WorldWideScience

Sample records for chemical radiation effects

  1. Chemical effects of radiation

    International Nuclear Information System (INIS)

    Ionizing radiations initiate chemical changes in materials because of the high energy of their quanta. In water, highly reactive free radicals are produced which can initiate secondary changes of solutes, and in chemical of biological molecules in contact with the water. Free radicals can also be directly produced in irradiated medical products. Their fate can be identified and the molecular basis of radiation inactivation clarified. Methods have now been developed to protect and minimise such radiation damage. (author)

  2. Effects of radiation and chemical substances on cells and organism

    International Nuclear Information System (INIS)

    The book treats the radiation chemistry part of biophysics and applied biophysics in the sphere of ionizing radiation. Discussed are the concepts of radiation units and radioactivity units and the relative biological efficiency. The effects of ionizing and UV radiations are analyzed at the level of macromolecular changes. Chapters dealing with genetic radiation effects discuss the effects at the cellular level with respect to cell proliferation. All these problems are used to illustrate the effect on the organism as a whole. The chapters on applied biophysics deal with the indications of radiation and chemical damage, sensitivity of cells and the organism, and the study and influencing of growth at the cellular level. The concluding chapter is devoted to the environmental impact of radiation. (J.P.)

  3. The combined carcinogenic effects of ionising radiation and chemical molecules

    International Nuclear Information System (INIS)

    Studies of the combined effects of ionizing radiation and chemicals on the incidence of cancer are briefly reviewed. Results (mainly animal data) are presented for the combined effects of; 1) X-radiation and urethane on the incidence of leukaemia and lymphomas; 2) X-radiation and N-N'-2,7 fluorenylenebisacetamide, X-radiation and carbon tetrachloride, neutron radiation and carbon tetrachloride and cerium-144 and DAB on the incidence of cancer of the liver; 3) 131I and methylthiouracil on the incidence of thyroid cancer; and 4) inhaled radon and cigarette smoking, inhaled plutonium and beryllium oxide, inhaled plutonium oxide and benzopyrene, inhaled plutonium and dimethylnitrosamine, and inhaled radon and 5-6 benzoflavone on the incidence of lung cancer. Many of the studies showed that the combined effects of radiation and chemicals had a potentiating effect on tumour formation; there was often a shortening of the latency period before tumour induction and an increase in the size and the malignancy of the tumours. The mechanism of action of these combined effects on tumour incidence are considered. (UK)

  4. Biological effects of low level exposures to chemicals and radiation

    International Nuclear Information System (INIS)

    In May 1990 a group of scientists representing several federal agencies, the International Society of Regulatory Toxicology and Pharmacology, the private sector, and academia met to develop a strategy to encourage the study of the biological effects of low level exposures (BELLE) to chemical agents and radioactivity. A workshop was held in 1991 with seven invited speakers focusing on the toxicological implications of biological adaptations. The selection of topics and speakers was designed to consider critically the concept of hormesis, not only in a broad, conceptual manner, but also at the molecular and biochemical levels. These presentations offered a complementary perspective on the diverse range of molecular mechanisms that can become activated at low levels of toxicant exposure. In addition to chemical toxicology research, an overview of current research on 'Effects of low-dose radiation on the immune response' was presented as well as 'Cellular adaptation as an important response during chemical carcinogenesis'. The final presentation was devoted to biostatistical considerations when designing studies that address issues associated with the biological responses to low doses of chemicals and radiation, as well as issues in interpretation of the findings from such studies

  5. Chemical effects of ionizing radiation and sonic energy in the context of chemical evolution

    International Nuclear Information System (INIS)

    Ionizing radiation and sonic energy are considered as sources for chemical evolution processes. These sources have still a modest place in the interdisciplinary approach for the prebiological synthesis of organic compounds. Studies in Radiation Chemistry and Sonochemistry can provide a deeper insight into the chemical processes that may have importance for prebiotic chemistry. The present work concerns the analysis of some chemical reactions induced by ionizing radiation or cavitation in aqueous media that may be relevant to chemical evolution studies. (author)

  6. Effect of Microwave Radiation on Enzymatic and Chemical Peptide Bond Synthesis on Solid Phase

    Directory of Open Access Journals (Sweden)

    Alessandra Basso

    2009-01-01

    Full Text Available Peptide bond synthesis was performed on PEGA beads under microwave radiations. Classical chemical coupling as well as thermolysin catalyzed synthesis was studied, and the effect of microwave radiations on reaction kinetics, beads' integrity, and enzyme activity was assessed. Results demonstrate that microwave radiations can be profitably exploited to improve reaction kinetics in solid phase peptide synthesis when both chemical and biocatalytic strategies are used.

  7. Physico-chemical evaluation of radiation effects on apple juice

    International Nuclear Information System (INIS)

    Gala and Fuji varieties apple's juice were clarified with enzyme and irradiated aiming to extend the shelf-life without conservants and chemical additives. The juices were analysed for soluble solids, titrable acidity, pH and color. Results showed effect of storage periods in soluble solids, pH and color. The variety and storage period modified the titrable acidity. The pH was altered by irradiation dose and the storage period. (author). 9 refs., 6 figs

  8. Chemical effects of radiative thermal neutron capture in solid solutions

    International Nuclear Information System (INIS)

    The activity distribution of recoil iodine-128, formed by the (n, γ) reaction, was measured in a series of iodate-nitrate mixed crystals. Changes in retention and yield with varying composition of the mixed crystals have been observed; a majority of the recoil atoms appear in a reduced chemical state. During thermal annealing, lower plateau values in comparison to the pure iodate system were observed. The essential features of the recombination resembled the pure target. The contribution of holes and electrons and their annihilation and subsequent hot-atom reactions of the recoil iodine in the crystals during activation are discussed. (author)

  9. Effect of solvent nature on radiation-chemical degradation of collulose nitrate in solutions

    International Nuclear Information System (INIS)

    The influence of solvent nature of radiation-chemical processes of nitrocellulose destruction in solutions was studied by the methods of capillary viscosimetry and chemical analysis. It is shown that radiation-chemical yield of bond ruptures in macrochain increases in the series of solvents THP< alcohol-ether< acetone< DMPA< DMSO< acetonitrile. Anomalously high radiation-chemical yield of denitration processes in nitrocellulose in solutions was ascertained. The mechanism of radiation-chemical processes of nitrocellulose destruction in solutions is considered

  10. Relative mutagenic effects of ionizing radiations and alkylating chemicals in rice

    International Nuclear Information System (INIS)

    Studies were undertaken on the relative mutagenic effects of three ionizing radiations (X-rays, gamma rays, fast neutrons) and five alkylating chemicals (DES, EMS, MMS, NMH, MNNG) in rice. Observations on seed germination, seedling survival, seedling height, seed fertility and chlorophyll deficient chimeras were made in the M1 generation. The M2 generation was grown as M1 ear progenies. Chlorophyll mutation frequency, segregation percentage and mutant spectrum were estimated. The mutagenic effectiveness and efficiency were also worked out. Radiations were more effective than chemical mutagens. Mutagenic effectiveness decreased with increase in doses of mutagens. This was due to the failure of mutation frequency to increase proportionately with increase in mutagen doses. Mutagenic efficiency was higher for radiations when estimated on the basis of lethality and injury whereas, based on sterility, chemical mutagens were more efficient. Mutagenic efficiency also decreased with increase in doses of mutagens. The most effective as well as efficient radiation was fast neutrons. Among chemical mutagens the most effective was NMH whereas the most efficient was EMS. (author)

  11. Probing the magnetosphere using chemical releases from the Combined Release and Radiation Effects Satellite

    Science.gov (United States)

    Bernhardt, P. A.

    1992-01-01

    An overview is presented of the chemical release experiments from NASA's Combined Release and Radiation Effects Satellite (CRRES) program. Preliminary results are given for the CRRES investigations of (1) stimulated electron and ion precipitation, (2) ion transport in the magnetotail, (3) critical ionization velocity, (4) field line tracing and parallel acceleration, (5) diamagnetic cavity formation and collapse, and (6) plasma instabilities. The chemical vapor properties from a thermite release mechanism are also briefly described.

  12. Use of medaka as a tool in studies of radiation effects and chemical carcinogenesis

    International Nuclear Information System (INIS)

    The medaka, Oryzias latipes, a small freshwater oviparous fish, is common in Japan and found in some parts of Asia. Adult fish are 3.0-3.5 cm long and weigh 0.5-0.7 g. The small fish have been used extensively in this laboratory for analysis of radiation effects and for study of chemical carcinogenesis. These fish are relatively easy to rear and their reproductive biology is well known. Recently, inbred strains of the fish have been established by full sister-brother mating. In this report, we will review experimental results using medaka in studies of : 1) radiation effects on spermatogenesis, and 2) induction of hepatic tumors by MAM acetate, we will also review use of medaka in related studies of radiation effects and chemical carcinogenesis. (author)

  13. Mutagenic effect of ionizing radiation and chemical and environmental agents in Tradescantia

    International Nuclear Information System (INIS)

    The studies covered the following problems: an influence of some environmental agents on the mutagenic effectiveness of ionizing radiation, interaction between ionizing radiation and chemical mutagens in the induction of somatic mutations and also an application of Tradescantia model system for biological monitoring. The studies showed that the pretreatment of Tradescantia plants with sodium fluoride or the modification of the soil composition with dolomite admixture, visibly influences plants radiosensitivity. The analysis of the changes in the dose-response curves suggested that the employed agents were influencing in different ways the repair processes of the DNA. The studies on the interaction between agents proved that the synergistic effect occurs in case of combined action of ionizing radiation with such chemical mutagens as ethyl methansulfonate or 1,2 dibromomethane. It was also discovered that in the range of low doses the effect was proportional to radiation dose and total exposition to chemical mutagen. The field application of Tradescantia method defined the mutagenicity of air pollution in the Cracow area. The highest frequencies of mutations were detected after the Chernobyl accident and after the damage of the filters in the Pharmaceutical Plant. The applied method was evaluated in respect of its usefulness for biological monitoring of environmental pollution. 163 refs. (author)

  14. Radiation sterilization - chemical considerations

    International Nuclear Information System (INIS)

    The effects of ionizing radiation on cartilage and on a protein polysaccharide extract (CMP) from cartilage are evaluated. The results indicate that the hydroxyl radicals (produced when ionizing radiation interacts with water) are the most important species in altering the integrity of the cartilage during sterilization. Further data show how suitably designed chemial agents can protect the tissue from radiation damage. It is now hoped that practical use can be made of these developments during the radiation sterilization of tissues. (author)

  15. Free convection in MHD micropolar fluid with radiation and chemical reaction effects

    OpenAIRE

    Srinivasacharya D.; Mendu Upendar

    2014-01-01

    In this paper, the effects of radiation and first order chemical reaction on free convection heat and mass transfer in a micropolar fluid is considered. A uniform magnetic field is applied normal to the plate. The plate is maintained with variable surface heat and mass fluxes. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations and then sol...

  16. Free convection in MHD micropolar fluid with radiation and chemical reaction effects

    Directory of Open Access Journals (Sweden)

    Srinivasacharya D.

    2014-01-01

    Full Text Available In this paper, the effects of radiation and first order chemical reaction on free convection heat and mass transfer in a micropolar fluid is considered. A uniform magnetic field is applied normal to the plate. The plate is maintained with variable surface heat and mass fluxes. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations and then solved numerically using the Keller-box method. The numerical results are compared and found to be in good agreement with previously published results as special cases of the present investigation. The dimensionless velocity, microrotation, temperature, concentration and heat and mass transfer rates are presented graphically for various values of coupling number, magnetic parameter, radiation parameter, chemical reaction parameter. The numerical values of the skin friction and wall couple stress for different values of governing parameters are also tabulated.

  17. Effect of crosslinking on the physico-chemical properties of radiation grafted PEM fuel cell membranes

    International Nuclear Information System (INIS)

    The effect of crosslinking on the physico-chemical properties of radiation grafted proton conducting membranes (PFA-g-PSSA) was investigated. The membranes were prepared by radiation induced grafting of styrene/divinylbenzene (DVB) mixtures onto poly (tetrafluoroethylene-co-perfluorovinyl either) (PFA) films followed by sulfonation reactions. The variation of DVB content in the grafting mixture was in the range of 1-4 vol %. The equivalent weight, swelling, behavior and the proton conductivity of crosslinked membranes having equal degrees of grafting prepared found to be dependent predominantly on the level of crosslinking. The obtained membranes were found to posses a good combination of physico-chemical properties that is matching the commercial Nation 117 membranes

  18. Effect of electromagnetic radiation on the physico-chemical properties of minerals

    International Nuclear Information System (INIS)

    The electromagnetic radiation effect represented by gamma rays was investigated through; chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (Sem) and magnetization when applied at a dose of 0.5704 Gy (0.5704 J/ kg) at a feed relation of 18.40 ± 1.13 mGy/ h., in different minerals; in order to characterize the impact of the same from 137Cs in the physicochemical properties of these minerals. All the irradiated samples showed chemical stability at this stage undetectable other both in the XRD study and in the images analysis obtained by Sem; and at present almost the same chemical composition as the non-irradiated samples. So the same patterns of X-ray diffraction thereof, show a tendency to slightly lower the intensity of the most representative peaks of each mineral phase, which may be due to a decrease in crystallinity or preferential crystallographic orientation in crystals. In the micrographs analysis obtained by Sem on the irradiated samples, some holes (open pores) present in the particles were observed, mainly chalcopyrite and sphalerite lesser extent, seen this fact may be due to Compton Effect, in the radiation process. In relation to the magnetization property, a variation is obtained in the saturation magnetization (Ms) for the irradiated samples containing iron and more significantly in the chalcopyrite case. Therefore, with the radiation level used; slight changes occurring in the physical properties of minerals, whereas they remained stable chemically. These small changes may represent a signal that electromagnetic radiation applied at higher doses, is a viable option for improving the mineral processing. (author)

  19. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    International Nuclear Information System (INIS)

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  20. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata; Fischer, Beat B. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); Junghans, Marion [Swiss Center for Applied Ecotoxicology Eawag-EPFL, 8600, Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: rik.eggen@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)

    2015-05-15

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  1. Chemical toxicity of uranium hexafluoride compared to acute effects of radiation

    International Nuclear Information System (INIS)

    The chemical effects from acute exposures to uranium hexafluoride are compared to the nonstochastic effects from acute radiation doses of 25 rems to the whole body and 300 rems to the thyroid. The analysis concludes that an intake of about 10 mg of uranium in soluble form is roughly comparable, in terms of early effects, to an acute whole body dose of 25 rems because both are just below the threshold for significant nonstochastic effects. Similarly, an exposure to hydrogen fluoride at a concentration of 25 mg/m3 for 30 minutes is roughly comparable because there would be no significant nonstochastic effects. For times t other than 30 minutes, the concentration C of hydrogen fluoride considered to have the same effect can be calculated using a quadratic equation: C = 25 mg/m3 (30 min/t). The purpose of these analyses is to provide information for developing design and siting guideline based on chemical toxicity for enrichment plants using uranium hexafluoride. These guidelines are to be similar, in terms of stochastic health effects, to criteria in NRC regulations of nuclear power plants, which are based on radiation doses. 26 refs., 1 fig., 5 tabs

  2. Radiation and chemical reaction effects on MHD flow along a moving vertical porous plate

    Science.gov (United States)

    Ramana Reddy, G. V.; Bhaskar Reddy, N.; Gorla, R. S. R.

    2016-02-01

    This paper presents an analysis of the effects of magnetohydrodynamic force and buoyancy on convective heat and mass transfer flow past a moving vertical porous plate in the presence of thermal radiation and chemical reaction. The governing partial differential equations are reduced to a system of self-similar equations using the similarity transformations. The resultant equations are then solved numerically using the fourth order Runge-Kutta method along with the shooting technique. The results are obtained for the velocity, temperature, concentration, skin-friction, Nusselt number and Sherwood number. The effects of various parameters on flow variables are illustrated graphically, and the physical aspects of the problem are discussed.

  3. Some chemical influence on genetic effects of ionizing radiation and biodosimetry problems

    International Nuclear Information System (INIS)

    as by weak chemical mutagens or by many other factors and can change biodosimetry results. Some drugs, stress, virus diseases and so on can change biological effects of radiation too. So, many factors which are not under control can change significantly biological effects of radiation and by this way can be responsible for serious mistakes of individual biodosimetry. It is necessary to take into account that these factors are averaged over a population. That's why biological methods can be used for population radiation dose estimation but not for personal one.

  4. Radiation, Chemical reaction, Double dispersion effects on Heat and mass transfer in Non-Newtonian fluids

    Directory of Open Access Journals (Sweden)

    Dr. A.S.N. Murti

    2010-03-01

    Full Text Available Radiation and chemical reaction effects on heat and mass transfer in non-Darcynon-Newtonian fluid over a vertical surface is considered. In this article we havemaintained the constant temperature. A mathematical model is developed takinginto the account the new elements introduced. Numerical solutions for thegoverning nonlinear momemtum, energy and concentration are obtained.Thegoverning boundary layer equations and boundary conditions are simplified byusing similarity transformations. The governing equations are solved numericallyby means of Fourth-order Runge-Kutta method coupled with double-shootingtechnique. The influence of viscosity index n , thermal and solute dispersion,velocity, temperature, concentration, Heat and mass transfer rates arediscussed.

  5. Effects of ionizing radiation in the physico-chemical characteristics of red wine Cabernet Sauvignon

    International Nuclear Information System (INIS)

    The oenology in the current days is increasingly aimed obtain improvements on wine quality produced without there the deterioration of characteristics of the same, using new technologies for such order. The objective of present work will be the application of the radiation ionizing in wines Cabernet Sauvignon, with the interest of analyzing its effects on physic-chemical characteristics of this wines, such as quality, aging and etc. Were analyzed the following strands: degree alcoholic; dry extract; density and absorbance with spectrometer (420, 520 and 620 nm). (author)

  6. Effects of ionizing radiation on plastic food packaging materials: a review. 1. Chemical and physical changes

    International Nuclear Information System (INIS)

    Irradiation of prepackaged food causes chemical and physical changes in plastic packaging materials. The effects of ionizing radiation on these materials have been studied for almost 40 years; the respective literature is reviewed to provide the basis for a safety evaluation of plastics for use in food irradiation. Permeability of plastic films is generally not affected; deterioration of mechanical properties, that may occur with certain polymers, can usually be controlled with adequate stabilizers; and changes in infrared and UV/VIS spectra are slight at food irradiation doses. Gaseous radiolysis products include hydrogen, methane, CO2, CO, hydrocarbons, and for chlorine-containing polymers, hydrogen chloride. A range of volatile products, mainly hydrocarbons, alcohols, aldehydes, ketones, and carboxylic acids, has been characterized for low density polyethylene and polypropylene, other important materials, e.g., polystyrene and poly(vinyl chloride), are less well-investigated. Comparatively little is known on the effect of irradiation on multilayer structures. Radiation-induced changes are shown to depend on the chemical structure of the polymer, on the composition (additives) and processing history of the plastic, and on the irradiation conditions

  7. Bystander effects, genomic instability, adaptive response, and cancer risk assessment for radiation and chemical exposures

    International Nuclear Information System (INIS)

    There is an increased interest in utilizing mechanistic data in support of the cancer risk assessment process for ionizing radiation and environmental chemical exposures. In this regard, the use of biologically based dose-response models is particularly advocated. The aim is to provide an enhanced basis for describing the nature of the dose-response curve for induced tumors at low levels of exposure. Cellular responses that might influence the nature of the dose-response curve at low exposures are understandably receiving attention. These responses (bystander effects, genomic instability, and adaptive responses) have been studied most extensively for radiation exposures. The former two could result in an enhancement of the tumor response at low doses and the latter could lead to a reduced response compared to that predicted by a linear extrapolation from high dose responses. Bystander responses, whereby cells other than those directly traversed by radiation tracks are damaged, can alter the concept of target cell population per unit dose. Similarly, induced genomic instability can alter the concept of total response to an exposure. There appears to be a role for oxidative damage and cellular signaling in the etiology of these cellular responses. The adaptive response appears to be inducible at very low doses of radiation or of some chemicals and reduces the cellular response to a larger challenge dose. It is currently unclear how these cellular toxic responses might be involved in tumor formation, if indeed they are. In addition, it is not known how widespread they are as regards inducing agents. Thus, their impact on low dose cancer risk remains to be established

  8. Effect of the gamma radiation on the chemical, rheological, baker and microbiological properties in wheat flour

    International Nuclear Information System (INIS)

    The gamma radiation has been used in several places of the World as a sterilization method, preservation and pasteurization of foodstuffs, effect which is achieved due to diminishing or elimination of the microorganisms, reaching every time more acceptance, moreover eliminates the uses of toxic and carcinogenic substances, of general use, but at the present, being in the process of being totally prohibited, due to the higher risk in the human health. In this work the related results with the effects of the gamma radiation are presented, coming from a 60 Co source, in commercial wheat flour exposed to a dose of 1.0 KGy. The used dose is that allowed according to the NOM-033-SSA1-1993 standard. It was determined that the chemical characteristics of humidity, protein and ashes were not affected by radiation. The rheological properties neither suffer severe effects as consequence of radiation; the pharynographic and alveographic parameters were lightly affected by the treatment. Significant changes were detected in the percentage of water absorption and in the tolerance index to mixing. However a diminish of 10% in the development time and an increase of 13% in the stability was observed, for the irradiated samples respect to the those samples not irradiated. In relation to the alveograph parameters it was only detected a diminish of 7% in the force parameter (w) without changes in the tenacity/blowing up index ratio (P/L). The fall number diminish 11% indicating a small diminution in viscosity. The bakering properties do not turn out modified by the irradiation treatment finding a specific weight of 4.6 and 4.5 (cm3/g) for the control and irradiated samples, respectively. In the mesophyll analysis it was found a diminish of 96% from the original charge in control samples, observing a diminution of 74 and 25% in yeasts and mushrooms respectively. Microbiologically it was determined absence of total coliforms bacteria and faecal coliforms in the control samples and of

  9. Radiative Effect of Clouds on Tropospheric Chemistry in a Global Three-Dimensional Chemical Transport Model

    Science.gov (United States)

    Liu, Hongyu; Crawford, James H.; Pierce, Robert B.; Norris, Peter; Platnick, Steven E.; Chen, Gao; Logan, Jennifer A.; Yantosca, Robert M.; Evans, Mat J.; Kittaka, Chieko; Feng, Yan; Tie, Xuexi

    2006-01-01

    Clouds exert an important influence on tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies (J-values). We assess the radiative effect of clouds on photolysis frequencies and key oxidants in the troposphere with a global three-dimensional (3-D) chemical transport model (GEOS-CHEM) driven by assimilated meteorological observations from the Goddard Earth Observing System data assimilation system (GEOS DAS) at the NASA Global Modeling and Assimilation Office (GMAO). We focus on the year of 2001 with the GEOS-3 meteorological observations. Photolysis frequencies are calculated using the Fast-J radiative transfer algorithm. The GEOS-3 global cloud optical depth and cloud fraction are evaluated and generally consistent with the satellite retrieval products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the International Satellite Cloud Climatology Project (ISCCP). Results using the linear assumption, which assumes linear scaling of cloud optical depth with cloud fraction in a grid box, show global mean OH concentrations generally increase by less than 6% because of the radiative effect of clouds. The OH distribution shows much larger changes (with maximum decrease of approx.20% near the surface), reflecting the opposite effects of enhanced (weakened) photochemistry above (below) clouds. The global mean photolysis frequencies for J[O1D] and J[NO2] in the troposphere change by less than 5% because of clouds; global mean O3 concentrations in the troposphere increase by less than 5%. This study shows tropical upper tropospheric O3 to be less sensitive to the radiative effect of clouds than previously reported (approx.5% versus approx.20-30%). These results emphasize that the dominant effect of clouds is to influence the vertical redistribution of the intensity of photochemical activity while global average effects remain modest, again contrasting with previous studies. Differing vertical distributions

  10. Comparison of radiation and chemical risks

    International Nuclear Information System (INIS)

    Injury to living cells is caused by mechanisms which in many cases are similar for radiation and chemicals. It is thus not surprising that radiation and many chemicals can cause similar biological effects, e.g. cancer, fetal injury and hereditary disease. Both radiation and chemicals are always found in our environment. One agent may strengthen or weaken the effect of another, be it radiation in combination with chemicals or one chemical with another. The implications of such synergistic or antagonistic effects are discussed. Intricate mechanisms help the body to defend itself against threats to health from radiation and chemicals, even against cancer risks. In a strategy for health, it might be worth to exploit actively these defense mechanisms, in parallel with decreasing the exposures. On particular interest are the large exposures from commonly known sources such as smoking, sun tanning and high fat contents of food. (author)

  11. Effect of Radiation on Microbial Contamination Activity and Chemical Composition of Antimicrobial Herbs

    International Nuclear Information System (INIS)

    The selected herbs which are known to have antimicrobial compounds i.e. garlic (Allium sativum Linn.) bulbs, pomegranate (Punica granatum Linn.) fruit rinds, roselle (Hibiscus sabdoriffa Linn.) calyxes, and tea (Camellia sinensis Linn.) leaves were exposed to gamma and ultraviolet (UV) radiations. After being irradiated with 1, 3 and 5 kGy of ionizing radiation from a cobalt-60 source for 5, 15 and 15 minutes and with non-ionizing radiation from ultraviolet source for 30, 60 and 120 minutes, the irradiated herbs were examined for number of contaminants and specified microorganisms i.e. Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli. Salmonella spp. and Clostridium spp, as well as antimicrobial potency and components and compared to unirradiated herbs. The results showed that unirradiated garlic was most heavily contaminated with bacteria and fungi. The specified microorganisms were not detected in either unirradiated or irradiated samples. In comparison of radiated herbs, the reduction of microorganisms in UV treated herbs was less than that in gamma ray treated ones, especially at the treatment dose of 5 kGy. There was slight reduction of microbial number in UV treated herbs as compared to the untreated herbs. Gamma treatment at 5 kGy reduced the microbe contamination more than other doses and caused complete elimination in tea. The UV and gamma treatments had no effect on antimicrobial potency of herbs except for that of garlic. The preliminary chemical analysis to examine if there was any radiolytic components in these herbs by thin layer chromatography (TLC) revealed that no such compounds were detected in any tested herbs. This study indicated that gamma irradiation treatment was one of the physical methods to decontaminate microbes in herbs

  12. Effects of radiation and chemicals on SV40 oncogenesis. Final progress report

    International Nuclear Information System (INIS)

    This project is directed toward developing rapid, quantitative methods and immunologic markers which will permit the early detection of newly forming tumors induced or enhanced by x-irradiation, chemical carcinogens, viruses or combinations of the three. The projects under study in our ongoing collaborative program seek to develop the detailed understanding and precise methodology required for the early detection of embryonic antigens in transformed cells induced by the co-carcinogenic effects of viruses and low-level radiation. A new technique for assaying the earliest transformed cells appearing in a carcinogen treated population affords a unique tool for this study. Present plans involve efforts to purify embryonic determinants from fetal and transformed cells of hamsters and mice in order to define their role in the transformation process and in tumor development

  13. Effect of Radiation processing on sensory and chemical characteristics of broad beans (Giza,2)(Vicia Faba)

    International Nuclear Information System (INIS)

    Broad bean is the important leguminous protein consumed in egypt as a source of protein diet. The most popular way of preparing beans is the stewd form (Fool Medames). However, great losses due to insect infestation occur during storage. To combat these losses radiation processing has been used as an effective alternative of chemical fumigants to combat insect pets. The beans were irradiated at 25.5, 10 and kgy. The effects of treatments were investigated on sensory and chemical characteristics and on the solubility of broad beans protein, the amino acids content and on the nutritive value of bean protein from the view of its amino acids profile. The results of study indicate that the sensory evaluation of sewed irradiated 2.5 and 5 kGy samples revealed no significantdiffference in hardness, gumminess and acceptability. moreover, no significant changes in adhesivess, between samples irradiated at 5, 10 and 20 KGy, irradiation up to 20 KGy was found to improve the hardness of stewed broad bean which would improve the quality of broad of bean

  14. Effects of Radiation and Chemical Reaction on MHD Convective Flow over a Permeable Stretching Surface with Suction and Heat Generation

    Directory of Open Access Journals (Sweden)

    Penem Mohan KRISNA

    2014-03-01

    Full Text Available In this study, we analyze the effects of thermal radiation and chemical reaction on the steady 2 dimensional stagnation point flow of a viscous incompressible electrically conducting fluid over a stretching surface, with suction and heat generation. The partial differential equations governing the flow are solved numerically by using the shooting technique. The effects of various parameters on velocity, temperature, and concentration profiles, as well as Nusselt number, Skin friction coefficient, and Sherwood number, are examined, and presented graphically and through tables. It is found that velocity, temperature, and rate of heat transfer of the fluid are influenced more by radiation and chemical reaction parameters, along with applied magnetic field.

  15. Radiation-chemical antielectrostatic finishing

    International Nuclear Information System (INIS)

    Antielectrostatic finishing of textile fabrics of poly(ethylene terephthalate) was performed by radiation-chemical coating of poly(ethyleneglycol acrylate)s. The achieved modification effect was investigated with regard to its permanence mainly by recording the course of surface resistivity, and as a function of the composition of the modifier (monoacrylate/diacrylate ratio, molar mass), impregnation time and temperature, residual moisture, mass increase, energy dose, and dose rate. Detailed analytical and microscopic investigations evidenced important findings concerning the optimal technology of modification. The results permitted to suggest favorable modification parameters for satisfactory permanence of the effect. (author)

  16. The Effect of Gamma radiation, microwave radiation, their interaction and storage on chemical composition, antinutritional factors and the activities of trypsin inhibitor and lipoxygenase of soybean seeds

    International Nuclear Information System (INIS)

    The effect of gamma radiation, microwave radiation, interaction between them; and storage of radiated soybean seeds were investigated to find out the best treatment which had to the maximum reduction of antinutrional factors (Trypsin inhibitor and lipoxygenase activities) without significant effect on the chemical constituents. The gamma rays was used at three doses of 2.5, 5.0 and 8.0 kGy, microwave radiation was at 70 level power for 2 and 4 min; and the storage of seeds was at temperature, R.H. 50-55% for six months. The data revealed that, effects of interaction treatments were more effective than the treatment with microwave or gamma radiation alone

  17. Germ cell toxicity: significance in genetic and fertility effects of radiation and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Oakberg, E.F.

    1983-01-01

    The response of the male and female to radiation and chemicals is different. Any loss of oocytes in the female cannot be replaced, and if severe enough, will result in a shortening of the reproductive span. In the male, a temporary sterile period may be induced owing to destruction of the differentiating spermatogonia, but the stem cells are the most resistant spermatogonial type, are capable of repopulating the seminiferous epithelium, and fertility usually returns. The response of both the male and female changes with development of the embryonic to the adult gonad, and with differentiation and maturation in the adult. The primordial germ cells, early oocytes, and differentiating spermatogonia of the adult male are unusually sensitive to the cytotoxic action of noxious agents, but each agent elicits a specific response owing to the intricate biochemical and physiological changes associated with development and maturation of the gametes. The relationship of germ cell killing to fertility is direct, and long-term fertility effects can be predicted from histological analysis of the gonads. The relationship to genetic effects, on the other hand, is indirect, and acts primarily by limiting the cell stages available for testing, by affecting the distribution of mitotically active stem cells among the different stages of the mitotic cycle, and thereby, changing both the type and frequency of genetic effects observed. 100 references, 38 figures, 7 tables.

  18. Germ cell toxicity: significance in genetic and fertility effects of radiation and chemicals

    International Nuclear Information System (INIS)

    The response of the male and female to radiation and chemicals is different. Any loss of oocytes in the female cannot be replaced, and if severe enough, will result in a shortening of the reproductive span. In the male, a temporary sterile period may be induced owing to destruction of the differentiating spermatogonia, but the stem cells are the most resistant spermatogonial type, are capable of repopulating the seminiferous epithelium, and fertility usually returns. The response of both the male and female changes with development of the embryonic to the adult gonad, and with differentiation and maturation in the adult. The primordial germ cells, early oocytes, and differentiating spermatogonia of the adult male are unusually sensitive to the cytotoxic action of noxious agents, but each agent elicits a specific response owing to the intricate biochemical and physiological changes associated with development and maturation of the gametes. The relationship of germ cell killing to fertility is direct, and long-term fertility effects can be predicted from histological analysis of the gonads. The relationship to genetic effects, on the other hand, is indirect, and acts primarily by limiting the cell stages available for testing, by affecting the distribution of mitotically active stem cells among the different stages of the mitotic cycle, and thereby, changing both the type and frequency of genetic effects observed. 100 references, 38 figures, 7 tables

  19. Correlation and regression analyses of genetic effects for different types of cells in mammals under radiation and chemical treatment

    International Nuclear Information System (INIS)

    Data about genetic mutations under radiation and chemical treatment for different types of cells have been analyzed with correlation and regression analyses. Linear correlation between different genetic effects in sex cells and somatic cells have found. The results may be extrapolated on sex cells of human and mammals. (authors)

  20. Combined effects of ionising gamma radiation and some chemical substances on the Allium sativum growth

    International Nuclear Information System (INIS)

    Co 60 - gamma ionising radiations act in different doses and flows on Allium sativum. They accelerate the germination of bulblets with a couple of days by comparison with the sample. The 10 Gy dose stimulates the plants growth. The 30 Gy dose or 'shock dose' related to the radiation flow and with chemicals used in the treatment, produces strong decays or raises of biological parameter values. The growth region which is implied in growing regulators synthesis is perturbed. The calculation of nuclear and cytoplasmic volumes of nucleus-cytoplasm ratio confirms the perturbation at this level. (Author)

  1. Chemical mechanisms of the interaction between radiation and chemical carcinogens

    International Nuclear Information System (INIS)

    There is evidence to suggest that ionizing radiation and chemical carcinogens can act synergistically to produce deleterious biological effects. In addition, many carcinogens undergo metabolic activation in vivo. This activation, initiated by biochemical redox reactions, can be simulated chemically, electrochemically, photochemically and radiation chemically. The principal reactive species formed by the action of ionizing radiation on aqueous solutions of macromolecules and mammalian cells, are hydroxyl radicals and superoxide anions. Pulse and steady-state radiolysis studies of model chemical systems have established that these species can 'activate' chemical carcinogens by a radical oxidation process, and that the resulting activated carcinogens can subsequently react with nucleophilic sites on DNA and other potential target macromolecules. Rate constants for some of the fast reactions involved in the radiation activation of carcinogens and in the subsequent carcinogen-DNA interactions have been determined, together with the yields of radiation-induced covalent DNA-carcinogen binding. A redox models for radiation-induced chemical carcinogenesis is proposed which describes a possible mechanism of action involving free radical species generated in the aqueous cellular milieu, which diffuse to and react with carcinogens located within the micro-environment of the cell. Preliminary experiments suggest that protection against radiation and chemical carcinogenesis can be achieved by radical scavenging or by competitive free radical inhibition

  2. Contribution of orientational effects into radiation-chemical properties of segregated block copolymers

    International Nuclear Information System (INIS)

    Model of radiolysis of microphase-separated block copolymers of PS with PB is proposed. According this scheme the radiation-chemical yields of paramagnetic centres and crosslinks in PB domains differ from those for the PB homopolymer by the value proportional to the fraction of ordered chain segments. This orientational small-scale order arises as a result of the deformation of chains in a domain in the direction perpendicular to the interphase

  3. Germ cell toxicity: significance in genetic and fertility effects of radiation and chemicals

    International Nuclear Information System (INIS)

    The primordial germ cells originate in the region of the caudal end of the primitive streak, root of the allantois, and yolk sac splanchnopleure, and migrate to the gonadal ridges where they divide to form the oogonia of the female and gonocytes of the male. In the female, the transition to oocytes occurs in utero, and the female mammal is born with a finite number of oocytes that cannot be replaced. By contrast, the gonocytes of the male initiate divisions soon after birth to form the spermatogonial stem cells, which persist throughout reproductive life of the male and are capable of regenerating the seminiferous epithelium after injury. As a result of these basic differences in gametogenesis, the response of the male and female to radiation and chemicals is different. The response of both the male and female changes with development of the embryonic to the adult gonad, and with differentiation and maturation in the adult. The primordial germ cells, early oocytes, and differentiating spermatogonia of the adult male are unusually sensitive to the cytotoxic action of noxious agents, but each agent elicits a specific response owing to the intricate biochemical and physiological changes associated with development and maturation of the gametes. The relationship of germ cell killing to fertility is direct, and long-term fertility effects can be predicted from histological analysis of the gonads. The relationship to genetic effects, on the other hand, is indirect, and acts primarily by limiting the cell stages available for testing, by affecting the distribution of mitotically active stem cells among the different stages of the mitotic cycle, and thereby changing both the type and frequency of genetic effects observed

  4. Chemical Processes in Astrophysical Radiation Fields

    International Nuclear Information System (INIS)

    The effects of stimulated photon emission on chemical processes in a radiation field are considered and their influence on the chemistry of the early universe and other astrophysical environments is investigated. Spontaneous and stimulated radiative attachment rate coefficients for H(-), Li(-) and C(-) are presented

  5. Effect of gamma-radiation on some physico-chemical properties of triticale starch

    International Nuclear Information System (INIS)

    Triticale starches were γ-radiated at the doses from 0.1 to 5.0 kGy to study, comparatively to wheat starch, the effects on reducing value, water solubility, water binding capacity and retrogradation. Triticale starches were found to be more resistant to γ-radiation than wheat starch. The doses ranging from 0.1 to 2.0 kGy had a little effect on the reducing value of triticale starches with the dose of 5 kGy resulting in a more pronounced effect. Water binding capacity and water solubility increased and the paste viscosity decreased upon γ-radiation of triticale starches. The dose of 2 kGy decreased the retrogradation of Lasco triticale starch, whereas it increased the retrogradation of Grana wheat starch. (author)

  6. Biological radiation effects

    International Nuclear Information System (INIS)

    The stages of processes leading to radiation damage are studied, as well as, the direct and indirect mechanics of its production. The radiation effects on nucleic acid and protein macro moleculas are treated. The physical and chemical factors that modify radiosensibility are analysed, in particular the oxygen effects, the sensibilization by analogues of nitrogen bases, post-effects, chemical protection and inherent cell factors. Consideration is given to restoration processes by excision of injured fragments, the bloching of the excision restoration processes, the restoration of lesions caused by ionizing radiations and to the restoration by genetic recombination. Referring to somatic effects of radiation, the early ones and the acute syndrome of radiation are discussed. The difference of radiosensibility observed in mammalian cells and main observable alterations in tissues and organs are commented. Referring to delayed radiation effects, carcinogeneses, alterations of life span, effects on growth and development, as well as localized effects, are also discussed

  7. Gamma radiation effects on some nutritional and physico-chemical characteristics of stored beans (Phaseolus vulgaris L.)

    International Nuclear Information System (INIS)

    The radiation effects on physico-chemical and nutritional characteristics of three Brazilian varieties of beans (Phaseolus vulgaris, L.) - Catu, Rajado and Carioca -were studied. The analytical parameters were obtained by the determination of soaking and cooking times, biological value in rats, protein electrophoretic profile, reductors sugars, oligosaccharides, fiber and fatty acids content. Also, amyloglucosidase, phytohemagglutinins, α-amylase and tryptic inhibitors activities were analysed. It was observed the gamma radiation until determined doses promotes changes on those parameters subsequently reducing substantially the cooking time without modification of the biological value of the proteins. This alteration was particularly noticed in the hard-to-cook beans. (author)

  8. Investigation into effects of ionizing radiations on physical-chemical properties of bulgarian sorts of peaches and grapes

    International Nuclear Information System (INIS)

    The aim of this study was to ascertain the degree and direction of those changes in physicochemical characteristics of irradiated peaches and grapes which determine their quality after irradiation and during storage. The following main conclusions are made: irradiation with doses of 200 to 300 krad does not cause significant alterations in the chemical composition and physicochemical characteristics of peaches and grapes; irradiation has a direct effect on the consistancy of peaches and grapes, leading to their softening which is proportional to the radiation dose used; radiation treatment is advisable in the case of peaches and grapes in tended for short-term rather than long-term storage at low temperatures

  9. Effect of gamma radiation on some chemical constituents and growth of mint plants

    Energy Technology Data Exchange (ETDEWEB)

    Ragab, M.A.; Abou-Elsoud, M.A. (Agriculture Department for Soil and Water Researches, Nuclear Research Centre, A.E.A., Cairo (Egypt)); Khalil, M.M. (Horticulture Dept., College of Agriculture, Tanta Univ. (Egypt))

    1983-01-01

    The effectiveness of 0.5, 1.0, 2.0 and 4.0 K-rad gamma rays on peppermint (Mentha piperiata L.) growth, essential oil, nitrogen and pigments content was investigated. Pre-planting radiation dose of 1.0 K-rad was the best stimulant rather than other doses. It improved growth expressed as dry matter accumulation and essential oil yield. The effectiveness of applied gamma radiation on enhancing total oil content is a function of the enhanced plant growth rather than the oil per cent. High contents (mg/plant) of chlorophyll and carotenoids were resulted from plants pre-treated with 1.0 K-rad. Exposure to 1.0 and 2.0 K-rad induced maximum N contents. On the other hand, relatively higher dose (4 K-rad) induced slight effect on the studied parameters.

  10. Synergistic effect of ionizing radiation on chemical disinfectant treatments for reduction of natural microflora on seafood

    Science.gov (United States)

    Kim, Hyunjoo; Ha, Ji-Hyoung; Lee, Ju-Woon; Jo, Cheorun; Ha, Sang-Do

    2012-08-01

    The purpose of this study was to determine whether combined treatments would produce synergistic disinfection effects on seafood products such as mussel and squid compared with single treatments. We investigated the bactericidal effects of chlorine and ionizing radiation on the natural microflora of mussel and squid. Total aerobic bacteria initially ranged from 102 to 104 Log CFU/g. More than 100 ppm of chlorine and irradiation at 1 kGy were sufficient to reduce the total aerobic bacteria on mussel and squid to a level lower than detection limit (10 CFU/g). Synergistic effects against natural microflora were observed for all combined treatment. These results suggest that a significant synergistic benefit results from combine chlorine-ionizing radiation treatment against natural microflora on mussel and squid.

  11. Effect of gamma radiation on some chemical constituents and growth of mint plants

    International Nuclear Information System (INIS)

    The effectiveness of 0.5, 1.0, 2.0 and 4.0 K-rad gamma rays on peppermint (Mentha piperiata L.) growth, essential oil, nitrogen and pigments content was investigated. Pre-planting radiation dose of 1.0 K-rad was the best stimulant rather than other doses. It improved growth expressed as dry matter accumulation and essential oil yield. The effectiveness of applied gamma radiation on enhancing total oil content is a function of the enhanced plant growth rather than the oil per cent. High contents (mg/plant) of chlorophyll and carotenoids were resulted from plants pre-treated with 1.0 K-rad. Exposure to 1.0 and 2.0 K-rad induced maximum N contents. On the other hand, relatively higher dose (4 K-rad) induced slight effect on the studied parameters

  12. Chemical radioprotectors in radiation protection

    International Nuclear Information System (INIS)

    The different demands for the ways of the administration of chemical radioprotectors as a cystamine or WR-2721 (amifostine, gammaphos, Ethyol) e.g. S-containing compounds, their distribution and further pharmacological properties of protective agents in mentioned indications are discussed in presented lecture. A special attention is concerned on the practical use of chemical radioprotectors in the emergency and clean-up workers after a radiation accident or nuclear catastrophes. (author)

  13. Effects of the Mt. Pinatubo eruption on the radiative and chemical processes in the troposphere and stratosphere

    International Nuclear Information System (INIS)

    The LLNL 2-D zonally averaged chemical-radiative transport model of the global atmosphere was used to study the effects of the June 15, 1991 eruption of the Mt. Pinatubo volcano on stratospheric processes. SAGE-11 time-dependent aerosol surface area density and optical extinction data were used as input into the model. By the winter solstice, 1991, a maximum change in column ozone was observed in the equatorial region of -2% (with heterogeneous chemical reactions on sulfuric acid aerosols) and -5.5% (including heterogeneous reactions plus radiative feedbacks). Maximum local ozone decreases of 12% were derived in the equatorial region, at 25 km, for winter solstice 1991. Column NO2 peaked (-14%) at 30 S in October 1991. Local concentrations of NOx, Clx, and HOx, in the lower stratosphere, were calculated to have changed between 30 S and 30 N by -40%, +80%, and +60% respectively

  14. Radiation-chemical discussion on inverse dose-rate effect observed in radiation-induced strand breaks of plasmid DNA

    International Nuclear Information System (INIS)

    Experimental results of inverse dose-rate effect, so-called Kada Effects, which was published by Takakura and her coworkers on radiation-induced strand breaks of plasmid DNA in aerated aqueous solution, have been kinetically analyzed and discussed on the basis of radiation chemistry. the kinetic analysis indicates that there are two possible mechanisms; 1) equilibrium mixture of O2- and HO2 is responsible for strand breaks of DNA, and 2) peroxyl radical produced from citrate is effective for the strand breaks. However, the detailed kinetic analysis revealed that the latter is improbable because unimolecular decay of the peroxyl radical must be assumed to be negligible for its participation despite fast decay of analogous organic peroxyl radicals. The analysis has also given 9.93±0.10 dm3 mol-1 s-1 per nucleotide unit, which corresponds to 7.62 x 104 dm3 mol-1 s-1 per DNA molecule, as the rate constant for the reaction of the equilibrium mixture with plasmid pBR 322 DNA. Furthermore the probability that the reaction of the mixture with a nucleotide unit of DNA leads to strand breaks was obtained to be 3.36 x 10-3 for gamma-irradiated system and 1.98 x 10-3 for beta-irradiated system, respectively. (author)

  15. Chemical and physical conversion in cold atmosphere and the effect of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, M.; Aalto, P.; Korhonen, P.; Laaksonen, A.; Vesala, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    The project is focusing on the formation and growth mechanisms of atmospheric aerosol and cloud droplets. Both aerosol particles and cloud droplets affect strongly on the atmospheric radiation fluxes by scattering and absorption. The droplet formation results from physical and chemical processes occurring simultaneously. The studies concerning the tropospheric cloud droplet formation, laboratory experiments with a cloud chamber and stratospheric cloud formation are summarized. The recent studies summarized in this presentation indicate that both aerosol particles and cloud droplets have a significant role in climatic change and ozone depletion problems. The anthropogenic emissions of gaseous and particulate pollutants change the properties of atmospheric aerosols and cloud droplets. The research in this field will be continued and more quantitative understanding based both experimental and theoretical studies is required

  16. Gamma radiation physical-chemical effects on vitamin C contents in white and red guavas

    International Nuclear Information System (INIS)

    Guava (Psidium guajava L.) is valuable tropical fruit because its high C vitamin content. Red an white are the most common species of guava found in tropical areas. The ionizing radiation is normally used as a ripen ring retardant for longer storage periods. This work studies gamma radiation effects on the C vitamin concentration in white and red guava. Samples of juices were irradiated using a source of Cobalt-60, with doses of 1,0 2,5 and 5,0 kGy and storing periods of 0,15 and 30 days. The white guava juice showed a 49% loss in the C vitamin concentration with 5 kGy radiation dose, while the red guava juice showed 33% under the same condition. This shows that the juice of white guava is more sensitive to gamma radiations than the red guava. This results suggests a protection mechanism by colour pigments we believe is associated to the aromatic structures in the red specie. (author). 4 refs., 2 tabs

  17. Chemical protection against ionizing radiation

    Science.gov (United States)

    Maisin, J. R.

    Some of the problems related to chemical protection against ionizing radiation are discussed with emphasis on : definition, classification, degree of protection, mechanisms of action and toxicity. Results on the biological response modifyers (BRMs) and on the combination of nontoxic (i.e. low) doses of sulphydryl radioprotectors and BRMs are presented.

  18. Chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Over 40 years have passed since the research of the Manhattan Project suggested the possibility of chemical protection against ionizing radiation. During that time, much has been learned about the nature of radiation-induced injury and the factors governing the expression of that injury. Thousands of compounds have been tested for radioprotective efficacy, and numerous theories have been proposed to account for these actions. The literature on chemical radioprotection is large. In this article, the authors consider several of the mechanisms by which chemicals may protect against radiation injury. They have chosen to accent this view of radioprotector research as opposed to that research geared toward developing specific molecules as protective agents because they feel that such an approach is more beneficial in stimulating research of general applicability. This paper describes the matrix of biological factors upon which an exogenous radioprotector is superimposed, and examines evidence for and against various mechanisms by which these agents may protect biological systems against ionizing radiation. It concludes with a brief outlook for research in chemical radioprotection

  19. Synergistic effect of ionizing radiation on chemical disinfectant treatments for reduction of natural microflora on seafood

    International Nuclear Information System (INIS)

    The purpose of this study was to determine whether combined treatments would produce synergistic disinfection effects on seafood products such as mussel and squid compared with single treatments. We investigated the bactericidal effects of chlorine and ionizing radiation on the natural microflora of mussel and squid. Total aerobic bacteria initially ranged from 102 to 104 Log CFU/g. More than 100 ppm of chlorine and irradiation at 1 kGy were sufficient to reduce the total aerobic bacteria on mussel and squid to a level lower than detection limit (10 CFU/g). Synergistic effects against natural microflora were observed for all combined treatment. These results suggest that a significant synergistic benefit results from combine chlorine-ionizing radiation treatment against natural microflora on mussel and squid. - Highlights: ► Synergistic effect of combined treatments of chlorine and irradiation was tested using seafood. ► Synergistic effect against natural microflora was observed for all combined treatments. ► Therefore, it is recommended that industry use the combined treatment for better effect.

