time. The dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity and concentration are studied for different parameters like phase angle, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time are studied. The solutions are valid only for small values of time t. It is observed that the velocity increases with decreasing phase angle ωt or chemical reaction parameter. .

  20. Remarkable nanoconfinement effects on chemical equilibrium manifested in nucleotide dimerization and H-D exchange reactions.

    Science.gov (United States)

    Polak, Micha; Rubinovich, Leonid

    2011-10-06

    Nanoconfinement entropic effects on chemical equilibrium involving a small number of molecules, which we term NCECE, are revealed by two widely diverse types of reactions. Employing statistical-mechanical principles, we show how the NCECE effect stabilizes nucleotide dimerization observed within self-assembled molecular cages. Furthermore, the effect provides the basis for dimerization even under an aqueous environment inside the nanocage. Likewise, the NCECE effect is pertinent to a longstanding issue in astrochemistry, namely the extra deuteration commonly observed for molecules reacting on interstellar dust grain surfaces. The origin of the NCECE effect is elucidated by means of the probability distributions of the reaction extent and related variations in the reactant-product mixing entropy. Theoretical modelling beyond our previous preliminary work highlights the role of the nanospace size in addition to that of the nanosystem size, namely the limited amount of molecules in the reaction mixture. Furthermore, the NCECE effect can depend also on the reaction mechanism, and on deviations from stoichiometry. The NCECE effect, leading to enhanced, greatly variable equilibrium "constants", constitutes a unique physical-chemical phenomenon, distinguished from the usual thermodynamical properties of macroscopically large systems. Being significant particularly for weakly exothermic reactions, the effects should stabilize products in other closed nanoscale structures, and thus can have notable implications for the growing nanotechnological utilization of chemical syntheses conducted within confined nanoreactors.

  1. Feasibility Study of Venus Surfuce Cooling Using Chemical Reactions with the Atmosphere

    Science.gov (United States)

    Evans, Christopher

    2013-01-01

    A literature search and theoretical analysis were conducted to investigate the feasibility of cooling a craft on Venus through chemical reformation of materials from the atmosphere. The core concept was to take carbon dioxide (CO2) from the Venus atmosphere and chemically reform it into simpler compounds such as carbon, oxygen, and carbon monoxide. This process is endothermic, taking energy from the surroundings to produce a cooling effect. A literature search was performed to document possible routes for achieving the desired reactions. Analyses indicated that on Venus, this concept could theoretically be used to produce cooling, but would not perform as well as a conventional heat pump. For environments other than Venus, the low theoretical performance limits general applicability of this concept, however this approach to cooling may be useful in niche applications. Analysis indicated that environments with particular atmospheric compositions and temperatures could allow a similar cooling system to operate with very good performance. This approach to cooling may also be useful where the products of reaction are also desirable, or for missions where design simplicity is valued. Conceptual designs for Venus cooling systems were developed using a modified concept, in which an expendable reactant supply would be used to promote more energetically favorable reactions with the ambient CO2, providing cooling for a more limited duration. This approach does not have the same performance issues, but the use of expendable supplies increases the mass requirements and limits the operating lifetime. This paper summarizes the findings of the literature search and corresponding analyses of the various cooling options

  2. Feasibility Study of Venus Surface Cooling Using Chemical Reactions with the Atmosphere

    Science.gov (United States)

    Evans, Christopher

    2013-01-01

    A literature search and theoretical analysis were conducted to investigate the feasibility of cooling a craft on Venus through chemical reformation of materials from the atmosphere. The core concept was to take carbon dioxide (CO2) from the Venus atmosphere and chemically reform it into simpler compounds such as carbon, oxygen, and carbon monoxide. This process is endothermic, taking energy from the surroundings to produce a cooling effect. A literature search was performed to document possible routes for achieving the desired reactions. Analyses indicated that on Venus, this concept could theoretically be used to produce cooling, but would not perform as well as a conventional heat pump. For environments other than Venus, the low theoretical performance limits general applicability of this concept, however this approach to cooling may be useful in niche applications. Analysis indicated that environments with particular atmospheric compositions and temperatures could allow a similar cooling system to operate with very good performance. This approach to cooling may also be useful where the products of reaction are also desirable, or for missions where design simplicity is valued. Conceptual designs for Venus cooling systems were developed using a modified concept, in which an expendable reactant supply would be used to promote more energetically favorable reactions with the ambient CO2, providing cooling for a more limited duration. This approach does not have the same performance issues, but the use of expendable supplies increases the mass requirements and limits the operating lifetime. This paper summarizes the findings of the literature search and corresponding analyses of the various cooling options.