  20. The effect of preplanting gamma radiation on chemical constitutents of peppermint oil

    International Nuclear Information System (INIS)

    Uniformly selected stem cuttings of peppermint (Mentha piperita L) were exposed to 0, 0.5, 1.0, 2.0 and 4.0 Krad of gamma rays from a Co60 source and subsequently grown in field. Irradiation dose of 1.0 Krad was the best stimulatory dose for enhancing herb fresh weight as it resulted in almost two folds yield as compared with control, whereas dose of 4.0 Krad did not affect plant growth. One Krad treated plants induced higher yield of essential oil as compared with other radiation treatments and control. The major chemical constitutents (menthol, menthone and menthyl acetate) were statistically affected by developmental stages, and by pre-planting irradiation treatments as expressed on the total content basis. Higher contents of menthol, menthone and menthyl acetate were found in plant cut during flowering stage. Pre-planting gamma irradiation did not seem to affect both chemical ''acid value, ester value and saponification value'' and physical properties ''specific gravity, solubility and refractive index'' of extracted mint oil

  1. Biological effects of radiation in combination with other physical, chemical or biological agents. Annex L

    International Nuclear Information System (INIS)

    This Annex considers the combined action of radiation with potentially important environmental conditions. Since there is a scarcity of systematic data on which an analysis of combined effects can be based, this Annex will be more hypothetical and will attempt to suggest definitions, to identify suitable methods of analysis, to select from a large amount of diffuse information the conditions and the data of importance for further consideration and to provide suggestions for future research. For humans in environmental circumstances the UNSCEAR Committee has been unable to document any clear case of synergistic interaction between radiation and other agents, which could lead to substantial modifications of the risk estimates for significant sections of the population

  2. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    Directory of Open Access Journals (Sweden)

    T. S. Bates

    2006-01-01

    Full Text Available The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO during INDOEX, the Northwest Pacific Ocean (NWP during ACE-Asia, and the Northwest Atlantic Ocean (NWA during ICARTT, incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART. Measurements of burdens, extinction optical depth (AOD, and direct radiative effect of aerosols (DRE – change in radiative flux due to total aerosols are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity are used as input parameters to two radiative transfer models (GFDL and University of Michigan to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative

  3. Effects of ionizing radiations

    International Nuclear Information System (INIS)

    After recalling radiation-matter interaction, influence on radiation effects of chemical composition, structure, irradiation atmosphere, dose rate, temperature of organic materials and evolution of electrical, mechanical and physical properties are reviewed. Then behaviour under irradiation of main organic materials: elastomers, thermoplastics, thermosetting plastics, oils and paints are examined. 68 refs

  4. Radiation treatment of toxic chemicals

    International Nuclear Information System (INIS)

    Polychlorinated biphenyls (PCBs) were commercially produced from 1920s as complex mixtures containing multiple isomers for a variety of applications. They are very toxic, chemically stable and resist microbial, photochemical, chemical, and thermal degradation. The public, legal, and scientific concerns about PCBs arose from research indicating they were environmental contaminants that had a potential to adversely impact the environment, and, therefore, were undesirable as commercial products. Eventually, most producers reduced or stopped production of PCBs in the 1970s. Stockholm convention on POPs (Persistent Organic Pollutants), which was effective on May 2004 and 151 nations including Korea were joined on June 2005, asked to dispose of PCBs by 2028 with environmental friendly methods. Korean government also has declared to conduct by 2015. According to the Environmental law of Korea, over 2 ppm of PCBs has to be decomposed by legal methods of incineration and thermal destruction. But those are inapplicable owing to the environmental groups. KAERI(Korea Atomic Energy Research Institute) has recently developed a remarkable technology for radiation treatment of toxic chemicals including chlorides using an electron beam accelerator. Electron beam accelerator of 2.5 MeV energy and 100 kW power capacity was used to decompose of PCBs having been used as a commercial transformer oil for more than 30 years. The oil were irradiated with ∼ 0.1 percent of TEA (Triethyl Amin) to make chloride ion aparted off from the PCBs into precipitate at the conditions of normal temperature and pressure. The concentrations of PCBs were measured by GC (Gas Chromatography) with ECD (Electron Capture Detector) following the KS (Korean Standard) test procedure. Electron beam should be a useful tool for environmental conservation. Residual concentrations of PCBs after irradiation were depended on the absorption dose of electron beam energy. Advantages comparing to other methods such as

  5. Combined effects of a chemical mutagen and radiation sterilized diet in mutagenicity and reproduction studies in the same mouse

    International Nuclear Information System (INIS)

    The possible intensification of the mutagenic effect of cyclophosphamide (Endoxan) by the feeding of a radiation-sterilized diet (dose, 4.5 Mrad) was studied in 2000 NMRI/Han mice. In a dominant lethal test, males were pretreated with 100 mg Endoxan/kg body weight. The greatest sensitivity towards Endoxan was observed during the late-spermatid stage. No significant differences were detected between the control group (Endoxan plus non-irradiated diet) and the experimental group (Endoxan plus radiation-sterilized diet). In this test, radiation-sterilized feed showed no co-mutagenic effect when combined with Endoxan treatment. In a reproduction study of 7 months duration (continuous mating without lactation periods), the females were treated every 2 wk with 20 mg Endoxan/kg body weight. The decline in litter size with increasing number of litters (i.e. with advancing age of the females) was more pronounced after treatment with the chemical mutagen than in the untreated group. Increases in the frequency of abortions and in premature sterility resulted from Endoxan treatment. During the entire observation period, no effects from the intake of radiation-sterilized food were detected. (author)

  6. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  7. Effect of gamma radiation on the physical and chemical properties of some polymer blends

    International Nuclear Information System (INIS)

    this work has been carried out to investigate the characterization of poly(vinyl alcohol) (PVA) / carboxymethyl cellulose (CMC) polymer blends exposed to various doses of gamma radiation has been investigated . the application of this blend after grafting with styrene monomer in absorbing waste dye from waste water was also studied . moreover, the effect of glycerol as a plasticizer on the structure property behavior of the same blend was reported. finally, the structure -property behavior of gamma and electron beam irradiated polyvinyl chloride (PVC) / nitrile butadiene rubber (NBR) was investigated

  8. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    Directory of Open Access Journals (Sweden)

    T. S. Bates

    2006-01-01

    Full Text Available The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO during INDOEX, the Northwest Pacific Ocean (NWP during ACE-Asia, and the Northwest Atlantic Ocean (NWA during ICARTT, incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART. Measurements of burdens, extinction optical depth (AOD, and direct radiative effect of aerosols (DRE – change in radiative flux due to total aerosols are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity are used as input parameters to two radiative transfer models (GFDL and University of Michigan to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative

  9. Effect Of GAMMA Radiation On Antimicrobial Activity And Chemical Constituents Of Marjoram (Majorana Hortensis Essential Oil

    International Nuclear Information System (INIS)

    Field experiment was set up to study the response of marjoram plant grown on sandy soil and inoculated with Bradyrhizobium sp. and/or B. polymixa in combination with organic fertilizers. The extracted oil was irradiated with gamma irradiation at doses of 10, 20, 30, 40 and 50 kGy. The chemical constituents of the essential oils were analyzed by GC-Ms techniques after exposure to gamma radiation. The gamma irradiated essential oils of marjoram were tested for their antimicrobial activities against some pathogenic microorganisms i.e. Klebsiella pneumoniae, Bacillus cereus, Staphylococcus aureus, Salmonella enteritidis, Pseudomonas citri, Fusarium oxysporum, Aspergillus niger, Trichoderma viride and Aspergillus flavus. Extracted oil was the best when soil was treated with faba bean straw and inoculated with B. polymixa + Bradyrhizobium sp. Similarly, the extracted oil from plant cultivated in soil treated with sheep manure in combination with B. polymixa recorded the highest value. Results also revealed that gamma irradiation doses increased the antimicrobial activity with different magnitudes. The essential oil extracted from herb exposed to 30 kGy was found to be the most active antimicrobial with slight increases in the main components.

  10. Galaxy formation with radiative and chemical feedback

    CERN Document Server

    Graziani, L; Schneider, R; Kawata, D; de Bennassuti, M; Maselli, A

    2015-01-01

    Here we introduce GAMESH, a novel pipeline which implements self-consistent radiative and chemical feedback in a computational model of galaxy formation. By combining the cosmological chemical-evolution model GAMETE with the radiative transfer code CRASH, GAMESH can post process realistic outputs of a N-body simulation describing the redshift evolution of the forming galaxy. After introducing the GAMESH implementation and its features, we apply the code to a low-resolution N-body simulation of the Milky Way formation and we investigate the combined effects of self-consistent radiative and chemical feedback. Many physical properties, which can be directly compared with observations in the Galaxy and its surrounding satellites, are predicted by the code along the merger-tree assembly. The resulting redshift evolution of the Local Group star formation rates, reionisation and metal enrichment along with the predicted Metallicity Distribution Function of halo stars are critically compared with observations. We dis...

  11. Notes on the effect of microwave therapy on some clinical chemical parameters used for degree of radiation damage assessment

    International Nuclear Information System (INIS)

    The study covers 33 patients undergoing high-frequency physical therapy where four clinical chemical parameters, namely alkaline phosphatase activity, sialic acid, cholesterol and triglycerides are evaluated before and after the procedure. Alkaline phosphatase and sialic acid make a part of a specialized diagnostic complex for dose determination in case of eventual exposure to ionizing radiation. In the early post-gamma-irradiation period, the listed indicators are subject to dose-dependent, statistically changes. As shown by the results none of the four parameters being examined is altered after physical therapy. The inference is drawn that alkaline phosphatase and sialic acid may be successfully used for dose determination in ionizing radiation conditions also when the patients are subjected to the effect of high-frequency physical therapy. The obtained results have important scientific and practical implications (author)

  12. Radiation effects on MHD flow of a chemically reacting fluid past a vertical plate with viscous dissipation

    International Nuclear Information System (INIS)

    This paper is focused on the effects of thermal radiation on the natural convective heat and mass transfer flow of a viscous, incompressible, electrically conducting and dissipating fluid past an impulsively started moving vertical plate adjacent to porous regime, taking into account of the homogeneous chemical reaction of first order. The dimensionless governing equations are solved using a Regular Perturbation method. A parametric study is performed to illustrate the influence of thermo physical parameters on the velocity, temperature and concentration profiles. Also, the skin-friction, Nusselt number and Sherwood numbers are computed. It is found that thermal radiation reduces both the velocity and temperature in the boundary layer. Increasing permeability enhances the flow velocity. An increase in the viscous dissipation causes a rise in both the velocity and temperature. This model finds applications in solar energy collection systems, porous combustors and transport in fires in porous media (forest fires). (author)

  13. Biological effects of radiation and chemical agents with special regard to repair processes

    International Nuclear Information System (INIS)

    It is reasonably certain that the introduction or increase of pollutants in the environment can augment mutagenic and carcinogenic effects. These effects are operationally definable, but the genetic organization and the underlying mechanisms of DNA repair, mutagenesis and carcinogenesis are so complex as to make the extrapolation of results from mutagenicity test data to carcinogenicity somewhat uncertain. The subject is reviewed. Recent discoveries in gene organization and expression include overlapping genes in bacteriophages, split genes, processing of RNA and splicing, translocation of genes in eukaryotes, inactivation of the X-chromosome in mammals, etc. Apart from the genetic regulation, plasmids, insertion sequences and mutators can additionally affect mutation frequency. Cancers due to gene mutations, viruses, chemicals and physical agents are known. However, little is known about the epigenetic mechanisms involved. The value of mutagenicity test data is beyond question, but in view of the extraordinary complexities encountered our extrapolations will be more sound if the data have the underpinning of basic information. (author)

  14. Effects of Radiation and Chemical Reaction on MHD Free Convection Flow past a Vertical Plate in the Porous Medium

    Directory of Open Access Journals (Sweden)

    S. Mondal

    2014-12-01

    Full Text Available The objective is to study the effects of thermal radiation and chemical reaction on mass transfer on unsteady free convection flow past an exponentially accelerated infinite vertical plate through porous medium in the presence of magnetic field. The fluid is considered here as absorbing/emitting radiation but a non-scattering medium. The plate temperature is raised linearly with time and the concentration level near the plate is raised to C   . We use proper transformations to make the governing equations dimensionless. The dimensionless governing equations are reduced to a set of ordinary differential equations. Then we solve these equations with the help of transformed boundary conditions. The effect of various parameters such as Grashof number, Modified Grashof number, Schmidt number, Prandtl number, Magnetic parameter, time, accelerating parameter, Dimensionless porous medium factor and Dimensionless chemical reaction parameter on velocity profiles, temperature profiles, concentration profiles, skin friction profiles, rate of heat transfer profiles and rate of mass transfer profiles are shown graphically

  15. Radiation effects and radioprotectors

    International Nuclear Information System (INIS)

    Radiation exposure causes damage to biological systems and these damages are mediated by the generation of free radicals and reactive oxygen species targeting vital cellular components such as DNA and membranes. DNA repair systems and the endogenous cellular biochemical defense mechanisms against reactive oxygen species and antioxidants enzymes like reduced Glutathione (GSH), Superoxide dismutase, Glutathione peroxidase catalase etc. fail upon exposures to higher as well as chronic radiation doses leading to alterations in cell functions, cell death or mutations. Radioprotectors prevent these alterations and protect cells and tissues from the deleterious effects of radiations. Radioprotectors are of great importance due to their possible and potential application during planned radiation exposures such as radiotherapy, diagnostic scanning, clean up operations in nuclear accidents, space expeditions etc. and Unplanned radiations exposures such as accidents in nuclear industry, nuclear terrorism, natural background radiation etc. Many of the available synthetic radioprotectors are toxic to mammalian system at doses required to be effective as radioprotector. Increasing uses of ionizing radiation have drawn the attention of many radiobiologists towards their undesired side effects produced in various tissues and for modifying them to facilitate the beneficial uses of radiation. Modification of radiation response is obtained by means of chemical substances that can significantly decrease the magnitude of response when present in a biological system during irradiation. Radioprotectors are chemicals that modify a cell's response to radiation. Radioprotectors are drugs that protect normal (non cancerous) cells from the damage caused by radiation therapy. These agents promote the repair of normal cells that are exposed to radiation. Various chemicals, like Cysteamine, MPG , WR-2721 have been tested for the protection against harmful effects of radiation. These radio

  16. Chemical effects of ionizing radiation on the individual amino acids within intact and pure protein molecules. Final report

    International Nuclear Information System (INIS)

    Progress is reported on the following research projects: gamma radiation induced chemical and molecular weight changes in proteins; the free radical pattern for the irradiated protein; similarities in the mechanism of action of ionizing and of uv radiation; and spin trapping in the study of gamma radiolysis

  17. Heat Generation, Thermal Radiation and Chemical Reaction Effects on MHD Mixed Convection Flow over an Unsteady Stretching Permeable Surface

    Directory of Open Access Journals (Sweden)

    Md. Shakhaoath Khan

    2012-10-01

    Full Text Available The unsteady MHD mixed convective laminar boundary layer flow of an incompressible viscous fluid over continuously stretching permeable surface in the presence of thermal radiation, heat generation and chemical reaction is studied. The unsteadiness in the momentum, temperature and concentration fields is because of the time-dependent stretching velocity and surface temperature and concentration. Similarity transformations are used to convert the governing time dependent boundary layer equations into to a system of nonlinear ordinary coupled differential equations containing Magnetic parameter, Thermal convective parameter, Mass convective parameter, Suction parameter, Radiation parameter, Eckert number, Prandtl number, Heat source parameter, Chemical reaction parameter, Schmidt number, Soret number and Unsteadiness parameter. TheNactsheim-Swigert shooting technique together with Runge-Kutta six order iteration schemes has been used for numerical procedure. Comparisons with previously published work are performed and are found to be in excellent agreement. The effects on the velocity, temperature and concentration distributions as well as skin-friction coefficients, Nusselt number and Sherwood number of the various important parameters are discussed graphically.

  18. Effect of physical, chemical and electro-kinetic properties of pumice samples on radiation shielding properties of pumice material

    International Nuclear Information System (INIS)

    Highlights: • Radiation shielding properties of pumice materials are studied. • The relationship between physical, chemical and electro-kinetic properties pumice samples is identified. • The photon atomic parameters are important for the absorber peculiarity of the pumices. - Abstract: Pumice has been used in cement, concrete, brick, and ceramic industries as an additive and aggregate material. In this study, some gamma-ray photon absorption parameters such as the total mass attenuation coefficients, effective atomic number and electronic density have been investigated for six different pumice samples. Numerous values of energy related parameters from low energy (1 keV) to high energy (100 MeV) were calculated using WinXCom programme. The relationship between radiation shielding properties of the pumice samples and their physical, chemical and electro-kinetic properties was evaluated using simple regression analysis. Simple regression analysis indicated a strong correlation between photon energy absorption parameters and density and SiO2, Fe2O3, CaO, MgO, TiO2 content of pumice samples in this study. It is found that photon energy absorption parameters are not related to electro-kinetic properties of pumice samples

  19. Effect of low-doses gamma radiation on physico-chemical properties of cereal starches

    International Nuclear Information System (INIS)

    Wheat starch of Emika variety was treated with 3 and 5 kGy doses of gamma radiation, rye starch of Dankowskie Zlote variety and triticale starch of Dagro variety - with 3 kGy doses. Radiation of this starch caused an increase of reduction ability and water solubility at 60 and 80oC. However with the increased radiation doses a significant decrease of maximum viscosity and of the viscosity of starch pastes being cooled to 50% was observed. Mild radiopolimerization also decreased the degree of retrogradation of wheat and rye starch pastes stored at above 0oC. (author)

  20. Chemical protection against ionizing radiation. Final report

    International Nuclear Information System (INIS)

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references

  1. Chemical protection against ionizing radiation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  2. The effect of radiation-sterilization conditions and preservation procedures on physico-chemical and biological properties of bone allografts

    International Nuclear Information System (INIS)

    Radiation-sterilization of connective tissue allografts (bone including) with a dose of 35 kGy is routinely used in the Central Tissue Bank in Warsaw since 1963. This method of sterilization offers many advantages: good penetration ability, relatively low temperature rise, and possibility of sterilization of grafts in closed beforehand vials, which protects against secondary contamination. It should be kept in mind, however that high doses of ionizing radiation (in the range of 20-35 kGy) used for sterilization evoke many chemical and physical changes which may influence biological properties of grafts. These changes have been studied using various methodological approaches. Using electron paramagnetic resonance (EPR) spectrometry it has been found that in radiation-sterilized bone two types of paramagnetic entities are generated: i/ coliagen radicals which are unstable and disappear completely in the presence of air oxygen, ii/ very stable at room temperature paramagnetic defects (centers) localized in the crystalline lattice of bone mineral. These stable paramagnetic defects have been treated as a new kind of markers and used for: a/ quantitative evaluation of remodeling process of radiation-sterilized bone allografts preserved by lyophilization or deep freezing; b/ estimation of the dose of ionizing radiation absorbed by living organism in the case of accidental exposure (skeleton serving as a dosimeter) and for control of radiation-sterilization process. The effect of radiation-sterilization and preservation procedures on bone allografts was studied using a model of heterotopically induced osteogenesis and measuring the solubility of bone collagen in vitro. It has been observed that lyophilized bone allografts irradiated at room temp. with doses of 35 and 50 kGy, respectively, were very quickly resorbed in vivo and did not induce osteogenesis, while lyophilized as well as deep-frozen matrices irradiated at -7OoC were slowly resorbed and induced de novo bone fon

  3. Chemical reaction and radiation absorption effects on MHD micropolar fluid past a vertical porous plate in a rotating system

    International Nuclear Information System (INIS)

    This paper considers the effect of radiation absorption and chemical reaction on MHD free convection heat and mass transfer flow of a micropolar fluid in a rotating system. A uniform magnetic field acts perpendicular to the porous surface in which absorbs micropolar fluid with a constant suction velocity. The entire system rotates about the axes normal to the plate with uniform angular velocity Ω. The governing dimensionless equations for this investigation are solved analytically by using regular perturbation method. The effects of the various flow parameters and physical properties on the velocity, microrotation, temperature and concentration profiles across the boundary layer are investigated through graphs. Also the numerical results of velocity profiles of micropolar fluids are compared with the corresponding flow problems for a Newtonian fluid. (author)

  4. Chemical effects of ionizing radiations and electron beam in polymers: industrial uses

    International Nuclear Information System (INIS)

    The results obtained from the development PVC dose indicator films, from the PE and PP hydrophilization and from the formulations of crosslink able resins and curable inks and varnishes by radiation, are herein discussed. (author)

  5. Effect of gamma radiation in physico-chemical characteristics of pre-cooked potato

    International Nuclear Information System (INIS)

    The English potato after suffering any kind of processing quickly deteriorates or loses its own characteristics becoming dark, altering its odor, taste, etc. Aiming to increase the time of conservation and maintenance of its integrity are applied some techniques such as: applied atmosphere, refrigeration, vacuum packing and others. The aim of this work was to evaluate the effects of applied gamma radiation in potatoes pre cooked in microwaves aiming to increase their useful life. Potatoes bought at a local grocery store were taken to the Food Irradiation and Radioentomology Laboratory (LIARE/CENA) in Piracicaba, SP. The tubercles were washed in running water, peeled, cut into semi-circled shapes, sanitized in a sodium hypochlorite solution and submitted to a five-minute pre-cooking in microwaves at a rate of 3:5 potato and water respectively. After the cooking, the potatoes were drained, cooled in the environment temperature, packed into transparent and flexible plastic packing and irradiated with doses of: 0,0 (control) 1,0 and 2,0 kGy. After the irradiation the samples were put under refrigeration of (6+2 deg C) and analyzed 1, 3, 6, 8 and 13 days in the following requisites: loss of fresh mass and sensorial appearance (color, odor and texture). All the potatoes presented exudation and consequently, loss of fresh mass; the irradiated samples presented alteration in the odor and color (discoloration - inactivation of pigments such as xanthines) in less time than the control samples, accelerating the process of darkening on spots and injuries that existed, besides the dry of the surfaces. In general sense, the irradiation in pre-cooked potatoes in the doses of 1,0 and 2,0 kGy did not present any satisfactory result in potato conservation. (author)

  6. Gamma radiation effects on physico-chemical parameters of apple fruit during commercial post-harvest preservation

    International Nuclear Information System (INIS)

    The physico-chemical parameters (including moisture, total soluble solids, antioxidant activity, phenolic content and firmness) of cv. Red Delicious apple subjected to γ radiation were evaluated for their ability to avoid the post-harvest blue mold caused by Penicillium expansum during cold storage. Freshly harvested apples were inoculated with P. expansum. Treated fruits were irradiated at doses of 0, 300, 600, 900 and 1200 Gy and stored at 1 °C. Apples were evaluated at three month intervals. The results showed that there was a clear link between phenolic content and antioxidant activity, so that dose range of 900 Gy and higher significantly decreased phenolic content and antioxidant activity. The moisture percent of stored apples was more responsive to irradiation (at doses of 900–1200 Gy) than storage time and pathogen. Lesion diameter of pathogen-treated non-irradiated apples was significantly increased after three months. This means that storage at low temperature is not enough to avoid blue mold growth. As dose and storage time increased firmness decreased; also pathogen accelerated softening of stored apples. This study showed conclusively that low irradiation doses (300 and 600 Gy) combined with cold storage is a way to minimize apple quality losses during nine month storage period. - Highlights: ► A suitable method to reduce apple quality losses during nine month storage period. ► Effects of γ radiation and cold storage on physico-chemical parameters of the apple. ► Potential dual benefit of low irradiation dose combined with cold storage. ► Radiation dose determination for Penicillium expansum control.

  7. Chemical radiation protection in mammals and humans

    International Nuclear Information System (INIS)

    The development and the present situation in experimental research with animals as well as in clinical application in the field of chemical radioprotection are described. The efficacy of radioprotective substances in the case of acute radiation death, of radiation-induced changes in various tissues and organs as well as in late effects are reported. The mechanisms of actions are discussed. By comparison of radiation reactions in protected and unprotected animals radioprotective factors can be determined. Such factors depend, among other parameters, on the kind of the radioprotective agent and its dose, on the radiation reaction, on the quality of radiation as well as on the radiation dose. Up to now thiophosphate WR 2721 proved to be the most efficient substance. It was observed that the application of this compound yielded a protection factor of up to 2.7 for the acute radiation death in mice. The disadvantage of radioprotective agents must be seen in their side effects. Despite this behaviour thiophosphate, amongst others, is being tested in clinical radiotherapy. In order to apply radioprotective substances in foreseen emergency or catastrophic situations a number of demands were postulated. As yet, none of the tested radioprotectors meet these demands. Therefore, NATO has refrained from keeping radioprotective agents in reserve up to now. On the other hand, the USSR has included the radioprotective agent cystamine in their civil defence protection kit. (orig.)

  8. Effects of Chemical Reaction on Dissipative Radiative MHD Flow through a Porous Medium over a Nonisothermal Stretching Sheet

    Directory of Open Access Journals (Sweden)

    S. Mohammed Ibrahim

    2014-01-01

    Full Text Available The steady two-dimensional radiative MHD boundary layer flow of an incompressible, viscous, electrically conducting fluid caused by a nonisothermal linearly stretching sheet placed at the bottom of fluid saturated porous medium in the presence of viscous dissipation and chemical reaction is studied. The governing system of partial differential equations is converted to ordinary differential equations by using the similarity transformations, which are then solved by shooting method. The dimensionless velocity, temperature, and concentration are computed for different thermophysical parameters, namely, the magnetic parameter, permeability parameter, radiation parameter, wall temperature parameter, Prandtl number, Eckert number, Schmidt number, and chemical reaction.

  9. Green light radiation effects on free radicals inhibition in cellular and chemical systems.

    Science.gov (United States)

    Comorosan, Sorin; Polosan, Silviu; Jipa, Silviu; Popescu, Irinel; Marton, George; Ionescu, Elena; Cristache, Ligia; Badila, Dumitru; Mitrica, Radu

    2011-01-10

    Free radicals generation is inhibited through green light (GL) irradiation in cellular systems and in chemical reactions. Standard melanocyte cultures were UV-irradiated and the induced cellular reactive oxygen species (ROS) were quantified by the fluorescence technique. The same cell cultures, previously protected by a 24h GL exposure, displayed a significantly lower ROS production. A simple chemical reaction is subsequently chosen, in which the production of free radicals is well defined. Paraffin wax and mineral oil were GL irradiated during thermal degradation and the oxidation products checked by chemiluminescence [CL] and Fourier transform infrared spectra [FT-IR]. The same clear inhibition of the radical oxidation of alkanes is recorded. A quantum chemistry modeling of these results is performed and a mechanism involving a new type of Rydberg macromolecular systems with implications for biology and medicine is suggested. PMID:20934350

  10. Effect of Gamma Radiation on Microbial load, Chemical and Sensory Properties of Sheesh Tawoq, Prepared Chilled Meal

    International Nuclear Information System (INIS)

    Locally prepared meal Sheesh Tawoq was treated with 0, 2, 4 or 6 kGy doses of gamma irradiation. Treated and untreated Sheesh Tawoq were kept in a refrigerator (1 and 4 mC). Microbiological, chemical and sensory characteristics of Sheesh Tawoq were evaluated at 0, 4, 8, 12, 16 and 20th week of storage. The results indicate that 4 and 6 kGy doses of gamma irradiation decreased the total counts of mesophilic aerobic bacteria, total coliform and yeast. Thus the microbiological shelf-life of Sheesh Tawoq was significantly extended from 12 weeks (control) to more than 20 weeks (samples treated with 4 or 6 kGy). Irradiation doses did not have a significant effect on the major constituents of Sheesh Tawoq (moisture, protein and fats). The radiation doses required to reduce the microorganisms load one log cycle (D10 ) in Sheesh Tawoq were 435 and 385 Gy for the Salmonella and E. coli , respectively. The chemical parameters, total acidity and volatile basic nitrogen, which were chosen as the indices of freshness, were all well within the acceptable limit for up to 12 weeks for Sheesh Tawoq treated with 0 and 2 kGy, and for up to 20 weeks at 1 and 4 mC for samples treated with 4 and 6 kGy. Sensory evaluation showed no significant differences between irradiated and non-irradiated samples. (author)

  11. THERMAL RADIATION AND CHEMICAL REACTION EFFECTS ON EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH VARIABLE TEMPERATURE AND UNIFORM MASS DIFFUSION

    OpenAIRE

    C. Santhana Lakshmi*, R. Muthucumaraswamy

    2016-01-01

    Theoretical solution of thermal radiation effects on unsteady flow past an exponentially accelerated vertical plate with variable temperature and uniform mass diffusion has been studied. The plate temperature as well as concentration level near the plate are raised uniformly. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The effect of velocity profiles are studied for different physical parameters like thermal radiation parameter, thermal Grash...

  12. Aerosol chemical characterization and role of carbonaceous aerosol on radiative effect over Varanasi in central Indo-Gangetic Plain

    Science.gov (United States)

    Tiwari, S.; Dumka, U. C.; Kaskaoutis, D. G.; Ram, Kirpa; Panicker, A. S.; Srivastava, M. K.; Tiwari, Shani; Attri, S. D.; Soni, V. K.; Pandey, A. K.

    2016-01-01

    This study investigates the chemical composition of PM10 aerosols at Varanasi, in the central Indo-Gangetic Plain (IGP) during April to July 2011, with emphasis on examining the contribution of elemental carbon (EC) to the estimates of direct aerosol radiative effect (DARE). PM10 samples are analysed for carbonaceous aerosols (Organic Carbon, OC and EC) and water-soluble ionic species (WSIS: Cl-, SO42-, NO3-, PO42- NH4+, Na+, K+, Mg2+ and Ca2+) and several diagnostic ratios (OC/EC, K+/EC, etc) have been also used for studying the aerosol sources at Varanasi. PM10 mass concentration varies between 53 and 310 μg m-3 (mean of 168 ± 73 μg m-3), which is much higher than the National and International air quality standards. The OC mass concentration varies from 6 μg m-3 to 24 μg m-3 (mean of 12 ± 5 μg m-3; 7% of PM10 mass), whereas EC ranges between 1.0 and 14.3 μg m-3 (4.4 ± 3.9 μg m-3; ˜3% of PM10 mass). The relative low OC/EC of 3.9 ± 2.0 and strong correlation (R2 = 0.82) between them suggest the dominance of primary carbonaceous aerosols. The contribution of WSIS to PM10 is found to be ˜12%, out of which ˜57% and 43% are anions and cations, respectively. The composite DARE estimates via SBDART model reveal significant radiative effect and atmospheric heating rates (0.9-2.3 K day-1). Although the EC contributes only ˜3% to the PM10 mass, its contribution to the surface and atmospheric forcing is significantly high (37-63% and 54-77%, respectively), thus playing a major role in climate implications over Varanasi.

  13. Effect of Gamma Radiation on Chemical Composition and Antimicrobial Activity of Fennel and Geranium Volatile Oils

    International Nuclear Information System (INIS)

    Essential oils of fennel and geranium were gamma irradiated with doses of 0,10,20,30 and 40 kGy. The studied oils were tested for their antimicrobial activities against some pathogenic microorganisms (Alternaria alternata, Aspergillus niger, A. flavus, Fusarium oxysporium, Trichoderma viride and Pseudomonas citri). Both oils were used in four concentrations of 500, 1000, 2000 and 4000 ppm. The investigated oils showed different inhibition effects against the tested microorganisms. Gamma irradiated oils increased the antimicrobial activity with different magnitudes. Generally, increasing oil concentration increased antimicrobial activity of the used oils and that of 4000 ppm was the most effective one. The essential oils were analyzed by G.C. to evaluate the effect of gamma irradiation on the oil components. (authors)

  14. Chemical reaction and radiation absorption effects on the flow and heat transfer of a nanofluid in a rotating system

    Science.gov (United States)

    Venkateswarlu, B.; Satya Narayana, P. V.

    2015-03-01

    The aim of this paper is to study the effects of radiation absorption and chemical reaction on MHD free convection heat transfer flow of a nanofluid bounded by a semi-infinite flat plate in a rotating frame of reference. The plate is assumed to oscillate in time with steady frequency so that the solutions of the boundary layer are the similar oscillatory kind. The entire system rotates about the axes normal to the plate. The dimensionless governing differential equations for this investigation are solved analytically using perturbation method. The effects of various important parameters entering into the problem on velocity, temperature, skin friction and Nusselt number within the boundary layer are discussed for Cu-water-based nanofluid with the help of graphs. The predicted consequences obviously point out that the presence of nanoparticles in the base fluid improves the heat transfer process significantly. The results also show that the values of Nusselt number in case of nanofluid are more pronounced than that of micropolar fluid.

  15. The effect of gamma radiation on the chemical content, texture and shelf life of papaya

    International Nuclear Information System (INIS)

    Commercially matured papaya, Carica papaya var. Solo were gamma irradiated at doses of 0 kGy, 0.75 kGy, 1.0 KGy and 1.5 kGy. The production rate of ethylene, development of ripening colour, pectin substances and ascorbic acid content as well as the weight losses were studied during storage at room temperature. Ethylene production, development of ripening colour and softening were found to be retarded by irradiation. Irradiation also slowed down the reduction rate of alcohol insoluble substances and hydrochloric acid soluble pectin and the increment of water soluble pectin and hexamataphosphate soluble pectin. Doses of 1.0 kGy and 1.5 kGy effectively suppressed the synthesis of vitamin C although no effect on the existing ascorbic acid was detected. The weight losses of papaya were not affected by irradiation treatment

  16. Nuclear war: Short-term chemical and radiative effects of stratospheric injections

    International Nuclear Information System (INIS)

    Earlier investigations of the atmospheric effects of a nuclear war focused primarily on the potential reduction in stratospheric ozone. The numerical models used in those assessments were one-dimensional and calculated the average ozone reduction over the Northern Hemisphere. Only recently has the potential reduction in stratospheric ozone been calculated as a function of latitude using a two-dimensional model where effects are averaged over latitude bands. The possibility exists that on a subcontinental scale the ozone depletion might be considerably greater than the hemispheric-average or zonal-average value. The results presented here are the first assessment of the potential reduction in total ozone on a sub-continental scale. The purpose of this study is to determine whether regions of large ozone reduction (sometimes called ozone holes) are possible, and to identify the important parameters affecting the magnitude of the ozone reduction and rate of recovery

  17. Effect of gadolinium concentration on radiation chemical yields and its corrosion compatibility

    International Nuclear Information System (INIS)

    The effect of Gd+3 ion concentration on the radiolysis of aqueous gadolinium nitrate solutions and its corrosion compatibility with SS 304 LN were determined by measurement of radiolytic yields of H2, H2O2 and NO2- produced by gamma-irradiation of deaerated solutions of gadolinium nitrate, and electrochemical measurements respectively in the concentration range of 20-100 ppm. An increase in the production of H2O2, H2 and NO2- yield was observed. The corrosion rates were comparable and the average corrosion rate was ∼ 0.16 mpy. (author)

  18. Nuclear war: short-term chemical and radiative effects of stratospheric injections

    International Nuclear Information System (INIS)

    Earlier investigations of the atmospheric effects of a nuclear war focused primarily on the potential reduction in stratospheric ozone. The numerical models used in those assessments were one-dimensional and calculated the average ozone reduction over the Northern Hemisphere. The results presented here are the first assessment of the potential reduction in total ozone on a subcontinental scale. The purpose is to determine whether regions of large ozone reduction (sometimes called ozone holes) are possible, and to identify the important parameters affecting the magnitude of the ozone reduction and rate of recovery

  19. Effects of u.v.-B radiation on epicuticular wax production and chemical composition of four Picea species

    International Nuclear Information System (INIS)

    Two-yr-old Norway (Picea abies (L.) Karst.), red (P. rubens Sarg.), black (P. mariana (Mill.) B.S.P.) and white (P. glauca (Moench.) Voss) spruce seedlings were exposed from bud break for 35 or 63 d (4 * 5 h irradiance d−1) to a gradient of biologically effective u.v.-B radiation (λ = 280–315 nm) ranging from 0 * 61 kJ m−2 d−1 to 5 * 99 kJ m−1 d−1. No visible symptoms of u.v.-B injury were observed. Epicuticular wax production was not affected by needle exposure to increasing u.v.-B irradiance. Seven constituent classes were resolved by GC and confirmed by GC–MS in wax recovered from needles of the four species. Wax composition of Norway, black and red spruce was altered following needle exposure to increasing u.v.-B dose. White spruce wax composition was unaffected. Direction and magnitude of wax composition response was species-dependent. The proportion of nonacosane diols on Norway spruce needles increased (P < 0 * 05) whereas that of alkyl esters decreased with increasing u.v.-B dose. The proportion of fatty acids in black spruce needle wax increased (P < 0 * 05), and that of estolides (GC-identified) in red spruce needle wax increased (P < 0 * 05) with increasing u.v.-B dose. Changes in wax chemical composition reported were induced following to daily, 4-h duration exposures of needles to u.v.-B centred on 1200 hours. Affected variables exhibited a continuum of response. The highest dose applied was within the range of measured or predicted increases in mid-northern latitudes. Such changes in conifer needle epicuticular wax chemical composition might result in increased seedling sensitivity to the changing atmospheric environment, especially from co-exposure to tropospheric ozone in mid-northern latitudes where much of Canada’s productive forest is located. (author)

  20. Effects of gamma radiation on the biological, physico-chemical, nutritional and antioxidant parameters of chestnuts - a review.

    Science.gov (United States)

    Antonio, Amilcar L; Carocho, Márcio; Bento, Albino; Quintana, Begoña; Luisa Botelho, M; Ferreira, Isabel C F R

    2012-09-01

    Gamma radiation has been used as a post-harvest food preservation process for many years. Chestnuts are a seasonal product consumed fresh or processed, and gamma irradiation emerged recently as a possible alternative technology for their post-harvest processing, to fulfil the requirements of international phytosanitary trade laws. After harvest and storage, several problems may occur, such as the presence of infestations and development of microorganisms, namely rotting and fungi. These diminish the quality and safety of the product, decreasing the yield along the production chain. In fruits, gamma irradiation treatment is for two main purposes: conservation (ripening delay) and insect disinfestation (phytosanitary treatment). In this review, the application of gamma irradiation to chestnuts is discussed, including production data, the irradiated species and the effects on biological (sprouting, rotting, respiration rate, insects, worms and fungi), physico-chemical (color, texture, and drying rate), nutritional (energetic value, proteins, sugars and fatty acids) and antioxidant (tocopherols, ascorbic acid, phenolics, flavonoids and antioxidant activity) parameters. These changes are the basis for detecting if the food product has been irradiated or not. The validation of standards used for detection of food irradiation, as applied to chestnuts, is also discussed. PMID:22735498

  1. Physico-chemical studies of radiation effects in cells. Progress report, November 15, 1980-February 14, 1984

    International Nuclear Information System (INIS)

    The primary interest is investigating and understanding the chemical mechanisms involved in radiation-induced cellular damage. Most recently the perturbating devices have been metals which increase, in various ways and modes, the radiation sensitivity of several cell types. While the chief cell type has been the bacterial spore, chosen because of its biological inertness and its hardiness, allowing it to survive the unphysiological conditions of the physical chemist and, thus, inquiry into the free radical mechanisms involved very soon after energy absorption, recently vegetative cells have been introduced. A number of metals have been used and practically all of them sensitize - but to varying degrees. Straight biological techniques such as the measurement of cell survival under various conditions in the different cells have been used, as well as parallel experiments in pulse radiolysis to attack the specific leads in a chemical fashion suggested by the biology

  2. Chemical modification of neoplastic cell transformation by heavy ion radiation

    International Nuclear Information System (INIS)

    Quantitative data on chemical modification of neoplastic cell transformation by heavy-ion radiation was obtained using in-vitro cell transformation technique. The specific aims were 1) to test the potential effects of various chemicals on the expression of cell transformation, and 2) to systematically collect information on the mechanisms of expression and progression of cell transformation by ionizing radiation. Recent experimental studies with DMSO, 5-azacytidine, and dexamethasone suggest that DMSO can effectively suppress the neoplastic cell transformation by high-LET radiation and that some nonmutagenic changes in DNA may be important in modifying the expression, and progression of radiation-induced cell transformation

  3. Radiation, chemicals, and occupational health research

    International Nuclear Information System (INIS)

    Radiation protection and its interplay with physical research programs are described. Differences and similarities between problems in health protection for chemicals and for radiation are discussed. The importance of dosimetry in radiation work and its relevance to chemicals are cited. A collaborative program between physical and biological scientists on the toxicity of metals is briefly described. It serves as an example of new research directed toward the development of fundamental concepts and principles as a basis for understanding and controlling occupational and population exposures to chemicals. 12 references, 4 figures

  4. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated Mars surface UV radiation conditions

    Science.gov (United States)

    Poch, Olivier; Dequaire, Tristan; Stalport, Fabien; Jaber, Maguy; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice

    2015-04-01

    The search for organic carbon-containing molecules at the surface of Mars, as clues of past habitability or remnants of life, is a major scientific goal for Mars exploration. Several lines of evidence, including the detection of phyllosilicates, suggest that early Mars offered favorable conditions for long-term sustaining of water. As a consequence, we can assume that in those days, endogenous chemical processes, or even primitive life, may have produced organic matter on Mars. Moreover, exogenous delivery from small bodies or dust particles is likely to have brought fresh organic molecules to the surface of Mars up today. Organic matter is therefore expected to be present at the surface/subsurface of the planet. But the current environmental conditions at the surface - UV radiation, oxidants and energetic particles - generate physico-chemical processes that may affect organic molecules. On the other hand, on Earth, phyllosilicates are known to accumulate and preserve organic matter. But are phyllosilicates efficient at preserving organic molecules under the current environmental conditions at the surface of Mars? We have monitored the qualitative and quantitative evolutions of glycine, urea and adenine interacting with the Fe3+-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated Martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K) and pressure (6 ± 1 mbar) in a laboratory simulation setup. We have tested organic-rich samples which may be representative of the evaporation of a warm little pond of liquid water having concentrated organics on Mars. For each molecule, we have observed how the nontronite influences the quantum efficiency of its photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine: their efficiencies of photodecomposition are reduced by a factor

  5. Gamma radiation and temperature influence on the chemical effect produced by isomeric transition in the telluric acid

    International Nuclear Information System (INIS)

    When the gamma radiation due to the isomeric transition is internally converted an autoionization is produced. For atoms with a high atomic number this autoionization can be a large one and produce a fragmentation in a molecule. In the specific case of the solid state these fragments remain trapped in different places of the crystalline system. This can be considered as chemical change in the original molecule. These damages produced by the nuclear transformation can be measured by different methods: heating, gamma rays, pressure, etc. In this work the results of an experimental measurement of the behavior of the crystalline telluric acid molecule fragments under gamma radiation (0 to 20 Mrads) with controlled temperature of 20C (-1960C to 500C) it is presented. It was observed that the values of the mentioned behavior vary rapidly at first for relatively low doses and that for larger doses these values remained constant. Besides with a lower temperature these variation are progressively lower. (author)

  6. Chemical Effect on K Shell X-ray Fluorescence Parameters and Radiative Auger Ratios of Co, Ni, Cu, and Zn Complexes

    Science.gov (United States)

    Cengiz, Erhan; Bıyıklıoğlu, Zekeriya; Küp Aylıkcı, Nuray; Aylıkcı, Volkan; Apaydın, Gökhan; Tıraşoğlu, Engin; Kantekin, Halit

    2010-04-01

    The production cross-sections, intensity ratios, and radiative Auger intensity ratios of Co, Ni, Cu, and Zn elements in different complexes were measured. The chemical effects on the K shell fluorescence parameters and the radiative Auger intensity ratios of these elements were investigated and the changes in these parameters were interpreted according to the charge transfer process. The samples were excited by 59.5 keV γ-rays from a 241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV.

  7. Thermal radiation and chemical reaction effects on MHD free convection heat and mass transfer in a micropolar fluid

    International Nuclear Information System (INIS)

    The steady laminar free convection heat and mass transfer boundary layer flow of a thermomicropolar fluid past a non-isothermal vertical flat plate in the presence of a homogeneous first order chemical reaction and a radiation with transverse magnetic field has been reported. It has been established that the flow problem has similarity solutions when the variation in temperature of the plate and variation in concentration of the fluid are linear functions of the distance from the leading edge measured along the plate. The nonlinear governing equations of the flow along with their appropriate boundary conditions are initially cast into dimensionless forms using similarity transformations which are used to reduce the governing partial differential equations into ordinary differential equations. The resulting system of equations thus formed is then solved numerically by using the Keller-box method. The non-dimensional Nusselt number, Sherwood number and the skin friction coefficient and wall couple stress at the plate are derived, and a parametric study of the governing parameters, namely the magnetic field strength parameter, radiation parameter, chemical reaction parameter, Sherwood number profiles against to the coupling number as well as the skin friction coefficient, wall couple stress coefficient is conducted. (author)

  8. Effects of chemical reaction in thermal and mass diffusion of micropolar fluid saturated in porous regime with radiation and ohmic heating

    OpenAIRE

    Kumar Hitesh

    2016-01-01

    The present paper analyzes the chemically reacting free convection MHD micropolar flow, heat and mass transfer in porous medium past an infinite vertical plate with radiation and viscous dissipation. The non-linear coupled partial differential equations are solved numerically using an implicit finite difference scheme known as Keller-box method. The results for concentration, transverse velocity, angular velocity and temperature are obtained and effects of ...

  9. Radiation dose reduction by chemical decontamination

    International Nuclear Information System (INIS)

    The paper deals with the role of chemical decontamination for reducing radiation exposure during major maintenance activities like in-service inspection of coolant channels and EMCCR works on the Primary Heat Transport System and associated components. In order to achieve the man rem reduction, MAPS has successfully carried out six decontamination campaigns of PHT system, three for MAPS-1 and three for MAPS-2. The complexing agent EDTA used in the first four DCDs was changed over to Nitrilo Tri-Acetic acid (NTA) in the subsequent two DCDs and the beneficial effects of the same on dose reduction are detailed. With the use of Nitrilo Tri-Acetic acid (NTA) as complexing agent, the need to add during the process to augment the loss due to IX pickup and radiation decomposition was avoided as NTA displayed better radiation stability and was not getting picked up in the cation IX. Good decontamination factors were observed in the monel with NTA, as copper and nickel complexes of NTA had lower stability constants than that with EDTA. An overview of all these decontaminations along with the brief description of the process and benefits in terms of dose reduction is described. Further, the chemical decontamination procedures adopted for minimising the loose and the fixed contamination on the seal plugs of the 306 coolant channels of Unit-2 during EMCCR works is also presented. The pressure tubes are rolled into the end fittings which have got seal plugs to prevent the PHT water coming out of the system. The 612 seal plugs made of stainless steel were decontaminated using ∼ 10% diammonium hydrogen citrate maintaining a temperature of 70 to 80 deg C. All the 612 seal plugs were successfully decontaminated in 41 batches. The process details and results obtained are reviewed. (author)

  10. Effect of electromagnetic radiation on the physico-chemical properties of minerals; Efecto de la radiacion electromagnetica en las propiedades fisicoquimicas de los minerales

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, A.; Delgadillo G, J. A. [Universidad Autonoma de San Luis Potosi, Instituto de Metalurgia, Doctorado Institucional de Ingenieria y Ciencia de Materiales, Av. Sierra Leona 550, 78210 San Luis Potosi (Mexico); Vega C, H. R., E-mail: alopezm6@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    The electromagnetic radiation effect represented by gamma rays was investigated through; chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (Sem) and magnetization when applied at a dose of 0.5704 Gy (0.5704 J/ kg) at a feed relation of 18.40 ± 1.13 mGy/ h., in different minerals; in order to characterize the impact of the same from {sup 137}Cs in the physicochemical properties of these minerals. All the irradiated samples showed chemical stability at this stage undetectable other both in the XRD study and in the images analysis obtained by Sem; and at present almost the same chemical composition as the non-irradiated samples. So the same patterns of X-ray diffraction thereof, show a tendency to slightly lower the intensity of the most representative peaks of each mineral phase, which may be due to a decrease in crystallinity or preferential crystallographic orientation in crystals. In the micrographs analysis obtained by Sem on the irradiated samples, some holes (open pores) present in the particles were observed, mainly chalcopyrite and sphalerite lesser extent, seen this fact may be due to Compton Effect, in the radiation process. In relation to the magnetization property, a variation is obtained in the saturation magnetization (Ms) for the irradiated samples containing iron and more significantly in the chalcopyrite case. Therefore, with the radiation level used; slight changes occurring in the physical properties of minerals, whereas they remained stable chemically. These small changes may represent a signal that electromagnetic radiation applied at higher doses, is a viable option for improving the mineral processing. (author)

  11. Effects of mineral water differing in chemical composition on the post-radiation restorative processes of tissues

    Energy Technology Data Exchange (ETDEWEB)

    Zubkova, S.M.; Bulyakova, N.V.; Azarova, V.S.; Popova, M.F.; Korolev, Yu.N.; Nikulina, L.A.; Panova, L.N. [Russian Research Center for Rehabilitation and Physiotherapy, Moscow (Russian Federation)]|[Severtsov Institute of Evolutionary Morphology and Animal Ecology, Moscow (Russian Federation)

    1994-11-01

    Experiments have show that natural and manufactured water containing arsenic and iodine may alter radiosensitivity in rats. This effect is associated with the ability of certain concentrations of iodine and arsenic ions to decrease respiration and stimulate phosphorylation in rat liver mintochondria, with resulting tissue hypoxia. Combination of iodine and calcium produced a protective effect after 21 days of daily administration to rats that absorbed radiation. In particular the survival rate of the rates increased to 67% in comparison with a 36% survival rate in rats that received only calcium and a 100% death rate in rats which were left untreated. In addition to increased energization of rat liver mitochondria, the treatment produced an inhibition of renal parenchyma clacification caused by radiation. 6 refs., 2 figs., 2 tabs.

  12. Effects of mineral water differing in chemical composition on the post-radiation restorative processes of tissues

    International Nuclear Information System (INIS)

    Experiments have show that natural and manufactured water containing arsenic and iodine may alter radiosensitivity in rats. This effect is associated with the ability of certain concentrations of iodine and arsenic ions to decrease respiration and stimulate phosphorylation in rat liver mintochondria, with resulting tissue hypoxia. Combination of iodine and calcium produced a protective effect after 21 days of daily administration to rats that absorbed radiation. In particular the survival rate of the rates increased to 67% in comparison with a 36% survival rate in rats that received only calcium and a 100% death rate in rats which were left untreated. In addition to increased energization of rat liver mitochondria, the treatment produced an inhibition of renal parenchyma clacification caused by radiation. 6 refs., 2 figs., 2 tabs

  13. Effect of different radiations on some physico-chemical properties of gum Arabic (Acacia senegal (L.) Wild)

    International Nuclear Information System (INIS)

    Seven different Acacia senegal gum samples namely A1, A2, A3, A4, A5, A6, and A7 were collected from different trees in the same forest growing in Eldmazein season 1994/ 1995. Some physicochemical and functional properties were investigated i. e. moisture content, nitrogen content, specific rotation, molecular weight, emulsifying stability and water holding capacity. Also the effect of radiation from different sources gammaγ, ultraviolet (UV) and infra-red (IR) radiations with various doses i.e 150, 325 and 500 gray, 2,4 and 6 hours and 80, 105 and 140 C, respectively on some physicochemical and functional properties and component sugars of gum samples in solid from and solution of different concentrations were studied. Statistical analysis showed significant differences (P≤0.05) between all of these seven samples in their physicochemical and functional properties except in ph value. Also Ph values were not affected by different doses of γ, UV and IR radiations used in this study. Results showed that the moisture content, ash, nitrogen content and emulsifying stability were not affected γ(60(Co) irradiation where solid and aqueous solution of gum samples showed significant differences (P≤0.05) in specific rotation, intrinsic and molecular weight when exposed to various doses of γrays. Statistical analysis showed insignificant differences (P≤0.05) between the whole and irradiated solid gum by UV radiation on ash, nitrogen content and emulsifying stability. But there was a little decrease as radiation time increase on the moisture content. Reducing sugars and solubility were decreased from 1.88 % and 97.19 % of whole gum to 0.16 % and 84.1 % of gum irradiated by IR radiation at 140 C, respectively while moisture content reduced from 10.7 % to 0.4 %. Maximum absorbance of UV spectrum of the whole gum was reported at the wave length 280 nm. UV absorbance was not affected by Υand UV radiations while it increased of temperature. Thin layer chromatography

  14. Radiation effects and radiation risks

    International Nuclear Information System (INIS)

    The book presents the facts and the principles of assessment and evaluation of biological radiation effects in general and also with particular reference to the reactor accident of Chernobyl, reviewing the consequences and the environmental situation on the basis of current national and international literature, including research work by the authors. The material compiled in this book is intended especially for physicians, but will also prove useful for persons working in the public health services, in administration, or other services taking care of people. The authors tried to find an easily comprehensible way of presenting and explaining the very complex processes and mechanisms of biological radiation effects and carcinogenesis, displaying the physical primary processes and the mechanisms of the molecular radiation effects up to the effects of low-level radiation, and present results of comparative epidemiologic studies. This section has been given considerable space, in proportion to its significance. It also contains literature references for further reading, offering more insight and knowledge of aspects of special subject fields. The authors also present less known results and data and discuss them against the background of well-known research results and approaches. Apart from the purpose of presenting comprehensive information, the authors intend to give an impact for further thinking about the problems, and helpful tools for independent decisions and action on the basis of improved insight and assessment, and in this context particularly point to the problems induced by the Chernobyl reactor accident. (orig./MG) With 8 maps in appendix

  15. The radiation crosslinking of poly(vinyl chloride) with trimethylolpropanetrimethacrylate. III. Effect of diundecyl phthalate: chemical kinetics of a three-component system

    International Nuclear Information System (INIS)

    The radiation chemistry of poly(vinyl chloride) (PVC) blended with trimethylolpropanetrimethacrylate (TMPTMA) and diundecyl phthalate (DUP) has been examined. This three-component mixture contains a base resin (PVC), a crosslinking sensitizer (TMPTMA), and a physical modifier (DUP). These are the basic components in any radiation-curable coating. The kinetics and mechanism of the crosslinking reactions were studied with reference to the dependence on radiation dose and blend composition. The polyfunctional TMPTMA underwent polymerization incorporating the PVC into a 3-dimensional network. DUP remained chemically inert during the irradiation, not being bound to the network. However, DUP by plasticizing the macromolecules and diluting the monomer, changed the kinetics extensively. DUP enhanced TMPTMA homopolymerization, TMPTMA grafting, and PVC crosslinking reaction rates. The effect of the competition between polymerization, grafting, and degradation reactions was examined in terms of enhanced mobility of the reacting species. The influence of these kinetics considerations in selecting a blend composition for a coating application was discussed

  16. The radiation crosslinking of poly(vinyl chloride) with trimethylolpropanetrimethacrylate. III. Effect of diundecyl phthalate: chemical kinetics of a three-component system

    Energy Technology Data Exchange (ETDEWEB)

    Bowmer, T.N.; Vroom, W.I.; Hellman, M.Y.

    1983-08-01

    The radiation chemistry of poly(vinyl chloride) (PVC) blended with trimethylolpropanetrimethacrylate (TMPTMA) and diundecyl phthalate (DUP) has been examined. This three-component mixture contains a base resin (PVC), a crosslinking sensitizer (TMPTMA), and a physical modifier (DUP). These are the basic components in any radiation-curable coating. The kinetics and mechanism of the crosslinking reactions were studied with reference to the dependence on radiation dose and blend composition. The polyfunctional TMPTMA underwent polymerization incorporating the PVC into a 3-dimensional network. DUP remained chemically inert during the irradiation, not being bound to the network. However, DUP by plasticizing the macromolecules and diluting the monomer, changed the kinetics extensively. DUP enhanced TMPTMA homopolymerization, TMPTMA grafting, and PVC crosslinking reaction rates. The effect of the competition between polymerization, grafting, and degradation reactions was examined in terms of enhanced mobility of the reacting species. The influence of these kinetics considerations in selecting a blend composition for a coating application was discussed.

  17. Natural radiation, nuclear wastes and chemical pollutants

    International Nuclear Information System (INIS)

    Doses from natural radiation to the population in the Nordic Countries are summarized and man made modifications of the natural radiation environment are discussed. An account is given of the radiological consequences of energy conservation by reduced ventilation. Risks from possible future releases of radioactivity from final repositories of spent nuclear fuel are compared to the risks from present natural radioactivity in the environment. The possibilities for comparison between chemical and radiological risks are discussed. (author) 13 refs

  18. Study of physical, chemical and structural effects caused by ionizing radiation and preservation on human costal cartilage

    International Nuclear Information System (INIS)

    Tissue Banks around the world have stored human cartilages obtained from cadaver donors for use in several kinds of reconstructive surgeries. To ensure that such tissues are not contaminated, they have been sterilized with ionizing radiation. However, high doses of gamma radiation may cause undesirable changes in the tissues, decreasing the mechanical properties of the grafts. In this work, we evaluate physical/chemical and structural changes in deep-frozen (-70 deg C) or high concentration of glycerol (> 98%) preserved costal cartilage, before and after sterilization by ionizing radiation at 3 different doses (15, 25 and 50 kGy). Samples of human costal cartilage were obtained from 20 cadaver donors ranging between 18 and 55 years old. A 60Co irradiator was used as irradiation source. Thermogravimetry (TG), Optical Coherence Tomography (OCT) and mechanical tension and compression tests were carried out to evaluate the changes in the cartilage. Regarding the thermogravimetric results, the obtained data has shown that the TG curves have the same pattern independently of the sample irradiated or not. On the other hand, non-irradiated samples showed great variability of thermogravimetric curves among different donors and for the same donor. Concerning the mechanical tests, when cartilages were irradiated with 15 kGy, their mechanical strength to tension was increased about 24%, in both deep-froze and preserved in glycerol samples. Samples deep-frozen, when irradiated with 25 and 50 kGy, presented a decrease of their mechanical behavior smaller than those preserved in high concentrations of glycerol and irradiated with the same dose. Therefore, deep-frozen cartilages can be sterilized with doses until 50 kGy and cartilages preserved in high concentrations of glycerol can be sterilized with doses until 25 kGy without significant changes in their bio-mechanical properties.(author)

  19. Effects of gamma radiation and storage time on the physical, chemical and sensory qualities of ''Georgia Jet'' sweet potatoes

    International Nuclear Information System (INIS)

    Effect of gamma radiation and storage time on sprouting, rotting, changes in nutritional composition and sensory quality of Georgia Jet Sweet Potatoes were studied. All radiation doses used in the study inhibited sprouting. Sweet potatoes were severely injured at doses of 1.5 and 2.0 kGy and these doses affected their storage life and sensory quality. There was no significant difference in nutrient composition of sweet potatoes irradiated at doses of 0.8, 0.5, 0.1 kGy and the control. A dose of gamma rays of 0.5 kGy and above may not be desirable for sweet potatoes. The optimum dose may lie between 0.5 and 0.1 kGy

  20. Health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Ionizing radiation is energy that travels through space as electromagnetic waves or a stream of fast moving particles. In the workplace, the sources of ionizing radiation are radioactive substances, nuclear power plants, x-ray machines and nuclear devices used in medicine, research and industry. Commonly encountered types of radiation are alpha particles, beta particles and gamma rays. Alpha particles have very little penetrating power and pose a risk only when the radioactive substance is deposited inside the body. Beta particles are more penetrating than alpha particles and can penetrate the outer body tissues causing damage to the skin and the eyes. Gamma rays are highly penetrating and can cause radiation damage to the whole body. The probability of radiation-induced disease depends on the accumulated amount of radiation dose. The main health effects of ionizing radiation are cancers in exposed persons and genetic disorders in the children, grandchildren and subsequent generations of the exposed parents. The fetus is highly sensitive to radiation-induced abnormalities. At high doses, radiation can cause cataracts in the eyes. There is no firm evidence that ionizing radiation causes premature aging. Radiation-induced sterility is highly unlikely for occupational doses. The data on the combined effect of ionizing radiation and other cancer-causing physical and chemical agents are inconclusive

  1. Effect of Gamma Radiation on Microbial Load and Chemical Constituents of Stored Black Cumin Seeds (Negilla sativa)

    International Nuclear Information System (INIS)

    The present work was carried out in an effort to study the possibility of making use of gamma radiation to elongate the storage periods of black cumin seeds (Negilla sativa). In this respect, black cumin seeds were irradiated at doses of 0, 5, 10, 20 and 40 KGy and stored at room temperature for periods of 0, 4, 8 and 12 months. Samples from the irradiated and nonirradiated black cumin seeds were taken during the different storage periods and analyzed for volatile oil, carbohydrates, soluble and reducing sugars and fatty acids contents. Besides, the microbial decontamination was also investigated. Results showed that storage caused deterioration in volatile oil constituents (especially in the main component; thyloquinone), decline in total carbohydrates of the seed, enhancement of total soluble sugars, and reduction in reducing sugars content. However, gamma radiation doses up to 40 KGy maintained the quality of the seed and volatile oil components as it lowered the deterioration during storage up to 12 months. In addition, gamma radiation showed promising effect to decontaminate the microbial load of the studied seeds

  2. Thermochemical and radiation chemical hydrogen production

    International Nuclear Information System (INIS)

    In search of closed-cycle hydrogen production processes by nuclear energy, thermochemical and radiation chemical reactions have been studied which are related to candidate processes. In a hopeful thermochemical process, nickel, iodine and sulfur are used (NIS process). This process is an improved iodine-sulfur process, and is characterized by the separation of nickel iodide and sulfate by solvent extraction and the high temperature decomposition of sulfur trioxide in the absence of water. Experimental results of main unit operations are described. Another feasible process with carbon dioxide was also studied using ferrous iodide. For radiation chemical hydrogen production, radiolysis of carbon dioxide was studied by gamma-rays and reactor radiations containing fission fragments, and with nitrogen dioxide and propane as additives. The mechanism of reoxidation of carbon monoxide, the back reaction, is discussed, because the back reaction determines the carbon monoxide yield. (author)

  3. Gamma radiation effects on physico-chemical parameters of apple fruit during commercial post-harvest preservation

    Science.gov (United States)

    Mostafavi, Hossein Ahari; Mirmajlessi, Seyed Mahyar; Mirjalili, Seyed Mohammad; Fathollahi, Hadi; Askari, Hadi

    2012-06-01

    The physico-chemical parameters (including moisture, total soluble solids, antioxidant activity, phenolic content and firmness) of cv. Red Delicious apple subjected to γ radiation were evaluated for their ability to avoid the post-harvest blue mold caused by Penicillium expansum during cold storage. Freshly harvested apples were inoculated with P. expansum. Treated fruits were irradiated at doses of 0, 300, 600, 900 and 1200 Gy and stored at 1 °C. Apples were evaluated at three month intervals. The results showed that there was a clear link between phenolic content and antioxidant activity, so that dose range of 900 Gy and higher significantly decreased phenolic content and antioxidant activity. The moisture percent of stored apples was more responsive to irradiation (at doses of 900-1200 Gy) than storage time and pathogen. Lesion diameter of pathogen-treated non-irradiated apples was significantly increased after three months. This means that storage at low temperature is not enough to avoid blue mold growth. As dose and storage time increased firmness decreased; also pathogen accelerated softening of stored apples. This study showed conclusively that low irradiation doses (300 and 600 Gy) combined with cold storage is a way to minimize apple quality losses during nine month storage period.

  4. Molecular effects of radiation

    International Nuclear Information System (INIS)

    The basis of radiobiology based on the effects of radiation in cells and tissues. Though the primary constituents of tissues are DNA and chromosomes, thus we need to know the effects of radiation in its molecular level before going for its effect in tissue level. The most abundant molecule inside the body is water molecule, and any type of radiation effect to water molecule might affect the whole body functionality. Brief knowledge about the effect of radiation in molecular level on the basis of hydrolysis of water; and radiation damage to DNA and chromosome will be helpful to understand the basics of radiobiology. (author)

  5. Effect of gamma radiation on the resistance of Staphylococcus aureus (Rosembach, 1884) and in the physical-chemical and sensory properties of 'minas frescal' cheese

    International Nuclear Information System (INIS)

    Among food poisoning of microbial origin, S. aureus stands as one of the most important, being a pathogenic bacteria for as human kind and of important occurrence in food products. Although 'Minas Frescal' cheese is typically Brazilian, there aren't in this country technical rules for its preparation and appropriate inspection. In the present work the effect of gamma radiation on the resistance of S. aureus and its ability to produce toxins in 'Minas Frescal' cheese were evaluated. The effects of the radiation in 'Minas Frescal' cheese physical-chemical and sensory properties will be determined, with the objective of studying the efficiency of the gamma radiation as method of conservation of this product. During the fabrication of 'Minas Frescal' cheese in the Laboratory of Irradiation of Foods (CENA/USP), S. aureus strains (ATCC 13565, ATCC 14458, ATCC 19095) with approximate count of 106 UFC/ml were inoculated. After irradiation with doses of O(control); 1; 2; 3 and 4 kGy, the cheeses were stored under refrigeration (+- 5 deg C) and analyzed at 1, 7 and 14 days. After irradiation with doses of O(control); 1; 2; 3 and 4 kGy, the cheeses were stored under refrigeration (+- 5 deg C) and analyzed at 1,7 and 14 days. 'Minas Frescal' cheese was evaluated through the determination of parameters of acidity, pH, moisture and lever of extension proteolysis, according to methodology of Association of Official Analytical Chemists (AO.AC.),1995, and sensory analysis by the ADQ (Quantitative Descriptive Analysis) method. The microbiological analysis determined the survival of S. aureus in the Baird-Parker a selective medium and its ability of producing enterotoxin by the Passive Reverse Agglutination with Latex method. the results analyzed through randomized blocks in a factorial design (5x3), revealed that 'Minas Frescal' cheese did not present significant differences among the radiation doses in relation to its physical-chemical and sensory properties. Dose of 3 kGy was

  6. Effects of chemical reaction in thermal and mass diffusion of micropolar fluid saturated in porous regime with radiation and ohmic heating

    Directory of Open Access Journals (Sweden)

    Kumar Hitesh

    2016-01-01

    Full Text Available The present paper analyzes the chemically reacting free convection MHD micropolar flow, heat and mass transfer in porous medium past an infinite vertical plate with radiation and viscous dissipation. The non-linear coupled partial differential equations are solved numerically using an implicit finite difference scheme known as Keller-box method. The results for concentration, transverse velocity, angular velocity and temperature are obtained and effects of various parameters on these functions are presented graphically. The numerical discussion with physical interpretations for the influence of various parameters also presented.

  7. Space radiation effects

    International Nuclear Information System (INIS)

    The authors briefly discusses the radiation environment in near-earth space and it's influences on material, and electronic devices using in space airship, also, the research developments in space radiation effects are introduced

  8. Radiation effects in space

    International Nuclear Information System (INIS)

    The paper discusses the radiation environment in space that astronauts are likely to be exposed to. Emphasis is on proton and HZE particle effects. Recommendations for radiation protection guidelines are presented

  9. Effects of Ramped Wall Temperature on Unsteady Two-Dimensional Flow Past a Vertical Plate with Thermal Radiation and Chemical Reaction

    Directory of Open Access Journals (Sweden)

    V. Rajesh

    2014-08-01

    Full Text Available The interaction of free convection with thermal radiation of a viscous incompressible unsteady flow past a vertical plate with ramped wall temperature and mass diffusion is presented here, taking into account the homogeneous chemical reaction of first order. The fluid is gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative flux in the energy equation. The dimensionless governing equations are solved using an implicit finite-difference method of the Crank-Nicolson type, which is stable and convergent. The velocity profiles are compared with the available theoretical solution and are found to be in good agreement. Numerical results for the velocity, the temperature, the concentration, the local and average skin friction, the Nusselt number and Sherwood number are shown graphically. This work has wide application in chemical and power engineering and also in the study of vertical air flow into the atmosphere. The present results can be applied to an important class of flows in which the driving force for the flow is provided by combination of the thermal and chemical species diffusion effects.

  10. Radiation-equivalent dose of chemical mutagens: problems and perspectives

    International Nuclear Information System (INIS)

    The radiation equivalent unit was intended as a means of comparing chemically-induced genetic effects with one another and with that of radiation. It was to be a unit of convenience with no absolute value. In this concept the fact that radiations and chemicals might act by different mechanisms is unimportant since only the effect is compared. Although dissimilarity of mechanism is of no consequence when comparing effects of different mutagens with the same end-point in the same species, it is important that the mechanism be similar when extrapolating to man from the effect of a given mutagen in another system. That is why mammalian systems are preferable to sub-mammalian systems for this purpose

  11. Production of Ultraviolet Radiation Chemical Effect Demon-stration Instrument%紫外线化学作用演示仪的制作

    Institute of Scientific and Technical Information of China (English)

    弭宝国

    2015-01-01

    The main characteristics of ultraviolet radiation is strong chemical action, but, the new course standard of high school physics textbooks do not have a visible, tangible experiments to verify the ultraviolet has high energy, causing chemical changes of matter, student’s perceptual knowledge is poor. In order to enhance the student’s perceptual knowledge, to facilitate the students’ memory, improve teaching effect, we design a demonstration experiment—“ Ultraviolet chemical effect demonstration instrument ”, can verify the ultraviolet ray has the high energy in 3 minutes, cause chemical changes of matter.%紫外线的主要特性是化学作用强,但是现行新课标高中物理教材中没有一个看得见、摸得着的实验来验证紫外线具有较高的能量,进而引起物质的化学变化,学生的感性认识较差。为了增强学生的感性认识,便于学生记忆,优化教学效果,设计一个演示实验——“紫外线化学作用演示仪”,能够在三分钟内验证紫外线具有较高的能量,引起物质的化学变化。

  12. Studying the synergistic damage effects induced by 1.8 GHz radiofrequency field radiation (RFR) with four chemical mutagens on human lymphocyte DNA using comet assay in vitro

    International Nuclear Information System (INIS)

    The aim of this investigation was to study the synergistic DNA damage effects in human lymphocytes induced by 1.8 GHz radiofrequency field radiation (RFR, SAR of 3 W/kg) with four chemical mutagens, i.e. mitomycin C (MMC, DNA crosslinker), bleomycin (BLM, radiomimetic agent), methyl methanesulfonate (MMS, alkylating agent), and 4-nitroquinoline-1-oxide (4NQO, UV-mimetic agent). The DNA damage of lymphocytes exposed to RFR and/or with chemical mutagens was detected at two incubation time (0 or 21 h) after treatment with comet assay in vitro. Three combinative exposure ways were used. Cells were exposed to RFR and chemical mutagens for 2 and 3 h, respectively. Tail length (TL) and tail moment (TM) were utilized as DNA damage indexes. The results showed no difference of DNA damage indexes between RFR group and control group at 0 and 21 h incubation after exposure (P > 0.05). There were significant difference of DNA damage indexes between MMC group and RFR + MMC co-exposure group at 0 and 21 h incubation after treatment (P 0.05). The experimental results indicated 1.8 GHz RFR (SAR, 3 W/kg) for 2 h did not induce the human lymphocyte DNA damage effects in vitro, but could enhance the human lymphocyte DNA damage effects induced by MMC and 4NQO. The synergistic DNA damage effects of 1.8 GHz RFR with BLM or MMS were not obvious

  13. Radiation protection and health effects

    International Nuclear Information System (INIS)

    The use of ionizing radiation in nuclear medicine carries with it a responsibility to both patient and personnel to maximize the diagnostic and therapeutic benefit while minimizing the potential for any adverse health effects. Shortly after the discovery of the x-ray in 1895 the potential for acute health hazards of ionizing radiation became apparent. However, the risks of ionizing radiation were poorly understood and many early users did not believe that anyone could be hurt by something that could not be detected by any of the human senses. Many experiments on the biologic effects of ionizing radiation began in the early 1900s, and the first radiation protection standards were proposed by the British Roentgen Society in 1915. We now realize that these pioneers had a very limited knowledge of the potential hazards and radiation protection principles. Today more scientific data are available on the health effects of, detection of, and protection from ionizing radiation than any other physical agent or chemical known. In addition, use of many forms of ionizing radiation is heavily regulated at both national and state levels. This paper discusses how maternal contamination with radionuclides may cause irradiation of the fetus even if the radionuclide is not transferred across the placenta. This is mostly true for radionuclides that decay yielding relatively penetrating radiations

  14. Human Genetic Marker for Resistance to Radiation and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    DR. Howard B. Lieberman

    2001-05-11

    TO characterize the human HRDAD9 gene and evaluate its potential as a biomarker to predict susceptibility to the deleterious health effects potentially caused by exposure to radiations or chemicals present at DOE hazardous waste cleanup sites. HRAD9 is a human gene that is highly conserved throughout evolution. Related genes have been isolated from yeasts and mice, underscoring its biological significance. Most of our previous work involved characterization of the yeast gene cognate, wherein it was determined that the corresponding protein plays a significant role in promoting resistance of cells to radiations and chemicals, and in particular, controlling cell growth in response to DNA damage.

  15. Human Genetic Marker for Resistance to Radiation and Chemicals

    International Nuclear Information System (INIS)

    TO characterize the human HRDAD9 gene and evaluate its potential as a biomarker to predict susceptibility to the deleterious health effects potentially caused by exposure to radiations or chemicals present at DOE hazardous waste cleanup sites. HRAD9 is a human gene that is highly conserved throughout evolution. Related genes have been isolated from yeasts and mice, underscoring its biological significance. Most of our previous work involved characterization of the yeast gene cognate, wherein it was determined that the corresponding protein plays a significant role in promoting resistance of cells to radiations and chemicals, and in particular, controlling cell growth in response to DNA damage

  16. The role of free radicals in radiation and chemical carcinogenesis

    International Nuclear Information System (INIS)

    Since sunlight, ionising radiation and toxic chemicals can serve as the initiators of free radical damage and as a means of enhancing the effectiveness of any existing potentially damaging free radical, they may act independently, additively or synergistically in a multi-step free radical process leading to biological damage. Having examined methods of studying the fast reactions involved, comparisons are made of the mechanism of chemical and radiation carcinogenesis and the role of synergism is considered. Different approaches to cancer protection are examined and the development of a redox model for carcinogenesis is discussed. 317 references. (U.K.)

  17. Future radiation effects

    International Nuclear Information System (INIS)

    A review is given of the units used in radiation protection. The radiation hazards incurred by human populations can be divided into early and late somatic radiation effects and genetic radiation effects. Examples and motivations of risk analysis estimates are given. For genetic radiation effects, the siginificance dose and the doubling dose are defined. The minimum permissible dose for different human populations are compared with the doses received from natural radioactivity with medical applications. The risk caused by nuclear reactors and fall-out and its consequences are given for the year 1972 and estimated for the year 2000

  18. Biopositive Effects of Ionizing Radiation?

    International Nuclear Information System (INIS)

    This paper was written for a talk given by E. Broda in Vienna for an event organised by the chemical physical society, the Austrian biochemical society and the Austrian biophysical society in December 1972. In this paper Broda analyses the question of biopositive effects of ionizing radiation. (nowak)

  19. Study of chemical and radiation induced carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chmura, A.

    1995-11-01

    The study of chemical and radiation induced carcinogenesis has up to now based many of its results on the detection of genetic aberrations using the fluorescent in situ hybridization (FISH) technique. FISH is time consuming and this tends to hinder its use for looking at large numbers of samples. We are currently developing new technological advances which will increase the speed, clarity and functionality of the FISH technique. These advances include multi-labeled probes, amplification techniques, and separation techniques.

  20. Biological effects of radiation

    International Nuclear Information System (INIS)

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  1. Fabrication of radiation sources for educational purposes from chemical fertilizers using compressing and forming method

    International Nuclear Information System (INIS)

    Chemical fertilizers contain potassium, which is composed of a small amount of naturally occurring potassium-40. The potassium-40 radionuclide emits beta and gamma radiation. Three brands of chemical fertilizer were used to fabricate disk-shaped radiation sources and the fabricated radiation sources were examined for applicability to an educational radiation course. In the examination, tests to determine dependence of count rate on distance, shielding thickness, and shielding materials were conducted using the radiation sources. Results showed that radiation sources fabricated from the three brands of chemical fertilizer were equivalent for explaining radiation characteristics, particularly those related to the dependence of radiation strength on distance and shielding thickness. The relation between shielding effect and mass density can be explained qualitatively. Thus, chemical fertilizer radiation sources can be a useful teaching aid for educational courses to better promote understanding of radiation characteristics and the principles of radiation protection. (author)

  2. Study the effect of chemical reaction and variable viscosity on free convection MHD radiating flow over an inclined plate bounded by porous medium

    Science.gov (United States)

    Ali, M.; Alim, M. A.; Nasrin, R.; Alam, M. S.

    2016-07-01

    An analysis is performed to study the free convection heat and mass transfer flow of an electrically conducting incompressible viscous fluid about a semi-infinite inclined porous plate under the action of radiation, chemical reaction in presence of magnetic field with variable viscosity. The dimensionless governing equations are steady, two-dimensional coupled and non-linear ordinary differential equation. Nachtsgeim-Swigert shooting iteration technique along with Runge-Kutta integration scheme is used to solve the non-dimensional governing equations. The effects of magnetic parameter, viscosity parameter and chemical reaction parameter on velocity, temperature and concentration profiles are discussed numerically and shown graphically. Therefore, the results of velocity profile decreases for increasing values of magnetic parameter and viscosity parameter but there is no effect for reaction parameter. The temperature profile decreases in presence of magnetic parameter, viscosity parameter and Prandtl number but increases for radiation parameter. Also, concentration profile decreases for the increasing values of magnetic parameter, viscosity parameter and reaction parameter. All numerical calculations are done with respect to salt water and fixed angle of inclination of the plate.

  3. State and tendencies of chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Papers published in 1976 in the field of chemical protection against ionizing radiation are reviewed. Protection studies in vitro and in vivo, the biochemical, pharmacological and toxic effects, the mechanisms of protection of radioprotective agents and the trends in this field of research are described. (author)

  4. State and tendencies of chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Papers published in 1979 and 1980 in the field of chemical protection against ionizing radiation are reviewed. Protection studies in in-vivo and model systems, the biochemical, pharmacological and toxic effects, and modes of action of radioprotective agents are described and the trends in this field of research estimated. (author)

  5. State and tendencies of chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Papers published in 1975 in the field of chemical protection against ionizing radiation are reviewed. Protection studies in vitro and in vivo, the biochemical, pharmacological and toxic effects, the mechanisms of protection of radioprotective agents and the trends in this field of research are described. (author)

  6. State and tendencies of chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Papers published in 1978 in the field of chemical protection against ionizing radiation are reviewed. Protection studies in in-vivo and model systems, the biochemical, pharmacological and toxic effects, and modes of action of radioprotective agents are described and the trends in this field of research appreciated. (author)

  7. State and tendencies of chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Papers published in 1974 in the field of chemical protection against ionizing radiation are reviewed. Protection studies in vitro and in vivo, the biochemical, pharmacological and toxic effects, the mechanisms of protection of radioprotective agents and the trends in this field of research are described. (author)

  8. Radiation effects on pharmaceuticals and related materials

    International Nuclear Information System (INIS)

    Radiation sterilization is the method of choice for many medical supplies and devices. However, because of the ionizing nature of gamma radiation, one must consider the effect of such radiation on the physical and chemical properties and on the biological behaviour of pharmaceutical and related materials before the feasibility of radiation sterilization for such products is established. The results of such feasibility studies can lead to an appropriate decision on the suitability of radiation sterilization for a particular pharmaceutical. (author)

  9. Effects of Thermal Radiation and Chemical Reaction on MHD Free Convection Flow past a Flat Plate with Heat Source and Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    E.Hemalatha

    2015-09-01

    Full Text Available This paper analyzes the radiation and chemical reaction effects on MHD steady two-dimensional laminar viscous incompressible radiating boundary layer flow over a flat plate in the presence of internal heat generation and convective boundary condition. It is assumed that lower surface of the plate is in contact with a hot fluid while a stream of cold fluid flows steadily over the upper surface with a heat source that decays exponentially. The Rosseland approximation is used to describe radiative heat transfer as we consider optically thick fluids. The governing boundary layer equations are transformed into a system of ordinary differential equations using similarity transformations, which are then solved numerically by employing fourth order Runge-Kutta method along with shooting technique. The effects of various material parameters on the velocity, temperature and concentration as well as the skin friction coefficient, the Nusselt number, the Sherwood number and the plate surface temperature are illustrated and interpreted in physical terms. A comparison of present results with previously published results shows an excellent agreement.

  10. The combined effect of the gamma radiations of 60 Co and different chemicals on the cells of the radicular vegetative tip of Allium sativum L

    International Nuclear Information System (INIS)

    The gamma ionizing radiations used alone in the treatment of Allium Sativum L. affected differently the cells belonging to the two zones of the root causing modifications of the cellular parameters which have been previously estimated. Data in the literature established that the damage of the interphasic nucleus of the cells determines the obstruction of the DNA synthesis and the delay of the cell mitosis. Sparrow, A. H., Miller, M. W. and Al-Rubeai confirmed the existence of a relationship between the nuclear volumes and the radiosensitivity of the different types of cells. The aim of this experiment was to counteract the harmful effect of gamma radiations at cellular level with the help of combined treatments, namely, the gamma radiations associated with different chemicals having radioprotective effects. The biological significance of the obtained values was established by statistical calculations with the help of the Student (t) test. The values of the estimated cellular parameters, NV, ICV, CV, NCR showed that, although there were certain fluctuations, their values were not always significant. (author)

  11. Radiation effects in semiconductors

    CERN Document Server

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  12. Chemical protection against ionizing radiation: a survey of possible mechanisms

    International Nuclear Information System (INIS)

    A comparative survey is given of the hypotheses which have been proposed to explain the protecting and sensitizing action of chemical substances towards ionizing radiation such as gamma radiation or x radiation

  13. Chemical protection and sensitization to ionizing radiation:molecular investigations

    International Nuclear Information System (INIS)

    Chemical radioprotection and radiosensitization are induced by the presence of certain chemical compounds, which reduce or enhance the effect of ionizing radiation on living organisms. Such substances are either naturally present or may be artificially introduced in the living cells. Chemical radioprotectors are interesting for possible application in the health protection of both professionally exposed workers and patients treated by radiation for diagnostic and thereapeutic purposes. Interest in chemical radiosensitization has increased recently because of its potential application in the radiotherapy of tumours. Both radioprotection and radiosensitization occur by means of complicated mechanisms, which at first correspond to very fast reactions. The mechanism of the interaction between such substances and radiation-induced biological radicals has been investigated by means of pulse radiolysis and rapid mixing techniques. Examples of the application of these techniques are given to illustrate how information has been obtained on the molecular basis of radiation chemical modi-fication at the cellular level. In particular some interactions between model systems of biological interest (DNA, DNA components, enzymes, amino acids, etc.) and sulphur-containing radioprotectors (glutathione, cysteine, etc.) and/or electroaffinic radiosensitizers, are described. (H.K.)

  14. Radiation effects in space

    International Nuclear Information System (INIS)

    As more people spend more time in space, and the return to the moon and exploratory missions are considered, the risks require continuing examination. The effects of microgravity and radiation are two potential risks in space. These risks increase with increasing mission duration. This document considers the risk of radiation effects in space workers and explorers. 17 refs., 1 fig., 4 tabs

  15. Chemical applications of synchrotron radiation: Workshop report

    International Nuclear Information System (INIS)

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases

  16. Chemical applications of synchrotron radiation: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  17. Radiating chemical decomposition of oil hydrocarbons in water environment

    International Nuclear Information System (INIS)

    Full text: Water resources purification problems from natural oil and mineral oils has an important value as for extracting additional oil resources from oilcontained waste waters, so for safeguard of water resources from pollution. For the past 150 years there were 250 artificial lakes formed on the territory of Absheron peninsula of Azerbaijan as a result of oil deposits exploitation, concentration of which sometimes exceeds 25 mg/l. Every year enterprises of Azerbaijan oil industry reset more than 4-5 tons of waste waters to an environment during production of 1 ton of oil. Taking into account the fact that the larger danger for environment represents an oil slicks and emulsified mineral oils in it, the possibility of application of ionizing radiation for mineral oils of waste waters becomes the more important circumstance during solving of some ecological problems. The possibilities radiation-chemical technology application while purification of waste waters from oil pollutions had been studied and also it is studied some legitimacies of radiation-chemical molding of oil hydrogens in water sphere. In case of radiation purification of water from oil impurities it is possible the radiation-chemical molding of oil hydrogens during the process and removal of molding products from water. Data given in this article proves that there are happens an effective interaction between active particles of different origin.

  18. Effects of ionizing radiation

    International Nuclear Information System (INIS)

    Starting with a brief introduction to radiation protection, the report gives an overview of exposure to ionising radiation in Belgium due to activities in relation to the nuclear fuel cycle, processing and disposal of radioactive waste and other artificial or natural sources. Where appropriate, the Belgian situation discussed from an international perspective. The radiological impact of reprocessing and non-reprocessing are compared. The biological effects of ionizing radiation, epidemiological studies as well as surveillance programmes on the Belgian territory are reported on

  19. Evaluation of the effects of gamma radiation on physical and chemical characteristics of pineapple (Annanas Comosus (L.) (Meer) cv. smooth Cayenne minimally processed

    Energy Technology Data Exchange (ETDEWEB)

    Perecin, Thalita N.; Oliveira, Ana Claudia S.; Silva, Lucia C.A.; Costa, Marcia H.N.; Arthur, Valter [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Radiobiologia e Ambiente], e-mail: arthur@cena.usp.br

    2009-07-01

    This study aimed to evaluate the effects of gamma radiation, polypropylene packaging type and temperature (8 deg C) in the physic-chemical characteristics of pineapple 'Smooth Cayenne' minimally processed. The fruits were selected, washed, peeled, sliced crosswise into four parts and placed in sodium hypochlorite 10 ml/L for three minutes, dried and packaged. Were irradiated in a Cobalt-60 source, type Gammacell -220 (dose rate 0.543 kGy/hour), with doses of 0 (control), 1 and 2 kGy and stored in temperature of 8 deg C. Were analyzed color (L factors, a, b), pH, deg Brix, texture, during 5 days after irradiation. The experiment was entirely at random with 3 replicates for each treatment. For the statistic analysis was used the Tuckey test at 5% level of probability. (author)

  20. Evaluation of the effects of gamma radiation on physical and chemical characteristics of pineapple (Annanas Comosus (L.) (Meer) cv. smooth Cayenne minimally processed

    International Nuclear Information System (INIS)

    This study aimed to evaluate the effects of gamma radiation, polypropylene packaging type and temperature (8 deg C) in the physic-chemical characteristics of pineapple 'Smooth Cayenne' minimally processed. The fruits were selected, washed, peeled, sliced crosswise into four parts and placed in sodium hypochlorite 10 ml/L for three minutes, dried and packaged. Were irradiated in a Cobalt-60 source, type Gammacell -220 (dose rate 0.543 kGy/hour), with doses of 0 (control), 1 and 2 kGy and stored in temperature of 8 deg C. Were analyzed color (L factors, a, b), pH, deg Brix, texture, during 5 days after irradiation. The experiment was entirely at random with 3 replicates for each treatment. For the statistic analysis was used the Tuckey test at 5% level of probability. (author)

  1. Medicodosimetric register of the Siberian Group of Chemical Enterprises personnel as the basis for studying long-term effects of ionizing radiation at low doses

    International Nuclear Information System (INIS)

    On the basis of the Seversk Biophysical Research Centre (SBRC) of the Russian Federal Medical and Biological Agency there has been created a Regional Medicodosimetric Register (RMDR) of the personnel of the Siberian Group of Chemical Enterprises (SGCE) to be the world biggest complex of atomic industry enterprises. The RMDR database accumulates information of personnel, medical and dosimetric character, as well as the data on occupational activity of the workers of the main SGCE productions, namely, reactor (RP), radiochemical (RC), and plutonium (PP) ones. Information on exogenous and endogenous risk factors (RF) for main diseases development (hereditary diseases, tobacco smoking, the level of psychoemotional overload etc.) is entered into the RMDR database. To evaluate the whole spectrum of stochastic effects of ionizing radiation (IR), both 'traditional' and hypothetic ones, within RMDR there have been created such thematic registers as the register of oncologic diseases; the register of congenital malformations and hereditary diseases; the register of an acute myocardial infarction (AMI); the register of the thyroid gland diseases; the register of osteoporosis. The RMDR database includes information on almost 65,600 SGCE employees to be divided into the following cohorts: RP workers exposed to external γ-radiation (8,102 persons); RC workers with both external and internal dose loads (6,136 persons); PP workers exposed to internal radiation from incorporated 239Pu (9,434 persons). At present the share of workers of the main SGCE productions with a determined life status makes up 80%. The overwhelming majority of workers were exposed to low-dose IR (87,9% of all SGCE personnel subjected to individual dosimetric monitoring have cumulative dose of external radiation in the range 0,03-200 mSv). The RMDR structure provides for the possibility to perform analysis on both the criterion of mortality and the one of morbidity. On the basis of RMDR a large-scale spectrum

  2. Biophysical radiation effects

    International Nuclear Information System (INIS)

    The biological effectiveness of ionizing radiation is based upon the absorption of energy in molecular structures of a cell. Because of the quantum nature of radiation large fluctuations of energy concentration in subcellulare regions has to be considered. In addition both the spatial distribution of a sensitive molecular target and cellulare repair processes has to be taken into consideration for an assessment of radiation action. In radiation protection the difference between the quality factor and the Relative Biological Effectiveness has a fundamental meaning and will be discussed in more detail. The present report includes a short review on some relevant models on radiation action and a short discussion on effects of low dose irradiation. (orig.)

  3. Effects of gamma radiation on the biological, physico-chemical, nutritional and antioxidant parameters of chestnuts - a review

    OpenAIRE

    Antonio, Amilcar L.; Carocho, Márcio; Bento, Albino; Quintana, Begoña; Botelho, M. Luísa; Ferreira, Isabel C. F. R.

    2012-01-01

    Gamma radiation has been used as a post-harvest food preservation process for many years. Chestnuts are a seasonal product consumed fresh or processed, and gamma irradiation emerged recently as a possible alternative technology for their post-harvest processing, to fulfil the requirements of international phytosanitary trade laws. After harvest and storage, several problems may occur, such as the presence of infestations and development of microorganisms, namely rotting and fungi. These dimin...

  4. Ionizing radiation effects of Cobalt-60 on the physical-chemical, sensorial and microbiological of bread with addition of linseed (Linum usitatissimum)

    International Nuclear Information System (INIS)

    The incorporation of functional ingredients on breading products has grown very much lately, because of the preoccupation with the consumers' health. The linseed has awakened the interest by its high level of fiber, lignin, omega-3 and antioxidants compounds. The objective of the present work is evaluate the ionizing radiation effect of 60Co on the physical-chemical, sensorial and microbiological characteristics of bread with addition of different concentration of brown linseed. There were elaborated 3 types of bread: French roll, form bread prepared with the mixture and form bread produced with conventional ingredients. It was added smashed brown linseed on the bread dough, with concentrations of 8% and 12%. After the preparation, the three kinds of bread packed with polypropylene packages and taken to the IPEN/USP (Institute of Nuclear Energetic Research/University of São Paulo) and irradiated with doses of 6, 8 and 10 kGy. Treatments were elaborated without the addition of linseed and without irradiation, for control, totalizing 12 distinct treatments, to each bread formula tested. Chemical analyses were made (centesimal composition, anti-nutritional compounds, anti-oxidant activity, glycemic index, fat acids, complex B vitamins and minerals); physical analyses (cooking index, volume, color and water activity); sensorial analyses (preference tests and Descriptive Quantitative Analysis - ADQ); microbiological analysis and a survey about irradiated products. It could be seen that the addition of linseed was efficient to increase the level of alimentary fiber and the level of lipids on the 3 bread formula. The three kinds of bread that received the linseed addition and that were not irradiated presented increase on the level of total phenolic; however, when the samples which received the linseed addition were submitted to the irradiation process, it could be noticed the decrease of the antioxidant capacity. There was an increase on the level of omega-3

  5. Study on the mechanism of cytotoxic effects of radiation and chemicals and development of risk assessment method. Changes in telomere and telomerase in mutated animals

    International Nuclear Information System (INIS)

    It has been known that the carcinogenic risk for radiation, chemical agents, etc. of Mus musulus molossinus MUG (MUG) maintained in laboratory is comparatively low compared with laboratory strains of mouse although the cause is not unclear. Here, aiming to develop a new assessment system for general risk including biological effects of radiation, chemical agents, etc., an investigation was made on the length of telomere and the telomerase activity. Three strains of laboratory mouse, C57BL/6, C3H and DBA, and molossinus were used as the subjects. Whole DNA was extracted from various organs; brain, lung, thymus, spleen, liver, kidney and testis, and the length of telomere was determined by Southern blotting method using a probe to recognize the telomere sequence. The telomere length of MUG was about 40 Kb for any DNA from the organs examined. This length (40 Kb) was much longer than the length in human cord blood lymphocyte. However, there was no difference in the telomere length between the three laboratory strains and MUG. The activity of telomerase was carried out by fluorescence telomeric repeat amplification protocol method, which is a slightly modified method of the conventional one. Highly accurate determination of telomerase activity was possible by the use of fluorescent sequencer. As to the liver, telomerase activity was lower (50%) in MUG than the laboratory strains, but there was no difference in the activities in other organs among those strains. Thus, it was suggested that the difference in telomerase activity in the liver might be related to the low carcinogenic risk of MUG. (M.N.)

  6. Effect of molecular weight on radiation chemical degradation yield of chain scission of γ-irradiated chitosan in solid state and in aqueous solution

    International Nuclear Information System (INIS)

    Chitosan A1, A2 and A3 with molecular weight of 471, 207 and 100 kDa respectively, produced from squid pen chitin was degraded by gamma rays in the solid state and in aqueous solution with various doses in air at ambient temperature. Effect of molecular weight on radiation chemical degradation yield of chain scission and degradation rate constants of γ-irradiated chitosan in solid state and in aqueous solution was investigated. The radiation chemical degradation yield G(s) and degradation rate values were calculated. The molecular weight changes were monitored by capillary viscometry method and the chemical structure changes were followed by UV analysis. The results showed that, the degradation of chitosan was faster in solution, than in solid state. The values of G(s) in solid state and in aqueous solution were respectively 1.1×10−8 mol/J and 0.074×10−7 mol/J for A1, 4.42×10−8 mol/J and 0.28×10−7 mol/J for A2 and 6.08×10−8 mol/J and 0.38×10−7 mol/J for A3. Degradation rate constants values ranged from 0.41×10−5 to 2.1×10−5 kGy−1 in solid state, whereas in solution they ranged from 13×10−5 to 68×10−5 kGy−1. The chitosan A3 was more sensitive to radiolysis than A1 and A2. The chain scission yield, G(s) and degradation rate constants seems to be greatly influenced by the initial molecular weight of the chitosan. Structural changes in irradiated chitosan are revealed by the apparition of absorption peaks at 261 and 295 nm, which could be attributed to the formation of carbonyl groups. In both conditions the peak intensity was higher in chitosan A3 than in A1 and A2, the oxidative products decreased with increasing molecular weight of chitosan. - Highlights: ► We investigated the effects of MW on G(s) value of γ-irradiated chitosan in solid and aqueous state. ► Chitosan with low molecular weight was more sensitive to radiolysis than high molecular weight. ► G(s) value and degradation rate seems to be greatly influenced by the

  7. Radiation and chemical effects on viral transformation and tumor antigen expression. Annual progress report, August 1, 1978--May 1, 1979

    International Nuclear Information System (INIS)

    Studies aimed at the biological, biochemical, and immunologic characterization of fetal antigens (EA) in hamsters and mice and locating and determining the distribution of fetal antigens in tumor tissues and in developing fetuses have been underway for several months. Progress has been made in isolating embryonic or fetal antigens from fetuses and from tumor cells. We have developed and reported a reliable lymphocyte transformation assay (LTA) which meets our needs in routinely assaying cell free tumor associated antigen (TAA) preparations from fetal and tumor cells. The assay correlated with transplantation resistance assays and has appropriate specificity. We have also developed the staph-A protein binding assay utilizing anti-serum derived against embryonic antigens present on SV40 tumor cells. In other studies, we have reported increases and perturbations in thymocytes during viral and chemical oncogenesis in hamsters, have developed a simple technique for preserving functional lymphocytes sensitized against TAA by freezing for use in our model system work, have reported the cross-reactivity of tranplantation resistance antigen on a spectrum of chemically induced tumors previously believed to only contain individually specific TSTAs and have recently reported the cross-reactivity of papovavirus induced transplantation resistance antigen in sarcoma cells induced by different viruses. We have concluded our studies of glycosyltransferases in the membranes of developing fetuses and noted no differences in their levels with advancing days of gestation using whold embryo cell populations

  8. Heat treatment and gamma radiation effects on the physical-chemical, microbiological and sensory stability of pure sugarcane juice or added with fruit juices, stored under refrigeration

    International Nuclear Information System (INIS)

    that the best mixture was that formulated with sugarcane juice and 4% of lemon juice as well as 10% of pineapple juice. Sugarcane juice centesimal composition was not altered by fruit juice concentration addition. However, sugarcane juice added with 10% pineapple juice incremented manganese and reducing sugars when compared with pure sugarcane juice and added with 4% lemon juice. The market test proffered mixture was shown to be that containing sugarcane juice and natural lemon juice for evaluation the shelf life. Sugarcane juice added with 4% of lemon juice submitted to gamma radiation, heat treatment combined with gamma radiation and heat treatment remaining satisfactory microbiological, sensory and physical chemical characteristics until 28, 35 and 42 days respectively, after processing. These results indicated that the heat treatment was effective for sugarcane juice preservation. (author)

  9. Effects of ionizing radiation

    International Nuclear Information System (INIS)

    A sound evaluation of the consequences of releases of radioactivity into the environment, especially of those large amounts, and of the effectiveness of different protective measures, requires thorough concern of the various aspects of the radiological effects. The effects of ionizing radiation were reviewed according to the following characterization: Affected subject (somatic, genetic and psychological effects); Duration of irradiation (acute and chronic irradiation); Latent period (early and late effects); Dose-effect relationship (stochastic and non-stochastic effects); Population affected (e.g. children, pregnant women). In addition to the lethal effects which are generally considered extensively in all the evaluations of the consequences of radioactivity releases, such effects as early symptoms and morbidity are emphasized in this review. The dependence of the effects on dose rates, repair mechanism and medical treatment is discussed, and the uncertainties involved with their evaluation is highlighted. The differences between QF (quality factor) and RBE (relative biological effectiveness) of different radiation sources are interpreted. Synergystic effects and the effectiveness of various means of medication are discussed. It is suggested that all radiological effects, including those resulting from relatively low radiation doses, e.g. foetus deformations, fertility impairment, prodomal - leading to psychological effects, should be considered within the evaluation of the consequences of radioactivity releases and of the effectiveness of protective measures. Limits of the repair factors to be considered within the evaluation of the effects of chronic exposures are proposed

  10. Effect of gamma radiation (Co60) in physic-chemical and sensory properties of aged beans (Phaseolus vulgaris, L.)

    International Nuclear Information System (INIS)

    The objective of this work is to evaluate the efficiency of different doses of gamma radiation as an alternative process to improve the quality of aged beans. Beans of the 'Carioca 80' variety were submitted to an accelerated aging process according to the followings patterns: 30 deg C and 50 or 75% relative humidity and 40 deg C and 50 or 80% relative humidity, during 45 days. After that time samples were submitted to gamma irradiation at doses of 300, 600, 900 and 1200 Krad. At the same time samples of 1989, 1987 and 1983 harvest and submitted to slow aging process, 12 deg C and 50-60% relative humidity, were evaluated to comparison with former accelerated aging. All the samples were analysed on moisture and starch content, cooking time, texture and sensorial evaluation. The results showed that samples submitted to aged faster presented better quality, second the evaluated parameters, as far as irradiation applied was 300 Krad. The same happened to samples of harvest 1989 aged slowly. The 1987 and 1983 harvests, respectively, were the doses that gave better softness to the beans. This work permitted conclude that gamma irradiation is an alternative method of advantage for aged beans, for same decrease the cooking time and improvement the sensory quality of stored grain. (author)

  11. Mutagenic efficiency of radiations and chemical mutagens in inducing viable mutations in rice

    International Nuclear Information System (INIS)

    Studies were undertaken to compare the effectiveness and efficiency of radiations (gamma rays and fast neutrons) and chemical mutagens (EMS and NMU) in inducing viable mutations in rice. Radiations were more effective than chemical mutagens, the most effective being fast neutrons. Mutagenic efficiency when estimated on the basis of lethality was higher for radiations but when based on sterility was higher for chemical mutagens. Fast neutrons, more effective than gamma rays, were less efficient. NMU was more effective but less efficient than EMS. (author)

  12. Evaluation of the ionizing radiation effects in microbiology, physical and chemical and sensory aspects of ice cream

    International Nuclear Information System (INIS)

    The ice cream is defined as an emulsion of fats and proteins or a mixture of water and sugar, other ingredients may be added provided since they do not affect the product. It is considered a food of high nutritional value, providing lipids, carbohydrates, protein, calcium, phosphorus, and other minerals and vitamins (A, B1, B2, B6, C, D, E and K), and it is considered one of the most important products and higher interest to the dairy industry due to great demand by the consumers. The diseases related to food consumption are considered one of the most significant problems. Several outbreaks related to microbiological contamination of ice cream have been reported in recent decades in Asia, Europe and America. It is believed that the ice cream, as a frozen food, presents no risk to the population health. However, it is considered an excellent environment for the growth of microorganisms due to its composition, pH close to neutrality and long storage period. The aim of this study was to evaluate the microbiological, sensory and physicochemical aspects of ice cream. The ice cream samples were irradiated with gamma rays (60Co) with the doses of LOkGy, 2.0kGy, 3.0kGy and 4.0kGy. The samples intended for the inoculation of Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC 11229) and Salmonella abaetetuba (ATCC 35640) have been irradiated with doses of 1.0, 2.0 and 3.0kGy. It can be concluded that the dose of 3.0kGy was adequate to reduce most of the studied microorganisms to undetected levels. The use of gamma radiation affected the texture and the parameters of the colorimetric analyses of the ice cream. The results of the sensorial analyses showed that the better accepted dose was 3.0kGy. (author)

  13. Harmonization of risk management approaches: radiation and chemical exposures

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, P. [Bhabha Atomic Research Centre, Radiation Safety Systems Div., Mumbai (India)

    2006-07-01

    Assessment of occupational and public risk from the environmental pollutants like chemicals, radiation, etc demands that the effects be considered not only from each individual pollutant, but from the combination of all the pollutants. An integrated risk assessment system needs to be in place to have an overall risk perspective for the benefit of policy makers and decision takers to try to achieve risk reduction in totality. The basis for risk-based radiation dose limits is derived from epidemiological studies, which provide a rich source of data largely unavailable to chemical risk assessors. In addition, use of the principle of optimization as expressed in the ALARA concept has resulted in a safety culture, which is much more than just complying with stipulated limits. The conservative hypothesis of no-threshold dose-effect relation (ICRP) is universally assumed. The end-points and the severity of different classes of pollutants and even different pollutants in a same class vary over a wide range. Hence, it is difficult to arrive at a quantitative value for the net detriment that weighs the various types of end-points and various classes of pollutants. Once the risk due to other pollutants is quantified by some acceptable methodology, it can be expressed in terms of the Risk Equivalent Radiation Dose (R.E.R.D.) for easy comparison with options involving radiation exposure. This paper is an effort to use to quantify and present the risk due to exposure to chemicals and radiation in a common scale for the purpose of easy comparison to facilitate decision taking. (authors)

  14. Harmonization of risk management approaches: radiation and chemical exposures

    International Nuclear Information System (INIS)

    Assessment of occupational and public risk from the environmental pollutants like chemicals, radiation, etc demands that the effects be considered not only from each individual pollutant, but from the combination of all the pollutants. An integrated risk assessment system needs to be in place to have an overall risk perspective for the benefit of policy makers and decision takers to try to achieve risk reduction in totality. The basis for risk-based radiation dose limits is derived from epidemiological studies, which provide a rich source of data largely unavailable to chemical risk assessors. In addition, use of the principle of optimization as expressed in the ALARA concept has resulted in a safety culture, which is much more than just complying with stipulated limits. The conservative hypothesis of no-threshold dose-effect relation (ICRP) is universally assumed. The end-points and the severity of different classes of pollutants and even different pollutants in a same class vary over a wide range. Hence, it is difficult to arrive at a quantitative value for the net detriment that weighs the various types of end-points and various classes of pollutants. Once the risk due to other pollutants is quantified by some acceptable methodology, it can be expressed in terms of the Risk Equivalent Radiation Dose (R.E.R.D.) for easy comparison with options involving radiation exposure. This paper is an effort to use to quantify and present the risk due to exposure to chemicals and radiation in a common scale for the purpose of easy comparison to facilitate decision taking. (authors)

  15. Biological radiation effects

    International Nuclear Information System (INIS)

    The book covers all aspects of biological radiation effects and provides the fundamental basis for understanding the necessity of radiation protection as well as applications in radiotherapy. The physical basis is dealt with in some detail, and the effects at the subcellular and the cellular level are thoroughly discussed, taking into account modern developments and techniques. The effects on the human organism are reviewed, both from the point of view of applications in medicine as well as with regard to radiation hazards (teratogenic, gonadal and carcinogenic effects). It can be used by graduate students as an introduction and as a source book for all who want to become acquainted with this important field. It is an extended version of the original German book containing updated information and new material. (orig.) With 273 figs

  16. Investigation into radiation-chemical transformations of polyamide P-54

    International Nuclear Information System (INIS)

    Investigation results of alcohol-soluble polyamide P-54 radiolysis by different physicochemical methods are presented. It has been established that under the effect of γ-radiation certain processes take place in polyamide, which are connected with branching, structurization and destruction of macromolecules. Radiation-chemical yields of gaseous products during irradiation in the air and in vacuum at irradiation temperatures from 273 to 393 K are calculated. The ratio of the rates of lacing and destruction processes is found and radiation yields of the processes are determined. Under irradiation in the air at temperatures >333 K chain oxidation of P-54 takes place and the growth of pe-- roxide compounds with 8 molecules/100 eV at 298 K up to 135 mole-- cules/100 eV at irradiation temperature 373 K testifies to the fact

  17. Utilization of chemical fertilizers under tropial conditions. 2. Effect of nitrogen, phosphorus and potassium on the relationship between intercepted radiation and yield in potato crops in central Africa

    International Nuclear Information System (INIS)

    In several trials on the role of chemical fertilizers, closure of the canopy was examined with a 90 cm×80 cm quadrant and the relation between intercepted radiation and yield was determined. The rates of canopy closure in plots treated with different chemical fertilizers are shown in Fig. 1. An increase in yield but not in radiation interception was related to fertilization with potassium chloride. When the crop was harvested at different times in a similar trial, an increase in the efficiency of radiation utilization (EUR) occurred in the second half of the growing season, from 3.07 to 5.73 g/MJ (Fig. 3). This result was attributed to a greater foliage mass (Fig. 4) for the same extent of canopy closure resulting in a more efficient interception of radiation and also in greater translocation of carbohydrates from the leaves and stems to the tubers as the plants matured. Chemical fertilizers favoured leaf development at the beginning, and in the case of nitrogen, also at. end of the growth period (Fig. 5). EUR was especially sensitive to phosphorus and to a lesser extent to nitrogen and potassium (Fig. 6). An increase in EUR was related to a delay in tuberization resulting into an increase in the leaf area index even after canopy closure. The increase in EUR could also be explained by the higher number of tubers per plant acting as a more efficient sink for a rapid translocation of photosynthates

  18. Efficiency of interaction between various radiation and chemicals

    International Nuclear Information System (INIS)

    KAERI and INP (Poland) have been carried out parallel study and joint experiments on the major topics according to MOU about their cooperative project. Major experimental techniques were TSH assay, comet assay, and synergism assay. The research consisted of the following workscopes. 1) Application of TSH bioindicator for studying the biological efficiency of radiation, 2) Relative biological efficiency of californium-252 neutrons in the induction of gene and lethal mutations in TSH cells normal and enriched with boron compound, 3) Effect of pesticide on radiation-induced mutations in TSH cells, 4) Interaction of radiation with pesticide on DNA damage in human peripheral blood lymphocytes, 5) Radiomodifying effect of boron and gadolinium compounds in human peripheral blood lymphocytes, 6) Mathematical description of synergistic interactions, 7) General regularities of synergistic interactions, and 8) Determinant of synergistic interaction between radiation, heat and chemicals in cell killing. Both institutes have established wide variety of research techniques applicable to various radiation research through the cooperation. The results of research can make the role of fundamental basis for the better relationship between Korea and Poland

  19. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated martian surface ultraviolet radiation conditions.