  3. Inline chemical process analysis in micro-plants based on thermoelectric flow and impedimetric sensors

    International Nuclear Information System (INIS)

    Jacobs, T; Kutzner, C; Hauptmann, P; Kropp, M; Lang, W; Brokmann, G; Steinke, A; Kienle, A

    2010-01-01

    In micro-plants, as used in chemical micro-process engineering, an integrated inline analytics is regarded as an important factor for the development and optimization of chemical processes. Up to now, there is a lack of sensitive, robust and low-priced micro-sensors for monitoring mixing and chemical conversion in micro-fluidic channels. In this paper a novel sensor system combining an impedimetric sensor and a novel pressure stable thermoelectric flow sensor for monitoring chemical reactions in micro-plants is presented. The CMOS-technology-based impedimetric sensor mainly consists of two capacitively coupled interdigital electrodes on a silicon chip. The thermoelectric flow sensor consists of a heater in between two thermopiles on a perforated membrane. The pulsed and constant current feeds of the heater were analyzed. Both sensors enable the analysis of chemical conversion by means of changes in the thermal and electrical properties of the liquid. The homogeneously catalyzed synthesis of n-butyl acetate as a chemical model system was studied. Experimental results revealed that in an overpressure regime, relative changes of less than 1% in terms of thermal and electrical properties can be detected. Furthermore, the transition from one to two liquid phases accompanied by the change in slug flow conditions could be reproducibly detected

  4. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler

    Directory of Open Access Journals (Sweden)

    Jun-Xia Zhang

    2016-03-01

    Full Text Available Because the air-staged combustion technology is one of the key technologies with low investment running costs and high emission reduction efficiency for the pulverized boiler, it is important to reveal the chemical reaction kinetics mechanism for developing various technologies of nitrogen oxide reduction emissions. At the present work, a three-dimensional mesh model of the large-scale four corner tangentially fired boiler furnace is established with the GAMBIT pre-processing of the FLUENT software. The partial turbulent premixed and diffusion flame was simulated for the air-staged combustion processing. Parameters distributions for the air-staged and no the air-staged were obtained, including in-furnace flow field, temperature field and nitrogen oxide concentration field. The results show that the air-staged has more regular velocity field, higher velocity of flue gas, higher turbulence intensity and more uniform temperature of flue gas. In addition, a lower negative pressure zone and lower O2 concentration zone is formed in the main combustion zone, which is conducive to the NO of fuel type reduced to N2, enhanced the effect of NOx reduction. Copyright © 2016 BCREC GROUP. All rights reserved Received: 5th November 2015; Revised: 14th January 2016; Accepted: 16th January 2016  How to Cite: Zhang, J.X., Zhang, J.F. (2016. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 100-108. (doi:10.9767/bcrec.11.1.431.100-108 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.431.100-108

  5. Chemical process and plant design bibliography 1959-1989

    International Nuclear Information System (INIS)

    Ray, M.S.

    1991-01-01

    This book is concerned specifically with chemical process in formation and plant equipment design data. It is a source for chemical engineers, students and academics involved in process and design evaluation. Over 500 chemical categories are included, from Acetaldehyde to zirconium Dioxide, with cross-referencing within the book to appropriate associated chemicals

  6. On the deduction of chemical reaction pathways from measurements of time series of concentrations.

    Science.gov (United States)

    Samoilov, Michael; Arkin, Adam; Ross, John

    2001-03-01

    We discuss the deduction of reaction pathways in complex chemical systems from measurements of time series of chemical concentrations of reacting species. First we review a technique called correlation metric construction (CMC) and show the construction of a reaction pathway from measurements on a part of glycolysis. Then we present two new improved methods for the analysis of time series of concentrations, entropy metric construction (EMC), and entropy reduction method (ERM), and illustrate (EMC) with calculations on a model reaction system. (c) 2001 American Institute of Physics.