    Science.gov (United States)

    Poch, Olivier; Jaber, Maguy; Stalport, Fabien; Nowak, Sophie; Georgelin, Thomas; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice

    2015-03-01

    Most of the phyllosilicates detected at the surface of Mars today are probably remnants of ancient environments that sustained long-term bodies of liquid water at the surface or subsurface and were possibly favorable for the emergence of life. Consequently, phyllosilicates have become the main mineral target in the search for organics on Mars. But are phyllosilicates efficient at preserving organic molecules under current environmental conditions at the surface of Mars? We monitored the qualitative and quantitative evolutions of glycine, urea, and adenine in interaction with the Fe(3+)-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K), and pressure (6 ± 1 mbar) in a laboratory simulation setup. We tested organic-rich samples that were representative of the evaporation of a small, warm pond of liquid water containing a high concentration of organics. For each molecule, we observed how the nontronite influences its quantum efficiency of photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine; their efficiencies of photodecomposition were reduced by a factor of 5 when mixed at a concentration of 2.6 × 10(-2) mol of molecules per gram of nontronite. Moreover, when the amount of nontronite in the sample of glycine was increased by a factor of 2, the gain of photoprotection was multiplied by a factor of 5. This indicates that the photoprotection provided by the nontronite is not a purely mechanical shielding effect but is also due to stabilizing interactions. No new evolution product was firmly identified, but the results obtained with urea suggest a particular reactivity in the presence of nontronite, leading to an increase of its dissociation rate. PMID:25734356

  20. Radiation damage effects on solid state detectors

    Science.gov (United States)

    Trainor, J. H.

    1972-01-01

    Totally depleted silicon diodes are discussed which are used as nuclear particle detectors in investigations of galactic and solar cosmic radiation and trapped radiation. A study of radiation and chemical effects on the diodes was conducted. Work on electron and proton irradiation of surface barrier detectors with thicknesses up to 1 mm was completed, and work on lithium-drifted silicon devices with thicknesses of several millimeters was begun.

  1. Chemical and physical knowledge about radiation exposure

    International Nuclear Information System (INIS)

    Easily explained is the title subject about the electromagnetic wave, photon, neutron, particle line, linear energy transfer and unit. The electromagnetic wave is a waving particle, photon, without mass and generally involves radio, infrared, visible, ultraviolet and gamma (and X) rays. The interaction between photon and material atom involves effects photoelectric, yielding electron pair, Compton scattering and nuclear in the order of photon energy: respectively important in low energy imaging like mammography vs high exposure dose; positron emit tomography (PET); cause of image fading or source of radiation therapy; and at >7 MeV photon (e.g., linac therapy), the nuclear reaction-generated neutron, hazardous to radiological staff. Neutron has no electric charge and should be shielded by light atoms like H and C as energy loss by collision is efficient. Alpha ray generated by the reaction 10B(n, alpha) 7Li can effectively kill cancer cells. Particle line involves alpha and beta rays. Alpha particle from Rn is sometimes problematic for human health because Ra contained in building materials produces Rn. Beta ray is one of causes of exposure and produces Bremsstrahlung X-ray at its stoppage, which is used for imaging of 89Sr and so on. Beta ray from 40K is important in the internal exposure as the atom in the body amounts to 55 Bq/kg body weight. Effects of radiation depend on its range and ionization in the body: the linear energy transfer (LET) describes the degree of the effects. Unit contains that of the exposure (dose of irradiation) and absorption, and of the radioactivity: the first is expressed by R (roentgen), measurable with the direct ionization effect; the second, Gy (gray), calculable from R; and the third, the decay rate of radionuclide, disintegration per sec (dps) =1 Bq (becquerel). The equivalent doses are expressed by Sv (sievert). (T.T.)

  2. Chemical protection against radiation effects on Serum transaminase and the levels of glutamic and pyruvic acids following gamma irradiation of rats

    International Nuclear Information System (INIS)

    The present study been carried out to evaluate the radioprotective efficiency of urea and vitamin E for protecting certain enzymatic systems from deleterious radiation effects. The activities of serum transaminase; aspartate aminotransferase (A S T) and alanine aminotransferase (A L T); as well as their relative substrates; glutamic and pyruvic acid levels; were selected for this study. The results indicated that whole body gamma irradiation at the dose of 7 Gy caused an evident elevation in the activities of both A S T and A L T and in the level of pyruvic acid at the experiment period (first,third,seventh and tenth days post irradiation). On the other hand the free glutamic acid level decreased at all post irradiation days. The variation in both enzymatic activities, pyruvic and glutamic acid levels became less pronounced in rats treated with either urea or vitamin E as chemical radioprotectors before whole body gamma irradiation. The results showed that the two agents are good radioprotectors, with respect to these parameters under investigation

  3. Evaluation of the effects of gamma radiation about the physicochemical, chemical and biochemical components of beverages based in soy milk and grape juice

    International Nuclear Information System (INIS)

    The beverages based of soy milk and grape juice contains bioactive compounds that help in maintaining the health of the individual, attributing functional characteristics to the beverage. The gamma irradiation technique of is used to reduce and / or eliminate the microbial count of foods extending shelf life. However, it has been demonstrated that certain dosages of gamma irradiation are capable of inducing changes in the structure of molecules in food. Thus, the aim of this study was to observe the effect of different doses of gamma irradiation about the physicochemical, chemical and biochemical in beverages based in smokily and grape juice. For the tests, were obtained soy milk in the ratio 1:6, to which were added integral grape juices (red and white). The beverages were treated with increasing doses of gamma radiation to be analyzed. The doses of irradiation may have induced inversion of sucrose to fructose and glucose. Phenolic compounds of the beverage with white grape juice didn't differ significantly between treatments. The antioxidant capacity was higher for the beverage with red grape juice regardless of irradiation dose. It was concluded that beverages based soy milk and grape juice (red and white) differ from each other for most of the analyzes conducted. However, the average results of the control samples were not far from the results obtained for treatments. (author)

  4. Evaluation of the effects of gamma radiation about the physicochemical, chemical and biochemical components of beverages based in soy milk and grape juice

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Erica A.; Broetto, Fernando; Bressan, Dayanne F.; Coscolin, Renata B.; Costa, Vladimir E., E-mail: ericabarros@fca.unesp.br, E-mail: broetto@ibb.unesp.br, E-mail: daybressan@yahoo.com.br, E-mail: renata.coscolin@gmail.com, E-mail: vladimir@ibb.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sao Paulo, SP (Brazil). Dept. de Quimica e Bioquimica

    2013-07-01

    The beverages based of soy milk and grape juice contains bioactive compounds that help in maintaining the health of the individual, attributing functional characteristics to the beverage. The gamma irradiation technique of is used to reduce and / or eliminate the microbial count of foods extending shelf life. However, it has been demonstrated that certain dosages of gamma irradiation are capable of inducing changes in the structure of molecules in food. Thus, the aim of this study was to observe the effect of different doses of gamma irradiation about the physicochemical, chemical and biochemical in beverages based in smokily and grape juice. For the tests, were obtained soy milk in the ratio 1:6, to which were added integral grape juices (red and white). The beverages were treated with increasing doses of gamma radiation to be analyzed. The doses of irradiation may have induced inversion of sucrose to fructose and glucose. Phenolic compounds of the beverage with white grape juice didn't differ significantly between treatments. The antioxidant capacity was higher for the beverage with red grape juice regardless of irradiation dose. It was concluded that beverages based soy milk and grape juice (red and white) differ from each other for most of the analyzes conducted. However, the average results of the control samples were not far from the results obtained for treatments. (author)

  5. Radiation damage effects

    International Nuclear Information System (INIS)

    The summarized data suggest that both glass and crystalline waste forms may sustain substantial doses of α-decay damage and still retain their durability. Radiation effects in glasses are less pronounced and less complicated than that in single or poly-phase ceramics; thus, the latter category requires careful research and consideration. Perhaps the most important conclusion is that short-term actinide doping experiments in crystalline phases provide a realistic simulation of long-term effects based on the comparison of observed radiation effects in Pu-doped zircon and naturally damaged zircon (there is a 107 difference in dose rate). Deviations from the similarity in effect (e.g., saturation dose) may be attributed to low-temperature, long-term annealing effects

  6. Radiation effects on living systems

    International Nuclear Information System (INIS)

    This bibliography includes papers and reports by Atomic Energy of Canada Limited scientists concerning radiation effects on living systems. It is divided into three sections: Radiobiology, Radiation Biochemistry and Radiation Chemistry. (auth)

  7. Genetic effects of radiation

    International Nuclear Information System (INIS)

    Data are reviewed from studies on the genetic effects of x radiation in mice and the extrapolation of the findings for estimating genetic hazards in man is discussed. Data are included on the frequency of mutation induction following acute or chronic irradiation of male or female mice at various doses and dose rates

  8. Optimization of radiation-chemical process of trichloroethylene oxidation

    International Nuclear Information System (INIS)

    Kinetics of trichloroethylene (TCE) oxidation under the effect of gamma-irradiation is investigated. It is shown that the reaction of TCE oxidation proceeds according to the chain mechanism. At the temperature of 60 deg C in the dose rate range from 1.1015 to 1.5x1016 eV(cm3xs) radiation-chemical yield changes from 1.5x104 to 5x103 molecules/100 eV. It is found that the reaction rate practically does not depend upon oxygen concentration and is directly proportional to the TCE concentration and the dose rate. The process optimization is studied

  9. Chemical prophylaxis of radiation in uries. 2 ed.

    International Nuclear Information System (INIS)

    The book is devoted to medicinal prophylaxis of acute radiation injury, caused by external X-ray gamma-and neutron irradiation of lethal dose. The book deals with the problems of finding, testing and mechanism of action of radioprotectors in the investigations on different kinds of animals. Special attention is paid to sulphur-bearing compounds, but the paper also includes data on all the classes of the effective enough radioprotective chemical compounds. New data on efficiency of different radioprotector combinations are presented

  10. Controlling radiation fields in CANDU reactors using chemical decontamination technologies

    International Nuclear Information System (INIS)

    Radiation dose to personnel during major maintenance and reactor refurbishment of CANDU reactors can be controlled using chemical decontamination technologies. Technologies that have, and can be applied in CANDU reactors include; sub- and full-system decontaminations of the heat transport system using the CAN-DECON, CAN-DEREM and CAN-DEREM Plus processes, and removal of Sb-122 and Sb-124 from the reactor core using hydrogen peroxide. CAN-DECON is a dilute chemical decontamination process that employs ion-exchange technology to continuously remove dissolved metals and radionuclides and regenerate the components of the CAN-DECON formulation. Qualification of the CAN-DECON process, equipment requirements, process effectiveness, recent process improvements and future directions are discussed. Radioantimony deposited on in-core surfaces can be released into the HTS coolant by air ingress during maintenance. At Gentilly-2, where large amounts of in-core antimony are present, these releases have resulted in increased radiation fields around the reactor, making outage dose planning difficult and contributing significantly to the radiation exposure of maintenance personnel. An antimony removal process developed by KWU for PWR's and adapted to meet CANDU specific conditions, has been successfully applied at Gentilly-2. Optimization of process conditions, and improvements in the in-core antimony removal process are described. (author)

  11. Controlling radiation fields in CANDU reactors using chemical decontamination technologies

    International Nuclear Information System (INIS)

    Radiation dose to personnel during major maintenance and reactor refurbishment of CANDU reactors can be controlled using chemical decontamination technologies. Technologies that have, and can be applied in CANDU reactors include; sub- and full-system decontamination of the heat transport system using the CAN-DECON CAN-DEREM and CAN-DEREM Plus processes; and removal of Sb-122 and Sb-124 from the reactor core using hydrogen peroxide. CAN-DECON is a dilute chemical decontamination process that employs ion-exchange technology to continuously remove dissolved metals and radionuclides and regenerate the components of the CAN-DECON formulation. Qualification of the CAN-DECON process, equipment requirements, process effectiveness, recent process improvements and future directions are discussed. Radioantimony deposited on in-core surfaces can be released into the HTS coolant by air ingress during maintenance. At Gentilly-2, where large amounts of in-core antimony are present, these releases have resulted in increased radiation fields around the reactor, making outage dose planning difficult and contributing significantly to the radiation exposure of maintenance personnel. An antimony removal process developed by KWU for PWR's and adapted to meet CANDU specific conditions, has been successfully applied at Gentilly-2. Optimization of process conditions, and improvements in the in-core antimony removal process are described. (author)

  12. Mechanism of Interaction between Ionizing Radiation and Chemicals

    International Nuclear Information System (INIS)

    This research project has been carried out jointly with INP (Poland) to develop technologies for 'Mechanism of Interaction between ionizing radiation and chemicals. Several biological end-points were assessed in experimental organisms such as higher plants, rats, cell lines and yeast cells to establish proper bioassay techniques. The Tradescantia somatic cell mutation assay was carried out, and immunohistochemistry and hormone assays were done in Fisher 344 rats and cell lines to analyse the combined effect of ionizing radiation with mercury chloride. Using the common regularities of combined actions of two factors, a theoretical model was established, and applied to the thermo radiation action and synergism between two chemicals, as well. The model approach made it possible to predict the condition under which the maximum synergism could be attained. The research results were published in high standard journals and presented in the scientific conferences to verify KAERI's current technology level. The experience of collaboration can be used as a fundamental tool for multinational collaboration, and make the role of improving relationship between Korea and Poland

  13. Mechanism of Interaction between Ionizing Radiation and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Lee, B. H.; Shin, H. S. (and others)

    2008-03-15

    This research project has been carried out jointly with INP (Poland) to develop technologies for 'Mechanism of Interaction between ionizing radiation and chemicals{sup .} Several biological end-points were assessed in experimental organisms such as higher plants, rats, cell lines and yeast cells to establish proper bioassay techniques. The Tradescantia somatic cell mutation assay was carried out, and immunohistochemistry and hormone assays were done in Fisher 344 rats and cell lines to analyse the combined effect of ionizing radiation with mercury chloride. Using the common regularities of combined actions of two factors, a theoretical model was established, and applied to the thermo radiation action and synergism between two chemicals, as well. The model approach made it possible to predict the condition under which the maximum synergism could be attained. The research results were published in high standard journals and presented in the scientific conferences to verify KAERI's current technology level. The experience of collaboration can be used as a fundamental tool for multinational collaboration, and make the role of improving relationship between Korea and Poland.

  14. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    In this review radiation produced by the nuclear industry is placed into context with other sources of radiation in our world. Human health effects of radiation, derivation of standards and risk estimates are reviewed in this document. The implications of exposing the worker and the general population to radiation generated by nuclear power are assessed. Effects of radiation are also reviewed. Finally, gaps in our knowledge concerning radiation are identified and current research on biological effects, on environmental aspects, and on dosimetry of radiation within AECL and Canada is documented in this report. (author)

  15. Radiation Effects Research Foundation

    International Nuclear Information System (INIS)

    The last day of March 1978 marked the completion of the first 3 years of operation of the Radiation Effects Research Foundation in Hiroshima and Nagasaki. RERF was established on 1 April 1975 as successor to the Atomic Bomb Casualty Commission which had been in continuous operation since 1947. This record of the first 3 years of operation consists of selected reports and other documents prepared in the course of conducting the business of RERF and includes a brief history, a late radiation effects that might be conducted at RERF. The wisdom and thought given to the research program and its operation by the Scientific Council and the Board of Directors is reflected in the minutes of their meetings which are included in the Appendix. (Mori, K.)

  16. Radiation effects in metals

    International Nuclear Information System (INIS)

    The current understanding of radiation damage in metals is reviewed, simplifying the actual complexity of the effects by considering some aspects separately. The production of point defects in metals, the primary damage state are first studied. The second part of the lecture is devoted to the evolution of this primary damage state as a function of temperature and dose: the steady state concentration of point defects, the nucleation of secondary defects and their growth are successively considered

  17. Chernobyl health effects: radiation or stress?

    International Nuclear Information System (INIS)

    Consideration is given to results of wide-scale examination of human population, subjected to the effect of radiation in result of Chernobyl accident. The examined contingents consisted of liquidators, evacuated from 30-km zone, people still living in contamination territories, children of irradiated parents and children, who received large radiation doses. High levels of respiratory system diseases, digestive system diseases, cardiovascular diseases and nervous system diseases were revealed for these people. It was revealed that stress, socio-economic and chemical factors played sufficient role in disease incidence. It is shown that fair of radiation may damage more, than radiation itself

  18. The influence of radiation on the chemical constituents of food

    International Nuclear Information System (INIS)

    Six major components are necessary in an adequate diet, viz. fats, carbohydrates, proteins, vitamins, minerals and water. Wholesomeness evaluation may be divided into two categories: (a) The monitoring of any change in nutritional content. (b) The examination of the possible formation of toxic degradation products. Investigations take the form of animal feeding studies or chemical monitoring. Very few foods do not have water as a significant component. The major radiolytic products of water are hydroxyl radicals and hydrated electrons. The degradation products of lipids caused by ionizing radiation, autoxidation and thermal processing are very similar. No untoward effects have been noted in laboratory animals fed irradiated lipid-containing foods. Degradation of polysaccharides by ionising radiation yields simpler carbohydrates. Simpler carbohydrates are not significantly degraded by commercially recommended doses of radiation. Most of the radiolytic products are carbonylic in character. Products formed in irradiated fruits and vegetables have been shown to be non-toxic. No significant changes could be detected in the nutritiousness of a variety of proteins. No vitamin deficiency diseases could be detected in laboratory animals receiving irradiated fruits and vegetables. Minerals are unaffected, nutritionally, by ionising radiation

  19. Effect of β-carotene oil and bee pollen under the radiation and chemical influence upon ion transport in rat brain slices

    International Nuclear Information System (INIS)

    The effect of natural antioxidants (β-carotene oil and bee pollen) on the K+ ion transport in brain cells of rats exposed to X chronic fractionated irradiation at 0.25 Gy dose and cadmium chloride and atrazine effects is studied. It is stated that the β-carotene oil and bee pollen firstly repair radiation-induced disorders in the processes of energy-dependent transmembrane ion transport in nerve cells and slightly effect on the diffusion ion transport

  20. Cumulative radiation effect

    International Nuclear Information System (INIS)

    In five previous papers, the concept of Cumulative Radiation Effect (CRE) has been presented as a scale of accumulative sub-tolerance radiation damage, with a unique value of the CRE describing a specific level of radiation effect. Simple nomographic and tabular methods for the solution of practical problems in radiotherapy are now described. An essential feature of solving a CRE problem is firstly to present it in a concise and readily appreciated form, and, to do this, nomenclature has been introduced to describe schedules and regimes as compactly as possible. Simple algebraic equations have been derived to describe the CRE achieved by multi-schedule regimes. In these equations, the equivalence conditions existing at the junctions between schedules are not explicit and the equations are based on the CREs of the constituent schedules assessed individually without reference to their context in the regime as a whole. This independent evaluation of CREs for each schedule has resulted in a considerable simplification in the calculation of complex problems. The calculations are further simplified by the use of suitable tables and nomograms, so that the mathematics involved is reduced to simple arithmetical operations which require at the most the use of a slide rule but can be done by hand. The order of procedure in the presentation and calculation of CRE problems can be summarised in an evaluation procedure sheet. The resulting simple methods for solving practical problems of any complexity on the CRE-system are demonstrated by a number of examples. (author)

  1. Evaluation of the ionizing radiation 60Co effect on the physical, chemical and nutritional properties of different cultivars of soybean grains (Glycine max (L.))

    International Nuclear Information System (INIS)

    With the increase of the world population, creative strategies will be necessary to control food production. To achieve this challenge, new cultivars have been development, though different techniques and characteristics. To improve food conservation, a plant of methods can be used. The use of Cobalto-60 radiation is a secure and useful method to increase the life time of foods. Due to the commercial and nutritional importance of soybean, some alterations must be studied. This study has the objective to determinate this alterations caused by irradiation (with doses of 2, 4 and 8 kGy) in raw and cooked grain of five different cultivars of soybean (BRS 212, BRS 213, BRS 214, 231 BRS and E48), this study includes analysis of time cooking and hydratation, and chemical analysis of proximate composition, in vitro digestibility of proteins, percentage of deamidation , phenolics compounds, trypsin inhibitors and tannins. The amount of water absorbed by each grain varied from 14.00 to 16.66mL, and the time cooking varied from 119.67 to 291.33 minutes. The values found for ash were 4.90 to 6.08%, for protein from 21.23 to 36.99%, for fat from 19.22 to 24.84%, soluble staple fibres from 1.37 to 4.03% and insoluble staple fibres from 15.97 to 18.87%. The deamidation percentage in the different samples varied of 17,34 to 57.79% and the digestibility in vitro from 84.45 to 89.11%. Inside of the anti nutritional factors, the total compounds phenolics varied from 3.9 to 9.7 mg/g, the units of trypsin inhibited from 24.75 to 57.53 UTI/g and the tannins from 0.02 to 0.32 mg/g. For the physical analyses it showed differences in the time of hydratation among them and the irradiation promoted reduction in the time, but not in the amount of absorbed water; in the cooking time it had reduction with the increase of the doses of radiation; the differences found in the proximate composition did not have influence with the irradiation, but with the different cultivars; for the digestibility

  2. Chemical and radiation carcinogenesis in man and experimental animals

    International Nuclear Information System (INIS)

    It is now well established that some cancer in man results from exposures to certain chemicals and radiations, both ultraviolet and ionizing radiations. These chemical and physical agents are also carcinogenic in experimental animals and, where adequately tested, in mammalian cell cultures. However, only very limited data are available on the relative roles of and the interrelationships, if any, between these various environmental agents in the causation of the majority of the cancers in man. Nothing is known of the relationship between these agents and possible carcinogenic viral information in the etiology of cancer in man. Furthermore, little is known about the molecular mechanisms by which chemicals and radiations induce cancers in either man or experimental animals. The objective of this brief review is to present certain aspects of chemical and radiation carcinogenesis in man and experimental animals and some of the problems in the elucidation of their roles in carinogenesis in the human

  3. Preparation Of Polystyrene Nanoparticles Using Both GAMMA Radiation And Chemical Induced Emulsion Polymerization

    International Nuclear Information System (INIS)

    Polystyrene nanoparticles were synthesized by radiation-induced polymerization and chemical emulsion polymerization. Compared with the chemical emulsion polymerization, the radiation process easily prepared the polystyrene (PS) nanoparticles at room temperature and without the pollutant of chemical initiator. The effects of various polymerization parameters in both systems such as total dose for radiation polymerization, monomer concentration, sodium dodecyl sulfate (SDS) stabilizer content on the particle size and size distribution were systematically investigated. The diameter of a polymer particle and its distribution were measured on a Marvern Zetasizer. Monomer conversion was studied gravimetric ally and the structure of PS was analyzed by Differential Scanning Calorimeter (DSC) and Fourier Transform Infrared (FT-IR) Spectrophotometer

  4. Radiation-chemical hardening of epoxyoligoesteracrylates

    International Nuclear Information System (INIS)

    The paint and varnish epoxide compositions radiation-hardened with the following warm-up (γ-radiation of 60%, dose rate 1 Gy/s; accelerated electrons, dose rate 1.7 kGy/s) are obtained. Therewith both methods of epoxy group inclusions into a three-dimensional net are coincided: preliminary epoxy resin modification by methacrylic acid and inclusion ternary amine into compositions. Physicomechanical and electric characteristics of oligomeric compositions are presented

  5. Radiation protection in the pharmaceutical-chemical industry

    International Nuclear Information System (INIS)

    Some aspects of the use of ionizing radiation in research in the pharmaceutical and chemical industries will be discussed, the emphasis being placed on the handling of open radioactive materials in research laboratories. The compliance with official regulations and the preparation of company internal radiation protection regulations are described. 1 tab., 9 refs

  6. Radiation and transmutation effects relevant to solid nuclear waste forms

    International Nuclear Information System (INIS)

    Radiation effects in insulating solids are discussed in a general way as an introduction to the quite sparse published work on radiation effects in candidate nuclear waste forms other than glasses. Likely effects of transmutation in crystals and the chemical mitigation strategy are discussed. It seems probable that radiation effects in solidified HLW will not be serious if the actinides can be wholly incorporated in such radiation-resistant phases as monazite or uraninite

  7. Natural radiation sources fabricated from potassic chemical fertilizers and application to radiation education

    International Nuclear Information System (INIS)

    Potassic chemical fertilizers contain potassium, a small part of which is potassium-40. Since potassium-40 is a naturally occurring radioisotope, potassic chemical fertilizers are often used for demonstrations of the existence of natural radioisotopes and radiation. To fabricate radiation sources as educational tools, the compression and formation method developed by our previous study was applied to 13 brands of commercially available chemical fertilizers containing different amounts of potassium. The suitability (size, weight, and solidness) of thus fabricated sources was examined and 12 of them were selected as easy-to-use radiation sources at radiation educational courses. The radiation strength (radiation count rate measured by a GM survey meter) and potassium content of the 12 sources were examined. It was found that the count rate was wholly proportional to the percentage of potassium, and a new educational application was proposed and discussed for understanding that the substance emitting radiation must be the potassium present in the raw fertilizers. (author)

  8. Biological radiation effects

    International Nuclear Information System (INIS)

    This work examines ionizing radiations: what they are, where they come from, their actions and consequences, finally the norms and preventive measures necessary to avoid serious contamination, whether the individual or the population in general is involved. Man has always been exposed to natural irradiation, but owing to the growing use of ionizing radiations both in medicine and in industry, not to mention nuclear tests and their use as an argument of dissuasion, the irradiation of human beings is increasing daily. Radioactive contamination does remain latent, apart from acute cases, but this is where the danger lies since the consequences may not appear until long after the irradiation. Of all biological effects due to the action of radioelements the genetic risk is one of the most important, affecting the entire population and especially the generations to come. The risk of cancer and leukemia induction plays a substantial part also since a large number of people may be concerned, depending on the mode of contamination involved. All these long-term dangers do not of course exclude the various general or local effects to which the individual alone may be exposed and which sometimes constitute a threat to life. As a result the use of ionizing radiations must be limited and should only be involved if no other process can serve instead. The regulations governing radioelements must be stringent and their application strictly supervised for the better protection of man. This protection must be not only individual but also collective since pollution exists in air, water and land passes to plants and animals and finally reaches the last link in the food chain, man

  9. Chemical Modifications of Starch: Microwave Effect

    Directory of Open Access Journals (Sweden)

    Kamila Lewicka

    2015-01-01

    Full Text Available This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation are discussed. Properties of microwave radiation and its impact on starch (with particular regard to modifications described in literature are characterized.

  10. Radiation-chemical degradation of cellulose and other polysaccharides

    International Nuclear Information System (INIS)

    Results of studies on the radiation-chemical transformations of cellulose, its ethers, and some other polysaccharides (xylan, starch, dextran, chitin, chitosan, and heparin) are discussed. Ionising radiation causes the degradation of these compounds accompanied by decomposition of the pyranose ring and formation of compounds with carbonyl and carboxy groups, as well as formation of hydrogen, carbon dioxide, and carbon monoxide. The efficiency of degradation increases considerably with temperature and depends on the structure of the polysaccharide and the nature of its substituents. A mechanism of the radiation-chemical transformations of cellulose and other polysaccharides is suggested. The prospects of using radiation-chemical methods for processing of cellulose and other polysaccharides in industry and agriculture are considered. The bibliography includes 213 references.

  11. Effects of radiation

    International Nuclear Information System (INIS)

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  12. Radiation-induced chemical evolution of biomolecules

    International Nuclear Information System (INIS)

    Chemical evolution in glycilglycine (Gly2) films irradiated with 146 nm vacuum ultraviolet light was studied. It is found that quantum efficiency of chemical evolution from Gly2 to glycilglycilglycine (Gly3) is smaller than that to glycilglycilglycilglycine (Gly4) due to the multiple step of reaction. Furthermore, we have carried out measurement of soft X-ray natural circular dichroism spectra for serine and alanine films in the energy region of oxygen 1s transition and we report the splitting of 1s→π* transitions.

  13. Radiation effects and radiation risks. 2. ed.

    International Nuclear Information System (INIS)

    The book presents the facts and the principles of assessment and evaluation of biological radiation effects in general and also with particular reference to the reactor accident of Chernobyl, reviewing the consequences and the environmental situation on the basis of current national and international literature, including research work by the authors. The material compiled in this book is intended especially for physicians, but will also prove useful for persons working in the public health services, in administration, or other services taking care of people. The authors tried to find an easily comprehensible way of presenting and explaining the very complex processes and mechanisms of biological radiation effects and carcinogenesis, displaying the physical primary processes and the mechanisms of the molecular radiation effects up to the effects of low-level radiation, and present results of comparative epidemiologic studies. This section has been given considerable space, in proportion to its significance. It also contains literature references for further reading, offering more insight and knowledge of aspects of special subject fields. The authors also present less known results and data and discuss them against the background of well-known research results and approaches. Apart from the purpose of presenting comprehensive information, the authors intend to give an impact for further thinking about the problems, and helpful tools for independent decisions and action on the basis of improved insight and assessment, and in this context particularly point to the problems induced by the Chernobyl reactor accident. (orig.) With 10 maps in appendix

  14. Chemical Modifications of Starch: Microwave Effect

    OpenAIRE

    2015-01-01

    This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation ...

  15. Chemical modification of polyurethanes by radiation-induced grafting

    International Nuclear Information System (INIS)

    Basic methods of radiation-induced modification of polyurethanes for biomedical applications and of their characterization are briefly described. The most important works found in literature on radiation grafting of polyurethanes are discussed. The radiation grafting of polyetherurethane films and tubings by the preswelling method using various monomers and their physico-chemical characterization are discussed in detail with respect to the antithrombogenic properties of the materials. Novel applications for radiation-modified polyurethanes as drug delivery systems or antiinfectious materials are briefly mentioned. 52 references

  16. Radiation chemical studies on the treatment of waste water

    International Nuclear Information System (INIS)

    The radiation induced reaction in aqueous solution was studied to develope the radiation treatment as a new technique for waste water and to elevate the effectiveness of radiation. The effectiveness of radiation was enhanced by combination of radiation induced reaction with conventional methods such as biological treatment and coagulation treatment. The synergistic effect of radiation and ozone was studied by using phenol and ethylene glycol. The chain reaction was observed in the radiation induced oxidation. The combination of radiation and ozone is considered to be one of the most useful method. In this report, the mechanism of each reaction and the applicability of the reaction to the treatment of waste water are discussed. (author)

  17. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    A summary is given of studies on radiation effects in light-emitting diodes, laser diodes, detectors, optical isolators and optical fibers. It is shown that the study of radiation damage in these devices can provide valuable information concerning the nature of the devices themselves, as well as methods of hardening these devices for applications in radiation environments

  18. Radiation effects on living systems

    International Nuclear Information System (INIS)

    This bibliography includes papers and reports by Atomic Energy of Canada Limited scientists concerning radiation effects on living systems. It is divided into three sections: Radiobiology, Radiation Biochemistry and Radiation Chemistry. It is intended that the bibliography will be updated regularly

  19. Effects of gamma radiation (60Co) on the main physical and chemical properties of health care packaging and their compounds paper and multilayer plastic film, used for health products sterilization

    International Nuclear Information System (INIS)

    Gamma radiation is one of the technologies applied for the sterilization of packaging systems containing products for health. During sterilization process it is critical that the properties of packages are maintained. In this study two samples of commercial pouch packaging comprised of surgical grade paper on one side and the other side multilayer plastic film were irradiated with gamma rays. The following doses were applied 25 kGy (1,57 kGy/h) and 50 kGy (1,48 kGy/h). One packaging sample was paper formed by softwood fibers and multilayer plastic film based on poly(ethylene terephthalate) (PET)/polyethylene (PE). The second type of paper sample was made by a mixture of softwood and hardwood fibers and multilayer plastic film based on polyethylene terephthalate (ethylene) (PET)/polypropylene (PP). The effects of radiation on the physical and chemical properties of papers and multilayer plastic films, as well as the properties of the package were studied. The paper was the more radiation sensitive among the studied materials and radiation effects were more pronounced at brightness, pH, tearing resistance, bursting strength and tensile strength. Nonetheless, worst comparatively effects were noted on the sample made by a mixture of softwood and hardwood fibers. The porosity of paper was enhanced by 50 kGy. In the case of plastic films, radiation effects on tensile strength was the most pronounced property for both samples. In the case of the packaging the sealing resistance decreased with radiation. The effects observed for the treatment at 50 kGy were more pronounced when compared to 25 kGy. This last is the dose which is usually applied to sterilize health products. A dosimetry study was performed during irradiation at 25 kGy, 40 kGy and 50 kGy and its importance may be reported by the average dose variation 20 %. (author)

  20. Application of synchrotron radiation in chemical dynamics

    International Nuclear Information System (INIS)

    In October 1992, funding was approved to begin construction of a beamline and two end stations to support chemical dynamics experiments at LBL's Advanced Light Source (ALS). This workshop was organized to develop specifications and plans and to select a working team to design and supervise the construction project. Target date for starting the experiments is January 1995. Conclusions of the workshop and representative experiments proposed in earlier workshops to form the basis for beamline plans and end-station designs are summarized in this report. 6 figs

  1. Role of fuel chemical properties on combustor radiative heat load

    Science.gov (United States)

    Rosfjord, T. J.

    1984-01-01

    In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, UTRC has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced highly-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.

  2. Chemical and radiation carcinogenesis. Progress report

    International Nuclear Information System (INIS)

    Gamma radiation, as a quantitative perturbation reference, has been related to oxygen toxicity as the unavoidable background risk due to living in an oxygen atmosphere. The basic mechanisms shared by gamma irradiation and oxygen toxicity have been studied. The response to these two perturbations has been characterized at the molecular level through DNA chemistry and monoclonal antibodies, and by cellular biological responses. The investigation of cellular responses is being extended to the molecular level through a study of alteration of gene arrangement and gene expression. Concentration has been on the study of the involvement of the evolutionally conserved repetitive DNA sequences shared by hamster and man. Such sequences were found and some have been isolated in plasmids. Two cellular systems were chosen for investigation, the embryonic/adult mesenchymal system and the hematopoietic tissues system. Concentration has been on the isolation, properties, and response to perturbation of the progenitor cells and the stem cell populations

  3. Radiation chemical effects in experiments to study the reaction of glass in an environment of gamma-irradiated air, groundwater, and tuff

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A.

    1986-05-02

    The results of experiments performed by John K. Bates et al. on the reaction of nuclear waste glass with a gamma-irradiated 90{sup 0}C aqueous solution were analyzed using theory developed from past research in radiation chemistry. The aqueous solution they used is similar to what would be expected in a water-saturated environment in a nuclear waste repository in tuff. The purpose of our study was to develop an understanding of the radiation-chemical processes that occurred in the Bates et al. experiments so the results could be applied to the design and performance analysis of a proposed repository in unsaturated tuff in Nevada. For the Bates et al. experiments at the highest dose (269 Mrad), which originally contained about 16 ml of "equilibrated" water taken from Nevada Test Site Well J-13 and 5.4 ml of air, we predicted that water decomposition to H{sub 2} and O{sub 2} would produce a pressure increase of at least 1.0 MPa at 20{sup 0}C. We also predicted that nitrogen fixation from the air would occur, producing an increase of 1.6 x 10{sup -4} M in total fixed nitrogen concentration in solution. In addition, an equimolar production of H{sup +} would occur, which would be buffered by the HCO{sub 3}{sup -} in the water. The fixed nitrogen in solution was predicted to be present as NO{sub 2}{sup -} and NO{sub 3}{sup -} with the ratio influenced by the presence of materials catalytic to the decomposition of H{sub 2}O{sub 2}. We found reasonable agreement between our predictions and the observations of Bates et al., where comparisons were possible. We apply the results to the proposed Nevada repository to the degree possible, given the different expected conditions.

  4. Present state of the combined treatment with radiation and chemicals

    International Nuclear Information System (INIS)

    Of malignancies in which the results have been markedly improved by combined treatment with radiation and chemicals for the past decade, non-Hodgkin's lymphoma localized in head and neck and intra-oral carcinoma are presented. In the management of non-Hodgkin's lymphoma, the authors stressed the following: 1) Rappaport's classification has been a help to evaluate the prognosis; 2) lymphoma of the Waldeyer's ring should not be included in nodal lymphoma, and also it should be separated from extranodal lymphoma as well, because of different prognosis; 3) It seems that some kinds of chemotherapy would have a role in improving the results of radiotherapy in the management of radiotherapy, even in localized cases. In some types of intra-oral carcinomas, bleomycin was found to be useful in the combined treatment with radiation as follows: 1) A minimum required dose for local control of intra-oral carcinomas could be a combination of 30Gy in 3 weeks and 100mg bleomycin during the same period. 2) Although the end results of patients with carcinoma of tongue or floor of mouth have not been improved by this approach, there was marked improvement in patients with carcinoma of the lower gum. 3) For the treatment, the side effect as limiting factor was mucositis, and none of the cases of the series developed pulmonary complication. In the cases controlled by initial combined treatment, no one developed troubles of the mandible, in the follow-up study for the past 10 years. (author)

  5. Radiation chemical production of resin-bonded paper laminates

    International Nuclear Information System (INIS)

    After referring to the economic importance of resin-bonded paper laminates and to the environmental and energy-related aspects of radiation chemical processes, the radiation polymerization of resins and monomers is discussed. Furthermore, a survey is given of the application of melamine resins to the production of laminates and of the modification of these melamines to obtain radiation polymerizable resins. According to the dose distribution within the laminate samples a detailed investigation has been made with regard to the radiation conditions at the electron processing unit used. Some relevant methods of preparing modified melamine resins were examined by analytical tests and efforts have been made in optimizing the resins obtained. To investigate the radiation curability of these resins, an analytical procedure has been developed based upon the precipitation of manganese dioxide from potassium permanganate, which enables to establish a quantitative relation between the decrease of the double bond content and the absorbed dose as well as to compare the reactivity of radiation curable systems. A description of common production processes of laminates is followed by some data concerning the radiation damage of cellulose, the basis of both conventionally and radiation chemically produced laminates. By thorough investigations a correlation could be found between the composition of the resin-monomer-systems and the properties of the corresponding laminates making the latter predictable. These investigations did not only lead to a preference of acrylic-modified melamine resins but also to a reduction among the available reactive diluents to non-volatile mono- and diacrylates. Finally, a description of a production line on a large scale is followed by a calculation of cost of the radiation chemical part of the process. (author)

  6. Radiation hazards and their effects

    International Nuclear Information System (INIS)

    Radiation can be classified into ionizing radiation and non-ionizing radiation, based on whether it is capable of ionizing atoms and breaking chemical bonds. Ultraviolet and higher frequency such as X-rays, gamma rays are ionizing. These pose their own special hazards. Non ionizing radiation is associated with two major potential hazards. i.e. electrical and biological. Additionally includes electric current caused by radiation can generate sparks and create a fire or explosive hazards. Strong radiation can induce current capable of delivering an electric shock. Extremely high power electromagnetic radiation can cause electric currents strong enough to create sparks when an induced voltage exceeds the breakdown voltage of surrounding mediums. A 2009 study at the University of Basal in Switzerland found that intermitted exposure of human cells to a 50 Hz electromagnetic field at a flux density of 10 Gy induced a slight but significant increase of DNA fragmentation in the comet assay. Mobile phones radiation and health concerns have been raised, especially following the enormous increase in the use of wireless mobile telephony throughout the world. Mobile phones use electromagnetic radiation in the microwaves range and some believes this may be harmful to human health. (author)

  7. The use of ionizing radiations in the treatment of liquid and solid waste; biological and physico-chemical effects and industrial study

    International Nuclear Information System (INIS)

    Short recycling of waste water and the use of liquid or dehydrated sludge as natural manure for agriculture, or animal supplement feed is of great economical and ecological interest. However, it requires strong disinfection. Treatment with ionizing radiation can be used as a complement to conventional methods in the treatment of liquid and solid wastes. An experiment conducted with a high-energy electron beam linear accellerator (10 MeV) is presented. Degradation of undesirable metabolites in wastes occurs at a dose of 50 krad. Undesirable seeds, present in sludge, are destroyed with a 200-krad dose. The same dose is sufficient for parasitic and bacterial disinfection (DL 90). Destruction of poliovirus (DL 90) is obtained at 400 krad. Higher doses (1000-2000 krad) produce mineralisation of toxic organic mercury or reduce some toxic chemical pollutants present in sludge and improve flocculation. Industrial study shows that waste treatment with high-energy electron beams is technically and economically feasible. The design for a treatment unit of 5 MCi cobalt-equivalent, with a capacity of 500 t/Mrad/24h is presented, with indicative cost calculation

  8. Cost effectiveness of dilute chemical decontamination

    International Nuclear Information System (INIS)

    The basic principles of dilute chemical decontamination are described, as well as the method of application. Methods of computing savings in radiation dose and costs are presented, with results from actual experience and illustrative examples. It is concluded that dilute chemical decontamination is beneficial in many cases. It reduces radiation exposure of workers, saves money, and simplifies maintenance work

  9. Effects of ionizing radiation in the physico-chemical characteristics of red wine Cabernet Sauvignon; Efeitos da radiacao ionizante nas caracteristicas fisico-quimicas do vinho tinto Cabernet Sauvignon

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fellipe Souza da; Leiras, Anderson; Wagner, Walsan, E-mail: fellipe.souzadasilva@gmail.com [Instituto de Radioprotecao e Dosimetria, (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    The oenology in the current days is increasingly aimed obtain improvements on wine quality produced without there the deterioration of characteristics of the same, using new technologies for such order. The objective of present work will be the application of the radiation ionizing in wines Cabernet Sauvignon, with the interest of analyzing its effects on physic-chemical characteristics of this wines, such as quality, aging and etc. Were analyzed the following strands: degree alcoholic; dry extract; density and absorbance with spectrometer (420, 520 and 620 nm). (author)

  10. HELLE: Health Effects of Low Level Exposures/ Gezondheidseffecten van lage blootstellingniveaus [International workshop: Influence of low level exposures to chemicals and radiation on human and ecological health

    Energy Technology Data Exchange (ETDEWEB)

    Schoten, Eert

    1998-11-26

    The Health Council is closely involved in establishing the scientific foundation of exposure limits for substances and radiation in order to protect public health. Through the years, the Council has contributed to the formulation of principles and procedures, both for carcinogenic and for noncarcinogenic agents. As a rule, the discussion with regard to the derivation of health-based recommended exposure limits centers around the appropriateness of extrapolation methods (What can be inferred from data on high exposure levels and on experimental animals?). Generally speaking, there is a lack of direct information on the health effects of low levels of exposure. Effects at these levels cannot usually be detected by means of traditional animal experiments or epidemiological research. The capacity of these analytical instruments to distinguish between ''signal'' and ''noise'' is inadequate in most cases. Annex B of this report contains a brief outline of the difficulties and the established methods for tackling this problem. In spite of this, the hope exists that the posited weak signals, if they are indeed present, can be detected by other means. The search will have to take place on a deeper level. In other words, effort must be made to discover what occurs at underlying levels of biological organization when organisms are exposed to low doses of radiation or substances. Molecular and cell biology provide various methods and techniques which give an insight into the processes within the cell. This results in an increase in the knowledge about the molecular and cellular effects of exposure to agents, or stated differently, the working mechanisms which form the basis of the health effects. Last year, the Health Council considered that the time was ripe to take stock of the state of knowledge in this field. To this end, an international working conference was held from 19 to 21 October 1997, entitled ''Health Effects of

  11. Radiation, chemical and biological protection. Mass destruction weapons

    International Nuclear Information System (INIS)

    In this text-book mass destruction weapons and radiation, chemical and biological protection are reviewed. The text-book contains the following chapter: (1) Mass destruction weapons; (2) Matter and material; (3) Radioactive materials; (4) Toxic materials; (5) Biological resources; (6) Nuclear energetic equipment; Appendices; References.

  12. Radiation-chemical hardening of phenol-formaldehyde oligomers

    International Nuclear Information System (INIS)

    Radiation-chemical hardening of phenol formaldehyde oligomers of the resol type has been studied in the presence of furfural and diallylphthalate diluents. The samples have been hardened on an electron accelerator at an electron energy of 1.0-1.1 MeV and a dose rate of 2-3 Mrad/s. The kinetics of hardening has been studied on the yield of gel fraction within the range of absorbed doses from 7 to 400 Mrad. Radiation-chemical hardening of the studied compositions is activated with sensitizers, namely, amines, metal chlorides, and heterocyclic derivatives of metals. Furfural and diallylphthalate compositions are suitable for forming glass-fibre plastic items by the wet method and coatings under the action of ionizing radiations

  13. Evaluation of the ionizing radiation effects of the 60Co on the physical, chemical and nutritional properties of Phaseolus vulgaris L. e Vigna unguiculata (L.) Walp beans

    International Nuclear Information System (INIS)

    The effects of 60 Co ionizing radiations in doses of 0; 0.5; 1.5; 2.5; 5.0 and 10 kGy on beans, Phaseolus vulgaris L., of the carioca variety and Vigna unguiculata (L.) Walp, of the macacar variety stored for 6 months were studied. The cooking time was established, and then the following analyses, and then the following analyses were carried out: Sensory, vitamins B1, B2 and B6 protein content, biological evaluation in rats [Food intake and Weight gain (in grams), apparent Digestibility (Dapp), apparent Net Protein Utilization (NPUapp) and apparent Biological Value (BVapp), as well as the applicability of detection methods of irradiated foodstuffs through germination tests, the analysis of DNA migration, thermoluminescence and analysis of the carbohydrates formed by radiation. Changes in the cooking time were observed for all doses. In doses up to 1 kGy, the nutritional quality of the irradiated beans were not altered. The application of the proposed detection methods of the irradiated foodstuffs allowed the detection of irradiated beans with doses as low as 0.5 kGy. (author)

  14. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Purpose of this report is to provide not only a summary of radiation damage studies at Sandia National Laboratories, but also of those in the literature on the components of optoelectronic systems: light emitting diodes (LEDs), laser diodes, photodetectors, optical fibers, and optical isolators. This review of radiation damage in optoelectronic components is structured according to device type. In each section, a brief discussion of those device properties relevant to radiation effects is given

  15. Influence of radiation on some physico-chemical properties of gum acacia

    International Nuclear Information System (INIS)

    Controlling of degradation in polysaccharide is also gaining impetus from commercial point of view. Comprehensive studies on the influence of ionizing radiation on the physico-chemical properties of polysaccharides are very important for their applications in different industries. The effect of gamma radiation on gum acacia has been studied and its effect on some physico-chemical properties, as measured by UV spectroscopy and viscometry has been discussed. The gum samples are irradiated in the range of 5 kGy to 25 kGy both in air and vacuum. Samples irradiated under vacuum shows colour stability while viscosity remain unaffected. (author)

  16. Radiation effects on ion exchange materials

    International Nuclear Information System (INIS)

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references

  17. Radiation effects on ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references.

  18. The high pH chemical and radiation compatibility of various liner materials

    International Nuclear Information System (INIS)

    A flexible membrane liner has been proposed to line a concrete vault in which liquid low-level radioactive waste will be solidified. High-density polyethylene (HDPE) and polypropylene liners were tested at the Pacific Northwest Laboratory in an EPA method 9090 format to determine their chemical compatibility with the waste. Radiation effects were also investigated. The liners were immersed in a highly caustic (pH>14), primarily inorganic solution at 90 degrees C. The liners were subjected to radiation doses up to 38.9 Mrad, which was the expected dose the liner would receive over a 30-year life inside the vault. Recent changes have placed the liner outside the vault. The acceptance criteria for judging the compatibility of the liner with radiation should be different than those used for judging chemical compatibility. The radiation damage over the life of the liner can be simulated in a short-term test. Both HDPE and polypropylene liners were judged to be acceptable from a chemical and radiation standpoint when placed outside of the vault, while several other liners were not compatible. Radiation did not have a significant effect on chemical degradation rates

  19. Genetic effects of radiation

    International Nuclear Information System (INIS)

    In this chapter, the BEIR Committee has reviewed and reevaluated the data that are pertinent to the estimation of genetic risks to humans from low levels of ionizing radiation. The present report summarizes the methods and conclusions of previous committees. In deriving new risk figures, it places rather more emphasis on the results of the studies of Japanese atomic-bomb survivors than have previous BEIR reports. However, the committee has also made use of the extensive radiation studies carried out with mice, which are briefly reviewed. 174 ref

  20. Effects of radiation; Effets des radiations

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  1. Climate-chemical interactions and greenhouse effects of trace gases

    Science.gov (United States)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  2. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    It has been emphasised the importance of DNA as the main target for ionizing radiation, that can induce damage by its direct action on this molecule or by an indirect effect mediated by free-radicals generated by water radiolysis. Biological effects of ionizing radiation are influenced not only by the dose but also by the dose-rate and the radiation quality. Radiation induced damage, mainly DNA single and double strand breaks, is detected by molecular sensors which in turn trigger signalling cascades leading to cell cycle arrest to allow DNA repair or programmed cell death (apoptosis). Those effects related with cell death, named deterministic, exhibits a dose-threshold below which they are not observed. Acute radiation syndrome and radiological burns are examples of this kind of effects. Other radiation induced effects, called stochastic, are the consequence of cell transformation and do not exhibit a dose-threshold. This is the case of cancer induction and hereditary effects. The aim of this presentation is briefly describe the main aspects of deterministic and stochastic effects from the point of view of radiobiology and radio pathology. (author)

  3. Radiation effects on structural materials

    International Nuclear Information System (INIS)

    This report discusses the following topics on the effect radiation has on thermonuclear reactor materials: Atomic Displacements; Microstructure Evolution; Materials Engineering, Mechanics, and Design; Research on Low-Activation Steels; and Research Motivated by Grant Support

  4. Quantitative mutagenesis by chemicals and by radiations: prerequisites for the establishment of rad-equivalences

    International Nuclear Information System (INIS)

    The lesions produced in the genetic material by chemical mutagens, on the one hand, and radiations, on the other, are very similar. In both cases, they are either lesions in DNA or changes in the bonds between this DNA and the proteins which surround it. The lesions are sufficiently similar to elicit, in both cases, the activity of the same repair systems. The similarity between chemical and radiation induced mutagenesis can be demonstrated by checking that a strain which is hyper-sensitive to radiation because it lacks some repair system, is also hyper-sensitive to most chemical mutagens. These similarities between the lesions suggest that one can establish an equivalence between the 'dose' of a chemical and a dose of radiation, on the basis of the effects produced on some biological systems of reference. Once such equivalence has been established, one could extrapolate the rules of radiation protection to protection against that chemical. Is this principle applicable, and under which conditions. What prerequisites must be fulfilled. The goal of this paper is to answer these questions

  5. Effects of radiation on erythropoiesis

    International Nuclear Information System (INIS)

    Since the pioneer work of Heineke (1903; 1905) many workers have studied the effect of radiation on haemopoiesis. Their work has been reviewed by Bloom (1948), by Jacobson (1954) and more recently by Bond et al. (1965). The subject continues to stimulate much interest but is now more concerned with the effects of radiation on the multipotential stem cell pool than on radiation damage to the erythropoietic cells themselves. Death from haemopoietic failure following an LD50/30 dose of radiation is probably not attributable to failure of erythropoiesis; while damage to the erythropoietic system certainly plays a part in the syndrome, it is not a major factor contributing to the death of the animal. Although the severity and time course of the response vary with the species studied, the general effects of radiation on erythropoiesis are similar in all mammalian bone marrow studied to date. Likewise, though the severity of the reaction varies somewhat with the energy of the radiation and has been used to compare the relative biological effectiveness of different types of radiation (Sinclair et al., 1962; Sztanyik, 1967), the response is different only in degree and not in its fundamental pattern. The initial syndrome of depression and recovery will therefore be described largely by reference to work performed on the response of the rat to single acute exposures of either whole-body or partial-body irradiation with conventional X-rays

  6. Radiation induced chemical reaction of carbon monoxide and hydrogen mixture

    International Nuclear Information System (INIS)

    Previous studies of radiation induced chemical reactions of CO-H2 mixture have revealed that the yields of oxygen containing products were larger than those of hydrocarbons. In the present study, methane was added to CO-H2 mixture in order to increase further the yields of the oxygen containing products. The yields of most products except a few products such as formaldehyde increased with the addition of small amount of methane. Especially, the yields of trioxane and tetraoxane gave the maximum values when CO-H2 mixture containing 1 mol% methane was irradiated. When large amounts of methane were added to the mixture, the yields of aldehydes and carboxylic acids having more than two carbon atoms increased, whereas those of trioxane and tetraoxane decreased. From the study at reaction temperature over the range of 200 to 473 K, it was found that the yields of aldehydes and carboxylic acids showed maxima at 323 K. The studies on the effects of addition of cationic scavenger (NH3) and radical scavenger (O2) on the products yields were also carried out on the CO-H2-CH4 mixture. (author)

  7. Small Teleoperated Robot for Nuclear Radiation and Chemical Leak Detection

    Directory of Open Access Journals (Sweden)

    Kui Qian

    2012-09-01

    Full Text Available In order to meet the actual requirements of nuclear radiation and chemical leak detection, and emergency response, a new small teleoperated robot for nuclear radiation and chemical detection is proposed. A small‐size robot is manufactured according to technical requirements and the overall structure and control system is described. Meanwhile, based on the principles of human‐robot interaction, a user‐friendly human‐robot interaction interface is designed to provide a good telepresence for the operator, helping the operator to perceive and judge the robot’s situation to better assist in making the right decisions and in giving timely operation instructions. The experiment results show the robot system operates reliably and meets the technical requirements.