  7. A Study on the Role of Reaction Modeling in Multi-phase CFD-based Simulations of Chemical Looping Combustion; Impact du modele de reaction sur les simulations CFD de la combustion en boucle chimique

    Energy Technology Data Exchange (ETDEWEB)

    Kruggel-Emden, H.; Stepanek, F. [Department of Chemical Engineering, South Kensington Campus, Imperial College London, SW7 2AZ, London (United Kingdom); Kruggel-Emden, H.; Munjiza, A. [Department of Engineering, Queen Mary, University of London, Mile End Road, E1 4NS, London (United Kingdom)

    2011-03-15

    Chemical Looping Combustion is an energy efficient combustion technology for the inherent separation of carbon dioxide for both gaseous and solid fuels. For scale up and further development of this process multi-phase CFD-based simulations have a strong potential which rely on kinetic models for the solid/gaseous reactions. Reaction models are usually simple in structure in order to keep the computational cost low. They are commonly derived from thermogravimetric experiments. With only few CFD-based simulations performed on chemical looping combustion, there is a lack in understanding of the role and of the sensitivity of the applied chemical reaction model on the outcome of a simulation. The aim of this investigation is therefore the study of three different carrier materials CaSO{sub 4}, Mn{sub 3}O{sub 4} and NiO with the gaseous fuels H{sub 2} and CH{sub 4} in a batch type reaction vessel. Four reaction models namely the linear shrinking core, the spherical shrinking core, the Avrami-Erofeev and a recently proposed multi parameter model are applied and compared on a case by case basis. (authors)

  8. Fiscal 1995 research investigation on chemical process technology using supercritical fluid; 1995 nendo chorinkai ryutai wo riyoshita kagaku process gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    With relation to the supercritical fluid utilization technology, conducted in fiscal 1995 were collection of basic data, extraction of R and D subjects and survey/analysis of application fields based on the literature survey and overseas field survey. From the research results, the following were selected as research subjects: as to the clean/recycling process technology, non-selection cascade treatment process of mixed waste plastics, hazardous waste treatment process, and radioactive waste treatment process. As to the unused resource utilization process technology, the supercritical submerged combustion power generation process, heavy hydrocarbon resource reutilization process, biomass synthetic utilization process, and carbon dioxide reutilization process. As to the next generation reaction process technology, the simple reaction process, de-organic solvent process, chemical materialization process for methane, and reaction separation combined process. As the innovative material process technology, the plastic forming process, high-functional materials, high-efficiency energy conversion materials, and heightening of function of solid wastes. 537 refs., 116 figs., 54 tabs.

  9. Thin liquid films with time-dependent chemical reactions sheared by an ambient gas flow

    Science.gov (United States)

    Bender, Achim; Stephan, Peter; Gambaryan-Roisman, Tatiana

    2017-08-01

    Chemical reactions in thin liquid films are found in many industrial applications, e.g., in combustion chambers of internal combustion engines where a fuel film can develop on pistons or cylinder walls. The reactions within the film and the turbulent outer gas flow influence film stability and lead to film breakup, which in turn can lead to deposit formation. In this work we examine the evolution and stability of a thin liquid film in the presence of a first-order chemical reaction and under the influence of a turbulent gas flow. Long-wave theory with a double perturbation analysis is used to reduce the complexity of the problem and obtain an evolution equation for the film thickness. The chemical reaction is assumed to be slow compared to film evolution and the amount of reactant in the film is limited, which means that the reaction rate decreases with time as the reactant is consumed. A linear stability analysis is performed to identify the influence of reaction parameters, material properties, and environmental conditions on the film stability limits. Results indicate that exothermic reactions have a stabilizing effect whereas endothermic reactions destabilize the film and can lead to rupture. It is shown that an initially unstable film can become stable with time as the reaction rate decreases. The shearing of the film by the external gas flow leads to the appearance of traveling waves. The shear stress magnitude has a nonmonotonic influence on film stability.

  10. Water And Waste Water Processing

    International Nuclear Information System (INIS)

    Yang, Byeong Ju

    1988-04-01

    This book shows US the distribution diagram of water and waste water processing with device of water processing, and device of waste water processing, property of water quality like measurement of pollution of waste water, theoretical Oxygen demand, and chemical Oxygen demand, processing speed like zero-order reactions and enzyme reactions, physical processing of water and waste water, chemical processing of water and waste water like neutralization and buffering effect, biological processing of waste water, ammonia removal, and sludges processing.

  11. Incorporation of chemical kinetic models into process control

    International Nuclear Information System (INIS)

    Herget, C.J.; Frazer, J.W.

    1981-01-01

    An important consideration in chemical process control is to determine the precise rationing of reactant streams, particularly when a large time delay exists between the mixing of the reactants and the measurement of the product. In this paper, a method is described for incorporating chemical kinetic models into the control strategy in order to achieve optimum operating conditions. The system is first characterized by determining a reaction rate surface as a function of all input reactant concentrations over a feasible range. A nonlinear constrained optimization program is then used to determine the combination of reactants which produces the specified yield at minimum cost. This operating condition is then used to establish the nominal concentrations of the reactants. The actual operation is determined through a feedback control system employing a Smith predictor. The method is demonstrated on a laboratory bench scale enzyme reactor

  12. Coal and biomass-based chemicals via carbonylation, hydroformylation and homologation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sunavala, P.D.; Raghunath, B.