  8. Radiation-chemical oxidation of adamantylideneadamantane with dioxetane formation

    International Nuclear Information System (INIS)

    Liquid-phase radiation-chemical oxidation of adamantylideneadamantane with 1,2-dioxetane formation is studied. Gamma-irradiation is carried out with the doses up to 17.2 kGy, the dose rate being 1.2 Gy/s. It is shown that the main chance of radiation-chemical oxidation of this alkene is radical expoxidation. One of the sources of radical generation in acetone is the process of oxygen quenching the triplet acetone. In the presence of intermediaries passing excitation to dissolved oxygene in solvents with high yield of excited states generation 1O2 is produced, and alkene is oxidized to dioxetane. Therewith, the epoxide yield is decreased, the dioxetane and epoxide yield ratio is defined by competition between reactions of O2 and intermediaries leading to 1O2 or radical products

  9. Chemical changes in erythromycin and related antibiotics during radiation sterilization

    International Nuclear Information System (INIS)

    The effect of electron radiation of an energy of 10 MeV on chemoradiation changes occuring in erythromycin base and its esters have been studied. No radiation damages of the molecule which could effect its antibiotic power have been found. The gaseous products formed are mainly due to the decomposition of the 14-member erythronolide and the ester chain. No change in the desosamine system particularly in the N,N-dimethylamine arrangement have been observed. (author)

  10. Low level radiation: biological effects

    International Nuclear Information System (INIS)

    It is imperative that physicians and scientists using radiations in health care delivery continue to assess the benefits derived, vs. potential risk, to patients and radiation workers being exposed to radiation in its various forms as part of our health delivery system. Insofar as possible we should assure our patients and ourselves that the benefits outweigh the potential hazards involved. Inferences as to the possible biological effects of low level radiation are generally based on extrapolations from those effects observed and measured following acute exposures to considerably higher doses of radiation. Thus, in order to shed light on the question of the possible biological effects of low level radiation, a wide variety of studies have been carried out using cells in culture and various species of plant and animal life. This manuscript makes reference to some of those studies with indications as to how and why the studies were done and the conclusions that might be drawn there from. In addition reference is made to the handling of this information by scientists, by environmentalists, and by the news media. Unfortunately, in many instances the public has been misled by what has been said and/or written. It is hoped that this presentation will provide an understandable and reasonable perspective on the various appropriate uses of radiation in our lives and how such uses do provide significant improvement in our health and in our quality of life

  11. Mutation induction in rice by radiation combined with chemical protectants and mutagens

    International Nuclear Information System (INIS)

    Seeds of the rice variety 'Dourado Precoce' were treated with different combinations of gamma rays, cysteine and EMS or gamma rays, cysteine and dES. Cysteine showed some protection against the effects of gamma radiation and combined gamma-ray + chemical treatments with regard to germination, seedling height and fertility. There are also indications of changes in the spectra of chlorophyll mutations. (author)

  12. Topical Day on Biological Effects of Radiation

    International Nuclear Information System (INIS)

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed

  13. Topical Day on Biological Effects of Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Baatout, S.; Jacquet, P.

    1997-05-15

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed.

  14. Radiation-induced cardiovascular effects

    Science.gov (United States)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  15. BLACK HOLE FORMATION IN PRIMORDIAL GALAXIES: CHEMICAL AND RADIATIVE CONDITIONS

    International Nuclear Information System (INIS)

    In massive primordial galaxies, the gas may directly collapse and form a single central massive object if cooling is suppressed. H2 line cooling can be suppressed in the presence of a strong soft-ultraviolet radiation field, but the role played by other cooling mechanisms is less clear. In optically thin gas, Lyα cooling can be very effective, maintaining the gas temperature below 104 K over many orders of magnitude in density. However, the large neutral hydrogen column densities present in primordial galaxies render them highly optically thick to Lyα photons. In this paper, we examine in detail the effects of the trapping of these Lyα photons on the thermal and chemical evolution of the gas. We show that despite the high optical depth in the Lyman series lines, cooling is not strongly suppressed, and proceeds via other atomic hydrogen transitions. At densities larger than ∼109 cm-3, collisional dissociation of molecular hydrogen becomes the dominant cooling process and decreases the gas temperature to about 5000 K. The gas temperature evolves with density as T∝ργeff-1, with γeff = 0.97-0.98. The evolution is thus very close to isothermal, and so fragmentation is possible, but unlikely to occur during the initial collapse. However, after the formation of a massive central object, we expect that later-infalling, higher angular momentum material will form an accretion disk that may be unstable to fragmentation, which may give rise to star formation with a top-heavy initial mass function.

  16. Effects produced by nuclear radiation in powdery milk

    International Nuclear Information System (INIS)

    The objective of this work is to determine the chemical effects produced by the gamma rays and beta particles radiations on the powdery milk. This work treats on the Pre-dose analysis, sampling radiating, electron spin resonance, acidity, proteins, aminoacids, lactose, fatty acids, peroxides, as well as its experimental results. (Author)

  17. Lycopersicon assays of chemical/radiation genotoxicity for the study of environmental mutagens.

    Science.gov (United States)

    Grant, William F; Owens, Elizabeth T

    2002-07-01

    From a literature survey, 21 chemicals are tabulated that have been evaluated in 39 assays for their clastogenic effects in Lycopersicon. Nineteen of the 21 chemicals are reported as giving a positive reaction (i.e. causing chromosome aberrations). Of these, five are reported positive with a dose response. In addition, 23 assays have been recorded for six types of radiation, all of which reacted positively. The results of 102 assays with 32 chemicals and seven types of radiation tested for the induction of gene mutations are tabulated, as well as 20 chemicals and/or radiation in combined treatments. The Lycopersicon esculentum (2n=24) assay is a very good plant bioassay for assessing chromosome damage both in mitosis and meiosis and for somatic mutations induced by chemicals and radiations. The Lycopersicon bioassay has been shown to be as sensitive and as specific an assay as other plant genotoxicity assays, such as Hordeum vulgare, Vicia faba, Crepis capillaris, Pisum sativum and Allium cepa and should be considered in further studies in assessing clastogenicity. Tests using L. esculentum can be made for a spectrum of mutant phenotypes of which many are identifiable in young seedlings. PMID:12088718

  18. Radiation Effects in Carbon Nanoelectronics

    Directory of Open Access Journals (Sweden)

    Cory D. Cress

    2012-07-01

    Full Text Available We experimentally investigate the effects of Co-60 irradiation on the electrical properties of single-walled carbon nanotube and graphene field-effect transistors. We observe significant differences in the radiation response of devices depending on their irradiation environment, and confirm that, under controlled conditions, standard dielectric hardening approaches are applicable to carbon nanoelectronics devices.

  19. Radiation Effects in Carbon Nanoelectronics

    OpenAIRE

    Cory D. Cress; McMorrow, Julian J.; Robinson, Jeremy T.; Landi, Brian J.; Seth M. Hubbard; Messenger, Scott R.

    2012-01-01

    We experimentally investigate the effects of Co-60 irradiation on the electrical properties of single-walled carbon nanotube and graphene field-effect transistors. We observe significant differences in the radiation response of devices depending on their irradiation environment, and confirm that, under controlled conditions, standard dielectric hardening approaches are applicable to carbon nanoelectronics devices.

  20. Radon, radiation effects and radiation protection

    International Nuclear Information System (INIS)

    Epidemiological studies among Rn-exposed miners revealed a significant increase in lung tumour occurrence with increased exposure to radon daughters. Radiation exposure of the lungs also is given through inhalation of Rn-decay products released from the building material of residential houses. The resulting lung cancer risk is one of the major issues of radiation protection of the population. Extensive data collections are available on Rn-concentrations in room air. Building planning and design should make better use of these data, particularly for selection of materials and design of the basement and foundation of buildings, as radon daughters are the major source of radiation exposure of the population. (DG)

  1. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    The efficient dose of ionizing radiation (I.R.), expressed in sievert is a weighting of the deposited energy (absorbed dose in grays) by factors that take into account the radiation hazard and tissues radiosensitivity. it is useful in radiation protection because it allows to add exposures to ionizing radiation of different nature. for low doses, it has no probabilistic value. The determinist effects of ionizing radiation are observed from thresholds of several hundred of milli sievert. The seriousness grows with the dose. The whole-body doses exceeding 8 Sv are always lethal. The radio-induced cancers are observed only for doses exceeding 100 to 200 mSv for adults, delivered at a self important dose rate. Their seriousness does not depend on the dose. Their appear fortuity (stochastic effect) with a various individual susceptibility, genetically determined. The number of eventual radio-induced cancers coming from the exposure of a high number of persons to low dose of ionizing radiation (<100 mSv) cannot be evaluated with a linear without threshold model. these models, however usually used, do not take into account the biological reality of cell defense mechanisms, tissues or whole body defense mechanisms, these one being different against low or high doses of ionizing radiation. Against low doses, the preponderant mechanism is the elimination of potentially dangerous damaged cells. Against high doses, the repair of damaged cells is imperative to preserve the tissue functions. It can lead to DNA repair errors (radio-induced mutations) and canceration. The radio-induced congenital malformations are effects with threshold. The radio-induced carcinogenesis in utero is a stochastic effect. The radio-induced hereditary congenital malformations have never been highlighted for man. (N.C.)

  2. Biological effect of low dose radiation

    International Nuclear Information System (INIS)

    This document describes the recent findings in studies of low dose radiation effect with those by authors' group. The low dose radiation must be considered in assessment of radiation effects because it induces the biological influence unexpected hitherto; i.e., the bystander effect and genetic instability. The former is a non-targeted effect that non-irradiated cells undergo the influence of directly irradiated cells nearby, which involves cell death, chromosome aberration, micronucleus formation, mutation and carcinogenesis through cellular gap junction and/or by signal factors released. Authors' group has found the radical(s) possessing as long life time as >20 hr released from the targeted cells, a possible mediator of the effect; the generation of aneuploid cells as an early carcinogenetic change; and at dose level <10 Gy, activation of MAPK signal pathway leading to relaxation of chromatin structure. The genetic instability means the loss of stability where replication and conservation of genome are normally maintained, and is also a cause of the late radiation effect. The group has revealed that active oxygen molecules can affect the late effect like delayed cell death, giant cell formation and chromosome aberration, all of which lead to the instability, and is investigating the hypothesis that the telomere instability resulted from the abnormal post-exposure interaction with its nuclear membrane or between chromatin and nuclear matrix, is enhanced by structural distortion of nuclear genes. As well, shown is the possible suppression of carcinogenesis by p53. The group, to elucidate the mechanism underlying the low dose radiation effect, is conducting their studies in consideration of the sequential bases of physical, chemical and biological processes. (R.T.)

  3. Effects of industrial chemicals and radioactive materials in biological systems

    International Nuclear Information System (INIS)

    Much has been written on the effects of radiation and toxic chemicals on biological systems. In this communication general considerations regarding these topics will be discussed very briefly; the major emphasis will be focused on the effects of chemicals, namely ethyl methane sulfonate (EMS) on Amoeba, Advantages to the use of amoeba for studying the effects of radiation and chemicals include the following: large mononucleate unicellular organisms having a long generation time; opportunity to study cellular organelles and biochemical and genetic alterations in a single cell system; and a long cell cycle, the stages of which can be synchronized without resorting to chemical treatment or temperature shock and thereby readily permitting study at defined stages of the cell's life cycle. This, in turn, is discussed in light of current disposal methods for this type of waste and how it might be safely disposed of

  4. Radiation-chemical desulfurization and denitrification of flue gases

    International Nuclear Information System (INIS)

    Radiation-chemical desulfurization and denitrification of flue gases is a highly promising method for removing SO2 and NOx from gases emerging from the combustion of coal and heating oils, from the heat treatment of ores, etc. Its principle is as follows. Into the flue gases, freed from solid particles, are injected a suitable base and water. The gaseous mixture, or aerosol, enters a reactor in which it is exposed to accelerated electrons. The latter thermalize gradually and their energy is transferred to the surrounding molecules, whereby radiolysis is initiated. The primary products are positively charged ions, secondary electrons, excited states of molecules and free radicals. Some amount of negatively charged ions is also formed. These particles enter into fast reactions with the molecules, and as a result, SO2 and NOx are oxidized and transformed into acids (H2SO4, HNO3) which ultimately react with the base to give salts as the final products. In suitable conditions the final products are formed in the solid state and can be removed by filtration, electrostatic separation, etc. The topic is treated in detail with respect to its physico-chemical and radiation-chemical principles as well as its characteristics and technical implementation, and a survey of research, demonstration and pilot-plant units aimed at its industrial application is given. The method is considered promising in Czechoslovak conditions and deserves attention of technologists as well as national economy experts. (P.A.). 7 figs., 3 tabs., 49 refs

  5. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    International Nuclear Information System (INIS)

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis

  6. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  7. Ionizing radiation effects on biological macromolecules

    International Nuclear Information System (INIS)

    Ionizing radiation is one of the main environmental factors for life, particularly for human beings. The primary effects of ionizing radiation produce the perturbation of biomacromolecules functionality (DNA and proteins). This effect occurs by direct action and by the indirect way of water molecules radiolysis. These primary effects result in a cascade of biochemical and biological consequences that may finally influence the general functions of the organism. In the last five decades the research activity in this field was focused on the detailed description of the effects on DNA molecules and their biochemical and biological consequences. The reason for this is the importance of the integrity of DNA for the cell life evolution, especially for the cell recovery processes or for the programmed cell death after irradiation. These aspects have main applications in very important fields as radioprotection and radiotherapy. In the present paper the mechanisms of ionizing radiation action at the molecular level will be reviewed, with focus on the protein level effects. Although comparatively a lower number of results was reported concerning the effects of ionizing radiation on the proteins, during the last years this field was reconsidered in the context of a new research trend in the field of genomics and proteomics. The structural changes which occur most often in the proteins are the breaks of chemical links, the chemical moieties ionization (for instance, the oxidation of the proteins) and the inter - protein new links (cross-linking). These changes result in a gradual loss of protein functionality, influencing particularly the ionic transport, the signal transduction across the membrane or intermolecular recognition processes of antibody-antigen type. Some studies on the ion artificial channels (as gramicidin and amphotericin) incorporated in model membranes (BLM-s or liposomes) describe structural and functional changes of the peptides after the exposure to

  8. Radiation chemical route for preparation of metal nanoparticles

    International Nuclear Information System (INIS)

    Nanoparticles show properties that are neither seen in the bulk or at atomic level. The unusual properties are governed by quantum size effect. Due to this various methodologies have been endeavored to control the size of the particles. In the present work we show the use of two complimentary techniques (radiation and photo) to synthesize and control the size of the metal particles. In-situ synthesis of fine silver, thallium and cadmium particles has been carried out by gamma-irradiation and electron pulse irradiation at room temperature in the pre-organized gel of polyacrylamide or cyclodextrin cavity. The role of generation of nuclei in high concentrations in stabilization of metal nanoparticles in hydrophobic cavity is shown. Similarly the importance of entrapment of metal ions in the polymer matrix during its formation is highlighted. The work is further extended to exploit the microemulsion droplets for stabilization of Cd nanoparticles. Utility of pulse radiolysis in probing the mechanism of the formation of metal nanoparticles is also shown. Ultrafast laser pulses were employed to control the morphology of the pre-prepared Pt nanoparticles. The changes in reduction of shape and size are considered to occur through melting and vaporization of the nanoparticles. Pt nanoparticles were coated on the inner walls of the tubular pyrex reactor and tested for their catalytic activity for oxidation of CO. It was observed that Pt nanoparticles prepared in the presence of a stabilizer (gelatin) showed a higher tendency to adhere to the inner walls of the pyrex reactor as compared to that prepared in the presence of silica nanoparticles. The catalyst was found to be active at ≥150 degree C giving CO2. Chemically reduced Pt nanoparticles stabilized on silica nanoparticles gave ∼7% CO conversion per hr. However, radiolytically prepared Pt nanoaprticles stabilized by gelatin gave ∼10% conversion per hr. The data indicates that catalytic oxidation of CO takes place by

  9. Biophysical models for the effectiveness of different radiations

    International Nuclear Information System (INIS)

    The aim of the project is a better understanding of the biological effects of different radiation fields with particular emphasis on low doses and low dose rates. An improvement in our present knowledge should be achieved of somatic and genetic radiation risks in man, and radiation protection instrumentation should be developed which measures the characteristic properties with regard to these endpoints in mixed radiation fields. In addition, the combined action of radiation and chemicals are investigated on a mechanistic level. Objectives and results of the four contributions of the project for the reporting period are presented. (R.P.) 21 refs., 11 figs., 8 tabs

  10. Disk shaped radiation sources for education purposes made of chemical fertilizer

    International Nuclear Information System (INIS)

    A method for fabricating a disk-shaped radiation source from material containing natural radioisotopes was developed. In this compression and formation method, a certain amount of powdered material is placed in a stainless steel formwork and compressed to form a solid disk. Using this method, educational radiation sources were fabricated using commercially available chemical fertilizers that naturally contain the radionuclide, 40K, which emits either beta or gamma rays, at each disintegration. The compression and formation method was evaluated by inspecting eleven radiation sources thus fabricated. Then the suitability of the fertilizer radiation source as an education aid was evaluated. The results showed that the method could be used to fabricate radiation sources without the need for learning special skills or techniques. It was also found that the potassium fertilizer radiation source could be used to demonstrate that the inverse-square law can be applied to the distance between the radiation source and detector, and that an exponential relationship can be seen between the shielding effectiveness and the total thickness of the shielding materials. It is concluded that a natural fertilizer radiation source is an appropriate aid for demonstrating the characteristics of radiation. (author)

  11. Problems and solutions in the estimation of genetic risks from radiation and chemicals

    International Nuclear Information System (INIS)

    Extensive investigations with mice on the effects of various physical and biological factors, such as dose rate, sex and cell stage, on radiation-induced mutation have provided an evaluation of the genetics hazards of radiation in man. The mutational results obtained in both sexes with progressive lowering of the radiation dose rate have permitted estimation of the mutation frequency expected under the low-level radiation conditions of most human exposure. Supplementing the studies on mutation frequency are investigations on the phenotypic effects of mutations in mice, particularly anatomical disorders of the skeleton, which allow an estimation of the degree of human handicap associated with the occurrence of parallel defects in man. Estimation of the genetic risk from chemical mutagens is much more difficult, and the research is much less advanced. Results on transmitted mutations in mice indicate a poor correlation with mutation induction in non-mammalian organisms

  12. Biological efficiency of interaction between various radiation and chemicals

    International Nuclear Information System (INIS)

    This research project has been carried out jointly with INP (Poland) to develop technologies to assess the biological efficiency of interaction between radiation and chemicals. Through the cooperative project, KAERI and INP have established wide variety of bioassay techniques applicable to radiation bioscience, human monitoring, molecular epidemiology and environmental science. The joint experiment, in special, made it possible to utilize the merits of both institutes and to upgrade and verify KAERI's current technology level. All results of the cooperative research will be jointly published in high standard scientific journals listed in the Science Citation Index (SCI), which can make the role of fundamental basis for improving relationship between Korea and Poland. Research skills such as Trad-MCN assay, SCGE assay, immunohistochemical assay and molecular assay developed through joint research will be further elaborated and will be continuously used for the collaboration between two institutes

  13. Genetic radiation effects

    International Nuclear Information System (INIS)

    Three types of genetic damage arising from irradiation are identified; (1) gene or point mutations at the level of the DNA molecule, which contains the genetic code. (2) chromosome breakage which may lead to translocations (3) uncontrolled distribution of the chromosomes into the daughter cells. Tabular information is drawn mainly from the UNSCEAR report, 1977, on the risk factors of genetic damage from various irradiation levels. Some detailed effects on genetic structure are described for recessive mutations, dominant mutations and trans-locations. Experimental work has in some cases been guided by X-ray irradiation with single and double dose effects, including tests on mice, for which subsequent herdity may be examined. (G.C.)

  14. The late biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    surveillance. As far as medical exposure is concerned, current practices involving radiation exposure seems well justified in most of the cases, except some where radiation is used for diagnostic purposes of benign disorders. Cytological, histological and physiological studies were reported on experimental animals, apart from cancer induction, on the effect of neonatal exposure and effects on central nervous system. These provided basic data by which human data can be interpreted and analysed. Several novel approaches were reported for prediction of late effects, e.g. DNA repair capability, and some cytogenetic and physiological parameters which are expected to be of practical merit in future. The dose-effect relationship, by which human risk estimates at low doses are derived by extrapolation, was another topic of lively discussion. Several new models based on theoretical analysis or experimental data were proposed and compared with the available human and animal data. Although the validity of these awaits further research, some shed a new light on the problems of extrapolation. Radiation effects in practice are complicated by other environmental factor;, such chemical pollutants which may be additional causal agents. The importance of theoretical approach for prediction of such combined effects was stressed. Of interest was the combined effect of smoking and radon-222 in lung cancer induction. Lung cancer incidence was significantly elevated by combination of the two in the rat, which was also substantiated by the observation in Hiroshima-Nagasaki study where incidence of lung cancer in the smoking population was shown to be higher than the non-smoking population, suggesting synergistic effects of radiation and smoking. This meeting brought together people with a remarkably wide range of interests including the practicalities of radiological protection, epidemiology, medical practices and theoretical and experimental radiobiology. It was stressed that research co

  15. The effects and control of radiation

    International Nuclear Information System (INIS)

    The subject is discussed under the headings: introduction; ionising radiation (alpha and beta particles, gamma- and X-radiation, neutrons, half-life, sources of radiation); biological effects; risk estimates (somatic) (early effects, delayed effects); risk estimates (hereditary); control of radiation; risk estimates (accidents). (U.K.)

  16. Radiation Effects on Polymer Properties

    Science.gov (United States)

    Bouquet, F. L.; Winslow, J. W.

    1987-01-01

    Report compiles data on effects of radiation on physical properties of synthetic organic materials. Emphasis on materials of interest to nuclear-equipment and nuclear-reactor designers. Data covers five categories of polymeric materials: Insulators, elastomeric seals and gaskets, lubricants, adhesives, and coatings. More than 250 materials represented.

  17. Radiation-induced mammary carcinogenesis in rodent models. What's different from chemical carcinogenesis?

    International Nuclear Information System (INIS)

    Ionizing radiation is one of a few well-characterized etiologic factors of human breast cancer. Laboratory rodents serve as useful experimental models for investigating dose responses and mechanisms of cancer development. Using these models, a lot of information has been accumulated about mammary gland cancer, which can be induced by both chemical carcinogens and radiation. In this review, we first list some experimental rodent models of breast cancer induction. We then focus on several topics that are important in understanding the mechanisms and risk modification of breast cancer development, and compare radiation and chemical carcinogenesis models. We will focus on the pathology and natural history of cancer development in these models, genetic changes observed in induced cancers, indirect effects of carcinogens, and finally risk modification by reproductive factors and age at exposure to the carcinogens. In addition, we summarize the knowledge available on mammary stem/progenitor cells as a potential target of carcinogens. Comparison of chemical and radiation carcinogenesis models on these topics indicates certain similarities, but it also indicates clear differences in several important aspects, such as genetic alterations of induced cancers and modification of susceptibility by age and reproductive factors. Identification of the target cell type and relevant translational research for human risk management may be among the important issues that are addressed by radiation carcinogenesis models. (author)

  18. Biological radiation effects

    International Nuclear Information System (INIS)

    Everyone is exposed to a complex mix of electromagnetic fields (EMF) of different frequencies that permeate our environment. Exposures to these EMF are increasing significantly as technology advances unabated and new applications are found. Technological progress in the broadest sense of the word has always been associated with various hazards and risks, both perceived and real. The industrial, commercial and household application on EMF is no exception. Throughout the world, the general public is concerned that exposure to EMF from such sources as high voltage power lines, broadcasting networks, mobile telephones and their base stations could lead to adverse health consequences, especially in children. As a result, the construction of new power lines and broadcasting and mobile telephone network has met with considerable opposition in many countries. Public exposure to EMF is regulated by a variety of voluntary and legal limits, together with various national safety standards. Guidelines are designed to avoid all identified hazards, from short and long term exposure, recommended limits. The aim of this paper is to report the summary of the actual scientific knowledge about the potential health effects and hazards due to man made EMF and the new tendencies of the social and political choices

  19. Combined effects, ionizing radiation plus other agents

    International Nuclear Information System (INIS)

    It is clear from cell studies, and confirmed in a general way by animal sudies, that radiation produces effects that are interactive with those due to other physical agents, chemicals of various types, and viruses. Our understanding is limited, however, in respect to the mechanisms of action in cells and, accordingly, even less penetrating in respect to our comprehension of effects in animals. Thus, the conclusion follows at this time, that we are unable to predict responses in humans due to combined action because of our incomplete understanding of individual and combined responses of radiation and other agents in experimental systems. The study of possible public health hazards due to the combined effects of radiation plus other agents is one that should be coverged upon simultaneously by the laboratory investigator and the epidemiologist-public health specialist. What is clear is the likelihood that agents biologically active in their own right may interact. Indeed, an important and significant guiding principle can be extracted from current knowledge. Relative to induced cellular changes, agents that register lesions in the genetic substance of a cell are likely to produce interactive effects. Such effects may become expressed in individual cells, in tissues, or in whole organisms

  20. Space radiation effects and microgravity

    International Nuclear Information System (INIS)

    Humans in space are exposed both to space radiation and microgravity. The question whether radiation effects are modified by microgravity is an important aspect in risk estimation. No interaction is expected at the molecular level since the influence of gravity is much smaller than that of thermal motion. Influences might be expected, however, at the cellular and organ level. For example, changes in immune competence could modify the development of radiogenic cancers. There are no data so far in this area. The problem of whether intracellular repair of radiation-induced DNA lesions is changed under microgravity conditions was recently addressed in a number of space experiments. The results are reviewed; they show that repair processes are not modified by microgravity

  1. Effect of different dose gamma radiation and refrigeration on the chemical and sensory properties and microbiological status of aqua cultured sea bass (Dicentrarchus labrax)

    International Nuclear Information System (INIS)

    Quality and shelf life of non-irradiated and irradiated (2.5 and 5kGy) sea bass in ice conditions and stored at +4 deg. C were investigated by measurement in microbiological, chemical sensory analyses. Microbial counts for non-irradiated sea bass samples were higher than irradiated fish. Among chemical indicators of spoilage, total volatile base nitrogen (TVB-N) values increased to 36.44mg/100g for non-irradiated sea bass during iced storage, whereas for irradiated fish lower values of 25.26mg/100g and 23.61mg/100g were recorded at 2.5 and 5kGy, respectively (day 17). Trimethylamine (TMA-N) values and thiobarbituric acid (TBA) values for irradiated samples were lower than that for non-irradiated samples. Acceptability scores for odour, taste and texture of cooked sea bass decreased with storage time. The sensory scores of sea bass stored in control and 2.5-5kGy at +4 deg. C were 13 and 15 days, respectively. The results obtained from this study showed that the shelf life of sea bass stored in ice, as determined by overall acceptability of all data, is 13 days for non-irradiated sea bass and 15 days for 2.5kGy irradiated and 17 days for 5kGy irradiated sea bass

  2. Implications of radiation-induced bystander effects and other non-targeted radiation effects for multi pollutant environmental exposures

    International Nuclear Information System (INIS)

    Environmentally relevant low doses of ionizing radiation are now accepted to induce a variety of biological effects at levels where it is difficult to implicate direct (targeted) DNA damage. These effects include bystander effects, genomic instability, adaptive responses and low dose hypersensitivity. The importance of these effects is that all are induced at very low doses. Typically one track of high LET radiation or less than 5 mGy of low LET radiation can trigger these effects. Once induced the level of effect does not increase with increasing dose and is persistent. The mechanisms underlying these effects are not known but it is accepted that genetic background is crucial in determining what the consequences of the exposure will be. This presentation will show 1. That chemical pollutants (heavy metals and micro-organics) can also induce these low dose responses, 2. That these effects can be induced in vivo as well as in vitro using mouse models exposed to whole body doses, 3. That the mechanism involves persistent elevation of ROS and that the effect can persist over many cell generations, 4. That chronic low dose exposures may actually be more effective than acute doses at inducing certain types of response, 5. That combinations of these inducers (whether radiation or chemical) and classical mutagens, can enhance the frequency of mutations due to the mutagen. There are implications for radiation and environmental protection which at present treat radiation as a 'stand alone' agent and assume a linear correlation between radiation dose and effect. (author)

  3. Radiation monitoring by radiation effect of aerosol

    International Nuclear Information System (INIS)

    The high energy and high intensity accelerator facilities need the radiation monitoring with temporal and spatial resolutions. Numerical estimations are made for the radiation monitoring using the sampling method of aerosol Alanine. The aerosol Alanine put into the monitoring area through the duct. The intensity of radicals in the collected throughput Alanine of about 50 mg after passing through the monitoring area is measured by the ESR (Electron Spin Resonance) method. Key parameters in the system are the aerosol particle diameter and its intensity, the duct diameter and length, and the aerosol flow rate inside the duct. The maximum dose rate more than 108 Gy/h is possible to measure assuming the duct of 100 cm2 in area and 10 m in length, and the aerosol flow rate of 1000 L/min. The temporal resolution of the order of minutes is obtainable when the aerosol particle size is 0.1 μm. As a result of numerical estimation based on empirical simulations, it is to be promising to apply a proposed scheme to the radiation monitoring for accelerator fields. (Y. Tanaka)

  4. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation

  5. Thermal effects in radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Zagorski, Z.P.

    1984-10-21

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation.

  6. Effect of Gamma Radiation on the Chemical and Physical Properties of Plasticised Carboxymethyl Cellulose (Cc) / Poly (vinyl alcohol)(Pva) Polymer Blend

    International Nuclear Information System (INIS)

    The chemical and physical properties of plasticizer carboxymethyl cellulose (CMC)/ poly (vinylalcohol)(PVA) polymer blend before and after exposure to gamma ray were investigated by means of mechanical properties, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscope (SEM). It was found that addition of plasticizer causes a significant increase in elongation at break and causes a marked drop in thermal stability. Thus, the addition of glycerol cause a significant decrease in glass transition temperature(Tg) of about 24 degree from the initial value. The morphological structure of plasticised blend was investigated by observation of fracture surfaces using SEM. The plasticised blend was used for recovery of some heavy metals from their salts such as Cu(II), Co(II) and Ni(II). It was found that plasticised blend have a great ability for absorbing these metals and it is measured by compleximetric titration and colour strength measurements

  7. Radiation Chemical and Plasma Chemical Processes for Hydrogen Production from Water

    International Nuclear Information System (INIS)

    Hydrogen is considered to be the fuel of the future. The simplest way to produce hydrogen is by water decomposition. The usual, non-electrical method of producing this reaction is either by direct thermal water splitting or by making use of some catalytic process in a batch or flow reactor. The aim of the present work, which is part of the DEMO studies, is to investigate two further, little used methods for hydrogen production. I. Radiation Chemical Process Both fission and fusion reactors produce radioactive material, the radiation energy of which is wasted. By examining the water decomposition yields observed under different conditions we conclude that the radiolysis of high temperature water vapour in contact with oxide catalysts can produce sizable amounts of hydrogen. II. Plasma Chemical Process One of the most serious problems with thermal water decomposition lies with the high reaction temperature which, apart from other associated problems, demands highly corrosion resistant materials. Plasma chemical splitting removes this obstacle, but a mixture of O2 and H2 is formed and the separation of these products is quite difficult. Having investigated a number of high temperature processes where product separation might be easier, we conclude that the thermodynamic conditions of the reaction N2 + H2O = N2O + H2 appear attractive, additionally, N2O is easy to separate from H2. More detailed thermodynamic studies and relating kinetic investigations of this and analogous processes must follow in order to assess the practical use of plasma chemical methods. Energy carriers other than hydrogen, e.g. methane, methanol, formic acid, will also be considered, as these can also be synthesised in chemical plasmas by making use of fusion energy. The paper will report the results of the studies on both these processes for the production of hydrogen from fusion energy. (author)

  8. Effect of ionizing radiation on starch and cellulose

    International Nuclear Information System (INIS)

    The investigation is reported of the effects of ionizing radiation both on macromolecular systems generally and on polysaccharides, starch and cellulose. Attention is focused on changes in the physical and physico-chemical properties of starch and cellulose, such as starch swelling, gelation, viscosity, solubility, reaction with iodine, UV, IR and ESR spectra, chemical changes resulting from radiolysis and from the effect of amylases on irradiated starch, changes in cellulose fibre strength, water absorption, stain affinity, and also the degradation of cellulose by radiation and the effect of cellulases on irradiated cellulose. Practical applications of the findings concerning cellulose degradation are discussed. (author)

  9. Research on radiation effect and radiation protection at JAEA

    International Nuclear Information System (INIS)

    Researches on radiation effect and radiation protection at JAEA have been carried out in different sections. In recent years, the organizations were rearranged to attain better research circumstances, and new research programs started. At present, radiation effect studies focus on radiation effect mechanisms at atomic, molecular and cellular levels including simulation studies, and protection studies focus on dosimetry for conditions difficult to cover with currently used methods and data as well as the related basic studies. The outlines of the whole studies and also some descriptions on selected subjects will be given in this paper. (author)

  10. Radiation chemical oxidation of propen under the influence of UV- and gamma radiation

    International Nuclear Information System (INIS)

    The oxidation of propen is studied in the liquid state under the influence of electromagnetic radiation using hydrogenperoxide, organic hydroperoxides and oxygen. In this investigation propen oxide is of main interest. The study of systems with oxygen is based on the concept that the formation of hydroperoxide from organic oxygen compounds is enhanced by irradiation, thus favouring an in situ method for expoxidation with hydroperoxides. The influence of UV-radiation from high and low pressure mercury discharge lamps and 60Co gamma radiation has been studied as well as the effect of solvents and catalysers, which are resolved in the system. (orig./WBU)

  11. Mouse like rodents as objective biological marker of radiation and chemical contamination

    International Nuclear Information System (INIS)

    The focus of the paper is the study of nuclear-fuel enterprises or the combination of nuclear-fuel and chemical enterprises influence on the contents of glucocorticoids in suprarenal of mouse like rodents, as well as the level of serotonin in hypothalamus of the mice inhabiting the territory of such industrial enterprises. It is stated that the counting of glucocorticoids of the mice inhabiting the territory contaminated with radiation increases more than by two times, yet the mice inhabiting the territories effected by the combined impact of radiation and chemical waste suffer the major change of the adaptation hormones. Hypertrophy of the suprarenal of mouse like rodents indicates the effect of low dosage of chronic irradiation on small mammals' adaptation system, as well as the boost of this effect in case of the combination of radiation and chemical waste. The hypothalamus of mice inhabiting the contaminated territories shows convincing decrease of serotonin contents in comparison with that of the mammals inhabiting ecologically clean territories. The deficiency of serotonin in the brain can cause depression, anxiety and depending on individual personality nay cause aggression and submissive behavior. Mouse like rodents are objective signs for observation of the chronic impact of environmental factors

  12. Management of cancer risk from radiation: A model and a standard for handling chemical risks?

    International Nuclear Information System (INIS)

    Sparsely ionizing radiation is the environmental cancer initiator which is at present best characterized with respect to the magnitude of cancer risks associated with exposure. Possibilities of estimating cancer risks from chemicals by expressing chemical doses as radiation-dose equivalents was therefore studied. This approach eliminates most of the difficulties encountered in efforts to estimate risks from experimental data. Particularly, it permits an implicit estimation, which cannot be obtained from animal studies, of the influences of promotive and cocarcinogenic factors in human populations. Chemical doses are monitored by adducts of reactive chemicals or metabolites to proteins and DNA in humans and animals. This method overcomes the low sensitivity and low specificity of disease- epidemiological studies and may be used to detect and identify cancer initiators (mutagens) of exogenous or endogenous origin. The expression of doses in a common unit, that is directly related to risk, facilitates addition of and comparisons of risks. The fact that this unit refers to radiation, a factor that is well-known to the public and to administrators, facilitates realization of the magnitude of risks and the application of the ICRP principles for regulation, particularly with regard to stochastic effects. (author)

  13. Radiation modification of swollen and chemically modified cellulose

    International Nuclear Information System (INIS)

    Complete text of publication follows. Biodegradable hydrogel was produced by radiation-induced crosslinking of water soluble carboxymethyl cellulose. Mobility of the molecular chain was found to play an important role in the crosslinking reaction. In this work the role of cellulose chains' mobility in radiation-induced reactions of fibrous cellulose was studied. Mobility of chains was improved by swelling (in sodium hydroxide and tetramethylammonium hydroxide) and chemical modification (substitution of about 3 % of hydroxyl groups with carboxymethyl groups), respectively. All samples were neutralized after the treatments. Accessibility of cellulose characterized by water adsorption and retention was significantly improved by the treatments in the following order: sodium hydroxide < tetramethylammonium hydroxide < carboxymethylation. Less fibrillar structure of modified fibers was observed by electron microscope. Samples were irradiated in wet form in open air (10 kGy). Untreated sample coated with soluble CMC was also irradiated. Degree of polymerization, FTIR spectra, and water sorption of samples before and after irradiation are presented. Amount of water adsorbed on samples decreased after irradiation. It can be considered the consequence of crosslinks, which might improve the crease recovery ability of cotton fabric. High accessibility improved degradation rather than crosslinking of cellulose chains

  14. Chemical analysis applied to the radiation sterilization of solid ketoprofen

    Science.gov (United States)

    Colak, S.; Maquille, A.; Tilquin, B.

    2006-01-01

    The aim of this work is to investigate the feasibility of radiation sterilization of ketoprofen from a chemical point of view. Although irradiated ketoprofen has already been studied in the literature [Katusin-Razem et al., Radiat. Phys. Chem. 73 111-116 (2005)], new results, on the basis of electron spin resonance (ESR) measurements and the use of hyphenated techniques (GC-MS and LC-MS), are obtained. The ESR spectra of irradiated ketoprofen consists of four unresolved resonance peaks and the mean G-value of ketoprofen is found to be 4 +/- 0.9 nmoles/J, which is very small. HPLC-UV analyses indicate that no significant loss of ketoprofen is detected after irradiation. LC-MS-MS analyses show that the structures of the non-volatile final products are similar to ketoprofen. Benzaldehyde is detected in the irradiated samples after dynamic-extraction GC-MS. The analyses show that ketoprofen is radioresistant and therefore might be radiosterilized.

  15. Effect of α-tocopherol and its sulfur-containing analogs on radiation-induced chemical transformations of hexane and ethanol

    International Nuclear Information System (INIS)

    A series of sulfur-containing structural analogs of α-tocopherol was synthesized, and their effect on the formation of molecular products of ethanol and hexane radiolysis under aerated and deaerated conditions was studied. The O-H bond dissociation enthalpies (BDEs) were calculated for the compounds containing hydroxyl groups. It was found that α-tocopherol and its analogs have the most significant effect on the radiolysis of ethanol and hexane under air-free conditions when the products are formed in the reactions of carbon centered radicals. The probability of the reaction of the test compounds with alkyl radicals increases with a decrease in the BDE for the OH groups present in these compounds. The carbonyl group in compounds makes them efficient oxidants of α-hydroxyalkyl radicals, thus resulting in a change in the product composition for the ethanol radiolysis in the presence of these compounds

  16. Influence of radiation on some physico-chemical properties of gum acacia. Mitigation of degradation by different class of antioxidants in LDPE expose to ionizing radiations

    International Nuclear Information System (INIS)

    Controlling of degradation in polysaccharide is also gaining impetus from commercial point of view. Comprehensive studies on the influence of ionizing radiation on the physico-chemical properties of polysaccharides are very important for their applications in different industries. The effect of gamma radiation on gum acacia has been studied and its effect on some physico-chemical properties, as measured by UV spectroscopy and viscometry has been discussed. The gum samples are irradiated in the range of 5 kGy to 25 kGy both in air and vacuum. Samples irradiated under vacuum shows colour stability while viscosity remain unaffected. (author)

  17. Radiation effects on foodstuffs. Pt. 1

    International Nuclear Information System (INIS)

    In this report, results of irradiation experiments at about 30 foodstuffs are compiled and analyzed. The only objective was to obtain a survey of the chemical changes of irradiated foodstuffs; therefore, neither microbiological nor toxicological aspects were considered. The results were taken from the original publications and compiled in a type of dictionary of foodstuffs listing all relevant data for each substance (foodstuff, irradiation conditions, investigation procedures, results etc.) in a defined order. The main radiation source was Co 60, and the doses ranged between 0,006 and 10 Mrad. The investigations were related not only to the effects of irradiation (in some cases using different absorbed doses per foodstuff), but also to the effects of storage after irradiation (for 16 foodstuffs) and the effects of temperature (for 3 foodstuffs). (orig./MG)

  18. Thyroid effects of endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Boas, Malene; Feldt-Rasmussen, Ulla; Main, Katharina M

    2012-01-01

    In recent years, many studies of thyroid-disrupting effects of environmental chemicals have been published. Of special concern is the exposure of pregnant women and infants, as thyroid disruption of the developing organism may have deleterious effects on neurological outcome. Chemicals may exert ...... thyroid-disrupting effects, and there is emerging evidence that also phthalates, bisphenol A, brominated flame retardants and perfluorinated chemicals may have thyroid disrupting properties....

  19. Radiation chemical research after the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    On March 11, 2011 we had the Great East Japan Earthquake and induced tsunami, which attacked the Fukushima Daiichi Nuclear Power Station (NPS). Due to the blackout of the NPS and no cooling water, the cores of the unit of -1, -2 and -3 reactors were melt down and hydrogen explosion took place at the unit -1, -3 and -4. In addition, seawater was injected to primary containment vessel, pressure reactor vessel and spent fuel pool. New radiation research projects appeared after the Fukushima Accident. Among the projects, (1) radiolysis of zeolite and management of zeolite waste, (2) effect of seawater injection, and (3) radiation induced dissolution of UO2 are selected and briefly presented. (author)

  20. Schwinger Effect, Hawking Radiation, and Unruh Effect

    CERN Document Server

    Kim, Sang Pyo

    2016-01-01

    We revisit the Schwinger effect in de Sitter, anti-de Sitter spaces and charged black holes, and explore the interplay between quantum electrodynamics and the quantum gravity effect at one-loop level. We then advance a thermal interpretation of the Schwinger effect in curved spacetimes. Finally, we show that the Schwinger effect in a near-extremal black hole differs from Hawking radiation of charged particles in a non-extremal black hole and is factorized into those in an anti-de Sitter space and a Rindler space with the surface gravity for acceleration.

  1. Schwinger Effect, Hawking Radiation, and Unruh Effect

    OpenAIRE

    Kim, Sang Pyo

    2016-01-01

    We revisit the Schwinger effect in de Sitter, anti-de Sitter spaces and charged black holes, and explore the interplay between quantum electrodynamics and the quantum gravity effect at one-loop level. We then advance a thermal interpretation of the Schwinger effect in curved spacetimes. Finally, we show that the Schwinger effect in a near-extremal black hole differs from Hawking radiation of charged particles in a non-extremal black hole and is factorized into those in an anti-de Sitter space...

  2. Radiation effect studies on anticancer drugs, cyclophosphamide and doxorubicin for radiation sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, L. E-mail: lalitv@magnum.barc.ernet.in; Dodke, P.B

    2004-12-01

    Two anticancer drugs, cyclophosphamide (CPH) and doxorubicin hydrochloride (DOXO), in powder form were exposed to a range of doses of {sup 60}Co gamma and electron beam radiation to study the effects of ionizing radiation. Pharmacopoeia tests, discolouration, degradation products, effect of irradiation temperature and dose rate were investigated. CPH undergoes less than 2% degradation at 30 kGy. Chromatographic studies revealed formation of several trace level degradation products, discolouration and free radicals in the irradiated CPH. N,N-bis (2-chloroethyl) group in the molecule is particularly sensitive to radiation degradation. Irradiation to 5 kGy at low temperature (77 K) did not result in significant changes. DOXO was observed to be quite radiation resistant and did not undergo significant changes in its physico-chemical properties and degradation product profile. It can be radiation sterilized at normal sterilization dose of 25 kGy.

  3. Radiation effect studies on anticancer drugs, cyclophosphamide and doxorubicin for radiation sterilization

    International Nuclear Information System (INIS)

    Two anticancer drugs, cyclophosphamide (CPH) and doxorubicin hydrochloride (DOXO), in powder form were exposed to a range of doses of 60Co gamma and electron beam radiation to study the effects of ionizing radiation. Pharmacopoeia tests, discolouration, degradation products, effect of irradiation temperature and dose rate were investigated. CPH undergoes less than 2% degradation at 30 kGy. Chromatographic studies revealed formation of several trace level degradation products, discolouration and free radicals in the irradiated CPH. N,N-bis (2-chloroethyl) group in the molecule is particularly sensitive to radiation degradation. Irradiation to 5 kGy at low temperature (77 K) did not result in significant changes. DOXO was observed to be quite radiation resistant and did not undergo significant changes in its physico-chemical properties and degradation product profile. It can be radiation sterilized at normal sterilization dose of 25 kGy

  4. Characterization of Nd: YAG laser radiation effects on Ti6Al4V physico-chemical properties: An in vivo study

    International Nuclear Information System (INIS)

    The effect of a Nd: YAG laser (1064 nm) has been studied on Ti6Al4V alloy in terms of optical and physical parameters for biomedical applications. The superior surface microhardness hardness ( i e . 377 VHN) is attributed to grain refinement associated with laser melting and rapid solidification. Thc electrochemical property, mainly pitting corrosion resistance, has been carried out in Hanks salt balanced physiological solution using standard potentiodynamic polarization testing. At the optimum laser treating fluence (140 jcm-2), the EDX spectroscopy showed a decrease of about 30 % in the vanadium and the contact angle measurements also indicated an improved surface wettability seen in the characteristics with a contact angle of 35'. Finally. Cell spreading on the implanted specimens was analyzed by SEM and their condition in a specific area was studied for 10 cells for three separate regions on the same specimen using Image .I Program software. The in viva tests provided some useful clinical and pathological information regarding tissue response to the implants with different surface topography)

  5. Radiation Effects in Nuclear Ceramics

    Directory of Open Access Journals (Sweden)

    L. Thomé

    2012-01-01

    Full Text Available Due to outstanding physicochemical properties, ceramics are key engineering materials in many industrial domains. The evaluation of the damage created in ceramics employed in radiative media is a challenging problem for electronic, space, and nuclear industries. In this latter field, ceramics can be used as immobilization forms for radioactive wastes, inert fuel matrices for actinide transmutation, cladding materials for gas-cooled fission reactors, and structural components for fusion reactors. Information on the radiation stability of nuclear materials may be obtained by simulating the different types of interactions involved during the slowing down of energetic particles with ion beams delivered by various types of accelerators. This paper presents a review of the radiation effects occurring in nuclear ceramics, with an emphasis on recent results concerning the damage accumulation processes. Energetic ions in the KeV-GeV range are used to explore the nuclear collision (at low energy and electronic excitation (at high energy regimes. The recovery by electronic excitation of the damage created by ballistic collisions (SHIBIEC process is also addressed.

  6. Effects of radiation treatment on foodstuffs

    International Nuclear Information System (INIS)

    The purpose of this study is to discuss and compile methods and results of irradiation experiments carried out on 54 plant and animal foodstuffs in order to obtain a survey on chemical changes, in particular as regards the reduction of nutritional value and savoriness of irradiated foodstuffs. According to this task, microbiological aspects as well as an interpretation of the experimental results as to the physiology of nutrition and toxicology were not included. The results published by the authors of the original papers were compiled in a kind of dictionary which contains all relevant information such as radiation sources, irradiation conditions, investigation methods, results of chemical or organoleptical changes etc. The most important results were summarized in tables and can be found at the end of this study. Because of the abundance of existing literature the series 'Effects of radiation treatment on foodstuffs' will be continued in Part IV, and the final discussion of the results will be published separately after further data have been included. (orig.)

  7. Effective UV radiation dose in polyethylene exposed to weather

    Science.gov (United States)

    González-Mota, R.; Soto-Bernal, J. J.; Rosales-Candelas, I.; Calero Marín, S. P.; Vega-Durán, J. T.; Moreno-Virgen, R.

    2009-09-01

    In this work we quantified the effective UV radiation dose in orange and colorless polyethylene samples exposed to weather in the city of Aguascalientes, Ags. Mexico. The spectral distribution of solar radiation was calculated using SMART 2.9.5.; the samples absorption properties were measured using UV-Vis spectroscopy and the quantum yield was calculated using samples reflectance properties. The determining factor in the effective UV dose is the spectral distribution of solar radiation, although the chemical structure of materials is also important.

  8. Recent Developments in the Theory of Mechanisms in Radiation Chemical Processes

    International Nuclear Information System (INIS)

    Recent developments in the mechanisms of radiation-initiated chemical reactions are reviewed. The role of ion molecule processes is reviewed, with particular reference to the radiation chemistry of methane. In this system, the existence of reactions of excited molecules, in addition to ionic processes is deduced. It is shown that, in the radiolysis of methane, unsaturated hydrocarbons play a considerable part in the mechanism of reaction. Developments in ionic polymerization and also polymerization under heterogenous conditions are reviewed. The importance of reactant purity, and also cleanliness of reaction vessels is discussed. The effect of an applied external potential in solid state polymerization is briefly reviewed. The importance of free-radical processes to radiation chemists is considered in the light of the Dow process for the production of ethyl bromide. (author)

  9. Biological studies of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.H.

    1949-11-16

    This paper discusses procedures for research on biological effects of radiation, using mouse tissue: activation trace analysis including methods and proceedures for handling samples before during and after irradiation; methods and procedures for ion exchange study; method of separation and recovery of copper, iron, zinc, cobalt, pubidium and cesium. Also included are studies of trace elements with radioactive isotopes: the distribution of cobalt 60, zinc 65, and copper 64 in the cytoplasm and nuclei of normal mice and those with tumors. 16 figs., 2 tabs.

  10. The Brookhaven Radiation Effects Facility

    International Nuclear Information System (INIS)

    The Neutral Particle Beam (NPB) Radiation Effects Facility (REF), funded by the Strategic Defense Initiative Office (SDIO) through the Defense Nuclear Agency (DNA) and the Air Force Weapons Laboratory (AFWL), has been constructed at Brookhaven National Laboratory (BNL). Operation started in October 1986. The facility is capable of delivering pulsed H-, H/sup o/, and H+ beams of 100 to 200 MeV energy up to 30 mA peak current. Pulses can be adjusted from 5 μs to 500 μs length at a repetition rate of 5 pps. The beam spot on target is adjustable from 3 to 100 cm diameter (2 σ) resulting in a maximum dose of about 10 MRads (Si) per pulse (small beam spot). Experimental use of the REF is being primarily supported by the SDI lethality (LTH-4) program. The program has addressed ionization effects in electronics, both dose rate and total dose dependence, radiation-sensitive components, and dE/dx effects in energetic materials including propellants and high explosives (HE). This paper describes the facility, its capabilities and potential, and the experiments that have been carried out to date or are being planned. 2 refs., 10 figs

  11. Radiation effects on superconducting materials

    International Nuclear Information System (INIS)

    Superconducting magnets will be used in plasma confinement of future fusion reactors. They will be subjected to neutron irradiation at low temperatures, so information is required on the effects of irradiation at low temperatures upon superconducting properties (critical current density, superconducting transition temperature, etc.) of the superconducting materials, electrical resistivity of the stabilizing materials such as Cu, multifilamentary composite materials of the magnets, and mechanical and electrical properties of the electrical insulating materials. A review is made of the existing data of radiation effects on the superconducting magnets. The superconducting transition temperature of the elements, alloys and compounds decreases with neutron irradiation, more in the compounds than in the alloys. The critical current density J sub(c) of the alloys decreases with fast neutron irradiation at low temperatures. In Nb3Sn, J sub(c) increases by low temperature fast neutron irradiation below the fluence of about 1018n/cm2, and the degradation of J sub(c) appears at over 1018n/cm2. Fast neutron irradiation causes resitivity increase of Cu and Al. Radiation damage in the materials may have large influence on stability characteristics of the composite wires. Extensive studies are necessary to clarify the problems, especially the irradiation effect at low temperatures. (auth.)

  12. Effects of ionizing radiation in ginkgo and guarana

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo Soriani, Renata [Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Avenida professor Lineu Prestes, 580-Bloco13, Cidade Universitaria, CEP 05508900 Sao Paulo (Brazil); Satomi, Lucilia Cristina [Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Avenida professor Lineu Prestes, 580-Bloco13, Cidade Universitaria, CEP 05508900 Sao Paulo (Brazil); Pinto, Terezinha de Jesus A. [Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Avenida professor Lineu Prestes, 580-Bloco13, Cidade Universitaria, CEP 05508900 Sao Paulo (Brazil)]. E-mail: tjapinto@usp.br

    2005-07-01

    Raw plant materials normally carry high bioburden due to their origin, offering potential hazards to consumers. The use of decontamination processes is therefore an important step towards the consumer safety and therapeutical efficiency. Several authors have reported the treatment of medicinal herbs with ionizing radiation. This work evaluated the effects of different radiation doses on the microbial burden and chemical constituents of ginkgo (Ginkgo biloba L.) and guarana (Paullinia cupana H.B.K.)

  13. Effects of ionizing radiation in ginkgo and guarana

    International Nuclear Information System (INIS)

    Raw plant materials normally carry high bioburden due to their origin, offering potential hazards to consumers. The use of decontamination processes is therefore an important step towards the consumer safety and therapeutical efficiency. Several authors have reported the treatment of medicinal herbs with ionizing radiation. This work evaluated the effects of different radiation doses on the microbial burden and chemical constituents of ginkgo (Ginkgo biloba L.) and guarana (Paullinia cupana H.B.K.)

  14. Effects of ionizing radiation in ginkgo and guarana [rapid communication

    Science.gov (United States)

    Rabelo Soriani, Renata; Cristina Satomi, Lucilia; Pinto, Terezinha de Jesus A.

    2005-07-01

    Raw plant materials normally carry high bioburden due to their origin, offering potential hazards to consumers. The use of decontamination processes is therefore an important step towards the consumer safety and therapeutical efficiency. Several authors have reported the treatment of medicinal herbs with ionizing radiation. This work evaluated the effects of different radiation doses on the microbial burden and chemical constituents of ginkgo ( Ginkgo biloba L.) and guaraná ( Paullinia cupana H.B.K.).

  15. Radiation preservation of maize

    International Nuclear Information System (INIS)

    Radiation preservation of maize was carried out. Radiation doses and sources, shielding materials, packaging materials, chemical radiation effects, biological radiation effects, were discussed. Experimental methods, samples and accessories were also presented. (SMN)

  16. Effects of Radiation on MEMS

    OpenAIRE

    Shea, Herbert

    2011-01-01

    The sensitivity of MEMS devices to radiation is reviewed, with an emphasis on radiation levels representative of space missions. While silicon and metals generally do not show mechanical degradation at the radiation levels encountered in most missions, MEMS devices have been reported to fail at doses of as few krad, corresponding to less than one year in most orbits. Radiation sensitivity is linked primarily to the impact on device operation of radiation-induced trapped charge in dielectrics...

  17. Chemical radiation protection of sodium pump in mammalian skeletal muscle

    International Nuclear Information System (INIS)

    When male albino rats of the Wistar strain received wholebody gamma irradiation at a dose level of 8.5 Gy, 22N outward movement from the diaphragm muscle fibres slowed down, while its uptake was enhanced. When imidazole was intraperitoneally injected prior to irradiation both movements returned nearly to normal rates. Experiments carried out on the 7th day post irradiation, indicated that gamma irradiation had exerted some sort of damage upon the sodium pumping mechanism in mammalian skeletal muscle, and that imidazole injection prior to radiation exposure exerted a remarkable radioprotective effect on those vital biophysical processes. The results have been discussed in view of the relevant literature. (author)

  18. Effects of radiation upon gastrointestinal motility

    Institute of Scientific and Technical Information of China (English)

    Mary F Otterson

    2007-01-01

    Whether due to therapeutic or belligerent exposure, the gastrointestinal effects of irradiation produce symptoms dreaded by a majority of the population. Nausea, vomiting, diarrhea and abdominal cramping are hallmarks of the prodromal phase of radiation sickness, occurring hours to days following radiation exposure. The prodromal phase is distinct from acute radiation sickness in that the absorptive, secretory and anatomic changes associated with radiation damage are not easily identifiable. It is during this phase of radiation sickness that gastrointestinal motility significantly changes. In addition, there is evidence that motor activity of the gut contributes to some of the acute and chronic effects of radiation.

  19. Health Effects of Exposure to Low Dose of Radiation

    International Nuclear Information System (INIS)

    Human beings are exposed to natural radiation from external sources include radionuclides in the earth and cosmic radiation, and by internal radiation from radionuclides, mainly uranium and thorium series, incorporated into the body. Living systems have adapted to the natural levels of radiation and radioactivity. But some industrial practices involving natural resources enhance these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Biological effects of ionizing radiation are the outcomes of physical and chemical processes that occur immediately after the exposure, then followed by biological process in the body. These processes will involve successive changes in the molecular, cellular, tissue and whole organism levels. Any dose of radiation, no matter how small, may produce health effects since even a single ionizing event can result in DNA damage. The damage to DNA in the nucleus is considered to be the main initiating event by which radiation causes damage to cells that results in the development of cancer and hereditary disease. It has also been indicated that cytogenetic damage can occur in cells that receive no direct radiation exposure, known as bystander effects. This paper reviews health risks of low dose radiation exposure to human body causing stochastic effects, i.e. cancer induction in somatic cells and hereditary disease in genetic cells. (author)

  20. Doses and biological effect of ionizing radiation

    International Nuclear Information System (INIS)

    Basic values and their symbols as well as units of physical dosimetry are given. The most important information about biological radiation effects is presented. Polish radiation protection standards are cited. (A.S.)

  1. Radiation Therapy: Preventing and Managing Side Effects

    Science.gov (United States)

    ... yourself during radiation therapy Radiation therapy can damage healthy body tissues in or near the area being treated, which can cause side effects. Many people worry about this part of their cancer treatment. Before ...

  2. Interpretation of spin effects in Cherenkov radiation

    International Nuclear Information System (INIS)

    The Cherenkov radiation effect depends on correlation between electron polarization and photon spirality. This correlation in the given case is interpreted as interference of the charge radiation amplitudes and electron magnetic moment

  3. Stochastic and non-stochastic radiation effects

    International Nuclear Information System (INIS)

    Both the carcinogenic and the mutagenic effects of ionizing radiation are thought to be induced by 'stochastic' mechanisms of action. It is generally accepted that the number of carcinogenic injury is proportional to the radiation dose applied, and that there is no direct relationship between radiation dose and severity of induced injury, so that no threshold dose can be defined. However, the severity of mutagenic effects, resulting for example from cell death or leading to functional disorders or malformations, has been observed to be a function of the radiation dose, so that in principle threshold doses can be defined. These latter effects are called non-stochastic radiation effects. (orig./DG)

  4. Effects of radiation on laser diodes.

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, Carol Celeste

    2004-09-01

    The effects of ionizing and neutron radiation on the characteristics and performance of laser diodes are reviewed, and the formation mechanisms for nonradiative recombination centers, the primary type of radiation damage in laser diodes, are discussed. Additional topics include the detrimental effects of aluminum in the active (lasing) volume, the transient effects of high-dose-rate pulses of ionizing radiation, and a summary of ways to improve the radiation hardness of laser diodes. Radiation effects on laser diodes emitting in the wavelength region around 808 nm are emphasized.

  5. Oocyte toxicity: female germ-cell loss from radiation and chemical exposures

    International Nuclear Information System (INIS)

    In some mammals, female germ cells are extraordinarily sensitive to killing by exposure to ionizing radiation, especially during development. Immature oocytes, which constitute the lifetime germ-cell pool of the female, have an LD50 in juvenile mice of only 6 rad (compared with typical LD50s of 100-300 rad for most other cell types studied). Essentially, the entire germ-cell supply in female squirrel monkeys is destroyed prenatally by exposure of only 0.7 rad/day. Severe but lesser destruction has been found in other species. However, evidence suggests (though not ruled out for all developmental stages) that unusually high sensitivity probably does not occur in the human female. Germ cells can also be killed by certain chemicals, and similarities exist between chemical and radiation effects. More than 75 compounds have been quantitatively studied in mice, with determination of OTI values (OTI = oocyte toxicity index = mouse LD50/oocyte LD50) to measure the degree of preferential oocyte killing. High sensitivity in mice does not mean necessarily high sensitivity in women. Of special interest is the recent discovery that the lethal target in the extremely sensitive mouse immature oocyte is probably the plasma membrane, not DNA. Since mouse data form the main basis from which human genetic hazard (for both radiation and chemicals) is estimated, this has important implications for the determination of genetic risk in women

  6. Cosmic Radiation Effects on Avionics

    International Nuclear Information System (INIS)

    The earth is bombarded by a nearly isotropic flux of energetic charged particles called cosmic rays which interact with air nuclei to generate a cascade of secondary particles building up to a maximum intensity at 60,000 feet. At normal cruising altitudes the radiation is still several hundred times the ground level intensity. These particles are sufficiently energetic and ionising that they can deposit enough charge in a small volume of semiconductor to change the state of a memory cell, while certain devices can be triggered into a state of high current drain, leading to burn-out and hardware failure. These deleterious interactions of individual particles are referred to as single event effects. The authors have flown Cosmic Radiation Effects detectors in a variety of spacecraft and aircraft and illustrative results are presented together with a review of published instances of such phenomena in flight systems. In the future there is likely to be increased susceptibility due to growing reliance on high performance computers using smaller devices operated at lower voltages and flying at higher altitudes. The influence of cosmic rays will have to be properly considered in the assessment of reliability. (author)

  7. Shock-induced solid-state chemical reactivity studies using time-resolved radiation pyrometry

    International Nuclear Information System (INIS)

    Time-resolved radiation pyrometry has been used to study materials which undergo solid-state chemical reactions due to shock loading. Shock-induced chemical reactivity in solids is fundamentally different than that in high explosives and other energetic materials because, if no volatiles are present, the reaction products end up in the condensed, rather than the vapor, state. Bulk property changes accompanying the solid-state reactions may therefore be too small to be observable with wave profile or shock-velocity measurements. However, some solid-state reactions, such as that between metallic nickel and aluminum, are exothermic enough to give rise to a measurable increase in temperature, so pyrometry can be used to detect the reactions. Unfortunately, these measurements are complicated by the large temperature increases generated by other sources. Possible mechanisms for generation of these high temperatures, and their effect on the chemical reaction, are suggested

  8. RADIATION AND EFFECTS ON HUMAN HEALTH

    Directory of Open Access Journals (Sweden)

    Hakan YAREN

    2005-08-01

    Full Text Available In modern world, living without radiation is impossible. Radiation is defined as ?energy transmitted through space as waves or particles? and also determined as ?particles or waves emitted from the nucleus of unstable radioactive atoms to become stable? Mainly two types of radiation are exist; ionising radiation and non-ionising radiation. Ionising radiation is consist of alpha, beta particules, neutrons, x rays and gamma rays. Ionising radiation which can be measured by ion chambers, geiger-Mueller detectors, Scintillation Counters, fluorescent counters etc. Has harmfull effects on human health in levels of molecular, cellular, tissue, organs and organ systems. These harmfull effects can also be named somatic and genetic. One of the most encountered problem is ?Acute Radiation Syndrom? which has three sub syndroms called haematopoetic syndrom, gastrointestinal syndrom and neurovascular syndrom. Exposure time, distance and armorisation are the key elements of protection from radiation. [TAF Prev Med Bull 2005; 4(4.000: 199-208

  9. Mechanisms in endogenous leukemia virus induction by radiation and chemicals

    International Nuclear Information System (INIS)

    A model of endogenous virus induction in AKR-strain mouse cells, based on two distinct types of alterations in cellular or proviral DNA, is presented. The first type are nonrepairable alterations such as those caused by the incorporation of halogenated pyrimidines; the second type are repairable lesions such as those caused by irradiation or certain chemicals other than pyrimidines. The production of nonrepairable lesions leads to the formation of a stable, proviral state which is dependent upon cell division for complete virus expression. A stable provirus intermediate state is not demonstrable in mouse cells induced by treatments which cause repairable lesions since replication of damaged or altered DNA must occur before the lesions are removed by repair synthesis. Experimental support for this model is based upon the following observations: (a) enhancement of induction is observed if lesions are introduced during cellular DNA synthesis; (b) quinacrine, which is an inhibitor of repair synthesis, increases the observed level of radiation induction; and (c) incorporation of 5-iodo-2'-deoxyuridine during repair of DNA appears to 'stabilize' lesions which would otherwise be removed by repair synthesis, and increases the level of virus induction

  10. Radiation effects in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Begay, F.; Rosen, L.; Petersen, D.F.; Mason, C.; Travis, B. [Los Alamos National Lab., NM (United States); Yazzie, A. [Navajo Nation, Window Rock, AZ (United States). Dept. of History; Isaac, M.C.P.; Seaborg, G.T. [Lawrence Berkeley National Lab., CA (United States); Leavitt, C.P. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

    1999-04-01

    Although the Navajo possess substantial resource wealth-coal, gas, uranium, water-this potential wealth has been translated into limited permanent economic or political power. In fact, wealth or potential for wealth has often made the Navajo the victims of more powerful interests greedy for the assets under limited Navajo control. The primary focus for this education workshop on the radiation effects in the environment is to provide a forum where scientists from the nuclear science and technology community can share their knowledge toward the advancement and diffusion of nuclear science and technology issues for the Navajo public. The scientists will make an attempt to consider the following basic questions; what is science; what is mathematics; what is nuclear radiation? Seven papers are included in this report: Navajo view of radiation; Nuclear energy, national security and international stability; ABC`s of nuclear science; Nuclear medicine: 100 years in the making; Radon in the environment; Bicarbonate leaching of uranium; and Computational methods for subsurface flow and transport. The proceedings of this workshop will be used as a valuable reference materials in future workshops and K-14 classrooms in Navajo communities that need to improve basic understanding of nuclear science and technology issues. Results of the Begay-Stevens research has revealed the existence of strange and mysterious concepts in the Navajo Language of nature. With these research results Begay and Stevens prepared a lecture entitled The Physics of Laser Fusion in the Navajo language. This lecture has been delivered in numerous Navajo schools, and in universities and colleges in the US, Canada, and Alaska.

  11. The radiation effects of nuclear weapons explosions

    International Nuclear Information System (INIS)

    The energy resulting from nuclear weapons explosions consists of thermal energy (heat radiation), shock waves, initial radiation (nuclear ray flash, gamma and neutron flash), and nuclear radiation of the fission products (fallout). The contribution of the different energy components depends on the energy amounts produced by fission or fusion reactions (A-weapon, H-weapon), on the components used for conversion to helium-4 (deuterium, tritium, lithium), the weapon design (radiation absorption and induced activity in auxiliaries), and on the type of employment (atmospheric, ground, or underground explosion). The damaging effects vary accordingly, consisting of thermal damage, blast effects, and radiation injuries. The effects are explained and compared. (orig.)

  12. Spallation radiation effects in materials

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L.K.; Farrell, K.; Wechsler, M.S. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    Spallation refers to the process whereby particles (chiefly neutrons) are ejected from nuclei upon bombardment by high-energy protons. Spallation neutron sources (SNS`s) use these neutrons for neutron scattering and diffraction research, and SNS`s are proposed as the basis for systems for tritium production and transmutation of nuclear waste. Materials in SNS`s are exposed to the incident proton beam (energies typically about 1000 MeV) and to the spallation neutrons (spectrum of energies extending up to about 1000 MeV). By contrast the fission neutrons in nuclear reactors have an average energy of only about 2 MeV, and the neutrons in fusion reactors would have energies below about 14 MeV. Furthermore, the protons and neutrons in SNS`s for scattering and diffraction research are pulsed at frequencies of about 10 to 60 Hz, from which significant changes in the kinetics of point and extended defects may be expected. In addition, much higher transmutation rates occur in SNS-irradiated materials, On the whole, then, significant differences in microstructural development and macroscopic properties may result upon exposure in SNS systems, as compared with fission and fusion irradiations. In a more general sense, subjecting materials to new radiation environments has almost routinely led to new discoveries. To the extent that data are avaiable, however, the spallation environment appears to increase the degree of damage without introducing totally new effects. The first part of this presentation is an overview of radiation effects in materials, outlining essential concepts and property changes and their physical bases. This background is followed by a description of SNS irradiation environments and the effects on materials of exposure to these environments. A special discussion is given of the selection of target (e.g., liquid mercury), container (e.g., austenitic stainless steel or ferritic/martensitic steel), and structural materials in SNS systems.

  13. Defence biochemical mechanisms of the organisms against chemical pollution and ionizing radiations

    International Nuclear Information System (INIS)

    Acute exposure to high concentrations / doses of chemical pollutants and ionizing radiation usually kills giving no chance for survival, if not immediately, than later followed by specific diseases. Fortunately, this acute exposure is accidental, but chronic, low level exposure is also damaging. The involvement of pollution, especially of chemically produced, one in the etiology of several diseases is still under intensive research. Compared to other kinds of pollution (radioactive, microbiological), the chemical one seldom kills suddenly; it acts slowly, silently, by accumulation into the tissues, eventually inducing a failure of certain organ. The body is continuously adapting to low level concentrations of chemicals from environment until a certain threshold. All organisms, including humans, have a limited capacity of resisting the effects of various types of pollutants. Extensive laboratory research, demonstrated that most of damaging organic pollutants cause the formation of free radicals when they penetrate into the body and are metabolized. Free radicals are very reactive and are known to damage tissues with potentially fatal results. Substantial experimental evidence in recent years has demonstrated that all organisms are endowed with versatile, efficient antioxidant systems, that provide protection against the formation or effects of free radicals. However, the antioxidant systems are limited and when their capacity of protection is exceeded, injury resulting in illness or death occurs. In most cases, the harmful effects of chemicals on organisms depend on the biotransformation step, where free radicals are produced as byproducts of the metabolic reactions. The damaging effects of chemical pollutants are mostly restricted to an important organ depending on the way of penetration, nature of the compound and concentration. The organisms possess specific and nonspecific defense systems, which act from the exposure step, with attempt to block the entry of

  14. Molecular and cellular effects of radiations

    International Nuclear Information System (INIS)

    This program is concerned with the basic nature of the biological effects of mutagenic and carcinogenic environmental radiations, including those solar ultraviolet and visible radiations responsible for the most common form of human cancer: cancer of the skin. Concentrating on the damages to DNA caused by these radiations, the program attempts to delineate the basic mechanisms whereby such damage may occur. 14 refs

  15. Applying radiation health effects data to radiation protection policies

    International Nuclear Information System (INIS)

    Data from the peer-reviewed scientific literature establish a sound basis to define a low-dose, low-dose-rate, dose-response. These data include human health dose-response studies; immunologically 'whole' animal studies; and cellular and molecular biological studies of complete biological systems for the relevant immunological and physiological responses. Initiatives are required to constructively apply these data to both radiation research and radiation protection policies. First, current low level radiation health effects research must apply existing data to define research projects to integrate and confirm existing dose-response data, with specific emphasis on the biological bases that exist in definitive and reproducible cellular and biological dose-response. Second, dose-response assessment must identify and incorporate all existing substantial and confirmed data, including natural radiation sources, to establish the bases for radiation protection policy for interventions to protect public health and safety. A preliminary assessment of these data is applied to: 1) Specify research that can be constructively applied to describe radiation health effects dose-response. 2) Apply health effects dose-response to radiation and radioactivity applications policies to maximize radiation health effects interventions for occupational applications, medical applications, and other radiation and radioactive materials applications controls to cost-effectively assure public health and safety. An assessment of the proposed revisions to ICRP radiation protection policies is provided that associates the basis for administrative limits with the previous proposal of the US NRC for a 'Below Regulatory Concern' (BRC) policy. This proposal ignores the context of the fact that very low levels of radiation exposure are far within the variations of natural radiation exposures, and therefore can have no gross net consequences. The equivalent failure of the BRC proposal resulted in quick

  16. Effects of Therapeutic Radiation on Polymeric Scaffolds

    OpenAIRE

    Cooke, Shelley Lynn

    2014-01-01

    High levels of ionizing radiation are known to cause degradation and/or cross-linking in polymers. Lower levels of ionizing radiation, such as x-rays, are commonly used in the treatment of cancers. Material characterization has not been fully explored for polymeric materials exposed to therapeutic radiation levels. This study investigated the effects of therapeutic radiation on three porous scaffolds: polycaprolactone (PCL), polyurethane (PU) and gelatin. Porous scaffolds were fabricate...

  17. U.S. Department of Energy Workers' mental models of radiation and chemical hazards in the workplace

    International Nuclear Information System (INIS)

    A pilot study was performed to test the mental models methodology regarding knowledge and perceptions of U.S. Department of Energy contractor radiation workers about ionizing radiation and hazardous chemicals. The mental models methodology establishes a target population's beliefs about risks and compares them with current scientific knowledge. The ultimate intent is to develop risk communication guidelines that address information gaps or misperceptions that could affect decisions and behavior. In this study, 15 radiation workers from the Hanford Site in Washington State were interviewed about radiation exposure processes and effects. Their beliefs were mapped onto a science model of the same topics to see where differences occurred. In general, workers' mental models covered many of the high-level parts of the science model but did not have the same level of detail. The following concepts appeared to be well understood by most interviewees: types, form, and properties of workplace radiation; administrative and physical controls to reduce radiation exposure risk; and the relationship of dose and effects. However, several concepts were rarely mentioned by most interviewees, indicating potential gaps in worker understanding. Most workers did not discuss the wide range of measures for neutralizing or decontaminating individuals following internal contamination. Few noted specific ways of measuring dose or factors that affect dose. Few mentioned the range of possible effects, including genetic effects, birth defects, or high dose effects. Variables that influence potential effects were rarely discussed. Workers rarely mentioned how basic radiation principles influenced the source, type, or mitigation of radiation risk in the workplace

  18. Radiation effect on ultrahigh molecular weight polyethylene

    International Nuclear Information System (INIS)

    Ultrahigh molecular weight polyethylene (UHMWPE) can be used at a substitute of the bone of human body skeleton. Before being set in to human body, it needs to be sterilized with high energy radiation. Therefore, it is of considerable significance to study the effect of radiation on UHMWPE. Because of ultrahigh molecular weight of this material, there would be a lot of entanglements at molecular chain, its radiation effect would be quite different from that of polyethylene with normal molecular weight. The radiation effect on UHMWPE was studied by means of density and DSC analysis. It has been shown that the density increases with the increase of radiation dose up to 1.13 MGy monotonically. The heat of fusion per unit weight of sample and melting point of UHMWPE increase with dose too, especially at the lower dose of radiation. It could be concluded that during the period of radiation, there would be additional crystallization or crystal perfection taken place

  19. Radiation sterilization of fluoroquinolones in solid state: Investigation of effect of gamma radiation and electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Babita K., E-mail: singhbab2001@rediffmail.co [Department of Chemistry, RTM Nagpur University Campus, Amravati Road, Nagpur 440033 (India); Central Forensic Science Laboratory, Ramanthapur, Hyderabad 500013 (India); Parwate, Dilip V. [Department of Chemistry, RTM Nagpur University Campus, Amravati Road, Nagpur 440033 (India); Dassarma, Indrani B. [Jhulelal Institute of Technology, Nagpur (India); Shukla, Sudhir K. [Central Forensic Science Laboratory, Ramanthapur, Hyderabad 500013 (India)

    2010-09-15

    The effect of gamma radiation from {sup 60}Co source and 2 MeV electron beam was studied on two fluoroquinolone antibiotics viz norfloxacin and gatifloxacin in the solid state. The changes in reflectance spectrum, yellowness index, vibrational characteristics, thermal behavior, UV spectrum, chemical potency (HPLC) and microbiological potency were investigated. ESR measurement gave the number of free radical species formed and their population. The nature of final radiolytic impurities was assessed by studying the HPLC impurity profile. Both norfloxacin and gatifloxacin were observed to be radiation resistant, and did not show significant changes in their physico-chemical properties. They could be radiation sterilized at a dose of 25 kGy.

  20. Long-term effects of ionizing radiation

    International Nuclear Information System (INIS)

    This paper approaches the long-term effects of ionizing radiation considering the common thought that killing of cells is the basis for deterministic effects and that the subtle changes in genetic information are important in the development of radiation-induced cancer, or genetic effects if these changes are induced in germ cells

  1. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1984-01-01

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens.

  2. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    International Nuclear Information System (INIS)

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens

  3. Microscopic model for chemical etchability along radiation damage paths in solids

    Institute of Scientific and Technical Information of China (English)

    Mukhtar Ahmed RANA

    2008-01-01

    It would be very interesting to develop a picture about removal of atoms from the radiation damaged paths or latent nuclear tracks and undamaged bulk material in track detectors. Here, theory of chemical etching is described briefly and a new model for chemical etching along radiation damaged paths in solids is developed based on basic scientific facts and valid assumptions. Dependence of chemical etching on radiation damage intensity and etching conditions is discussed. A new parameter for etching along radiation damaged paths is introduced, which is useful for investigation of relationship between chemical etchability and radiation damage in a solid. Results and discussion presented here are also useful for further development of nuclear waste immobilization.

  4. Cell Recovery after Combined Action of Ionizing Radiation and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Roh, Chang Hyun; Ryu, Tae Ho [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Komarova, Ludmila N.; Petin, Vladislav G. [Medical Radiological Research Center, Obninsk (Russian Federation)

    2012-05-15

    Damage repair in malignant cells would be problematic in sterilization of microorganisms and treatment of cancer, as well. The inhibition of cell recovery and DNA single and double strand breaks repair by chemicals is expressed both as a deceleration of recovery rate and a lesser extent of recovery. Three possibilities are involved in the inhibition of cell recovery: (1) impairment of the recovery process itself, (2) increased irreversible damage, and (3) simultaneous exert of the two. There have been fee publications regarding these problems. The aim of this study was to determine which of these points are involved in the inhibition of cell recovery. In this study, a quantitative approach describing cell recovery from potentially lethal damage as a decrease in the effective dose was used

  5. Report of National Cancer Institute symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. I. Common molecular mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.

    1984-01-01

    Some aspects of molecular mechanisms common to radiation and chemical carcinogenesis are discussed, particularly the DNA damage done by these agents. Emphasis is placed on epidemiological considerations and on dose-response models used in risk assessment to extrapolate from experimental data obtained at high doses to the effects from long-term, low-level exposures. 3 references, 6 figures. (ACR)

  6. Impact of radiation treatment on chemical, biochemical and sensory properties, and microbiological quality of mackerel

    Science.gov (United States)

    Pinter, Nino; Maltar-Strmečki, Nadica; Kozačinski, Lidija; Njari, Bela; Cvrtila Fleck, Željka

    2015-12-01

    The effect of gamma radiation on shelf-life of mackerel (Scomber scombrus) was studied. Changes in raw fish stored at 4 °C were investigated simultaneously, by performing sensory evaluation, chemical analysis (pH value and NH3 concentration), and biochemical analyses of histamine concentration and microbiological quality. Analyses showed that preservation by gamma irradiation prolonged the freshness and sustainability without any unintended sensory changes. Furthermore, increasing the dose during the 10 days of storage considerably reduced the concentration of histamine, but only slightly reduced the concentration of ammonia (NH3). Bacterial examinations showed that gamma radiation decreased the total number of bacteria. Our results indicated that the shelf-life of mackerel stored at 4 °C can be prolonged by irradiation with a dose of 3 kGy.

  7. Potential health effects of space radiation

    Science.gov (United States)

    Yang, Chui-Hsu; Craise, Laurie M.

    1993-01-01

    Crewmembers on missions to the Moon or Mars will be exposed to radiation belts, galactic cosmic rays, and possibly solar particle events. The potential health hazards due to these space radiations must be considered carefully to ensure the success of space exploration. Because there is no human radioepidemiological data for acute and late effects of high-LET (Linear-Energy-Transfer) radiation, the biological risks of energetic charged particles have to be estimated from experimental results on animals and cultured cells. Experimental data obtained to date indicate that charged particle radiation can be much more effective than photons in causing chromosome aberrations, cell killing, mutation, and tumor induction. The relative biological effectiveness (RBE) varies with biological endpoints and depends on the LET of heavy ions. Most lesions induced by low-LET radiation can be repaired in mammalian cells. Energetic heavy ions, however, can produce large complex DNA damages, which may lead to large deletions and are irreparable. For high-LET radiation, therefore, there are less or no dose rate effects. Physical shielding may not be effective in minimizing the biological effects on energetic heavy ions, since fragments of the primary particles can be effective in causing biological effects. At present the uncertainty of biological effects of heavy particles is still very large. With further understanding of the biological effects of space radiation, the career doses can be kept at acceptable levels so that the space radiation environment need not be a barrier to the exploitation of the promise of space.

  8. Radiation effects on CCD image sensors

    International Nuclear Information System (INIS)

    In the past decade, the micro process technology has advanced and some elaborate semiconductor devices with many microscopic elements in a cell of about 10 μm x 10 μm can be successfully used as radiation detectors and related parts in the field of nuclear physics and engineering. A CCD image sensor, for example, effectively measures details of particle-beam profiles in accelerator applications. This paper describes radiation effects on CCD image sensors. Some CCD samples were irradiated with 60Co gamma-rays and DD and DT neutrons for the examination of the reliability of CCDs used in radiation environments. This paper shows experimental data on radiation effects on CCDs and then discusses the difference in the radiation effects between gamma-rays and neutrons. The following two radiation effects on CCDs are described. One is the transient effect, which is induced by the ionisation process of radiations and is not permanent but recoverable. A CCD responds to radiations as well as light and outputs pseudo signals induced by radiation reactions in the normal video signals during irradiation. The other is the permanent effect, which is caused by the generation of the defects. A CCD image sensor is easily influenced by the trapped holes produced by ionisation in the gate oxide. The defects cause the generation of the leakage current within the depletion region, the trapping of signal charge within the channel of the charge shift register, and the flat band voltage shift which affects the CCD operating bias. (author)

  9. Role of ionizing radiation in chemical evolution studies

    International Nuclear Information System (INIS)

    The purpose of this paper is to emphasize the role of ionizing radiation in radiation-induced reactions in prebiotic chemistry. The use of ionizing radiation as an energy source is based on its unique qualities, its specific manner of energy deposition and its abundance in the Earth's crust. As an example of radiation-induced reactions, the radiolysis of malonic acid was investigated. Malonic acid is converted into other carboxylic acids. The results obtained have been correlated with the ready formation of this compound in prebiotic experiments. (author)

  10. Functional status of liverin conditions of radiation and chemical exposure

    Directory of Open Access Journals (Sweden)

    O. V. Severynovs’ka

    2005-09-01

    Full Text Available Chronic influences of low-intensity X-rays in doses of 0.15 and 0.25 Gr and mix of heavy metals salts in a dose of 2 EPC (extreme permissible concentrations for each metal, as a single factor or as a combination of factors, on the state of pro-/antioxidative system in a rat liver have been studied. Analysis of the data concerning combined influences allows to conclude that effects under these doses have some differences: a splash of processes of lipid peroxidation are observed in both causes, but under the lower dose an additivity takes place, and under the dose of 0.25 Gr a synergism of the agent effects in relation to the development of peroxidative reactions is registered. The results testify that technogenic contamination of water with heavy metals worsens the action of radiation factor, specifically, eliminates a hormetic splash of antioxidative activity at 0.15 Gr. Biochemical indexes of the liver activity, as a central organ of a general metabolism, and a structure of morbidity have been studied in liquidators of the Chernobyl accident from industrial Prydnieprovie region. Disturbances of liver functions have been shown, especially in persons obtained the exposure dose about 0.25 Gr. A comparison of these results and data of tests with laboratory animals reveals their mutual accordance and supports a relevancy of extrapolation of data of model experiments on a person health state, which undergone a similar influence.

  11. Natural aerosol direct and indirect radiative effects

    OpenAIRE

    Rap, Alexandru; Scott, Catherine E.; Spracklen, Dominick V; Bellouin, Nicolas; Forster, Piers M.; Carslaw, Kenneth S.; Schmidt, Anja; Mann, Graham

    2013-01-01

    Natural aerosol plays a significant role in the Earth's system due to its ability to alter the radiative balance of the Earth. Here we use a global aerosol microphysics model together with a radiative transfer model to estimate radiative effects for five natural aerosol sources in the present-day atmosphere: dimethyl sulfide (DMS), sea-salt, volcanoes, monoterpenes, and wildfires. We calculate large annual global mean aerosol direct and cloud albedo effects especially for DMS-derived sulfate ...

  12. Effects of ionizing radiation on hippocampus

    International Nuclear Information System (INIS)

    The present situation in studying effects of ionizing radiation on hippocampus of brain was reviewed in these topics, such as the kinetics of hippocampus, influences of ionizing radiation, on neutrons, biochemistry, enzymes, transmitters and synapses in hippocampus and on its electrophysiology, and the neuro-behavior after irradiation of hippocampus of brain, in order to provide information for clarifying the mechanism is radiation effect on hippocampus and for protection of human

  13. Some characteristics and effects of natural radiation

    International Nuclear Information System (INIS)

    Since life first appeared on the Earth, it has, in all its subsequent evolved forms including human, been exposed to natural radiation in the environment both from terrestrial and extra-terrestrial sources. Being an environmental mutagen, ionising natural radiation may have played a role of some significance in the evolution of early life forms on Earth. It has been estimated by United Nations Scientific Committee on the Effects of Atomic Radiation that at the present time, exposure to natural radiation globally results in an annual average individual effective dose of about 2.4 mSv. This represents about 80 % of the total dose from all sources. The three most important components of natural radiation exposure are cosmic radiation, terrestrial radioactivity and indoor radon. Each of these components exhibits both geographical and temporal variabilities with indoor radon exposure being the most variable and also the largest contributor to dose for most people. In this account, an overview is given of the characteristics of the main components of the natural radiation environment and some of their effects on humans. In the case of cosmic radiation, these range from radiation doses to aircrew and astronauts to the controversial topic of its possible effect on climate change. In the case of terrestrial natural radiation, accounts are given of a number of human exposure scenarios. (author)

  14. Effect of radiation resistance additives for insulation materials

    International Nuclear Information System (INIS)

    For the electric wires and cables used in radiation environment such as nuclear power stations and fuel reprocessing facilities, the properties of excellent radiation resistance are required. For these insulators and sheath materials, ethylene propylene rubber, polyethylene and other polymers have been used, but it cannot be said that they always have good radiation resistance. However, it has been well known that radiation resistance can be improved with small amount of additives, and heat resistance and burning retarding property as well as radiation resistance are given to the insulators of wires and cables for nuclear facilities by mixing various additives. In this research, the measuring method for quantitatively determining the effect of Anti-rad (radiation resistant additive) was examined. Through the measurement of gel fraction, radical formation and decomposed gas generation, the effect of Anti-rad protecting polymers from radiation deterioration was examined from the viewpoint of chemical reaction. The experimental method and the results are reported. The radiation energy for cutting C-H coupling is polymers is dispersed by Anti-rad, and the probability of cutting is lowered. Anti-rad catches and extinguishes radicals that start oxidation reaction. (K.I.)

  15. Radiation damages in chemical components of organic scintillator detectors

    International Nuclear Information System (INIS)

    Samples containing PPO (1%, g/ml), diluted in toluene, they were irradiated in a 60Co irradiator (6.46 kGy/h) at different doses. The PPO concentration decay bi-exponentially with the dose, generating the degradation products: benzoic acid, benzamide and benzilic alcohol. The liquid scintillator system was not sensitive to the radiation damage until 20 kGy. Otherwise, the pulse height analysis showed that dose among 30 to 40 kGy generate significant loss of quality of the sensor (liquid scintillating) and the light yield was reduced in half with the dose of (34.04 ± 0.80) kGy. This value practically was confirmed by the photo peak position analysis that resulted D1/2 = (31.7 ± 1,4) kGy, The transmittance, at 360 nm, of the irradiated solution decreased exponentially. The compartmental model using five compartments (fast decay PPO, slow decay PPO, benzamide, benzoic acid and benzilic alcohol) it was satisfactory to explain the decay of the PPO in its degradation products in function of the dose. The explanation coefficient r2 = 0.985636 assures that the model was capable to explain 98.6% of the experimental variations. The Target Theory together with the Compartmental Analysis showed that PPO irradiated in toluene solution presents two sensitive molecular diameters both of them larger than the true PPO diameter. >From this analysis it showed that the radiolytic are generated, comparatively, at four toluene molecules diameter far from PPO molecules. For each one PPO-target it was calculated the G parameter (damage/100 eV). For the target expressed by the fast decay the G value was (418.4 ± 54.1) damages/100 eV, and for the slow decay target the G value was (54.5 ± 8.9) damages/100 eV. The energies involved in the chemical reactions were w (0.239 ± 0.031) eV/damage (fast decay) and w = (1 834 ± 0.301) eV/damage (slow decay). (author)

  16. Radiation-chemical technology of oil and engineering equipments

    International Nuclear Information System (INIS)

    One of the most important directions of science and technology progresses is the production of polymer materials with expected combination of properties. Significant perspectives for the development of this direction have opened the radiation chemistry of polymers. The main goal of radiation cross-linking of polymer products is to achieve the given concentration of cross-links with the required degree of uniformity

  17. High-Intensity Synchrotron Radiation Effects

    CERN Document Server

    Suetsugu, Y

    2016-01-01

    Various effects of intense synchrotron radiation on the performance of particle accelerators, especially for storage rings, are discussed. Following a brief introduction to synchrotron radiation, the basic concepts of heat load, gas load, electron emission, and the countermeasures against these effects are discussed.

  18. Protection against genetic hazards from environmental chemical mutagens: experience with ionizing radiation

    International Nuclear Information System (INIS)

    In radiation protection, the recurrent theme is, and always has been, dose limitation whether it is for occupational workers, individual members of the public or the population as a whole. The key words are 'dose' and 'limitation'. The quantitative system of dose limitation has been achieved because of a number of conceptual developments in our understanding of the mechanism of radiation action, development of radiation dosimetry, the accumulation of a vast body of quantitative information on dose-effect relationships and the effects of various biological and physical variables that affect these relationships of data on patterns and levels of exposures likely to be encountered to make estimates of the effects expected to result from such exposures, and balancing of risks to society against the benefits derived, the latter a matter of informed judgement. The philosophy has always been to avoid all unnecessary exposures and to limit the necessary exposures (justified by the benefits expected) to as low a level as reasonably achievable, social and economic factors being taken into acccount. The introduction of the concept that the system of dose limitation to the population should be based on genetic risks has stressed the need for careful planning to ensure that our genetic heritage is not endangered. Transfer of this knowledge to the field of chemical protection is discussed. (Auth.)

  19. Managing the adverse effects of radiation therapy.

    Science.gov (United States)

    Berkey, Franklin J

    2010-08-15

    Nearly two thirds of patients with cancer will undergo radiation therapy as part of their treatment plan. Given the increased use of radiation therapy and the growing number of cancer survivors, family physicians will increasingly care for patients experiencing adverse effects of radiation. Selective serotonin reuptake inhibitors have been shown to significantly improve symptoms of depression in patients undergoing chemotherapy, although they have little effect on cancer-related fatigue. Radiation dermatitis is treated with topical steroids and emollient creams. Skin washing with a mild, unscented soap is acceptable. Cardiovascular disease is a well-established adverse effect in patients receiving radiation therapy, although there are no consensus recommendations for cardiovascular screening in this population. Radiation pneumonitis is treated with oral prednisone and pentoxifylline. Radiation esophagitis is treated with dietary modification, proton pump inhibitors, promotility agents, and viscous lidocaine. Radiation-induced emesis is ameliorated with 5-hydroxytryptamine3 receptor antagonists and steroids. Symptomatic treatments for chronic radiation cystitis include anticholinergic agents and phenazopyridine. Sexual dysfunction from radiation therapy includes erectile dysfunction and vaginal stenosis, which are treated with phosphodiesterase type 5 inhibitors and vaginal dilators, respectively. PMID:20704169

  20. Effect of gamma radiation on Campylobacter jejuni

    International Nuclear Information System (INIS)

    Radiation resistance of Campylobacter jejuni in broth, ground beef, and ground turkey meat was determined using dose levels from 0-200 Krad at -30 +/- 100C, at 0-50C, and at 30 +/- 100C. Irradiation at -300C increased radiation resistance of cultures in ground meats; broth cultures were not greatly influenced by temperature. The effect of culture age on radiation resistance was also evaluated using cells in various physiological phases. Age did not have a pronounced effect on radiation resistance. The largest D10 value for C. jejuni was 32 Krad, which was less than D10 values commonly reported for salmonellae. 20 references, 4 figures

  1. Biological effects of high LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masami [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    Biological effect of radiation is different by a kind of it greatly. Heavy ions were generally more effective in cell inactivation, chromosome aberration induction, mutation induction and neoplastic cell transformation induction than {gamma}-rays in SHE cells. (author)

  2. Geometric effects on carbon-13 chemical shifts

    International Nuclear Information System (INIS)

    In the course of our investigations on carbon-13 chemical shifts of tetracyclic dodecanes, we managed to show that a large number of chemical shift differences between members of the series and models provided by bicyclic analogs could be attributed to steric effects. There are examples, however, where this is clearly not the case. In order to investigate apparent anomalies we calculated structures of interest and looked into the relationships between molecular geometry and chemical shifts. As the assignment of some of the key structures in these analysis were made by comparison with model compounds and crucial experiments that could remove ambiguities were missing, we prepared and interpreted two spectra which are presented

  3. Radiation Effects on Polymers - XI

    DEFF Research Database (Denmark)

    Ghanem, N. A.; El-Awady, N. I.; Singer, Klaus Albert Julius;

    1979-01-01

    With the aim of improving properties of cellulose acetate membranes for reverse osmosis desalination, grafting was performed using high energy electrons. In this paper, the grafting parameters (radiation dose and method, monomer concentration, solvents, chain transfer agent and redox system...

  4. Weathering of coil-coatings: UV radiation and thermal effects

    International Nuclear Information System (INIS)

    The effect of heat and of QUV ageing on coil coatings was tested by electrochemical impedance, and the results compared with surface analysis of the polymers by FTIR and XPS. It was shown that UV radiation is more relevant than heat to chemical degradation. A different correlation between water permeation and chemical degradation was observed depending on the coating thickness: for the thinner coatings, the higher UV degradation has corresponded to increased water absorption, whereas in the thicker coating, the bulk effect of heat was more relevant to water permeation. (Author) 10 refs

  5. Radiation effects in polycarbonate capacitors

    Directory of Open Access Journals (Sweden)

    Vujisić Miloš

    2009-01-01

    Full Text Available The aim of this paper is to examine the influence of neutron and gamma irradiation on the dissipation factor and capacitance of capacitors with polycarbonate dielectrics. The operation of capacitors subject to extreme conditions, such as the presence of ionizing radiation fields, is of special concern in military industry and space technology. Results obtained show that the exposure to a mixed neutron and gamma radiation field causes a decrease of capacitance, while the loss tangent remains unchanged.

  6. Radiation friction vs ponderomotive effect

    CERN Document Server

    Fedotov, A M; Gelfer, E G; Narozhny, N B; Ruhl, H

    2014-01-01

    The concept of ponderomotive potential is upgraded to a regime in which radiation friction becomes dominant. The radiation friction manifests itself in novel features of long-term capturing of the particles released at the focus and impenetrability of the focus from the exterior. We apply time scales separation to the Landau-Lifshitz equation splitting the particle motion into quivering and slow drift of a guiding center. The drift equation is deduced by averaging over fast motion.

  7. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  8. Physics of intense, high energy radiation effects

    International Nuclear Information System (INIS)

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  9. Treatment of wastewater and sludge, and decomposition of endocrine disrupting chemicals with radiation

    International Nuclear Information System (INIS)

    This country report describes the past and current research activities in Japan on radiation treatment of wastewater and sludge carried out by early 90s, and decomposition of endocrine disrupting chemicals that is going-on. (author)

  10. Biochemical studies on the effect of radiation on plants

    International Nuclear Information System (INIS)

    The effect of gamma radiation, microwave radiation, interaction between gamma and microwave radiation and storage of radiated oil seeds (soybean and sesame) were investigated in this study to find out the best treatment which have the maximum reduction of anti nutritional factors (Trypsin inhibitor and lipoxygenase activities) without significant effect on the chemical constituents. The gamma rays was used at three doses of 2.5, 5.0 and 8.0 K.Gy, microwave radiation was at 70 level power for 2 and 4 mins, and the storage of seeds was at rome temperature, R.H.50-55% for 6 months. The results showed no significant changes in the chemical constituents (ash, moisture, protein, carbohydrate, lipid) in both investigated seeds under all treatments. On the other hand, the best treatments which had highly significant reduction effects on the anti nutritional factors (trypsin inhibitor, tannins, phytic acis, phenols and lipoxygenase) were 8.0 K.Gy for 6 months, 4 mins M.W. for soybean, 2 mins M.W. for sesame and 8.0 K.Gy +4 mins M.W. at 6 months. 38 tabs., 39 figs., 279 refs

  11. Total aerosol effect: radiative forcing or radiative flux perturbation?

    Directory of Open Access Journals (Sweden)

    U. Lohmann

    2010-04-01

    Full Text Available Uncertainties in aerosol radiative forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of precipitation formation. In former assessments of aerosol radiative forcings, these effects have not been quantified. Also, with global aerosol-climate models simulating interactively aerosols and cloud microphysical properties, a quantification of the aerosol forcings in the traditional way is difficult to define properly. Here we argue that fast feedbacks should be included because they act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP, that takes these fast feedbacks and interactions into account. Based on our results, we recommend RFP as a valid option to compare different forcing agents, and to compare the effects of particular forcing agents in different models.

  12. Total aerosol effect: radiative forcing or radiative flux perturbation?

    Directory of Open Access Journals (Sweden)

    D. Koch

    2009-11-01

    Full Text Available Uncertainties in aerosol radiative forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. In former assessments of aerosol radiative forcings, these effects have not been quantified. Also, with global aerosol-climate models simulating interactively aerosols and cloud microphysical properties, a quantification of the aerosol forcings in the traditional way is difficult to properly define. Here we argue that fast feedbacks should be included because they act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP, that takes these fast feedbacks and interactions into account. Based on our results, we recommend RFP as a valid option to compare different forcing agents, and to compare the effects of particular forcing agents in different models.

  13. Molecular effects: interactions with chemicals and viruses

    International Nuclear Information System (INIS)

    Research focused upon an understanding of the cellular responses to the molecular effects of ionizing radiation should be an essential program component in the Federal Strategy for Research into the Biological Effects of Ionizing Radiation. Although we know that DNA is a principal target molecule for some highly significant biological effects of ionizing radiation, we need to learn which other target substances such as membrane components may also be important. Most of the emphasis should continue to be on DNA effects and highest priority should be assigned to the identification of the complete spectrum of products produced in DNA. Once the lesions are known we can proceed to determine how these behave as blocks to replication and transcription or as modulators on the fidelity of these crucial processes. Considerable work should be done on the repair of these lesions. High priority should be given to the search for mutants in mammalian cell systems with evident defects in the processing of specific lesions. Viruses should provide important tools for the research in this area, as probes for host cell repair responses and also for the isolation of mutants. Furthermore, it is important to consider the interaction of viruses and ionizing radiation with regard to possible modulating effects on repair processes and tumorigenesis. Finally we must consider the important problem of the modification of repair responses by environmental factors

  14. Applications of radio and radiation chemistry to chemical evolution studies

    International Nuclear Information System (INIS)

    The gamma radiolysis of malonic acid, succinic acid and their corresponding nitriles was carried out over a wide range of radiation doses. The radiolytic products detected were H2, CO2, CO, NH3 and carboxylic acids. The results obtained supported the hypothesis that in the prebiotic milieu, ionizing radiation might have contributed to the synthesis of compounds of relevance in biological systems. (author) 11 refs

  15. The effects of radiation on angiogenesis

    OpenAIRE

    Grabham, Peter; Sharma, Preety

    2013-01-01

    The average human body contains tens of thousands of miles of vessels that permeate every tissue down to the microscopic level. This makes the human vasculature a prime target for an agent like radiation that originates from a source and passes through the body. Exposure to radiation released during nuclear accidents and explosions, or during cancer radiotherapy, is well known to cause vascular pathologies because of the ionizing effects of electromagnetic radiations (photons) such as gamma r...

  16. Chemical and radiation-induced mutagenesis of the rat liver chromosomes

    International Nuclear Information System (INIS)

    It was shown that radiation and chemical mutagenesis in rat liver cells is determined chiefly by long-lived premutational potential changes. The intensification of intrachromosomal processes under the action of an inducer of gene activity - phenobarbital - does not modify the yield of chromosome aberrations, both under the action of radiation and under the action of an alkylating agent -dipin. The facts obtained support the hypothesis that the chemical nature of the premutational changes differs from the primary molecular damages to DNA. (author)

  17. Investigation of Radiation and Chemical Resistance of Flexible HLW Transfer Hose

    Energy Technology Data Exchange (ETDEWEB)

    E. Skidmore; Billings, K.; Hubbard, M.

    2010-03-24

    A chemical transfer hose constructed of an EPDM (ethylene-propylene diene monomer) outer covering with a modified cross-linked polyethylene (XLPE) lining was evaluated for use in high level radioactive waste transfer applications. Laboratory analysis involved characterization of the hose liner after irradiation to doses of 50 to 300 Mrad and subsequent exposure to 25% NaOH solution at 93 C for 30 days, simulating 6 months intermittent service. The XLPE liner mechanical and structural properties were characterized at varying dose levels. Burst testing of irradiated hose assemblies was also performed. Literature review and test results suggest that radiation effects below doses of 100 kGy are minimal, with acceptable property changes to 500 kGy. Higher doses may be feasible. At a bounding dose of 2.5 MGy, the burst pressure is reduced to the working pressure (1.38 MPa) at room temperature. Radiation exposure slightly reduces liner tensile strength, with more significant decrease in liner elongation. Subsequent exposure to caustic solutions at elevated temperature slightly increases elongation, suggesting an immersion/hydrolytic effect or possible thermal annealing of radiation damage. This paper summarizes the laboratory results and recommendations for field deployment.

  18. Photo-and radiation chemical properties of manganese (3) acetylacetonates and structurization of polymeric compositions

    International Nuclear Information System (INIS)

    Methods of electron, EPR- and IR-spectroscopy have been used to study photochemical and radiation chemical behaviour of manganese (3) acetylacetonates. Effect of manganese chelates on structurization of polymeric compositions (the first composition - on the basis of saponified copolymer of vinyl chloride with vinyl acetate and the second composition on the basis of cellulose derivatives) linked (1) or destructed (2) under γ-radiation is considered. Maximum degree of structurization for the composition 1 at the absence of the complex made up 64%, at the presence of Mn(AA)Λ3 - 88%, at the presence of Mn(AA)Λ2(OCOCFΛ3) - 94% (at equal radiation doses). Adding the complexes amplifies the process of structurization, Mn(AA)Λ2 (OCOCFΛ3) amplifying the process to a larger extent than Mn(AA)Λ3. The degree of destruction of the composition 2 at the presence of the complex is essentially lower than at its absence. The mechanism of chelate effect on polymers comprises the stage of associate formation: metal complex - free radical

  19. Effects of high LET radiation on radioresistant bacterium Deinococcus radiodurans

    International Nuclear Information System (INIS)

    It is known that Deinococcus radiodurans is extremely resistant to ionizing and ultraviolet (UV) radiations, as well as chemical agents and hyperthermia (heat treatment) which cause DNA damage. It was reported in this paper that studies on the synergistic killing effect of high LET (linear energy transfer) radiation and hyperthermia in D. radiodurans were performed in Research Reactor Institute, Kyoto University as the Visiting Researcher's Program. The difference of cellular response in this bacterium against low LET (i.e. gamma) and high LET (i.e. BNC beam and heavy ion beam) radiations was analyzed by using Kyoto University Reactor (KUR) operated at 5 MW and AVF cyclotron in Takasaki Ion Accelerator for Radiation Application (TIARA). Also, The DNA sequence specificity (hot spot) for mutation on supF gene of a shuttle vector plasmid pZ189 induced by BNC beam is being researched using Escherichia coli DNA repair capability. (author)

  20. Controlling of degradation effects in radiation processing of polymers

    International Nuclear Information System (INIS)

    Radiation induced degradation technology is a new and promising application of ionizing radiation to develop viscose, pulp, paper, food preservation, pharmaceutical production, and natural bioactive agents industries. Controlling the degree of degradation, uniform molecular weight distribution, saving achieved in the chemicals (used in conventional methods) on a cost basis, and environmentally friendly process are the beneficial effects of using radiation technology in these industries. However, for some development countries such technology is not economic. Therefore, a great effort should be done to reduce the cost required for such technologies. One of the principle factors for reducing the cost is achieving the degradation at low irradiation doses. This not only reduces the cost of radiation but also improve the quality of the end use products. The end product of irradiated natural products such as carboxymethylcellulose and chitosan alginate may be used as food additive or benefited in agricultural purposes. (author)

  1. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, K. [Okayama University Medical School, Okayama (Japan); Nomura, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Kojima, S. [Science University of Tokyo, Chiba (Japan)

    2000-05-01

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted {alpha}-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O{sub 2}- to H{sub 2}O{sub 2}, the question as to whether the resultant H{sub 2}O{sub 2} is further detoxicated into H{sub 2}O and O{sub 2} or not must

  2. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    International Nuclear Information System (INIS)

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted α-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O2- to H2O2, the question as to whether the resultant H2O2 is further detoxicated into H2O and O2 or not must still be evaluated. Hence, we studied the effect of

  3. Genetic effects of ionizing radiation and repair processes

    International Nuclear Information System (INIS)

    Since DNA (=desoxyribonucleic acid) is the largest molecule within the cell it is the most important target for direct and indirect radiation effects. Within DNA the total genetic information is stored, thus damage to DNA in germ cells causes genetic disorders and damage in somatic cells is implicated in cancer and immunodeficiences. Alterations of DNA structure are not only due to ionizing radiation effects, but also to spontaneous DNA modifications and damage from interactions with environmental ultraviolet light and chemical agents. To maintain its genetic integrity, each organism had to develop different repair systems able to recognize and remove DNA damage. Repeated exposure to a DNA damaging agent can even lead to adaptation processes and increased resistance to the same agent. At normal function of repair systems it can be assumed that the capacity of those systems is adequate to scope with the effects of low radiation doses. (Author)

  4. Selective Chemical-Lithographic Reaction Techniques Using Radiation Technology for Biological Application

    International Nuclear Information System (INIS)

    This report, titled 'selective Chemical-Lithographic Reaction Techniques Using Radiation Technology for Biological Application' contains a research summary, 1) development of selective reaction technology using irradiation of electron beams, 2) preparation of functional surfaces using selective radiation technology on carbon-based nanomaterials, and 3) development of bio-applicable biochips using combinatorial surface modification

  5. Biomarkers of DNA and cytogenetic damages induced by environmental chemicals or radiation

    International Nuclear Information System (INIS)

    This paper presents and discusses results from the studies on various biomarkers of the DNA and cytogenetic damages induced by environmental chemicals or radiation. Results of the biomonitoring studies have shown that particularly in the condition of Poland, health hazard from radiation exposure is overestimated in contradistinction to the environmental hazard

  6. Radiative effects in gauge theories

    Science.gov (United States)

    Borisov, A. V.; Zhukovskii, V. Ch.