    The paper emphasizes the importance of carbonylation, hydroformylation and homologation reactions in the manufacture of organic chemicals (such as acetic acid, acetic anhydride, cellulose acetate, vinyl acetate monomer, aliphatic amines, isocyanates, methanol, ethanol, n-butanol, ethylene glycol, acrylic acid, etc.) from coal and biomass feedstocks. Topics covered are: synthesis of acetic acid; manufacture of acetic anhydride; synthesis of vinyl acetate monomer by carbonylation; synthesis of aliphatic amines by hydroformylation; synthesis of organic diisocyanates; ethanol synthesis by homologation of methanol; synthesis of ethylene glycol via hydroformylation of formaldehyde; synthesis of n- butanol and n-butyraldehyde by propylene formylation; synthesis of acrylic acid; homologation reaction of carboxylic acid esters with ruthenium catalysts; and synthesis of phenyl isocyanate from nitrobenzene by reductive carbonylation. 26 refs.

  13. Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals

    Directory of Open Access Journals (Sweden)

    Walter Den

    2018-04-01

    Full Text Available Anthropogenic climate change, principally induced by the large volume of carbon dioxide emission from the global economy driven by fossil fuels, has been observed and scientifically proven as a major threat to civilization. Meanwhile, fossil fuel depletion has been identified as a future challenge. Lignocellulosic biomass in the form of organic residues appears to be the most promising option as renewable feedstock for the generation of energy and platform chemicals. As of today, relatively little bioenergy comes from lignocellulosic biomass as compared to feedstock such as starch and sugarcane, primarily due to high cost of production involving pretreatment steps required to fragment biomass components via disruption of the natural recalcitrant structure of these rigid polymers; low efficiency of enzymatic hydrolysis of refractory feedstock presents a major challenge. The valorization of lignin and cellulose into energy products or chemical products is contingent on the effectiveness of selective depolymerization of the pretreatment regime which typically involve harsh pyrolytic and solvothermal processes assisted by corrosive acids or alkaline reagents. These unselective methods decompose lignin into many products that may not be energetically or chemically valuable, or even biologically inhibitory. Exploring milder, selective and greener processes, therefore, has become a critical subject of study for the valorization of these materials in the last decade. Efficient alternative activation processes such as microwave- and ultrasound irradiation are being explored as replacements for pyrolysis and hydrothermolysis, while milder options such as advanced oxidative and catalytic processes should be considered as choices to harsher acid and alkaline processes. Herein, we critically abridge the research on chemical oxidative techniques for the pretreatment of lignocellulosics with the explicit aim to rationalize the objectives of the biomass

  14. Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals

    Science.gov (United States)

    Den, Walter; Sharma, Virender K.; Lee, Mengshan; Nadadur, Govind; Varma, Rajender S.

    2018-01-01

    Anthropogenic climate change, principally induced by the large volume of carbon dioxide emission from the global economy driven by fossil fuels, has been observed and scientifically proven as a major threat to civilization. Meanwhile, fossil fuel depletion has been identified as a future challenge. Lignocellulosic biomass in the form of organic residues appears to be the most promising option as renewable feedstock for the generation of energy and platform chemicals. As of today, relatively little bioenergy comes from lignocellulosic biomass as compared to feedstock such as starch and sugarcane, primarily due to high cost of production involving pretreatment steps required to fragment biomass components via disruption of the natural recalcitrant structure of these rigid polymers; low efficiency of enzymatic hydrolysis of refractory feedstock presents a major challenge. The valorization of lignin and cellulose into energy products or chemical products is contingent on the effectiveness of selective depolymerization of the pretreatment regime which typically involve harsh pyrolytic and solvothermal processes assisted by corrosive acids or alkaline reagents. These unselective methods decompose lignin into many products that may not be energetically or chemically valuable, or even biologically inhibitory. Exploring milder, selective and greener processes, therefore, has become a critical subject of study for the valorization of these materials in the last decade. Efficient alternative activation processes such as microwave- and ultrasound irradiation are being explored as replacements for pyrolysis and hydrothermolysis, while milder options such as advanced oxidative and catalytic processes should be considered as choices to harsher acid and alkaline processes. Herein, we critically abridge the research on chemical oxidative techniques for the pretreatment of lignocellulosics with the explicit aim to rationalize the objectives of the biomass pretreatment step and the

  15. The OH-initiated atmospheric chemical reactions of polyfluorinated dibenzofurans and polychlorinated dibenzofurans: A comparative theoretical study.