    1987-10-01

    The definitions of the vacuum state and the analysis of the radiative processes reffer to fundamental problems of non-abelian gayge theories. On the basis of the functional integration in the proper time representation a model of vacuum is examined of the quantum chromodynamics, proposed by Savvidy and Matinyan (Nuclear Physics B, Volume 134, Issue 3, p. 539-545). The supersimmetry of the Dirac equation for fermions in an external constant homogeneous magnetic field is examined. The radiative shift is calculated for the Dirac neutrino mass in an arbitrary external constant electromagnetic field in the framework of the Weinberg-Salam theory. An interpretation of the sign of the neutrino's anomalous magnetic moment is given. The power of the electromagnetic radiation of the moment and characteristic time of the neutrino spirality flipp in an external magnetic field is calculated. Bibliography: 24; Ill. 2

  7. Nuclear radiation and its effect on man

    International Nuclear Information System (INIS)

    A brief presentation is made of the biological effects on man of nuclear radiation. The sources of such radiation, natural and artificial, are summarised. The philosophy on which the maximum permissible doses to various groups and to the population are based is briefly described. Tables are given illustrating the various aspects discussed. (JIW)

  8. Biological radiation effects and radioprotection standards

    International Nuclear Information System (INIS)

    In this report, after recalling the mode of action of ionizing radiations, the notions of dose, dose equivalents and the values of natural irradiation, the author describes the biological radiation effects. Then he presents the ICRP recommendations and their applications to the french radioprotection system

  9. Radiation effects after exposure during prenetal development

    International Nuclear Information System (INIS)

    The embryo and fetus are very radiosensitive during the total prenatal development period. The quality and extent of radiation effects depend strongly on the developmental stage at which the exposure occurs. During the preimplantation period radiation exposure can cause death of the embryo after radiation doses of 0.2 Gy and higher. Malformations are only observed in very rare cases when genetic predispositions exist. Macroscopic-anatomical malformations are induced only after irradiation during the major organogenesis. On the basis of experimental data with mammals it is assumed that a radiation dose of about 0.2 Gy doubles the malformation risk. Studies in humans give rise to the assumption that the human embryo is more radioresistant than the embryos of mice and rats. Radiation exposure during the major organogenesis and the early fetal period lead to disturbances in the growth and developmental processes. During early fetogenesis (week 8-15 post coruption) high radiosensitity exists for the development of the central nervous system. Radiation doses of 1 Gy cause severe mental retardation in about 50% of exposed fetuses. Analysis of the dose-effect curves shows that there is probably a dose-effect curve with a threshold for this effect. It must be taken into account that radiation exposure during the fetal period also induces cancer. The studies, however, do not allow quantitative estimate of this radiation risk at present. It is therefore generally assumed that the risk is about the same level as for children. (orig.)

  10. Radiation and man - evaluation of biological and environmental low level radiation effects

    International Nuclear Information System (INIS)

    The harmful effects of acute radiation cannot be resolved by statistical means and require clearer knowledge of mechanisms of action and much wider collection of human experience before any definite sound stand can be taken. Much information has accumulated from animal experiments, and still the interpretations are not always clearcut, but for human experience it is only the occasional accident which can give a direct answer. Some of the phenomena attributed to low dose radiation are summarized. There are regions of radiation exposure about which we have only limited positive knowledge, an all low-dose risk estimates have been based on effects observed at relatively high doses. Much information has been gathered which does not support the severity of former basic principles, especially our knowledge of mechanisms of repair existing in most cells as natural defence against the damages caused by radiation as well as by many chemicals which act as mutagenic and carcinogenic agents. Understanding these mechanism, their scope of action and their availability to a damaged cell and organism will lead towards modification of the acceptable permissible exposures, in some cases towards severity, but in most cases towards leniency and higher values. For the evaluation of the effects of low level low dose-rate radiations, whether external, or from internal deposition of isotopes, only late somatic and genetic effects should be considered. (B.G.)

  11. Chemical effects in the mine structure

    International Nuclear Information System (INIS)

    The main objective of the workshop was to bring together, and get talking to each other, long-term safety modellers, geochemical modellers and experimenters working in the field of chemical effects, and to give an insight into their respective activity areas and problem constellations. Lectures on the following subjects were given: modelling of chemical effects in long-term safety analysis; influence of brines; corrosion experiments; sorption experiments; actinide chemistry experiments; geochemical modelling; requirements of safety analyses and geochemical modelling. The workshop concluded with a detailed discussion of the subjects raised and of interdisciplinary aspects. (orig./DG)

  12. Physics of radiation effects in crystals

    CERN Document Server

    Johnson, RA

    1986-01-01

    ``Physics of Radiation Effects in Crystals'' is presented in two parts. The first part covers the general background and theory of radiation effects in crystals, including the theory describing the generation of crystal lattice defects by radiation, the kinetic approach to the study of the disposition of these defects and the effects of the diffusion of these defects on alloy compositions and phases. Specific problems of current interest are treated in the second part and include anisotropic dimensional changes in x-uranium, zirconium and graphite, acceleration of thermal creep in reactor ma

  13. Radiation carcinogenesis

    International Nuclear Information System (INIS)

    This general discussion is dealt with under the following headings: problems of collecting information (epidemiology, experimental animal studies), the temporal stages of radiation action (physical and chemical effects and cellular response), human cancer, radiation dose and risk, epidemiology and dose-response relationships, cellular and molecular processes (cell inactivation, chromosome damage and cell mutation, radiation transformation, virus and oncogene activation, free radical aspects of radiation carcinogenesis, interaction of radiation and chemical carcinogens. (U.K.)

  14. Radiation Effects in Functional Materials for Nuclear Fusion Application

    International Nuclear Information System (INIS)

    Radiation effects can be grouped into three major events: atomic displacement, electronic excitation and nuclear transmutation. In the meantime, radiation effects have two aspects, accumulation and dynamic effects. The diagnostic components developing group of the ITER Engineering Design Activities clearly declared that the only in-situ type radiation effects studies, preferably with a fission reactor, will be relevant to nuclear fusion development. As a background, the evolution of radiation effects as functions of time and environmental parameters such as temperatures, chemical potentials, and electrical and magnetic fields could be categorized into several domains: linear radiation effects dominating, environment effects dominating, synergistic effects modifying, multi-scale modelling effective and finally non-linear effects dominating. Among major irradiation tools such as spallation and fusion neutron sources charged particle accelerators, gamma ray facilities and fission reactors, as well as computer based simulations, only fission reactor irradiation can give an overall perspective of radiation effects in nuclear fusion materials with abundant and uniform irradiation volumes. In the meantime, fission reactor irradiation is handicapped by relatively low neutron fluence except for some very high neutron flux reactors, which will be needed for evaluation of structural materials. For the study of functional materials, some handicaps of fission reactor irradiation can be neglected such as primary knock-on cascade profiles, and the demanded neutron fluence is within the attainable range. The paper will describe some examples of irradiation tests of nuclear fusion functional materials in fission reactors, the electrical conductivity of ceramic insulators and hydrogen isotope mobility in solid breeders. Also, a recent attempt to evaluate nuclear fusion relevant irradiation effects in superconductive magnets will be briefly reported, noting that a cryogenic

  15. Radiation-chemical cross-linking of saturated elastomers with polymer peroxides

    International Nuclear Information System (INIS)

    This work presents investigation of radiation-chemical cross-linking of saturated elastomers by using the sol-gel analysis, also by physical and chemical methods for the study of the spectral measurement of molecular structure of HNBR with showed organic compounds

  16. Study of physical, chemical and structural effects caused by ionizing radiation and preservation on human costal cartilage; Estudo dos efeitos fisicos, quimicos e estruturais ocasionados pela radiacao ionizante e preservacao em cartilagem costal humana

    Energy Technology Data Exchange (ETDEWEB)

    Martinho Junior, Antonio Carlos

    2008-07-01

    Tissue Banks around the world have stored human cartilages obtained from cadaver donors for use in several kinds of reconstructive surgeries. To ensure that such tissues are not contaminated, they have been sterilized with ionizing radiation. However, high doses of gamma radiation may cause undesirable changes in the tissues, decreasing the mechanical properties of the grafts. In this work, we evaluate physical/chemical and structural changes in deep-frozen (-70 deg C) or high concentration of glycerol (> 98%) preserved costal cartilage, before and after sterilization by ionizing radiation at 3 different doses (15, 25 and 50 kGy). Samples of human costal cartilage were obtained from 20 cadaver donors ranging between 18 and 55 years old. A {sup 60}Co irradiator was used as irradiation source. Thermogravimetry (TG), Optical Coherence Tomography (OCT) and mechanical tension and compression tests were carried out to evaluate the changes in the cartilage. Regarding the thermogravimetric results, the obtained data has shown that the TG curves have the same pattern independently of the sample irradiated or not. On the other hand, non-irradiated samples showed great variability of thermogravimetric curves among different donors and for the same donor. Concerning the mechanical tests, when cartilages were irradiated with 15 kGy, their mechanical strength to tension was increased about 24%, in both deep-froze and preserved in glycerol samples. Samples deep-frozen, when irradiated with 25 and 50 kGy, presented a decrease of their mechanical behavior smaller than those preserved in high concentrations of glycerol and irradiated with the same dose. Therefore, deep-frozen cartilages can be sterilized with doses until 50 kGy and cartilages preserved in high concentrations of glycerol can be sterilized with doses until 25 kGy without significant changes in their bio-mechanical properties.(author)

  17. Effects of radiation therapy in microvascular anastomoses

    Energy Technology Data Exchange (ETDEWEB)

    Fried, M.P.

    1985-07-01

    The otolaryngologist, as a head and neck surgeon, commonly cares for patients with upper aerodigestive tract malignancies. Therapy of these neoplasms often requires wide excision. One standard reconstructive procedure utilizes pedicled regional flaps, both dermal and myodermal which have some disadvantages. The shortcomings of these pedicled regional flaps have led to the use of the vascularized free flap in certain cases. The occasional case may lead to catastrophe if microanastomoses fail when combined with radiation. Notwithstanding, many surgical series have reported success when radiation has been given. The present investigation was undertaken to assess the effects of radiation therapy on microvascular anastomoses when radiation is administered pre- or postoperatively or when nonradiated tissue is transferred to an irradiated recipient site. These effects were observed serially in an experimental rat model using a tubed superficial epigastric flap that adequately reflected tissue viability and vascular patency. The histologic changes were then noted over a three month period after completion of both radiation and surgery. This study adds credence to the observation of the lack of deleterious effects of radiation on experimental microvascular anastomotic patency whether the radiation is given before or after surgery or if radiated tissue is approximated to nonradiated vessels.

  18. Effects of radiation therapy in microvascular anastomoses

    International Nuclear Information System (INIS)

    The otolaryngologist, as a head and neck surgeon, commonly cares for patients with upper aerodigestive tract malignancies. Therapy of these neoplasms often requires wide excision. One standard reconstructive procedure utilizes pedicled regional flaps, both dermal and myodermal which have some disadvantages. The shortcomings of these pedicled regional flaps have led to the use of the vascularized free flap in certain cases. The occasional case may lead to catastrophe if microanastomoses fail when combined with radiation. Notwithstanding, many surgical series have reported success when radiation has been given. The present investigation was undertaken to assess the effects of radiation therapy on microvascular anastomoses when radiation is administered pre- or postoperatively or when nonradiated tissue is transferred to an irradiated recipient site. These effects were observed serially in an experimental rat model using a tubed superficial epigastric flap that adequately reflected tissue viability and vascular patency. The histologic changes were then noted over a three month period after completion of both radiation and surgery. This study adds credence to the observation of the lack of deleterious effects of radiation on experimental microvascular anastomotic patency whether the radiation is given before or after surgery or if radiated tissue is approximated to nonradiated vessels

  19. Chemical effects of Lγ4 emission spectra

    International Nuclear Information System (INIS)

    Highlights: • The Lγ4 spectra differ depending on the chemical environment of the lanthanides. • The Ce Lγ4 is ligand-dependent. • The Sm Lγ4 and Eu Lγ4 are valence-dependent with chemical shifts of 4–5 eV. • The Yb Lγ4 + Lγ4' depends on both the valency and ligands. - Abstract: An overview of the chemical effects of the Lγ4 (L1O2,3) emission of Ce, Sm, Eu, and Yb is reported. The Lγ4 emission spectra differ significantly depending on the chemical environment of the lanthanides. The emission from the early lanthanide Ce is ligand-dependent, whereas the emission from the middle lanthanides, Sm and Eu, is valence-dependent with chemical shifts of 4–5 eV. The emission from the late lanthanide Yb, which exhibits Lγ4 and Lγ4' bands, depends on both the valency and the coordination environment. Thus, Lγ4 emission is a potentially useful probe that can be used to evaluate the chemical states of lanthanides, in particular, the oxidation numbers of middle to late lanthanides in mixed-valence compounds

  20. Mechanisms of chemical modification of neoplastic cell transformation by ionizing radiation

    International Nuclear Information System (INIS)

    During space travel, astronauts will be continuously exposed to ionizing radiation; therefore, it is necessary to minimize the radiation damage by all possible means. The authors' studies show that DMSO (when present during irradiation) can protect cells from being killed and transformed by X rays and that low concentration of DMSO can reduce the transformation frequency significantly when it is applied to cells, even many days after irradiation. The process of neoplastic cell transformation is a complicated one and includes at least two different stages: induction and expression. DMSO apparently can modify the radiation damage during both stages. There are several possible mechanisms for the DMSO effect: (1) changing the cell membrane structure and properties; (2) inducing cell differentiation by acting on DNA; and (3) scavanging free radicals in the cell. Recent studies with various chemical agents, e.g., 5-azacytidine, dexamethane, rhodamin-123, etc., indicate that the induction of cell differentiation by acting on DNA may be an important mechanism for the suppression of expression of neoplastic cell transformation by DMSO

  1. Effects of gamma radiation in tomato seeds

    Energy Technology Data Exchange (ETDEWEB)

    Wiendl, Toni A.; Wiendl, Fritz W.; Franco, Suely S.H.; Franco, Jose G.; Althur, Valter, E-mail: tawiendl@hotmail.com, E-mail: gilmita@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    Tomato dry seeds of the hybrid 'Gladiador' F1 were exposed to low doses of gamma radiation from Co-60 source at 0,509 kGy tax rate in order to study stimulation effects of radiation on germination and plant growth. Eight treatments radiation doses were applied as follows: 0 (control); 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 20,0 Gy. Seed germination as well as green fruits number, harvested fruit number, fruit weight and total production were assessed to identify occurrence of stimulation. Tomato seeds and plants were handled as for usual tomato production in Brazil. Low doses of gamma radiation treatment in the seeds stimulate germination and substantially increase fruit number and total production up to 86% at 10 Gy dose. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production thus, showing hormetic effects. (author)

  2. Biological effects of proton radiation: an update

    International Nuclear Information System (INIS)

    Proton radiation provides significant dosimetric advantages when compared with gamma radiation due to its superior energy deposition characteristics. Although the physical aspects of proton radiobiology are well understood, biological and clinical endpoints are understudied. The current practice to assume the relative biological effectiveness of low linear energy transfer (LET) protons to be a generic value of about 1.1 relative to photons likely obscures important unrecognised differentials in biological response between these radiation qualities. A deeper understanding of the biological properties induced by proton radiation would have both radiobiological and clinical impact. This article briefly points to some of the literature pertinent to the effects of protons on tissue-level processes that modify disease progression, such as angiogenesis, cell invasion and cancer metastasis. Recent findings hint that proton radiation may, in addition to offering improved radio-therapeutic targeting, be a means to provide a new dimension for increasing therapeutic benefits for patients by manipulating these tissue-level processes. (authors)

  3. Effect of radiation processing on meat tenderisation

    International Nuclear Information System (INIS)

    The effect of radiation processing (0, 2.5, 5 and 10 kGy) on the tenderness of three types of popularly consumed meat in India namely chicken, lamb and buffalo was investigated. In irradiated meat samples dose dependant reduction in water holding capacity, cooking yield and shear force was observed. Reduction in shear force upon radiation processing was more pronounced in buffalo meat. Protein and collagen solubility as well as TCA soluble protein content increased on irradiation. Radiation processing of meat samples resulted in some change in colour of meat. Results suggested that irradiation leads to dose dependant tenderization of meat. Radiation processing of meat at a dose of 2.5 kGy improved its texture and had acceptable odour. - Highlights: • Effect of radiation processing on tenderness of three meat systems was evaluated. • Dose dependant reduction in shear force seen in buffalo meat. • Collagen solubility increased with irradiation

  4. Effects of gamma radiation in tomato seeds

    International Nuclear Information System (INIS)

    Tomato dry seeds of the hybrid 'Gladiador' F1 were exposed to low doses of gamma radiation from Co-60 source at 0,509 kGy tax rate in order to study stimulation effects of radiation on germination and plant growth. Eight treatments radiation doses were applied as follows: 0 (control); 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 20,0 Gy. Seed germination as well as green fruits number, harvested fruit number, fruit weight and total production were assessed to identify occurrence of stimulation. Tomato seeds and plants were handled as for usual tomato production in Brazil. Low doses of gamma radiation treatment in the seeds stimulate germination and substantially increase fruit number and total production up to 86% at 10 Gy dose. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production thus, showing hormetic effects. (author)

  5. Stabilization of colour of woolenized jute by radiation chemical treatment

    International Nuclear Information System (INIS)

    The radiation-induced graft polymerization of methyl methacrylate, ethyl acrylate, acrylonitrile, and venylacetate onto jute to prevent yellowing of the jute by light is reported. Samples were irradiated with a 5000 C; gamma-source at 0.1 Mrad per hour

  6. Radiation-chemical transformation of synthetic oil from oil-bituminous rock

    International Nuclear Information System (INIS)

    Full text : Like as test subject was used synthetic oil from oil-bituminous rocks of Balakhany deposit. The regularities of synthetic oils radiation-chemical transformations were studied. Laboratory researches were carried out in an interval of absorbed dose 43-216 kGr and dose rate 0.5 Gr/s. Concentration, radiation-chemical yields of the received gases in the various absorbed doses were established. Results of researches allow to estimate possibility use of oil products received from synthetic oil for isolation of radioactive sources from environment. The purpose of the given work is research of radiation stability of synthetic oil from bituminous rock. Results of such researches will allow to estimate possibility of production different purpose oil products from synthetic oil in a radiation-chemical way and also use of these materials for isolation of radioactive sources from environment

  7. Effects of gamma radiation ({sup 60}Co) on the main physical and chemical properties of health care packaging and their compounds paper and multilayer plastic film, used for health products sterilization; Efeitos da radiacao gama (Cobalto-60) nas principais propriedades fisicas e quimicas da embalagens compostas por papel grau cirurgico e filme plastico laminado, destinadas a esterilizacao de produtos para saude

    Energy Technology Data Exchange (ETDEWEB)

    Porto, Karina Meschini Batista Geribello

    2013-07-01

    Gamma radiation is one of the technologies applied for the sterilization of packaging systems containing products for health. During sterilization process it is critical that the properties of packages are maintained. In this study two samples of commercial pouch packaging comprised of surgical grade paper on one side and the other side multilayer plastic film were irradiated with gamma rays. The following doses were applied 25 kGy (1,57 kGy/h) and 50 kGy (1,48 kGy/h). One packaging sample was paper formed by softwood fibers and multilayer plastic film based on poly(ethylene terephthalate) (PET)/polyethylene (PE). The second type of paper sample was made by a mixture of softwood and hardwood fibers and multilayer plastic film based on polyethylene terephthalate (ethylene) (PET)/polypropylene (PP). The effects of radiation on the physical and chemical properties of papers and multilayer plastic films, as well as the properties of the package were studied. The paper was the more radiation sensitive among the studied materials and radiation effects were more pronounced at brightness, pH, tearing resistance, bursting strength and tensile strength. Nonetheless, worst comparatively effects were noted on the sample made by a mixture of softwood and hardwood fibers. The porosity of paper was enhanced by 50 kGy. In the case of plastic films, radiation effects on tensile strength was the most pronounced property for both samples. In the case of the packaging the sealing resistance decreased with radiation. The effects observed for the treatment at 50 kGy were more pronounced when compared to 25 kGy. This last is the dose which is usually applied to sterilize health products. A dosimetry study was performed during irradiation at 25 kGy, 40 kGy and 50 kGy and its importance may be reported by the average dose variation 20 %. (author)

  8. Effective Chemical Inactivation of Ebola Virus

    Science.gov (United States)

    Haddock, Elaine; Feldmann, Friederike

    2016-01-01

    Reliable inactivation of specimens before removal from high-level biocontainment is crucial for safe operation. To evaluate efficacy of methods of chemical inactivation, we compared in vitro and in vivo approaches using Ebola virus as a surrogate pathogen. Consequently, we have established parameters and protocols leading to reliable and effective inactivation. PMID:27070504

  9. Effective Chemical Inactivation of Ebola Virus.

    Science.gov (United States)

    Haddock, Elaine; Feldmann, Friederike; Feldmann, Heinz

    2016-07-01

    Reliable inactivation of specimens before removal from high-level biocontainment is crucial for safe operation. To evaluate efficacy of methods of chemical inactivation, we compared in vitro and in vivo approaches using Ebola virus as a surrogate pathogen. Consequently, we have established parameters and protocols leading to reliable and effective inactivation. PMID:27070504

  10. Sterilizing radiation effects on selected polymers

    International Nuclear Information System (INIS)

    The mechanism of radiation effects and their industrial applications are discussed for the following classes of polymers: thermoplastics, thermosets, elastomers, films and fibers, and adhesives/coatings/potting compounds. 35 references, 3 tables

  11. Effects of solar radiation on glass

    Science.gov (United States)

    Tucker, Dennis S.; Kinser, Donald L.

    1991-01-01

    The effects of solar radiation of selected glasses are reported. Optical property degradation is studied using UV-Vis spectrophotometry. Strength changes are measured using a concentric ring bend test. Direct fracture toughness measurements using an indentation test are planned.

  12. Bystander effects and biota: implications of radiation-induced bystander effects for protection of the environment from ionising radiation

    International Nuclear Information System (INIS)

    Bystander effects are now known to be induced by both high and low LET in a variety of cells in culture. They have been proven to occur in vivo in mice following 0.5Gy total body irradiation and in blood from humans being treated for cancer by radiotherapy. Effects have also been detected in fish, crustacea and molluscs. The important questions now are not whether bystander effects occur but why and what implications they have, if any, for radiation protection. Different species and different genetic backgrounds within a species produce different types of bystander effect, different organs also produce different effects. This paper will review the data in this field and will discuss likely implications for protection of man and non-human biota. In particular it will look at the potential long-term outcomes for different organisational levels, from cell to ecosystem, of bystander mechanisms. In view of new concerns about the effects of low level radiation on non-human biota, emphasis will be placed on considering how bystander effects might operate at chronic low doses versus acute accidental low doses. Problems of radiation interaction with chemicals, whether chemicals can also induce 'bystander effects' , and how regulators might handle these situations which occur all the time in real environments, will be presented for discussion. Finally the paper will discuss likely implications of these mechanisms for evolutionary biology

  13. Effects of solar radiation on hair and photoprotection.

    Science.gov (United States)

    Dario, Michelli F; Baby, André R; Velasco, Maria Valéria R

    2015-12-01

    In this paper the negative effects of solar radiation (ultraviolet, visible and infrared wavelengths) on hair properties like color, mechanical properties, luster, protein content, surface roughness, among others, will be discussed. Despite knowing that radiation damages hair, there are no consensus about the particular effect of each segment of solar radiation on the hair shaft. The hair photoprotection products are primarily targeted to dyed hair, specially auburn pigments, and gray shades. They are usually based on silicones, antioxidants and quaternary chemical UV filters that have more affinity for negatively charged hair surface and present higher efficacy. Unfortunately, there are no regulated parameters, like for skin photoprotection, for efficacy evaluation of hair care products, which makes impossible to compare the results published in the literature. Thus, it is important that researchers make an effort to apply experimental conditions similar to a real level of sun exposure, like dose, irradiance, time, temperature and relative humidity. PMID:26454659

  14. Irreversible photo- and radiation-induced effects in amorphous films of arsenic trisulfide

    International Nuclear Information System (INIS)

    It is found that irreversible photo- and radiation-induced effects in virgin As2S3 thin films are accompined by the similar changes of their optical properties. The process of homopolar chemical bond breaking in the thin layer alongside with the creation of the differently charged diamagnetic defects associated with the non-equilibrium breaking of chemical bonds is proper in radiation induced effects, only

  15. Radiation effects blamed on Chernobyl

    International Nuclear Information System (INIS)

    Strictly speaking, the nature of an epidemiological study would not permit the same causal links to be established as an experimental study does. Instead, it merely provides circumstantial evidence, from which some conclusions can be drawn as to the causative factors in the occurrences recorded. To summarize it may be stated that as fas as the Germans are concerned no scientific evidence has so far been provided to prove health impairments attributable to an added radiation load from the Chernobyl fallout. On the other hand, it can not be denied that there are indications of health damage in a few individuals unreasonably changing their eating habits for fear of radiation injuries. The question as to whether the event instilled a permanent feeling of unease in some population groups still remains largely obscure. (orig.)

  16. Radiation effects on blood coagulation

    International Nuclear Information System (INIS)

    Haemorrhage is an important and ominous sign in acute radiation disease. While it is overwhelmingly evident that thrombocytopenia is the major cause of the haemorrhagic diathesis, detailed observations of all of the changes in the coagulation mechanism, fibrinolytic elements and platelet function are lacking. The current knowledge is reviewed in this chapter. In general, changes should be considered in relation to the course of the disease, that is early or late, and whether the observations were made in man or animals

  17. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  18. Fast Neutron Radiation Effects on Bacillus Subtili

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiaoming; REN Zhenglong; ZHANG Jianguo; ZHENG Chun; TAN Bisheng; YANG Chengde; CHU Shijin

    2009-01-01

    To examine the sterilizing effect and mechanism of neutron radiation, Bacillus sub-tilis vat. niger, strain (ATCC 9372) spores were irradiated with the fast neutron from the Chinese fast burst reactor Ⅱ(CFBR-Ⅱ). The plate-count results indicated that the D10 value was 384.6 Gy with a neutron radiation dose rate of 7.4 Gy/min. The rudimental catalase activity of the spores declined obviously with the increase in the radiation dose. Meanwhile, under the scanning electron microscope, no visible influence of the neutron radiation on the spore configuration was detected even if the dose was increased to 4 kGy. The content and distribution of DNA double-strand breaks induced by neutron radiation at different doses were measured and quantified by pulsed-field gel electrophoresis (PFGE). Further analysis of the DNA release percentage (PR), the DNA breakage level (L), and the average molecular weight, indicated that DNA fragments were obvi-ously distributed around the 5 kb regions at different radiation doses, which suggests that some points in the DNA molecule were sensitive to neutron radiation. Both PR and L varied regularly to some extent with the increase in radiation dose. Thus neutron radiation has a high sterilization power, and can induce falling enzyme activity and DNA breakage in Bacillus subtilis spores

  19. Radiative effects of global MODIS cloud regimes

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji

    2016-03-01

    We update previously published Moderate Resolution Imaging Spectroradiometer (MODIS) global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 data set. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux data sets. Our results clearly show that the CRs are radiatively distinct in terms of shortwave, longwave, and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles, to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance data sets suffering from imperfect spatiotemporal matching depend on CR and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.

  20. Radiation effects on biodegradable polyesters

    International Nuclear Information System (INIS)

    Poly(3-hydroxybutyrate) [P(3HB)] and its copolymer poly(3-hydroxybutyrate-co-3hydroxyvalerate) [P(3HB-co-3HV)] are microbial biodegradable polyesters produced by many types of bacteria. Poly(butylene succinate) (PBS) and poly(E-caprolactone) (PCL) are also biodegradable synthetic polyesters which have been commercialized. These thermoplastics are expected for wide usage in environmental protection and blocompatible applications. Radiation grafting of hydrophilic monomers onto many polymers, e.g., polyethylene and polypropylene has been studied mainly for biomedical applications. In the present study, radiation-induced graft polymerization of vinyl monomers onto PHB and P(3HB-co-3HV) was carried out and improvement of their properties was studied. Changes in the properties and biodegradability were compared with the degree of grafting. Radiation-induced crosslinking of PBS and PCL which relatively show thermal and irradiation stability was also carried out to improve their thermal stability or processability. Irradiation to PBS and PCL mainly resulted in crosslinking and characterization of these crosslinked polyesters was investigated

  1. Inverse Faraday Effect driven by Radiation Friction

    CERN Document Server

    Liseykina, T V; Macchi, A

    2015-01-01

    In the interaction of extremely intense ($>10^{23}~\\mbox{W cm}^{-2}$), circularly polarized laser pulses with thick targets, theory and simulations show that a major fraction of the laser energy is converted into incoherent radiation because of collective electron motion during the "hole boring" dynamics. The effective dissipation due to radiative losses allows the absorption of electromagnetic angular momentum, which in turn leads to the generation of an axial magnetic field of tens of gigagauss value. This peculiar "inverse Faraday effect" is demonstrated in three-dimensional simulations including radiation friction.

  2. Fundamental studies on the radiation chemical dose-response with use of thymine. Is activation of the surface between radiation biology and radiation chemistry possible?

    International Nuclear Information System (INIS)

    The review described the importance and difficulty of radiation chemical assessment of dose-response. The assessment has the tasks of the unit, low dose region evaluation and direct/indirect effects in biology. The authors' vacuum evaporated thymine for G-value determination is appropriate for XANES (X-ray absorption near edge structures) measurement with monochromic ultrasoft X-rays (-550 eV photon) generated by SPring-8. However, the data of yielded thymine derivatives as well as those yielded after 60Co γ-ray (1.5 MeV photon) irradiation are not suitable for direct application in DNA damage evaluation of living cells due to trans-scientific uncertainty. Efforts are required for reducing the uncertainty present in dose-response assessment. (K.H.)

  3. Applying radiation approaches to the control of public risks from chemical agents

    International Nuclear Information System (INIS)

    IF a hazardous agent has a threshold, prevention is the obvious measure of success. To the eyes of this author, success is also achieveable for a hazardous agent that may have no threshold and that causes its effects in a probabilistic manner. First, the technical people responsible for protection must be given a reasonable, well defined risk objective by governmental authorities. To the extent that they meet that objective (1) without unnecessarily increasing operational costs, (2) without interfering unnecessarily with operational activities, and (3) without diverting resources away from greater risks, they are successful. Considering these three qualifications, radiation protection for members of the public can hardly be presented as the panacea for other hazardous agents. It would be an error to dismiss the improvement opportunities discussed above as being of acdemic interest only. Decades of experience with radiation have demonstrated that these problems are both real adn significant. In the US the axioms discussed above are accepted as scientific fact for radiation by many policy makers, the news media and the public. For any operation the collective dose is calculated using zero dose as the lower limit of integration, the results are converted to cancer deaths using the risk coefficients, and decisions are made as though these deaths would actually occur without governmental intervention. As a result, billions of dollars and a very large number of highly skilled persons are being expended to protect against radiation doses far smaller than geographical variations in the natural radiation background. These expenditures are demanded by, and required for well-meaning, nontechnical people who have been misled. It is often stated by knowledgeable people that if the degree of protection required for radiation were also to be requested for the other hazards, human progress would come to a halt. If the radiation approaches are to be used in the control of public

  4. Effects of radiations on ornamental fish

    International Nuclear Information System (INIS)

    Radiation is a process in which energetic particles or energetic waves travel through a medium or space. There are two distinct types of radiations: ionizing and non-ionizing. Ultraviolet, X-rays, and gamma rays are some examples of radiation. 'Ornamental fish' is designed for aquatic hobbyists and the aquatic industry for several purposes. UV light has two primary uses in fish culture: Controlling green water and disinfecting the water supply. Many proponents of UV disinfection sometimes overlook the additional benefits relating to ornamental fish; those being that cleaner water reduces the stress on the fish by not having to fight off diseases, thus enhancing its immune system and leading to faster growth and more brilliant colors. Ultraviolet sterilizers are often used in aquaria to help control unwanted microorganisms in the water. UV radiation also ensures that exposed pathogens cannot reproduce, thus decreasing the likelihood of a disease outbreak in an aquarium. Despite of these benefits, the ill-effects of radiations cannot be ruled out. Ultraviolet Radiation-induced DNA Damage is seen in the skin of the Platyfish Xiphophorus. Higher radiation doses may cause the gastrointestinal syndrome that leads to defects of the intestinal mucosa barrier with successive contamination of musculature. Exposure to UV radiation can kill the fish and induce sublethal effects in embryos, larvae and adults. The change in skin includes irregularity of skin surface, epidermal oedema, necrosis etc. Irradiation may badly influence the textural attributes of fish muscle. (author)

  5. Magnetic field effects in chemical systems

    OpenAIRE

    Rodgers, CT

    2009-01-01

    Chemical reactions that involve radical intermediates can be influenced by magnetic fields, which act to alter their rate, yield, or product distribution. These effects have been studied extensively in liquids, solids, and constrained media such as micelles. They may be interpreted using the radical pair mechanism (RPM). Such effects are central to the field of spin chemistry of which there have been several detailed and extensive reviews. This review instead presents an introductory account ...

  6. Radiation chemical dosimetry by means of nitrate-nitrite

    International Nuclear Information System (INIS)

    The different chemical systems used in dosimetry and the selection criteria for them are described. The general topics in dosimetry with alkali nitrates as well as the phenomena occurring in their radiolysis are also treated. The possibility of application in dosimetric areas useful in radiosterilization and industrial processes is studied too. (Author) 22 refs

  7. Radiation chemical dosimetry by means of nitrate-nitrite

    International Nuclear Information System (INIS)

    The different chemical systems used in dosimetry and the selection criteria for them are described. The general topics in dosimetry with alkali nitrates as well as the phenomena occurring in their radiolisis are also treated. The possibility of application in dosimetric areas useful in radiosterilization and industrial processes is studied too. (author)

  8. Chemical dosimeter system for mixed neutron and gamma radiation

    International Nuclear Information System (INIS)

    G-values for the Fricke dosimeter and the FeCu dosimeter have been calculated for moderated fission neutrons. By combining these two chemical dosimeters, the fast neutron and gamma doses can be measured separately in a mixed field. (author). 7 refs, 2 tabs

  9. Optoelectronic Reader for Accidental Chemical Radiation Dosimetric System

    International Nuclear Information System (INIS)

    Full text: The use of chlorobenzene solutions (10% by vol.) in ethanol-trimethylpentane mixture (1:8 by vol.) in radiation dosimetry is based on radiolytic dechlorination of chlorobenzene and subsequent reaction of hydrochloric acid formed with a dissolved pH indicator, thymolsulphonphthalein. The amount of the acid (red) form of the indicator is proportional to dose. High molar absorbtivity of the red form of the indicator at 550 nm is responsible for a high sensitivity of the system, enabling its application in radiation therapy and/or radiation accident dosimetry: doses in the range 0.2-12 Gy can be determined. Additional favourable dosimetric properties of the system are its linear response with dose, independence of the dose rate and quality of the incident radiation, and, most interestingly, the approximately equal response to gamma rays and neutrons for the same dose in tissue. Together with a visual colour comparator it has formed a personal dosimetry system, which had been adopted for the military and civil defence use. The precision of the readout by means of a colour comparator depended on the width of an interval between any two neighbouring colour standards and the ability of a person taking the reading to estimate the nuances and make interpolations. The newly constructed optoelectronic reader takes the subjectivity out of the readout process and enables full automatisation and computerisation. In addition, it offers a continuous dose estimation, as compared to discrete values only, as given by the colour comparator. The reader is based on shining the output of a two-colour light emitting diode (550 and 690 nm) through a dosimeter solution in an ampoule, and calculating the differential absorbance, which is directly related to dose. Further development towards self-contained, hand-held instrument is in progress. (author)

  10. Non-targeted effects of ionising radiation

    International Nuclear Information System (INIS)

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects and genomic instability. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm would cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (orig.)

  11. Chemical Effects following Thermal Neutron Capture in Potassium Chromate

    International Nuclear Information System (INIS)

    The chemical effects accompanying radiative thermal neutron capture in potassium chromate have been extensively studied in the past few years. The presence of radioactive chromic ions formed upon dissolving neutron irradiated potassium chromate and the reactions from heating the material above 150°C have been explained by reactions involving the presence of CrO4+ ions in the crystal lattice. A new analytical method, based on the slow rate of exchange between chromo and chromic ions, has been used to show that more than 90% of the reduced chromium ions are present in the +2 valence state. The results obtained, using the new analytical method, indicate that the processes taking place during dissolution are hydration processes while the reduction of chromium fragments takes place in the crystal. Isothermal and isochronical annealing experiments carried out on crystals irradiated at room temperature show that three annealing reactions occur between 60° and 275°C. The influence of quenching and foreign ions on the three annealing reactions has been studied. Investigations made in parallel with chemical changes of Cr51 recoil species and electronic changes in irradiated potassium chromate during post-irradiation treatment have been carried out measuring the thermoluminescence spectrum, the electrical conductivity and the chemical distribution of Cr51 fragments. The results show that the chemical annealing reactions are associated with electronic changes indicating a close relation between chemical annealing and the disappearance of charge carriers. (author)

  12. Radioprotection effects of TMG to radical scavenger effect of the mice in radiation

    International Nuclear Information System (INIS)

    Now there is many it, and the radiotherapy that is one of cancer therapy is used by single or anticancer drug and combination. A chemical material has been used as radioprotector, but the use is limited conventionally by a serious side effect. Vitamin E derivative[TMG 2- (α - D-Glucopyranosyl) Methyl-2,5,7,8-Teramethyl -chorman-6-OL] which we are water-soluble, And is the nature material as well for the fetal teratogenicity that I use ICR mouse used for a malformed experiment frequently in this study, and sensibility for radiation is the highest, we studied radiation protection effect of TMG. As a result, as for the fetal malformed incidence, it was admitted that it fell in shifts and changes by administering TMG before radiation exposure. Decrease depression of degradation of a skeletal malformation rate in particular and fetal weight was recognized, and an individual level made radiation protection indication of TMG clear. In addition, that there was radioprotection effect for embryonic death by radiation was made clear by premedication doing TMG equally, and that there was protection effect for radiation exposure in a cell level same as an individual level was proved, and TMG showed the potency that it was it in radioprotector promising in the future. Furthermore, by what we reviewed about congenital defect for radiation, effect for skeletal malformation incidence and sensibility of embryonic cell level in organogenesis, we analyzed mechanism of protection effect of TMG for fetal teratogenicity by radiation experimentally

  13. Radiation effects in nuclear waste materials. 1998 annual progress report

    International Nuclear Information System (INIS)

    'The objective of this multidisciplinary, multi-institutional research effort is to develop a fundamental understanding of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels. The goal is to provide the underpinning science and models necessary to assess the performance of glasses and ceramics designed for the immobilization and disposal of high-level tank waste, plutonium residues, excess weapons plutonium, and other highly radioactive waste streams. A variety of experimental and computer simulation methods are employed in this effort. In general, research on glasses focuses on the electronic excitations due to ionizing radiation emitted from beta decay, since this is currently thought to be the principal mechanism for deleterious radiation effects in nuclear waste glasses. Research on ceramics focuses on defects and structural changes induced by the elastic interactions between alpha-decay particles and the atoms in the structure. Radiation effects can lead to changes in physical and chemical properties that may significantly impact long-term performance of nuclear waste materials. The current lack of fundamental understanding of radiation effects in nuclear waste materials makes it impossible to extrapolate the limited existing data bases to larger doses, lower dose rates, different temperature regimes, and different glass compositions or ceramic structures. This report summarizes work after almost 2 years of a 3-year project. Work to date has resulted in 9 publications. Highlights of the research over the past year are presented.'

  14. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  15. Irradiation Effects on the Chemical Quality of Guavas

    Directory of Open Access Journals (Sweden)

    Rosario

    2013-02-01

    Full Text Available The aim of this research is to evaluate the effect of radiation treatment on the chemical changes of main components of guavas (Psidium guajava, var. media china. The quality of guavas irradiated by Co-60 gamma rays at 150, 200, and 300 Gray as Gy/min were evaluated during storage at room and low temperature. Results indicated that the differences observed are principally associated with maturity stages, temperature, and changes attributed to physiological and metabolic processes. Radiation treatment produced reductions in ascorbic acid and &beta-carotene. The results suggest that fruit in storage can recover from stress produced by treatment. No other significant changes were observed in any other parameters including sugars, pectin, and citric acid.

  16. Trans-generational radiation-induced chromosomal instability in the female enhances the action of chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Camats, Nuria [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Garcia, Francisca [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Parrilla, Juan Jose [Servicio de Ginecologia y Obstetricia, Hospital Universitario Virgen de la Arrixaca, 30120 El Palmar, Murcia (Spain); Calaf, Joaquim [Servei de Ginecologia i Obstetricia, Hospital Universitari de la Santa Creu i Sant Pau, 08025 Barcelona (Spain); Martin, Miguel [Departament de Pediatria, d' Obstetricia i Ginecologia i de Medicina Preventiva, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Caldes, Montserrat Garcia [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain)], E-mail: Montserrat.Garcia.Caldes@uab.es

    2008-04-02

    Genomic instability can be produced by ionising radiation, so-called radiation-induced genomic instability, and chemical mutagens. Radiation-induced genomic instability occurs in both germinal and somatic cells and also in the offspring of irradiated individuals, and it is characterised by genetic changes including chromosomal rearrangements. The majority of studies of trans-generational, radiation-induced genomic instability have been described in the male germ line, whereas the authors who have chosen the female as a model are scarce. The aim of this work is to find out the radiation-induced effects in the foetal offspring of X-ray-treated female rats and, at the same time, the possible impact of this radiation-induced genomic instability on the action of a chemical mutagen. In order to achieve both goals, the quantity and quality of chromosomal damage were analysed. In order to detect trans-generational genomic instability, a total of 4806 metaphases from foetal tissues from the foetal offspring of X-irradiated female rats (5 Gy, acute dose) were analysed. The study's results showed that there is radiation-induced genomic instability: the number of aberrant metaphases and the breaks per total metaphases studied increased and were found to be statistically significant (p {<=} 0.05), with regard to the control group. In order to identify how this trans-generational, radiation-induced chromosomal instability could influence the chromosomal behaviour of the offspring of irradiated rat females in front of a chemical agent (aphidicolin), a total of 2481 metaphases were studied. The observed results showed that there is an enhancement of the action of the chemical agent: chromosomal breaks per aberrant metaphases show significant differences (p {<=} 0.05) in the X-ray- and aphidicolin-treated group as regards the aphidicolin-treated group. In conclusion, our findings indicate that there is trans-generational, radiation-induced chromosomal instability in the foetal

  17. Trans-generational radiation-induced chromosomal instability in the female enhances the action of chemical mutagens

    International Nuclear Information System (INIS)

    Genomic instability can be produced by ionising radiation, so-called radiation-induced genomic instability, and chemical mutagens. Radiation-induced genomic instability occurs in both germinal and somatic cells and also in the offspring of irradiated individuals, and it is characterised by genetic changes including chromosomal rearrangements. The majority of studies of trans-generational, radiation-induced genomic instability have been described in the male germ line, whereas the authors who have chosen the female as a model are scarce. The aim of this work is to find out the radiation-induced effects in the foetal offspring of X-ray-treated female rats and, at the same time, the possible impact of this radiation-induced genomic instability on the action of a chemical mutagen. In order to achieve both goals, the quantity and quality of chromosomal damage were analysed. In order to detect trans-generational genomic instability, a total of 4806 metaphases from foetal tissues from the foetal offspring of X-irradiated female rats (5 Gy, acute dose) were analysed. The study's results showed that there is radiation-induced genomic instability: the number of aberrant metaphases and the breaks per total metaphases studied increased and were found to be statistically significant (p ≤ 0.05), with regard to the control group. In order to identify how this trans-generational, radiation-induced chromosomal instability could influence the chromosomal behaviour of the offspring of irradiated rat females in front of a chemical agent (aphidicolin), a total of 2481 metaphases were studied. The observed results showed that there is an enhancement of the action of the chemical agent: chromosomal breaks per aberrant metaphases show significant differences (p ≤ 0.05) in the X-ray- and aphidicolin-treated group as regards the aphidicolin-treated group. In conclusion, our findings indicate that there is trans-generational, radiation-induced chromosomal instability in the foetal cells

  18. Radiation abuse and its effects

    International Nuclear Information System (INIS)

    This paper delves into overuse practiced in diagnostic radiography. The conventional attitudes to low-dose irradiation are critically examined, as is the MPD related to individual radiosensitivity. Concern is expressed that a sizeable proportion of radiologists ignore important aspects of the Code of Practice and this attitude is readily emulated in the hospital setting. The author advocates education within the medical profession and the community on the risks involved in radiation abuse and the benefits derived from justified exposures to x rays. (author)

  19. Biological effects and hazards of radiation exposure

    International Nuclear Information System (INIS)

    Radiation induced carcinogenesis and mutagenesis form the main risk to health from exposure to low levels of radiation. This risk effects can be at least qualitatively understood by considering the effects of radiation on cell DNA. Whilst exposure to high levels of radiation results in a number of identifiable effects, exposure to low levels of radiation may result in effects which only manifest themselves after many years. Risk estimates for low levels of radiation have been derived on the basis of a number of assumptions. In the case of uranium mine workers a major hazard arises from the inhalation of radon daughters. Whilst the correlation between radon daughter exposure and lung cancer incidence is well established, the numerical value of the risk factor is the subject of controversy. ICRP 50 gives a value of 10 cases per 106 person-years at risk per WLM (range 5-15 x 10-6 PYR-1 WLM-1). The effect of smoking on lung cancer incidence rates amongst miners is also controversial. Nevertheless, smoking by miners should be discouraged

  20. Protective Effect of Anthocyanins from Lingonberry on Radiation-induced Damages

    OpenAIRE

    Shuang-Qi Tian; Zhen-Yu Wang; Li-Li Zuo; Zi-Luan Fan

    2012-01-01

    There is a growing concern about the serious harm of radioactive materials, which are widely used in energy production, scientific research, medicine, industry and other areas. In recent years, owing to the great side effects of anti-radiation drugs, research on the radiation protectants has gradually expanded from the previous chemicals to the use of natural anti-radiation drugs and functional foods. Some reports have confirmed that anthocyanins are good antioxidants, which can effectively e...

  1. Application of spectroscopic methods to the study of ionizing radiation effects in polymers

    International Nuclear Information System (INIS)

    In general the interaction of ionizing radiation with polymers generates physic-chemical changes. Aiming to quantity these changes, three spectroscopic analytical techniques were used (UV, IR and EPR) and the chemical corrosion technique was used for three DSTN (CR39, Lexan and Makrofol) which were exposed to two radiation types: electrons and gammas. The effects of radiation are compared. Also a correlation between the UV and Vg results in function of dose is presented. The possible causes of the increase in chemical corrosion are discussed. (Author)

  2. Biological Effects of Ionizing Radiation

    International Nuclear Information System (INIS)

    The aim of this work is to verify the existence of the adaptive response phenomenon induced by low doses of ionizing radiation in living cells.A wild-type yeast Saccharomyces cerevisiae (Baker's yeast) was chosen as the biological target.As a parameter to quantify the sensibility of the target to radiation, the Lethal Dose 50 (LD50 ) was observed. In our experimental condition a value of (60 ± 1) Gy was measured for LD50 with Dose Rate of (0.44 ± 0.03) Gy/min. The method employed to show up the adaptive response phenomenon consisted in exposing the sample to low ''conditioning'' doses, which would initiate these mechanisms. Later the samples with and without conditioning were exposed to higher ''challenging'' doses (such as LD50), and the surviving fractions were compared. In order to maximize the differences, the doses and the time between irradiations were varied. The best results were obtained with both a conditioning dose of (0.44 ± 0.03) Gy and a waiting time of 2 hs until the application of the challenging dose. Following this procedures the 80% of the conditioned samples has survived, after receiving the application of the LD50. The adaptive response phenomenon was also verified for a wide range of challenging doses

  3. Effect of radiation-induced modification in fluoroelastomer

    International Nuclear Information System (INIS)

    Polymers exposed to ionizing irradiation, even at low doses, often undergo structural changes accompanied by molecular crosslinking and chain scission (degradation) reactions. The general effect of the radiation on polymers is determined by the ratio of crosslinking to chain scission events. This ratio depends on parameters such as chemical structure, physical state, radicals stability and mobility, irradiation rate and irradiation atmosphere. The radiation process is a large used technique to promote modification in their structures to apply them in different areas and is well known for its merits and potential in modifying the chemical and the physical properties of polymeric materials without cause drastic changes in their inherent properties, depend on the dose irradiated. In this study was used fluoroelastomer with 70% - fluor that having excellent thermal, chemical and mechanical properties. Vulcanized and non-vulcanized samples of this material were submitted to gamma radiation under air atmosphere in order to observe the effect of atmosphere in the polymer matrix. The irradiated doses were 5, 10 and 20kGy, at room temperature. The characterization was made by scanning electron microscope (SEM), infrared spectroscopy using attenuate reflectance (ATR-IR) and X-ray diffraction. The results demonstrated which was expected, the degradation reactions were observed. (author)

  4. Radiation effects on fiber-reinforced plastics

    International Nuclear Information System (INIS)

    The advances in the research on the latent deterioration caused by radiation, not leading to any change in static mechanical features for fiber reinforced plastics (FRP) were reviewed aiming to assess a static mechanical characteristics of the epoxide resin, FRP. The deterioration of FRP due to radiation is known to be related to the radiation resistancy of its matrix. The bending strength of CFRP laminated with epoxide was determined as a function of radiation dose and tetraglycidyl-diaminodiphenyl methan (TGDDM) was found to be more resistant to radiation than diglycidyl ether of bisphenol (DGEBA). The bending strength was decreased by heat treatment at a higher temperature following the radiation in both CFRP. So, heat treatment was thought to be useful to detect the latent deterioration which fails to appear in any changes in static characteristics at room temperature. In addition, it is necessary to noninvasively observe the material with regard to the conditions to generate damages due to the fatigue. The results of three-point bending experiment show that when 3 different stressing; compression pressure, and shearing and stretching forces were loaded simultaneously, cracks develop easily. Further, electron radiation caused to increase water absorption of GFRP, suggesting that some damages developed on the interface of GFRP treated with silane coupling reagent might cause occurrence of crack. The latent deterioration due to radiation is detectable in part by estimation of water absorbance and heat treatment effects on FRP. (M.N.)

  5. Effect of Chemical Reagents in Foam Decontamination

    International Nuclear Information System (INIS)

    The decontamination foam comprises at least one surfactant to generate the foam and one or more chemical reactants to achieve the dissolution of the contaminants at the solid surface. In order to improve the efficiency of decontamination foam, the present study attempts to find the optimum condition of chemical reagents to the foaming solution. This paper deals with understanding the effects of chemical reagents involved in foam decontamination efficiency, evaluation of side effect on foam stability and finally the improvement brought by formulation science. Basic experiments using the nanoparticle-based complex fluid decontamination foam have been performed in order to development of decontamination foam technology. Results show that in the case of coexistence of chemical reagents, for the purpose of the good foam ability and foam stability, it is necessary to increase the concentration of surfactant. In corrosion test, metal materials including carbon steel, stainless steel 304, aluminum, inconel 600 and cupper, generally corrosion solubility percent in nitric acid solution were higher than in phosphoric acid solution. Bench-scale testing was used to evaluate the efficacy of three decontamination formulations on contaminant carbon steel component of dry oven. The results shows decontamination factor was in the range of 6.1∼13.4. Results suggest that our foam formulations have a feasibility potential to removal of about 83∼93% total radioactivity in contaminant

  6. Effect of Chemical Reagents in Foam Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Han Beom; Yoonm Inho; Jung, Chonghun; Choi, Wangkyu [Korea Atomic Energy research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The decontamination foam comprises at least one surfactant to generate the foam and one or more chemical reactants to achieve the dissolution of the contaminants at the solid surface. In order to improve the efficiency of decontamination foam, the present study attempts to find the optimum condition of chemical reagents to the foaming solution. This paper deals with understanding the effects of chemical reagents involved in foam decontamination efficiency, evaluation of side effect on foam stability and finally the improvement brought by formulation science. Basic experiments using the nanoparticle-based complex fluid decontamination foam have been performed in order to development of decontamination foam technology. Results show that in the case of coexistence of chemical reagents, for the purpose of the good foam ability and foam stability, it is necessary to increase the concentration of surfactant. In corrosion test, metal materials including carbon steel, stainless steel 304, aluminum, inconel 600 and cupper, generally corrosion solubility percent in nitric acid solution were higher than in phosphoric acid solution. Bench-scale testing was used to evaluate the efficacy of three decontamination formulations on contaminant carbon steel component of dry oven. The results shows decontamination factor was in the range of 6.1∼13.4. Results suggest that our foam formulations have a feasibility potential to removal of about 83∼93% total radioactivity in contaminant.