    Science.gov (United States)

    Zeng, Xiaolan; Chen, Jing; Qu, Ruijuan; Pan, Xiaoxue; Wang, Zunyao

    2017-02-01

    The atmospheric chemical reactions of some polyfluorinated dibenzofurans (PFDFs) and polychlorinated dibenzofurans (PCDFs), initiated by OH radical, were investigated by performing theoretical calculations using density functional theory (DFT) and B3LYP/6-311++G(2df,p) method. The obtained results indicate that OH addition reactions of PFDFs and PCDFs occurring at C 1∼4 and C A sites are thermodynamic spontaneous changes and the branching ratio of the PF(C)DF-OH adducts is decided primarily by kinetic factor. The OH addition reactions of PFDFs taking place at fluorinated C 1∼4 positions are kinetically comparable with those occurring at nonfluorinated C 1∼4 positions, while OH addition reactions of PCDFs occurring at chlorinated C 1∼4 sites are negligible. The total rate constants of the addition reactions of PFDFs or PCDFs become smaller with consecutive fluorination or chlorination, and substituting at C 1 position has more adverse effects than substitution at other sites. The succedent O 2 addition reactions of PF(C)DF-OH adducts are thermodynamic nonspontaneous processes under the atmospheric conditions, and have high Gibbs free energies of activation (Δ r G ≠ ). The substituted dibenzofuranols are the primary oxidation products for PCDFs under the atmospheric conditions. However, other oxidative products may also be available for PFDFs besides substituted dibenzofuranols. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Rock-fluid chemical interactions at reservoir conditions: The influence of brine chemistry and extent of reaction

    Science.gov (United States)

    Anabaraonye, B. U.; Crawshaw, J.; Trusler, J. P. M.

    2016-12-01

    Following carbon dioxide injection in deep saline aquifers, CO2 dissolves in the formation brines forming acidic solutions that can subsequently react with host reservoir minerals, altering both porosity and permeability. The direction and rates of these reactions are influenced by several factors including properties that are associated with the brine system. Consequently, understanding and quantifying the impacts of the chemical and physical properties of the reacting fluids on overall reaction kinetics is fundamental to predicting the fate of the injected CO2. In this work, we present a comprehensive experimental study of the kinetics of carbonate-mineral dissolution in different brine systems including sodium chloride, sodium sulphate and sodium bicarbonate of varying ionic strengths. The impacts of the brine chemistry on rock-fluid chemical reactions at different extent of reactions are also investigated. Using a rotating disk technique, we have investigated the chemical interactions between the CO2-saturated brines and carbonate minerals at conditions of pressure (up to 10 MPa) and temperature (up to 373 K) pertinent to carbon storage. The changes in surface textures due to dissolution reaction were studied by means of optical microscopy and vertical scanning interferometry. Experimental results are compared to previously derived models.

  17. Implementation of a vibrationally linked chemical reaction model for DSMC

    Science.gov (United States)

    Carlson, A. B.; Bird, Graeme A.

    1994-01-01

    A new procedure closely linking dissociation and exchange reactions in air to the vibrational levels of the diatomic molecules has been implemented in both one- and two-dimensional versions of Direct Simulation Monte Carlo (DSMC) programs. The previous modeling of chemical reactions with DSMC was based on the continuum reaction rates for the various possible reactions. The new method is more closely related to the actual physics of dissociation and is more appropriate to the particle nature of DSMC. Two cases are presented: the relaxation to equilibrium of undissociated air initially at 10,000 K, and the axisymmetric calculation of shuttle forebody heating during reentry at 92.35 km and 7500 m/s. Although reaction rates are not used in determining the dissociations or exchange reactions, the new method produces rates which agree astonishingly well with the published rates derived from experiment. The results for gas properties and surface properties also agree well with the results produced by earlier DSMC models, equilibrium air calculations, and experiment.

  18. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms.

    Science.gov (United States)

    Lund, Marianne N; Ray, Colin A

    2017-06-14

    Maillard reactions lead to changes in food color, organoleptic properties, protein functionality, and protein digestibility. Numerous different strategies for controlling Maillard reactions in foods have been attempted during the past decades. In this paper, recent advances in strategies for controlling the Maillard reaction and subsequent downstream reaction products in food systems are critically reviewed. The underlying mechanisms at play are presented, strengths and weaknesses of each strategy are discussed, and reasonable reaction mechanisms are proposed to reinforce the evaluations. The review includes strategies involving addition of functional ingredients, such as plant polyphenols and vitamins, as well as enzymes. The resulting trapping or modification of Maillard targets, reactive intermediates, and advanced glycation endproducts (AGEs) are presented with their potential unwanted side effects. Finally, recent advances in processing for control of Maillard reactions are discussed.