  7. Radiation chemical formation of Turnbull blue from Fe(III)-oxalate

    International Nuclear Information System (INIS)

    Complete text of publication follows. The radiation chemical analogue of the photochemical disproportionation reaction K3[Fe(III)(oxalate)3] into Fe(II)2+ and CO2 was investigated through the formation and precipitation of Turnbull blue, K[Fe(II)Fe(III)(CN)6] by pulse radiolysis. Beyond the establishment of the qualitative analogy between the effects of fast electrons and visible light, the phenomenological kinetics of the process was established. After a fast first order process (time scale of the order of 1 ms) a slower first order reaction takes place (time scale of the order of several seconds) whereas the transformation is concluded by a slow autocatalytic step. The possible mechanism is discussed with a view also to photochemical observations

  8. Radiation effect on catalin tablets

    International Nuclear Information System (INIS)

    Catalin sodium (tab) is used as an anti-cataract drug. It is dissolved in sterile aqueous buffer and administered as eye drops. It has to be sterile. These tablets are irradiated to 14 - 35 kGy dose of gamma rays from 60Co source and physico-chemical studies were done in solid state and in solution. Physical appearance, pH and light absorption properties show no change. Assay of the irradiated samples gives a value of around 102% of the labeled amount which is within the specified limits. The solution of the irradiated tablet can be stored at 5-10 deg C for a month. (author)

  9. Chemical and radiation environmental risk management at the crossroads: Case studies

    International Nuclear Information System (INIS)

    Although many of the major environmental risk management decisions we face today require the simultaneous evaluation and control of both radiological and chemical risks, the separation of radiation and chemical risk management persists along legal, regulatory, programmatic, training and professional practice levels. In June 1998, a panel of 40 chemical and radiation risk experts met at an interactive workshop entitled 'Addressing the Similarities and Differences in Chemical and Radiation Environmental Risk Management,' in Annapolis, Maryland to discuss several perspectives on harmonizing chemical and radiation risk management approaches. At the conclusion of the meeting, workshop participants recommended that case studies of clean-up sites at which radioactive materials and hazardous chemical risks were addressed, be developed to help educate participants in the harmonization dialogue about their counterpart's issues, stimulate discussion and sharpen issues in a way that they can be resolved. Several key risk management issues that were highlighted from the discussion at the Annapolis meeting are being evaluated in the case studies. They include: decision criteria, costs and public/stakeholder input. This paper presents these key issues and the approach taken in the case studies. (author)

  10. Radiation effects on DNA methylation in mice

    International Nuclear Information System (INIS)

    Effects of ionizing radiation on DNA methylation in liver, brain and spleen were examined by high performance liquid chromatography (HPLC). The total methylated cytosine level in the genome was reduced within 8 hours after 3.8 Gy of irradiation in liver of adult mice. But no appreciable effect was observed in brain and spleen. When mice were irradiated at newborn, liver DNA revealed no change in methylated cytosine level. Even though slight effects of radiation were detected in he methylation of the c-myc and c-fos genes, they were only temporary and no long-term effects were observed. These data suggest that the effect of radiation on DNA methylation in vivo is not prevailing a DNA damage, but rather influenced much through biological parameters. (author)

  11. Measuring transient radiation effects in optical fibers

    International Nuclear Information System (INIS)

    We propose a new method for measuring transient radiation effects in optical fibers on a nanosecond timescale. The method, which incorporates a streak camera, allows more precise time resolution than other methods and has the advantage of measuring the radiation-induced attenuation as a function of wavelength and time simultaneously. By choosing different light sources and sweep speeds, radiation-induced attenuation may be measured under a variety of experimental configurations. Examples of the type of output obtained with our method are given

  12. Effect of gamma radiation on Campylobacter jejuni

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, J.D.; Maxcy, R.B.

    Radiation resistance of Campylobacter jejuni in broth, ground beef, and ground turkey meat was determined using dose levels from 0-200 Krad at -30 +/- 10/sup 0/C, at 0-5/sup 0/C, and at 30 +/- 10/sup 0/C. Irradiation at -30/sup 0/C increased radiation resistance of cultures in ground meats; broth cultures were not greatly influenced by temperature. The effect of culture age on radiation resistance was also evaluated using cells in various physiological phases. Age did not have a pronounced effect on radiation resistance. The largest D/sub 10/ value for C. jejuni was 32 Krad, which was less than D/sub 10/ values commonly reported for salmonellae. 20 references, 4 figures.

  13. Radiation effects on the integrity of paper

    International Nuclear Information System (INIS)

    Books and documents attacked by fungi and insects have already been treated by radiation for disinfestations purposes. However, there is still need to investigate the influence of radiation on the cellulose paper structure. The aim of this research was to study the effects of radiation on paper properties, especially those related to strength and appearance. Paper sheets for this study were prepared in the laboratory, using bleached eucalyptus pulp as raw material. No additives were used to concentrate the attention only on the effects of irradiation on the pure cellulose matrix. The samples were irradiated at IPEN's 60Co Gammacell irradiator with six radiation doses, from 3 to 15 kGy at the dose rate 0.817 Gy/s. The properties of paper sheets were tested after irradiation and compared with unirradiated samples according to ISO methods. No significant changes were detected in paper samples irradiated up to 15 kGy.

  14. Additive effects of ultraviolet radiation

    International Nuclear Information System (INIS)

    A xenon-mercury high pressure lamp and a double monochromator were used to produce ultraviolet (uv) radiation at 295 nm. Pigmented rabbit eyes were irradiated and evaluated by slitlamp biomicroscopy. Corneal threshold (Hc) was 0.05 J.cm-2 and lens threshold (hL) was 0.75 J.cm-2. Other eyes were irradiated with 2 Hc and evaluated from 4 to 24 h at 4 h intervals. Corneal damage was only greater than that expected from a single Hc exposure if the separation between the two Hc exposures did not exceed 8 h. The most repeatable and reliable corneal response to these levels of uv was the development of corneal epithelial granules

  15. The effects of radiation on angiogenesis.

    Science.gov (United States)

    Grabham, Peter; Sharma, Preety

    2013-01-01

    The average human body contains tens of thousands of miles of vessels that permeate every tissue down to the microscopic level. This makes the human vasculature a prime target for an agent like radiation that originates from a source and passes through the body. Exposure to radiation released during nuclear accidents and explosions, or during cancer radiotherapy, is well known to cause vascular pathologies because of the ionizing effects of electromagnetic radiations (photons) such as gamma rays. There is however, another type of less well-known radiation - charged ion particles, and these atoms stripped of electrons, have different physical properties to the photons of electromagnetic radiation. They are either found in space or created on earth by particle collider facilities, and are of significant recent interest due to their enhanced effectiveness and increasing use in cancer radiotherapy, as well as a health risk to the growing number of people spending time in the space environment. Although there is to date, relatively few studies on the effects of charged particles on the vascular system, a very different picture of the biological effects of these particles compared to photons is beginning to emerge. These under researched biological effects of ion particles have a large impact on the health consequences of exposure. In this short review, we will discuss the effects of charged particles on an important biological process of the vascular system, angiogenesis, which creates and maintains the vasculature and is highly important in tumor vasculogenesis. PMID:24160185

  16. The relationship between radiation-induced chemical processes and transverse relaxation times in polymer gel dosimeters

    International Nuclear Information System (INIS)

    The effects of ionizing radiation in different compositions of polymer gel dosimeters are investigated using FT-Raman spectroscopy and NMR T2 relaxation times. The dosimeters are manufactured from different concentrations of comonomers (acrylamide and N,N'-methylene-bis-acrylamide) dispersed in different concentrations of an aqueous gelatin matrix. Results are analysed using a model of fast exchange of magnetization between three proton pools. The fraction of protons in each pool is determined using the known chemical composition of the dosimeter and FT-Raman spectroscopy. Based on these results, the physical and chemical processes in interplay in the dosimeters are examined in view of their effect on the changes in T2. The precipitation of growing macroradicals and the scavenging of free radicals by gelatin are used to explain the rate of polymerization. The model describes the changes in T2 as a function of the absorbed dose up to 50 Gy for the different compositions. This is expected to aid the theoretical design of new, more efficient dosimeters, since it was demonstrated that the optimum dosimeter (i.e, with the lowest dose resolution) must have a range of relaxation times which match the range of T2 values which can be determined with the lowest uncertainty using an MRI scanner. (author)

  17. An assessment of the toxicity of irradiated fruits using radiation chemical principles

    International Nuclear Information System (INIS)

    The concept of using a simple aqueous solution model to predict the chemical changes that take place when fruits are irradiated is discussed. Using relative rate constants determined by irradiating binary systems containing glucose, it has been possible to calculate the protective effect due to the high concentration of sugars present in fruit. The validity of the predicted effect was then tested by irradiating a model solution containing the components present in a typical subtropical fruit. The yield of products due to the radiolysis of sugars in this solution was shown to be similar to the yield obtained when aqueous solutions of pure sugars are irradiated. Thus the other components do not compete for the primary radicals formed in the radiolysis of aqueous solutions. On the basis of these experiments it has been concluded that the only significant radiolysis products formed during the radiation processing of fruits are sugar degradation products. The yields of these products are known and the toxicological implications of their formation may be assessed and shown to be insignificant. The limitations of the aqueous model have been considered and its validity tested by comparing the yields of sugar degradation products in the model solution with those obtained from irradiated fruit juice, fruit pulp and fresh fruit. The results indicate that the aqueous model provides a satisfactory basis for predicting the chemical changes in a wide variety of fruits. The significance of this finding with respect to toxicological considerations is discussed. (author)

  18. An Assessment of the Toxicity of Irradiated Fruits Using Radiation Chemical Principles

    International Nuclear Information System (INIS)

    The concept of using a simple aqueous solution model to predict the chemical changes that take place when fruits are irradiated is discussed. Using relative rate constants determined by irradiating binary systems containing glucose, it has been possible to calculate the protective effect due to the high concentration of sugars present in fruit. The validity of the predicted effect was then tested by irradiating a model solution containing the components present in a typical subtropical fruit. The yield of products due to the radiolysis of sugars in this solution was shown to be similar to the yield obtained when aqueous solutions of pure sugars are irradiated. Thus the other components do not compete for the primary radicals formed in the radiolysis of aqueous solutions. On the basis of these experiments it has been concluded that the only significant radiolysis products formed during the radiation processing of fruits are sugar degradation products. The yields of these products are known and the toxicological implications of their formation may be assessed and shown to be insignificant. The limitations of the aqueous model have been considered and its validity tested by comparing the yields of sugar degradation products in the model solution with those obtained from irradiated fruit juice, fruit pulp and fresh fruit. The results indicate that the aqueous model provides a satisfactory basis for predicting the chemical changes in a wide variety of fruits. The significance of this finding with respect to toxicological considerations is discussed. (author)

  19. Changes in chemical composition and anti nutritional factors in sesame seeds as affected by gamma and microwave radiations during storage

    International Nuclear Information System (INIS)

    The effect of gamma radiation, microwave radiation, interaction between them and storage of sesame seeds were investigated to find out the best treatment which cause the maximum reduction of anti nutritional factors (trypsin inhibitor and lipoxygenase activities) without exerting significant effect on the chemical constituents. The gamma rays was used at doses of 2.5, 5.0 and 8.0 KGy, microwave radiation was at 70 level power for 2 and 4 min and the storage of seeds was at room temperature and Rh 50-55% for six months. The obtained results on the effect of gamma radiation and storage showed slight decrease in crude protein contents, significant decrease in total free amino acids, total lipids had either slightly or non-significantly changed, decreased total carbohydrates and slight changes in total soluble sugars content. Reduction of trypsin inhibitor and lipoxygenase activities were increased as the irradiation dose levels and storage time increased. Slightly decreases in tannin and phenol contents and significant decrease in phytic acid content were observed. The obtained results on the effect of microwave radiation and storage indicated non-significant effect on protein and total lipids contents, decrease in total free amino acids, slight changes in total carbohydrate content and non-significant changes in total soluble and reducing sugars. Trypsin inhibitor and lipoxygenase activities were significantly reduced by microwave, while increasing the storage period decreased lipoxygenase activity. Significant changes were observed in tannin and phenol contents, while phytic acid was decreased

  20. The radiation effects on the living cell

    International Nuclear Information System (INIS)

    This publication is a presentation of particular points discussed during the colloquium of the 15-18 june 1999, for which scientific researches are performed at the CEA/CNRS. They deal with the radiobiology, for the radiation effects on living matter; with the DNA, for the knowledge and repair mechanisms on cells submitted to ionizing radiations; with the exposition to UV in correlation with neoplasms; with the P53 gene which is a tumour suppressor. (A.L.B.)

  1. Heat and Mass Transfer Effects on Unsteady MHD Natural Convection Flow of a Chemically Reactive and Radiating Fluid through a Porous Medium Past a Moving Vertical Plate with Arbitrary Ramped Temperature

    Directory of Open Access Journals (Sweden)

    Gauri Shanker Seth

    2016-01-01

    Full Text Available Investigation of unsteady hydromagnetic natural convection flow with heat and mass transfer of a viscous, incompressible, electrically conducting, chemically reactive and optically thin radiating fluid past an exponentially accelerated moving vertical plate with arbitrary ramped temperature embedded in a fluid saturated porous medium is carried out. Exact solutions of momentum, energy and concentration equations are obtained in closed form by Laplace transform technique. The expressions for the shear stress, rate of heat transfer and rate of mass transfer at the plate for both ramped temperature and isothermal plates are derived. The numerical values of fluid velocity, fluid temperature and species concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. It is found that, for isothermal plate, the fluid temperature approaches steady state when t  1.5 . Consequently, the rate of heat transfer at isothermal plate approaches steady state when t  1.5 .

  2. Evidence for beneficial low level radiation effects and radiation hormesis

    International Nuclear Information System (INIS)

    Low doses in the mGy range cause a dual effect on cellular DNA. One effect concerns a relatively low probability of DNA damage per energy deposition event and it increases proportional with dose, with possible bystander effects operating. This damage at background radiation exposure is orders of magnitudes lower than that from endogenous sources, such as ROS. The other effect at comparable doses brings an easily obeservable adaptive protection against DNA damage from any, mainly endogenous sources, depending on cell type, species, and metabolism. Protective responses express adaptive responses to metabolic perturbations and also mimic oxygen stress responses. Adaptive protection operates in terms of DNA damage prevention and repair, and of immune stimulation. It develops with a delay of hours, may last for days to months, and increasingly disappears at doses beyond about 100 to 200 mGy. Radiation-induced apoptosis and terminal cell differentiation occurs also at higher doses and adds to protection by reducing genomic instability and the number of mutated cells in tissues. At low doses, damage reduction by adaptive protection against damage from endogenous sources predictably outweighs radiogenic damage induction. The analysis of the consequences of the particular low-dose scenario shows that the linear-no-threshold (LNT) hypothesis for cancer risk is scientifically unfounded and appears to be invalid in favor of a threshold or hormesis. This is consistent with data both from animal studies and human epidemiological observations on low-dose induced cancer. The LNT hypothesis should be abandoned and be replaced by a hypothesis that is scientifically justified. The appropriate model should include terms for both linear and non-linear response probabilities. Maintaining the LNT-hypothesis as basis for radiation protection causes unressonable fear and expenses. (author)

  3. Biological effect of radiation on human

    International Nuclear Information System (INIS)

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved

  4. Biological effect of radiation on human

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Sil; Cho, Chul Koo; Lee, Su Jae [and others

    2000-04-01

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved.

  5. Radiation Effects on Spacecraft Structural Materials

    International Nuclear Information System (INIS)

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  6. Medical exposure and the effects of radiation

    International Nuclear Information System (INIS)

    Radiation gives cracks to genes. The influence is divided into deterministic effect with a threshold value, and the stochastic effect (tumor and genetic effect) which increases according to the exposure amount. Although we are put to various non-artificial radiations, which we cannot be avoided, on the earth, the contamination by artificial radiation can be defended. Artificial radioactive exposure includes medical exposure and non-medical exposure for example by nuclear power plant. As to medical examinations using radiation, the inquiry about the radiation exposure is increasing after the occurrence of the first nuclear power plant disaster of Fukushima. While concern about non-medical radioactive exposure increases, the uneasiness to medical irradiation is also increasing. The dose limit by artificial radioactive exposure other than medical exposure is set up in order to prevent the influence on the health. While the dose limit of the public exposure is set to the lower value than the total dose of non-artificial exposure concerning of a safety margin for all people, the dose limit of medical exposure is not defined, since it is thought that medical irradiation has a benefit for those who receive irradiation. Making an effort to decrease the radiation dose in performing the best medical treatment is the responsibility with which we are burdened. (author)

  7. Radiation chemical telomerization of ethylene with malonic acid diethylester

    International Nuclear Information System (INIS)

    The radiation-initiated telomerization of diethyl malonate (1) and ethylene leads to the even-numbered n-alkylmalonic acid diethylesters and the even-numbered n-alkyl-n-butylmalonic acid diethylesters. The yields of the n-alkyl-n-butylmalonic acid diethylesters referring to the yields of n-alkylmalonic acid diethylesters are increased by elevating the temperature and by lowering the pressure. High temperatures and low pressures favour the formation of short-chained telomers. The product distribution is independent from the absorbed dose and the dose rate. The G-values are: G(ester)55; G(-C2H4)230, the activation energy is 12.5 KJ/mol, the chain-transfer constants are about 0.2, and the rearrangement constants are about 2.5. (orig.)

  8. Effects of radiation on aquatic organisms

    International Nuclear Information System (INIS)

    With the onset of nuclear age, nuclear fuel cycle products, nuclear medicine techniques, disposal of radio active wastes on land or in water, fall out of testing nuclear weapons has contributed large amount of radio nuclides to the water bodies. Radio nuclides can imbalance aquatic ecosystem resulting in danger to natural life. The biological effects of radiation on aquatic life are mortality, pathophysiological, reproductive, developmental and genetic changes. A broad review of the results obtained about the aquatic organisms related to different phyla indicates that the lower or less developed or more primitive organisms are more resistant than the higher or more advanced, developed and complex organisms to ionizing radiation. The algae, protozoa are more resistant than the insects, crustaceans, molluscs and fishes. The changes in sensitivity between different stages of development have also been noted. A review of the results of exposing salmonoid gametes, eggs, fingerlings and adults to X-rays supports the concepts that radio sensitivity decreases with age. This paper presents a selective review on effects of radiation and radio nuclides on the aquatic life. It include uses and sources of radiation, effective quantity of radiation, lethal and sub lethal effect, effects on survival, growth, reproduction, behaviour, metabolism, carcinogenicity and mutagenicity. (author)

  9. Radiation effects on human tissues and their use in tissue banking

    International Nuclear Information System (INIS)

    The chemical and physical effects of ionising radiation on animal tissues and tissue components are reviewed. Various aspects of the use of radiation sterilization for human tissues intended for tissue banks are discussed. Reference is made to the IAEA initiative to develop a Human Tissue Bank at the Orthopaedic Hospital, Kemmedine, Burma to train local technical staff. (U.K.)

  10. Evaluation of sensitivity for positive tone non-chemically and chemically amplified resists using ionized radiation: EUV, x-ray, electron and ion induced reactions

    Science.gov (United States)

    Oshima, Akihiro; Oyama, Tomoko Gowa; Washio, Masakazu; Tagawa, Seiichi

    2013-03-01

    The different exposure sources induce a different energy deposition in resist materials. Linear energy transfer (LET) effect for resist sensitivity is very important issue from the viewpoint of radiation induced chemical reactions for high-volume nanofabrication. The sensitivities of positive tone non-chemically (non-CA, ZEP) and chemically amplified (CA, UV-3) resist materials are evaluated using various ionized radiation such as EUV, soft X-rays, EB and various ion beams. Since the notations of sensitivity of resist vary with exposure sources, in order to evaluate systematically, the resist sensitivity were estimated in terms of absorbed dose in resist materials. Highly-monochromated EUV and soft X-rays (6.7 nm - 3.1 nm) from the BL27SU of the SPring-8, high energy ion beams (C6+, Ne10+, Mg12+, Si14+ , Ar18+, Kr36+ and Xe54+) with 6 MeV/u from MEXP of HIMAC, EB from low energy EB accelerator (Hamamatsu Photonics, EB-engine®, 100 kV) and EB lithography system (30 keV and 75keV) were used for the exposure. For non-CA and CA resist materials, it was found that LET effects for sensitivity would be hardly observed except for heavier ion beams. Especially, in the case of the high energy ion beam less than Si14+ with 6 MeV/u, it is suggested that the radiation induced chemical reaction would be equivalent to EUV, soft X-ray and EB exposure. Hence, it indicates that the resist sensitivity could be systematically evaluated by absorbed dose in resist materials.

  11. The effects of acute joint exposure to radiation and certain pesticides on the peripheric blood in rats

    International Nuclear Information System (INIS)

    The effect of joint external γ-radiation and some pesticides on the peripheric blood is studied. Lindane, trichlorfon and tetramethylthiuram disulfide are used as toxic chemicals. It is shown that the combined effect has caused, like radiation, stable leukopenia, but less expressed than the effect of gamma radiation. It is especially obvious in the case of combining ionizing radiation and TMTD when the number of leukocytes averaged by 25% more than in the case of injury by radiation alone. Lymphocytes are most sensitive blood cell elements earily responsing to radiation and chemical organism injuries, both qualitatively and quantitatively. The results of analyzing the dynamics of the most qualitative and quantitative paramaters of leukocytes permit to state the summation of mutual effects of factors of radiation and chemical nature

  12. Preliminary experimental studies on the chemical and radiation degradation of combustible plutonium contaminated material

    International Nuclear Information System (INIS)

    The chemical and radiation degradation of combustible plutonium contaminated material (PCM) in a cement matrix has been investigated. Experimental studies have been carried out to establish the influence of any water soluble chemical and radiation degradation products on the solubility of plutonium at high pHs. The influence of complexing agents (e.g. EDTA, citric acid), which may be present in wastes, on plutonium solubility has been assessed. The extent of sorption on cement in the presence of organic degradation products has been measured. (author)

  13. Mathematical modeling of the radiation-chemical behavior of Np(VI) in HNO3

    International Nuclear Information System (INIS)

    The literature contains many studies on the radiolytic behavior of Np(VI) in HNO3 solutions. These studies have been partially reviewed in a book. An attempt has been made to examine the mechanism of the radiation-chemical conversion of Np ions. However, the kinetic laws cannot be obtained and the mechanism of the reactions occurring cannot be accurately found without mathematical modeling. Mathematical modeling of the radiation-chemical behavior of Np(VI) in 0.5-6 M HNO3 is reported in the present article. Calculations using a special program were performed on an IBM PC/X5 personal computer

  14. Cation Effect on Copper Chemical Mechanical Polishing

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; LIU Bo; SONG Zhi-Tang; FENG Song-Lin

    2009-01-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demon-strates the worst performance. These results reveal a mechanism that sma//molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  15. EFFECTS OF GAMMA RADIATION ON ELECTROCHEMICAL PROPERTIES OF IONIC LIQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Visser, A; Nicholas Bridges, N; Thad Adams, T; John Mickalonis, J; Mark02 Williamson, M

    2009-04-21

    The electrochemical properties of ionic liquids (ILs) make them attractive for possible replacement of inorganic salts in high temperature molten salt electrochemical processing of nuclear fuel. To be a feasible replacement solvent, ILs need to be stable in moderate and high doses of radiation without adverse chemical and physical effects. Here, we exposed seven different ILs to a 1.2 MGy dose of gamma radiation to investigate their physical and chemical properties as they related to radiological stability. The azolium-based ILs experienced the greatest change in appearance, but these ILs were chemically more stable to gamma radiation than some of the other classes of ILs tested, due to the presence of aromatic electrons in the azolium ring. All the ILs exhibited a decrease in their conductivity and electrochemical window (at least 1.1 V), both of which could affect the utility of ILs in electrochemical processing. The concentration of the irradiation decomposition products was less than 3 mole %, with no impurities detectable using NMR techniques.

  16. Synergistic effect of ozonation and ionizing radiation for PVA decomposition.

    Science.gov (United States)

    Sun, Weihua; Chen, Lujun; Zhang, Yongming; Wang, Jianlong

    2015-08-01

    Ozonation and ionizing radiation are both advanced oxidation processes (AOPs) without chemical addition and secondary pollution. Also, the two processes' efficiency is determined by different pH conditions, which creates more possibilities for their combination. Importantly, the combined process of ozonation and ionizing radiation could be suitable for treating wastewaters with extreme pH values, i.e., textile wastewater. To find synergistic effects, the combined process of ozonation and ionizing radiation mineralization was investigated for degradation of polyvinyl alcohol (PVA) at different pH levels. A synergistic effect was found at initial pH in the range 3.0-9.4. When the initial pH was 3.0, the combined process of ozonation and ionizing radiation gave a PVA mineralization degree of 17%. This was 2.7 times the sum achieved by the two individual processes, and factors of 2.1 and 1.7 were achieved at initial pH of 7.0 and 9.4, respectively. The combined process of ozonation and ionizing radiation was demonstrated to be a feasible strategy for treatment of PVA-containing wastewater. PMID:26257347

  17. Health effects of low level radiation

    International Nuclear Information System (INIS)

    In 1982, Prof. Thomas Don Luckey of Missouri Univ. asserted 'Radiation Hormesis' on the Journal of Health Physics and he published two books. CRIEPI initiated the research program on Radiation Hormesis following his assertion to confirm 'is it true or not?' After nearly ten year research activities on data surveys and animal tests with many Universities, we are realizing scientific truth of bio-positive effects by low level radiation exposures. The interesting bio-positive effects we found could be categorized in following five groups. 1) Rejuvenation of cells such as increase of SOD and cell membrane permeability, 2) Moderation of psychological stress through response of key enzymes, 3) Suppression and therapy of adult-diseases such as diabetes and hypertension, 4) Suppression of cancer through enhancement of immune systems such as lymphocytes, 5) Suppression of cancer and ratio-adaptive response by activation of DNA repair and apoptosis. In the responses of many specialists to our initiation of radiation hormesis research program following T.D. Luckey's claim about low level radiation, I have to pick up for the first, the great success of Prof. Sakamoto. Prof. Sakamoto had been already applying whole body low dose irradiation for ten years before our radiation hormesis research started on the therapy to suppress the cancer reappearing after treatment. He reported about his successful trial to real patients and showed an enhancement of immune system. (author)

  18. Kinetics and mechanism of the radiation-chemical synthesis of krypton hydrides in solid krypton matrices

    International Nuclear Information System (INIS)

    The processes occurring in the X-irradiated C2H2/Kr and HCl/Kr systems in the temperature range of 7–30 K were studied using a combination of FTIR and EPR spectroscopy. In both cases, irradiation results in effective decomposition of isolated molecules (C2H2 or HCl) and production of trapped H atoms. The thermal decay of trapped atoms in solid krypton was attributed to “local” reactions (below 21 K) and long-range mobility activated in the temperature range of 23–27 K. Two krypton hydrides, HKrCCH and HKrCl, were synthesized from the radiation-induced hydrogen atoms. In the case of C2H2/Kr system, competitive reaction channels of H atoms at various absorbed doses were investigated in details, and HKrCCH was found to be one of the main reaction products. The X-ray radiolysis in krypton matrices was concluded to be a promising method to obtain krypton hydrides. - Highlights: • Reactions of radiolytic H atoms in solid krypton were monitored by EPR and FTIR spectroscopy. • The role of “local” and “global” mobility of H atoms was established. • HKrCCH and HKrCl were prepared by the radiation-chemical method

  19. Effect of radiation processing on meat tenderisation

    Science.gov (United States)

    Kanatt, Sweetie R.; Chawla, S. P.; Sharma, Arun

    2015-06-01

    The effect of radiation processing (0, 2.5, 5 and 10 kGy) on the tenderness of three types of popularly consumed meat in India namely chicken, lamb and buffalo was investigated. In irradiated meat samples dose dependant reduction in water holding capacity, cooking yield and shear force was observed. Reduction in shear force upon radiation processing was more pronounced in buffalo meat. Protein and collagen solubility as well as TCA soluble protein content increased on irradiation. Radiation processing of meat samples resulted in some change in colour of meat. Results suggested that irradiation leads to dose dependant tenderization of meat. Radiation processing of meat at a dose of 2.5 kGy improved its texture and had acceptable odour.

  20. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  1. [Biological, chemical, and radiation factors in the classification of medical waste].

    Science.gov (United States)

    Rusakov, N V; Korotkova, G I; Orlov, A Iu; Kadyrov, D E

    2011-01-01

    The current classification of medical waste does not consider the sanitary-and-chemical hazard of epidemiologically dangerous and extremely dangerous medical waste (classes B and C). According to the results of the studies performed, the authors propose the improved classification of medical waste, which makes it possible to take into account not only infectious, radiation, and toxicological, but also sanitary-and-chemical hazards (toxicity, carcinogenicity, mutagenicity, and biological activity) of medical waste. PMID:21901883

  2. Radiative heat transfer to steady flow of a chemically reacting fluid in a horizontal porous channel with variable wall temperature

    International Nuclear Information System (INIS)

    Fluid motion in a horizontal channel at very high temperatures is studied when the radiative heat flux is expressible in general differential form. On the assumption that the fluid is chemically reacting while the temperatures of the channel walls vary linearly with axial distance, the problem is reduced to a set of coupled nonlinear ordinary integro-differential equations when only linear terms in the axial distance are retained. An iterative sequence is established in which the eventual linear equations are discretized by employing finite differences for derivatives and trapazium rule for integrals. The effect of the chemical rate constant and the radiative parameters on the flow are discussed. (author). 5 refs, 2 figs

  3. Radiation effects on Brassica seeds and seedlings

    Science.gov (United States)

    Deoli, Naresh; Hasenstein, Karl H.

    2016-07-01

    Space radiation consists of high energy charged particles and affects biological systems, but because of its stochastic, non-directional nature is difficult to replicate on Earth. Radiation damages biological systems acutely at high doses or cumulatively at low doses through progressive changes in DNA organization. These damages lead to death or cause of mutations. While radiation biology typically focuses on mammalian or human systems, little is known as to how radiation affects plants. In addition, energetic ion beams are widely used to generate new mutants in plants considering their high-LET (Linear Energy Transfer) as compared to gamma rays and X-rays. Understanding the effect of ionizing radiation on plant provides a basis for studying effects of radiation on biological systems and will help mitigate (space) radiation damage in plants. We exposed dry and imbibed Brassica rapa seeds and seedling roots to proton beams of varying qualities and compared the theoretical penetration range of different energy levels with observable growth response. We used 1, 2 and 3 MeV protons in air at the varying fluences to investigate the effect of direct irradiation on the seeds (1012 - 1015 ions/cm2) and seedlings (1013 ions/cm2). The range of protons in the tissue was calculated using Monte-Carlo based SRIM (Stopping and Range of Ions in Matter) software. The simulation and biological results indicate that ions did not penetrate the tissue of dry or hydrated seeds at all used ion energies. Therefore the entire energy was transferred to the treated tissue. Irradiated seeds were germinated vertically under dim light and roots growth was observed for two days after imbibition. The LD50 of the germination was about 2×1014 ions/cm2 and about 5×1014 ions/cm2 for imbibed and dry seeds, respectively. Since seedlings are most sensitive to gravity, the change in gravitropic behavior is a convenient means to assess radiation damage on physiological responses other than direct tissue

  4. Effect of Ionizing Radiation on Luminous Bacteria Cells

    International Nuclear Information System (INIS)

    Marine luminous bacteria were used to monitor toxicity of alpha- (Am-241, U-235+238) and beta- (tritium) radionuclide solutions. Increase or inhibition of bacterial luminescence was observed under exposure to radionuclides. Radiation toxicity of Am and chemical toxicity of U were demonstrated. Effects of U were similar to those of stable heavy metals: sensitivity was about 10-5 M. Sensitivity of the bacteria to Am-241 was 300 Bq/L (10-11M). Inhibition of bacterial growth was observed under exposure to Am-241 and tritium. Role of peroxides and electron transfer processes in the effects of radionuclides on luminous bacteria is discussed.

  5. Radiation Effect Mechanisms in Electronic Devices

    International Nuclear Information System (INIS)

    The development of the electronics industry worldwide achieved great advances from the 70s, with studies on oxidation process in field effect silicon transistors. Thus, there was a need for knowledge of the mechanisms that are present in oxides and interfaces between silicon and silicon oxides, as well as other compound semiconductors due to critical differences between the properties of silicon. Against this background, many studies have been performed to understand reliability and ionization radiation effects on electronic devices. Reliability problems and effects of ionizing radiation on electronic devices are critical, depending on the environment in which the devices are exposed. This is the case of space, avionics, particle accelerators, nuclear reactors. This research area is strategic for space and defense areas. Thus, it is of fundamental importance to conduct tests to qualify electronic devices submitted to irradiation, based on Total Ionizing Dose (Tid), Single Event Effects (SEE) and Displacement Damage (D D). This work shows tests using X-ray and ion beams to test commercial MOS(Metal Oxide Semiconductor Field Effect Transistor). The integrated circuits, CD4007, were exposed to 60 MeV 35Cl ion beams using the Sao Paulo 8UD Pelletron Accelerator and 10 keV X-ray radiation using a Shimadzu XRD-7000. The total dose effects due to ionizing radiation in MOSFET devices can lead to trapping of charges in the oxide and at the interface Si/SiO2, which increases or decreases the transistors off-current and leakage currents, and shifts the threshold voltage. Characteristic curves of current as a function of gate voltage, in different irradiation conditions, for p and n-MOSFET transistors, which compose the commercial device, were studied. In Figure it is possible to note different behaviors of the devices as a function of radiation dose due to X-ray radiation and the incidence a 60 MeV 35Cl ion beam

  6. Radiation damage effects in zircon

    Science.gov (United States)

    Trachenko, Kostya; Dove, Martin; Salje, Ekhard

    2002-03-01

    Zircon, ZrSiO_4, is important for geology and geochronology, and has been proposed as a host material to immobilize highly radioactive materials from dismantled weapons and nuclear waste from power stations [1]. In these applications zircon is exposed to alpha-irradiation. Computer simulations have started to be employed to simulate radiation damage in zircon [2], but the origin and microscopic mechanisms of the most important structural changes in zircon - unit cell expansion and large macroscopic swelling at higher doses, strong shear deformation of the crystalline lattice, and polymerization of SiOn units [3], remain unknown. Here, we perform the molecular dynamics simulation of highly energetic recoils in zircon. Basing on the simulation results, we propose the simple picture of the density change in the damaged region that consists of the depleted and densified matter. We find that the experimentally observed structural changes originate from the interaction of the damaged region with the surrounding crystalline lattice: the shear of the lattice around the damaged region causes shear deformation and expansion of the unit cells. The polymers of connected SiOn polyhedra are most commonly present in the densified shell at the periphery of the damaged region. [1] R C Ewing et al, J. Mater. Res. 10, 243 (1995); W J Weber et al, B E Burakov et al, in Scientific Basis for Nuclear Waste Management XIX, 25-32 and 33-40 (Plenum, New York, 1996); R C Ewing, et al in Crystalline Ceramics: Waste Forms for the Disposal of Weapons Plutonium, NATO Workshop Proceedings 65 (Academic Publishers, Dordrecht, The Netherlands, 1996). [2] B Park et al, Phys. Rev. B, 64, 174108 (1-16) (2001); J P Crocombette and D Ghaleb, J. Nucl. Mater., 295, 167 (2001); K Trachenko et al, J. Appl. Phys., 87, 7702 (2000); K Trachenko et al, J. Phys.: Cond. Matt., 13, 1947 (2001). [3] T Murakami et al, Am. Min., 76, 1510 (1991); H D Holland and D Gottfried, Acta Cryst. 8, 291 (1955).; W J Weber, J. Am

  7. Radiation effects on custom MOS devices

    International Nuclear Information System (INIS)

    This Thesis consists of four chapters: The first is primarily for background information on the effects of radiation on MOS devices and the theory of wafer bonding; the second gives a full discussion of all practical work carried out for manufacture of Field Effect test Capacitors, the third discusses manufacture of vacuum insulator Field Effect Transistors (FET's) and the fourth discusses the testing of these devices. Using a thermally bonded field effect capacitor structure, a vacuum dielectric was studied for use in high radiation environments with a view to manufacturing a CMOS compatible, micro machined transistor. Results are given in the form of high frequency C-V curves before and after a 120 kGy(Si), 12 MRad(Si), dose from a Co60 source showing a 1 Volt shift. The work is then extended to the design and manufacture of a micro machined, under-etch technique, Field Effect Transistor for use in high radiation areas. Results are shown for Threshold, Subthreshold and Transfer characteristics before and after irradiation up to a total dose of 100kGy or 10MRad. The conclusion from this work is that it should be possible to commercially manufacture practical vacuum dielectric field effect transistors which are radiation hard to at least 120 kGy(Si). (author)

  8. Effects of Gamma Radiation on the Constituents of Wheat Flour

    International Nuclear Information System (INIS)

    Physical, chemical and biochemical changes occur in the constituents of wheat exposed to gamma radiation. The extent of these changes depends on the origin of the wheat and on the radiation dose. The carotenoids of the oily fraction of the wheat are reduced by the effects of the radiation, disappearing when the dose reaches 4 Mrad. However, the chemical composition of the lipids, which are the seat of reactions similar to those giving rise to hydroperoxides, remains virtually unchanged even at very high doses. The substantial degradation of the starch indicates that the polysaccharides of the wheat are the fractions most severely affected by radiation. This leads to an increase in the reducing substances already present and in the maltose index as the dose rises. However, the increase in autolytic production of reducing sugars in the irradiated wheat is due to the greater susceptibility of the starch to hydrolysis by the diastases. The denaturation of the polysaccharides reduces the viscosity of the starch pastes thanks to an increase in the solubility of the amylopectin. Gamma irradiation generally reduces the proteolytic activity of flour, and, in the case of high doses, causes not only a partial denaturation of the proteins but also their polymerization and/or condensation. This polymerization may be explained by the reaction of free radicals with the gluten proteins having -SH groups and by the interaction of primary radicals in the protein macromolecules (these phenomena occurring during irradiation). The modifications in the proteins cause variations in the solubility of the albumin, gliadin and glutenin, and also in the percentage distribution of the groups of which they consist. It was found that low gamma radiation doses (20 000 - 150 000 rad) produce a maximum in the curves of starch viscosity, substances capable of precipitation by electrodialysis, gliadin solubility and the Hagberg index. This anomaly explains the improvement in baking properties which

  9. Effect of ionizing radiation on the structure and epoxide composition properties

    International Nuclear Information System (INIS)

    The effect of ionizing radiation on the epoxide composition structure and properties is investigated. It is shown, that epoxide composition radiation resistance is determined not only by the chemical nature of the components, but by their hardening regime as well. Moreover, even very low dose irradiation of epoxide compositions changes sufficiently their adhesion to the substrate surface. Properties of composites in the initial state improve and their radiation resistance increases with introduction of elastifying additions

  10. Bio-molecular alterations induced by a chemical or radiating stress in isolated human cells

    International Nuclear Information System (INIS)

    After having recalled some aspects of radiobiology (effects of ionizing radiations, molecular targets of radiations, cellular responses with respect to the radiation), the author discusses various aspects of radio-sensitivity: intrinsic radio-sensitivity of tumoral and normal cells, DNA injuries and in vitro radio-sensitivity, genes of susceptibility to ionizing radiations, clustered injuries. Then she reports investigations performed by infrared micro-spectroscopy: characterization of pathological lines, of biological processes, of oxidative injuries induced by xenobiotics, of injuries induced by ionizing radiations

  11. Combined Effects of Radiation and Mercury on PLHC-1 Cells

    International Nuclear Information System (INIS)

    It is inevitable for living objects to expose themselves to multiple factors present in the environment. The combined effect of multi-factors is hard to estimate and predict in advance. Especially factors harmful to organisms can synergistically interact with each other. When the effect of the combined action is greater than expected additivity, it is called synergism or supra-additivity. Ionizing radiation can cause cell death, mainly due to its ability to produce reactive oxygen species in cells. Mercury is one of widespread environmental pollutants which is known to have toxic effects on organisms. There are many reports indicating its genotoxic potential in a variety of aquatic species. Synergistic effects of radiation and mercury on human cells was previously reported. Aerobically growing organisms suffer from exposure to oxidative stress, caused by partially reduced forms of molecular oxygen, known as reactive oxygen species. These are highly reactive and capable of damaging cellular constituents such as DNA, lipids and proteins. Consequently, cells from many different organisms have evolved mechanisms to protect their components against reactive oxygen species. Reactive oxygen species can also be formed by exposure of cells either to ionizing radiation or redox cycling chemicals present in the environment like heavy metals. PLHC-1 hepatoma cell line derived from top minnow (Poeciliopsis lucida) is the most commonly used cell line in toxicology. The PLHC-1 cells are easy to cultivate, and can be used for screening the toxicity of chemicals. The present study was done to evaluate the combined effects of radiation with mercury chloride on the PLHC-1 cells

  12. Genetic Effects of Pile Radiations in Rice

    International Nuclear Information System (INIS)

    In attempts to utilize radiation-induced mutations for rice breeding, it is of primary interest to obtain the fundamental data of the biological effects of pile radiations. Although considerable variation of radiosensitivity was found among rice varieties, Japanese rice was comparatively more susceptible to pile radiations than foreign varieties, and tetraploids were less susceptible as compared with the diploid varieties after irradiation. From die observation of the radiation injury of F1, hybrids it was concluded that, in addition to the contribution of a gene or a gene system, the cytoplasm was related to the intervarietal difference of radiosensitivity. Sterility was more easily induced by pile radiations than X-irradiation. In the X-ray series, chlorophyll mutations on the X1-ear basis reached a maximum frequency at middle doses and decreased at higher doses. In the pile radiation series the frequency increased with increasing doses. The cause of differences of these two series seemed to be a difference of the mean size of mutated sectors between both the radiations. The increment of induced variation on quantitative characters occurred in plus and minus direction with similar frequencies after the treatment of pile radiations. However, the heritable variations did not increase in accordance with neutron flux. The amount of induced variation was more in the progenies of partially sterile X1 ear and less in those which segregated chlorophyll mutants in X2 generation. It was calculated that 1 r of X- and gamma-rays was equivalent to 1-2 x 109 thermal neutrons per cm2 for induction of chlorophyll mutations and of variation on quantitative characters. (author)

  13. Gamma radiation effects on pequi fruits (Caryocar brasiliense Camb.)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcio Ramatiz L.; Arthur, Valter [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Irradiacao de Alimentos e Radioentomologia], e-mail: mramatiz@eafce.gov.br, e-mail: vaarthur@cena.usp.br; Salgado, Jocelem M.; Spoto, Marta H. Fillet; Canniatti-Brazaca, Solange G. [Universidade de Sao Paulo (USP), Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz (ESALQ). Dept. de Agroindustria, Alimentos e Nutricao], e-mail: jmsalgad@esalq.usp.br, e-mail: mhfspoto@esalq.usp.br, e-mail: sgcbraza@esalq.usp.br

    2009-07-01

    The objective of this work was to evaluate the effects of gamma radiation on characteristics of pequi fruits (Caryocar brasiliense Camb.). Just now, they are gained attention of researchers due their nutritional properties, between then is the pequi fruits. Fruits come from Goias State was classified, washed and processed to separate the endocarp (edible part) from pericarp. The endocarps were packing in polyethylene bags with 150 g, labeled and submitted to radiation process (0.0, 0.4, 0.6 and 1.0 kGy doses) on multipurpose irradiator located in IPEN/USP. The samples were analyzed to chemical (pH, trititable acidity, deg Brix, ratio TSS/TTA, lipids, ash, humidity, protein, soluble and insoluble fiber, total carotenoids and antioxidant activity) and physical properties (loss weight, texture and color). The irradiation process using gamma rays from Co{sup 60} was effective to protect pequi fruits in postharvest period. (author)

  14. Gamma radiation effects on pequi fruits (Caryocar brasiliense Camb.)

    International Nuclear Information System (INIS)

    The objective of this work was to evaluate the effects of gamma radiation on characteristics of pequi fruits (Caryocar brasiliense Camb.). Just now, they are gained attention of researchers due their nutritional properties, between then is the pequi fruits. Fruits come from Goias State was classified, washed and processed to separate the endocarp (edible part) from pericarp. The endocarps were packing in polyethylene bags with 150 g, labeled and submitted to radiation process (0.0, 0.4, 0.6 and 1.0 kGy doses) on multipurpose irradiator located in IPEN/USP. The samples were analyzed to chemical (pH, trititable acidity, deg Brix, ratio TSS/TTA, lipids, ash, humidity, protein, soluble and insoluble fiber, total carotenoids and antioxidant activity) and physical properties (loss weight, texture and color). The irradiation process using gamma rays from Co60 was effective to protect pequi fruits in postharvest period. (author)

  15. Histopathologic aspects of radiation effects on lymphatic tissues and malignancies

    International Nuclear Information System (INIS)

    Morphologic study with the light microscope remains our most facile and rapid means of tissue identification, diagnosis and staging of diseases, and demonstration of radiation-induced and other toxic effects. The inadequacy of its use alone, however, for the solution of biologic problems is nowhere better illustrated than in such studies on lymphatic tissues as are reported in this symposium. Nearly every classical concept concerning lymphocyte biology and disease derived by morphologic methods has been challenged or disproved in recent years by applications of nonmorphologic technologies. Studies with light and electron microscopy in combination with cell-labeling techniques, histochemical methodology, virology, immunology, and radiation biology have corrected many of our misconceptions and provided unifying concepts of lymphatic-tissue structure and function which explain anew our observations of the past. For example, nearly everyone now accepts the biologic role of viruses in what once were considered radiation-caused neoplasms in rodents, although whether the role of radiation and other physical and chemical insults in human carcinogenesis is direct or indirect is still to be elucidated. Also, the exact relations that obtain between radiation and cancer induction via viruses even in well-studied rodent systems remain to be determined; and here morphologic studies continue to play an important integrating role for the multidisciplinary studies that are required

  16. Pilot-industrial plant for radiation-chemical finishing of textiles

    International Nuclear Information System (INIS)

    A pilot technological radiational-chemical line for liquid-phase radiational-chemical finish of fabrics is described, which is being mounted at the Glukhov cotton group of enterprises now. It is designed primarily for the anti-microbe finish of cotton fabrics by grafting copper polyacrylate. The technological scheme is built on the principle of direct (combined) irradiation of the fabric impregnated by a monomer solution. Graft of the monomer to the fabric is performed by the radiational method. As source of radiation, an electron accelerator with the beam power of 0.4-0.7 Mev and with a biological protection has been employed. Depending on the thickness of the material irradiated and irradiation conditions, the fabric drive mechanism permits to change a number of irradiated fabric layers from 1 to 9 and by this to utilize in the most complete manner the energy of the accelerated electron beam. The nominal width of the irradiated material is 1000 m, the transportation velocity can vary in the range from 10 through 100 m/min. The radiational-chemical method of fabric finish is economical, highly productive and easily controllable

  17. Predictive biochemical assays for late radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, P.; Finkelstein, J.N.; Siemann, D.W.; Shapiro, D.L.; Van Houtte, P.; Penney, D.P.

    1986-04-01

    Surfactant precursors or other products of Type II pneumocytes have the potential to be the first biochemical marker for late radiation effects. This is particularly clinically important in the combined modality era because of the frequent occurrence of pneumonitis and pulmonary fibrosis secondary to radiation or chemotherapy. Accordingly, correlative studies have been pursued with the Type II pneumocyte as a beginning point to understand the complex pathophysiology of radiation pneumonitis and fibrosis. From our ultrastructural and biochemical studies, it is evident that Type II pneumocytes are an early target of radiation and the release of surfactant into the alveolus shortly after exposure persists for days and weeks. Through the use of lavaging techniques, alveolar surfactant has been elevated after pulmonary irradiation. In three murine strains and in the rabbit, there is a strong correlation with surfactant release at 7 and/or 28 days in vivo with later lethality in months. In vitro studies using cultures of type II pneumocytes also demonstrate dose response and tolerance factors that are comparable to the in vivo small and large animal diagnostic models. New markers are being developed to serve as a predictive index for later lethal pneumonopathies. With the development of these techniques, the search for early biochemical markers in man has been undertaken. Through the use of biochemical, histological, and ultrastructural techniques, a causal relationship between radiation effects on type II pneumocytes, pulmonary cells, endothelial cells of blood vessels, and their roles in the production of pneumonitis and fibrosis will evolve.

  18. Effects of gamma radiation in annatto seeds

    International Nuclear Information System (INIS)

    The annatto bixin has emerged as a major source of natural dyes used in the world notably by the substitution of synthetics harmful to human health and ecologic tendency in obtaining industrial products free of additives with applications in industries textiles; cosmetics; pharmaceutical and food mainly. The aim of this research was to obtain increased of germination rate and dormancy breaking on annatto seeds by gamma radiation. Annatto dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.456 kGy/hour dose rate. In order to study stimulation effects of radiation on germination rate and dormancy breaking in the seeds. Five treatments with gamma radiation doses were applied as follows: 0 (control); 100; 125; 150 and 175 Gy. After irradiation the annatto seeds were planted as for usual seed production. According to the results obtained in this experiment we can conclude that the low doses of gamma radiation utilized on the annatto seeds did not presented significantly effect on the germination of plants. But the best dose to increase the germination of seeds was 150 Gy. (author)

  19. Predictive biochemical assays for late radiation effects

    International Nuclear Information System (INIS)

    Surfactant precursors or other products of Type II pneumocytes have the potential to be the first biochemical marker for late radiation effects. This is particularly clinically important in the combined modality era because of the frequent occurrence of pneumonitis and pulmonary fibrosis secondary to radiation or chemotherapy. Accordingly, correlative studies have been pursued with the Type II pneumocyte as a beginning point to understand the complex pathophysiology of radiation pneumonitis and fibrosis. From our ultrastructural and biochemical studies, it is evident that Type II pneumocytes are an early target of radiation and the release of surfactant into the alveolus shortly after exposure persists for days and weeks. Through the use of lavaging techniques, alveolar surfactant has been elevated after pulmonary irradiation. In three murine strains and in the rabbit, there is a strong correlation with surfactant release at 7 and/or 28 days in vivo with later lethality in months. In vitro studies using cultures of type II pneumocytes also demonstrate dose response and tolerance factors that are comparable to the in vivo small and large animal diagnostic models. New markers are being developed to serve as a predictive index for later lethal pneumonopathies. With the development of these techniques, the search for early biochemical markers in man has been undertaken. Through the use of biochemical, histological, and ultrastructural techniques, a causal relationship between radiation effects on type II pneumocytes, pulmonary cells, endothelial cells of blood vessels, and their roles in the production of pneumonitis and fibrosis will evolve

  20. Effects of gamma radiation in annatto seeds

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Camilo F. de Oliveira, E-mail: camilo.urucum@hotmail.com [Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA/EMEPA), Joao Pessoa, PB (Brazil); Arthur, Valter; Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Harder, Marcia N.C., E-mail: marcia.harder@fatec.sp.gov.br [Centro Paula Souza, Curso Superior de Tecnologia em Bicombustiveis (FATEC), Piracicaba, SP (Brazil); Filho, Jose C.; Neto, Miguel B., E-mail: jorgecazefilho@yahoo.com.br [Empresa Estadual de Pesquisa Agropecuaria da Paraiba (EMEPA), Joao Pessoa, PB (Brazil)

    2015-07-01

    The annatto bixin has emerged as a major source of natural dyes used in the world notably by the substitution of synthetics harmful to human health and ecologic tendency in obtaining industrial products free of additives with applications in industries textiles; cosmetics; pharmaceutical and food mainly. The aim of this research was to obtain increased of germination rate and dormancy breaking on annatto seeds by gamma radiation. Annatto dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.456 kGy/hour dose rate. In order to study stimulation effects of radiation on germination rate and dormancy breaking in the seeds. Five treatments with gamma radiation doses were applied as follows: 0 (control); 100; 125; 150 and 175 Gy. After irradiation the annatto seeds were planted as for usual seed production. According to the results obtained in this experiment we can conclude that the low doses of gamma radiation utilized on the annatto seeds did not presented significantly effect on the germination of plants. But the best dose to increase the germination of seeds was 150 Gy. (author)