  19. Textiles and clothing sustainability sustainable textile chemical processes

    CERN Document Server

    2017-01-01

    This book highlights the challenges in sustainable wet processing of textiles, natural dyes, enzymatic textiles and sustainable textile finishes. Textile industry is known for its chemical processing issues and many NGO’s are behind the textile sector to streamline its chemical processing, which is the black face of clothing and fashion sector. Sustainable textile chemical processes are crucial for attaining sustainability in the clothing sector. Seven comprehensive chapters are aimed to highlight these issues in the book.

  20. Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations

    International Nuclear Information System (INIS)

    Wu, Fuke; Tian, Tianhai; Rawlings, James B.; Yin, George

    2016-01-01

    The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766–1793 (1996); ibid. 56, 1794–1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.

  1. Label-assisted mass spectrometry for the acceleration of reaction discovery and optimization

    Science.gov (United States)

    Cabrera-Pardo, Jaime R.; Chai, David I.; Liu, Song; Mrksich, Milan; Kozmin, Sergey A.

    2013-05-01

    The identification of new reactions expands our knowledge of chemical reactivity and enables new synthetic applications. Accelerating the pace of this discovery process remains challenging. We describe a highly effective and simple platform for screening a large number of potential chemical reactions in order to discover and optimize previously unknown catalytic transformations, thereby revealing new chemical reactivity. Our strategy is based on labelling one of the reactants with a polyaromatic chemical tag, which selectively undergoes a photoionization/desorption process upon laser irradiation, without the assistance of an external matrix, and enables rapid mass spectrometric detection of any products originating from such labelled reactants in complex reaction mixtures without any chromatographic separation. This method was successfully used for high-throughput discovery and subsequent optimization of two previously unknown benzannulation reactions.

  2. Mapping Students' Conceptual Modes When Thinking about Chemical Reactions Used to Make a Desired Product

    Science.gov (United States)

    Weinrich, M. L.; Talanquer, V.

    2015-01-01

    The central goal of this qualitative research study was to uncover major implicit assumptions that students with different levels of training in the discipline apply when thinking and making decisions about chemical reactions used to make a desired product. In particular, we elicited different ways of conceptualizing why chemical reactions happen…

  3. Mass transfer in porous media with heterogeneous chemical reaction

    Directory of Open Access Journals (Sweden)

    Souza S.M.A.G.Ulson de

    2003-01-01

    Full Text Available In this paper, the modeling of the mass transfer process in packed-bed reactors is presented and takes into account dispersion in the main fluid phase, internal diffusion of the reactant in the pores of the catalyst, and surface reaction inside the catalyst. The method of volume averaging is applied to obtain the governing equation for use on a small scale. The local mass equilibrium is assumed for obtaining the one-equation model for use on a large scale. The closure problems are developed subject to the length-scale constraints and the model of a spatially periodic porous medium. The expressions for effective diffusivity, hydrodynamic dispersion, total dispersion and the Darcy's law permeability tensors are presented. Solution of the set of final equations permits the variations of velocity and concentration of the chemical species along the packed-bed reactors to be obtained.

  4. Non-invasive estimation of dissipation from non-equilibrium fluctuations in chemical reactions.

    Science.gov (United States)

    Muy, S; Kundu, A; Lacoste, D

    2013-09-28

    We show how to extract an estimate of the entropy production from a sufficiently long time series of stationary fluctuations of chemical reactions. This method, which is based on recent work on fluctuation theorems, is direct, non-invasive, does not require any knowledge about the underlying dynamics and is applicable even when only partial information is available. We apply it to simple stochastic models of chemical reactions involving a finite number of states, and for this case, we study how the estimate of dissipation is affected by the degree of coarse-graining present in the input data.

  5. Simulating chemical reactions in ionic liquids using QM/MM methodology.

    Science.gov (United States)

    Acevedo, Orlando

    2014-12-18

    The use of ionic liquids as a reaction medium for chemical reactions has dramatically increased in recent years due in large part to the numerous reported advances in catalysis and organic synthesis. In some extreme cases, ionic liquids have been shown to induce mechanistic changes relative to conventional solvents. Despite the large interest in the solvents, a clear understanding of the molecular factors behind their chemical impact is largely unknown. This feature article reviews our efforts developing and applying mixed quantum and molecular mechanical (QM/MM) methodology to elucidate the microscopic details of how these solvents operate to enhance rates and alter mechanisms for industrially and academically important reactions, e.g., Diels-Alder, Kemp eliminations, nucleophilic aromatic substitutions, and β-eliminations. Explicit solvent representation provided the medium dependence of the activation barriers and atomic-level characterization of the solute-solvent interactions responsible for the experimentally observed "ionic liquid effects". Technical advances are also discussed, including a linear-scaling pairwise electrostatic interaction alternative to Ewald sums, an efficient polynomial fitting method for modeling proton transfers, and the development of a custom ionic liquid OPLS-AA force field.

  6. Vibrational-rotational excitation: chemical reactions of vibrationally excited molecules

    International Nuclear Information System (INIS)

    Moore, C.B.; Smith, I.W.M.

    1979-03-01

    This review considers a limited number of systems, particularly gas-phase processes. Excited states and their preparation, direct bimolecular reactions, reactions of highly excited molecules, and reactions in condensed phases are discussed. Laser-induced isotope separation applications are mentioned briefly. 109 references

  7. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 2. Chemical Patterns, Mass Transfer Modeling, and Rates of Mass Transfer Reactions

    Science.gov (United States)

    Katz, Brian G.; Plummer, L. Niel; Busenberg, Eurybiades; Revesz, Kinga M.; Jones, Blair F.; Lee, Terrie M.

    1995-06-01

    Chemical patterns along evolutionary groundwater flow paths in silicate and carbonate aquifers were interpreted using solute tracers, carbon and sulfur isotopes, and mass balance reaction modeling for a complex hydrologic system involving groundwater inflow to and outflow from a sinkhole lake in northern Florida. Rates of dominant reactions along defined flow paths were estimated from modeled mass transfer and ages obtained from CFC-modeled recharge dates. Groundwater upgradient from Lake Barco remains oxic as it moves downward, reacting with silicate minerals in a system open to carbon dioxide (CO2), producing only small increases in dissolved species. Beneath and downgradient of Lake Barco the oxic groundwater mixes with lake water leakage in a highly reducing, silicate-carbonate mineral environment. A mixing model, developed for anoxic groundwater downgradient from the lake, accounted for the observed chemical and isotopic composition by combining different proportions of lake water leakage and infiltrating meteoric water. The evolution of major ion chemistry and the 13C isotopic composition of dissolved carbon species in groundwater downgradient from the lake can be explained by the aerobic oxidation of organic matter in the lake, anaerobic microbial oxidation of organic carbon, and incongruent dissolution of smectite minerals to kaolinite. The dominant process for the generation of methane was by the CO2 reduction pathway based on the isotopic composition of hydrogen (δ2H(CH4) = -186 to -234‰) and carbon (δ13C(CH4) = -65.7 to -72.3‰). Rates of microbial metabolism of organic matter, estimated from the mass transfer reaction models, ranged from 0.0047 to 0.039 mmol L-1 yr-1 for groundwater downgradient from the lake.

  8. Teaching chemical reactions in the laboratory: linking theory and practice in teacher’s education and didactic action

    Directory of Open Access Journals (Sweden)

    Cleonice Puggian

    2013-03-01

    Full Text Available This paper presents the results of an investigation about chemistry teaching laboratory, describing the potential of a methodology that combines theoretical and hands on activities about chemical reactions. This proposal explores the curriculum content of high school chemistry, highlighting the teaching of chemical reactions, seeking the establishment of inter-relationships between the theoretical and practical knowledge inherent in the processes of school knowledge in Chemistry, challenging teachers to think about experimental activities not as an isolated moment in their class, but as an integral part of it. The methodology was qualitative in nature, adopting semi-structured interviews as instruments for data collection. The research was conducted with eight teachers of chemistry and seventy students from the second grade of high school from a technical school in Rio de Janeiro state. The results of this study indicate that this approach appears as an alternative to conducting laboratory experimental activities, contributing to a more formative and informative, less technical and fragmented teaching of chemistry in Basic Education. The research also shows that this approach supports teachers on their reflection of teaching practices, as well as on the planning and execution of experimental activities. We conclude that pedagogical proposals that articulate theory and practice are more effective in promoting the learning of high school students.

  9. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas.

    Science.gov (United States)

    Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng

    2017-10-30

    Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.

  10. Non-equilibrium Quasi-Chemical Nucleation Model

    Science.gov (United States)

    Gorbachev, Yuriy E.

    2018-04-01

    Quasi-chemical model, which is widely used for nucleation description, is revised on the basis of recent results in studying of non-equilibrium effects in reacting gas mixtures (Kolesnichenko and Gorbachev in Appl Math Model 34:3778-3790, 2010; Shock Waves 23:635-648, 2013; Shock Waves 27:333-374, 2017). Non-equilibrium effects in chemical reactions are caused by the chemical reactions themselves and therefore these contributions should be taken into account in the corresponding expressions for reaction rates. Corrections to quasi-equilibrium reaction rates are of two types: (a) spatially homogeneous (caused by physical-chemical processes) and (b) spatially inhomogeneous (caused by gas expansion/compression processes and proportional to the velocity divergency). Both of these processes play an important role during the nucleation and are included into the proposed model. The method developed for solving the generalized Boltzmann equation for chemically reactive gases is applied for solving the set of equations of the revised quasi-chemical model. It is shown that non-equilibrium processes lead to essential deviation of the quasi-stationary distribution and therefore the nucleation rate from its traditional form.

  11. Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution.

    Science.gov (United States)

    Göstl, Robert; Senf, Antti; Hecht, Stefan

    2014-03-21

    The foundation of the chemical enterprise has always been the creation of new molecular entities, such as pharmaceuticals or polymeric materials. Over the past decades, this continuing effort of designing compounds with improved properties has been complemented by a strong effort to render their preparation (more) sustainable by implementing atom as well as energy economic strategies. Therefore, synthetic chemistry is typically concerned with making specific bonds and connections in a highly selective and efficient manner. However, to increase the degree of sophistication and expand the scope of our work, we argue that the modern aspiring chemist should in addition be concerned with attaining (better) control over when and where chemical bonds are being made or broken. For this purpose, photoswitchable molecular systems, which allow for external modulation of chemical reactions by light, are being developed and in this review we are covering the current state of the art of this exciting new field. These "remote-controlled synthetic tools" provide a remarkable opportunity to perform chemical transformations with high spatial and temporal resolution and should therefore allow regulating biological processes as well as material and device performance.

  12. Investigation of a Monte Carlo model for chemical reactions

    International Nuclear Information System (INIS)

    Hamm, R.N.; Turner, J.E.; Stabin, M.G.

    1998-01-01

    Monte Carlo computer simulations are in use at a number of laboratories for calculating time-dependent yields, which can be compared with experiments in the radiolysis of water. We report here on calculations to investigate the validity and consistency of the procedures used for simulating chemical reactions in our code, RADLYS. Model calculations were performed of the rate constants themselves. The rates thus determined showed an expected rapid decline over the first few hundred ps and a very gradual decline thereafter out to the termination of the calculations at 4.5 ns. Results are reported for different initial concentrations and numbers of reactive species. Generally, the calculated rate constants are smallest when the initial concentrations of the reactants are largest. It is found that inhomogeneities that quickly develop in the initial random spatial distribution of reactants persist in time as a result of subsequent chemical reactions, and thus conditions may poorly approximate those assumed from diffusion theory. We also investigated the reaction of a single species of one type placed among a large number of randomly distributed species of another type with which it could react. The distribution of survival times of the single species was calculated by using three different combinations of the diffusion constants for the two species, as is sometimes discussed in diffusion theory. The three methods gave virtually identical results. (orig.)

  13. A solid-state nuclear magnetic resonance study of post-plasma reactions in organosilicone microwave plasma-enhanced chemical vapor deposition (PECVD) coatings.

    Science.gov (United States)

    Hall, Colin J; Ponnusamy, Thirunavukkarasu; Murphy, Peter J; Lindberg, Mats; Antzutkin, Oleg N; Griesser, Hans J

    2014-06-11

    Plasma-polymerized organosilicone coatings can be used to impart abrasion resistance and barrier properties to plastic substrates such as polycarbonate. Coating rates suitable for industrial-scale deposition, up to 100 nm/s, can be achieved through the use of microwave plasma-enhanced chemical vapor deposition (PECVD), with optimal process vapors such as tetramethyldisiloxane (TMDSO) and oxygen. However, it has been found that under certain deposition conditions, such coatings are subject to post-plasma changes; crazing or cracking can occur anytime from days to months after deposition. To understand the cause of the crazing and its dependence on processing plasma parameters, the effects of post-plasma reactions on the chemical bonding structure of coatings deposited with varying TMDSO-to-O2 ratios was studied with (29)Si and (13)C solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) using both single-pulse and cross-polarization techniques. The coatings showed complex chemical compositions significantly altered from the parent monomer. (29)Si MAS NMR spectra revealed four main groups of resonance lines, which corre